[2759] | 1 | #if ( RWORDSIZE == 4 ) |
---|
| 2 | # define VREC vsrec |
---|
| 3 | # define VSQRT vssqrt |
---|
| 4 | #else |
---|
| 5 | # define VREC vrec |
---|
| 6 | # define VSQRT vsqrt |
---|
| 7 | #endif |
---|
| 8 | |
---|
| 9 | MODULE module_mp_wsm3 |
---|
| 10 | ! |
---|
| 11 | ! |
---|
| 12 | REAL, PARAMETER, PRIVATE :: dtcldcr = 120. |
---|
| 13 | REAL, PARAMETER, PRIVATE :: n0r = 8.e6 |
---|
| 14 | REAL, PARAMETER, PRIVATE :: avtr = 841.9 |
---|
| 15 | REAL, PARAMETER, PRIVATE :: bvtr = 0.8 |
---|
| 16 | REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m |
---|
| 17 | REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency |
---|
| 18 | REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80 |
---|
| 19 | REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1 |
---|
| 20 | REAL, PARAMETER, PRIVATE :: avts = 11.72 |
---|
| 21 | REAL, PARAMETER, PRIVATE :: bvts = .41 |
---|
| 22 | REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! t=-90C unlimited |
---|
| 23 | REAL, PARAMETER, PRIVATE :: lamdarmax = 8.e4 |
---|
| 24 | REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 |
---|
| 25 | REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 |
---|
| 26 | REAL, PARAMETER, PRIVATE :: betai = .6 |
---|
| 27 | REAL, PARAMETER, PRIVATE :: xn0 = 1.e-2 |
---|
| 28 | REAL, PARAMETER, PRIVATE :: dicon = 11.9 |
---|
| 29 | REAL, PARAMETER, PRIVATE :: di0 = 12.9e-6 |
---|
| 30 | REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 |
---|
| 31 | REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent n0s |
---|
| 32 | REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s |
---|
| 33 | REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 |
---|
| 34 | REAL, SAVE :: & |
---|
| 35 | qc0, qck1,bvtr1,bvtr2,bvtr3,bvtr4,g1pbr,& |
---|
| 36 | g3pbr,g4pbr,g5pbro2,pvtr,eacrr,pacrr, & |
---|
| 37 | precr1,precr2,xm0,xmmax,roqimax,bvts1, & |
---|
| 38 | bvts2,bvts3,bvts4,g1pbs,g3pbs,g4pbs, & |
---|
| 39 | g5pbso2,pvts,pacrs,precs1,precs2,pidn0r,& |
---|
| 40 | pidn0s,xlv1, & |
---|
| 41 | rslopermax,rslopesmax,rslopegmax, & |
---|
| 42 | rsloperbmax,rslopesbmax,rslopegbmax, & |
---|
| 43 | rsloper2max,rslopes2max,rslopeg2max, & |
---|
| 44 | rsloper3max,rslopes3max,rslopeg3max |
---|
| 45 | ! |
---|
| 46 | ! Specifies code-inlining of fpvs function in WSM32D below. JM 20040507 |
---|
| 47 | ! |
---|
| 48 | CONTAINS |
---|
| 49 | !=================================================================== |
---|
| 50 | ! |
---|
| 51 | SUBROUTINE wsm3(th, q, qci, qrs & |
---|
| 52 | , w, den, pii, p, delz & |
---|
| 53 | , delt,g, cpd, cpv, rd, rv, t0c & |
---|
| 54 | , ep1, ep2, qmin & |
---|
| 55 | , XLS, XLV0, XLF0, den0, denr & |
---|
| 56 | , cliq,cice,psat & |
---|
| 57 | , rain, rainncv & |
---|
| 58 | ,snow, snowncv & |
---|
| 59 | ,sr & |
---|
| 60 | , ids,ide, jds,jde, kds,kde & |
---|
| 61 | , ims,ime, jms,jme, kms,kme & |
---|
| 62 | , its,ite, jts,jte, kts,kte & |
---|
| 63 | ) |
---|
| 64 | !------------------------------------------------------------------- |
---|
| 65 | IMPLICIT NONE |
---|
| 66 | !------------------------------------------------------------------- |
---|
| 67 | ! |
---|
| 68 | ! |
---|
| 69 | ! This code is a 3-class simple ice microphyiscs scheme (WSM3) of the WRF |
---|
| 70 | ! Single-Moment MicroPhyiscs (WSMMP). The WSMMP assumes that ice nuclei |
---|
| 71 | ! number concentration is a function of temperature, and seperate assumption |
---|
| 72 | ! is developed, in which ice crystal number concentration is a function |
---|
| 73 | ! of ice amount. A theoretical background of the ice-microphysics and related |
---|
| 74 | ! processes in the WSMMPs are described in Hong et al. (2004). |
---|
| 75 | ! Production terms in the WSM6 scheme are described in Hong and Lim (2006). |
---|
| 76 | ! All units are in m.k.s. and source/sink terms in kgkg-1s-1. |
---|
| 77 | ! |
---|
| 78 | ! WSM3 cloud scheme |
---|
| 79 | ! |
---|
| 80 | ! Coded by Song-You Hong (Yonsei Univ.) |
---|
| 81 | ! Jimy Dudhia (NCAR) and Shu-Hua Chen (UC Davis) |
---|
| 82 | ! Summer 2002 |
---|
| 83 | ! |
---|
| 84 | ! Implemented by Song-You Hong (Yonsei Univ.) and Jimy Dudhia (NCAR) |
---|
| 85 | ! Summer 2003 |
---|
| 86 | ! |
---|
| 87 | ! Reference) Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev. |
---|
| 88 | ! Dudhia (D89, 1989) J. Atmos. Sci. |
---|
| 89 | ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc. |
---|
| 90 | ! |
---|
| 91 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
| 92 | ims,ime, jms,jme, kms,kme , & |
---|
| 93 | its,ite, jts,jte, kts,kte |
---|
| 94 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
| 95 | INTENT(INOUT) :: & |
---|
| 96 | th, & |
---|
| 97 | q, & |
---|
| 98 | qci, & |
---|
| 99 | qrs |
---|
| 100 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
| 101 | INTENT(IN ) :: w, & |
---|
| 102 | den, & |
---|
| 103 | pii, & |
---|
| 104 | p, & |
---|
| 105 | delz |
---|
| 106 | REAL, INTENT(IN ) :: delt, & |
---|
| 107 | g, & |
---|
| 108 | rd, & |
---|
| 109 | rv, & |
---|
| 110 | t0c, & |
---|
| 111 | den0, & |
---|
| 112 | cpd, & |
---|
| 113 | cpv, & |
---|
| 114 | ep1, & |
---|
| 115 | ep2, & |
---|
| 116 | qmin, & |
---|
| 117 | XLS, & |
---|
| 118 | XLV0, & |
---|
| 119 | XLF0, & |
---|
| 120 | cliq, & |
---|
| 121 | cice, & |
---|
| 122 | psat, & |
---|
| 123 | denr |
---|
| 124 | REAL, DIMENSION( ims:ime , jms:jme ), & |
---|
| 125 | INTENT(INOUT) :: rain, & |
---|
| 126 | rainncv, & |
---|
| 127 | sr |
---|
| 128 | |
---|
| 129 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
---|
| 130 | INTENT(INOUT) :: snow, & |
---|
| 131 | snowncv |
---|
| 132 | |
---|
| 133 | ! LOCAL VAR |
---|
| 134 | REAL, DIMENSION( its:ite , kts:kte ) :: t |
---|
| 135 | INTEGER :: i,j,k |
---|
| 136 | !------------------------------------------------------------------- |
---|
| 137 | DO j=jts,jte |
---|
| 138 | DO k=kts,kte |
---|
| 139 | DO i=its,ite |
---|
| 140 | t(i,k)=th(i,k,j)*pii(i,k,j) |
---|
| 141 | ENDDO |
---|
| 142 | ENDDO |
---|
| 143 | CALL wsm32D(t, q(ims,kms,j), qci(ims,kms,j) & |
---|
| 144 | ,qrs(ims,kms,j),w(ims,kms,j), den(ims,kms,j) & |
---|
| 145 | ,p(ims,kms,j), delz(ims,kms,j) & |
---|
| 146 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
| 147 | ,ep1, ep2, qmin & |
---|
| 148 | ,XLS, XLV0, XLF0, den0, denr & |
---|
| 149 | ,cliq,cice,psat & |
---|
| 150 | ,j & |
---|
| 151 | ,rain(ims,j), rainncv(ims,j) & |
---|
| 152 | ,sr(ims,j) & |
---|
| 153 | ,ids,ide, jds,jde, kds,kde & |
---|
| 154 | ,ims,ime, jms,jme, kms,kme & |
---|
| 155 | ,its,ite, jts,jte, kts,kte & |
---|
| 156 | ,snow(ims,j),snowncv(ims,j) & |
---|
| 157 | ) |
---|
| 158 | DO K=kts,kte |
---|
| 159 | DO I=its,ite |
---|
| 160 | th(i,k,j)=t(i,k)/pii(i,k,j) |
---|
| 161 | ENDDO |
---|
| 162 | ENDDO |
---|
| 163 | ENDDO |
---|
| 164 | END SUBROUTINE wsm3 |
---|
| 165 | !=================================================================== |
---|
| 166 | ! |
---|
| 167 | SUBROUTINE wsm32D(t, q, qci, qrs,w, den, p, delz & |
---|
| 168 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
| 169 | ,ep1, ep2, qmin & |
---|
| 170 | ,XLS, XLV0, XLF0, den0, denr & |
---|
| 171 | ,cliq,cice,psat & |
---|
| 172 | ,lat & |
---|
| 173 | ,rain, rainncv & |
---|
| 174 | ,sr & |
---|
| 175 | ,ids,ide, jds,jde, kds,kde & |
---|
| 176 | ,ims,ime, jms,jme, kms,kme & |
---|
| 177 | ,its,ite, jts,jte, kts,kte & |
---|
| 178 | ,snow,snowncv & |
---|
| 179 | ) |
---|
| 180 | !------------------------------------------------------------------- |
---|
| 181 | IMPLICIT NONE |
---|
| 182 | !------------------------------------------------------------------- |
---|
| 183 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
| 184 | ims,ime, jms,jme, kms,kme , & |
---|
| 185 | its,ite, jts,jte, kts,kte, & |
---|
| 186 | lat |
---|
| 187 | REAL, DIMENSION( its:ite , kts:kte ), & |
---|
| 188 | INTENT(INOUT) :: & |
---|
| 189 | t |
---|
| 190 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
| 191 | INTENT(INOUT) :: & |
---|
| 192 | q, & |
---|
| 193 | qci, & |
---|
| 194 | qrs |
---|
| 195 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
| 196 | INTENT(IN ) :: w, & |
---|
| 197 | den, & |
---|
| 198 | p, & |
---|
| 199 | delz |
---|
| 200 | REAL, INTENT(IN ) :: delt, & |
---|
| 201 | g, & |
---|
| 202 | cpd, & |
---|
| 203 | cpv, & |
---|
| 204 | t0c, & |
---|
| 205 | den0, & |
---|
| 206 | rd, & |
---|
| 207 | rv, & |
---|
| 208 | ep1, & |
---|
| 209 | ep2, & |
---|
| 210 | qmin, & |
---|
| 211 | XLS, & |
---|
| 212 | XLV0, & |
---|
| 213 | XLF0, & |
---|
| 214 | cliq, & |
---|
| 215 | cice, & |
---|
| 216 | psat, & |
---|
| 217 | denr |
---|
| 218 | REAL, DIMENSION( ims:ime ), & |
---|
| 219 | INTENT(INOUT) :: rain, & |
---|
| 220 | rainncv, & |
---|
| 221 | sr |
---|
| 222 | |
---|
| 223 | REAL, DIMENSION( ims:ime ), OPTIONAL, & |
---|
| 224 | INTENT(INOUT) :: snow, & |
---|
| 225 | snowncv |
---|
| 226 | ! LOCAL VAR |
---|
| 227 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
| 228 | rh, qs, denfac, rslope, rslope2, rslope3, rslopeb, & |
---|
| 229 | pgen, paut, pacr, pisd, pres, pcon, fall, falk, & |
---|
| 230 | xl, cpm, work1, work2, xni, qs0, n0sfac |
---|
| 231 | INTEGER, DIMENSION( its:ite ) :: kwork1, kwork2 |
---|
| 232 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
| 233 | falkc, work1c, work2c, fallc |
---|
| 234 | ! variables for optimization |
---|
| 235 | REAL, DIMENSION( its:ite ) :: tvec1 |
---|
| 236 | INTEGER, DIMENSION( its:ite ) :: mstep, numdt |
---|
| 237 | LOGICAL, DIMENSION( its:ite ) :: flgcld |
---|
| 238 | REAL :: pi, & |
---|
| 239 | cpmcal, xlcal, lamdar, lamdas, diffus, & |
---|
| 240 | viscos, xka, venfac, conden, diffac, & |
---|
| 241 | x, y, z, a, b, c, d, e, & |
---|
| 242 | fallsum, fallsum_qsi, vt2i,vt2s,acrfac, & |
---|
| 243 | qdt, pvt, qik, delq, facq, qrsci, frzmlt, & |
---|
| 244 | snomlt, hold, holdrs, facqci, supcol, coeres, & |
---|
| 245 | supsat, dtcld, xmi, qciik, delqci, eacrs, satdt, & |
---|
| 246 | qimax, diameter, xni0, roqi0, supice |
---|
| 247 | REAL :: holdc, holdci |
---|
| 248 | INTEGER :: i, j, k, mstepmax, & |
---|
| 249 | iprt, latd, lond, loop, loops, ifsat, kk, n |
---|
| 250 | ! Temporaries used for inlining fpvs function |
---|
| 251 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
---|
| 252 | ! |
---|
| 253 | !================================================================= |
---|
| 254 | ! compute internal functions |
---|
| 255 | ! |
---|
| 256 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
---|
| 257 | xlcal(x) = xlv0-xlv1*(x-t0c) |
---|
| 258 | !---------------------------------------------------------------- |
---|
| 259 | ! size distributions: (x=mixing ratio, y=air density): |
---|
| 260 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
| 261 | ! |
---|
| 262 | ! Optimizatin : A**B => exp(log(A)*(B)) |
---|
| 263 | lamdar(x,y)= sqrt(sqrt(pidn0r/(x*y))) ! (pidn0r/(x*y))**.25 |
---|
| 264 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
---|
| 265 | ! |
---|
| 266 | !---------------------------------------------------------------- |
---|
| 267 | ! diffus: diffusion coefficient of the water vapor |
---|
| 268 | ! viscos: kinematic viscosity(m2s-1) |
---|
| 269 | ! |
---|
| 270 | diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y |
---|
| 271 | viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y |
---|
| 272 | xka(x,y) = 1.414e3*viscos(x,y)*y |
---|
| 273 | diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
---|
| 274 | ! venfac(a,b,c) = (viscos(b,c)/diffus(b,a))**(.3333333) & |
---|
| 275 | ! /viscos(b,c)**(.5)*(den0/c)**0.25 |
---|
| 276 | venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & |
---|
| 277 | /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) |
---|
| 278 | conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
---|
| 279 | ! |
---|
| 280 | pi = 4. * atan(1.) |
---|
| 281 | ! |
---|
| 282 | !---------------------------------------------------------------- |
---|
| 283 | ! paddint 0 for negative values generated by dynamics |
---|
| 284 | ! |
---|
| 285 | do k = kts, kte |
---|
| 286 | do i = its, ite |
---|
| 287 | qci(i,k) = max(qci(i,k),0.0) |
---|
| 288 | qrs(i,k) = max(qrs(i,k),0.0) |
---|
| 289 | enddo |
---|
| 290 | enddo |
---|
| 291 | ! |
---|
| 292 | !---------------------------------------------------------------- |
---|
| 293 | ! latent heat for phase changes and heat capacity. neglect the |
---|
| 294 | ! changes during microphysical process calculation |
---|
| 295 | ! emanuel(1994) |
---|
| 296 | ! |
---|
| 297 | do k = kts, kte |
---|
| 298 | do i = its, ite |
---|
| 299 | cpm(i,k) = cpmcal(q(i,k)) |
---|
| 300 | xl(i,k) = xlcal(t(i,k)) |
---|
| 301 | enddo |
---|
| 302 | enddo |
---|
| 303 | ! |
---|
| 304 | !---------------------------------------------------------------- |
---|
| 305 | ! compute the minor time steps. |
---|
| 306 | ! |
---|
| 307 | loops = max(nint(delt/dtcldcr),1) |
---|
| 308 | dtcld = delt/loops |
---|
| 309 | if(delt.le.dtcldcr) dtcld = delt |
---|
| 310 | ! |
---|
| 311 | do loop = 1,loops |
---|
| 312 | ! |
---|
| 313 | !---------------------------------------------------------------- |
---|
| 314 | ! initialize the large scale variables |
---|
| 315 | ! |
---|
| 316 | do i = its, ite |
---|
| 317 | mstep(i) = 1 |
---|
| 318 | flgcld(i) = .true. |
---|
| 319 | enddo |
---|
| 320 | ! |
---|
| 321 | ! do k = kts, kte |
---|
| 322 | ! do i = its, ite |
---|
| 323 | ! denfac(i,k) = sqrt(den0/den(i,k)) |
---|
| 324 | ! enddo |
---|
| 325 | ! enddo |
---|
| 326 | do k = kts, kte |
---|
| 327 | CALL VREC( tvec1(its), den(its,k), ite-its+1) |
---|
| 328 | do i = its, ite |
---|
| 329 | tvec1(i) = tvec1(i)*den0 |
---|
| 330 | enddo |
---|
| 331 | CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
---|
| 332 | enddo |
---|
| 333 | ! |
---|
| 334 | ! Inline expansion for fpvs |
---|
| 335 | ! qs(i,k) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
| 336 | ! qs0(i,k) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
| 337 | cvap = cpv |
---|
| 338 | hvap=xlv0 |
---|
| 339 | hsub=xls |
---|
| 340 | ttp=t0c+0.01 |
---|
| 341 | dldt=cvap-cliq |
---|
| 342 | xa=-dldt/rv |
---|
| 343 | xb=xa+hvap/(rv*ttp) |
---|
| 344 | dldti=cvap-cice |
---|
| 345 | xai=-dldti/rv |
---|
| 346 | xbi=xai+hsub/(rv*ttp) |
---|
| 347 | do k = kts, kte |
---|
| 348 | do i = its, ite |
---|
| 349 | ! tr=ttp/t(i,k) |
---|
| 350 | ! if(t(i,k).lt.ttp) then |
---|
| 351 | ! qs(i,k) =psat*(tr**xai)*exp(xbi*(1.-tr)) |
---|
| 352 | ! else |
---|
| 353 | ! qs(i,k) =psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
| 354 | ! endif |
---|
| 355 | ! qs0(i,k) =psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
| 356 | tr=ttp/t(i,k) |
---|
| 357 | if(t(i,k).lt.ttp) then |
---|
| 358 | qs(i,k) =psat*(exp(log(tr)*(xai)))*exp(xbi*(1.-tr)) |
---|
| 359 | else |
---|
| 360 | qs(i,k) =psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) |
---|
| 361 | endif |
---|
| 362 | qs0(i,k) =psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) |
---|
| 363 | qs0(i,k) = (qs0(i,k)-qs(i,k))/qs(i,k) |
---|
| 364 | qs(i,k) = ep2 * qs(i,k) / (p(i,k) - qs(i,k)) |
---|
| 365 | qs(i,k) = max(qs(i,k),qmin) |
---|
| 366 | rh(i,k) = max(q(i,k) / qs(i,k),qmin) |
---|
| 367 | enddo |
---|
| 368 | enddo |
---|
| 369 | ! |
---|
| 370 | !---------------------------------------------------------------- |
---|
| 371 | ! initialize the variables for microphysical physics |
---|
| 372 | ! |
---|
| 373 | ! |
---|
| 374 | do k = kts, kte |
---|
| 375 | do i = its, ite |
---|
| 376 | pres(i,k) = 0. |
---|
| 377 | paut(i,k) = 0. |
---|
| 378 | pacr(i,k) = 0. |
---|
| 379 | pgen(i,k) = 0. |
---|
| 380 | pisd(i,k) = 0. |
---|
| 381 | pcon(i,k) = 0. |
---|
| 382 | fall(i,k) = 0. |
---|
| 383 | falk(i,k) = 0. |
---|
| 384 | fallc(i,k) = 0. |
---|
| 385 | falkc(i,k) = 0. |
---|
| 386 | xni(i,k) = 1.e3 |
---|
| 387 | enddo |
---|
| 388 | enddo |
---|
| 389 | ! |
---|
| 390 | !---------------------------------------------------------------- |
---|
| 391 | ! compute the fallout term: |
---|
| 392 | ! first, vertical terminal velosity for minor loops |
---|
| 393 | !--------------------------------------------------------------- |
---|
| 394 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
---|
| 395 | !--------------------------------------------------------------- |
---|
| 396 | do k = kts, kte |
---|
| 397 | do i = its, ite |
---|
| 398 | supcol = t0c-t(i,k) |
---|
| 399 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
| 400 | if(t(i,k).ge.t0c) then |
---|
| 401 | if(qrs(i,k).le.qcrmin)then |
---|
| 402 | rslope(i,k) = rslopermax |
---|
| 403 | rslopeb(i,k) = rsloperbmax |
---|
| 404 | rslope2(i,k) = rsloper2max |
---|
| 405 | rslope3(i,k) = rsloper3max |
---|
| 406 | else |
---|
| 407 | rslope(i,k) = 1./lamdar(qrs(i,k),den(i,k)) |
---|
| 408 | ! rslopeb(i,k) = rslope(i,k)**bvtr |
---|
| 409 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvtr)) |
---|
| 410 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
| 411 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
| 412 | endif |
---|
| 413 | else |
---|
| 414 | if(qrs(i,k).le.qcrmin)then |
---|
| 415 | rslope(i,k) = rslopesmax |
---|
| 416 | rslopeb(i,k) = rslopesbmax |
---|
| 417 | rslope2(i,k) = rslopes2max |
---|
| 418 | rslope3(i,k) = rslopes3max |
---|
| 419 | else |
---|
| 420 | rslope(i,k) = 1./lamdas(qrs(i,k),den(i,k),n0sfac(i,k)) |
---|
| 421 | ! rslopeb(i,k) = rslope(i,k)**bvts |
---|
| 422 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvts)) |
---|
| 423 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
| 424 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
| 425 | endif |
---|
| 426 | endif |
---|
| 427 | !------------------------------------------------------------- |
---|
| 428 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
| 429 | !------------------------------------------------------------- |
---|
| 430 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
---|
| 431 | ! *max(qci(i,k),qmin))**0.75,1.e3),1.e6) |
---|
| 432 | xni(i,k) = min(max(5.38e7*exp(log((den(i,k)*max(qci(i,k),qmin)))*(0.75)),1.e3),1.e6) |
---|
| 433 | enddo |
---|
| 434 | enddo |
---|
| 435 | ! |
---|
| 436 | mstepmax = 1 |
---|
| 437 | numdt = 1 |
---|
| 438 | do k = kte, kts, -1 |
---|
| 439 | do i = its, ite |
---|
| 440 | if(t(i,k).lt.t0c) then |
---|
| 441 | pvt = pvts |
---|
| 442 | else |
---|
| 443 | pvt = pvtr |
---|
| 444 | endif |
---|
| 445 | work1(i,k) = pvt*rslopeb(i,k)*denfac(i,k) |
---|
| 446 | work2(i,k) = work1(i,k)/delz(i,k) |
---|
| 447 | numdt(i) = max(nint(work2(i,k)*dtcld+.5),1) |
---|
| 448 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
---|
| 449 | enddo |
---|
| 450 | enddo |
---|
| 451 | do i = its, ite |
---|
| 452 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
---|
| 453 | enddo |
---|
| 454 | ! |
---|
| 455 | do n = 1, mstepmax |
---|
| 456 | k = kte |
---|
| 457 | do i = its, ite |
---|
| 458 | if(n.le.mstep(i)) then |
---|
| 459 | falk(i,k) = den(i,k)*qrs(i,k)*work2(i,k)/mstep(i) |
---|
| 460 | hold = falk(i,k) |
---|
| 461 | fall(i,k) = fall(i,k)+falk(i,k) |
---|
| 462 | holdrs = qrs(i,k) |
---|
| 463 | qrs(i,k) = max(qrs(i,k)-falk(i,k)*dtcld/den(i,k),0.) |
---|
| 464 | endif |
---|
| 465 | enddo |
---|
| 466 | do k = kte-1, kts, -1 |
---|
| 467 | do i = its, ite |
---|
| 468 | if(n.le.mstep(i)) then |
---|
| 469 | falk(i,k) = den(i,k)*qrs(i,k)*work2(i,k)/mstep(i) |
---|
| 470 | hold = falk(i,k) |
---|
| 471 | fall(i,k) = fall(i,k)+falk(i,k) |
---|
| 472 | holdrs = qrs(i,k) |
---|
| 473 | qrs(i,k) = max(qrs(i,k)-(falk(i,k) & |
---|
| 474 | -falk(i,k+1)*delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
---|
| 475 | endif |
---|
| 476 | enddo |
---|
| 477 | enddo |
---|
| 478 | enddo |
---|
| 479 | !--------------------------------------------------------------- |
---|
| 480 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
---|
| 481 | !--------------------------------------------------------------- |
---|
| 482 | mstepmax = 1 |
---|
| 483 | mstep = 1 |
---|
| 484 | numdt = 1 |
---|
| 485 | do k = kte, kts, -1 |
---|
| 486 | do i = its, ite |
---|
| 487 | if(t(i,k).lt.t0c.and.qci(i,k).gt.0.) then |
---|
| 488 | xmi = den(i,k)*qci(i,k)/xni(i,k) |
---|
| 489 | ! diameter = dicon * sqrt(xmi) |
---|
| 490 | ! work1c(i,k) = 1.49e4*diameter**1.31 |
---|
| 491 | diameter = max(dicon * sqrt(xmi), 1.e-25) |
---|
| 492 | work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) |
---|
| 493 | else |
---|
| 494 | work1c(i,k) = 0. |
---|
| 495 | endif |
---|
| 496 | if(qci(i,k).le.0.) then |
---|
| 497 | work2c(i,k) = 0. |
---|
| 498 | else |
---|
| 499 | work2c(i,k) = work1c(i,k)/delz(i,k) |
---|
| 500 | endif |
---|
| 501 | numdt(i) = max(nint(work2c(i,k)*dtcld+.5),1) |
---|
| 502 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
---|
| 503 | enddo |
---|
| 504 | enddo |
---|
| 505 | do i = its, ite |
---|
| 506 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
---|
| 507 | enddo |
---|
| 508 | ! |
---|
| 509 | do n = 1, mstepmax |
---|
| 510 | k = kte |
---|
| 511 | do i = its, ite |
---|
| 512 | if (n.le.mstep(i)) then |
---|
| 513 | falkc(i,k) = den(i,k)*qci(i,k)*work2c(i,k)/mstep(i) |
---|
| 514 | holdc = falkc(i,k) |
---|
| 515 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
| 516 | holdci = qci(i,k) |
---|
| 517 | qci(i,k) = max(qci(i,k)-falkc(i,k)*dtcld/den(i,k),0.) |
---|
| 518 | endif |
---|
| 519 | enddo |
---|
| 520 | do k = kte-1, kts, -1 |
---|
| 521 | do i = its, ite |
---|
| 522 | if (n.le.mstep(i)) then |
---|
| 523 | falkc(i,k) = den(i,k)*qci(i,k)*work2c(i,k)/mstep(i) |
---|
| 524 | holdc = falkc(i,k) |
---|
| 525 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
| 526 | holdci = qci(i,k) |
---|
| 527 | qci(i,k) = max(qci(i,k)-(falkc(i,k) & |
---|
| 528 | -falkc(i,k+1)*delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
---|
| 529 | endif |
---|
| 530 | enddo |
---|
| 531 | enddo |
---|
| 532 | enddo |
---|
| 533 | ! |
---|
| 534 | !---------------------------------------------------------------- |
---|
| 535 | ! compute the freezing/melting term. [D89 B16-B17] |
---|
| 536 | ! freezing occurs one layer above the melting level |
---|
| 537 | ! |
---|
| 538 | do i = its, ite |
---|
| 539 | mstep(i) = 0 |
---|
| 540 | enddo |
---|
| 541 | do k = kts, kte |
---|
| 542 | do i = its, ite |
---|
| 543 | if(t(i,k).ge.t0c) then |
---|
| 544 | mstep(i) = k |
---|
| 545 | endif |
---|
| 546 | enddo |
---|
| 547 | enddo |
---|
| 548 | ! |
---|
| 549 | do i = its, ite |
---|
| 550 | kwork2(i) = mstep(i) |
---|
| 551 | kwork1(i) = mstep(i) |
---|
| 552 | if(mstep(i).ne.0) then |
---|
| 553 | if (w(i,mstep(i)).gt.0.) then |
---|
| 554 | kwork1(i) = mstep(i) + 1 |
---|
| 555 | endif |
---|
| 556 | endif |
---|
| 557 | enddo |
---|
| 558 | ! |
---|
| 559 | do i = its, ite |
---|
| 560 | k = kwork1(i) |
---|
| 561 | kk = kwork2(i) |
---|
| 562 | if(k*kk.ge.1) then |
---|
| 563 | qrsci = qrs(i,k) + qci(i,k) |
---|
| 564 | if(qrsci.gt.0..or.fall(i,kk).gt.0.) then |
---|
| 565 | frzmlt = min(max(-w(i,k)*qrsci/delz(i,k),-qrsci/dtcld), & |
---|
| 566 | qrsci/dtcld) |
---|
| 567 | snomlt = min(max(fall(i,kk)/den(i,kk),-qrs(i,k)/dtcld), & |
---|
| 568 | qrs(i,k)/dtcld) |
---|
| 569 | if(k.eq.kk) then |
---|
| 570 | t(i,k) = t(i,k) - xlf0/cpm(i,k)*(frzmlt+snomlt)*dtcld |
---|
| 571 | else |
---|
| 572 | t(i,k) = t(i,k) - xlf0/cpm(i,k)*frzmlt*dtcld |
---|
| 573 | t(i,kk) = t(i,kk) - xlf0/cpm(i,kk)*snomlt*dtcld |
---|
| 574 | endif |
---|
| 575 | endif |
---|
| 576 | endif |
---|
| 577 | enddo |
---|
| 578 | ! |
---|
| 579 | !---------------------------------------------------------------- |
---|
| 580 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
---|
| 581 | ! |
---|
| 582 | do i = its, ite |
---|
| 583 | fallsum = fall(i,1) |
---|
| 584 | fallsum_qsi = 0. |
---|
| 585 | if((t0c-t(i,1)).gt.0) then |
---|
| 586 | fallsum = fallsum+fallc(i,1) |
---|
| 587 | fallsum_qsi = fall(i,1)+fallc(i,1) |
---|
| 588 | endif |
---|
| 589 | rainncv(i) = 0. |
---|
| 590 | if(fallsum.gt.0.) then |
---|
| 591 | rainncv(i) = fallsum*delz(i,1)/denr*dtcld*1000. |
---|
| 592 | rain(i) = fallsum*delz(i,1)/denr*dtcld*1000. & |
---|
| 593 | + rain(i) |
---|
| 594 | endif |
---|
| 595 | IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN |
---|
| 596 | snowncv(i) = 0. |
---|
| 597 | if(fallsum_qsi.gt.0.) then |
---|
| 598 | snowncv(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. |
---|
| 599 | snow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snow(i) |
---|
| 600 | endif |
---|
| 601 | ENDIF |
---|
| 602 | sr(i) = 0. |
---|
| 603 | if(fallsum.gt.0.)sr(i)=fallsum_qsi*delz(i,kts)/denr*dtcld*1000./(rainncv(i)+1.e-12) |
---|
| 604 | enddo |
---|
| 605 | ! |
---|
| 606 | !---------------------------------------------------------------- |
---|
| 607 | ! rsloper: reverse of the slope parameter of the rain(m) |
---|
| 608 | ! xka: thermal conductivity of air(jm-1s-1k-1) |
---|
| 609 | ! work1: the thermodynamic term in the denominator associated with |
---|
| 610 | ! heat conduction and vapor diffusion |
---|
| 611 | ! (ry88, y93, h85) |
---|
| 612 | ! work2: parameter associated with the ventilation effects(y93) |
---|
| 613 | ! |
---|
| 614 | do k = kts, kte |
---|
| 615 | do i = its, ite |
---|
| 616 | if(t(i,k).ge.t0c) then |
---|
| 617 | if(qrs(i,k).le.qcrmin)then |
---|
| 618 | rslope(i,k) = rslopermax |
---|
| 619 | rslopeb(i,k) = rsloperbmax |
---|
| 620 | rslope2(i,k) = rsloper2max |
---|
| 621 | rslope3(i,k) = rsloper3max |
---|
| 622 | else |
---|
| 623 | rslope(i,k) = 1./lamdar(qrs(i,k),den(i,k)) |
---|
| 624 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvtr)) |
---|
| 625 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
| 626 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
| 627 | endif |
---|
| 628 | else |
---|
| 629 | if(qrs(i,k).le.qcrmin)then |
---|
| 630 | rslope(i,k) = rslopesmax |
---|
| 631 | rslopeb(i,k) = rslopesbmax |
---|
| 632 | rslope2(i,k) = rslopes2max |
---|
| 633 | rslope3(i,k) = rslopes3max |
---|
| 634 | else |
---|
| 635 | rslope(i,k) = 1./lamdas(qrs(i,k),den(i,k),n0sfac(i,k)) |
---|
| 636 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvts)) |
---|
| 637 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
| 638 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
| 639 | endif |
---|
| 640 | endif |
---|
| 641 | enddo |
---|
| 642 | enddo |
---|
| 643 | ! |
---|
| 644 | do k = kts, kte |
---|
| 645 | do i = its, ite |
---|
| 646 | if(t(i,k).ge.t0c) then |
---|
| 647 | work1(i,k) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k)) |
---|
| 648 | else |
---|
| 649 | work1(i,k) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k)) |
---|
| 650 | endif |
---|
| 651 | work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
---|
| 652 | enddo |
---|
| 653 | enddo |
---|
| 654 | ! |
---|
| 655 | do k = kts, kte |
---|
| 656 | do i = its, ite |
---|
| 657 | supsat = max(q(i,k),qmin)-qs(i,k) |
---|
| 658 | satdt = supsat/dtcld |
---|
| 659 | if(t(i,k).ge.t0c) then |
---|
| 660 | ! |
---|
| 661 | !=============================================================== |
---|
| 662 | ! |
---|
| 663 | ! warm rain processes |
---|
| 664 | ! |
---|
| 665 | ! - follows the processes in RH83 and LFO except for autoconcersion |
---|
| 666 | ! |
---|
| 667 | !=============================================================== |
---|
| 668 | !--------------------------------------------------------------- |
---|
| 669 | ! praut: auto conversion rate from cloud to rain [HDC 16] |
---|
| 670 | ! (C->R) |
---|
| 671 | !--------------------------------------------------------------- |
---|
| 672 | if(qci(i,k).gt.qc0) then |
---|
| 673 | ! paut(i,k) = qck1*qci(i,k)**(7./3.) |
---|
| 674 | paut(i,k) = qck1*exp(log(qci(i,k))*((7./3.))) |
---|
| 675 | paut(i,k) = min(paut(i,k),qci(i,k)/dtcld) |
---|
| 676 | endif |
---|
| 677 | !--------------------------------------------------------------- |
---|
| 678 | ! pracw: accretion of cloud water by rain [HL A40] [D89 B15] |
---|
| 679 | ! (C->R) |
---|
| 680 | !--------------------------------------------------------------- |
---|
| 681 | if(qrs(i,k).gt.qcrmin.and.qci(i,k).gt.qmin) then |
---|
| 682 | pacr(i,k) = min(pacrr*rslope3(i,k)*rslopeb(i,k) & |
---|
| 683 | *qci(i,k)*denfac(i,k),qci(i,k)/dtcld) |
---|
| 684 | endif |
---|
| 685 | !--------------------------------------------------------------- |
---|
| 686 | ! prevp: evaporation/condensation rate of rain [HDC 14] |
---|
| 687 | ! (V->R or R->V) |
---|
| 688 | !--------------------------------------------------------------- |
---|
| 689 | if(qrs(i,k).gt.0.) then |
---|
| 690 | coeres = rslope2(i,k)*sqrt(rslope(i,k)*rslopeb(i,k)) |
---|
| 691 | pres(i,k) = (rh(i,k)-1.)*(precr1*rslope2(i,k) & |
---|
| 692 | +precr2*work2(i,k)*coeres)/work1(i,k) |
---|
| 693 | if(pres(i,k).lt.0.) then |
---|
| 694 | pres(i,k) = max(pres(i,k),-qrs(i,k)/dtcld) |
---|
| 695 | pres(i,k) = max(pres(i,k),satdt/2) |
---|
| 696 | else |
---|
| 697 | pres(i,k) = min(pres(i,k),satdt/2) |
---|
| 698 | endif |
---|
| 699 | endif |
---|
| 700 | else |
---|
| 701 | ! |
---|
| 702 | !=============================================================== |
---|
| 703 | ! |
---|
| 704 | ! cold rain processes |
---|
| 705 | ! |
---|
| 706 | ! - follows the revised ice microphysics processes in HDC |
---|
| 707 | ! - the processes same as in RH83 and LFO behave |
---|
| 708 | ! following ice crystal hapits defined in HDC, inclduing |
---|
| 709 | ! intercept parameter for snow (n0s), ice crystal number |
---|
| 710 | ! concentration (ni), ice nuclei number concentration |
---|
| 711 | ! (n0i), ice diameter (d) |
---|
| 712 | ! |
---|
| 713 | !=============================================================== |
---|
| 714 | ! |
---|
| 715 | supcol = t0c-t(i,k) |
---|
| 716 | ifsat = 0 |
---|
| 717 | !------------------------------------------------------------- |
---|
| 718 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
| 719 | !------------------------------------------------------------- |
---|
| 720 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
---|
| 721 | ! *max(qci(i,k),qmin))**0.75,1.e3),1.e6) |
---|
| 722 | xni(i,k) = min(max(5.38e7*exp(log((den(i,k)*max(qci(i,k),qmin)))*(0.75)),1.e3),1.e6) |
---|
| 723 | eacrs = exp(0.07*(-supcol)) |
---|
| 724 | ! |
---|
| 725 | if(qrs(i,k).gt.qcrmin.and.qci(i,k).gt.qmin) then |
---|
| 726 | xmi = den(i,k)*qci(i,k)/xni(i,k) |
---|
| 727 | diameter = min(dicon * sqrt(xmi),dimax) |
---|
| 728 | vt2i = 1.49e4*diameter**1.31 |
---|
| 729 | vt2s = pvts*rslopeb(i,k)*denfac(i,k) |
---|
| 730 | !------------------------------------------------------------- |
---|
| 731 | ! praci: Accretion of cloud ice by rain [HL A15] [LFO 25] |
---|
| 732 | ! (T<T0: I->R) |
---|
| 733 | !------------------------------------------------------------- |
---|
| 734 | acrfac = 2.*rslope3(i,k)+2.*diameter*rslope2(i,k) & |
---|
| 735 | +diameter**2*rslope(i,k) |
---|
| 736 | pacr(i,k) = min(pi*qci(i,k)*eacrs*n0s*n0sfac(i,k) & |
---|
| 737 | *abs(vt2s-vt2i)*acrfac/4.,qci(i,k)/dtcld) |
---|
| 738 | endif |
---|
| 739 | !------------------------------------------------------------- |
---|
| 740 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
---|
| 741 | ! (T<T0: V->I or I->V) |
---|
| 742 | !------------------------------------------------------------- |
---|
| 743 | if(qci(i,k).gt.0.) then |
---|
| 744 | xmi = den(i,k)*qci(i,k)/xni(i,k) |
---|
| 745 | diameter = dicon * sqrt(xmi) |
---|
| 746 | pisd(i,k) = 4.*diameter*xni(i,k)*(rh(i,k)-1.)/work1(i,k) |
---|
| 747 | if(pisd(i,k).lt.0.) then |
---|
| 748 | pisd(i,k) = max(pisd(i,k),satdt/2) |
---|
| 749 | pisd(i,k) = max(pisd(i,k),-qci(i,k)/dtcld) |
---|
| 750 | else |
---|
| 751 | pisd(i,k) = min(pisd(i,k),satdt/2) |
---|
| 752 | endif |
---|
| 753 | if(abs(pisd(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
| 754 | endif |
---|
| 755 | !------------------------------------------------------------- |
---|
| 756 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
---|
| 757 | ! (V->S or S->V) |
---|
| 758 | !------------------------------------------------------------- |
---|
| 759 | if(qrs(i,k).gt.0..and.ifsat.ne.1) then |
---|
| 760 | coeres = rslope2(i,k)*sqrt(rslope(i,k)*rslopeb(i,k)) |
---|
| 761 | pres(i,k) = (rh(i,k)-1.)*n0sfac(i,k)*(precs1*rslope2(i,k) & |
---|
| 762 | +precs2*work2(i,k)*coeres)/work1(i,k) |
---|
| 763 | supice = satdt-pisd(i,k) |
---|
| 764 | if(pres(i,k).lt.0.) then |
---|
| 765 | pres(i,k) = max(pres(i,k),-qrs(i,k)/dtcld) |
---|
| 766 | pres(i,k) = max(max(pres(i,k),satdt/2),supice) |
---|
| 767 | else |
---|
| 768 | pres(i,k) = min(min(pres(i,k),satdt/2),supice) |
---|
| 769 | endif |
---|
| 770 | if(abs(pisd(i,k)+pres(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
| 771 | endif |
---|
| 772 | !------------------------------------------------------------- |
---|
| 773 | ! pigen: generation(nucleation) of ice from vapor [HDC 7-8] |
---|
| 774 | ! (T<T0: V->I) |
---|
| 775 | !------------------------------------------------------------- |
---|
| 776 | if(supsat.gt.0.and.ifsat.ne.1) then |
---|
| 777 | supice = satdt-pisd(i,k)-pres(i,k) |
---|
| 778 | xni0 = 1.e3*exp(0.1*supcol) |
---|
| 779 | ! roqi0 = 4.92e-11*xni0**1.33 |
---|
| 780 | roqi0 = 4.92e-11*exp(log(xni0)*(1.33)) |
---|
| 781 | pgen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k),0.))/dtcld) |
---|
| 782 | pgen(i,k) = min(min(pgen(i,k),satdt),supice) |
---|
| 783 | endif |
---|
| 784 | !------------------------------------------------------------- |
---|
| 785 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
---|
| 786 | ! (T<T0: I->S) |
---|
| 787 | !------------------------------------------------------------- |
---|
| 788 | if(qci(i,k).gt.0.) then |
---|
| 789 | qimax = roqimax/den(i,k) |
---|
| 790 | paut(i,k) = max(0.,(qci(i,k)-qimax)/dtcld) |
---|
| 791 | endif |
---|
| 792 | endif |
---|
| 793 | enddo |
---|
| 794 | enddo |
---|
| 795 | ! |
---|
| 796 | !---------------------------------------------------------------- |
---|
| 797 | ! check mass conservation of generation terms and feedback to the |
---|
| 798 | ! large scale |
---|
| 799 | ! |
---|
| 800 | do k = kts, kte |
---|
| 801 | do i = its, ite |
---|
| 802 | qciik = max(qmin,qci(i,k)) |
---|
| 803 | delqci = (paut(i,k)+pacr(i,k)-pgen(i,k)-pisd(i,k))*dtcld |
---|
| 804 | if(delqci.ge.qciik) then |
---|
| 805 | facqci = qciik/delqci |
---|
| 806 | paut(i,k) = paut(i,k)*facqci |
---|
| 807 | pacr(i,k) = pacr(i,k)*facqci |
---|
| 808 | pgen(i,k) = pgen(i,k)*facqci |
---|
| 809 | pisd(i,k) = pisd(i,k)*facqci |
---|
| 810 | endif |
---|
| 811 | qik = max(qmin,q(i,k)) |
---|
| 812 | delq = (pres(i,k)+pgen(i,k)+pisd(i,k))*dtcld |
---|
| 813 | if(delq.ge.qik) then |
---|
| 814 | facq = qik/delq |
---|
| 815 | pres(i,k) = pres(i,k)*facq |
---|
| 816 | pgen(i,k) = pgen(i,k)*facq |
---|
| 817 | pisd(i,k) = pisd(i,k)*facq |
---|
| 818 | endif |
---|
| 819 | work2(i,k) = -pres(i,k)-pgen(i,k)-pisd(i,k) |
---|
| 820 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
---|
| 821 | qci(i,k) = max(qci(i,k)-(paut(i,k)+pacr(i,k)-pgen(i,k) & |
---|
| 822 | -pisd(i,k))*dtcld,0.) |
---|
| 823 | qrs(i,k) = max(qrs(i,k)+(paut(i,k)+pacr(i,k) & |
---|
| 824 | +pres(i,k))*dtcld,0.) |
---|
| 825 | if(t(i,k).lt.t0c) then |
---|
| 826 | t(i,k) = t(i,k)-xls*work2(i,k)/cpm(i,k)*dtcld |
---|
| 827 | else |
---|
| 828 | t(i,k) = t(i,k)-xl(i,k)*work2(i,k)/cpm(i,k)*dtcld |
---|
| 829 | endif |
---|
| 830 | enddo |
---|
| 831 | enddo |
---|
| 832 | ! |
---|
| 833 | cvap = cpv |
---|
| 834 | hvap = xlv0 |
---|
| 835 | hsub = xls |
---|
| 836 | ttp=t0c+0.01 |
---|
| 837 | dldt=cvap-cliq |
---|
| 838 | xa=-dldt/rv |
---|
| 839 | xb=xa+hvap/(rv*ttp) |
---|
| 840 | dldti=cvap-cice |
---|
| 841 | xai=-dldti/rv |
---|
| 842 | xbi=xai+hsub/(rv*ttp) |
---|
| 843 | do k = kts, kte |
---|
| 844 | do i = its, ite |
---|
| 845 | tr=ttp/t(i,k) |
---|
| 846 | ! qs(i,k)=psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
| 847 | qs(i,k)=psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) |
---|
| 848 | qs(i,k) = ep2 * qs(i,k) / (p(i,k) - qs(i,k)) |
---|
| 849 | qs(i,k) = max(qs(i,k),qmin) |
---|
| 850 | denfac(i,k) = sqrt(den0/den(i,k)) |
---|
| 851 | enddo |
---|
| 852 | enddo |
---|
| 853 | ! |
---|
| 854 | !---------------------------------------------------------------- |
---|
| 855 | ! pcond: condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
---|
| 856 | ! if there exists additional water vapor condensated/if |
---|
| 857 | ! evaporation of cloud water is not enough to remove subsaturation |
---|
| 858 | ! |
---|
| 859 | do k = kts, kte |
---|
| 860 | do i = its, ite |
---|
| 861 | work1(i,k) = conden(t(i,k),q(i,k),qs(i,k),xl(i,k),cpm(i,k)) |
---|
| 862 | work2(i,k) = qci(i,k)+work1(i,k) |
---|
| 863 | pcon(i,k) = min(max(work1(i,k),0.),max(q(i,k),0.))/dtcld |
---|
| 864 | if(qci(i,k).gt.0..and.work1(i,k).lt.0.and.t(i,k).gt.t0c) & |
---|
| 865 | pcon(i,k) = max(work1(i,k),-qci(i,k))/dtcld |
---|
| 866 | q(i,k) = q(i,k)-pcon(i,k)*dtcld |
---|
| 867 | qci(i,k) = max(qci(i,k)+pcon(i,k)*dtcld,0.) |
---|
| 868 | t(i,k) = t(i,k)+pcon(i,k)*xl(i,k)/cpm(i,k)*dtcld |
---|
| 869 | enddo |
---|
| 870 | enddo |
---|
| 871 | ! |
---|
| 872 | !---------------------------------------------------------------- |
---|
| 873 | ! padding for small values |
---|
| 874 | ! |
---|
| 875 | do k = kts, kte |
---|
| 876 | do i = its, ite |
---|
| 877 | if(qci(i,k).le.qmin) qci(i,k) = 0.0 |
---|
| 878 | enddo |
---|
| 879 | enddo |
---|
| 880 | ! |
---|
| 881 | enddo ! big loops |
---|
| 882 | END SUBROUTINE wsm32D |
---|
| 883 | ! ................................................................... |
---|
| 884 | REAL FUNCTION rgmma(x) |
---|
| 885 | !------------------------------------------------------------------- |
---|
| 886 | IMPLICIT NONE |
---|
| 887 | !------------------------------------------------------------------- |
---|
| 888 | ! rgmma function: use infinite product form |
---|
| 889 | REAL :: euler |
---|
| 890 | PARAMETER (euler=0.577215664901532) |
---|
| 891 | REAL :: x, y |
---|
| 892 | INTEGER :: i |
---|
| 893 | if(x.eq.1.)then |
---|
| 894 | rgmma=0. |
---|
| 895 | else |
---|
| 896 | rgmma=x*exp(euler*x) |
---|
| 897 | do i=1,10000 |
---|
| 898 | y=float(i) |
---|
| 899 | rgmma=rgmma*(1.000+x/y)*exp(-x/y) |
---|
| 900 | enddo |
---|
| 901 | rgmma=1./rgmma |
---|
| 902 | endif |
---|
| 903 | END FUNCTION rgmma |
---|
| 904 | ! |
---|
| 905 | !-------------------------------------------------------------------------- |
---|
| 906 | REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) |
---|
| 907 | !-------------------------------------------------------------------------- |
---|
| 908 | IMPLICIT NONE |
---|
| 909 | !-------------------------------------------------------------------------- |
---|
| 910 | REAL t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & |
---|
| 911 | xai,xbi,ttp,tr |
---|
| 912 | INTEGER ice |
---|
| 913 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
| 914 | ttp=t0c+0.01 |
---|
| 915 | dldt=cvap-cliq |
---|
| 916 | xa=-dldt/rv |
---|
| 917 | xb=xa+hvap/(rv*ttp) |
---|
| 918 | dldti=cvap-cice |
---|
| 919 | xai=-dldti/rv |
---|
| 920 | xbi=xai+hsub/(rv*ttp) |
---|
| 921 | tr=ttp/t |
---|
| 922 | if(t.lt.ttp.and.ice.eq.1) then |
---|
| 923 | fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) |
---|
| 924 | else |
---|
| 925 | fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
| 926 | endif |
---|
| 927 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
| 928 | END FUNCTION fpvs |
---|
| 929 | !------------------------------------------------------------------- |
---|
| 930 | SUBROUTINE wsm3init(den0,denr,dens,cl,cpv,allowed_to_read) |
---|
| 931 | !------------------------------------------------------------------- |
---|
| 932 | IMPLICIT NONE |
---|
| 933 | !------------------------------------------------------------------- |
---|
| 934 | !.... constants which may not be tunable |
---|
| 935 | REAL, INTENT(IN) :: den0,denr,dens,cl,cpv |
---|
| 936 | LOGICAL, INTENT(IN) :: allowed_to_read |
---|
| 937 | REAL :: pi |
---|
| 938 | ! |
---|
| 939 | pi = 4.*atan(1.) |
---|
| 940 | xlv1 = cl-cpv |
---|
| 941 | ! |
---|
| 942 | qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3 |
---|
| 943 | qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03 |
---|
| 944 | ! |
---|
| 945 | bvtr1 = 1.+bvtr |
---|
| 946 | bvtr2 = 2.5+.5*bvtr |
---|
| 947 | bvtr3 = 3.+bvtr |
---|
| 948 | bvtr4 = 4.+bvtr |
---|
| 949 | g1pbr = rgmma(bvtr1) |
---|
| 950 | g3pbr = rgmma(bvtr3) |
---|
| 951 | g4pbr = rgmma(bvtr4) ! 17.837825 |
---|
| 952 | g5pbro2 = rgmma(bvtr2) ! 1.8273 |
---|
| 953 | pvtr = avtr*g4pbr/6. |
---|
| 954 | eacrr = 1.0 |
---|
| 955 | pacrr = pi*n0r*avtr*g3pbr*.25*eacrr |
---|
| 956 | precr1 = 2.*pi*n0r*.78 |
---|
| 957 | precr2 = 2.*pi*n0r*.31*avtr**.5*g5pbro2 |
---|
| 958 | xm0 = (di0/dicon)**2 |
---|
| 959 | xmmax = (dimax/dicon)**2 |
---|
| 960 | roqimax = 2.08e22*dimax**8 |
---|
| 961 | ! |
---|
| 962 | bvts1 = 1.+bvts |
---|
| 963 | bvts2 = 2.5+.5*bvts |
---|
| 964 | bvts3 = 3.+bvts |
---|
| 965 | bvts4 = 4.+bvts |
---|
| 966 | g1pbs = rgmma(bvts1) !.8875 |
---|
| 967 | g3pbs = rgmma(bvts3) |
---|
| 968 | g4pbs = rgmma(bvts4) ! 12.0786 |
---|
| 969 | g5pbso2 = rgmma(bvts2) |
---|
| 970 | pvts = avts*g4pbs/6. |
---|
| 971 | pacrs = pi*n0s*avts*g3pbs*.25 |
---|
| 972 | precs1 = 4.*n0s*.65 |
---|
| 973 | precs2 = 4.*n0s*.44*avts**.5*g5pbso2 |
---|
| 974 | pidn0r = pi*denr*n0r |
---|
| 975 | pidn0s = pi*dens*n0s |
---|
| 976 | ! |
---|
| 977 | rslopermax = 1./lamdarmax |
---|
| 978 | rslopesmax = 1./lamdasmax |
---|
| 979 | rsloperbmax = rslopermax ** bvtr |
---|
| 980 | rslopesbmax = rslopesmax ** bvts |
---|
| 981 | rsloper2max = rslopermax * rslopermax |
---|
| 982 | rslopes2max = rslopesmax * rslopesmax |
---|
| 983 | rsloper3max = rsloper2max * rslopermax |
---|
| 984 | rslopes3max = rslopes2max * rslopesmax |
---|
| 985 | ! |
---|
| 986 | END SUBROUTINE wsm3init |
---|
| 987 | END MODULE module_mp_wsm3 |
---|