[2759] | 1 | !********************************************************************************** |
---|
| 2 | ! This computer software was prepared by Battelle Memorial Institute, hereinafter |
---|
| 3 | ! the Contractor, under Contract No. DE-AC05-76RL0 1830 with the Department of |
---|
| 4 | ! Energy (DOE). NEITHER THE GOVERNMENT NOR THE CONTRACTOR MAKES ANY WARRANTY, |
---|
| 5 | ! EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. |
---|
| 6 | ! |
---|
| 7 | ! MOSAIC module: see module_mosaic_driver.F for information and terms of use |
---|
| 8 | !********************************************************************************** |
---|
| 9 | |
---|
| 10 | MODULE module_mixactivate |
---|
| 11 | PRIVATE |
---|
| 12 | PUBLIC prescribe_aerosol_mixactivate, mixactivate |
---|
| 13 | CONTAINS |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | !---------------------------------------------------------------------- |
---|
| 17 | !---------------------------------------------------------------------- |
---|
| 18 | ! 06-nov-2005 rce - grid_id & ktau added to arg list |
---|
| 19 | ! 25-apr-2006 rce - dens_aer is (g/cm3), NOT (kg/m3) |
---|
| 20 | subroutine prescribe_aerosol_mixactivate ( & |
---|
| 21 | grid_id, ktau, dtstep, naer, & |
---|
| 22 | rho_phy, th_phy, pi_phy, w, cldfra, cldfra_old, & |
---|
| 23 | z, dz8w, p_at_w, t_at_w, exch_h, & |
---|
| 24 | qv, qc, qi, qndrop3d, & |
---|
| 25 | nsource, & |
---|
| 26 | ids,ide, jds,jde, kds,kde, & |
---|
| 27 | ims,ime, jms,jme, kms,kme, & |
---|
| 28 | its,ite, jts,jte, kts,kte, & |
---|
| 29 | f_qc, f_qi ) |
---|
| 30 | |
---|
| 31 | ! USE module_configure |
---|
| 32 | |
---|
| 33 | ! wrapper to call mixactivate for mosaic description of aerosol |
---|
| 34 | |
---|
| 35 | implicit none |
---|
| 36 | |
---|
| 37 | ! subr arguments |
---|
| 38 | integer, intent(in) :: & |
---|
| 39 | grid_id, ktau, & |
---|
| 40 | ids, ide, jds, jde, kds, kde, & |
---|
| 41 | ims, ime, jms, jme, kms, kme, & |
---|
| 42 | its, ite, jts, jte, kts, kte |
---|
| 43 | |
---|
| 44 | real, intent(in) :: dtstep |
---|
| 45 | real, intent(inout) :: naer ! aerosol number (/kg) |
---|
| 46 | |
---|
| 47 | real, intent(in), & |
---|
| 48 | dimension( ims:ime, kms:kme, jms:jme ) :: & |
---|
| 49 | rho_phy, th_phy, pi_phy, w, & |
---|
| 50 | z, dz8w, p_at_w, t_at_w, exch_h |
---|
| 51 | |
---|
| 52 | real, intent(inout), & |
---|
| 53 | dimension( ims:ime, kms:kme, jms:jme ) :: cldfra, cldfra_old |
---|
| 54 | |
---|
| 55 | real, intent(in), & |
---|
| 56 | dimension( ims:ime, kms:kme, jms:jme ) :: & |
---|
| 57 | qv, qc, qi |
---|
| 58 | |
---|
| 59 | real, intent(inout), & |
---|
| 60 | dimension( ims:ime, kms:kme, jms:jme ) :: & |
---|
| 61 | qndrop3d |
---|
| 62 | |
---|
| 63 | real, intent(out), & |
---|
| 64 | dimension( ims:ime, kms:kme, jms:jme) :: nsource |
---|
| 65 | |
---|
| 66 | LOGICAL, OPTIONAL :: f_qc, f_qi |
---|
| 67 | |
---|
| 68 | ! local vars |
---|
| 69 | integer maxd_aphase, maxd_atype, maxd_asize, maxd_acomp, max_chem |
---|
| 70 | parameter (maxd_aphase=2,maxd_atype=1,maxd_asize=1,maxd_acomp=1, max_chem=10) |
---|
| 71 | real ddvel(its:ite, jts:jte, max_chem) ! dry deposition velosity |
---|
| 72 | real qsrflx(ims:ime, jms:jme, max_chem) ! dry deposition flux of aerosol |
---|
| 73 | real chem(ims:ime, kms:kme, jms:jme, max_chem) ! chem array |
---|
| 74 | integer i,j,k,l,m,n,p |
---|
| 75 | real hygro( its:ite, kts:kte, jts:jte, maxd_asize, maxd_atype ) ! bulk |
---|
| 76 | integer ntype_aer, nsize_aer(maxd_atype),ncomp_aer(maxd_atype), nphase_aer |
---|
| 77 | integer massptr_aer( maxd_acomp, maxd_asize, maxd_atype, maxd_aphase ), & |
---|
| 78 | waterptr_aer( maxd_asize, maxd_atype ), & |
---|
| 79 | numptr_aer( maxd_asize, maxd_atype, maxd_aphase ), & |
---|
| 80 | ai_phase, cw_phase |
---|
| 81 | real dlo_sect( maxd_asize, maxd_atype ), & ! minimum size of section (cm) |
---|
| 82 | dhi_sect( maxd_asize, maxd_atype ), & ! maximum size of section (cm) |
---|
| 83 | sigmag_aer(maxd_asize, maxd_atype), & ! geometric standard deviation of aerosol size dist |
---|
| 84 | dgnum_aer(maxd_asize, maxd_atype), & ! mean diameter (cm) of mode |
---|
| 85 | dens_aer( maxd_acomp, maxd_atype), & ! density (g/cm3) of material |
---|
| 86 | mw_aer( maxd_acomp, maxd_atype) ! molecular weight (g/mole) |
---|
| 87 | real, dimension(ims:ime,kms:kme,jms:jme) :: & |
---|
| 88 | ccn1,ccn2,ccn3,ccn4,ccn5,ccn6 ! number conc of aerosols activated at supersat |
---|
| 89 | integer idrydep_onoff |
---|
| 90 | real, dimension(ims:ime,kms:kme,jms:jme) :: t_phy |
---|
| 91 | integer msectional |
---|
| 92 | |
---|
| 93 | |
---|
| 94 | integer ptr |
---|
| 95 | real maer |
---|
| 96 | |
---|
| 97 | if(naer.lt.1.)then |
---|
| 98 | naer=1000.e6 ! #/kg default value |
---|
| 99 | endif |
---|
| 100 | ai_phase=1 |
---|
| 101 | cw_phase=2 |
---|
| 102 | idrydep_onoff = 0 |
---|
| 103 | msectional = 0 |
---|
| 104 | |
---|
| 105 | t_phy(its:ite,kts:kte,jts:jte)=th_phy(its:ite,kts:kte,jts:jte)*pi_phy(its:ite,kts:kte,jts:jte) |
---|
| 106 | |
---|
| 107 | ntype_aer=maxd_atype |
---|
| 108 | do n=1,ntype_aer |
---|
| 109 | nsize_aer(n)=maxd_asize |
---|
| 110 | ncomp_aer(n)=maxd_acomp |
---|
| 111 | end do |
---|
| 112 | nphase_aer=maxd_aphase |
---|
| 113 | |
---|
| 114 | ! set properties for each type and size |
---|
| 115 | do n=1,ntype_aer |
---|
| 116 | do m=1,nsize_aer(n) |
---|
| 117 | dlo_sect( m,n )=0.01e-4 ! minimum size of section (cm) |
---|
| 118 | dhi_sect( m,n )=0.5e-4 ! maximum size of section (cm) |
---|
| 119 | sigmag_aer(m,n)=2. ! geometric standard deviation of aerosol size dist |
---|
| 120 | dgnum_aer(m,n)=0.1e-4 ! mean diameter (cm) of mode |
---|
| 121 | end do |
---|
| 122 | do l=1,ncomp_aer(n) |
---|
| 123 | dens_aer( l, n)=1.0 ! density (g/cm3) of material |
---|
| 124 | mw_aer( l, n)=132. ! molecular weight (g/mole) |
---|
| 125 | end do |
---|
| 126 | end do |
---|
| 127 | ptr=0 |
---|
| 128 | do p=1,nphase_aer |
---|
| 129 | do n=1,ntype_aer |
---|
| 130 | do m=1,nsize_aer(n) |
---|
| 131 | ptr=ptr+1 |
---|
| 132 | numptr_aer( m, n, p )=ptr |
---|
| 133 | if(p.eq.ai_phase)then |
---|
| 134 | chem(its:ite,kts:kte,jts:jte,ptr)=naer |
---|
| 135 | else |
---|
| 136 | chem(its:ite,kts:kte,jts:jte,ptr)=0. |
---|
| 137 | endif |
---|
| 138 | end do ! size |
---|
| 139 | end do ! type |
---|
| 140 | end do ! phase |
---|
| 141 | do p=1,maxd_aphase |
---|
| 142 | do n=1,ntype_aer |
---|
| 143 | do m=1,nsize_aer(n) |
---|
| 144 | do l=1,ncomp_aer(n) |
---|
| 145 | ptr=ptr+1 |
---|
| 146 | if(ptr.gt.max_chem)then |
---|
| 147 | write(6,*)'ptr,max_chem=',ptr,max_chem,' in prescribe_aerosol_mixactivate' |
---|
| 148 | call exit(1) |
---|
| 149 | endif |
---|
| 150 | massptr_aer(l, m, n, p)=ptr |
---|
| 151 | ! maer is ug/kg-air; naer is #/kg-air; dgnum is cm; dens_aer is g/cm3 |
---|
| 152 | ! 1.e6 factor converts g to ug |
---|
| 153 | maer= 1.0e6 * naer * dens_aer(l,n) * ( (3.1416/6.) * & |
---|
| 154 | (dgnum_aer(m,n)**3) * exp( 4.5*((log(sigmag_aer(m,n)))**2) ) ) |
---|
| 155 | if(p.eq.ai_phase)then |
---|
| 156 | chem(its:ite,kts:kte,jts:jte,ptr)=maer |
---|
| 157 | else |
---|
| 158 | chem(its:ite,kts:kte,jts:jte,ptr)=0. |
---|
| 159 | endif |
---|
| 160 | end do |
---|
| 161 | end do ! size |
---|
| 162 | end do ! type |
---|
| 163 | end do ! phase |
---|
| 164 | do n=1,ntype_aer |
---|
| 165 | do m=1,nsize_aer(n) |
---|
| 166 | ptr=ptr+1 |
---|
| 167 | if(ptr.gt.max_chem)then |
---|
| 168 | write(6,*)'ptr,max_chem=',ptr,max_chem,' in prescribe_aerosol_mixactivate' |
---|
| 169 | call exit(1) |
---|
| 170 | endif |
---|
| 171 | !wig waterptr_aer(m, n)=ptr |
---|
| 172 | waterptr_aer(m, n)=-1 |
---|
| 173 | end do ! size |
---|
| 174 | end do ! type |
---|
| 175 | ddvel(its:ite,jts:jte,:)=0. |
---|
| 176 | hygro(its:ite,kts:kte,jts:jte,:,:) = 0.5 |
---|
| 177 | |
---|
| 178 | ! 06-nov-2005 rce - grid_id & ktau added to arg list |
---|
| 179 | call mixactivate( msectional, & |
---|
| 180 | chem,max_chem,qv,qc,qi,qndrop3d, & |
---|
| 181 | t_phy, w, ddvel, idrydep_onoff, & |
---|
| 182 | maxd_acomp, maxd_asize, maxd_atype, maxd_aphase, & |
---|
| 183 | ncomp_aer, nsize_aer, ntype_aer, nphase_aer, & |
---|
| 184 | numptr_aer, massptr_aer, dlo_sect, dhi_sect, sigmag_aer, dgnum_aer, & |
---|
| 185 | dens_aer, mw_aer, & |
---|
| 186 | waterptr_aer, hygro, ai_phase, cw_phase, & |
---|
| 187 | ids,ide, jds,jde, kds,kde, & |
---|
| 188 | ims,ime, jms,jme, kms,kme, & |
---|
| 189 | its,ite, jts,jte, kts,kte, & |
---|
| 190 | rho_phy, z, dz8w, p_at_w, t_at_w, exch_h, & |
---|
| 191 | cldfra, cldfra_old, qsrflx, & |
---|
| 192 | ccn1, ccn2, ccn3, ccn4, ccn5, ccn6, nsource, & |
---|
| 193 | grid_id, ktau, dtstep, & |
---|
| 194 | F_QC=f_qc, F_QI=f_qi ) |
---|
| 195 | |
---|
| 196 | |
---|
| 197 | end subroutine prescribe_aerosol_mixactivate |
---|
| 198 | |
---|
| 199 | !---------------------------------------------------------------------- |
---|
| 200 | !---------------------------------------------------------------------- |
---|
| 201 | ! nov-04 sg ! replaced amode with aer and expanded aerosol dimension to include type and phase |
---|
| 202 | |
---|
| 203 | ! 06-nov-2005 rce - grid_id & ktau added to arg list |
---|
| 204 | ! 25-apr-2006 rce - dens_aer is (g/cm3), NOT (kg/m3) |
---|
| 205 | subroutine mixactivate( msectional, & |
---|
| 206 | chem, num_chem, qv, qc, qi, qndrop3d, & |
---|
| 207 | temp, w, ddvel, idrydep_onoff, & |
---|
| 208 | maxd_acomp, maxd_asize, maxd_atype, maxd_aphase, & |
---|
| 209 | ncomp_aer, nsize_aer, ntype_aer, nphase_aer, & |
---|
| 210 | numptr_aer, massptr_aer, dlo_sect, dhi_sect, sigmag_aer, dgnum_aer, & |
---|
| 211 | dens_aer, mw_aer, & |
---|
| 212 | waterptr_aer, hygro, ai_phase, cw_phase, & |
---|
| 213 | ids,ide, jds,jde, kds,kde, & |
---|
| 214 | ims,ime, jms,jme, kms,kme, & |
---|
| 215 | its,ite, jts,jte, kts,kte, & |
---|
| 216 | rho, zm, dz8w, p_at_w, t_at_w, kvh, & |
---|
| 217 | cldfra, cldfra_old, qsrflx, & |
---|
| 218 | ccn1, ccn2, ccn3, ccn4, ccn5, ccn6, nsource, & |
---|
| 219 | grid_id, ktau, dtstep, & |
---|
| 220 | f_qc, f_qi ) |
---|
| 221 | |
---|
| 222 | |
---|
| 223 | ! vertical diffusion and nucleation of cloud droplets |
---|
| 224 | ! assume cloud presence controlled by cloud fraction |
---|
| 225 | ! doesn't distinguish between warm, cold clouds |
---|
| 226 | |
---|
| 227 | USE module_model_constants, only: g, rhowater, xlv, cp, rvovrd, r_d, r_v, mwdry, ep_2 |
---|
| 228 | USE module_radiation_driver, only: cal_cldfra |
---|
| 229 | |
---|
| 230 | implicit none |
---|
| 231 | |
---|
| 232 | ! input |
---|
| 233 | |
---|
| 234 | INTEGER, intent(in) :: grid_id, ktau |
---|
| 235 | INTEGER, intent(in) :: num_chem |
---|
| 236 | integer, intent(in) :: ids,ide, jds,jde, kds,kde, & |
---|
| 237 | ims,ime, jms,jme, kms,kme, & |
---|
| 238 | its,ite, jts,jte, kts,kte |
---|
| 239 | |
---|
| 240 | integer maxd_aphase, nphase_aer, maxd_atype, ntype_aer |
---|
| 241 | integer maxd_asize, maxd_acomp, nsize_aer(maxd_atype) |
---|
| 242 | integer, intent(in) :: & |
---|
| 243 | ncomp_aer( maxd_atype ), & |
---|
| 244 | massptr_aer( maxd_acomp, maxd_asize, maxd_atype, maxd_aphase ), & |
---|
| 245 | waterptr_aer( maxd_asize, maxd_atype ), & |
---|
| 246 | numptr_aer( maxd_asize, maxd_atype, maxd_aphase), & |
---|
| 247 | ai_phase, cw_phase |
---|
| 248 | integer, intent(in) :: msectional ! 1 for sectional, 0 for modal |
---|
| 249 | integer, intent(in) :: idrydep_onoff |
---|
| 250 | real, intent(in) :: & |
---|
| 251 | dlo_sect( maxd_asize, maxd_atype ), & ! minimum size of section (cm) |
---|
| 252 | dhi_sect( maxd_asize, maxd_atype ), & ! maximum size of section (cm) |
---|
| 253 | sigmag_aer(maxd_asize, maxd_atype), & ! geometric standard deviation of aerosol size dist |
---|
| 254 | dgnum_aer(maxd_asize, maxd_atype), & ! mean diameter (cm) of mode |
---|
| 255 | dens_aer( maxd_acomp, maxd_atype), & ! density (g/cm3) of material |
---|
| 256 | mw_aer( maxd_acomp, maxd_atype) ! molecular weight (g/mole) |
---|
| 257 | |
---|
| 258 | |
---|
| 259 | REAL, intent(inout), DIMENSION( ims:ime, kms:kme, jms:jme, num_chem ) :: & |
---|
| 260 | chem ! aerosol molar mixing ratio (ug/kg or #/kg) |
---|
| 261 | |
---|
| 262 | REAL, intent(in), DIMENSION( ims:ime, kms:kme, jms:jme ) :: & |
---|
| 263 | qv, qc, qi ! water species (vapor, cloud drops, cloud ice) mixing ratio (g/g) |
---|
| 264 | |
---|
| 265 | LOGICAL, OPTIONAL :: f_qc, f_qi |
---|
| 266 | |
---|
| 267 | REAL, intent(inout), DIMENSION( ims:ime, kms:kme, jms:jme ) :: & |
---|
| 268 | qndrop3d ! water species mixing ratio (g/g) |
---|
| 269 | |
---|
| 270 | real, intent(in) :: dtstep ! time step for microphysics (s) |
---|
| 271 | real, intent(in) :: temp(ims:ime, kms:kme, jms:jme) ! temperature (K) |
---|
| 272 | real, intent(in) :: w(ims:ime, kms:kme, jms:jme) ! vertical velocity (m/s) |
---|
| 273 | real, intent(in) :: rho(ims:ime, kms:kme, jms:jme) ! density at mid-level (kg/m3) |
---|
| 274 | REAL, intent(in) :: ddvel( its:ite, jts:jte, num_chem ) ! deposition velocity (m/s) |
---|
| 275 | real, intent(in) :: zm(ims:ime, kms:kme, jms:jme) ! geopotential height of level (m) |
---|
| 276 | real, intent(in) :: dz8w(ims:ime, kms:kme, jms:jme) ! layer thickness (m) |
---|
| 277 | real, intent(in) :: p_at_w(ims:ime, kms:kme, jms:jme) ! pressure at layer interface (Pa) |
---|
| 278 | real, intent(in) :: t_at_w(ims:ime, kms:kme, jms:jme) ! temperature at layer interface (K) |
---|
| 279 | real, intent(in) :: kvh(ims:ime, kms:kme, jms:jme) ! vertical diffusivity (m2/s) |
---|
| 280 | real, intent(inout) :: cldfra_old(ims:ime, kms:kme, jms:jme)! cloud fraction on previous time step |
---|
| 281 | real, intent(inout) :: cldfra(ims:ime, kms:kme, jms:jme) ! cloud fraction |
---|
| 282 | real, intent(in) :: hygro( its:ite, kts:kte, jts:jte, maxd_asize, maxd_atype ) ! bulk hygroscopicity & |
---|
| 283 | |
---|
| 284 | REAL, intent(out), DIMENSION( ims:ime, jms:jme, num_chem ) :: qsrflx ! dry deposition rate for aerosol |
---|
| 285 | real, intent(out), dimension(ims:ime,kms:kme,jms:jme) :: nsource, & ! droplet number source (#/kg/s) |
---|
| 286 | ccn1,ccn2,ccn3,ccn4,ccn5,ccn6 ! number conc of aerosols activated at supersat |
---|
| 287 | |
---|
| 288 | |
---|
| 289 | !--------------------Local storage------------------------------------- |
---|
| 290 | ! |
---|
| 291 | real :: qndrop(kms:kme) ! cloud droplet number mixing ratio (#/kg) |
---|
| 292 | real :: lcldfra(kms:kme) ! liquid cloud fraction |
---|
| 293 | real :: lcldfra_old(kms:kme) ! liquid cloud fraction for previous timestep |
---|
| 294 | real :: wtke(kms:kme) ! turbulent vertical velocity at base of layer k (m2/s) |
---|
| 295 | real zn(kms:kme) ! g/pdel (m2/g) for layer |
---|
| 296 | real zs(kms:kme) ! inverse of distance between levels (m) |
---|
| 297 | real zkmin,zkmax |
---|
| 298 | data zkmin/0.01/,zkmax/100./ |
---|
| 299 | save zkmin,zkmax |
---|
| 300 | real cs(kms:kme) ! air density (kg/m3) |
---|
| 301 | real dz(kms:kme) ! geometric thickness of layers (m) |
---|
| 302 | |
---|
| 303 | real wdiab ! diabatic vertical velocity |
---|
| 304 | ! real, parameter :: wmixmin = 0.1 ! minimum turbulence vertical velocity (m/s) |
---|
| 305 | real, parameter :: wmixmin = 0.2 ! minimum turbulence vertical velocity (m/s) |
---|
| 306 | ! real, parameter :: wmixmin = 1.0 ! minimum turbulence vertical velocity (m/s) |
---|
| 307 | real :: qndrop_new(kms:kme) ! droplet number nucleated on cloud boundaries |
---|
| 308 | real :: ekd(kms:kme) ! diffusivity for droplets (m2/s) |
---|
| 309 | real :: ekk(kms:kme) ! density*diffusivity for droplets (kg/m3 m2/s) |
---|
| 310 | real :: srcn(kms:kme) ! droplet source rate (/s) |
---|
| 311 | real, save :: sq2pi |
---|
| 312 | data sq2pi/2.5066282746/ |
---|
| 313 | real dtinv |
---|
| 314 | |
---|
| 315 | logical top ! true if cloud top, false if cloud base or new cloud |
---|
| 316 | logical, save :: first |
---|
| 317 | data first/.true./ |
---|
| 318 | integer km1,kp1 |
---|
| 319 | real wbar,wmix,wmin,wmax |
---|
| 320 | real, save :: cmincld |
---|
| 321 | data cmincld/1.e-12/ |
---|
| 322 | real dum,dumc |
---|
| 323 | real dact |
---|
| 324 | real fluxntot ! (#/cm2/s) |
---|
| 325 | real fac_srflx |
---|
| 326 | real depvel_drop |
---|
| 327 | real :: surfrate(num_chem) ! surface exchange rate (/s) |
---|
| 328 | real surfratemax ! max surfrate for all species treated here |
---|
| 329 | real surfrate_drop ! surfade exchange rate for droplelts |
---|
| 330 | real dtmin,tinv,dtt |
---|
| 331 | integer nsubmix,nsubmix_bnd |
---|
| 332 | integer i,j,k,m,n,nsub |
---|
| 333 | real dtmix |
---|
| 334 | real alogarg |
---|
| 335 | real qcld |
---|
| 336 | real pi |
---|
| 337 | integer nnew,nsav,ntemp |
---|
| 338 | real :: overlapp(kms:kme),overlapm(kms:kme) ! cloud overlap |
---|
| 339 | real :: ekkp(kms:kme),ekkm(kms:kme) ! zn*zs*density*diffusivity |
---|
| 340 | integer, save :: count_submix(100)=0 ! wig: Note that this is a no-no for tile threads with OMP |
---|
| 341 | |
---|
| 342 | integer lnum,lnumcw,l,lmass,lmasscw,lsfc,lsfccw,ltype,lsig,lwater |
---|
| 343 | integer :: ntype(maxd_asize) |
---|
| 344 | |
---|
| 345 | real :: naerosol(maxd_asize, maxd_atype) ! interstitial aerosol number conc (/m3) |
---|
| 346 | real :: naerosolcw(maxd_asize, maxd_atype) ! activated number conc (/m3) |
---|
| 347 | real :: maerosol(maxd_acomp,maxd_asize, maxd_atype) ! interstit mass conc (kg/m3) |
---|
| 348 | real :: maerosolcw(maxd_acomp,maxd_asize, maxd_atype) ! activated mass conc (kg/m3) |
---|
| 349 | real :: maerosol_tot(maxd_asize, maxd_atype) ! species-total interstit mass conc (kg/m3) |
---|
| 350 | real :: maerosol_totcw(maxd_asize, maxd_atype) ! species-total activated mass conc (kg/m3) |
---|
| 351 | real :: vaerosol(maxd_asize, maxd_atype) ! interstit+activated aerosol volume conc (m3/m3) |
---|
| 352 | real :: vaerosolcw(maxd_asize, maxd_atype) ! activated aerosol volume conc (m3/m3) |
---|
| 353 | real :: raercol(kms:kme,num_chem,2) ! aerosol mass, number mixing ratios |
---|
| 354 | real :: source(kms:kme) ! |
---|
| 355 | |
---|
| 356 | real :: fn(maxd_asize, maxd_atype) ! activation fraction for aerosol number |
---|
| 357 | real :: fs(maxd_asize, maxd_atype) ! activation fraction for aerosol sfcarea |
---|
| 358 | real :: fm(maxd_asize, maxd_atype) ! activation fraction for aerosol mass |
---|
| 359 | integer :: ncomp(maxd_atype) |
---|
| 360 | |
---|
| 361 | real :: fluxn(maxd_asize, maxd_atype) ! number activation fraction flux (m/s) |
---|
| 362 | real :: fluxs(maxd_asize, maxd_atype) ! sfcarea activation fraction flux (m/s) |
---|
| 363 | real :: fluxm(maxd_asize, maxd_atype) ! mass activation fraction flux (m/s) |
---|
| 364 | ! note: activation fraction fluxes are defined as |
---|
| 365 | ! fluxn = [flux of activated aero. number into cloud (#/cm2/s)] |
---|
| 366 | ! / [aero. number conc. in updraft, just below cloudbase (#/cm3)] |
---|
| 367 | |
---|
| 368 | real :: nact(kms:kme,maxd_asize, maxd_atype) ! fractional aero. number activation rate (/s) |
---|
| 369 | real :: mact(kms:kme,maxd_asize, maxd_atype) ! fractional aero. mass activation rate (/s) |
---|
| 370 | real :: npv(maxd_asize, maxd_atype) ! number per volume concentration (/m3) |
---|
| 371 | real scale |
---|
| 372 | |
---|
| 373 | real :: hygro_aer(maxd_asize, maxd_atype) ! hygroscopicity of aerosol mode |
---|
| 374 | real :: exp45logsig ! exp(4.5*alogsig**2) |
---|
| 375 | real :: alogsig(maxd_asize, maxd_atype) ! natl log of geometric standard dev of aerosol |
---|
| 376 | integer, parameter :: psat=6 ! number of supersaturations to calc ccn concentration |
---|
| 377 | real ccn(kts:kte,psat) ! number conc of aerosols activated at supersat |
---|
| 378 | real, parameter :: supersat(psat)= &! supersaturation (%) to determine ccn concentration |
---|
| 379 | (/0.02,0.05,0.1,0.2,0.5,1.0/) |
---|
| 380 | real super(psat) ! supersaturation |
---|
| 381 | real,save :: surften ! surface tension of water w/respect to air (N/m) |
---|
| 382 | data surften/0.076/ |
---|
| 383 | real :: ccnfact(psat,maxd_asize, maxd_atype) |
---|
| 384 | real :: amcube(maxd_asize, maxd_atype) ! cube of dry mode radius (m) |
---|
| 385 | real :: argfactor(maxd_asize, maxd_atype) |
---|
| 386 | real aten ! surface tension parameter |
---|
| 387 | real t0 ! reference temperature |
---|
| 388 | real sm ! critical supersaturation |
---|
| 389 | real arg |
---|
| 390 | |
---|
| 391 | !!$#if (defined AIX) |
---|
| 392 | !!$#define ERF erf |
---|
| 393 | !!$#define ERFC erfc |
---|
| 394 | !!$#else |
---|
| 395 | !!$#define ERF erf |
---|
| 396 | !!$ real erf |
---|
| 397 | !!$#define ERFC erfc |
---|
| 398 | !!$ real erfc |
---|
| 399 | !!$#endif |
---|
| 400 | |
---|
| 401 | character*8, parameter :: ccn_name(psat)=(/'CCN1','CCN2','CCN3','CCN4','CCN5','CCN6'/) |
---|
| 402 | |
---|
| 403 | arg = 1.0 |
---|
| 404 | if (abs(0.8427-ERF_ALT(arg))/0.8427>0.001) then |
---|
| 405 | write (6,*) 'erf_alt(1.0) = ',ERF_ALT(arg) |
---|
| 406 | write (6,*) 'dropmixnuc: Error function error' |
---|
| 407 | call exit |
---|
| 408 | endif |
---|
| 409 | arg = 0.0 |
---|
| 410 | if (ERF_ALT(arg) /= 0.0) then |
---|
| 411 | write (6,*) 'erf_alt(0.0) = ',ERF_ALT(arg) |
---|
| 412 | write (6,*) 'dropmixnuc: Error function error' |
---|
| 413 | call exit |
---|
| 414 | endif |
---|
| 415 | |
---|
| 416 | pi = 4.*atan(1.0) |
---|
| 417 | dtinv=1./dtstep |
---|
| 418 | |
---|
| 419 | depvel_drop = 0.1 ! prescribed here rather than getting it from dry_dep_driver |
---|
| 420 | if (idrydep_onoff .le. 0) depvel_drop = 0.0 |
---|
| 421 | |
---|
| 422 | do n=1,ntype_aer |
---|
| 423 | do m=1,nsize_aer(n) |
---|
| 424 | ncomp(n)=ncomp_aer(n) |
---|
| 425 | ! print *,'sigmag_aer,dgnum_aer=',sigmag_aer(m,n),dgnum_aer(m,n) |
---|
| 426 | alogsig(m,n)=alog(sigmag_aer(m,n)) |
---|
| 427 | ! used only if number is diagnosed from volume |
---|
| 428 | npv(m,n)=6./(pi*(0.01*dgnum_aer(m,n))**3*exp(4.5*alogsig(m,n)*alogsig(m,n))) |
---|
| 429 | end do |
---|
| 430 | end do |
---|
| 431 | t0=273. |
---|
| 432 | aten=2.*surften/(r_v*t0*rhowater) |
---|
| 433 | super(:)=0.01*supersat(:) |
---|
| 434 | do n=1,ntype_aer |
---|
| 435 | do m=1,nsize_aer(n) |
---|
| 436 | exp45logsig=exp(4.5*alogsig(m,n)*alogsig(m,n)) |
---|
| 437 | argfactor(m,n)=2./(3.*sqrt(2.)*alogsig(m,n)) |
---|
| 438 | amcube(m,n)=3./(4.*pi*exp45logsig*npv(m,n)) |
---|
| 439 | enddo |
---|
| 440 | enddo |
---|
| 441 | |
---|
| 442 | IF( PRESENT(F_QC) .AND. PRESENT ( F_QI ) ) THEN |
---|
| 443 | CALL cal_cldfra(CLDFRA,qc,qi,f_qc,f_qi, & |
---|
| 444 | ids,ide, jds,jde, kds,kde, & |
---|
| 445 | ims,ime, jms,jme, kms,kme, & |
---|
| 446 | its,ite, jts,jte, kts,kte ) |
---|
| 447 | END IF |
---|
| 448 | |
---|
| 449 | qsrflx(its:ite,jts:jte,:) = 0. |
---|
| 450 | |
---|
| 451 | ! start loop over columns |
---|
| 452 | |
---|
| 453 | do 120 j=jts,jte |
---|
| 454 | do 100 i=its,ite |
---|
| 455 | |
---|
| 456 | ! load number nucleated into qndrop on cloud boundaries |
---|
| 457 | |
---|
| 458 | ! initialization for current i ......................................... |
---|
| 459 | |
---|
| 460 | do k=kts+1,kte |
---|
| 461 | zs(k)=1./(zm(i,k,j)-zm(i,k-1,j)) |
---|
| 462 | enddo |
---|
| 463 | zs(kts)=zs(kts+1) |
---|
| 464 | zs(kte+1)=0. |
---|
| 465 | |
---|
| 466 | do k=kts,kte |
---|
| 467 | !!$ if(qndrop3d(i,k,j).lt.-10.e6.or.qndrop3d(i,k,j).gt.1.E20)then |
---|
| 468 | !!$! call exit(1) |
---|
| 469 | !!$ endif |
---|
| 470 | if(f_qi)then |
---|
| 471 | qcld=qc(i,k,j)+qi(i,k,j) |
---|
| 472 | else |
---|
| 473 | qcld=qc(i,k,j) |
---|
| 474 | endif |
---|
| 475 | if(qcld.lt.-1..or.qcld.gt.1.)then |
---|
| 476 | write(6,'(a,g12.2,a,3i5)')'qcld=',qcld,' for i,k,j=',i,k,j |
---|
| 477 | call exit(1) |
---|
| 478 | endif |
---|
| 479 | if(qcld.gt.1.e-20)then |
---|
| 480 | lcldfra(k)=cldfra(i,k,j)*qc(i,k,j)/qcld |
---|
| 481 | lcldfra_old(k)=cldfra_old(i,k,j)*qc(i,k,j)/qcld |
---|
| 482 | else |
---|
| 483 | lcldfra(k)=0. |
---|
| 484 | lcldfra_old(k)=0. |
---|
| 485 | endif |
---|
| 486 | qndrop(k)=qndrop3d(i,k,j) |
---|
| 487 | ! qndrop(k)=1.e5 |
---|
| 488 | cs(k)=rho(i,k,j) ! air density (kg/m3) |
---|
| 489 | dz(k)=dz8w(i,k,j) |
---|
| 490 | do n=1,ntype_aer |
---|
| 491 | do m=1,nsize_aer(n) |
---|
| 492 | nact(k,m,n)=0. |
---|
| 493 | mact(k,m,n)=0. |
---|
| 494 | enddo |
---|
| 495 | enddo |
---|
| 496 | zn(k)=1./(cs(k)*dz(k)) |
---|
| 497 | if(k>kts)then |
---|
| 498 | ekd(k)=kvh(i,k,j) |
---|
| 499 | ekd(k)=max(ekd(k),zkmin) |
---|
| 500 | ekd(k)=min(ekd(k),zkmax) |
---|
| 501 | else |
---|
| 502 | ekd(k)=0 |
---|
| 503 | endif |
---|
| 504 | ! diagnose subgrid vertical velocity from diffusivity |
---|
| 505 | if(k.eq.kts)then |
---|
| 506 | wtke(k)=sq2pi*depvel_drop |
---|
| 507 | ! wtke(k)=sq2pi*kvh(i,k,j) |
---|
| 508 | ! wtke(k)=max(wtke(k),wmixmin) |
---|
| 509 | else |
---|
| 510 | wtke(k)=sq2pi*ekd(k)/dz(k) |
---|
| 511 | endif |
---|
| 512 | wtke(k)=max(wtke(k),wmixmin) |
---|
| 513 | nsource(i,k,j)=0. |
---|
| 514 | enddo |
---|
| 515 | nsource(i,kte+1,j) = 0. |
---|
| 516 | qndrop(kte+1) = 0. |
---|
| 517 | zn(kte+1) = 0. |
---|
| 518 | |
---|
| 519 | ! calculate surface rate and mass mixing ratio for aerosol |
---|
| 520 | |
---|
| 521 | surfratemax = 0.0 |
---|
| 522 | nsav=1 |
---|
| 523 | nnew=2 |
---|
| 524 | surfrate_drop=depvel_drop/dz(kts) |
---|
| 525 | surfratemax = max( surfratemax, surfrate_drop ) |
---|
| 526 | do n=1,ntype_aer |
---|
| 527 | do m=1,nsize_aer(n) |
---|
| 528 | lnum=numptr_aer(m,n,ai_phase) |
---|
| 529 | lnumcw=numptr_aer(m,n,cw_phase) |
---|
| 530 | if(lnum>0)then |
---|
| 531 | surfrate(lnum)=ddvel(i,j,lnum)/dz(kts) |
---|
| 532 | surfrate(lnumcw)=surfrate_drop |
---|
| 533 | surfratemax = max( surfratemax, surfrate(lnum) ) |
---|
| 534 | ! scale = 1000./mwdry ! moles/kg |
---|
| 535 | scale = 1. |
---|
| 536 | raercol(kts:kte,lnumcw,nsav)=chem(i,kts:kte,j,lnumcw)*scale ! #/kg |
---|
| 537 | raercol(kts:kte,lnum,nsav)=chem(i,kts:kte,j,lnum)*scale |
---|
| 538 | endif |
---|
| 539 | do l=1,ncomp(n) |
---|
| 540 | lmass=massptr_aer(l,m,n,ai_phase) |
---|
| 541 | lmasscw=massptr_aer(l,m,n,cw_phase) |
---|
| 542 | ! scale = mw_aer(l,n)/mwdry |
---|
| 543 | scale = 1.e-9 ! kg/ug |
---|
| 544 | surfrate(lmass)=ddvel(i,j,lmass)/dz(kts) |
---|
| 545 | surfrate(lmasscw)=surfrate_drop |
---|
| 546 | surfratemax = max( surfratemax, surfrate(lmass) ) |
---|
| 547 | raercol(kts:kte,lmasscw,nsav)=chem(i,kts:kte,j,lmasscw)*scale ! kg/kg |
---|
| 548 | raercol(kts:kte,lmass,nsav)=chem(i,kts:kte,j,lmass)*scale ! kg/kg |
---|
| 549 | enddo |
---|
| 550 | lwater=waterptr_aer(m,n) |
---|
| 551 | if(lwater>0)then |
---|
| 552 | surfrate(lwater)=ddvel(i,j,lwater)/dz(kts) |
---|
| 553 | surfratemax = max( surfratemax, surfrate(lwater) ) |
---|
| 554 | raercol(kts:kte,lwater,nsav)=chem(i,kts:kte,j,lwater) ! don't bother to convert units, |
---|
| 555 | ! because it doesn't contribute to aerosol mass |
---|
| 556 | endif |
---|
| 557 | enddo ! size |
---|
| 558 | enddo ! type |
---|
| 559 | |
---|
| 560 | |
---|
| 561 | ! droplet nucleation/aerosol activation |
---|
| 562 | |
---|
| 563 | ! k-loop for growing/shrinking cloud calcs ............................. |
---|
| 564 | |
---|
| 565 | do k=kts,kte |
---|
| 566 | km1=max0(k-1,1) |
---|
| 567 | kp1=min0(k+1,kde-1) |
---|
| 568 | |
---|
| 569 | if(lcldfra(k)-lcldfra_old(k).gt.0.01)then |
---|
| 570 | ! go to 10 |
---|
| 571 | |
---|
| 572 | ! growing cloud |
---|
| 573 | |
---|
| 574 | ! wmix=wtke(k) |
---|
| 575 | wbar=w(i,k,j)+wtke(k) |
---|
| 576 | wmix=0. |
---|
| 577 | wmin=0. |
---|
| 578 | ! 06-nov-2005 rce - increase wmax from 10 to 50 (deep convective clouds) |
---|
| 579 | wmax=50. |
---|
| 580 | wdiab=0 |
---|
| 581 | |
---|
| 582 | ! load aerosol properties, assuming external mixtures |
---|
| 583 | do n=1,ntype_aer |
---|
| 584 | do m=1,nsize_aer(n) |
---|
| 585 | call loadaer(raercol(1,1,nsav),k,kms,kme,num_chem, & |
---|
| 586 | cs(k), npv(m,n), dlo_sect(m,n),dhi_sect(m,n), & |
---|
| 587 | maxd_acomp, ncomp(n), & |
---|
| 588 | grid_id, ktau, i, j, m, n, & |
---|
| 589 | numptr_aer(m,n,ai_phase),numptr_aer(m,n,cw_phase), & |
---|
| 590 | dens_aer(1,n), & |
---|
| 591 | massptr_aer(1,m,n,ai_phase), massptr_aer(1,m,n,cw_phase), & |
---|
| 592 | maerosol(1,m,n), maerosolcw(1,m,n), & |
---|
| 593 | maerosol_tot(m,n), maerosol_totcw(m,n), & |
---|
| 594 | naerosol(m,n), naerosolcw(m,n), & |
---|
| 595 | vaerosol(m,n), vaerosolcw(m,n) ) |
---|
| 596 | |
---|
| 597 | hygro_aer(m,n)=hygro(i,k,j,m,n) |
---|
| 598 | enddo |
---|
| 599 | enddo |
---|
| 600 | |
---|
| 601 | ! 06-nov-2005 rce - grid_id & ktau added to arg list |
---|
| 602 | call activate(wbar,wmix,wdiab,wmin,wmax,temp(i,k,j),cs(k), & |
---|
| 603 | msectional, maxd_atype, ntype_aer, maxd_asize, nsize_aer, & |
---|
| 604 | naerosol, vaerosol, & |
---|
| 605 | dlo_sect,dhi_sect,sigmag_aer,hygro_aer, & |
---|
| 606 | fn,fs,fm,fluxn,fluxs,fluxm, grid_id, ktau, i, j, k ) |
---|
| 607 | |
---|
| 608 | dumc=(lcldfra(k)-lcldfra_old(k)) |
---|
| 609 | do n=1,ntype_aer |
---|
| 610 | do m=1,nsize_aer(n) |
---|
| 611 | lnum=numptr_aer(m,n,ai_phase) |
---|
| 612 | lnumcw=numptr_aer(m,n,cw_phase) |
---|
| 613 | dact=dumc*fn(m,n)*(raercol(k,lnum,nsav)) ! interstitial only |
---|
| 614 | qndrop(k)=qndrop(k)+dact |
---|
| 615 | nsource(i,k,j)=nsource(i,k,j)+dact*dtinv |
---|
| 616 | if(lnum.gt.0)then |
---|
| 617 | raercol(k,lnumcw,nsav) = raercol(k,lnumcw,nsav)+dact |
---|
| 618 | raercol(k,lnum,nsav) = raercol(k,lnum,nsav)-dact |
---|
| 619 | endif |
---|
| 620 | do l=1,ncomp(n) |
---|
| 621 | lmass=massptr_aer(l,m,n,ai_phase) |
---|
| 622 | lmasscw=massptr_aer(l,m,n,cw_phase) |
---|
| 623 | ! rce 07-jul-2005 - changed dact for mass to mimic that used for number |
---|
| 624 | ! dact=dum*(raercol(k,lmass,nsav)) ! interstitial only |
---|
| 625 | dact=dumc*fm(m,n)*(raercol(k,lmass,nsav)) ! interstitial only |
---|
| 626 | raercol(k,lmasscw,nsav) = raercol(k,lmasscw,nsav)+dact |
---|
| 627 | raercol(k,lmass,nsav) = raercol(k,lmass,nsav)-dact |
---|
| 628 | enddo |
---|
| 629 | enddo |
---|
| 630 | enddo |
---|
| 631 | ! 10 continue |
---|
| 632 | endif |
---|
| 633 | |
---|
| 634 | if(lcldfra(k) < lcldfra_old(k) .and. lcldfra_old(k) > 1.e-20)then |
---|
| 635 | ! go to 20 |
---|
| 636 | |
---|
| 637 | ! shrinking cloud ...................................................... |
---|
| 638 | |
---|
| 639 | ! droplet loss in decaying cloud |
---|
| 640 | nsource(i,k,j)=nsource(i,k,j)+qndrop(k)*(lcldfra(k)-lcldfra_old(k))*dtinv |
---|
| 641 | qndrop(k)=qndrop(k)*(1.+lcldfra(k)-lcldfra_old(k)) |
---|
| 642 | ! convert activated aerosol to interstitial in decaying cloud |
---|
| 643 | |
---|
| 644 | dumc=(lcldfra(k)-lcldfra_old(k))/lcldfra_old(k) |
---|
| 645 | do n=1,ntype_aer |
---|
| 646 | do m=1,nsize_aer(n) |
---|
| 647 | lnum=numptr_aer(m,n,ai_phase) |
---|
| 648 | lnumcw=numptr_aer(m,n,cw_phase) |
---|
| 649 | if(lnum.gt.0)then |
---|
| 650 | dact=raercol(k,lnumcw,nsav)*dumc |
---|
| 651 | raercol(k,lnumcw,nsav)=raercol(k,lnumcw,nsav)+dact |
---|
| 652 | raercol(k,lnum,nsav)=raercol(k,lnum,nsav)-dact |
---|
| 653 | endif |
---|
| 654 | do l=1,ncomp(n) |
---|
| 655 | lmass=massptr_aer(l,m,n,ai_phase) |
---|
| 656 | lmasscw=massptr_aer(l,m,n,cw_phase) |
---|
| 657 | dact=raercol(k,lmasscw,nsav)*dumc |
---|
| 658 | raercol(k,lmasscw,nsav)=raercol(k,lmasscw,nsav)+dact |
---|
| 659 | raercol(k,lmass,nsav)=raercol(k,lmass,nsav)-dact |
---|
| 660 | enddo |
---|
| 661 | enddo |
---|
| 662 | enddo |
---|
| 663 | ! 20 continue |
---|
| 664 | endif |
---|
| 665 | |
---|
| 666 | enddo !k loop |
---|
| 667 | |
---|
| 668 | ! end of k-loop for growing/shrinking cloud calcs ...................... |
---|
| 669 | |
---|
| 670 | |
---|
| 671 | ! ...................................................................... |
---|
| 672 | ! start of k-loop for calc of old cloud activation tendencies .......... |
---|
| 673 | |
---|
| 674 | do k=kts,kte |
---|
| 675 | km1=max0(k-1,kts) |
---|
| 676 | kp1=min0(k+1,kde-1) |
---|
| 677 | if(lcldfra(k).gt.0.01)then |
---|
| 678 | if(lcldfra_old(k).gt.0.01)then |
---|
| 679 | ! go to 30 |
---|
| 680 | |
---|
| 681 | ! old cloud |
---|
| 682 | |
---|
| 683 | if(lcldfra_old(k)-lcldfra_old(km1).gt.0.01.or.k.eq.kts)then |
---|
| 684 | |
---|
| 685 | ! interior cloud |
---|
| 686 | |
---|
| 687 | ! cloud base |
---|
| 688 | |
---|
| 689 | wdiab=0 |
---|
| 690 | wmix=wtke(k) ! spectrum of updrafts |
---|
| 691 | wbar=w(i,k,j) ! spectrum of updrafts |
---|
| 692 | ! wmix=0. ! single updraft |
---|
| 693 | ! wbar=wtke(k) ! single updraft |
---|
| 694 | ! 06-nov-2005 rce - increase wmax from 10 to 50 (deep convective clouds) |
---|
| 695 | wmax=50. |
---|
| 696 | top=.false. |
---|
| 697 | ekd(k)=wtke(k)*dz(k)/sq2pi |
---|
| 698 | alogarg=max(1.e-20,1/lcldfra_old(k)-1.) |
---|
| 699 | wmin=wbar+wmix*0.25*sq2pi*alog(alogarg) |
---|
| 700 | |
---|
| 701 | do n=1,ntype_aer |
---|
| 702 | do m=1,nsize_aer(n) |
---|
| 703 | call loadaer(raercol(1,1,nsav),km1,kms,kme,num_chem, & |
---|
| 704 | cs(k), npv(m,n),dlo_sect(m,n),dhi_sect(m,n), & |
---|
| 705 | maxd_acomp, ncomp(n), & |
---|
| 706 | grid_id, ktau, i, j, m, n, & |
---|
| 707 | numptr_aer(m,n,ai_phase),numptr_aer(m,n,cw_phase), & |
---|
| 708 | dens_aer(1,n), & |
---|
| 709 | massptr_aer(1,m,n,ai_phase), massptr_aer(1,m,n,cw_phase), & |
---|
| 710 | maerosol(1,m,n), maerosolcw(1,m,n), & |
---|
| 711 | maerosol_tot(m,n), maerosol_totcw(m,n), & |
---|
| 712 | naerosol(m,n), naerosolcw(m,n), & |
---|
| 713 | vaerosol(m,n), vaerosolcw(m,n) ) |
---|
| 714 | |
---|
| 715 | hygro_aer(m,n)=hygro(i,k,j,m,n) |
---|
| 716 | |
---|
| 717 | enddo |
---|
| 718 | enddo |
---|
| 719 | ! print *,'old cloud wbar,wmix=',wbar,wmix |
---|
| 720 | |
---|
| 721 | call activate(wbar,wmix,wdiab,wmin,wmax,temp(i,k,j),cs(k), & |
---|
| 722 | msectional, maxd_atype, ntype_aer, maxd_asize, nsize_aer, & |
---|
| 723 | naerosol, vaerosol, & |
---|
| 724 | dlo_sect,dhi_sect, sigmag_aer,hygro_aer, & |
---|
| 725 | fn,fs,fm,fluxn,fluxs,fluxm, grid_id, ktau, i, j, k ) |
---|
| 726 | |
---|
| 727 | if(k.gt.kts)then |
---|
| 728 | dumc = lcldfra_old(k)-lcldfra_old(km1) |
---|
| 729 | else |
---|
| 730 | dumc=lcldfra_old(k) |
---|
| 731 | endif |
---|
| 732 | dum=1./(dz(k)) |
---|
| 733 | fluxntot=0. |
---|
| 734 | do n=1,ntype_aer |
---|
| 735 | do m=1,nsize_aer(n) |
---|
| 736 | fluxn(m,n)=fluxn(m,n)*dumc |
---|
| 737 | ! fluxs(m,n)=fluxs(m,n)*dumc |
---|
| 738 | fluxm(m,n)=fluxm(m,n)*dumc |
---|
| 739 | lnum=numptr_aer(m,n,ai_phase) |
---|
| 740 | fluxntot=fluxntot+fluxn(m,n)*raercol(km1,lnum,nsav) |
---|
| 741 | ! print *,'fn=',fn(m,n),' for m,n=',m,n |
---|
| 742 | ! print *,'old cloud dumc=',dumc,' fn=',fn(m,n),' for m,n=',m,n |
---|
| 743 | nact(k,m,n)=nact(k,m,n)+fluxn(m,n)*dum |
---|
| 744 | mact(k,m,n)=mact(k,m,n)+fluxm(m,n)*dum |
---|
| 745 | enddo |
---|
| 746 | enddo |
---|
| 747 | nsource(i,k,j)=nsource(i,k,j)+fluxntot*zs(k) |
---|
| 748 | fluxntot=fluxntot*cs(k) |
---|
| 749 | endif |
---|
| 750 | ! 30 continue |
---|
| 751 | endif |
---|
| 752 | else |
---|
| 753 | ! go to 40 |
---|
| 754 | ! no cloud |
---|
| 755 | if(qndrop(k).gt.10000.e6)then |
---|
| 756 | print *,'i,k,j,lcldfra,qndrop=',i,k,j,lcldfra(k),qndrop(k) |
---|
| 757 | print *,'cldfra,ql,qi',cldfra(i,k,j),qc(i,k,j),qi(i,k,j) |
---|
| 758 | endif |
---|
| 759 | nsource(i,k,j)=nsource(i,k,j)-qndrop(k)*dtinv |
---|
| 760 | qndrop(k)=0. |
---|
| 761 | ! convert activated aerosol to interstitial in decaying cloud |
---|
| 762 | do n=1,ntype_aer |
---|
| 763 | do m=1,nsize_aer(n) |
---|
| 764 | lnum=numptr_aer(m,n,ai_phase) |
---|
| 765 | lnumcw=numptr_aer(m,n,cw_phase) |
---|
| 766 | if(lnum.gt.0)then |
---|
| 767 | raercol(k,lnum,nsav)=raercol(k,lnum,nsav)+raercol(k,lnumcw,nsav) |
---|
| 768 | raercol(k,lnumcw,nsav)=0. |
---|
| 769 | endif |
---|
| 770 | do l=1,ncomp(n) |
---|
| 771 | lmass=massptr_aer(l,m,n,ai_phase) |
---|
| 772 | lmasscw=massptr_aer(l,m,n,cw_phase) |
---|
| 773 | raercol(k,lmass,nsav)=raercol(k,lmass,nsav)+raercol(k,lmasscw,nsav) |
---|
| 774 | raercol(k,lmasscw,nsav)=0. |
---|
| 775 | enddo |
---|
| 776 | enddo |
---|
| 777 | enddo |
---|
| 778 | ! 40 continue |
---|
| 779 | endif |
---|
| 780 | enddo |
---|
| 781 | ! 50 continue |
---|
| 782 | |
---|
| 783 | ! go to 100 |
---|
| 784 | |
---|
| 785 | ! switch nsav, nnew so that nnew is the updated aerosol |
---|
| 786 | |
---|
| 787 | ntemp=nsav |
---|
| 788 | nsav=nnew |
---|
| 789 | nnew=ntemp |
---|
| 790 | |
---|
| 791 | ! load new droplets in layers above, below clouds |
---|
| 792 | |
---|
| 793 | dtmin=dtstep |
---|
| 794 | ekk(kts)=0.0 |
---|
| 795 | do k=kts+1,kte |
---|
| 796 | ekk(k)=ekd(k)*p_at_w(i,k,j)/(r_d*t_at_w(i,k,j)) |
---|
| 797 | enddo |
---|
| 798 | ekk(kte+1)=0.0 |
---|
| 799 | do k=kts,kte |
---|
| 800 | ekkp(k)=zn(k)*ekk(k+1)*zs(k+1) |
---|
| 801 | ekkm(k)=zn(k)*ekk(k)*zs(k) |
---|
| 802 | tinv=ekkp(k)+ekkm(k) |
---|
| 803 | if(k.eq.kts)tinv=tinv+surfratemax |
---|
| 804 | if(tinv.gt.1.e-6)then |
---|
| 805 | dtt=1./tinv |
---|
| 806 | dtmin=min(dtmin,dtt) |
---|
| 807 | endif |
---|
| 808 | enddo |
---|
| 809 | dtmix=0.9*dtmin |
---|
| 810 | nsubmix=dtstep/dtmix+1 |
---|
| 811 | if(nsubmix>100)then |
---|
| 812 | nsubmix_bnd=100 |
---|
| 813 | else |
---|
| 814 | nsubmix_bnd=nsubmix |
---|
| 815 | endif |
---|
| 816 | count_submix(nsubmix_bnd)=count_submix(nsubmix_bnd)+1 |
---|
| 817 | dtmix=dtstep/nsubmix |
---|
| 818 | fac_srflx = -1.0/(zn(1)*nsubmix) |
---|
| 819 | |
---|
| 820 | do k=kts,kte |
---|
| 821 | kp1=min(k+1,kde-1) |
---|
| 822 | km1=max(k-1,1) |
---|
| 823 | if(lcldfra(kp1).gt.0)then |
---|
| 824 | overlapp(k)=min(lcldfra(k)/lcldfra(kp1),1.) |
---|
| 825 | else |
---|
| 826 | overlapp(k)=1. |
---|
| 827 | endif |
---|
| 828 | if(lcldfra(km1).gt.0)then |
---|
| 829 | overlapm(k)=min(lcldfra(k)/lcldfra(km1),1.) |
---|
| 830 | else |
---|
| 831 | overlapm(k)=1. |
---|
| 832 | endif |
---|
| 833 | enddo |
---|
| 834 | do nsub=1,nsubmix |
---|
| 835 | qndrop_new(kts:kte)=qndrop(kts:kte) |
---|
| 836 | ! switch nsav, nnew so that nsav is the updated aerosol |
---|
| 837 | ntemp=nsav |
---|
| 838 | nsav=nnew |
---|
| 839 | nnew=ntemp |
---|
| 840 | srcn(:)=0.0 |
---|
| 841 | do n=1,ntype_aer |
---|
| 842 | do m=1,nsize_aer(n) |
---|
| 843 | lnum=numptr_aer(m,n,ai_phase) |
---|
| 844 | ! update droplet source |
---|
| 845 | srcn(kts:kte)=srcn(kts:kte)+nact(kts:kte,m,n)*(raercol(kts:kte,lnum,nsav)) |
---|
| 846 | enddo |
---|
| 847 | enddo |
---|
| 848 | call explmix(qndrop,srcn,ekkp,ekkm,overlapp,overlapm, & |
---|
| 849 | qndrop_new,surfrate_drop,kms,kme,kts,kte,dtmix,.false.) |
---|
| 850 | do n=1,ntype_aer |
---|
| 851 | do m=1,nsize_aer(n) |
---|
| 852 | lnum=numptr_aer(m,n,ai_phase) |
---|
| 853 | lnumcw=numptr_aer(m,n,cw_phase) |
---|
| 854 | if(lnum>0)then |
---|
| 855 | source(kts:kte)= nact(kts:kte,m,n)*(raercol(kts:kte,lnum,nsav)) |
---|
| 856 | call explmix(raercol(1,lnumcw,nnew),source,ekkp,ekkm,overlapp,overlapm, & |
---|
| 857 | raercol(1,lnumcw,nsav),surfrate(lnumcw),kms,kme,kts,kte,dtmix,& |
---|
| 858 | .false.) |
---|
| 859 | call explmix(raercol(1,lnum,nnew),source,ekkp,ekkm,overlapp,overlapm, & |
---|
| 860 | raercol(1,lnum,nsav),surfrate(lnum),kms,kme,kts,kte,dtmix, & |
---|
| 861 | .true.,raercol(1,lnumcw,nsav)) |
---|
| 862 | qsrflx(i,j,lnum) = qsrflx(i,j,lnum) + fac_srflx* & |
---|
| 863 | raercol(kts,lnum,nsav)*surfrate(lnum) |
---|
| 864 | qsrflx(i,j,lnumcw) = qsrflx(i,j,lnumcw) + fac_srflx* & |
---|
| 865 | raercol(kts,lnumcw,nsav)*surfrate(lnumcw) |
---|
| 866 | endif |
---|
| 867 | do l=1,ncomp(n) |
---|
| 868 | lmass=massptr_aer(l,m,n,ai_phase) |
---|
| 869 | lmasscw=massptr_aer(l,m,n,cw_phase) |
---|
| 870 | source(kts:kte)= mact(kts:kte,m,n)*(raercol(kts:kte,lmass,nsav)) |
---|
| 871 | call explmix(raercol(1,lmasscw,nnew),source,ekkp,ekkm,overlapp,overlapm, & |
---|
| 872 | raercol(1,lmasscw,nsav),surfrate(lmasscw),kms,kme,kts,kte,dtmix, & |
---|
| 873 | .false.) |
---|
| 874 | call explmix(raercol(1,lmass,nnew),source,ekkp,ekkm,overlapp,overlapm, & |
---|
| 875 | raercol(1,lmass,nsav),surfrate(lmass),kms,kme,kts,kte,dtmix, & |
---|
| 876 | .true.,raercol(1,lmasscw,nsav)) |
---|
| 877 | qsrflx(i,j,lmass) = qsrflx(i,j,lmass) + fac_srflx* & |
---|
| 878 | raercol(kts,lmass,nsav)*surfrate(lmass) |
---|
| 879 | qsrflx(i,j,lmasscw) = qsrflx(i,j,lmasscw) + fac_srflx* & |
---|
| 880 | raercol(kts,lmasscw,nsav)*surfrate(lmasscw) |
---|
| 881 | enddo |
---|
| 882 | lwater=waterptr_aer(m,n) ! aerosol water |
---|
| 883 | if(lwater>0)then |
---|
| 884 | source(:)=0. |
---|
| 885 | call explmix( raercol(1,lwater,nnew),source,ekkp,ekkm,overlapp,overlapm, & |
---|
| 886 | raercol(1,lwater,nsav),surfrate(lwater),kms,kme,kts,kte,dtmix, & |
---|
| 887 | .true.,source) |
---|
| 888 | endif |
---|
| 889 | enddo ! size |
---|
| 890 | enddo ! type |
---|
| 891 | |
---|
| 892 | enddo !nsub |
---|
| 893 | |
---|
| 894 | ! go to 100 |
---|
| 895 | |
---|
| 896 | ! evaporate particles again if no cloud |
---|
| 897 | |
---|
| 898 | do k=kts,kte |
---|
| 899 | if(lcldfra(k).eq.0.)then |
---|
| 900 | |
---|
| 901 | ! no cloud |
---|
| 902 | |
---|
| 903 | qndrop(k)=0. |
---|
| 904 | ! convert activated aerosol to interstitial in decaying cloud |
---|
| 905 | do n=1,ntype_aer |
---|
| 906 | do m=1,nsize_aer(n) |
---|
| 907 | lnum=numptr_aer(m,n,ai_phase) |
---|
| 908 | lnumcw=numptr_aer(m,n,cw_phase) |
---|
| 909 | if(lnum.gt.0)then |
---|
| 910 | raercol(k,lnum,nnew)=raercol(k,lnum,nnew)+raercol(k,lnumcw,nnew) |
---|
| 911 | raercol(k,lnumcw,nnew)=0. |
---|
| 912 | endif |
---|
| 913 | do l=1,ncomp(n) |
---|
| 914 | lmass=massptr_aer(l,m,n,ai_phase) |
---|
| 915 | lmasscw=massptr_aer(l,m,n,cw_phase) |
---|
| 916 | raercol(k,lmass,nnew)=raercol(k,lmass,nnew)+raercol(k,lmasscw,nnew) |
---|
| 917 | raercol(k,lmasscw,nnew)=0. |
---|
| 918 | enddo |
---|
| 919 | enddo |
---|
| 920 | enddo |
---|
| 921 | endif |
---|
| 922 | enddo |
---|
| 923 | |
---|
| 924 | ! go to 100 |
---|
| 925 | ! droplet number |
---|
| 926 | |
---|
| 927 | do k=kts,kte |
---|
| 928 | ! if(lcldfra(k).gt.0.1)then |
---|
| 929 | ! write(6,'(a,3i5,f12.1)')'i,j,k,qndrop=',i,j,k,qndrop(k) |
---|
| 930 | ! endif |
---|
| 931 | if(qndrop(k).lt.-10.e6.or.qndrop(k).gt.1.e12)then |
---|
| 932 | write(6,'(a,g12.2,a,3i5)')'after qndrop=',qndrop(k),' for i,k,j=',i,k,j |
---|
| 933 | ! call exit(1) |
---|
| 934 | endif |
---|
| 935 | |
---|
| 936 | qndrop3d(i,k,j) = max(qndrop(k),1.e-6) |
---|
| 937 | |
---|
| 938 | if(qndrop3d(i,k,j).lt.-10.e6.or.qndrop3d(i,k,j).gt.1.E20)then |
---|
| 939 | write(6,'(a,g12.2,a,3i5)')'after qndrop=',qndrop3d(i,k,j),' for i,k,j=',i,k,j |
---|
| 940 | ! call exit(1) |
---|
| 941 | endif |
---|
| 942 | if(qc(i,k,j).lt.-1..or.qc(i,k,j).gt.1.)then |
---|
| 943 | write(6,'(a,g12.2,a,3i5)')'qc=',qc(i,k,j),' for i,k,j=',i,k,j |
---|
| 944 | call exit(1) |
---|
| 945 | endif |
---|
| 946 | if(qi(i,k,j).lt.-1..or.qi(i,k,j).gt.1.)then |
---|
| 947 | write(6,'(a,g12.2,a,3i5)')'qi=',qi(i,k,j),' for i,k,j=',i,k,j |
---|
| 948 | call exit(1) |
---|
| 949 | endif |
---|
| 950 | if(qv(i,k,j).lt.-1..or.qv(i,k,j).gt.1.)then |
---|
| 951 | write(6,'(a,g12.2,a,3i5)')'qv=',qv(i,k,j),' for i,k,j=',i,k,j |
---|
| 952 | call exit(1) |
---|
| 953 | endif |
---|
| 954 | cldfra_old(i,k,j) = cldfra(i,k,j) |
---|
| 955 | ! if(k.gt.6.and.k.lt.11)cldfra_old(i,k,j)=1. |
---|
| 956 | enddo |
---|
| 957 | |
---|
| 958 | |
---|
| 959 | |
---|
| 960 | ! go to 100 |
---|
| 961 | ! update chem and convert back to mole/mole |
---|
| 962 | |
---|
| 963 | ccn(:,:) = 0. |
---|
| 964 | do n=1,ntype_aer |
---|
| 965 | do m=1,nsize_aer(n) |
---|
| 966 | lnum=numptr_aer(m,n,ai_phase) |
---|
| 967 | lnumcw=numptr_aer(m,n,cw_phase) |
---|
| 968 | if(lnum.gt.0)then |
---|
| 969 | ! scale=mwdry*0.001 |
---|
| 970 | scale = 1. |
---|
| 971 | chem(i,kts:kte,j,lnumcw)= raercol(kts:kte,lnumcw,nnew)*scale |
---|
| 972 | chem(i,kts:kte,j,lnum)= raercol(kts:kte,lnum,nnew)*scale |
---|
| 973 | endif |
---|
| 974 | do l=1,ncomp(n) |
---|
| 975 | lmass=massptr_aer(l,m,n,ai_phase) |
---|
| 976 | lmasscw=massptr_aer(l,m,n,cw_phase) |
---|
| 977 | ! scale = mwdry/mw_aer(l,n) |
---|
| 978 | scale = 1.e9 |
---|
| 979 | chem(i,kts:kte,j,lmasscw)=raercol(kts:kte,lmasscw,nnew)*scale ! ug/kg |
---|
| 980 | chem(i,kts:kte,j,lmass)=raercol(kts:kte,lmass,nnew)*scale ! ug/kg |
---|
| 981 | enddo |
---|
| 982 | lwater=waterptr_aer(m,n) |
---|
| 983 | if(lwater>0)chem(i,kts:kte,j,lwater)=raercol(kts:kte,lwater,nnew) ! don't convert units |
---|
| 984 | do k=kts,kte |
---|
| 985 | sm=2.*aten*sqrt(aten/(27.*hygro(i,k,j,m,n)*amcube(m,n))) |
---|
| 986 | do l=1,psat |
---|
| 987 | arg=argfactor(m,n)*log(sm/super(l)) |
---|
| 988 | if(arg<2)then |
---|
| 989 | if(arg<-2)then |
---|
| 990 | ccnfact(l,m,n)=1.e-6 ! convert from #/m3 to #/cm3 |
---|
| 991 | else |
---|
| 992 | ccnfact(l,m,n)=1.e-6*0.5*ERFC_NUM_RECIPES(arg) |
---|
| 993 | endif |
---|
| 994 | else |
---|
| 995 | ccnfact(l,m,n) = 0. |
---|
| 996 | endif |
---|
| 997 | ! ccn concentration as diagnostic |
---|
| 998 | ! assume same hygroscopicity and ccnfact for cloud-phase and aerosol phase particles |
---|
| 999 | ccn(k,l)=ccn(k,l)+(raercol(k,lnum,nnew)+raercol(k,lnumcw,nnew))*cs(k)*ccnfact(l,m,n) |
---|
| 1000 | enddo |
---|
| 1001 | enddo |
---|
| 1002 | enddo |
---|
| 1003 | enddo |
---|
| 1004 | do l=1,psat |
---|
| 1005 | !wig, 22-Nov-2006: added vertical bounds to prevent out-of-bounds at top |
---|
| 1006 | if(l.eq.1)ccn1(i,kts:kte,j)=ccn(:,l) |
---|
| 1007 | if(l.eq.2)ccn2(i,kts:kte,j)=ccn(:,l) |
---|
| 1008 | if(l.eq.3)ccn3(i,kts:kte,j)=ccn(:,l) |
---|
| 1009 | if(l.eq.4)ccn4(i,kts:kte,j)=ccn(:,l) |
---|
| 1010 | if(l.eq.5)ccn5(i,kts:kte,j)=ccn(:,l) |
---|
| 1011 | if(l.eq.6)ccn6(i,kts:kte,j)=ccn(:,l) |
---|
| 1012 | end do |
---|
| 1013 | |
---|
| 1014 | 100 continue ! end of main loop over i |
---|
| 1015 | 120 continue ! end of main loop over j |
---|
| 1016 | |
---|
| 1017 | |
---|
| 1018 | return |
---|
| 1019 | end subroutine mixactivate |
---|
| 1020 | |
---|
| 1021 | |
---|
| 1022 | !---------------------------------------------------------------------- |
---|
| 1023 | !---------------------------------------------------------------------- |
---|
| 1024 | subroutine explmix( q, src, ekkp, ekkm, overlapp, overlapm, & |
---|
| 1025 | qold, surfrate, kms, kme, kts, kte, dt, & |
---|
| 1026 | is_unact, qactold ) |
---|
| 1027 | |
---|
| 1028 | ! explicit integration of droplet/aerosol mixing |
---|
| 1029 | ! with source due to activation/nucleation |
---|
| 1030 | |
---|
| 1031 | |
---|
| 1032 | implicit none |
---|
| 1033 | integer, intent(in) :: kms,kme ! number of levels for array definition |
---|
| 1034 | integer, intent(in) :: kts,kte ! number of levels for looping |
---|
| 1035 | real, intent(inout) :: q(kms:kme) ! mixing ratio to be updated |
---|
| 1036 | real, intent(in) :: qold(kms:kme) ! mixing ratio from previous time step |
---|
| 1037 | real, intent(in) :: src(kms:kme) ! source due to activation/nucleation (/s) |
---|
| 1038 | real, intent(in) :: ekkp(kms:kme) ! zn*zs*density*diffusivity (kg/m3 m2/s) at interface |
---|
| 1039 | ! below layer k (k,k+1 interface) |
---|
| 1040 | real, intent(in) :: ekkm(kms:kme) ! zn*zs*density*diffusivity (kg/m3 m2/s) at interface |
---|
| 1041 | ! above layer k (k,k+1 interface) |
---|
| 1042 | real, intent(in) :: overlapp(kms:kme) ! cloud overlap below |
---|
| 1043 | real, intent(in) :: overlapm(kms:kme) ! cloud overlap above |
---|
| 1044 | real, intent(in) :: surfrate ! surface exchange rate (/s) |
---|
| 1045 | real, intent(in) :: dt ! time step (s) |
---|
| 1046 | logical, intent(in) :: is_unact ! true if this is an unactivated species |
---|
| 1047 | real, intent(in),optional :: qactold(kms:kme) |
---|
| 1048 | ! mixing ratio of ACTIVATED species from previous step |
---|
| 1049 | ! *** this should only be present |
---|
| 1050 | ! if the current species is unactivated number/sfc/mass |
---|
| 1051 | |
---|
| 1052 | integer k,kp1,km1 |
---|
| 1053 | |
---|
| 1054 | if ( is_unact ) then |
---|
| 1055 | ! the qactold*(1-overlap) terms are resuspension of activated material |
---|
| 1056 | do k=kts,kte |
---|
| 1057 | kp1=min(k+1,kte) |
---|
| 1058 | km1=max(k-1,kts) |
---|
| 1059 | q(k) = qold(k) + dt*( - src(k) + ekkp(k)*(qold(kp1) - qold(k) + & |
---|
| 1060 | qactold(kp1)*(1.0-overlapp(k))) & |
---|
| 1061 | + ekkm(k)*(qold(km1) - qold(k) + & |
---|
| 1062 | qactold(km1)*(1.0-overlapm(k))) ) |
---|
| 1063 | ! if(q(k)<-1.e-30)then ! force to non-negative |
---|
| 1064 | ! print *,'q=',q(k),' in explmix' |
---|
| 1065 | q(k)=max(q(k),0.) |
---|
| 1066 | ! endif |
---|
| 1067 | end do |
---|
| 1068 | else |
---|
| 1069 | do k=kts,kte |
---|
| 1070 | kp1=min(k+1,kte) |
---|
| 1071 | km1=max(k-1,kts) |
---|
| 1072 | q(k) = qold(k) + dt*(src(k) + ekkp(k)*(overlapp(k)*qold(kp1)-qold(k)) + & |
---|
| 1073 | ekkm(k)*(overlapm(k)*qold(km1)-qold(k)) ) |
---|
| 1074 | ! if(q(k)<-1.e-30)then ! force to non-negative |
---|
| 1075 | ! print *,'q=',q(k),' in explmix' |
---|
| 1076 | q(k)=max(q(k),0.) |
---|
| 1077 | ! endif |
---|
| 1078 | end do |
---|
| 1079 | end if |
---|
| 1080 | ! diffusion loss at base of lowest layer |
---|
| 1081 | q(kts)=q(kts)-surfrate*qold(kts)*dt |
---|
| 1082 | |
---|
| 1083 | ! if(q(kts)<-1.e-30)then ! force to non-negative |
---|
| 1084 | ! print *,'q=',q(kts),' in explmix' |
---|
| 1085 | q(kts)=max(q(kts),0.) |
---|
| 1086 | ! endif |
---|
| 1087 | |
---|
| 1088 | return |
---|
| 1089 | end subroutine explmix |
---|
| 1090 | |
---|
| 1091 | !---------------------------------------------------------------------- |
---|
| 1092 | !---------------------------------------------------------------------- |
---|
| 1093 | ! 06-nov-2005 rce - grid_id & ktau added to arg list |
---|
| 1094 | subroutine activate(wbar, sigw, wdiab, wminf, wmaxf, tair, rhoair, & |
---|
| 1095 | msectional, maxd_atype, ntype_aer, maxd_asize, nsize_aer, & |
---|
| 1096 | na, volc, dlo_sect,dhi_sect,sigman, hygro, & |
---|
| 1097 | fn, fs, fm, fluxn, fluxs, fluxm, & |
---|
| 1098 | grid_id, ktau, ii, jj, kk ) |
---|
| 1099 | |
---|
| 1100 | ! calculates number, surface, and mass fraction of aerosols activated as CCN |
---|
| 1101 | ! calculates flux of cloud droplets, surface area, and aerosol mass into cloud |
---|
| 1102 | ! assumes an internal mixture within each of aerosol mode. |
---|
| 1103 | ! A sectional treatment within each type is assumed if ntype_aer >7. |
---|
| 1104 | ! A gaussiam spectrum of updrafts can be treated. |
---|
| 1105 | |
---|
| 1106 | ! mks units |
---|
| 1107 | |
---|
| 1108 | ! Abdul-Razzak and Ghan, A parameterization of aerosol activation. |
---|
| 1109 | ! 2. Multiple aerosol types. J. Geophys. Res., 105, 6837-6844. |
---|
| 1110 | |
---|
| 1111 | USE module_model_constants, only: g,rhowater, xlv, cp, rvovrd, r_d, r_v, & |
---|
| 1112 | mwdry,svp1,svp2,svp3,ep_2 |
---|
| 1113 | |
---|
| 1114 | implicit none |
---|
| 1115 | |
---|
| 1116 | |
---|
| 1117 | ! input |
---|
| 1118 | |
---|
| 1119 | integer,intent(in) :: maxd_atype ! dimension of types |
---|
| 1120 | integer,intent(in) :: maxd_asize ! dimension of sizes |
---|
| 1121 | integer,intent(in) :: ntype_aer ! number of types |
---|
| 1122 | integer,intent(in) :: nsize_aer(maxd_atype) ! number of sizes for type |
---|
| 1123 | integer,intent(in) :: msectional ! 1 for sectional, 0 for modal |
---|
| 1124 | integer,intent(in) :: grid_id ! WRF grid%id |
---|
| 1125 | integer,intent(in) :: ktau ! WRF time step count |
---|
| 1126 | integer,intent(in) :: ii, jj, kk ! i,j,k of current grid cell |
---|
| 1127 | real,intent(in) :: wbar ! grid cell mean vertical velocity (m/s) |
---|
| 1128 | real,intent(in) :: sigw ! subgrid standard deviation of vertical vel (m/s) |
---|
| 1129 | real,intent(in) :: wdiab ! diabatic vertical velocity (0 if adiabatic) |
---|
| 1130 | real,intent(in) :: wminf ! minimum updraft velocity for integration (m/s) |
---|
| 1131 | real,intent(in) :: wmaxf ! maximum updraft velocity for integration (m/s) |
---|
| 1132 | real,intent(in) :: tair ! air temperature (K) |
---|
| 1133 | real,intent(in) :: rhoair ! air density (kg/m3) |
---|
| 1134 | real,intent(in) :: na(maxd_asize,maxd_atype) ! aerosol number concentration (/m3) |
---|
| 1135 | real,intent(in) :: sigman(maxd_asize,maxd_atype) ! geometric standard deviation of aerosol size distribution |
---|
| 1136 | real,intent(in) :: hygro(maxd_asize,maxd_atype) ! bulk hygroscopicity of aerosol mode |
---|
| 1137 | real,intent(in) :: volc(maxd_asize,maxd_atype) ! total aerosol volume concentration (m3/m3) |
---|
| 1138 | real,intent(in) :: dlo_sect( maxd_asize, maxd_atype ), & ! minimum size of section (cm) |
---|
| 1139 | dhi_sect( maxd_asize, maxd_atype ) ! maximum size of section (cm) |
---|
| 1140 | |
---|
| 1141 | ! output |
---|
| 1142 | |
---|
| 1143 | real,intent(inout) :: fn(maxd_asize,maxd_atype) ! number fraction of aerosols activated |
---|
| 1144 | real,intent(inout) :: fs(maxd_asize,maxd_atype) ! surface fraction of aerosols activated |
---|
| 1145 | real,intent(inout) :: fm(maxd_asize,maxd_atype) ! mass fraction of aerosols activated |
---|
| 1146 | real,intent(inout) :: fluxn(maxd_asize,maxd_atype) ! flux of activated aerosol number fraction into cloud (m/s) |
---|
| 1147 | real,intent(inout) :: fluxs(maxd_asize,maxd_atype) ! flux of activated aerosol surface fraction (m/s) |
---|
| 1148 | real,intent(inout) :: fluxm(maxd_asize,maxd_atype) ! flux of activated aerosol mass fraction into cloud (m/s) |
---|
| 1149 | |
---|
| 1150 | ! local |
---|
| 1151 | |
---|
| 1152 | !!$ external erf,erfc |
---|
| 1153 | !!$ real erf,erfc |
---|
| 1154 | ! external qsat_water |
---|
| 1155 | integer, parameter:: nx=200 |
---|
| 1156 | integer iquasisect_option, isectional |
---|
| 1157 | real integ,integf |
---|
| 1158 | real, save :: surften ! surface tension of water w/respect to air (N/m) |
---|
| 1159 | data surften/0.076/ |
---|
| 1160 | real, save :: p0 ! reference pressure (Pa) |
---|
| 1161 | real, save :: t0 ! reference temperature (K) |
---|
| 1162 | data p0/1013.25e2/,t0/273.15/ |
---|
| 1163 | real ylo(maxd_asize,maxd_atype),yhi(maxd_asize,maxd_atype) ! 1-particle volume at section interfaces |
---|
| 1164 | real ymean(maxd_asize,maxd_atype) ! 1-particle volume at r=rmean |
---|
| 1165 | real ycut, lnycut, betayy, betayy2, gammayy, phiyy |
---|
| 1166 | real surfc(maxd_asize,maxd_atype) ! surface concentration (m2/m3) |
---|
| 1167 | real sign(maxd_asize,maxd_atype) ! geometric standard deviation of size distribution |
---|
| 1168 | real alnsign(maxd_asize,maxd_atype) ! natl log of geometric standard dev of aerosol |
---|
| 1169 | real am(maxd_asize,maxd_atype) ! number mode radius of dry aerosol (m) |
---|
| 1170 | real lnhygro(maxd_asize,maxd_atype) ! ln(b) |
---|
| 1171 | real f1(maxd_asize,maxd_atype) ! array to hold parameter for maxsat |
---|
| 1172 | real pres ! pressure (Pa) |
---|
| 1173 | real path ! mean free path (m) |
---|
| 1174 | real diff ! diffusivity (m2/s) |
---|
| 1175 | real conduct ! thermal conductivity (Joule/m/sec/deg) |
---|
| 1176 | real diff0,conduct0 |
---|
| 1177 | real es ! saturation vapor pressure |
---|
| 1178 | real qs ! water vapor saturation mixing ratio |
---|
| 1179 | real dqsdt ! change in qs with temperature |
---|
| 1180 | real dqsdp ! change in qs with pressure |
---|
| 1181 | real gg ! thermodynamic function (m2/s) |
---|
| 1182 | real sqrtg ! sqrt(gg) |
---|
| 1183 | real sm(maxd_asize,maxd_atype) ! critical supersaturation for number mode radius |
---|
| 1184 | real lnsm(maxd_asize,maxd_atype) ! ln( sm ) |
---|
| 1185 | real zeta, eta(maxd_asize,maxd_atype) |
---|
| 1186 | real lnsmax ! ln(smax) |
---|
| 1187 | real alpha |
---|
| 1188 | real gamma |
---|
| 1189 | real beta |
---|
| 1190 | real gaus |
---|
| 1191 | logical, save :: top ! true if cloud top, false if cloud base or new cloud |
---|
| 1192 | data top/.false./ |
---|
| 1193 | real asub(maxd_asize,maxd_atype),bsub(maxd_asize,maxd_atype) ! coefficients of submode size distribution N=a+bx |
---|
| 1194 | real totn(maxd_atype) ! total aerosol number concentration |
---|
| 1195 | real aten ! surface tension parameter |
---|
| 1196 | real gmrad(maxd_atype) ! geometric mean radius |
---|
| 1197 | real gmradsq(maxd_atype) ! geometric mean of radius squared |
---|
| 1198 | real gmlnsig(maxd_atype) ! geometric standard deviation |
---|
| 1199 | real gmsm(maxd_atype) ! critical supersaturation at radius gmrad |
---|
| 1200 | real sumflxn(maxd_asize,maxd_atype) |
---|
| 1201 | real sumflxs(maxd_asize,maxd_atype) |
---|
| 1202 | real sumflxm(maxd_asize,maxd_atype) |
---|
| 1203 | real sumfn(maxd_asize,maxd_atype) |
---|
| 1204 | real sumfs(maxd_asize,maxd_atype) |
---|
| 1205 | real sumfm(maxd_asize,maxd_atype) |
---|
| 1206 | real sumns(maxd_atype) |
---|
| 1207 | real fnold(maxd_asize,maxd_atype) ! number fraction activated |
---|
| 1208 | real fsold(maxd_asize,maxd_atype) ! surface fraction activated |
---|
| 1209 | real fmold(maxd_asize,maxd_atype) ! mass fraction activated |
---|
| 1210 | real wold,gold |
---|
| 1211 | real alogten,alog2,alog3,alogaten |
---|
| 1212 | real alogam |
---|
| 1213 | real rlo(maxd_asize,maxd_atype), rhi(maxd_asize,maxd_atype) |
---|
| 1214 | real rmean(maxd_asize,maxd_atype) |
---|
| 1215 | ! mean radius (m) for the section (not used with modal) |
---|
| 1216 | ! calculated from current volume & number |
---|
| 1217 | real ccc |
---|
| 1218 | real dumaa,dumbb |
---|
| 1219 | real wmin,wmax,w,dw,dwmax,dwmin,wnuc,dwnew,wb |
---|
| 1220 | real dfmin,dfmax,fnew,fold,fnmin,fnbar,fsbar,fmbar |
---|
| 1221 | real alw,sqrtalw |
---|
| 1222 | real smax |
---|
| 1223 | real x,arg |
---|
| 1224 | real xmincoeff,xcut |
---|
| 1225 | real z,z1,z2,wf1,wf2,zf1,zf2,gf1,gf2,gf |
---|
| 1226 | real etafactor1,etafactor2(maxd_asize,maxd_atype),etafactor2max |
---|
| 1227 | integer m,n,nw,nwmax |
---|
| 1228 | |
---|
| 1229 | ! numerical integration parameters |
---|
| 1230 | real, save :: eps,fmax,sds |
---|
| 1231 | data eps/0.3/,fmax/0.99/,sds/3./ |
---|
| 1232 | |
---|
| 1233 | ! mathematical constants |
---|
| 1234 | real third, twothird, sixth, zero, one, two, three |
---|
| 1235 | ! 04-nov-2005 rce - make this more precise |
---|
| 1236 | ! data third/0.333333/, twothird/0.66666667/, sixth/0.166666667/,zero/0./,one/1./,two/2./,three/3./ |
---|
| 1237 | ! data third/0.33333333333/, twothird/0.66666666667/, sixth/0.16666666667/ |
---|
| 1238 | ! data zero/0./,one/1./,two/2./,three/3./ |
---|
| 1239 | ! save third, sixth,twothird,zero,one,two,three |
---|
| 1240 | |
---|
| 1241 | real, save :: sq2, sqpi, pi |
---|
| 1242 | ! 04-nov-2005 rce - make this more precise |
---|
| 1243 | ! data sq2/1.4142136/, sqpi/1.7724539/,pi/3.14159/ |
---|
| 1244 | data sq2/1.4142135624/, sqpi/1.7724538509/,pi/3.1415926536/ |
---|
| 1245 | |
---|
| 1246 | integer, save :: ndist(nx) ! accumulates frequency distribution of integration bins required |
---|
| 1247 | data ndist/nx*0/ |
---|
| 1248 | |
---|
| 1249 | ! for nsize_aer>7, a sectional approach is used and isectional = iquasisect_option |
---|
| 1250 | ! activation fractions (fn,fs,fm) are computed as follows |
---|
| 1251 | ! iquasisect_option = 1,3 - each section treated as a narrow lognormal |
---|
| 1252 | ! iquasisect_option = 2,4 - within-section dn/dx = a + b*x, x = ln(r) |
---|
| 1253 | ! smax is computed as follows (when explicit activation is OFF) |
---|
| 1254 | ! iquasisect_option = 1,2 - razzak-ghan modal parameterization with |
---|
| 1255 | ! single mode having same ntot, dgnum, sigmag as the combined sections |
---|
| 1256 | ! iquasisect_option = 3,4 - razzak-ghan sectional parameterization |
---|
| 1257 | ! for nsize_aer=<9, a modal approach is used and isectional = 0 |
---|
| 1258 | |
---|
| 1259 | ! rce 08-jul-2005 |
---|
| 1260 | ! if either (na(n,m) < nsmall) or (volc(n,m) < vsmall) |
---|
| 1261 | ! then treat bin/mode (n,m) as being empty, and set its fn/fs/fm=0.0 |
---|
| 1262 | ! (for single precision, gradual underflow starts around 1.0e-38, |
---|
| 1263 | ! and strange things can happen when in that region) |
---|
| 1264 | real, parameter :: nsmall = 1.0e-20 ! aer number conc in #/m3 |
---|
| 1265 | real, parameter :: vsmall = 1.0e-37 ! aer volume conc in m3/m3 |
---|
| 1266 | logical bin_is_empty(maxd_asize,maxd_atype), all_bins_empty |
---|
| 1267 | logical bin_is_narrow(maxd_asize,maxd_atype) |
---|
| 1268 | |
---|
| 1269 | integer idiagaa, ipass_nwloop |
---|
| 1270 | integer idiag_dndy_neg, idiag_fnsm_prob |
---|
| 1271 | |
---|
| 1272 | !....................................................................... |
---|
| 1273 | ! |
---|
| 1274 | ! start calc. of modal or sectional activation properties (start of section 1) |
---|
| 1275 | ! |
---|
| 1276 | !....................................................................... |
---|
| 1277 | idiag_dndy_neg = 1 ! set this to 0 to turn off |
---|
| 1278 | ! warnings about dn/dy < 0 |
---|
| 1279 | idiag_fnsm_prob = 1 ! set this to 0 to turn off |
---|
| 1280 | ! warnings about fn/fs/fm misbehavior |
---|
| 1281 | |
---|
| 1282 | iquasisect_option = 2 |
---|
| 1283 | if(msectional.gt.0)then |
---|
| 1284 | isectional = iquasisect_option |
---|
| 1285 | else |
---|
| 1286 | isectional = 0 |
---|
| 1287 | endif |
---|
| 1288 | |
---|
| 1289 | do n=1,ntype_aer |
---|
| 1290 | ! print *,'ntype_aer,n,nsize_aer(n)=',ntype_aer,n,nsize_aer(n) |
---|
| 1291 | |
---|
| 1292 | if(ntype_aer.eq.1.and.nsize_aer(n).eq.1.and.na(1,1).lt.1.e-20)then |
---|
| 1293 | fn(1,1)=0. |
---|
| 1294 | fs(1,1)=0. |
---|
| 1295 | fm(1,1)=0. |
---|
| 1296 | fluxn(1,1)=0. |
---|
| 1297 | fluxs(1,1)=0. |
---|
| 1298 | fluxm(1,1)=0. |
---|
| 1299 | return |
---|
| 1300 | endif |
---|
| 1301 | enddo |
---|
| 1302 | |
---|
| 1303 | zero = 0.0 |
---|
| 1304 | one = 1.0 |
---|
| 1305 | two = 2.0 |
---|
| 1306 | three = 3.0 |
---|
| 1307 | third = 1.0/3.0 |
---|
| 1308 | twothird = 2.0/6.0 |
---|
| 1309 | sixth = 1.0/6.0 |
---|
| 1310 | |
---|
| 1311 | pres=r_d*rhoair*tair |
---|
| 1312 | diff0=0.211e-4*(p0/pres)*(tair/t0)**1.94 |
---|
| 1313 | conduct0=(5.69+0.017*(tair-t0))*4.186e2*1.e-5 ! convert to J/m/s/deg |
---|
| 1314 | es=1000.*svp1*exp( svp2*(tair-t0)/(tair-svp3) ) |
---|
| 1315 | qs=ep_2*es/(pres-es) |
---|
| 1316 | dqsdt=xlv/(r_v*tair*tair)*qs |
---|
| 1317 | alpha=g*(xlv/(cp*r_v*tair*tair)-1./(r_d*tair)) |
---|
| 1318 | gamma=(1+xlv/cp*dqsdt)/(rhoair*qs) |
---|
| 1319 | gg=1./(rhowater/(diff0*rhoair*qs)+xlv*rhowater/(conduct0*tair)*(xlv/(r_v*tair)-1.)) |
---|
| 1320 | sqrtg=sqrt(gg) |
---|
| 1321 | beta=4.*pi*rhowater*gg*gamma |
---|
| 1322 | aten=2.*surften/(r_v*tair*rhowater) |
---|
| 1323 | alogaten=log(aten) |
---|
| 1324 | alog2=log(two) |
---|
| 1325 | alog3=log(three) |
---|
| 1326 | ccc=4.*pi*third |
---|
| 1327 | etafactor2max=1.e10/(alpha*wmaxf)**1.5 ! this should make eta big if na is very small. |
---|
| 1328 | |
---|
| 1329 | all_bins_empty = .true. |
---|
| 1330 | do n=1,ntype_aer |
---|
| 1331 | totn(n)=0. |
---|
| 1332 | gmrad(n)=0. |
---|
| 1333 | gmradsq(n)=0. |
---|
| 1334 | sumns(n)=0. |
---|
| 1335 | do m=1,nsize_aer(n) |
---|
| 1336 | alnsign(m,n)=log(sigman(m,n)) |
---|
| 1337 | ! internal mixture of aerosols |
---|
| 1338 | |
---|
| 1339 | bin_is_empty(m,n) = .true. |
---|
| 1340 | if (volc(m,n).gt.vsmall .and. na(m,n).gt.nsmall) then |
---|
| 1341 | bin_is_empty(m,n) = .false. |
---|
| 1342 | all_bins_empty = .false. |
---|
| 1343 | lnhygro(m,n)=log(hygro(m,n)) |
---|
| 1344 | ! number mode radius (m,n) |
---|
| 1345 | ! write(6,*)'alnsign,volc,na=',alnsign(m,n),volc(m,n),na(m,n) |
---|
| 1346 | am(m,n)=exp(-1.5*alnsign(m,n)*alnsign(m,n))* & |
---|
| 1347 | (3.*volc(m,n)/(4.*pi*na(m,n)))**third |
---|
| 1348 | |
---|
| 1349 | if (isectional .gt. 0) then |
---|
| 1350 | ! sectional model. |
---|
| 1351 | ! need to use bulk properties because parameterization doesn't |
---|
| 1352 | ! work well for narrow bins. |
---|
| 1353 | totn(n)=totn(n)+na(m,n) |
---|
| 1354 | alogam=log(am(m,n)) |
---|
| 1355 | gmrad(n)=gmrad(n)+na(m,n)*alogam |
---|
| 1356 | gmradsq(n)=gmradsq(n)+na(m,n)*alogam*alogam |
---|
| 1357 | endif |
---|
| 1358 | etafactor2(m,n)=1./(na(m,n)*beta*sqrtg) |
---|
| 1359 | |
---|
| 1360 | if(hygro(m,n).gt.1.e-10)then |
---|
| 1361 | sm(m,n)=2.*aten/(3.*am(m,n))*sqrt(aten/(3.*hygro(m,n)*am(m,n))) |
---|
| 1362 | else |
---|
| 1363 | sm(m,n)=100. |
---|
| 1364 | endif |
---|
| 1365 | ! write(6,*)'sm,hygro,am=',sm(m,n),hygro(m,n),am(m,n) |
---|
| 1366 | else |
---|
| 1367 | sm(m,n)=1. |
---|
| 1368 | etafactor2(m,n)=etafactor2max ! this should make eta big if na is very small. |
---|
| 1369 | |
---|
| 1370 | endif |
---|
| 1371 | lnsm(m,n)=log(sm(m,n)) |
---|
| 1372 | if ((isectional .eq. 3) .or. (isectional .eq. 4)) then |
---|
| 1373 | sumns(n)=sumns(n)+na(m,n)/sm(m,n)**twothird |
---|
| 1374 | endif |
---|
| 1375 | ! write(6,'(a,i4,6g12.2)')'m,na,am,hygro,lnhygro,sm,lnsm=',m,na(m,n),am(m,n),hygro(m,n),lnhygro(m,n),sm(m,n),lnsm(m,n) |
---|
| 1376 | end do ! size |
---|
| 1377 | end do ! type |
---|
| 1378 | |
---|
| 1379 | ! if all bins are empty, set all activation fractions to zero and exit |
---|
| 1380 | if ( all_bins_empty ) then |
---|
| 1381 | do n=1,ntype_aer |
---|
| 1382 | do m=1,nsize_aer(n) |
---|
| 1383 | fluxn(m,n)=0. |
---|
| 1384 | fn(m,n)=0. |
---|
| 1385 | fluxs(m,n)=0. |
---|
| 1386 | fs(m,n)=0. |
---|
| 1387 | fluxm(m,n)=0. |
---|
| 1388 | fm(m,n)=0. |
---|
| 1389 | end do |
---|
| 1390 | end do |
---|
| 1391 | return |
---|
| 1392 | endif |
---|
| 1393 | |
---|
| 1394 | |
---|
| 1395 | |
---|
| 1396 | if (isectional .le. 0) then |
---|
| 1397 | ! Initialize maxsat at this cell and timestep for the |
---|
| 1398 | ! modal setup (the sectional case is handled below). |
---|
| 1399 | call maxsat_init(maxd_atype, ntype_aer, & |
---|
| 1400 | maxd_asize, nsize_aer, alnsign, f1) |
---|
| 1401 | |
---|
| 1402 | goto 30000 |
---|
| 1403 | end if |
---|
| 1404 | |
---|
| 1405 | do n=1,ntype_aer |
---|
| 1406 | !wig 19-Oct-2006: Add zero trap based May 2006 e-mail from |
---|
| 1407 | !Ghan. Transport can clear out a cell leading to |
---|
| 1408 | !inconsistencies with the mass. |
---|
| 1409 | gmrad(n)=gmrad(n)/max(totn(n),1e-20) |
---|
| 1410 | gmlnsig=gmradsq(n)/totn(n)-gmrad(n)*gmrad(n) ! [ln(sigmag)]**2 |
---|
| 1411 | gmlnsig(n)=sqrt( max( 1.e-4, gmlnsig(n) ) ) |
---|
| 1412 | gmrad(n)=exp(gmrad(n)) |
---|
| 1413 | if ((isectional .eq. 3) .or. (isectional .eq. 4)) then |
---|
| 1414 | gmsm(n)=totn(n)/sumns(n) |
---|
| 1415 | gmsm(n)=gmsm(n)*gmsm(n)*gmsm(n) |
---|
| 1416 | gmsm(n)=sqrt(gmsm(n)) |
---|
| 1417 | else |
---|
| 1418 | ! gmsm(n)=2.*aten/(3.*gmrad(n))*sqrt(aten/(3.*hygro(1,n)*gmrad(n))) |
---|
| 1419 | gmsm(n)=2.*aten/(3.*gmrad(n))*sqrt(aten/(3.*hygro(nsize_aer(n),n)*gmrad(n))) |
---|
| 1420 | endif |
---|
| 1421 | enddo |
---|
| 1422 | |
---|
| 1423 | ! Initialize maxsat at this cell and timestep for the |
---|
| 1424 | ! sectional setup (the modal case is handled above)... |
---|
| 1425 | call maxsat_init(maxd_atype, ntype_aer, & |
---|
| 1426 | maxd_asize, (/1/), gmlnsig, f1) |
---|
| 1427 | |
---|
| 1428 | !....................................................................... |
---|
| 1429 | ! calculate sectional "sub-bin" size distribution |
---|
| 1430 | ! |
---|
| 1431 | ! dn/dy = nt*( a + b*y ) for ylo < y < yhi |
---|
| 1432 | ! |
---|
| 1433 | ! nt = na(m,n) = number mixing ratio of the bin |
---|
| 1434 | ! y = v/vhi |
---|
| 1435 | ! v = (4pi/3)*r**3 = particle volume |
---|
| 1436 | ! vhi = v at r=rhi (upper bin boundary) |
---|
| 1437 | ! ylo = y at lower bin boundary = vlo/vhi = (rlo/rhi)**3 |
---|
| 1438 | ! yhi = y at upper bin boundary = 1.0 |
---|
| 1439 | ! |
---|
| 1440 | ! dv/dy = v * dn/dy = nt*vhi*( a*y + b*y*y ) |
---|
| 1441 | ! |
---|
| 1442 | !....................................................................... |
---|
| 1443 | ! 02-may-2006 - this dn/dy replaces the previous |
---|
| 1444 | ! dn/dx = a + b*x where l = ln(r) |
---|
| 1445 | ! the old dn/dx was overly complicated for cases of rmean near rlo or rhi |
---|
| 1446 | ! the new dn/dy is consistent with that used in the movesect routine, |
---|
| 1447 | ! which does continuous growth by condensation and aqueous chemistry |
---|
| 1448 | !....................................................................... |
---|
| 1449 | do 25002 n = 1,ntype_aer |
---|
| 1450 | do 25000 m = 1,nsize_aer(n) |
---|
| 1451 | |
---|
| 1452 | ! convert from diameter in cm to radius in m |
---|
| 1453 | rlo(m,n) = 0.5*0.01*dlo_sect(m,n) |
---|
| 1454 | rhi(m,n) = 0.5*0.01*dhi_sect(m,n) |
---|
| 1455 | ylo(m,n) = (rlo(m,n)/rhi(m,n))**3 |
---|
| 1456 | yhi(m,n) = 1.0 |
---|
| 1457 | |
---|
| 1458 | ! 04-nov-2005 - extremely narrow bins will be treated using 0/1 activation |
---|
| 1459 | ! this is to avoid potential numerical problems |
---|
| 1460 | bin_is_narrow(m,n) = .false. |
---|
| 1461 | if ((rhi(m,n)/rlo(m,n)) .le. 1.01) bin_is_narrow(m,n) = .true. |
---|
| 1462 | |
---|
| 1463 | ! rmean is mass mean radius for the bin; xmean = log(rmean) |
---|
| 1464 | ! just use section midpoint if bin is empty |
---|
| 1465 | if ( bin_is_empty(m,n) ) then |
---|
| 1466 | rmean(m,n) = sqrt(rlo(m,n)*rhi(m,n)) |
---|
| 1467 | ymean(m,n) = (rmean(m,n)/rhi(m,n))**3 |
---|
| 1468 | goto 25000 |
---|
| 1469 | end if |
---|
| 1470 | |
---|
| 1471 | rmean(m,n) = (volc(m,n)/(ccc*na(m,n)))**third |
---|
| 1472 | rmean(m,n) = max( rlo(m,n), min( rhi(m,n), rmean(m,n) ) ) |
---|
| 1473 | ymean(m,n) = (rmean(m,n)/rhi(m,n))**3 |
---|
| 1474 | if ( bin_is_narrow(m,n) ) goto 25000 |
---|
| 1475 | |
---|
| 1476 | ! if rmean is extremely close to either rlo or rhi, |
---|
| 1477 | ! treat the bin as extremely narrow |
---|
| 1478 | if ((rhi(m,n)/rmean(m,n)) .le. 1.01) then |
---|
| 1479 | bin_is_narrow(m,n) = .true. |
---|
| 1480 | rlo(m,n) = min( rmean(m,n), (rhi(m,n)/1.01) ) |
---|
| 1481 | ylo(m,n) = (rlo(m,n)/rhi(m,n))**3 |
---|
| 1482 | goto 25000 |
---|
| 1483 | else if ((rmean(m,n)/rlo(m,n)) .le. 1.01) then |
---|
| 1484 | bin_is_narrow(m,n) = .true. |
---|
| 1485 | rhi(m,n) = max( rmean(m,n), (rlo(m,n)*1.01) ) |
---|
| 1486 | ylo(m,n) = (rlo(m,n)/rhi(m,n))**3 |
---|
| 1487 | ymean(m,n) = (rmean(m,n)/rhi(m,n))**3 |
---|
| 1488 | goto 25000 |
---|
| 1489 | endif |
---|
| 1490 | |
---|
| 1491 | ! if rmean is somewhat close to either rlo or rhi, then dn/dy will be |
---|
| 1492 | ! negative near the upper or lower bin boundary |
---|
| 1493 | ! in these cases, assume that all the particles are in a subset of the full bin, |
---|
| 1494 | ! and adjust rlo or rhi so that rmean will be near the center of this subset |
---|
| 1495 | ! note that the bin is made narrower LOCALLY/TEMPORARILY, |
---|
| 1496 | ! just for the purposes of the activation calculation |
---|
| 1497 | gammayy = (ymean(m,n)-ylo(m,n)) / (yhi(m,n)-ylo(m,n)) |
---|
| 1498 | if (gammayy .lt. 0.34) then |
---|
| 1499 | dumaa = ylo(m,n) + (yhi(m,n)-ylo(m,n))*(gammayy/0.34) |
---|
| 1500 | rhi(m,n) = rhi(m,n)*(dumaa**third) |
---|
| 1501 | ylo(m,n) = (rlo(m,n)/rhi(m,n))**3 |
---|
| 1502 | ymean(m,n) = (rmean(m,n)/rhi(m,n))**3 |
---|
| 1503 | else if (gammayy .ge. 0.66) then |
---|
| 1504 | dumaa = ylo(m,n) + (yhi(m,n)-ylo(m,n))*((gammayy-0.66)/0.34) |
---|
| 1505 | ylo(m,n) = dumaa |
---|
| 1506 | rlo(m,n) = rhi(m,n)*(dumaa**third) |
---|
| 1507 | end if |
---|
| 1508 | if ((rhi(m,n)/rlo(m,n)) .le. 1.01) then |
---|
| 1509 | bin_is_narrow(m,n) = .true. |
---|
| 1510 | goto 25000 |
---|
| 1511 | end if |
---|
| 1512 | |
---|
| 1513 | betayy = ylo(m,n)/yhi(m,n) |
---|
| 1514 | betayy2 = betayy*betayy |
---|
| 1515 | bsub(m,n) = (12.0*ymean(m,n) - 6.0*(1.0+betayy)) / & |
---|
| 1516 | (4.0*(1.0-betayy2*betayy) - 3.0*(1.0-betayy2)*(1.0+betayy)) |
---|
| 1517 | asub(m,n) = (1.0 - bsub(m,n)*(1.0-betayy2)*0.5) / (1.0-betayy) |
---|
| 1518 | |
---|
| 1519 | if ( asub(m,n)+bsub(m,n)*ylo(m,n) .lt. 0. ) then |
---|
| 1520 | if (idiag_dndy_neg .gt. 0) then |
---|
| 1521 | print *,'dndy<0 at lower boundary' |
---|
| 1522 | print *,'n,m=',n,m |
---|
| 1523 | print *,'na=',na(m,n),' volc=',volc(m,n) |
---|
| 1524 | print *,'volc/(na*pi*4/3)=', (volc(m,n)/(na(m,n)*ccc)) |
---|
| 1525 | print *,'rlo(m,n),rhi(m,n)=',rlo(m,n),rhi(m,n) |
---|
| 1526 | print *,'dlo_sect/2,dhi_sect/2=', & |
---|
| 1527 | (0.005*dlo_sect(m,n)),(0.005*dhi_sect(m,n)) |
---|
| 1528 | print *,'asub,bsub,ylo,yhi=',asub(m,n),bsub(m,n),ylo(m,n),yhi(m,n) |
---|
| 1529 | print *,'asub+bsub*ylo=', & |
---|
| 1530 | (asub(m,n)+bsub(m,n)*ylo(m,n)) |
---|
| 1531 | print *,'subr activate error 11 - i,j,k =', ii, jj, kk |
---|
| 1532 | ! 07-nov-2005 rce - don't stop for this, it's not fatal |
---|
| 1533 | ! stop |
---|
| 1534 | endif |
---|
| 1535 | endif |
---|
| 1536 | if ( asub(m,n)+bsub(m,n)*yhi(m,n) .lt. 0. ) then |
---|
| 1537 | if (idiag_dndy_neg .gt. 0) then |
---|
| 1538 | print *,'dndy<0 at upper boundary' |
---|
| 1539 | print *,'n,m=',n,m |
---|
| 1540 | print *,'na=',na(m,n),' volc=',volc(m,n) |
---|
| 1541 | print *,'volc/(na*pi*4/3)=', (volc(m,n)/(na(m,n)*ccc)) |
---|
| 1542 | print *,'rlo(m,n),rhi(m,n)=',rlo(m,n),rhi(m,n) |
---|
| 1543 | print *,'dlo_sect/2,dhi_sect/2=', & |
---|
| 1544 | (0.005*dlo_sect(m,n)),(0.005*dhi_sect(m,n)) |
---|
| 1545 | print *,'asub,bsub,ylo,yhi=',asub(m,n),bsub(m,n),ylo(m,n),yhi(m,n) |
---|
| 1546 | print *,'asub+bsub*yhi=', & |
---|
| 1547 | (asub(m,n)+bsub(m,n)*yhi(m,n)) |
---|
| 1548 | print *,'subr activate error 12 - i,j,k =', ii, jj, kk |
---|
| 1549 | ! stop |
---|
| 1550 | endif |
---|
| 1551 | endif |
---|
| 1552 | |
---|
| 1553 | 25000 continue ! m=1,nsize_aer(n) |
---|
| 1554 | 25002 continue ! n=1,ntype_aer |
---|
| 1555 | |
---|
| 1556 | |
---|
| 1557 | 30000 continue |
---|
| 1558 | !....................................................................... |
---|
| 1559 | ! |
---|
| 1560 | ! end calc. of modal or sectional activation properties (end of section 1) |
---|
| 1561 | ! |
---|
| 1562 | !....................................................................... |
---|
| 1563 | |
---|
| 1564 | |
---|
| 1565 | |
---|
| 1566 | ! sjg 7-16-98 upward |
---|
| 1567 | ! print *,'wbar,sigw=',wbar,sigw |
---|
| 1568 | |
---|
| 1569 | if(sigw.le.1.e-5) goto 50000 |
---|
| 1570 | |
---|
| 1571 | !....................................................................... |
---|
| 1572 | ! |
---|
| 1573 | ! start calc. of activation fractions/fluxes |
---|
| 1574 | ! for spectrum of updrafts (start of section 2) |
---|
| 1575 | ! |
---|
| 1576 | !....................................................................... |
---|
| 1577 | ipass_nwloop = 1 |
---|
| 1578 | idiagaa = 0 |
---|
| 1579 | ! 06-nov-2005 rce - set idiagaa=1 for testing/debugging |
---|
| 1580 | ! if ((grid_id.eq.1) .and. (ktau.eq.167) .and. & |
---|
| 1581 | ! (ii.eq.24) .and. (jj.eq. 1) .and. (kk.eq.14)) idiagaa = 1 |
---|
| 1582 | |
---|
| 1583 | 40000 continue |
---|
| 1584 | if(top)then |
---|
| 1585 | wmax=0. |
---|
| 1586 | wmin=min(zero,-wdiab) |
---|
| 1587 | else |
---|
| 1588 | wmax=min(wmaxf,wbar+sds*sigw) |
---|
| 1589 | wmin=max(wminf,-wdiab) |
---|
| 1590 | endif |
---|
| 1591 | wmin=max(wmin,wbar-sds*sigw) |
---|
| 1592 | w=wmin |
---|
| 1593 | dwmax=eps*sigw |
---|
| 1594 | dw=dwmax |
---|
| 1595 | dfmax=0.2 |
---|
| 1596 | dfmin=0.1 |
---|
| 1597 | if(wmax.le.w)then |
---|
| 1598 | do n=1,ntype_aer |
---|
| 1599 | do m=1,nsize_aer(n) |
---|
| 1600 | fluxn(m,n)=0. |
---|
| 1601 | fn(m,n)=0. |
---|
| 1602 | fluxs(m,n)=0. |
---|
| 1603 | fs(m,n)=0. |
---|
| 1604 | fluxm(m,n)=0. |
---|
| 1605 | fm(m,n)=0. |
---|
| 1606 | end do |
---|
| 1607 | end do |
---|
| 1608 | return |
---|
| 1609 | endif |
---|
| 1610 | do n=1,ntype_aer |
---|
| 1611 | do m=1,nsize_aer(n) |
---|
| 1612 | sumflxn(m,n)=0. |
---|
| 1613 | sumfn(m,n)=0. |
---|
| 1614 | fnold(m,n)=0. |
---|
| 1615 | sumflxs(m,n)=0. |
---|
| 1616 | sumfs(m,n)=0. |
---|
| 1617 | fsold(m,n)=0. |
---|
| 1618 | sumflxm(m,n)=0. |
---|
| 1619 | sumfm(m,n)=0. |
---|
| 1620 | fmold(m,n)=0. |
---|
| 1621 | enddo |
---|
| 1622 | enddo |
---|
| 1623 | |
---|
| 1624 | fold=0 |
---|
| 1625 | gold=0 |
---|
| 1626 | ! 06-nov-2005 rce - set wold=w here |
---|
| 1627 | ! wold=0 |
---|
| 1628 | wold=w |
---|
| 1629 | |
---|
| 1630 | |
---|
| 1631 | ! 06-nov-2005 rce - define nwmax; calc dwmin from nwmax |
---|
| 1632 | nwmax = 200 |
---|
| 1633 | ! dwmin = min( dwmax, 0.01 ) |
---|
| 1634 | dwmin = (wmax - wmin)/(nwmax-1) |
---|
| 1635 | dwmin = min( dwmax, dwmin ) |
---|
| 1636 | dwmin = max( 0.01, dwmin ) |
---|
| 1637 | |
---|
| 1638 | ! |
---|
| 1639 | ! loop over updrafts, incrementing sums as you go |
---|
| 1640 | ! the "200" is (arbitrary) upper limit for number of updrafts |
---|
| 1641 | ! if integration finishes before this, OK; otherwise, ERROR |
---|
| 1642 | ! |
---|
| 1643 | if (idiagaa.gt.0) then |
---|
| 1644 | write(*,94700) ktau, grid_id, ii, jj, kk, nwmax |
---|
| 1645 | write(*,94710) 'wbar,sigw,wdiab=', wbar, sigw, wdiab |
---|
| 1646 | write(*,94710) 'wmin,wmax,dwmin,dwmax=', wmin, wmax, dwmin, dwmax |
---|
| 1647 | write(*,94720) -1, w, wold, dw |
---|
| 1648 | end if |
---|
| 1649 | 94700 format( / 'activate 47000 - ktau,id,ii,jj,kk,nwmax=', 6i5 ) |
---|
| 1650 | 94710 format( 'activate 47000 - ', a, 6(1x,f11.5) ) |
---|
| 1651 | 94720 format( 'activate 47000 - nw,w,wold,dw=', i5, 3(1x,f11.5) ) |
---|
| 1652 | |
---|
| 1653 | do 47000 nw = 1, nwmax |
---|
| 1654 | 41000 wnuc=w+wdiab |
---|
| 1655 | |
---|
| 1656 | if (idiagaa.gt.0) write(*,94720) nw, w, wold, dw |
---|
| 1657 | |
---|
| 1658 | ! write(6,*)'wnuc=',wnuc |
---|
| 1659 | alw=alpha*wnuc |
---|
| 1660 | sqrtalw=sqrt(alw) |
---|
| 1661 | zeta=2.*sqrtalw*aten/(3.*sqrtg) |
---|
| 1662 | etafactor1=2.*alw*sqrtalw |
---|
| 1663 | if (isectional .gt. 0) then |
---|
| 1664 | ! sectional model. |
---|
| 1665 | ! use bulk properties |
---|
| 1666 | |
---|
| 1667 | do n=1,ntype_aer |
---|
| 1668 | if(totn(n).gt.1.e-10)then |
---|
| 1669 | eta(1,n)=etafactor1/(totn(n)*beta*sqrtg) |
---|
| 1670 | else |
---|
| 1671 | eta(1,n)=1.e10 |
---|
| 1672 | endif |
---|
| 1673 | enddo |
---|
| 1674 | call maxsat(zeta,eta,maxd_atype,ntype_aer, & |
---|
| 1675 | maxd_asize,(/1/),gmsm,gmlnsig,f1,smax) |
---|
| 1676 | lnsmax=log(smax) |
---|
| 1677 | x=2*(log(gmsm(1))-lnsmax)/(3*sq2*gmlnsig(1)) |
---|
| 1678 | fnew=0.5*(1.-ERF_ALT(x)) |
---|
| 1679 | |
---|
| 1680 | else |
---|
| 1681 | |
---|
| 1682 | do n=1,ntype_aer |
---|
| 1683 | do m=1,nsize_aer(n) |
---|
| 1684 | eta(m,n)=etafactor1*etafactor2(m,n) |
---|
| 1685 | enddo |
---|
| 1686 | enddo |
---|
| 1687 | |
---|
| 1688 | call maxsat(zeta,eta,maxd_atype,ntype_aer, & |
---|
| 1689 | maxd_asize,nsize_aer,sm,alnsign,f1,smax) |
---|
| 1690 | ! write(6,*)'w,smax=',w,smax |
---|
| 1691 | |
---|
| 1692 | lnsmax=log(smax) |
---|
| 1693 | |
---|
| 1694 | x=2*(lnsm(nsize_aer(1),1)-lnsmax)/(3*sq2*alnsign(nsize_aer(1),1)) |
---|
| 1695 | fnew=0.5*(1.-ERF_ALT(x)) |
---|
| 1696 | |
---|
| 1697 | endif |
---|
| 1698 | |
---|
| 1699 | dwnew = dw |
---|
| 1700 | ! 06-nov-2005 rce - "n" here should be "nw" (?) |
---|
| 1701 | ! if(fnew-fold.gt.dfmax.and.n.gt.1)then |
---|
| 1702 | if(fnew-fold.gt.dfmax.and.nw.gt.1)then |
---|
| 1703 | ! reduce updraft increment for greater accuracy in integration |
---|
| 1704 | if (dw .gt. 1.01*dwmin) then |
---|
| 1705 | dw=0.7*dw |
---|
| 1706 | dw=max(dw,dwmin) |
---|
| 1707 | w=wold+dw |
---|
| 1708 | go to 41000 |
---|
| 1709 | else |
---|
| 1710 | dwnew = dwmin |
---|
| 1711 | endif |
---|
| 1712 | endif |
---|
| 1713 | |
---|
| 1714 | if(fnew-fold.lt.dfmin)then |
---|
| 1715 | ! increase updraft increment to accelerate integration |
---|
| 1716 | dwnew=min(1.5*dw,dwmax) |
---|
| 1717 | endif |
---|
| 1718 | fold=fnew |
---|
| 1719 | |
---|
| 1720 | z=(w-wbar)/(sigw*sq2) |
---|
| 1721 | gaus=exp(-z*z) |
---|
| 1722 | fnmin=1. |
---|
| 1723 | xmincoeff=alogaten-2.*third*(lnsmax-alog2)-alog3 |
---|
| 1724 | ! write(6,*)'xmincoeff=',xmincoeff |
---|
| 1725 | |
---|
| 1726 | |
---|
| 1727 | do 44002 n=1,ntype_aer |
---|
| 1728 | do 44000 m=1,nsize_aer(n) |
---|
| 1729 | if ( bin_is_empty(m,n) ) then |
---|
| 1730 | fn(m,n)=0. |
---|
| 1731 | fs(m,n)=0. |
---|
| 1732 | fm(m,n)=0. |
---|
| 1733 | else if ((isectional .eq. 2) .or. (isectional .eq. 4)) then |
---|
| 1734 | ! sectional |
---|
| 1735 | ! within-section dn/dx = a + b*x |
---|
| 1736 | xcut=xmincoeff-third*lnhygro(m,n) |
---|
| 1737 | ! ycut=(exp(xcut)/rhi(m,n))**3 |
---|
| 1738 | ! 07-jul-2006 rce - the above line gave a (rare) overflow when smax=1.0e-20 |
---|
| 1739 | ! if (ycut > yhi), then actual value of ycut is unimportant, |
---|
| 1740 | ! so do the following to avoid overflow |
---|
| 1741 | lnycut = 3.0 * ( xcut - log(rhi(m,n)) ) |
---|
| 1742 | lnycut = min( lnycut, log(yhi(m,n)*1.0e5) ) |
---|
| 1743 | ycut=exp(lnycut) |
---|
| 1744 | ! write(6,*)'m,n,rcut,rlo,rhi=',m,n,exp(xcut),rlo(m,n),rhi(m,n) |
---|
| 1745 | ! if(lnsmax.lt.lnsmn(m,n))then |
---|
| 1746 | if(ycut.gt.yhi(m,n))then |
---|
| 1747 | fn(m,n)=0. |
---|
| 1748 | fs(m,n)=0. |
---|
| 1749 | fm(m,n)=0. |
---|
| 1750 | elseif(ycut.lt.ylo(m,n))then |
---|
| 1751 | fn(m,n)=1. |
---|
| 1752 | fs(m,n)=1. |
---|
| 1753 | fm(m,n)=1. |
---|
| 1754 | elseif ( bin_is_narrow(m,n) ) then |
---|
| 1755 | ! 04-nov-2005 rce - for extremely narrow bins, |
---|
| 1756 | ! do zero activation if xcut>xmean, 100% activation otherwise |
---|
| 1757 | if (ycut.gt.ymean(m,n)) then |
---|
| 1758 | fn(m,n)=0. |
---|
| 1759 | fs(m,n)=0. |
---|
| 1760 | fm(m,n)=0. |
---|
| 1761 | else |
---|
| 1762 | fn(m,n)=1. |
---|
| 1763 | fs(m,n)=1. |
---|
| 1764 | fm(m,n)=1. |
---|
| 1765 | endif |
---|
| 1766 | else |
---|
| 1767 | phiyy=ycut/yhi(m,n) |
---|
| 1768 | fn(m,n) = asub(m,n)*(1.0-phiyy) + 0.5*bsub(m,n)*(1.0-phiyy*phiyy) |
---|
| 1769 | if (fn(m,n).lt.zero .or. fn(m,n).gt.one) then |
---|
| 1770 | if (idiag_fnsm_prob .gt. 0) then |
---|
| 1771 | print *,'fn(',m,n,')=',fn(m,n),' outside 0,1 - activate err21' |
---|
| 1772 | print *,'na,volc =', na(m,n), volc(m,n) |
---|
| 1773 | print *,'asub,bsub =', asub(m,n), bsub(m,n) |
---|
| 1774 | print *,'yhi,ycut =', yhi(m,n), ycut |
---|
| 1775 | endif |
---|
| 1776 | endif |
---|
| 1777 | |
---|
| 1778 | if (fn(m,n) .le. zero) then |
---|
| 1779 | ! 10-nov-2005 rce - if fn=0, then fs & fm must be 0 |
---|
| 1780 | fn(m,n)=zero |
---|
| 1781 | fs(m,n)=zero |
---|
| 1782 | fm(m,n)=zero |
---|
| 1783 | else if (fn(m,n) .ge. one) then |
---|
| 1784 | ! 10-nov-2005 rce - if fn=1, then fs & fm must be 1 |
---|
| 1785 | fn(m,n)=one |
---|
| 1786 | fs(m,n)=one |
---|
| 1787 | fm(m,n)=one |
---|
| 1788 | else |
---|
| 1789 | ! 10-nov-2005 rce - otherwise, calc fm and check it |
---|
| 1790 | fm(m,n) = (yhi(m,n)/ymean(m,n)) * (0.5*asub(m,n)*(1.0-phiyy*phiyy) + & |
---|
| 1791 | third*bsub(m,n)*(1.0-phiyy*phiyy*phiyy)) |
---|
| 1792 | if (fm(m,n).lt.fn(m,n) .or. fm(m,n).gt.one) then |
---|
| 1793 | if (idiag_fnsm_prob .gt. 0) then |
---|
| 1794 | print *,'fm(',m,n,')=',fm(m,n),' outside fn,1 - activate err22' |
---|
| 1795 | print *,'na,volc,fn =', na(m,n), volc(m,n), fn(m,n) |
---|
| 1796 | print *,'asub,bsub =', asub(m,n), bsub(m,n) |
---|
| 1797 | print *,'yhi,ycut =', yhi(m,n), ycut |
---|
| 1798 | endif |
---|
| 1799 | endif |
---|
| 1800 | if (fm(m,n) .le. fn(m,n)) then |
---|
| 1801 | ! 10-nov-2005 rce - if fm=fn, then fs must =fn |
---|
| 1802 | fm(m,n)=fn(m,n) |
---|
| 1803 | fs(m,n)=fn(m,n) |
---|
| 1804 | else if (fm(m,n) .ge. one) then |
---|
| 1805 | ! 10-nov-2005 rce - if fm=1, then fs & fn must be 1 |
---|
| 1806 | fm(m,n)=one |
---|
| 1807 | fs(m,n)=one |
---|
| 1808 | fn(m,n)=one |
---|
| 1809 | else |
---|
| 1810 | ! 10-nov-2005 rce - these two checks assure that the mean size |
---|
| 1811 | ! of the activated & interstitial particles will be between rlo & rhi |
---|
| 1812 | dumaa = fn(m,n)*(yhi(m,n)/ymean(m,n)) |
---|
| 1813 | fm(m,n) = min( fm(m,n), dumaa ) |
---|
| 1814 | dumaa = 1.0 + (fn(m,n)-1.0)*(ylo(m,n)/ymean(m,n)) |
---|
| 1815 | fm(m,n) = min( fm(m,n), dumaa ) |
---|
| 1816 | ! 10-nov-2005 rce - now calculate fs and bound it by fn, fm |
---|
| 1817 | betayy = ylo(m,n)/yhi(m,n) |
---|
| 1818 | dumaa = phiyy**twothird |
---|
| 1819 | dumbb = betayy**twothird |
---|
| 1820 | fs(m,n) = & |
---|
| 1821 | (asub(m,n)*(1.0-phiyy*dumaa) + & |
---|
| 1822 | 0.625*bsub(m,n)*(1.0-phiyy*phiyy*dumaa)) / & |
---|
| 1823 | (asub(m,n)*(1.0-betayy*dumbb) + & |
---|
| 1824 | 0.625*bsub(m,n)*(1.0-betayy*betayy*dumbb)) |
---|
| 1825 | fs(m,n)=max(fs(m,n),fn(m,n)) |
---|
| 1826 | fs(m,n)=min(fs(m,n),fm(m,n)) |
---|
| 1827 | endif |
---|
| 1828 | endif |
---|
| 1829 | endif |
---|
| 1830 | |
---|
| 1831 | else |
---|
| 1832 | ! modal |
---|
| 1833 | x=2*(lnsm(m,n)-lnsmax)/(3*sq2*alnsign(m,n)) |
---|
| 1834 | fn(m,n)=0.5*(1.-ERF_ALT(x)) |
---|
| 1835 | arg=x-sq2*alnsign(m,n) |
---|
| 1836 | fs(m,n)=0.5*(1.-ERF_ALT(arg)) |
---|
| 1837 | arg=x-1.5*sq2*alnsign(m,n) |
---|
| 1838 | fm(m,n)=0.5*(1.-ERF_ALT(arg)) |
---|
| 1839 | ! print *,'w,x,fn,fs,fm=',w,x,fn(m,n),fs(m,n),fm(m,n) |
---|
| 1840 | endif |
---|
| 1841 | |
---|
| 1842 | ! fn(m,n)=1. !test |
---|
| 1843 | ! fs(m,n)=1. |
---|
| 1844 | ! fm(m,n)=1. |
---|
| 1845 | fnmin=min(fn(m,n),fnmin) |
---|
| 1846 | ! integration is second order accurate |
---|
| 1847 | ! assumes linear variation of f*gaus with w |
---|
| 1848 | wb=(w+wold) |
---|
| 1849 | fnbar=(fn(m,n)*gaus+fnold(m,n)*gold) |
---|
| 1850 | fsbar=(fs(m,n)*gaus+fsold(m,n)*gold) |
---|
| 1851 | fmbar=(fm(m,n)*gaus+fmold(m,n)*gold) |
---|
| 1852 | if((top.and.w.lt.0.).or.(.not.top.and.w.gt.0.))then |
---|
| 1853 | sumflxn(m,n)=sumflxn(m,n)+sixth*(wb*fnbar & |
---|
| 1854 | +(fn(m,n)*gaus*w+fnold(m,n)*gold*wold))*dw |
---|
| 1855 | sumflxs(m,n)=sumflxs(m,n)+sixth*(wb*fsbar & |
---|
| 1856 | +(fs(m,n)*gaus*w+fsold(m,n)*gold*wold))*dw |
---|
| 1857 | sumflxm(m,n)=sumflxm(m,n)+sixth*(wb*fmbar & |
---|
| 1858 | +(fm(m,n)*gaus*w+fmold(m,n)*gold*wold))*dw |
---|
| 1859 | endif |
---|
| 1860 | sumfn(m,n)=sumfn(m,n)+0.5*fnbar*dw |
---|
| 1861 | ! write(6,'(a,9g10.2)')'lnsmax,lnsm(m,n),x,fn(m,n),fnold(m,n),g,gold,fnbar,dw=', & |
---|
| 1862 | ! lnsmax,lnsm(m,n),x,fn(m,n),fnold(m,n),g,gold,fnbar,dw |
---|
| 1863 | fnold(m,n)=fn(m,n) |
---|
| 1864 | sumfs(m,n)=sumfs(m,n)+0.5*fsbar*dw |
---|
| 1865 | fsold(m,n)=fs(m,n) |
---|
| 1866 | sumfm(m,n)=sumfm(m,n)+0.5*fmbar*dw |
---|
| 1867 | fmold(m,n)=fm(m,n) |
---|
| 1868 | |
---|
| 1869 | 44000 continue ! m=1,nsize_aer(n) |
---|
| 1870 | 44002 continue ! n=1,ntype_aer |
---|
| 1871 | |
---|
| 1872 | ! sumg=sumg+0.5*(gaus+gold)*dw |
---|
| 1873 | gold=gaus |
---|
| 1874 | wold=w |
---|
| 1875 | dw=dwnew |
---|
| 1876 | |
---|
| 1877 | if(nw.gt.1.and.(w.gt.wmax.or.fnmin.gt.fmax))go to 48000 |
---|
| 1878 | w=w+dw |
---|
| 1879 | |
---|
| 1880 | 47000 continue ! nw = 1, nwmax |
---|
| 1881 | |
---|
| 1882 | |
---|
| 1883 | print *,'do loop is too short in activate' |
---|
| 1884 | print *,'wmin=',wmin,' w=',w,' wmax=',wmax,' dw=',dw |
---|
| 1885 | print *,'wbar=',wbar,' sigw=',sigw,' wdiab=',wdiab |
---|
| 1886 | print *,'wnuc=',wnuc |
---|
| 1887 | do n=1,ntype_aer |
---|
| 1888 | print *,'ntype=',n |
---|
| 1889 | print *,'na=',(na(m,n),m=1,nsize_aer(n)) |
---|
| 1890 | print *,'fn=',(fn(m,n),m=1,nsize_aer(n)) |
---|
| 1891 | end do |
---|
| 1892 | ! dump all subr parameters to allow testing with standalone code |
---|
| 1893 | ! (build a driver that will read input and call activate) |
---|
| 1894 | print *,'top,wbar,sigw,wdiab,tair,rhoair,ntype_aer=' |
---|
| 1895 | print *, top,wbar,sigw,wdiab,tair,rhoair,ntype_aer |
---|
| 1896 | print *,'na=' |
---|
| 1897 | print *, na |
---|
| 1898 | print *,'volc=' |
---|
| 1899 | print *, volc |
---|
| 1900 | print *,'sigman=' |
---|
| 1901 | print *, sigman |
---|
| 1902 | print *,'hygro=' |
---|
| 1903 | print *, hygro |
---|
| 1904 | |
---|
| 1905 | print *,'subr activate error 31 - i,j,k =', ii, jj, kk |
---|
| 1906 | ! 06-nov-2005 rce - if integration fails, repeat it once with additional diagnostics |
---|
| 1907 | if (ipass_nwloop .eq. 1) then |
---|
| 1908 | ipass_nwloop = 2 |
---|
| 1909 | idiagaa = 2 |
---|
| 1910 | goto 40000 |
---|
| 1911 | end if |
---|
| 1912 | stop |
---|
| 1913 | |
---|
| 1914 | 48000 continue |
---|
| 1915 | |
---|
| 1916 | |
---|
| 1917 | ndist(n)=ndist(n)+1 |
---|
| 1918 | if(.not.top.and.w.lt.wmaxf)then |
---|
| 1919 | |
---|
| 1920 | ! contribution from all updrafts stronger than wmax |
---|
| 1921 | ! assuming constant f (close to fmax) |
---|
| 1922 | wnuc=w+wdiab |
---|
| 1923 | |
---|
| 1924 | z1=(w-wbar)/(sigw*sq2) |
---|
| 1925 | z2=(wmaxf-wbar)/(sigw*sq2) |
---|
| 1926 | integ=sigw*0.5*sq2*sqpi*(ERFC_NUM_RECIPES(z1)-ERFC_NUM_RECIPES(z2)) |
---|
| 1927 | ! consider only upward flow into cloud base when estimating flux |
---|
| 1928 | wf1=max(w,zero) |
---|
| 1929 | zf1=(wf1-wbar)/(sigw*sq2) |
---|
| 1930 | gf1=exp(-zf1*zf1) |
---|
| 1931 | wf2=max(wmaxf,zero) |
---|
| 1932 | zf2=(wf2-wbar)/(sigw*sq2) |
---|
| 1933 | gf2=exp(-zf2*zf2) |
---|
| 1934 | gf=(gf1-gf2) |
---|
| 1935 | integf=wbar*sigw*0.5*sq2*sqpi*(ERFC_NUM_RECIPES(zf1)-ERFC_NUM_RECIPES(zf2))+sigw*sigw*gf |
---|
| 1936 | |
---|
| 1937 | do n=1,ntype_aer |
---|
| 1938 | do m=1,nsize_aer(n) |
---|
| 1939 | sumflxn(m,n)=sumflxn(m,n)+integf*fn(m,n) |
---|
| 1940 | sumfn(m,n)=sumfn(m,n)+fn(m,n)*integ |
---|
| 1941 | sumflxs(m,n)=sumflxs(m,n)+integf*fs(m,n) |
---|
| 1942 | sumfs(m,n)=sumfs(m,n)+fs(m,n)*integ |
---|
| 1943 | sumflxm(m,n)=sumflxm(m,n)+integf*fm(m,n) |
---|
| 1944 | sumfm(m,n)=sumfm(m,n)+fm(m,n)*integ |
---|
| 1945 | end do |
---|
| 1946 | end do |
---|
| 1947 | ! sumg=sumg+integ |
---|
| 1948 | endif |
---|
| 1949 | |
---|
| 1950 | |
---|
| 1951 | do n=1,ntype_aer |
---|
| 1952 | do m=1,nsize_aer(n) |
---|
| 1953 | |
---|
| 1954 | ! fn(m,n)=sumfn(m,n)/(sumg) |
---|
| 1955 | fn(m,n)=sumfn(m,n)/(sq2*sqpi*sigw) |
---|
| 1956 | fluxn(m,n)=sumflxn(m,n)/(sq2*sqpi*sigw) |
---|
| 1957 | if(fn(m,n).gt.1.01)then |
---|
| 1958 | if (idiag_fnsm_prob .gt. 0) then |
---|
| 1959 | print *,'fn=',fn(m,n),' > 1 - activate err41' |
---|
| 1960 | print *,'w,m,n,na,am=',w,m,n,na(m,n),am(m,n) |
---|
| 1961 | print *,'integ,sumfn,sigw=',integ,sumfn(m,n),sigw |
---|
| 1962 | print *,'subr activate error - i,j,k =', ii, jj, kk |
---|
| 1963 | ! call exit |
---|
| 1964 | endif |
---|
| 1965 | fluxn(m,n) = fluxn(m,n)/fn(m,n) |
---|
| 1966 | endif |
---|
| 1967 | |
---|
| 1968 | fs(m,n)=sumfs(m,n)/(sq2*sqpi*sigw) |
---|
| 1969 | fluxs(m,n)=sumflxs(m,n)/(sq2*sqpi*sigw) |
---|
| 1970 | if(fs(m,n).gt.1.01)then |
---|
| 1971 | if (idiag_fnsm_prob .gt. 0) then |
---|
| 1972 | print *,'fs=',fs(m,n),' > 1 - activate err42' |
---|
| 1973 | print *,'m,n,isectional=',m,n,isectional |
---|
| 1974 | print *,'alnsign(m,n)=',alnsign(m,n) |
---|
| 1975 | print *,'rcut,rlo(m,n),rhi(m,n)',exp(xcut),rlo(m,n),rhi(m,n) |
---|
| 1976 | print *,'w,m,na,am=',w,m,na(m,n),am(m,n) |
---|
| 1977 | print *,'integ,sumfs,sigw=',integ,sumfs(m,n),sigw |
---|
| 1978 | endif |
---|
| 1979 | fluxs(m,n) = fluxs(m,n)/fs(m,n) |
---|
| 1980 | endif |
---|
| 1981 | |
---|
| 1982 | ! fm(m,n)=sumfm(m,n)/(sumg) |
---|
| 1983 | fm(m,n)=sumfm(m,n)/(sq2*sqpi*sigw) |
---|
| 1984 | fluxm(m,n)=sumflxm(m,n)/(sq2*sqpi*sigw) |
---|
| 1985 | if(fm(m,n).gt.1.01)then |
---|
| 1986 | if (idiag_fnsm_prob .gt. 0) then |
---|
| 1987 | print *,'fm(',m,n,')=',fm(m,n),' > 1 - activate err43' |
---|
| 1988 | endif |
---|
| 1989 | fluxm(m,n) = fluxm(m,n)/fm(m,n) |
---|
| 1990 | endif |
---|
| 1991 | |
---|
| 1992 | end do |
---|
| 1993 | end do |
---|
| 1994 | |
---|
| 1995 | goto 60000 |
---|
| 1996 | !....................................................................... |
---|
| 1997 | ! |
---|
| 1998 | ! end calc. of activation fractions/fluxes |
---|
| 1999 | ! for spectrum of updrafts (end of section 2) |
---|
| 2000 | ! |
---|
| 2001 | !....................................................................... |
---|
| 2002 | |
---|
| 2003 | !....................................................................... |
---|
| 2004 | ! |
---|
| 2005 | ! start calc. of activation fractions/fluxes |
---|
| 2006 | ! for (single) uniform updraft (start of section 3) |
---|
| 2007 | ! |
---|
| 2008 | !....................................................................... |
---|
| 2009 | 50000 continue |
---|
| 2010 | |
---|
| 2011 | wnuc=wbar+wdiab |
---|
| 2012 | ! write(6,*)'uniform updraft =',wnuc |
---|
| 2013 | |
---|
| 2014 | ! 04-nov-2005 rce - moved the code for "wnuc.le.0" code to here |
---|
| 2015 | if(wnuc.le.0.)then |
---|
| 2016 | do n=1,ntype_aer |
---|
| 2017 | do m=1,nsize_aer(n) |
---|
| 2018 | fn(m,n)=0 |
---|
| 2019 | fluxn(m,n)=0 |
---|
| 2020 | fs(m,n)=0 |
---|
| 2021 | fluxs(m,n)=0 |
---|
| 2022 | fm(m,n)=0 |
---|
| 2023 | fluxm(m,n)=0 |
---|
| 2024 | end do |
---|
| 2025 | end do |
---|
| 2026 | return |
---|
| 2027 | endif |
---|
| 2028 | |
---|
| 2029 | w=wbar |
---|
| 2030 | alw=alpha*wnuc |
---|
| 2031 | sqrtalw=sqrt(alw) |
---|
| 2032 | zeta=2.*sqrtalw*aten/(3.*sqrtg) |
---|
| 2033 | |
---|
| 2034 | if (isectional .gt. 0) then |
---|
| 2035 | ! sectional model. |
---|
| 2036 | ! use bulk properties |
---|
| 2037 | do n=1,ntype_aer |
---|
| 2038 | if(totn(n).gt.1.e-10)then |
---|
| 2039 | eta(1,n)=2*alw*sqrtalw/(totn(n)*beta*sqrtg) |
---|
| 2040 | else |
---|
| 2041 | eta(1,n)=1.e10 |
---|
| 2042 | endif |
---|
| 2043 | end do |
---|
| 2044 | call maxsat(zeta,eta,maxd_atype,ntype_aer, & |
---|
| 2045 | maxd_asize,(/1/),gmsm,gmlnsig,f1,smax) |
---|
| 2046 | |
---|
| 2047 | else |
---|
| 2048 | |
---|
| 2049 | do n=1,ntype_aer |
---|
| 2050 | do m=1,nsize_aer(n) |
---|
| 2051 | if(na(m,n).gt.1.e-10)then |
---|
| 2052 | eta(m,n)=2*alw*sqrtalw/(na(m,n)*beta*sqrtg) |
---|
| 2053 | else |
---|
| 2054 | eta(m,n)=1.e10 |
---|
| 2055 | endif |
---|
| 2056 | end do |
---|
| 2057 | end do |
---|
| 2058 | |
---|
| 2059 | call maxsat(zeta,eta,maxd_atype,ntype_aer, & |
---|
| 2060 | maxd_asize,nsize_aer,sm,alnsign,f1,smax) |
---|
| 2061 | |
---|
| 2062 | endif |
---|
| 2063 | |
---|
| 2064 | lnsmax=log(smax) |
---|
| 2065 | xmincoeff=alogaten-2.*third*(lnsmax-alog2)-alog3 |
---|
| 2066 | |
---|
| 2067 | do 55002 n=1,ntype_aer |
---|
| 2068 | do 55000 m=1,nsize_aer(n) |
---|
| 2069 | |
---|
| 2070 | ! 04-nov-2005 rce - check for bin_is_empty here too, just like earlier |
---|
| 2071 | if ( bin_is_empty(m,n) ) then |
---|
| 2072 | fn(m,n)=0. |
---|
| 2073 | fs(m,n)=0. |
---|
| 2074 | fm(m,n)=0. |
---|
| 2075 | |
---|
| 2076 | else if ((isectional .eq. 2) .or. (isectional .eq. 4)) then |
---|
| 2077 | ! sectional |
---|
| 2078 | ! within-section dn/dx = a + b*x |
---|
| 2079 | xcut=xmincoeff-third*lnhygro(m,n) |
---|
| 2080 | ! ycut=(exp(xcut)/rhi(m,n))**3 |
---|
| 2081 | ! 07-jul-2006 rce - the above line gave a (rare) overflow when smax=1.0e-20 |
---|
| 2082 | ! if (ycut > yhi), then actual value of ycut is unimportant, |
---|
| 2083 | ! so do the following to avoid overflow |
---|
| 2084 | lnycut = 3.0 * ( xcut - log(rhi(m,n)) ) |
---|
| 2085 | lnycut = min( lnycut, log(yhi(m,n)*1.0e5) ) |
---|
| 2086 | ycut=exp(lnycut) |
---|
| 2087 | ! write(6,*)'m,n,rcut,rlo,rhi=',m,n,exp(xcut),rlo(m,n),rhi(m,n) |
---|
| 2088 | ! if(lnsmax.lt.lnsmn(m,n))then |
---|
| 2089 | if(ycut.gt.yhi(m,n))then |
---|
| 2090 | fn(m,n)=0. |
---|
| 2091 | fs(m,n)=0. |
---|
| 2092 | fm(m,n)=0. |
---|
| 2093 | ! elseif(lnsmax.gt.lnsmx(m,n))then |
---|
| 2094 | elseif(ycut.lt.ylo(m,n))then |
---|
| 2095 | fn(m,n)=1. |
---|
| 2096 | fs(m,n)=1. |
---|
| 2097 | fm(m,n)=1. |
---|
| 2098 | elseif ( bin_is_narrow(m,n) ) then |
---|
| 2099 | ! 04-nov-2005 rce - for extremely narrow bins, |
---|
| 2100 | ! do zero activation if xcut>xmean, 100% activation otherwise |
---|
| 2101 | if (ycut.gt.ymean(m,n)) then |
---|
| 2102 | fn(m,n)=0. |
---|
| 2103 | fs(m,n)=0. |
---|
| 2104 | fm(m,n)=0. |
---|
| 2105 | else |
---|
| 2106 | fn(m,n)=1. |
---|
| 2107 | fs(m,n)=1. |
---|
| 2108 | fm(m,n)=1. |
---|
| 2109 | endif |
---|
| 2110 | else |
---|
| 2111 | phiyy=ycut/yhi(m,n) |
---|
| 2112 | fn(m,n) = asub(m,n)*(1.0-phiyy) + 0.5*bsub(m,n)*(1.0-phiyy*phiyy) |
---|
| 2113 | if (fn(m,n).lt.zero .or. fn(m,n).gt.one) then |
---|
| 2114 | if (idiag_fnsm_prob .gt. 0) then |
---|
| 2115 | print *,'fn(',m,n,')=',fn(m,n),' outside 0,1 - activate err21' |
---|
| 2116 | print *,'na,volc =', na(m,n), volc(m,n) |
---|
| 2117 | print *,'asub,bsub =', asub(m,n), bsub(m,n) |
---|
| 2118 | print *,'yhi,ycut =', yhi(m,n), ycut |
---|
| 2119 | endif |
---|
| 2120 | endif |
---|
| 2121 | |
---|
| 2122 | if (fn(m,n) .le. zero) then |
---|
| 2123 | ! 10-nov-2005 rce - if fn=0, then fs & fm must be 0 |
---|
| 2124 | fn(m,n)=zero |
---|
| 2125 | fs(m,n)=zero |
---|
| 2126 | fm(m,n)=zero |
---|
| 2127 | else if (fn(m,n) .ge. one) then |
---|
| 2128 | ! 10-nov-2005 rce - if fn=1, then fs & fm must be 1 |
---|
| 2129 | fn(m,n)=one |
---|
| 2130 | fs(m,n)=one |
---|
| 2131 | fm(m,n)=one |
---|
| 2132 | else |
---|
| 2133 | ! 10-nov-2005 rce - otherwise, calc fm and check it |
---|
| 2134 | fm(m,n) = (yhi(m,n)/ymean(m,n)) * (0.5*asub(m,n)*(1.0-phiyy*phiyy) + & |
---|
| 2135 | third*bsub(m,n)*(1.0-phiyy*phiyy*phiyy)) |
---|
| 2136 | if (fm(m,n).lt.fn(m,n) .or. fm(m,n).gt.one) then |
---|
| 2137 | if (idiag_fnsm_prob .gt. 0) then |
---|
| 2138 | print *,'fm(',m,n,')=',fm(m,n),' outside fn,1 - activate err22' |
---|
| 2139 | print *,'na,volc,fn =', na(m,n), volc(m,n), fn(m,n) |
---|
| 2140 | print *,'asub,bsub =', asub(m,n), bsub(m,n) |
---|
| 2141 | print *,'yhi,ycut =', yhi(m,n), ycut |
---|
| 2142 | endif |
---|
| 2143 | endif |
---|
| 2144 | if (fm(m,n) .le. fn(m,n)) then |
---|
| 2145 | ! 10-nov-2005 rce - if fm=fn, then fs must =fn |
---|
| 2146 | fm(m,n)=fn(m,n) |
---|
| 2147 | fs(m,n)=fn(m,n) |
---|
| 2148 | else if (fm(m,n) .ge. one) then |
---|
| 2149 | ! 10-nov-2005 rce - if fm=1, then fs & fn must be 1 |
---|
| 2150 | fm(m,n)=one |
---|
| 2151 | fs(m,n)=one |
---|
| 2152 | fn(m,n)=one |
---|
| 2153 | else |
---|
| 2154 | ! 10-nov-2005 rce - these two checks assure that the mean size |
---|
| 2155 | ! of the activated & interstitial particles will be between rlo & rhi |
---|
| 2156 | dumaa = fn(m,n)*(yhi(m,n)/ymean(m,n)) |
---|
| 2157 | fm(m,n) = min( fm(m,n), dumaa ) |
---|
| 2158 | dumaa = 1.0 + (fn(m,n)-1.0)*(ylo(m,n)/ymean(m,n)) |
---|
| 2159 | fm(m,n) = min( fm(m,n), dumaa ) |
---|
| 2160 | ! 10-nov-2005 rce - now calculate fs and bound it by fn, fm |
---|
| 2161 | betayy = ylo(m,n)/yhi(m,n) |
---|
| 2162 | dumaa = phiyy**twothird |
---|
| 2163 | dumbb = betayy**twothird |
---|
| 2164 | fs(m,n) = & |
---|
| 2165 | (asub(m,n)*(1.0-phiyy*dumaa) + & |
---|
| 2166 | 0.625*bsub(m,n)*(1.0-phiyy*phiyy*dumaa)) / & |
---|
| 2167 | (asub(m,n)*(1.0-betayy*dumbb) + & |
---|
| 2168 | 0.625*bsub(m,n)*(1.0-betayy*betayy*dumbb)) |
---|
| 2169 | fs(m,n)=max(fs(m,n),fn(m,n)) |
---|
| 2170 | fs(m,n)=min(fs(m,n),fm(m,n)) |
---|
| 2171 | endif |
---|
| 2172 | endif |
---|
| 2173 | |
---|
| 2174 | endif |
---|
| 2175 | |
---|
| 2176 | else |
---|
| 2177 | ! modal |
---|
| 2178 | x=2*(lnsm(m,n)-lnsmax)/(3*sq2*alnsign(m,n)) |
---|
| 2179 | fn(m,n)=0.5*(1.-ERF_ALT(x)) |
---|
| 2180 | arg=x-sq2*alnsign(m,n) |
---|
| 2181 | fs(m,n)=0.5*(1.-ERF_ALT(arg)) |
---|
| 2182 | arg=x-1.5*sq2*alnsign(m,n) |
---|
| 2183 | fm(m,n)=0.5*(1.-ERF_ALT(arg)) |
---|
| 2184 | endif |
---|
| 2185 | |
---|
| 2186 | ! fn(m,n)=1. ! test |
---|
| 2187 | ! fs(m,n)=1. |
---|
| 2188 | ! fm(m,n)=1. |
---|
| 2189 | if((top.and.wbar.lt.0.).or.(.not.top.and.wbar.gt.0.))then |
---|
| 2190 | fluxn(m,n)=fn(m,n)*w |
---|
| 2191 | fluxs(m,n)=fs(m,n)*w |
---|
| 2192 | fluxm(m,n)=fm(m,n)*w |
---|
| 2193 | else |
---|
| 2194 | fluxn(m,n)=0 |
---|
| 2195 | fluxs(m,n)=0 |
---|
| 2196 | fluxm(m,n)=0 |
---|
| 2197 | endif |
---|
| 2198 | |
---|
| 2199 | 55000 continue ! m=1,nsize_aer(n) |
---|
| 2200 | 55002 continue ! n=1,ntype_aer |
---|
| 2201 | |
---|
| 2202 | ! 04-nov-2005 rce - moved the code for "wnuc.le.0" from here |
---|
| 2203 | ! to near the start the uniform undraft section |
---|
| 2204 | |
---|
| 2205 | !....................................................................... |
---|
| 2206 | ! |
---|
| 2207 | ! end calc. of activation fractions/fluxes |
---|
| 2208 | ! for (single) uniform updraft (end of section 3) |
---|
| 2209 | ! |
---|
| 2210 | !....................................................................... |
---|
| 2211 | |
---|
| 2212 | |
---|
| 2213 | |
---|
| 2214 | 60000 continue |
---|
| 2215 | |
---|
| 2216 | |
---|
| 2217 | ! do n=1,ntype_aer |
---|
| 2218 | ! do m=1,nsize_aer(n) |
---|
| 2219 | ! write(6,'(a,2i3,5e10.1)')'n,m,na,wbar,sigw,fn,fm=',n,m,na(m,n),wbar,sigw,fn(m,n),fm(m,n) |
---|
| 2220 | ! end do |
---|
| 2221 | ! end do |
---|
| 2222 | |
---|
| 2223 | |
---|
| 2224 | return |
---|
| 2225 | end subroutine activate |
---|
| 2226 | |
---|
| 2227 | |
---|
| 2228 | |
---|
| 2229 | !---------------------------------------------------------------------- |
---|
| 2230 | !---------------------------------------------------------------------- |
---|
| 2231 | subroutine maxsat(zeta,eta, & |
---|
| 2232 | maxd_atype,ntype_aer,maxd_asize,nsize_aer, & |
---|
| 2233 | sm,alnsign,f1,smax) |
---|
| 2234 | |
---|
| 2235 | ! Calculates maximum supersaturation for multiple competing aerosol |
---|
| 2236 | ! modes. Note that maxsat_init must be called before calling this |
---|
| 2237 | ! subroutine. |
---|
| 2238 | |
---|
| 2239 | ! Abdul-Razzak and Ghan, A parameterization of aerosol activation. |
---|
| 2240 | ! 2. Multiple aerosol types. J. Geophys. Res., 105, 6837-6844. |
---|
| 2241 | |
---|
| 2242 | implicit none |
---|
| 2243 | |
---|
| 2244 | integer, intent(in) :: maxd_atype |
---|
| 2245 | integer, intent(in) :: ntype_aer |
---|
| 2246 | integer, intent(in) :: maxd_asize |
---|
| 2247 | integer, intent(in) :: nsize_aer(maxd_atype) ! number of size bins |
---|
| 2248 | real, intent(in) :: sm(maxd_asize,maxd_atype) ! critical supersaturation for number mode radius |
---|
| 2249 | real, intent(in) :: zeta, eta(maxd_asize,maxd_atype) |
---|
| 2250 | real, intent(in) :: alnsign(maxd_asize,maxd_atype) ! ln(sigma) |
---|
| 2251 | real, intent(in) :: f1(maxd_asize,maxd_atype) |
---|
| 2252 | real, intent(out) :: smax ! maximum supersaturation |
---|
| 2253 | |
---|
| 2254 | real :: g1, g2 |
---|
| 2255 | real thesum |
---|
| 2256 | real, save :: twothird |
---|
| 2257 | data twothird/0.66666666667/ |
---|
| 2258 | integer m ! size index |
---|
| 2259 | integer n ! type index |
---|
| 2260 | |
---|
| 2261 | do n=1,ntype_aer |
---|
| 2262 | do m=1,nsize_aer(n) |
---|
| 2263 | if(zeta.gt.1.e5*eta(m,n) .or. & |
---|
| 2264 | sm(m,n)*sm(m,n).gt.1.e5*eta(m,n))then |
---|
| 2265 | ! weak forcing. essentially none activated |
---|
| 2266 | smax=1.e-20 |
---|
| 2267 | else |
---|
| 2268 | ! significant activation of this mode. calc activation all modes. |
---|
| 2269 | go to 1 |
---|
| 2270 | endif |
---|
| 2271 | end do |
---|
| 2272 | end do |
---|
| 2273 | |
---|
| 2274 | return |
---|
| 2275 | |
---|
| 2276 | 1 continue |
---|
| 2277 | |
---|
| 2278 | thesum=0 |
---|
| 2279 | do n=1,ntype_aer |
---|
| 2280 | do m=1,nsize_aer(n) |
---|
| 2281 | if(eta(m,n).gt.1.e-20)then |
---|
| 2282 | g1=sqrt(zeta/eta(m,n)) |
---|
| 2283 | g1=g1*g1*g1 |
---|
| 2284 | g2=sm(m,n)/sqrt(eta(m,n)+3*zeta) |
---|
| 2285 | g2=sqrt(g2) |
---|
| 2286 | g2=g2*g2*g2 |
---|
| 2287 | thesum=thesum + & |
---|
| 2288 | (f1(m,n)*g1+(1.+0.25*alnsign(m,n))*g2)/(sm(m,n)*sm(m,n)) |
---|
| 2289 | else |
---|
| 2290 | thesum=1.e20 |
---|
| 2291 | endif |
---|
| 2292 | end do |
---|
| 2293 | end do |
---|
| 2294 | |
---|
| 2295 | smax=1./sqrt(thesum) |
---|
| 2296 | |
---|
| 2297 | return |
---|
| 2298 | end subroutine maxsat |
---|
| 2299 | |
---|
| 2300 | |
---|
| 2301 | |
---|
| 2302 | !---------------------------------------------------------------------- |
---|
| 2303 | !---------------------------------------------------------------------- |
---|
| 2304 | subroutine maxsat_init(maxd_atype, ntype_aer, & |
---|
| 2305 | maxd_asize, nsize_aer, alnsign, f1) |
---|
| 2306 | |
---|
| 2307 | ! Calculates the f1 paramter needed by maxsat. |
---|
| 2308 | |
---|
| 2309 | ! Abdul-Razzak and Ghan, A parameterization of aerosol activation. |
---|
| 2310 | ! 2. Multiple aerosol types. J. Geophys. Res., 105, 6837-6844. |
---|
| 2311 | |
---|
| 2312 | implicit none |
---|
| 2313 | |
---|
| 2314 | integer, intent(in) :: maxd_atype |
---|
| 2315 | integer, intent(in) :: ntype_aer ! number of aerosol types |
---|
| 2316 | integer, intent(in) :: maxd_asize |
---|
| 2317 | integer, intent(in) :: nsize_aer(maxd_atype) ! number of size bins |
---|
| 2318 | real, intent(in) :: alnsign(maxd_asize,maxd_atype) ! ln(sigma) |
---|
| 2319 | real, intent(out) :: f1(maxd_asize,maxd_atype) |
---|
| 2320 | |
---|
| 2321 | integer m ! size index |
---|
| 2322 | integer n ! type index |
---|
| 2323 | |
---|
| 2324 | ! calculate and save f1(sigma), assumes sigma is invariant |
---|
| 2325 | ! between calls to this init routine |
---|
| 2326 | |
---|
| 2327 | do n=1,ntype_aer |
---|
| 2328 | do m=1,nsize_aer(n) |
---|
| 2329 | f1(m,n)=0.5*exp(2.5*alnsign(m,n)*alnsign(m,n)) |
---|
| 2330 | end do |
---|
| 2331 | end do |
---|
| 2332 | |
---|
| 2333 | end subroutine maxsat_init |
---|
| 2334 | |
---|
| 2335 | |
---|
| 2336 | |
---|
| 2337 | !---------------------------------------------------------------------- |
---|
| 2338 | !---------------------------------------------------------------------- |
---|
| 2339 | ! 25-apr-2006 rce - dens_aer is (g/cm3), NOT (kg/m3); |
---|
| 2340 | ! grid_id, ktau, i, j, isize, itype added to arg list to assist debugging |
---|
| 2341 | subroutine loadaer(chem,k,kmn,kmx,num_chem,cs,npv, & |
---|
| 2342 | dlo_sect,dhi_sect,maxd_acomp, ncomp, & |
---|
| 2343 | grid_id, ktau, i, j, isize, itype, & |
---|
| 2344 | numptr_aer, numptrcw_aer, dens_aer, & |
---|
| 2345 | massptr_aer, massptrcw_aer, & |
---|
| 2346 | maerosol, maerosolcw, & |
---|
| 2347 | maerosol_tot, maerosol_totcw, & |
---|
| 2348 | naerosol, naerosolcw, & |
---|
| 2349 | vaerosol, vaerosolcw) |
---|
| 2350 | |
---|
| 2351 | implicit none |
---|
| 2352 | |
---|
| 2353 | ! load aerosol number, surface, mass concentrations |
---|
| 2354 | |
---|
| 2355 | ! input |
---|
| 2356 | |
---|
| 2357 | integer, intent(in) :: num_chem ! maximum number of consituents |
---|
| 2358 | integer, intent(in) :: k,kmn,kmx |
---|
| 2359 | real, intent(in) :: chem(kmn:kmx,num_chem) ! aerosol mass, number mixing ratios |
---|
| 2360 | real, intent(in) :: cs ! air density (kg/m3) |
---|
| 2361 | real, intent(in) :: npv ! number per volume concentration (/m3) |
---|
| 2362 | integer, intent(in) :: maxd_acomp,ncomp |
---|
| 2363 | integer, intent(in) :: numptr_aer,numptrcw_aer |
---|
| 2364 | integer, intent(in) :: massptr_aer(maxd_acomp), massptrcw_aer(maxd_acomp) |
---|
| 2365 | real, intent(in) :: dens_aer(maxd_acomp) ! aerosol material density (g/cm3) |
---|
| 2366 | real, intent(in) :: dlo_sect,dhi_sect ! minimum, maximum diameter of section (cm) |
---|
| 2367 | integer, intent(in) :: grid_id, ktau, i, j, isize, itype |
---|
| 2368 | |
---|
| 2369 | ! output |
---|
| 2370 | |
---|
| 2371 | real, intent(out) :: naerosol ! interstitial number conc (/m3) |
---|
| 2372 | real, intent(out) :: naerosolcw ! activated number conc (/m3) |
---|
| 2373 | real, intent(out) :: maerosol(maxd_acomp) ! interstitial mass conc (kg/m3) |
---|
| 2374 | real, intent(out) :: maerosolcw(maxd_acomp) ! activated mass conc (kg/m3) |
---|
| 2375 | real, intent(out) :: maerosol_tot ! total-over-species interstitial mass conc (kg/m3) |
---|
| 2376 | real, intent(out) :: maerosol_totcw ! total-over-species activated mass conc (kg/m3) |
---|
| 2377 | real, intent(out) :: vaerosol ! interstitial volume conc (m3/m3) |
---|
| 2378 | real, intent(out) :: vaerosolcw ! activated volume conc (m3/m3) |
---|
| 2379 | |
---|
| 2380 | ! internal |
---|
| 2381 | |
---|
| 2382 | integer lnum,lnumcw,l,ltype,lmass,lmasscw,lsfc,lsfccw |
---|
| 2383 | real num_at_dhi, num_at_dlo |
---|
| 2384 | real npv_at_dhi, npv_at_dlo |
---|
| 2385 | real, save :: pi |
---|
| 2386 | data pi/3.1415926526/ |
---|
| 2387 | real specvol ! inverse aerosol material density (m3/kg) |
---|
| 2388 | |
---|
| 2389 | lnum=numptr_aer |
---|
| 2390 | lnumcw=numptrcw_aer |
---|
| 2391 | maerosol_tot=0. |
---|
| 2392 | maerosol_totcw=0. |
---|
| 2393 | vaerosol=0. |
---|
| 2394 | vaerosolcw=0. |
---|
| 2395 | do l=1,ncomp |
---|
| 2396 | lmass=massptr_aer(l) |
---|
| 2397 | lmasscw=massptrcw_aer(l) |
---|
| 2398 | maerosol(l)=chem(k,lmass)*cs |
---|
| 2399 | maerosol(l)=max(maerosol(l),0.) |
---|
| 2400 | maerosolcw(l)=chem(k,lmasscw)*cs |
---|
| 2401 | maerosolcw(l)=max(maerosolcw(l),0.) |
---|
| 2402 | maerosol_tot=maerosol_tot+maerosol(l) |
---|
| 2403 | maerosol_totcw=maerosol_totcw+maerosolcw(l) |
---|
| 2404 | ! [ 1.e-3 factor because dens_aer is (g/cm3), specvol is (m3/kg) ] |
---|
| 2405 | specvol=1.0e-3/dens_aer(l) |
---|
| 2406 | vaerosol=vaerosol+maerosol(l)*specvol |
---|
| 2407 | vaerosolcw=vaerosolcw+maerosolcw(l)*specvol |
---|
| 2408 | ! write(6,'(a,3e12.2)')'maerosol,dens_aer,vaerosol=',maerosol(l),dens_aer(l),vaerosol |
---|
| 2409 | enddo |
---|
| 2410 | |
---|
| 2411 | if(lnum.gt.0)then |
---|
| 2412 | ! aerosol number predicted |
---|
| 2413 | ! [ 1.0e6 factor because because dhi_ & dlo_sect are (cm), vaerosol is (m3) ] |
---|
| 2414 | npv_at_dhi = 6.0e6/(pi*dhi_sect*dhi_sect*dhi_sect) |
---|
| 2415 | npv_at_dlo = 6.0e6/(pi*dlo_sect*dlo_sect*dlo_sect) |
---|
| 2416 | |
---|
| 2417 | naerosol=chem(k,lnum)*cs |
---|
| 2418 | naerosolcw=chem(k,lnumcw)*cs |
---|
| 2419 | num_at_dhi = vaerosol*npv_at_dhi |
---|
| 2420 | num_at_dlo = vaerosol*npv_at_dlo |
---|
| 2421 | naerosol = max( num_at_dhi, min( num_at_dlo, naerosol ) ) |
---|
| 2422 | ! write(6,'(a,5e10.1)')'naerosol,num_at_dhi,num_at_dlo,dhi_sect,dlo_sect', & |
---|
| 2423 | ! naerosol,num_at_dhi,num_at_dlo,dhi_sect,dlo_sect |
---|
| 2424 | num_at_dhi = vaerosolcw*npv_at_dhi |
---|
| 2425 | num_at_dlo = vaerosolcw*npv_at_dlo |
---|
| 2426 | naerosolcw = max( num_at_dhi, min( num_at_dlo, naerosolcw ) ) |
---|
| 2427 | else |
---|
| 2428 | ! aerosol number diagnosed from mass and prescribed size |
---|
| 2429 | naerosol=vaerosol*npv |
---|
| 2430 | naerosol=max(naerosol,0.) |
---|
| 2431 | naerosolcw=vaerosolcw*npv |
---|
| 2432 | naerosolcw=max(naerosolcw,0.) |
---|
| 2433 | endif |
---|
| 2434 | |
---|
| 2435 | |
---|
| 2436 | return |
---|
| 2437 | end subroutine loadaer |
---|
| 2438 | |
---|
| 2439 | |
---|
| 2440 | |
---|
| 2441 | !----------------------------------------------------------------------- |
---|
| 2442 | real function erfc_num_recipes( x ) |
---|
| 2443 | ! |
---|
| 2444 | ! from press et al, numerical recipes, 1990, page 164 |
---|
| 2445 | ! |
---|
| 2446 | implicit none |
---|
| 2447 | real x |
---|
| 2448 | double precision erfc_dbl, dum, t, zz |
---|
| 2449 | |
---|
| 2450 | zz = abs(x) |
---|
| 2451 | t = 1.0/(1.0 + 0.5*zz) |
---|
| 2452 | |
---|
| 2453 | ! erfc_num_recipes = |
---|
| 2454 | ! & t*exp( -zz*zz - 1.26551223 + t*(1.00002368 + t*(0.37409196 + |
---|
| 2455 | ! & t*(0.09678418 + t*(-0.18628806 + t*(0.27886807 + |
---|
| 2456 | ! & t*(-1.13520398 + |
---|
| 2457 | ! & t*(1.48851587 + t*(-0.82215223 + t*0.17087277 ))))))))) |
---|
| 2458 | |
---|
| 2459 | dum = ( -zz*zz - 1.26551223 + t*(1.00002368 + t*(0.37409196 + & |
---|
| 2460 | t*(0.09678418 + t*(-0.18628806 + t*(0.27886807 + & |
---|
| 2461 | t*(-1.13520398 + & |
---|
| 2462 | t*(1.48851587 + t*(-0.82215223 + t*0.17087277 ))))))))) |
---|
| 2463 | |
---|
| 2464 | erfc_dbl = t * exp(dum) |
---|
| 2465 | if (x .lt. 0.0) erfc_dbl = 2.0d0 - erfc_dbl |
---|
| 2466 | |
---|
| 2467 | erfc_num_recipes = erfc_dbl |
---|
| 2468 | |
---|
| 2469 | return |
---|
| 2470 | end function erfc_num_recipes |
---|
| 2471 | |
---|
| 2472 | !----------------------------------------------------------------------- |
---|
| 2473 | real function erf_alt( x ) |
---|
| 2474 | |
---|
| 2475 | implicit none |
---|
| 2476 | |
---|
| 2477 | real,intent(in) :: x |
---|
| 2478 | |
---|
| 2479 | erf_alt = 1. - erfc_num_recipes(x) |
---|
| 2480 | |
---|
| 2481 | end function erf_alt |
---|
| 2482 | |
---|
| 2483 | END MODULE module_mixactivate |
---|