1 | !WRF:MODEL_LAYER:PHYSICS |
---|
2 | ! |
---|
3 | MODULE module_fddaobs_rtfdda |
---|
4 | |
---|
5 | ! This obs-nudging FDDA module (RTFDDA) is developed by the |
---|
6 | ! NCAR/RAL/NSAP (National Security Application Programs), under the |
---|
7 | ! sponsorship of ATEC (Army Test and Evaluation Commands). ATEC is |
---|
8 | ! acknowledged for releasing this capability for WRF community |
---|
9 | ! research applications. |
---|
10 | ! |
---|
11 | ! The NCAR/RAL RTFDDA module was adapted, and significantly modified |
---|
12 | ! from the obs-nudging module in the standard MM5V3.1 which was originally |
---|
13 | ! developed by PSU (Stauffer and Seaman, 1994). |
---|
14 | ! |
---|
15 | ! Yubao Liu (NCAR/RAL): lead developer of the RTFDDA module |
---|
16 | ! Al Bourgeois (NCAR/RAL): lead engineer implementing RTFDDA into WRF-ARW |
---|
17 | ! Nov. 2006 |
---|
18 | ! |
---|
19 | ! References: |
---|
20 | ! |
---|
21 | ! Liu, Y., A. Bourgeois, T. Warner, S. Swerdlin and J. Hacker, 2005: An |
---|
22 | ! implementation of obs-nudging-based FDDA into WRF for supporting |
---|
23 | ! ATEC test operations. 2005 WRF user workshop. Paper 10.7. |
---|
24 | ! |
---|
25 | ! Liu, Y., A. Bourgeois, T. Warner, S. Swerdlin and W. Yu, 2006: An update |
---|
26 | ! on "obs-nudging"-based FDDA for WRF-ARW: Verification using OSSE |
---|
27 | ! and performance of real-time forecasts. 2006 WRF user workshop. Paper 4.7. |
---|
28 | |
---|
29 | ! |
---|
30 | ! Stauffer, D.R., and N.L. Seaman, 1994: Multi-scale four-dimensional data |
---|
31 | ! assimilation. J. Appl. Meteor., 33, 416-434. |
---|
32 | ! |
---|
33 | ! http://www.rap.ucar.edu/projects/armyrange/references.html |
---|
34 | ! |
---|
35 | ! Modification History: |
---|
36 | ! 03212007 Modified fddaobs_init to compute Lambert cone factor. -Al Bourgeois |
---|
37 | |
---|
38 | CONTAINS |
---|
39 | |
---|
40 | !------------------------------------------------------------------------------ |
---|
41 | SUBROUTINE fddaobs_init(obs_nudge_opt, maxdom, inest, parid, & |
---|
42 | idynin, dtramp, fdaend, restart, & |
---|
43 | obs_twindo_cg, obs_twindo, itimestep, & |
---|
44 | cen_lat, cen_lon, stand_lon, & |
---|
45 | true_lat1, true_lat2, map_proj, & |
---|
46 | xlat, xlong, & |
---|
47 | e_sn, s_sn_cg, e_sn_cg, s_we_cg, e_we_cg, & |
---|
48 | #if ( EM_CORE == 1 ) |
---|
49 | fdob, & |
---|
50 | #endif |
---|
51 | iprt, & |
---|
52 | ids,ide, jds,jde, kds,kde, & |
---|
53 | ims,ime, jms,jme, kms,kme, & |
---|
54 | its,ite, jts,jte, kts,kte) |
---|
55 | !----------------------------------------------------------------------- |
---|
56 | ! This routine does initialization for real time fdda obs-nudging. |
---|
57 | ! |
---|
58 | !----------------------------------------------------------------------- |
---|
59 | USE module_domain |
---|
60 | USE module_dm ! for wrf_dm_min_real |
---|
61 | !----------------------------------------------------------------------- |
---|
62 | IMPLICIT NONE |
---|
63 | !----------------------------------------------------------------------- |
---|
64 | |
---|
65 | !======================================================================= |
---|
66 | ! Definitions |
---|
67 | !----------- |
---|
68 | INTEGER, intent(in) :: maxdom |
---|
69 | INTEGER, intent(in) :: obs_nudge_opt(maxdom) |
---|
70 | INTEGER, intent(in) :: ids,ide, jds,jde, kds,kde, & |
---|
71 | ims,ime, jms,jme, kms,kme, & |
---|
72 | its,ite, jts,jte, kts,kte |
---|
73 | INTEGER, intent(in) :: inest |
---|
74 | INTEGER, intent(in) :: parid(maxdom) |
---|
75 | INTEGER, intent(in) :: idynin ! flag for dynamic initialization |
---|
76 | REAL, intent(in) :: dtramp ! time period for idynin ramping (min) |
---|
77 | REAL, intent(in) :: fdaend(maxdom) ! nudging end time for domain (min) |
---|
78 | LOGICAL, intent(in) :: restart |
---|
79 | REAL, intent(in) :: obs_twindo_cg ! time window on coarse grid |
---|
80 | REAL, intent(in) :: obs_twindo |
---|
81 | INTEGER, intent(in) :: itimestep |
---|
82 | REAL , INTENT(IN) :: cen_lat ! domain center latitude (for map proj) |
---|
83 | REAL , INTENT(IN) :: cen_lon ! domain center longitude (for map proj) |
---|
84 | REAL , INTENT(IN) :: stand_lon ! domain standard longitude (for map proj) |
---|
85 | REAL, intent(in) :: true_lat1 ! domain truelat1 (for map proj) |
---|
86 | REAL, intent(in) :: true_lat2 ! domain truelat2 (for map proj) |
---|
87 | INTEGER, intent(in) :: map_proj ! map projection index |
---|
88 | REAL, DIMENSION( ims:ime, jms:jme ), & |
---|
89 | INTENT(IN) :: xlat, xlong ! lat/long locations on mass point grid |
---|
90 | INTEGER, intent(in) :: e_sn ! ending south-north grid index |
---|
91 | INTEGER, intent(in) :: s_sn_cg ! starting south-north coarse-grid index |
---|
92 | INTEGER, intent(in) :: e_sn_cg ! ending south-north coarse-grid index |
---|
93 | INTEGER, intent(in) :: s_we_cg ! starting west-east coarse-grid index |
---|
94 | INTEGER, intent(in) :: e_we_cg ! ending west-east coarse-grid index |
---|
95 | #if ( EM_CORE == 1 ) |
---|
96 | TYPE(fdob_type), intent(inout) :: fdob |
---|
97 | #endif |
---|
98 | LOGICAL, intent(in) :: iprt ! Flag enabling printing warning messages |
---|
99 | |
---|
100 | ! Local variables |
---|
101 | logical :: nudge_flag ! nudging flag for this nest |
---|
102 | integer :: ktau ! current timestep |
---|
103 | integer :: nest ! loop counter |
---|
104 | integer :: idom ! domain id |
---|
105 | integer :: parent ! parent domain |
---|
106 | real :: conv ! 180/pi |
---|
107 | real :: tl1 ! Lambert standard parallel 1 |
---|
108 | real :: tl2 ! Lambert standard parallel 2 |
---|
109 | real :: xn1 |
---|
110 | real :: known_lat ! Latitude of domain point (i,j)=(1,1) |
---|
111 | real :: known_lon ! Longitude of domain point (i,j)=(1,1) |
---|
112 | |
---|
113 | #if ( EM_CORE == 1 ) |
---|
114 | |
---|
115 | ! Set flag for nudging on pressure (not sigma) surfaces. |
---|
116 | fdob%iwtsig = 0 |
---|
117 | |
---|
118 | !************************************************************************** |
---|
119 | ! *** Initialize datend for dynamic initialization (ajb added 08132008) *** |
---|
120 | !************************************************************************** |
---|
121 | ! Set ending nudging date (used with dynamic ramp-down) to zero. |
---|
122 | fdob%datend = 0. |
---|
123 | fdob%ieodi = 0 |
---|
124 | |
---|
125 | ! Check for dynamic initialization flag |
---|
126 | if(idynin.eq.1)then |
---|
127 | ! Set datend to time in minutes after which data are assumed to have ended. |
---|
128 | if(dtramp.gt.0.)then |
---|
129 | fdob%datend = fdaend(inest) - dtramp |
---|
130 | else |
---|
131 | fdob%datend = fdaend(inest) |
---|
132 | endif |
---|
133 | if(iprt) then |
---|
134 | print*,' ' |
---|
135 | print*,' *** DYNAMIC-INITIALIZATION OPTION FOR INEST = ',inest, ' ***' |
---|
136 | print*,' FDAEND,DATEND,DTRAMP: ',fdaend(inest),fdob%datend,dtramp |
---|
137 | print*,' ' |
---|
138 | endif |
---|
139 | endif |
---|
140 | ! *** end dynamic initialization section *** |
---|
141 | !************************************************************************** |
---|
142 | |
---|
143 | ! Set time window. |
---|
144 | fdob%window = obs_twindo |
---|
145 | |
---|
146 | if(inest.eq.1) then |
---|
147 | if(obs_twindo .eq. 0.) then |
---|
148 | if(iprt) then |
---|
149 | write(6,'(/a)') '*** WARNING: TWINDO=0 on the coarse domain.' |
---|
150 | write(6,'(a/)') '*** Did you forget to set twindo in the fdda namelist?' |
---|
151 | endif |
---|
152 | endif |
---|
153 | else ! nest |
---|
154 | if(obs_twindo .eq. 0.) then |
---|
155 | fdob%window = obs_twindo_cg |
---|
156 | if(iprt) then |
---|
157 | write(6,'(/a,i2)') 'WARNING: TWINDO=0. for nest ',inest |
---|
158 | write(6,'(a,f12.5,a/)') 'Default to coarse-grid value of ', obs_twindo_cg,' hrs' |
---|
159 | endif |
---|
160 | endif |
---|
161 | endif |
---|
162 | |
---|
163 | ! Initialize flags. |
---|
164 | |
---|
165 | fdob%domain_tot=0 |
---|
166 | do nest=1,maxdom |
---|
167 | fdob%domain_tot = fdob%domain_tot + obs_nudge_opt(nest) |
---|
168 | end do |
---|
169 | |
---|
170 | ! Set parameters. |
---|
171 | |
---|
172 | fdob%pfree = 50.0 |
---|
173 | fdob%rinfmn = 1.0 |
---|
174 | fdob%rinfmx = 2.0 |
---|
175 | fdob%dpsmx = 7.5 |
---|
176 | fdob%dcon = 1.0/fdob%dpsmx |
---|
177 | |
---|
178 | ! Get known lat and lon and store these on all processors in fdob structure, for |
---|
179 | ! later use in projection x-formation to map (lat,lon) to (x,y) for each obs. |
---|
180 | IF (its .eq. 1 .AND. jts .eq. 1) then |
---|
181 | known_lat = xlat(1,1) |
---|
182 | known_lon = xlong(1,1) |
---|
183 | ELSE |
---|
184 | known_lat = 9999. |
---|
185 | known_lon = 9999. |
---|
186 | END IF |
---|
187 | fdob%known_lat = wrf_dm_min_real(known_lat) |
---|
188 | fdob%known_lon = wrf_dm_min_real(known_lon) |
---|
189 | |
---|
190 | fdob%sn_maxcg = e_sn_cg - s_sn_cg + 1 ! coarse domain grid dimension in N-S |
---|
191 | fdob%we_maxcg = e_we_cg - s_we_cg + 1 ! coarse domain grid dimension in W-E |
---|
192 | fdob%sn_end = e_sn - 1 ! ending S-N grid coordinate |
---|
193 | |
---|
194 | ! Calculate the nest levels, levidn. Note that each nest |
---|
195 | ! must know the nest levels levidn(maxdom) of each domain. |
---|
196 | do nest=1,maxdom |
---|
197 | |
---|
198 | ! Initialize nest level for each domain. |
---|
199 | if (nest .eq. 1) then |
---|
200 | fdob%levidn(nest) = 0 ! Mother domain has nest level 0 |
---|
201 | else |
---|
202 | fdob%levidn(nest) = 1 ! All other domains start with 1 |
---|
203 | endif |
---|
204 | idom = nest |
---|
205 | 100 parent = parid(idom) ! Go up the parent tree |
---|
206 | |
---|
207 | if (parent .gt. 1) then ! If not up to mother domain |
---|
208 | fdob%levidn(nest) = fdob%levidn(nest) + 1 |
---|
209 | idom = parent |
---|
210 | goto 100 |
---|
211 | endif |
---|
212 | enddo |
---|
213 | |
---|
214 | ! Check to see if the nudging flag has been set. If not, |
---|
215 | ! simply RETURN. |
---|
216 | nudge_flag = (obs_nudge_opt(inest) .eq. 1) |
---|
217 | if (.not. nudge_flag) return |
---|
218 | |
---|
219 | ktau = itimestep |
---|
220 | if(restart) then |
---|
221 | fdob%ktaur = ktau |
---|
222 | else |
---|
223 | fdob%ktaur = 0 |
---|
224 | endif |
---|
225 | |
---|
226 | RETURN |
---|
227 | #endif |
---|
228 | END SUBROUTINE fddaobs_init |
---|
229 | |
---|
230 | #if ( EM_CORE == 1 ) |
---|
231 | !----------------------------------------------------------------------- |
---|
232 | SUBROUTINE errob(inest, ub, vb, tb, t0, qvb, pbase, pp, rovcp, & |
---|
233 | uratx, vratx, tratx, nndgv, & |
---|
234 | nerrf, niobf, maxdom, levidn, parid, nstat, & |
---|
235 | nstaw, iswind, & |
---|
236 | istemp, ismois, ispstr, rio, rjo, rko, varobs, & |
---|
237 | errf, i_parent_start, j_parent_start, & |
---|
238 | ktau, iratio, npfi, nobs_prt, iprt, & |
---|
239 | ids,ide, jds,jde, kds,kde, & |
---|
240 | ims,ime, jms,jme, kms,kme, & |
---|
241 | its,ite, jts,jte, kts,kte ) |
---|
242 | |
---|
243 | !----------------------------------------------------------------------- |
---|
244 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
245 | USE module_dm, ONLY : get_full_obs_vector |
---|
246 | #endif |
---|
247 | |
---|
248 | !----------------------------------------------------------------------- |
---|
249 | IMPLICIT NONE |
---|
250 | !----------------------------------------------------------------------- |
---|
251 | ! |
---|
252 | ! PURPOSE: THIS SUBROUTINE CALCULATES THE DIFFERENCE BETWEEN THE |
---|
253 | ! OBSERVED VALUES AND THE FORECAST VALUES AT THE OBSERVATION |
---|
254 | ! POINTS. THE OBSERVED VALUES CLOSEST TO THE CURRENT |
---|
255 | ! FORECAST TIME (XTIME) WERE DETERMINED IN SUBROUTINE |
---|
256 | ! IN4DOB AND STORED IN ARRAY VAROBS. THE DIFFERENCES |
---|
257 | ! CALCULATED BY SUBROUTINE ERROB WILL BE STORED IN ARRAY |
---|
258 | ! ERRF FOR THE NSTA OBSERVATION LOCATIONS. MISSING |
---|
259 | ! OBSERVATIONS ARE DENOTED BY THE DUMMY VALUE 99999. |
---|
260 | ! |
---|
261 | ! HISTORY: Original author: MM5 version??? |
---|
262 | ! 02/04/2004 - Creation of WRF version. Al Bourgeois |
---|
263 | ! 08/28/2006 - Conversion from F77 to F90 Al Bourgeois |
---|
264 | !------------------------------------------------------------------------------ |
---|
265 | |
---|
266 | ! THE STORAGE ORDER IN VAROBS AND ERRF IS AS FOLLOWS: |
---|
267 | ! IVAR VARIABLE TYPE(TAU-1) |
---|
268 | ! ---- -------------------- |
---|
269 | ! 1 U error |
---|
270 | ! 2 V error |
---|
271 | ! 3 T error |
---|
272 | ! 4 Q error |
---|
273 | ! 5 Surface press error at T points (not used) |
---|
274 | ! 6 Model surface press at T-points |
---|
275 | ! 7 Model surface press at U-points |
---|
276 | ! 8 Model surface press at V-points |
---|
277 | ! 9 RKO at U-points |
---|
278 | |
---|
279 | !----------------------------------------------------------------------- |
---|
280 | ! |
---|
281 | ! Description of input arguments. |
---|
282 | ! |
---|
283 | !----------------------------------------------------------------------- |
---|
284 | |
---|
285 | INTEGER, INTENT(IN) :: inest ! Domain index. |
---|
286 | INTEGER, INTENT(IN) :: nndgv ! Number of nudge variables. |
---|
287 | INTEGER, INTENT(IN) :: nerrf ! Number of error fields. |
---|
288 | INTEGER, INTENT(IN) :: niobf ! Number of observations. |
---|
289 | INTEGER, INTENT(IN) :: maxdom ! Maximum number of domains. |
---|
290 | INTEGER, INTENT(IN) :: levidn(maxdom) ! Level of nest. |
---|
291 | INTEGER, INTENT(IN) :: parid(maxdom) ! Id of parent grid. |
---|
292 | INTEGER, INTENT(IN) :: i_parent_start(maxdom) ! Start i index in parent domain. |
---|
293 | INTEGER, INTENT(IN) :: j_parent_start(maxdom) ! Start j index in parent domain. |
---|
294 | INTEGER, INTENT(IN) :: ktau |
---|
295 | INTEGER, INTENT(IN) :: iratio ! Nest to parent gridsize ratio. |
---|
296 | INTEGER, INTENT(IN) :: npfi ! Coarse-grid diagnostics freq. |
---|
297 | INTEGER, INTENT(IN) :: nobs_prt ! Number of current obs to print info. |
---|
298 | LOGICAL, INTENT(IN) :: iprt ! Print flag |
---|
299 | INTEGER, INTENT(IN) :: nstat ! # stations held for use |
---|
300 | INTEGER, INTENT(IN) :: nstaw ! # stations in current window |
---|
301 | INTEGER, intent(in) :: iswind |
---|
302 | INTEGER, intent(in) :: istemp |
---|
303 | INTEGER, intent(in) :: ismois |
---|
304 | INTEGER, intent(in) :: ispstr |
---|
305 | INTEGER, INTENT(IN) :: ids,ide, jds,jde, kds,kde ! domain dims. |
---|
306 | INTEGER, INTENT(IN) :: ims,ime, jms,jme, kms,kme ! memory dims. |
---|
307 | INTEGER, INTENT(IN) :: its,ite, jts,jte, kts,kte ! tile dims. |
---|
308 | |
---|
309 | REAL, INTENT(IN) :: ub( ims:ime, kms:kme, jms:jme ) |
---|
310 | REAL, INTENT(IN) :: vb( ims:ime, kms:kme, jms:jme ) |
---|
311 | REAL, INTENT(IN) :: tb( ims:ime, kms:kme, jms:jme ) |
---|
312 | REAL, INTENT(IN) :: t0 |
---|
313 | REAL, INTENT(IN) :: qvb( ims:ime, kms:kme, jms:jme ) |
---|
314 | REAL, INTENT(IN) :: pbase( ims:ime, kms:kme, jms:jme ) |
---|
315 | REAL, INTENT(IN) :: pp( ims:ime, kms:kme, jms:jme ) ! Press. perturbation (Pa) |
---|
316 | REAL, INTENT(IN) :: rovcp |
---|
317 | REAL, INTENT(IN) :: uratx( ims:ime, jms:jme ) ! U to U10 ratio on mass points. |
---|
318 | REAL, INTENT(IN) :: vratx( ims:ime, jms:jme ) ! V to V10 ratio on mass points. |
---|
319 | REAL, INTENT(IN) :: tratx( ims:ime, jms:jme ) ! T to TH2 ratio on mass points. |
---|
320 | REAL, INTENT(IN) :: rio(niobf) ! Obs west-east coordinate (non-stag grid). |
---|
321 | REAL, INTENT(IN) :: rjo(niobf) ! Obs south-north coordinate (non-stag grid). |
---|
322 | REAL, INTENT(INOUT) :: rko(niobf) |
---|
323 | REAL, INTENT(INOUT) :: varobs(nndgv, niobf) |
---|
324 | REAL, INTENT(INOUT) :: errf(nerrf, niobf) |
---|
325 | |
---|
326 | ! Local variables |
---|
327 | INTEGER :: iobmg(niobf) ! Obs i-coord on mass grid |
---|
328 | INTEGER :: jobmg(niobf) ! Obs j-coord on mass grid |
---|
329 | INTEGER :: ia(niobf) |
---|
330 | INTEGER :: ib(niobf) |
---|
331 | INTEGER :: ic(niobf) |
---|
332 | REAL :: pbbo(kds:kde) ! column base pressure (cb) at obs loc. |
---|
333 | REAL :: ppbo(kds:kde) ! column pressure perturbation (cb) at obs loc. |
---|
334 | |
---|
335 | REAL :: ra(niobf) |
---|
336 | REAL :: rb(niobf) |
---|
337 | REAL :: rc(niobf) |
---|
338 | REAL :: dxobmg(niobf) ! Interp. fraction (x dir) referenced to mass-grid |
---|
339 | REAL :: dyobmg(niobf) ! Interp. fraction (y dir) referenced to mass-grid |
---|
340 | INTEGER MM(MAXDOM) |
---|
341 | INTEGER NNL |
---|
342 | real :: uratio( ims:ime, jms:jme ) ! U to U10 ratio on momentum points. |
---|
343 | real :: vratio( ims:ime, jms:jme ) ! V to V10 ratio on momentum points. |
---|
344 | real :: pug1,pug2,pvg1,pvg2 |
---|
345 | |
---|
346 | ! Define staggers for U, V, and T grids, referenced from non-staggered grid. |
---|
347 | real, parameter :: gridx_t = 0.5 ! Mass-point x stagger |
---|
348 | real, parameter :: gridy_t = 0.5 ! Mass-point y stagger |
---|
349 | real, parameter :: gridx_u = 0.0 ! U-point x stagger |
---|
350 | real, parameter :: gridy_u = 0.5 ! U-point y stagger |
---|
351 | real, parameter :: gridx_v = 0.5 ! V-point x stagger |
---|
352 | real, parameter :: gridy_v = 0.0 ! V-point y stagger |
---|
353 | |
---|
354 | real :: dummy = 99999. |
---|
355 | |
---|
356 | real :: pbhi, pphi |
---|
357 | real :: press,ttemp !ajb scratch variables |
---|
358 | ! real model_temp,pot_temp !ajb scratch variables |
---|
359 | |
---|
360 | !*** DECLARATIONS FOR IMPLICIT NONE |
---|
361 | integer nsta,ivar,n,ityp |
---|
362 | integer iob,job,kob,iob_ms,job_ms |
---|
363 | integer k,kbot,nml,nlb,nle |
---|
364 | integer iobm,jobm,iobp,jobp,kobp,inpf,i,j |
---|
365 | integer i_start,i_end,j_start,j_end ! loop ranges for uratio,vratio calc. |
---|
366 | integer k_start,k_end |
---|
367 | integer ips ! For printing obs information |
---|
368 | |
---|
369 | real gridx,gridy,dxob,dyob,dzob,dxob_ms,dyob_ms |
---|
370 | real pob |
---|
371 | real grfacx,grfacy,uratiob,vratiob,tratiob,tratxob,fnpf |
---|
372 | real stagx ! For x correction to mass-point stagger |
---|
373 | real stagy ! For y correction to mass-point stagger |
---|
374 | |
---|
375 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
376 | LOGICAL MP_LOCAL_DUMMASK(NIOBF) ! Mask for work to be done on this processor |
---|
377 | LOGICAL MP_LOCAL_UOBMASK(NIOBF) ! Dot-point mask |
---|
378 | LOGICAL MP_LOCAL_VOBMASK(NIOBF) ! Dot-point mask |
---|
379 | LOGICAL MP_LOCAL_COBMASK(NIOBF) ! Cross-point mask |
---|
380 | #endif |
---|
381 | ! LOGICAL, EXTERNAL :: TILE_MASK |
---|
382 | |
---|
383 | NSTA=NSTAT |
---|
384 | |
---|
385 | ! FIRST, DETERMINE THE GRID TYPE CORRECTION FOR U-momentum, V-momentum, |
---|
386 | ! AND MASS POINTS, AND WHEN INEST=2, CONVERT THE STORED COARSE MESH INDICES |
---|
387 | ! TO THE FINE MESH INDEX EQUIVALENTS |
---|
388 | |
---|
389 | ! ITYP=1 FOR U-POINTS, ITYP=2 for V-POINTS, and ITYP=3 FOR MASS POINTS |
---|
390 | |
---|
391 | if (iprt) then |
---|
392 | write(6,'(a,i5,a,i2,a,i5,a)') '++++++CALL ERROB AT KTAU = ', & |
---|
393 | KTAU,' AND INEST = ',INEST,': NSTA = ',NSTAW,' ++++++' |
---|
394 | endif |
---|
395 | |
---|
396 | ERRF = 0.0 ! Zero out errf array |
---|
397 | |
---|
398 | ! Set up loop bounds for this grid's boundary conditions |
---|
399 | i_start = max( its-1,ids ) |
---|
400 | i_end = min( ite+1,ide-1 ) |
---|
401 | j_start = max( jts-1,jds ) |
---|
402 | j_end = min( jte+1,jde-1 ) |
---|
403 | k_start = kts |
---|
404 | k_end = min( kte, kde-1 ) |
---|
405 | |
---|
406 | DO ITYP=1,3 ! Big loop: ityp=1 for U, ityp=2 for V, ityp=3 for T,Q,SP |
---|
407 | |
---|
408 | ! Set grid stagger |
---|
409 | IF(ITYP.EQ.1) THEN ! U-POINT CASE |
---|
410 | GRIDX = gridx_u |
---|
411 | GRIDY = gridy_u |
---|
412 | ELSE IF(ITYP.EQ.2) THEN ! V-POINT CASE |
---|
413 | GRIDX = gridx_v |
---|
414 | GRIDY = gridy_v |
---|
415 | ELSE ! MASS-POINT CASE |
---|
416 | GRIDX = gridx_t |
---|
417 | GRIDY = gridy_t |
---|
418 | ENDIF |
---|
419 | |
---|
420 | ! Compute URATIO and VRATIO fields on momentum (u,v) points. |
---|
421 | IF(ityp.eq.1)THEN |
---|
422 | call upoint(i_start,i_end, j_start,j_end, ids,ide, ims,ime, jms,jme, uratx, uratio) |
---|
423 | ELSE IF (ityp.eq.2) THEN |
---|
424 | call vpoint(i_start,i_end, j_start,j_end, jds,jde, ims,ime, jms,jme, vratx, vratio) |
---|
425 | ENDIF |
---|
426 | |
---|
427 | IF(INEST.EQ.1) THEN ! COARSE MESH CASE... |
---|
428 | DO N=1,NSTA |
---|
429 | RA(N)=RIO(N)-GRIDX |
---|
430 | RB(N)=RJO(N)-GRIDY |
---|
431 | IA(N)=RA(N) |
---|
432 | IB(N)=RB(N) |
---|
433 | IOB=MAX0(1,IA(N)) |
---|
434 | IOB=MIN0(IOB,ide-1) |
---|
435 | JOB=MAX0(1,IB(N)) |
---|
436 | JOB=MIN0(JOB,jde-1) |
---|
437 | DXOB=RA(N)-FLOAT(IA(N)) |
---|
438 | DYOB=RB(N)-FLOAT(IB(N)) |
---|
439 | |
---|
440 | ! Save mass-point arrays for computing rko for all var types |
---|
441 | if(ityp.eq.1) then |
---|
442 | iobmg(n) = MIN0(MAX0(1,int(RIO(n)-gridx_t)),ide-1) |
---|
443 | jobmg(n) = MIN0(MAX0(1,int(RJO(n)-gridy_t)),jde-1) |
---|
444 | dxobmg(n) = RIO(N)-gridx_t-FLOAT(int(RIO(N)-gridx_t)) |
---|
445 | dyobmg(n) = RJO(N)-gridy_t-FLOAT(int(RJO(N)-gridy_t)) |
---|
446 | endif |
---|
447 | iob_ms = iobmg(n) |
---|
448 | job_ms = jobmg(n) |
---|
449 | dxob_ms = dxobmg(n) |
---|
450 | dyob_ms = dyobmg(n) |
---|
451 | |
---|
452 | |
---|
453 | !if(n.eq.1 .and. iprt) then |
---|
454 | ! write(6,*) 'ERROB - COARSE MESH:' |
---|
455 | ! write(6,'(a,i1,a,i1,4(a,f5.2),2(a,i3),2(a,f6.3))') 'OBS= ',n, & |
---|
456 | ! ' ityp= ',ityp, & |
---|
457 | ! ' ra= ',ra(n),' rb= ',rb(n), & |
---|
458 | ! ' rio= ',rio(n),' rjo= ',rjo(n), & |
---|
459 | ! ' iob= ',iob,' job= ',job, & |
---|
460 | ! ' dxob= ',dxob,' dyob= ',dyob |
---|
461 | ! write(6,'(a,i3,a,i3,a,f5.2,a,f5.2)') & |
---|
462 | ! ' iob_ms= ',iob_ms,' job_ms= ',job_ms, & |
---|
463 | ! ' dxob_ms= ',dxob_ms,' dyob_ms= ',dyob_ms |
---|
464 | !endif |
---|
465 | |
---|
466 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
467 | ! Set mask for obs to be handled by this processor |
---|
468 | MP_LOCAL_DUMMASK(N) = TILE_MASK(IOB, JOB, its, ite, jts, jte) |
---|
469 | |
---|
470 | IF ( MP_LOCAL_DUMMASK(N) ) THEN |
---|
471 | #endif |
---|
472 | |
---|
473 | ! Interpolate pressure to obs location column and convert from Pa to cb. |
---|
474 | |
---|
475 | do k = kds, kde |
---|
476 | pbbo(k) = .001*( & |
---|
477 | (1.-DYOB_MS)*( (1.-DXOB_MS)*pbase(IOB_MS,K,JOB_MS) + & |
---|
478 | DXOB_MS *pbase(IOB_MS+1,K,JOB_MS) ) + & |
---|
479 | DYOB_MS* ( (1.-DXOB_MS)*pbase(IOB_MS,K,JOB_MS+1) + & |
---|
480 | DXOB_MS *pbase(IOB_MS+1,K,JOB_MS+1) ) ) |
---|
481 | ppbo(k) = .001*( & |
---|
482 | (1.-DYOB_MS)*( (1.-DXOB_MS)*pp(IOB_MS,K,JOB_MS) + & |
---|
483 | DXOB_MS *pp(IOB_MS+1,K,JOB_MS) ) + & |
---|
484 | DYOB_MS* ( (1.-DXOB_MS)*pp(IOB_MS,K,JOB_MS+1) + & |
---|
485 | DXOB_MS *pp(IOB_MS+1,K,JOB_MS+1) ) ) |
---|
486 | |
---|
487 | ! write(6,'(a,i2,2(a,f9.3)') ' k= ',k,' pbbo= ',pbbo(k),' ppbo= ',ppbo(k) |
---|
488 | enddo |
---|
489 | |
---|
490 | !ajb 20040119: Note based on bugfix for dot/cross points split across processors, |
---|
491 | !ajb which was actually a serial code fix: The ityp=2 (v-points) and |
---|
492 | !ajb itype=3 (mass-points) cases should not use the ityp=1 (u-points) |
---|
493 | !ajb case rko! This is necessary for bit-for-bit reproducability |
---|
494 | !ajb with the parallel run. (coarse mesh) |
---|
495 | |
---|
496 | |
---|
497 | if(abs(rko(n)+99).lt.1.)then |
---|
498 | pob = varobs(5,n) |
---|
499 | |
---|
500 | if(pob .gt.-800000.)then |
---|
501 | do k=k_end-1,1,-1 |
---|
502 | kbot = k |
---|
503 | if(pob .le. pbbo(k)+ppbo(k)) then |
---|
504 | goto 199 |
---|
505 | endif |
---|
506 | enddo |
---|
507 | 199 continue |
---|
508 | |
---|
509 | pphi = ppbo(kbot+1) |
---|
510 | pbhi = pbbo(kbot+1) |
---|
511 | |
---|
512 | rko(n) = real(kbot+1)- & |
---|
513 | ( (pob-pbhi-pphi) / (pbbo(kbot)+ppbo(kbot)-pbhi-pphi) ) |
---|
514 | |
---|
515 | rko(n)=max(rko(n),1.0) |
---|
516 | endif |
---|
517 | endif |
---|
518 | |
---|
519 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
520 | ENDIF !end IF( MP_LOCAL_DUMMASK(N) ) !ajb |
---|
521 | #endif |
---|
522 | |
---|
523 | RC(N)=RKO(N) |
---|
524 | |
---|
525 | ENDDO ! END COARSE MESH LOOP OVER NSTA |
---|
526 | |
---|
527 | ELSE ! FINE MESH CASE |
---|
528 | |
---|
529 | !********************************************************************** |
---|
530 | !ajb_07012008: Conversion of obs coordinates to the fine mesh here |
---|
531 | !ajb is no longer necessary, since implementation of the WRF map pro- |
---|
532 | !ajb jections (to each nest directly) is implemented in sub in4dob. |
---|
533 | !********************************************************************** |
---|
534 | !ajb |
---|
535 | !ajb GET (I,J,K) OF OBSERVATIONS ON FINE MESH VALUES. |
---|
536 | DO N=1,NSTA |
---|
537 | |
---|
538 | ! write(6,*) 'UPDATE: ra(n) = ',ra(n),' rb(n) = ',rb(n) |
---|
539 | |
---|
540 | RA(N)=RIO(N)-GRIDX ! ajb added 07012008 |
---|
541 | RB(N)=RJO(N)-GRIDY ! ajb added 07012008 |
---|
542 | IA(N)=RA(N) |
---|
543 | IB(N)=RB(N) |
---|
544 | IOB=MAX0(1,IA(N)) |
---|
545 | IOB=MIN0(IOB,ide-1) |
---|
546 | JOB=MAX0(1,IB(N)) |
---|
547 | JOB=MIN0(JOB,jde-1) |
---|
548 | DXOB=RA(N)-FLOAT(IA(N)) |
---|
549 | DYOB=RB(N)-FLOAT(IB(N)) |
---|
550 | |
---|
551 | ! Save mass-point arrays for computing rko for all var types |
---|
552 | if(ityp.eq.1) then |
---|
553 | stagx = grfacx - gridx_t !Correct x stagger to mass-point |
---|
554 | stagy = grfacy - gridy_t !Correct y stagger to mass-point |
---|
555 | iobmg(n) = MIN0(MAX0(1,int(RA(n)+stagx)),ide-1) |
---|
556 | jobmg(n) = MIN0(MAX0(1,int(RB(n)+stagy)),jde-1) |
---|
557 | dxobmg(n) = RA(N)+stagx-FLOAT(int(RA(N)+stagx)) |
---|
558 | dyobmg(n) = RB(N)+stagy-FLOAT(int(RB(N)+stagy)) |
---|
559 | endif |
---|
560 | iob_ms = iobmg(n) |
---|
561 | job_ms = jobmg(n) |
---|
562 | dxob_ms = dxobmg(n) |
---|
563 | dyob_ms = dyobmg(n) |
---|
564 | |
---|
565 | !if(n.eq.1) then |
---|
566 | ! write(6,*) 'ERROB - FINE MESH:' |
---|
567 | ! write(6,*) 'RA = ',ra(n),' RB = ',rb(n) |
---|
568 | ! write(6,'(a,i1,a,i1,4(a,f5.2),2(a,i3),2(a,f6.3))') 'OBS= ',n, & |
---|
569 | ! ' ityp= ',ityp, & |
---|
570 | ! ' ra= ',ra(n),' rb= ',rb(n), & |
---|
571 | ! ' rio= ',rio(n),' rjo= ',rjo(n), & |
---|
572 | ! ' iob= ',iob,' job= ',job, & |
---|
573 | ! ' dxob= ',dxob,' dyob= ',dyob |
---|
574 | ! write(6,'(a,i3,a,i3,a,f5.2,a,f5.2)') & |
---|
575 | ! ' iob_ms= ',iob_ms,' job_ms= ',job_ms, & |
---|
576 | ! ' dxob_ms= ',dxob_ms,' dyob_ms= ',dyob_ms |
---|
577 | !endif |
---|
578 | |
---|
579 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
580 | ! Set mask for obs to be handled by this processor |
---|
581 | MP_LOCAL_DUMMASK(N) = TILE_MASK(IOB, JOB, its, ite, jts, jte) |
---|
582 | |
---|
583 | IF ( MP_LOCAL_DUMMASK(N) ) THEN |
---|
584 | #endif |
---|
585 | |
---|
586 | ! Interpolate pressure to obs location column and convert from Pa to cb. |
---|
587 | |
---|
588 | do k = kds, kde |
---|
589 | pbbo(k) = .001*( & |
---|
590 | (1.-DYOB_MS)*( (1.-DXOB_MS)*pbase(IOB_MS,K,JOB_MS) + & |
---|
591 | DXOB_MS *pbase(IOB_MS+1,K,JOB_MS) ) + & |
---|
592 | DYOB_MS* ( (1.-DXOB_MS)*pbase(IOB_MS,K,JOB_MS+1) + & |
---|
593 | DXOB_MS *pbase(IOB_MS+1,K,JOB_MS+1) ) ) |
---|
594 | ppbo(k) = .001*( & |
---|
595 | (1.-DYOB_MS)*( (1.-DXOB_MS)*pp(IOB_MS,K,JOB_MS) + & |
---|
596 | DXOB_MS *pp(IOB_MS+1,K,JOB_MS) ) + & |
---|
597 | DYOB_MS* ( (1.-DXOB_MS)*pp(IOB_MS,K,JOB_MS+1) + & |
---|
598 | DXOB_MS *pp(IOB_MS+1,K,JOB_MS+1) ) ) |
---|
599 | |
---|
600 | ! write(6,'(a,i2,2(a,f9.3)') ' k= ',k,' pbbo= ',pbbo(k),' ppbo= ',ppbo(k) |
---|
601 | enddo |
---|
602 | |
---|
603 | !ajb 20040119: Note based on bugfix for dot/cross points split across processors, |
---|
604 | !ajb which was actually a serial code fix: The ityp=2 (v-points) and |
---|
605 | !ajb itype=3 (mass-points) cases should not use the ityp=1 (u-points) |
---|
606 | !ajb case) rko! This is necessary for bit-for-bit reproducability |
---|
607 | !ajb with parallel run. (fine mesh) |
---|
608 | |
---|
609 | if(abs(rko(n)+99).lt.1.)then |
---|
610 | pob = varobs(5,n) |
---|
611 | |
---|
612 | if(pob .gt.-800000.)then |
---|
613 | do k=k_end-1,1,-1 |
---|
614 | kbot = k |
---|
615 | if(pob .le. pbbo(k)+ppbo(k)) then |
---|
616 | goto 198 |
---|
617 | endif |
---|
618 | enddo |
---|
619 | 198 continue |
---|
620 | |
---|
621 | pphi = ppbo(kbot+1) |
---|
622 | pbhi = pbbo(kbot+1) |
---|
623 | |
---|
624 | rko(n) = real(kbot+1)- & |
---|
625 | ( (pob-pbhi-pphi) / (pbbo(kbot)+ppbo(kbot)-pbhi-pphi) ) |
---|
626 | rko(n)=max(rko(n),1.0) |
---|
627 | endif |
---|
628 | endif |
---|
629 | |
---|
630 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
631 | ENDIF !end IF( MP_LOCAL_DUMMASK(N) ) !ajb |
---|
632 | #endif |
---|
633 | |
---|
634 | RC(N)=RKO(N) |
---|
635 | |
---|
636 | ENDDO ! END FINE MESH LOOP OVER NSTA |
---|
637 | |
---|
638 | ENDIF ! end if(inest.eq.1) |
---|
639 | |
---|
640 | ! Print obs information. |
---|
641 | if (iprt) then |
---|
642 | if(ityp.eq.3) then !mass-point case |
---|
643 | ips = min(nstaw,nobs_prt) |
---|
644 | if(ips.gt.0) then |
---|
645 | write(6,*) ' OBS# I J K' |
---|
646 | endif |
---|
647 | do n=1,ips |
---|
648 | write(6,'(2x,i4,3f8.3)') n,ra(n),rb(n),rc(n) |
---|
649 | enddo |
---|
650 | endif |
---|
651 | endif |
---|
652 | |
---|
653 | ! INITIALIZE THE ARRAY OF DIFFERENCES BETWEEN THE OBSERVATIONS |
---|
654 | ! AND THE LOCAL FORECAST VALUES TO ZERO. FOR THE FINE MESH |
---|
655 | ! ONLY, SET THE DIFFERENCE TO A LARGE DUMMY VALUE IF THE |
---|
656 | ! OBSERVATION IS OUTSIDE THE FINE MESH DOMAIN. |
---|
657 | |
---|
658 | ! SET DIFFERENCE VALUE TO A DUMMY VALUE FOR OBS POINTS OUTSIDE |
---|
659 | ! CURRENT DOMAIN |
---|
660 | IF(ITYP.EQ.1) THEN |
---|
661 | NLB=1 |
---|
662 | NLE=1 |
---|
663 | ELSE IF(ITYP.EQ.2) THEN |
---|
664 | NLB=2 |
---|
665 | NLE=2 |
---|
666 | ELSE |
---|
667 | NLB=3 |
---|
668 | NLE=5 |
---|
669 | ENDIF |
---|
670 | DO IVAR=NLB,NLE |
---|
671 | DO N=1,NSTA |
---|
672 | IF((RA(N)-1.).LT.0)THEN |
---|
673 | ERRF(IVAR,N)=ERRF(IVAR,N)+DUMMY |
---|
674 | ENDIF |
---|
675 | IF((RB(N)-1.).LT.0)THEN |
---|
676 | ERRF(IVAR,N)=ERRF(IVAR,N)+DUMMY |
---|
677 | ENDIF |
---|
678 | IF((FLOAT(ide)-2.0*GRIDX-RA(N)-1.E-10).LT.0)THEN |
---|
679 | ERRF(IVAR,N)=ERRF(IVAR,N)+DUMMY |
---|
680 | ENDIF |
---|
681 | IF((FLOAT(jde)-2.0*GRIDY-RB(N)-1.E-10).LT.0)THEN |
---|
682 | ERRF(IVAR,N)=ERRF(IVAR,N)+DUMMY |
---|
683 | ENDIF |
---|
684 | if(rc(n).lt.1.)errf(ivar,n)=errf(ivar,n)+dummy |
---|
685 | ENDDO |
---|
686 | ENDDO |
---|
687 | |
---|
688 | ! NOW FIND THE EXACT OFFSET OF EACH OBSERVATION FROM THE |
---|
689 | ! GRID POINT TOWARD THE LOWER LEFT |
---|
690 | DO N=1,NSTA |
---|
691 | IA(N)=RA(N) |
---|
692 | IB(N)=RB(N) |
---|
693 | IC(N)=RC(N) |
---|
694 | ENDDO |
---|
695 | DO N=1,NSTA |
---|
696 | RA(N)=RA(N)-FLOAT(IA(N)) |
---|
697 | RB(N)=RB(N)-FLOAT(IB(N)) |
---|
698 | RC(N)=RC(N)-FLOAT(IC(N)) |
---|
699 | ENDDO |
---|
700 | ! PERFORM A TRILINEAR EIGHT-POINT (3-D) INTERPOLATION |
---|
701 | ! TO FIND THE FORECAST VALUE AT THE EXACT OBSERVATION |
---|
702 | ! POINTS FOR U, V, T, AND Q. |
---|
703 | |
---|
704 | ! Compute local masks for dot and cross points. |
---|
705 | if(ityp.eq.1) then |
---|
706 | DO N=1,NSTA |
---|
707 | IOB=MAX0(1,IA(N)) |
---|
708 | IOB=MIN0(IOB,ide-1) |
---|
709 | JOB=MAX0(1,IB(N)) |
---|
710 | JOB=MIN0(JOB,jde-1) |
---|
711 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
712 | ! Set mask for U-momemtum points to be handled by this processor |
---|
713 | MP_LOCAL_UOBMASK(N) = TILE_MASK(IOB, JOB, its, ite, jts, jte) |
---|
714 | #endif |
---|
715 | ENDDO |
---|
716 | endif |
---|
717 | if(ityp.eq.2) then |
---|
718 | DO N=1,NSTA |
---|
719 | IOB=MAX0(1,IA(N)) |
---|
720 | IOB=MIN0(IOB,ide-1) |
---|
721 | JOB=MAX0(1,IB(N)) |
---|
722 | JOB=MIN0(JOB,jde-1) |
---|
723 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
724 | ! Set mask for V-momentum points to be handled by this processor |
---|
725 | MP_LOCAL_VOBMASK(N) = TILE_MASK(IOB, JOB, its, ite, jts, jte) |
---|
726 | #endif |
---|
727 | ENDDO |
---|
728 | endif |
---|
729 | if(ityp.eq.3) then |
---|
730 | DO N=1,NSTA |
---|
731 | IOB=MAX0(1,IA(N)) |
---|
732 | IOB=MIN0(IOB,ide-1) |
---|
733 | JOB=MAX0(1,IB(N)) |
---|
734 | JOB=MIN0(JOB,jde-1) |
---|
735 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
736 | ! Set mask for cross (mass) points to be handled by this processor |
---|
737 | MP_LOCAL_COBMASK(N) = TILE_MASK(IOB, JOB, its, ite, jts, jte) |
---|
738 | #endif |
---|
739 | ENDDO |
---|
740 | endif |
---|
741 | |
---|
742 | !********************************************************** |
---|
743 | ! PROCESS U VARIABLE (IVAR=1) |
---|
744 | !********************************************************** |
---|
745 | IF(ITYP.EQ.1) THEN |
---|
746 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
747 | DO N=1,NSTA |
---|
748 | IF(MP_LOCAL_UOBMASK(N)) THEN |
---|
749 | ERRF(9,N)=rko(n) !RKO is needed by neighboring processors !ajb |
---|
750 | ENDIF |
---|
751 | ENDDO |
---|
752 | #endif |
---|
753 | IF(ISWIND.EQ.1) THEN |
---|
754 | DO N=1,NSTA |
---|
755 | IOB=MAX0(2,IA(N)) |
---|
756 | IOB=MIN0(IOB,ide-1) |
---|
757 | IOBM=MAX0(1,IOB-1) |
---|
758 | IOBP=MIN0(ide-1,IOB+1) |
---|
759 | JOB=MAX0(2,IB(N)) |
---|
760 | JOB=MIN0(JOB,jde-1) |
---|
761 | JOBM=MAX0(1,JOB-1) |
---|
762 | JOBP=MIN0(jde-1,JOB+1) |
---|
763 | KOB=MIN0(K_END,IC(N)) |
---|
764 | |
---|
765 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
766 | IF(MP_LOCAL_UOBMASK(N))THEN ! Do if obs on this processor |
---|
767 | #endif |
---|
768 | KOBP=MIN0(KOB+1,k_end) |
---|
769 | DXOB=RA(N) |
---|
770 | DYOB=RB(N) |
---|
771 | DZOB=RC(N) |
---|
772 | |
---|
773 | ! Compute surface pressure values at surrounding U and V points |
---|
774 | PUG1 = .5*( pbase(IOBM,1,JOB) + pbase(IOB,1,JOB) ) |
---|
775 | PUG2 = .5*( pbase(IOB,1,JOB) + pbase(IOBP,1,JOB) ) |
---|
776 | |
---|
777 | ! This is to correct obs to model sigma level using reverse similarity theory |
---|
778 | if(rko(n).eq.1.0)then |
---|
779 | uratiob=((1.-DYOB)*((1.-DXOB)*uratio(IOB,JOB)+ & |
---|
780 | DXOB*uratio(IOBP,JOB) & |
---|
781 | )+DYOB*((1.-DXOB)*uratio(IOB,JOBP)+ & |
---|
782 | DXOB*uratio(IOBP,JOBP))) |
---|
783 | else |
---|
784 | uratiob=1. |
---|
785 | endif |
---|
786 | !YLIU Some PBL scheme do not define the vratio/uratio |
---|
787 | if(abs(uratiob).lt.1.0e-3) then |
---|
788 | uratiob=1. |
---|
789 | endif |
---|
790 | |
---|
791 | ! INITIAL ERRF(IVAR,N) IS ZERO FOR OBSERVATIONS POINTS |
---|
792 | ! WITHIN THE DOMAIN, AND A LARGE DUMMY VALUE FOR POINTS |
---|
793 | ! OUTSIDE THE CURRENT DOMAIN |
---|
794 | |
---|
795 | ! U COMPONENT WIND ERROR |
---|
796 | ERRF(1,N)=ERRF(1,N)+uratiob*VAROBS(1,N)-((1.-DZOB)* & |
---|
797 | ((1.-DyOB)*((1.- & |
---|
798 | DxOB)*UB(IOB,KOB,JOB)+DxOB*UB(IOB+1,KOB,JOB) & |
---|
799 | )+DyOB*((1.-DxOB)*UB(IOB,KOB,JOB+1)+DxOB* & |
---|
800 | UB(IOB+1,KOB,JOB+1)))+DZOB*((1.-DyOB)*((1.-DxOB) & |
---|
801 | *UB(IOB,KOBP,JOB)+DxOB*UB(IOB+1,KOBP,JOB))+ & |
---|
802 | DyOB*((1.-DxOB)*UB(IOB,KOBP,JOB+1)+DxOB* & |
---|
803 | UB(IOB+1,KOBP,JOB+1)))) |
---|
804 | |
---|
805 | ! if(n.le.10) then |
---|
806 | ! write(6,*) |
---|
807 | ! write(6,'(a,i3,i3,i3,a,i3,a,i2)') 'ERRF1 at ',iob,job,kob, & |
---|
808 | ! ' N = ',n,' inest = ',inest |
---|
809 | ! write(6,*) 'VAROBS(1,N) = ',varobs(1,n) |
---|
810 | ! write(6,*) 'VAROBS(5,N) = ',varobs(5,n) |
---|
811 | ! write(6,*) 'UB(IOB,KOB,JOB) = ',UB(IOB,KOB,JOB) |
---|
812 | ! write(6,*) 'UB(IOB+1,KOB,JOB) = ',UB(IOB+1,KOB,JOB) |
---|
813 | ! write(6,*) 'UB(IOB,KOB,JOB+1) = ',UB(IOB,KOB,JOB+1) |
---|
814 | ! write(6,*) 'UB(IOB+1,KOB,JOB+1) = ',UB(IOB+1,KOB,JOB+1) |
---|
815 | ! write(6,*) 'UB(IOB,KOBP,JOB) = ',UB(IOB,KOBP,JOB) |
---|
816 | ! write(6,*) 'UB(IOB+1,KOBP,JOB) = ',UB(IOB+1,KOBP,JOB) |
---|
817 | ! write(6,*) 'UB(IOB,KOBP,JOB+1) = ',UB(IOB,KOBP,JOB+1) |
---|
818 | ! write(6,*) 'UB(IOB+1,KOBP,JOB+1) = ',UB(IOB+1,KOBP,JOB+1) |
---|
819 | ! write(6,*) 'uratiob = ',uratiob |
---|
820 | ! write(6,*) 'DXOB,DYOB,DZOB = ',DXOB,DYOB,DZOB |
---|
821 | ! write(6,*) 'ERRF(1,N) = ',errf(1,n) |
---|
822 | ! write(6,*) |
---|
823 | ! endif |
---|
824 | |
---|
825 | |
---|
826 | ! Store model surface pressure (not the error!) at U point. |
---|
827 | ERRF(7,N)=.001*( (1.-DXOB)*PUG1 + DXOB*PUG2 ) |
---|
828 | |
---|
829 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
830 | ENDIF ! end IF( MP_LOCAL_UOBMASK(N) ) |
---|
831 | #endif |
---|
832 | ENDDO ! END U-POINT LOOP OVER OBS |
---|
833 | |
---|
834 | ENDIF ! end if(iswind.eq.1) |
---|
835 | |
---|
836 | ENDIF ! ITYP=1: PROCESS U |
---|
837 | |
---|
838 | !********************************************************** |
---|
839 | ! PROCESS V VARIABLE (IVAR=2) |
---|
840 | !********************************************************** |
---|
841 | IF(ITYP.EQ.2) THEN |
---|
842 | |
---|
843 | IF(ISWIND.EQ.1) THEN |
---|
844 | DO N=1,NSTA |
---|
845 | IOB=MAX0(2,IA(N)) |
---|
846 | IOB=MIN0(IOB,ide-1) |
---|
847 | IOBM=MAX0(1,IOB-1) |
---|
848 | IOBP=MIN0(ide-1,IOB+1) |
---|
849 | JOB=MAX0(2,IB(N)) |
---|
850 | JOB=MIN0(JOB,jde-1) |
---|
851 | JOBM=MAX0(1,JOB-1) |
---|
852 | JOBP=MIN0(jde-1,JOB+1) |
---|
853 | KOB=MIN0(K_END,IC(N)) |
---|
854 | |
---|
855 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
856 | IF(MP_LOCAL_VOBMASK(N))THEN ! Do if obs on this processor |
---|
857 | #endif |
---|
858 | KOBP=MIN0(KOB+1,k_end) |
---|
859 | DXOB=RA(N) |
---|
860 | DYOB=RB(N) |
---|
861 | DZOB=RC(N) |
---|
862 | |
---|
863 | ! Compute surface pressure values at surrounding U and V points |
---|
864 | PVG1 = .5*( pbase(IOB,1,JOBM) + pbase(IOB,1,JOB) ) |
---|
865 | PVG2 = .5*( pbase(IOB,1,JOB) + pbase(IOB,1,JOBP) ) |
---|
866 | |
---|
867 | ! This is to correct obs to model sigma level using reverse similarity theory |
---|
868 | if(rko(n).eq.1.0)then |
---|
869 | vratiob=((1.-DYOB)*((1.-DXOB)*vratio(IOB,JOB)+ & |
---|
870 | DXOB*vratio(IOBP,JOB) & |
---|
871 | )+DYOB*((1.-DXOB)*vratio(IOB,JOBP)+ & |
---|
872 | DXOB*vratio(IOBP,JOBP))) |
---|
873 | else |
---|
874 | vratiob=1. |
---|
875 | endif |
---|
876 | !YLIU Some PBL scheme do not define the vratio/uratio |
---|
877 | if(abs(vratiob).lt.1.0e-3) then |
---|
878 | vratiob=1. |
---|
879 | endif |
---|
880 | |
---|
881 | ! INITIAL ERRF(IVAR,N) IS ZERO FOR OBSERVATIONS POINTS |
---|
882 | ! WITHIN THE DOMAIN, AND A LARGE DUMMY VALUE FOR POINTS |
---|
883 | ! OUTSIDE THE CURRENT DOMAIN |
---|
884 | |
---|
885 | ! V COMPONENT WIND ERROR |
---|
886 | ERRF(2,N)=ERRF(2,N)+vratiob*VAROBS(2,N)-((1.-DZOB)* & |
---|
887 | ((1.-DyOB)*((1.- & |
---|
888 | DxOB)*VB(IOB,KOB,JOB)+DxOB*VB(IOB+1,KOB,JOB) & |
---|
889 | )+DyOB*((1.-DxOB)*VB(IOB,KOB,JOB+1)+DxOB* & |
---|
890 | VB(IOB+1,KOB,JOB+1)))+DZOB*((1.-DyOB)*((1.-DxOB) & |
---|
891 | *VB(IOB,KOBP,JOB)+DxOB*VB(IOB+1,KOBP,JOB))+ & |
---|
892 | DyOB*((1.-DxOB)*VB(IOB,KOBP,JOB+1)+DxOB* & |
---|
893 | VB(IOB+1,KOBP,JOB+1)))) |
---|
894 | |
---|
895 | ! if(n.le.10) then |
---|
896 | ! write(6,*) |
---|
897 | ! write(6,'(a,i3,i3,i3,a,i3,a,i2)') 'ERRF2 at ',iob,job,kob, & |
---|
898 | ! ' N = ',n,' inest = ',inest |
---|
899 | ! write(6,*) 'VAROBS(2,N) = ',varobs(2,n) |
---|
900 | ! write(6,*) 'VAROBS(5,N) = ',varobs(5,n) |
---|
901 | ! write(6,*) 'VB(IOB,KOB,JOB) = ',VB(IOB,KOB,JOB) |
---|
902 | ! write(6,*) 'ERRF(2,N) = ',errf(2,n) |
---|
903 | ! write(6,*) 'vratiob = ',vratiob |
---|
904 | ! write(6,*) |
---|
905 | ! endif |
---|
906 | |
---|
907 | |
---|
908 | ! Store model surface pressure (not the error!) at V point. |
---|
909 | ERRF(8,N)=.001*( (1.-DYOB)*PVG1 + DYOB*PVG2 ) |
---|
910 | |
---|
911 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
912 | ENDIF ! end IF( MP_LOCAL_VOBMASK(N) ) |
---|
913 | #endif |
---|
914 | ENDDO ! END V-POINT LOOP OVER OBS |
---|
915 | |
---|
916 | ENDIF ! end if(iswind.eq.1) |
---|
917 | |
---|
918 | ENDIF ! ITYP=1: PROCESS V |
---|
919 | |
---|
920 | !********************************************************** |
---|
921 | ! PROCESS MASS-POINT VARIABLES IVAR=3 (T) AND IVAR=4 (QV) |
---|
922 | !********************************************************** |
---|
923 | IF(ITYP.EQ.3) THEN |
---|
924 | |
---|
925 | IF(ISTEMP.EQ.1 .OR. ISMOIS.EQ.1) THEN |
---|
926 | DO N=1,NSTA |
---|
927 | IOB=MAX0(1,IA(N)) |
---|
928 | IOB=MIN0(IOB,ide-1) |
---|
929 | JOB=MAX0(1,IB(N)) |
---|
930 | JOB=MIN0(JOB,jde-1) |
---|
931 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
932 | IF(MP_LOCAL_COBMASK(N)) THEN ! Do if obs on this processor |
---|
933 | #endif |
---|
934 | KOB=MIN0(k_end,IC(N)) |
---|
935 | KOBP=MIN0(KOB+1,K_END) |
---|
936 | DXOB=RA(N) |
---|
937 | DYOB=RB(N) |
---|
938 | DZOB=RC(N) |
---|
939 | |
---|
940 | ! This is to correct obs to model sigma level using reverse similarity theory |
---|
941 | if(rko(n).eq.1.0)then |
---|
942 | tratxob=((1.-DYOB)*((1.-DXOB)*tratx(IOB,JOB)+ & |
---|
943 | DXOB*tratx(IOB+1,JOB) & |
---|
944 | )+DYOB*((1.-DXOB)*tratx(IOB,JOB+1)+ & |
---|
945 | DXOB*tratx(IOB+1,JOB+1))) |
---|
946 | else |
---|
947 | tratxob=1. |
---|
948 | endif |
---|
949 | |
---|
950 | !yliu |
---|
951 | if(abs(tratxob) .lt. 1.0E-3) tratxob=1. |
---|
952 | |
---|
953 | !ajb testing only |
---|
954 | if(iprt .and. n.eq.81) then |
---|
955 | write(6,*) 'POTENTIAL TEMP FOR N=81:' |
---|
956 | write(6,*) |
---|
957 | write(6,*) ' K THETA TEMPERATURE', & |
---|
958 | ' PBASE' |
---|
959 | write(6,*) |
---|
960 | do k=k_end,1,-1 |
---|
961 | press = pbase(iob,k,job)+pp(iob,k,job) |
---|
962 | ttemp = exp ( alog(300.+TB(IOB,k,JOB)) - & |
---|
963 | .2857143*alog(100000./press) ) |
---|
964 | write(6,*) k,300.+TB(IOB,k,JOB),ttemp,pbase(iob,k,job) |
---|
965 | enddo |
---|
966 | endif |
---|
967 | !ajb end testing only |
---|
968 | |
---|
969 | ! TEMPERATURE ERROR |
---|
970 | ! if(n.le.10) then |
---|
971 | ! write(6,*) 'before: errf(3,n) = ',errf(3,n) |
---|
972 | ! endif |
---|
973 | ERRF(3,N)=ERRF(3,N)+tratxob*VAROBS(3,N)-((1.-DZOB)* & |
---|
974 | ((1.-DyOB)*((1.- & |
---|
975 | DxOB)*(TB(IOB,KOB,JOB))+DxOB* & |
---|
976 | (TB(IOB+1,KOB,JOB)))+DyOB*((1.-DxOB)* & |
---|
977 | (TB(IOB,KOB,JOB+1))+DxOB* & |
---|
978 | (TB(IOB+1,KOB,JOB+1))))+DZOB*((1.- & |
---|
979 | DyOB)*((1.-DxOB)*(TB(IOB,KOBP,JOB))+DxOB* & |
---|
980 | (TB(IOB+1,KOBP,JOB)))+DyOB*((1.-DxOB)* & |
---|
981 | (TB(IOB,KOBP,JOB+1))+DxOB* & |
---|
982 | (TB(IOB+1,KOBP,JOB+1))))) |
---|
983 | |
---|
984 | ! if(n.le.10) then |
---|
985 | ! write(6,*) |
---|
986 | ! write(6,'(a,i3,i3,i3,a,i3,a,i2)') 'ERRF3 at ',iob,job,kob, & |
---|
987 | ! ' N = ',n,' inest = ',inest |
---|
988 | ! write(6,*) 'VAROBS(3,N) = ',varobs(3,n) |
---|
989 | ! write(6,*) 'VAROBS(5,N) = ',varobs(5,n) |
---|
990 | ! write(6,*) 'TB(IOB,KOB,JOB) = ',TB(IOB,KOB,JOB) |
---|
991 | ! write(6,*) 'TB(IOB+1,KOB,JOB) = ',TB(IOB+1,KOB,JOB) |
---|
992 | ! write(6,*) 'TB(IOB,KOB,JOB+1) = ',TB(IOB,KOB,JOB+1) |
---|
993 | ! write(6,*) 'TB(IOB+1,KOB,JOB+1) = ',TB(IOB+1,KOB,JOB+1) |
---|
994 | ! write(6,*) 'TB(IOB,KOBP,JOB) = ',TB(IOB,KOBP,JOB) |
---|
995 | ! write(6,*) 'TB(IOB+1,KOBP,JOB) = ',TB(IOB+1,KOBP,JOB) |
---|
996 | ! write(6,*) 'TB(IOB,KOBP,JOB+1) = ',TB(IOB,KOBP,JOB+1) |
---|
997 | ! write(6,*) 'TB(IOB+1,KOBP,JOB+1) = ',TB(IOB+1,KOBP,JOB+1) |
---|
998 | ! write(6,*) 'tratxob = ',tratxob |
---|
999 | ! write(6,*) 'DXOB,DYOB,DZOB = ',DXOB,DYOB,DZOB |
---|
1000 | ! write(6,*) 'ERRF(3,N) = ',errf(3,n) |
---|
1001 | ! write(6,*) |
---|
1002 | ! endif |
---|
1003 | |
---|
1004 | |
---|
1005 | ! MOISTURE ERROR |
---|
1006 | ERRF(4,N)=ERRF(4,N)+VAROBS(4,N)-((1.-DZOB)*((1.-DyOB)*((1.- & |
---|
1007 | DxOB)*QVB(IOB,KOB,JOB)+DxOB* & |
---|
1008 | QVB(IOB+1,KOB,JOB))+DyOB*((1.-DxOB)* & |
---|
1009 | QVB(IOB,KOB,JOB+1)+DxOB* & |
---|
1010 | QVB(IOB+1,KOB,JOB+1)))+DZOB*((1.- & |
---|
1011 | DyOB)*((1.-DxOB)*QVB(IOB,KOBP,JOB)+DxOB & |
---|
1012 | *QVB(IOB+1,KOBP,JOB))+DyOB*((1.-DxOB & |
---|
1013 | )*QVB(IOB,KOBP,JOB+1)+DxOB* & |
---|
1014 | QVB(IOB+1,KOBP,JOB+1)))) |
---|
1015 | |
---|
1016 | ! Store model surface pressure (not the error!) at T-point |
---|
1017 | ERRF(6,N)= .001* & |
---|
1018 | ((1.-DyOB)*((1.-DxOB)*pbase(IOB,1,JOB)+DxOB* & |
---|
1019 | pbase(IOB+1,1,JOB))+DyOB*((1.-DxOB)* & |
---|
1020 | pbase(IOB,1,JOB+1)+DxOB*pbase(IOB+1,1,JOB+1) )) |
---|
1021 | |
---|
1022 | if(iprt .and. n.eq.81) then |
---|
1023 | write(6,*) 'ERRF(6,81) calculation:' |
---|
1024 | write(6,*) 'iob,job = ',iob,job |
---|
1025 | write(6,*) 'pbase(iob,1,job) = ',pbase(iob,1,job) |
---|
1026 | write(6,*) 'pbase(iob+1,1,job) = ',pbase(iob+1,1,job) |
---|
1027 | write(6,*) 'pbase(iob,1,job+1) = ',pbase(iob,1,job+1) |
---|
1028 | write(6,*) 'pbase(iob+1,1,job+1) = ',pbase(iob+1,1,job+1) |
---|
1029 | write(6,*) 'ERRF(6,81) = ',errf(6,n) |
---|
1030 | ! call flush(6) |
---|
1031 | endif |
---|
1032 | |
---|
1033 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
1034 | ENDIF ! end IF( MP_LOCAL_COBMASK(N) ) |
---|
1035 | #endif |
---|
1036 | ENDDO ! END T and QV LOOP OVER OBS |
---|
1037 | |
---|
1038 | ENDIF !end if(istemp.eq.1 .or. ismois.eq.1) |
---|
1039 | |
---|
1040 | !********************************************************** |
---|
1041 | ! PROCESS SURFACE PRESSURE CROSS-POINT FIELD, IVAR=5, |
---|
1042 | ! USING BILINEAR FOUR-POINT 2-D INTERPOLATION |
---|
1043 | !********************************************************** |
---|
1044 | IF(ISPSTR.EQ.1) THEN |
---|
1045 | DO N=1,NSTA |
---|
1046 | IOB=MAX0(1,IA(N)) |
---|
1047 | IOB=MIN0(IOB,ide-1) |
---|
1048 | JOB=MAX0(1,IB(N)) |
---|
1049 | JOB=MIN0(JOB,jde-1) |
---|
1050 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
1051 | IF(MP_LOCAL_COBMASK(N)) THEN ! Do if obs on this processor |
---|
1052 | #endif |
---|
1053 | DXOB=RA(N) |
---|
1054 | DYOB=RB(N) |
---|
1055 | !ajb fix this (put in correct pressure calc for IOB,JOB here) |
---|
1056 | ERRF(5,N)=ERRF(5,N)+VAROBS(5,N)-((1.-DyOB)*((1.-DxOB)* & |
---|
1057 | pbase(IOB,1,JOB)+DxOB*pbase(IOB+1,1,JOB))+DyOB* & |
---|
1058 | ((1.-DxOB)*pbase(IOB,1,JOB+1)+DxOB* & |
---|
1059 | pbase(IOB+1,1,JOB+1))) |
---|
1060 | |
---|
1061 | if(n.eq.81) then |
---|
1062 | write(6,*) 'ERRF(5,81) calculation:' |
---|
1063 | write(6,*) 'iob,job = ',iob,job |
---|
1064 | write(6,*) 'pbase(iob,1,job) = ',pbase(iob,1,job) |
---|
1065 | write(6,*) 'pbase(iob+1,1,job) = ',pbase(iob+1,1,job) |
---|
1066 | write(6,*) 'pbase(iob,1,job+1) = ',pbase(iob,1,job+1) |
---|
1067 | write(6,*) 'pbase(iob+1,1,job+1) = ',pbase(iob+1,1,job+1) |
---|
1068 | write(6,*) 'errf(5,81) = ',errf(5,n) |
---|
1069 | ! call flush(6) |
---|
1070 | endif |
---|
1071 | |
---|
1072 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
1073 | ENDIF ! end IF( MP_LOCAL_COBMASK(N) ) |
---|
1074 | #endif |
---|
1075 | |
---|
1076 | ENDDO |
---|
1077 | |
---|
1078 | ENDIF ! end if(ispstr.eq.1) |
---|
1079 | |
---|
1080 | ENDIF ! end if(ityp.eq.3) |
---|
1081 | |
---|
1082 | ENDDO ! END BIG LOOP |
---|
1083 | |
---|
1084 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
1085 | ! Gather the errf values calculated by the processors with the obs. |
---|
1086 | CALL get_full_obs_vector(nsta, nerrf, niobf, mp_local_uobmask, & |
---|
1087 | mp_local_vobmask, mp_local_cobmask, errf) |
---|
1088 | #endif |
---|
1089 | |
---|
1090 | ! DIFFERENCE BETWEEN OBS AND FCST IS COMPLETED |
---|
1091 | IF(INEST.EQ.1)THEN |
---|
1092 | INPF=NPFI |
---|
1093 | ELSE |
---|
1094 | FNPF=IRATIO**LEVIDN(INEST) |
---|
1095 | INPF=FNPF*NPFI |
---|
1096 | ENDIF |
---|
1097 | ! Gross error check for temperature. Set all vars bad. |
---|
1098 | do n=1,nsta |
---|
1099 | if((abs(errf(3,n)).gt.20.).and. & |
---|
1100 | (errf(3,n).gt.-800000.))then |
---|
1101 | |
---|
1102 | errf(1,n)=-888888. |
---|
1103 | errf(2,n)=-888888. |
---|
1104 | errf(3,n)=-888888. |
---|
1105 | errf(4,n)=-888888. |
---|
1106 | varobs(1,n)=-888888. |
---|
1107 | varobs(2,n)=-888888. |
---|
1108 | varobs(3,n)=-888888. |
---|
1109 | varobs(4,n)=-888888. |
---|
1110 | endif |
---|
1111 | enddo |
---|
1112 | |
---|
1113 | ! For printout |
---|
1114 | ! IF(MOD(KTAU,INPF).NE.0) THEN |
---|
1115 | ! RETURN |
---|
1116 | ! ENDIF |
---|
1117 | |
---|
1118 | RETURN |
---|
1119 | END SUBROUTINE errob |
---|
1120 | |
---|
1121 | SUBROUTINE upoint(i_start,i_end, j_start,j_end, ids,ide, ims,ime, jms,jme, & |
---|
1122 | arrin, arrout) |
---|
1123 | !------------------------------------------------------------------------------ |
---|
1124 | ! PURPOSE: This subroutine interpolates a real 2D array defined over mass |
---|
1125 | ! coordinate points, to U (momentum) points. |
---|
1126 | ! |
---|
1127 | !------------------------------------------------------------------------------ |
---|
1128 | IMPLICIT NONE |
---|
1129 | |
---|
1130 | INTEGER, INTENT(IN) :: i_start ! Starting i index for this model tile |
---|
1131 | INTEGER, INTENT(IN) :: i_end ! Ending i index for this model tile |
---|
1132 | INTEGER, INTENT(IN) :: j_start ! Starting j index for this model tile |
---|
1133 | INTEGER, INTENT(IN) :: j_end ! Ending j index for this model tile |
---|
1134 | INTEGER, INTENT(IN) :: ids ! Starting i index for entire model domain |
---|
1135 | INTEGER, INTENT(IN) :: ide ! Ending i index for entire model domain |
---|
1136 | INTEGER, INTENT(IN) :: ims ! Starting i index for model patch |
---|
1137 | INTEGER, INTENT(IN) :: ime ! Ending i index for model patch |
---|
1138 | INTEGER, INTENT(IN) :: jms ! Starting j index for model patch |
---|
1139 | INTEGER, INTENT(IN) :: jme ! Ending j index for model patch |
---|
1140 | REAL, INTENT(IN) :: arrin ( ims:ime, jms:jme ) ! input array on mass points |
---|
1141 | REAL, INTENT(OUT) :: arrout( ims:ime, jms:jme ) ! output array on U points |
---|
1142 | |
---|
1143 | ! Local variables |
---|
1144 | integer :: i, j |
---|
1145 | |
---|
1146 | ! Do domain interior first |
---|
1147 | do j = j_start, j_end |
---|
1148 | do i = max(2,i_start), i_end |
---|
1149 | arrout(i,j) = 0.5*(arrin(i,j)+arrin(i-1,j)) |
---|
1150 | enddo |
---|
1151 | enddo |
---|
1152 | |
---|
1153 | ! Do west-east boundaries |
---|
1154 | if(i_start .eq. ids) then |
---|
1155 | do j = j_start, j_end |
---|
1156 | arrout(i_start,j) = arrin(i_start,j) |
---|
1157 | enddo |
---|
1158 | endif |
---|
1159 | if(i_end .eq. ide-1) then |
---|
1160 | do j = j_start, j_end |
---|
1161 | arrout(i_end+1,j) = arrin(i_end,j) |
---|
1162 | enddo |
---|
1163 | endif |
---|
1164 | |
---|
1165 | RETURN |
---|
1166 | END SUBROUTINE upoint |
---|
1167 | |
---|
1168 | SUBROUTINE vpoint(i_start,i_end, j_start,j_end, jds,jde, ims,ime, jms,jme, & |
---|
1169 | arrin, arrout) |
---|
1170 | !------------------------------------------------------------------------------ |
---|
1171 | ! PURPOSE: This subroutine interpolates a real 2D array defined over mass |
---|
1172 | ! coordinate points, to V (momentum) points. |
---|
1173 | ! |
---|
1174 | !------------------------------------------------------------------------------ |
---|
1175 | IMPLICIT NONE |
---|
1176 | |
---|
1177 | INTEGER, INTENT(IN) :: i_start ! Starting i index for this model tile |
---|
1178 | INTEGER, INTENT(IN) :: i_end ! Ending i index for this model tile |
---|
1179 | INTEGER, INTENT(IN) :: j_start ! Starting j index for this model tile |
---|
1180 | INTEGER, INTENT(IN) :: j_end ! Ending j index for this model tile |
---|
1181 | INTEGER, INTENT(IN) :: jds ! Starting j index for entire model domain |
---|
1182 | INTEGER, INTENT(IN) :: jde ! Ending j index for entire model domain |
---|
1183 | INTEGER, INTENT(IN) :: ims ! Starting i index for model patch |
---|
1184 | INTEGER, INTENT(IN) :: ime ! Ending i index for model patch |
---|
1185 | INTEGER, INTENT(IN) :: jms ! Starting j index for model patch |
---|
1186 | INTEGER, INTENT(IN) :: jme ! Ending j index for model patch |
---|
1187 | REAL, INTENT(IN) :: arrin ( ims:ime, jms:jme ) ! input array on mass points |
---|
1188 | REAL, INTENT(OUT) :: arrout( ims:ime, jms:jme ) ! output array on V points |
---|
1189 | |
---|
1190 | ! Local variables |
---|
1191 | integer :: i, j |
---|
1192 | |
---|
1193 | ! Do domain interior first |
---|
1194 | do j = max(2,j_start), j_end |
---|
1195 | do i = i_start, i_end |
---|
1196 | arrout(i,j) = 0.5*(arrin(i,j)+arrin(i,j-1)) |
---|
1197 | enddo |
---|
1198 | enddo |
---|
1199 | |
---|
1200 | ! Do south-north boundaries |
---|
1201 | if(j_start .eq. jds) then |
---|
1202 | do i = i_start, i_end |
---|
1203 | arrout(i,j_start) = arrin(i,j_start) |
---|
1204 | enddo |
---|
1205 | endif |
---|
1206 | if(j_end .eq. jde-1) then |
---|
1207 | do i = i_start, i_end |
---|
1208 | arrout(i,j_end+1) = arrin(i,j_end) |
---|
1209 | enddo |
---|
1210 | endif |
---|
1211 | |
---|
1212 | RETURN |
---|
1213 | END SUBROUTINE vpoint |
---|
1214 | |
---|
1215 | LOGICAL FUNCTION TILE_MASK(iloc, jloc, its, ite, jts, jte) |
---|
1216 | !------------------------------------------------------------------------------ |
---|
1217 | ! PURPOSE: Check to see if an i, j grid coordinate is in the tile index range. |
---|
1218 | ! |
---|
1219 | ! Returns: TRUE if the grid coordinate (ILOC,JLOC) is in the tile defined by |
---|
1220 | ! tile-range indices (its,jts) and (ite,jte) |
---|
1221 | ! FALSE otherwise. |
---|
1222 | ! |
---|
1223 | !------------------------------------------------------------------------------ |
---|
1224 | IMPLICIT NONE |
---|
1225 | |
---|
1226 | INTEGER, INTENT(IN) :: iloc |
---|
1227 | INTEGER, INTENT(IN) :: jloc |
---|
1228 | INTEGER, INTENT(IN) :: its |
---|
1229 | INTEGER, INTENT(IN) :: ite |
---|
1230 | INTEGER, INTENT(IN) :: jts |
---|
1231 | INTEGER, INTENT(IN) :: jte |
---|
1232 | |
---|
1233 | ! Local variables |
---|
1234 | LOGICAL :: retval |
---|
1235 | |
---|
1236 | TILE_MASK = (iloc .LE. ite .AND. iloc .GE. its .AND. & |
---|
1237 | jloc .LE. jte .AND. jloc .GE. jts ) |
---|
1238 | |
---|
1239 | RETURN |
---|
1240 | END FUNCTION TILE_MASK |
---|
1241 | |
---|
1242 | !----------------------------------------------------------------------- |
---|
1243 | SUBROUTINE nudob(j, ivar, aten, inest, ifrest, ktau, ktaur, & |
---|
1244 | xtime, mu, msfx, msfy, nndgv, nerrf, niobf, maxdom, & |
---|
1245 | npfi, ionf, rinxy, twindo, levidn, & |
---|
1246 | parid, nstat, i_parent_start, j_parent_start, & |
---|
1247 | fdob, lev_in_ob, plfo, nlevs_ob, & |
---|
1248 | iratio, dx, dtmin, rio, rjo, rko, & |
---|
1249 | timeob, varobs, errf, pbase, ptop, pp, & |
---|
1250 | iswind, istemp, ismois, giv, git, giq, & |
---|
1251 | savwt, kpblt, nscan, & |
---|
1252 | iprt, & |
---|
1253 | ids,ide, jds,jde, kds,kde, & ! domain dims |
---|
1254 | ims,ime, jms,jme, kms,kme, & ! memory dims |
---|
1255 | its,ite, jts,jte, kts,kte ) ! tile dims |
---|
1256 | |
---|
1257 | !----------------------------------------------------------------------- |
---|
1258 | USE module_model_constants |
---|
1259 | USE module_domain |
---|
1260 | !----------------------------------------------------------------------- |
---|
1261 | IMPLICIT NONE |
---|
1262 | !----------------------------------------------------------------------- |
---|
1263 | ! |
---|
1264 | ! PURPOSE: THIS SUBROUTINE GENERATES NUDGING TENDENCIES FOR THE J-TH |
---|
1265 | ! VERTICAL SLICE (I-K PLANE) FOR FOUR-DIMENSIONAL DATA |
---|
1266 | ! ASSIMILATION FROM INDIVIDUAL OBSERVATIONS. THE NUDGING |
---|
1267 | ! TENDENCIES ARE FOUND FROM A ONE-PASS CALCULATION OF |
---|
1268 | ! WEIGHTING FACTORS SIMILAR TO THE BENJAMIN-SEAMAN OBJECTIVE |
---|
1269 | ! ANALYSIS. THIS SUBROUTINE IS DESIGNED FOR RAPID EXECUTION |
---|
1270 | ! AND MINIMAL STORAGE REQUIREMENTS. ALGORITHMS SHOULD BE |
---|
1271 | ! VECTORIZED WHEREVER POSSIBLE. |
---|
1272 | ! |
---|
1273 | ! HISTORY: Original author: MM5 version??? |
---|
1274 | ! 02/04/2004 - Creation of WRF version. Al Bourgeois |
---|
1275 | ! 08/28/2006 - Conversion from F77 to F90 Al Bourgeois |
---|
1276 | !------------------------------------------------------------------------------ |
---|
1277 | ! |
---|
1278 | ! NOTE: This routine was originally designed for MM5, which uses |
---|
1279 | ! a nonstandard (I,J) coordinate system. For WRF, I is the |
---|
1280 | ! east-west running coordinate, and J is the south-north |
---|
1281 | ! running coordinate. So a "J-slab" here is west-east in |
---|
1282 | ! extent, not south-north as for MM5. -ajb 06/10/2004 |
---|
1283 | ! |
---|
1284 | ! NET WEIGHTING (WT) OF THE DIFFERENCE BETWEEN THE OBSERVATIONS |
---|
1285 | ! AND LOCAL FORECAST VALUES IS BASED ON THE MULTIPLE OF THREE |
---|
1286 | ! |
---|
1287 | ! NET WEIGHTING (WT) OF THE DIFFERENCE BETWEEN THE OBSERVATIONS |
---|
1288 | ! AND LOCAL FORECAST VALUES IS BASED ON THE MULTIPLE OF THREE |
---|
1289 | ! TYPES OF FACTORS: |
---|
1290 | ! 1) TIME WEIGHTING - ONLY OBSERVATIONS WITHIN A SELECTED |
---|
1291 | ! TIME WINDOW (TWINDO) CENTERED AT THE CURRENT FORECAST |
---|
1292 | ! TIME (XTIME) ARE USED. OBSERVATIONS CLOSEST TO |
---|
1293 | ! XTIME ARE TIME-WEIGHTED MOST HEAVILY (TIMEWT) |
---|
1294 | ! 2) VERTICAL WEIGHTING - NON-ZERO WEIGHTS (WTSIG) ARE |
---|
1295 | ! CALCULATED WITHIN A VERTICAL REGION OF INFLUENCE |
---|
1296 | ! (RINSIG). |
---|
1297 | ! 3) HORIZONTAL WEIGHTING - NON-ZERO WEIGHTS (WTIJ) ARE |
---|
1298 | ! CALCULATED WITHIN A RADIUS OF INFLUENCE (RINXY). THE |
---|
1299 | ! VALUE OF RIN IS DEFINED IN KILOMETERS, AND CONVERTED |
---|
1300 | ! TO GRID LENGTHS FOR THE APPROPRIATE MESH SIZE. |
---|
1301 | ! |
---|
1302 | ! THE FIVE FORECAST VARIABLES ARE PROCESSED BY CHANGING THE |
---|
1303 | ! VALUE OF IVAR AS FOLLOWS: |
---|
1304 | ! IVAR VARIABLE(TAU-1) |
---|
1305 | ! ---- --------------- |
---|
1306 | ! 1 U |
---|
1307 | ! 2 V |
---|
1308 | ! 3 T |
---|
1309 | ! 4 QV |
---|
1310 | ! 5 PSB(CROSS) REMOVED IN V3 |
---|
1311 | ! (6) PSB(DOT) |
---|
1312 | ! |
---|
1313 | !----------------------------------------------------------------------- |
---|
1314 | ! |
---|
1315 | ! Description of input arguments. |
---|
1316 | ! |
---|
1317 | !----------------------------------------------------------------------- |
---|
1318 | |
---|
1319 | INTEGER, INTENT(IN) :: ids,ide, jds,jde, kds,kde ! domain dims. |
---|
1320 | INTEGER, INTENT(IN) :: ims,ime, jms,jme, kms,kme ! memory dims. |
---|
1321 | INTEGER, INTENT(IN) :: its,ite, jts,jte, kts,kte ! tile dims. |
---|
1322 | INTEGER, INTENT(IN) :: j ! south-north running coordinate. |
---|
1323 | INTEGER, INTENT(IN) :: ivar |
---|
1324 | INTEGER, INTENT(IN) :: inest ! domain index |
---|
1325 | LOGICAL, INTENT(IN) :: ifrest |
---|
1326 | INTEGER, INTENT(IN) :: ktau |
---|
1327 | INTEGER, INTENT(IN) :: ktaur |
---|
1328 | REAL, INTENT(IN) :: xtime ! forecast time in minutes |
---|
1329 | INTEGER, INTENT(IN) :: nndgv ! number of nudge variables |
---|
1330 | INTEGER, INTENT(IN) :: nerrf ! number of error fields |
---|
1331 | INTEGER, INTENT(IN) :: niobf ! number of observations |
---|
1332 | INTEGER, INTENT(IN) :: maxdom ! maximum number of domains |
---|
1333 | INTEGER, INTENT(IN) :: npfi |
---|
1334 | INTEGER, INTENT(IN) :: ionf |
---|
1335 | REAL, INTENT(IN) :: rinxy |
---|
1336 | REAL, INTENT(IN) :: twindo |
---|
1337 | INTEGER, INTENT(IN) :: levidn(maxdom) ! level of nest |
---|
1338 | INTEGER, INTENT(IN) :: parid(maxdom) ! parent domain id |
---|
1339 | INTEGER, INTENT(IN) :: nstat ! number of obs stations |
---|
1340 | INTEGER, INTENT(IN) :: i_parent_start(maxdom) ! Start i index in parent domain. |
---|
1341 | INTEGER, INTENT(IN) :: j_parent_start(maxdom) ! Start j index in parent domain. |
---|
1342 | TYPE(fdob_type), intent(inout) :: fdob |
---|
1343 | REAL, INTENT(IN) :: lev_in_ob(niobf) ! Level in sounding-type obs. |
---|
1344 | REAL, intent(IN) :: plfo(niobf) |
---|
1345 | REAL, INTENT(IN) :: nlevs_ob(niobf) ! Number of levels in sounding. |
---|
1346 | INTEGER, INTENT(IN) :: iratio ! Nest to parent gridsize ratio. |
---|
1347 | REAL, INTENT(IN) :: dx ! This domain grid cell-size (m) |
---|
1348 | REAL, INTENT(IN) :: dtmin |
---|
1349 | REAL, INTENT(IN) :: rio(niobf) ! Obs west-east coordinate (non-stag grid). |
---|
1350 | REAL, INTENT(IN) :: rjo(niobf) ! Obs south-north coordinate (non-stag grid). |
---|
1351 | REAL, INTENT(INOUT) :: rko(niobf) ! Obs vertical coordinate. |
---|
1352 | REAL, INTENT(IN) :: timeob(niobf) |
---|
1353 | REAL, INTENT(IN) :: varobs(nndgv,niobf) |
---|
1354 | REAL, INTENT(IN) :: errf(nerrf, niobf) |
---|
1355 | REAL, INTENT(IN) :: pbase( ims:ime, kms:kme ) ! Base pressure. |
---|
1356 | REAL, INTENT(IN) :: ptop |
---|
1357 | REAL, INTENT(IN) :: pp( ims:ime, kms:kme ) ! Pressure perturbation (Pa) |
---|
1358 | REAL, INTENT(IN) :: mu(ims:ime) ! Air mass on u, v, or mass-grid |
---|
1359 | REAL, INTENT(IN) :: msfx(ims:ime) ! Map scale (only used for vars u & v) |
---|
1360 | REAL, INTENT(IN) :: msfy(ims:ime) ! Map scale (only used for vars u & v) |
---|
1361 | INTEGER, intent(in) :: iswind ! Nudge flag for wind |
---|
1362 | INTEGER, intent(in) :: istemp ! Nudge flag for temperature |
---|
1363 | INTEGER, intent(in) :: ismois ! Nudge flag for moisture |
---|
1364 | REAL, intent(in) :: giv ! Coefficient for wind |
---|
1365 | REAL, intent(in) :: git ! Coefficient for temperature |
---|
1366 | REAL, intent(in) :: giq ! Coefficient for moisture |
---|
1367 | REAL, INTENT(INOUT) :: aten( ims:ime, kms:kme) |
---|
1368 | REAL, INTENT(INOUT) :: savwt( nndgv, ims:ime, kms:kme ) |
---|
1369 | INTEGER, INTENT(IN) :: kpblt(its:ite) |
---|
1370 | INTEGER, INTENT(IN) :: nscan ! number of scans |
---|
1371 | LOGICAL, INTENT(IN) :: iprt ! print flag |
---|
1372 | |
---|
1373 | ! Local variables |
---|
1374 | integer :: mm(maxdom) |
---|
1375 | integer :: kobs ! k-lev below obs (for obs straddling pblt) |
---|
1376 | real :: ra(niobf) |
---|
1377 | real :: rb(niobf) |
---|
1378 | real :: psurf(niobf) |
---|
1379 | real :: wtsig(kms:kme),wt(ims:ime,kms:kme),wt2err(ims:ime,kms:kme) |
---|
1380 | real :: rscale(ims:ime) ! For converting to rho-coupled units. |
---|
1381 | ! real :: tscale(ims:ime,kms:kme) ! For converting to potential temp. units. |
---|
1382 | real :: reserf(100) |
---|
1383 | character*40 name |
---|
1384 | character*3 chr_hr |
---|
1385 | |
---|
1386 | !*** DECLARATIONS FOR IMPLICIT NONE |
---|
1387 | integer :: i,k,iplo,icut,ipl,inpf,infr,jjjn |
---|
1388 | integer :: igrid,n,nml,nnl,nsthis,nsmetar,nsspeci,nsship |
---|
1389 | integer :: nssynop,nstemp,nspilot,nssatwnds,nssams,nsprofs |
---|
1390 | integer :: maxi,mini,maxj,minj,nnn,nsndlev,njcsnd,kob |
---|
1391 | integer :: komin,komax,nn,nhi,nlo,nnjc |
---|
1392 | integer :: i_s,i_e |
---|
1393 | integer :: istq |
---|
1394 | real :: gfactor,rfactor,gridx,gridy,rindx,schnes,ris |
---|
1395 | real :: grfacx,grfacy |
---|
1396 | real :: fdtim,tw1,tw2,tconst,timewt,timewt2,ttim,dift,pob |
---|
1397 | real :: ri,rj,rx,ry,rsq,wtij,pdfac,erfivr,dk,slope,rinfac |
---|
1398 | real :: rinprs,pijk,pobhi,poblo,pdiffj,w2eowt,gitq |
---|
1399 | |
---|
1400 | real :: scratch |
---|
1401 | |
---|
1402 | ! print *,'start nudob, nstat,j,ivar=',nstat,j,ivar |
---|
1403 | ! if(ivar.ne.4)return |
---|
1404 | !yliu start -- for multi-scans: NSCAN=0: original |
---|
1405 | ! NSCAN=1: added a scan with a larger Ri and smaller G |
---|
1406 | ! if(NSCAN.ne.0 .and. NSCAN.ne.1) stop |
---|
1407 | ! ajb note: Will need to increase memory for SAVWT if NSCAN=1: |
---|
1408 | if(NSCAN.ne.0) then |
---|
1409 | IF (iprt) write(6,*) 'SAVWT must be resized for NSCAN=1' |
---|
1410 | stop |
---|
1411 | endif |
---|
1412 | IPLO=0 + NSCAN*4 |
---|
1413 | GFACTOR=1. + NSCAN*(-1. + 0.33333) |
---|
1414 | RFACTOR=1. + NSCAN*(-1. + 3.0) |
---|
1415 | !yliu end |
---|
1416 | ! jc |
---|
1417 | |
---|
1418 | ! return if too close to j boundary |
---|
1419 | if(inest.eq.1.and.ivar.lt.3.and.(j.le.2.or.j.ge.jde-1)) then |
---|
1420 | ! write(6,*) '1 RETURN: IVAR = ',ivar,' J = ',j, |
---|
1421 | ! $ ' too close to boundary.' |
---|
1422 | return |
---|
1423 | endif |
---|
1424 | if(inest.eq.1.and.ivar.ge.3.and.(j.le.2.or.j.ge.jde-2)) then |
---|
1425 | ! write(6,*) '2 RETURN: IVAR = ',ivar,' J = ',j, |
---|
1426 | ! $ ' too close to boundary.' |
---|
1427 | return |
---|
1428 | endif |
---|
1429 | |
---|
1430 | ! COMPUTE IPL WHICH REPRESENTS IVAR FOR EACH MESH IN SAVWT MODS |
---|
1431 | ICUT=0 |
---|
1432 | IF(INEST.GT.1)ICUT=1 |
---|
1433 | i_s = max0(2+icut,its) |
---|
1434 | i_e = min0(ide-1-icut,ite) |
---|
1435 | |
---|
1436 | IPL=IVAR + IPLO !yliu +IPLO |
---|
1437 | |
---|
1438 | ! DEFINE GRID-TYPE OFFSET FACTORS, IGRID AND GRID |
---|
1439 | |
---|
1440 | INPF=(IRATIO**LEVIDN(INEST))*NPFI |
---|
1441 | INFR=(IRATIO**LEVIDN(INEST))*IONF |
---|
1442 | |
---|
1443 | GRIDX=0.0 |
---|
1444 | GRIDY=0.0 |
---|
1445 | IGRID=0 |
---|
1446 | IF(IVAR.GE.3)THEN |
---|
1447 | GRIDX=0.5 |
---|
1448 | GRIDY=0.5 |
---|
1449 | IGRID=1 |
---|
1450 | ELSEIF(IVAR.eq.1) THEN |
---|
1451 | GRIDY=0.5 |
---|
1452 | GRIDX=0.0 |
---|
1453 | IGRID=1 |
---|
1454 | ELSEIF(IVAR.eq.2) THEN |
---|
1455 | GRIDX=0.5 |
---|
1456 | GRIDY=0.0 |
---|
1457 | IGRID=1 |
---|
1458 | ENDIF |
---|
1459 | |
---|
1460 | ! TRANSFORM THE HORIZONTAL RADIUS OF INFLUENCE, RINXY, FROM |
---|
1461 | ! KILOMETERS TO GRID LENGTHS, RINDX |
---|
1462 | |
---|
1463 | RINDX=RINXY*1000./DX * RFACTOR !yliu *RFACTOR |
---|
1464 | |
---|
1465 | ! jc |
---|
1466 | ! make horizontal radius vary per nest |
---|
1467 | ! rindx=rindx/float(inest) |
---|
1468 | ! yliu test1 -- En 3, 4 |
---|
1469 | ! rindx=rindx/float(3**(in-1)) !YLIU |
---|
1470 | ! jc |
---|
1471 | ! make horizontal radius vary per nest |
---|
1472 | ! schnes=1/float(inest) !JC |
---|
1473 | ! yliu test1 -- En 3, 4 !YLIU |
---|
1474 | schnes=1/float(3**(inest-1)) !JC |
---|
1475 | ! reduce the Rinf in the nested grid proportionally |
---|
1476 | rindx=rindx*schnes |
---|
1477 | ! rinfmn =1., rinfmx=2., pfree=50 in param.F |
---|
1478 | ! yliu test: for upper-air data, use larger influence radii |
---|
1479 | ! Essentially increase the slope -- the same radii |
---|
1480 | ! at 500mb and above as the coarse mesh and the |
---|
1481 | ! same small radii at sfc as that for sfc obs |
---|
1482 | fdob%rinfmx=2. *1.0 /schnes !YLIU |
---|
1483 | ! rinfmx=1.2*1.0 /schnes !YLIU |
---|
1484 | ! jc |
---|
1485 | RIS=RINDX*RINDX |
---|
1486 | IF(IFREST.AND.KTAU.EQ.KTAUR)GOTO 5 |
---|
1487 | IF(MOD(KTAU,INFR).NE.0)GOTO 126 |
---|
1488 | 5 CONTINUE |
---|
1489 | IF (iprt) THEN |
---|
1490 | IF(J.EQ.10) write(6,6) INEST,J,KTAU,XTIME,IVAR,IPL,rindx |
---|
1491 | ENDIF |
---|
1492 | 6 FORMAT(1X,'OBS NUDGING FOR IN,J,KTAU,XTIME,', & |
---|
1493 | 'IVAR,IPL: ',I2,1X,I2,1X,I5,1X,F8.2,1X,I2,1X,I2, & |
---|
1494 | ' rindx=',f4.1) |
---|
1495 | |
---|
1496 | !******************************************************************** |
---|
1497 | !ajb_07012008 Setting ra and rb for the fine mesh her is now simple. |
---|
1498 | ! Values are no longer calculated here based on the |
---|
1499 | ! coarse mesh, since direct use of WRF map projections |
---|
1500 | ! on each nest was implemented in subroutine in4dob. |
---|
1501 | !******************************************************************** |
---|
1502 | ! SET RA AND RB |
---|
1503 | DO N=1,NSTAT |
---|
1504 | RA(N)=RIO(N)-GRIDX |
---|
1505 | RB(N)=RJO(N)-GRIDY |
---|
1506 | ENDDO |
---|
1507 | |
---|
1508 | ! OUTPUT OBS PER GRID EVERY HOUR |
---|
1509 | if ( mod(xtime,60.).gt.56. .and. ivar.eq.3 .and. j.eq.10) then |
---|
1510 | IF (iprt) print *,'outputting obs number on grid ', & |
---|
1511 | inest,' at time=',xtime |
---|
1512 | write(chr_hr(1:3),'(i3)')nint(xtime/60.) |
---|
1513 | if(chr_hr(1:1).eq.' ')chr_hr(1:1)='0' |
---|
1514 | if(chr_hr(2:2).eq.' ')chr_hr(2:2)='0' |
---|
1515 | IF (iprt) print *,'chr_hr=',chr_hr(1:3),nint(xtime/60.) |
---|
1516 | open(91,file= & |
---|
1517 | 'obs_g'//char(inest+ichar('0'))//'_'//chr_hr(1:3), & |
---|
1518 | form='FORMATted',status='unknown') |
---|
1519 | write(91,911)nstat |
---|
1520 | write(6,911)nstat |
---|
1521 | 911 FORMAT('total obs=',i8) |
---|
1522 | nsthis=0 |
---|
1523 | nsmetar=0 |
---|
1524 | nsspeci=0 |
---|
1525 | nsship=0 |
---|
1526 | nssynop=0 |
---|
1527 | nstemp=0 |
---|
1528 | nspilot=0 |
---|
1529 | nssatwnds=0 |
---|
1530 | nssams=0 |
---|
1531 | nsprofs=0 |
---|
1532 | ! print *,'ide,jde=',ide,jde |
---|
1533 | do jjjn=1,nstat |
---|
1534 | ! DETERMINE THE TIME-WEIGHT FACTOR FOR N |
---|
1535 | FDTIM=XTIME-DTMIN |
---|
1536 | ! CONVERT TWINDO AND TIMEOB FROM HOURS TO MINUTES: |
---|
1537 | TW1=TWINDO/2.*60. |
---|
1538 | TW2=TWINDO*60. |
---|
1539 | TCONST=1./TW1 |
---|
1540 | TIMEWT2=0.0 |
---|
1541 | TTIM=TIMEOB(jjjn)*60. |
---|
1542 | !***********TTIM=TARGET TIME IN MINUTES |
---|
1543 | DIFT=ABS(FDTIM-TTIM) |
---|
1544 | IF(DIFT.LE.TW1)TIMEWT2=1.0 |
---|
1545 | |
---|
1546 | IF(DIFT.GT.TW1.AND.DIFT.LE.TW2) THEN |
---|
1547 | IF(FDTIM.LT.TTIM)TIMEWT2=(FDTIM-(TTIM-TW2))*TCONST |
---|
1548 | IF(FDTIM.GT.TTIM)TIMEWT2=((TTIM+TW2)-FDTIM)*TCONST |
---|
1549 | ENDIF |
---|
1550 | |
---|
1551 | ! print *,'timewt2=',timewt2,ttim,fdtim |
---|
1552 | if (ra(jjjn).ge.1. .and. rb(jjjn).ge.1. & |
---|
1553 | .and.ra(jjjn).le.real(ide) .and. rb(jjjn).le.real(jde) & |
---|
1554 | .and.timewt2.gt.0.) then |
---|
1555 | if(lev_in_ob(jjjn).eq.1.)nsthis=nsthis+1 |
---|
1556 | if(plfo(jjjn).eq.1.)nsmetar=nsmetar+1 |
---|
1557 | if(plfo(jjjn).eq.2.)nsspeci=nsspeci+1 |
---|
1558 | if(plfo(jjjn).eq.3.)nsship=nsship+1 |
---|
1559 | if(plfo(jjjn).eq.4.)nssynop=nssynop+1 |
---|
1560 | if(plfo(jjjn).eq.5..and.lev_in_ob(jjjn).eq.1.) nstemp=nstemp+1 |
---|
1561 | if(plfo(jjjn).eq.6..and.lev_in_ob(jjjn).eq.1.) nspilot=nspilot+1 |
---|
1562 | if(plfo(jjjn).eq.7.)nssatwnds=nssatwnds+1 |
---|
1563 | if(plfo(jjjn).eq.8.)nssams=nssams+1 |
---|
1564 | if(plfo(jjjn).eq.9..and.lev_in_ob(jjjn).eq.1.) nsprofs=nsprofs+1 |
---|
1565 | endif |
---|
1566 | enddo |
---|
1567 | write(91,912)nsthis |
---|
1568 | write(6,912)nsthis |
---|
1569 | 912 FORMAT('total obs on this grid=',i8) |
---|
1570 | write(91,921)nsmetar |
---|
1571 | write(6,921)nsmetar |
---|
1572 | 921 FORMAT('total metar obs on this grid=',i8) |
---|
1573 | write(91,922)nsspeci |
---|
1574 | write(6,922)nsspeci |
---|
1575 | 922 FORMAT('total special obs on this grid=',i8) |
---|
1576 | write(91,923)nsship |
---|
1577 | write(6,923)nsship |
---|
1578 | 923 FORMAT('total ship obs on this grid=',i8) |
---|
1579 | write(91,924)nssynop |
---|
1580 | write(6,924)nssynop |
---|
1581 | 924 FORMAT('total synop obs on this grid=',i8) |
---|
1582 | write(91,925)nstemp |
---|
1583 | write(6,925)nstemp |
---|
1584 | 925 FORMAT('total temp obs on this grid=',i8) |
---|
1585 | write(91,926)nspilot |
---|
1586 | write(6,926)nspilot |
---|
1587 | 926 FORMAT('total pilot obs on this grid=',i8) |
---|
1588 | write(91,927)nssatwnds |
---|
1589 | write(6,927)nssatwnds |
---|
1590 | 927 FORMAT('total sat-wind obs on this grid=',i8) |
---|
1591 | write(91,928)nssams |
---|
1592 | write(6,928)nssams |
---|
1593 | 928 FORMAT('total sams obs on this grid=',i8) |
---|
1594 | write(91,929)nsprofs |
---|
1595 | write(6,929)nsprofs |
---|
1596 | 929 FORMAT('total profiler obs on this grid=',i8) |
---|
1597 | close(91) |
---|
1598 | endif ! END OUTPUT OBS PER GRID EVERY HOUR |
---|
1599 | |
---|
1600 | |
---|
1601 | ! INITIALIZE WEIGHTING ARRAYS TO ZERO |
---|
1602 | DO I=its,ite |
---|
1603 | DO K=1,kte |
---|
1604 | WT(I,K)=0.0 |
---|
1605 | WT2ERR(I,K)=0.0 |
---|
1606 | ENDDO |
---|
1607 | ENDDO |
---|
1608 | |
---|
1609 | ! DO P* COMPUTATIONS ON DOT POINTS FOR IVAR.LT.3 (U AND V) |
---|
1610 | ! AND CROSS POINTS FOR IVAR.GE.3 (T,Q,P*). |
---|
1611 | ! |
---|
1612 | ! COMPUTE P* AT OBS LOCATION (RA,RB). DO THIS AS SEPARATE VECTOR LOOP H |
---|
1613 | ! SO IT IS ALREADY AVAILABLE IN NSTAT LOOP 120 BELOW |
---|
1614 | |
---|
1615 | ! PSURF IS NOT AVAILABLE GLOBALLY, THEREFORE, THE BILINEAR INTERPOLATION |
---|
1616 | ! AROUND THE OBS POINT IS DONE IN ERROB() AND STORED IN ERRF([678],N) FOR |
---|
1617 | ! THE POINT (6=PRESS, 7=U-MOM, 8=V-MOM). |
---|
1618 | DO N=1,NSTAT |
---|
1619 | IF(IVAR.GE.3)THEN |
---|
1620 | PSURF(N)=ERRF(6,N) |
---|
1621 | ELSE |
---|
1622 | IF(IVAR.EQ.1)THEN |
---|
1623 | PSURF(N)=ERRF(7,N) ! U-points |
---|
1624 | ELSE |
---|
1625 | PSURF(N)=ERRF(8,N) ! V-points |
---|
1626 | ENDIF |
---|
1627 | ENDIF |
---|
1628 | ENDDO |
---|
1629 | |
---|
1630 | ! DETERMINE THE LIMITS OF THE SEARCH REGION FOR THE CURRENT |
---|
1631 | ! J-STRIP |
---|
1632 | |
---|
1633 | MAXJ=J+IFIX(RINDX*fdob%RINFMX+0.99) !ajb |
---|
1634 | MINJ=J-IFIX(RINDX*fdob%RINFMX+0.99) !ajb |
---|
1635 | |
---|
1636 | ! jc comment out this? want to use obs beyond the domain? |
---|
1637 | ! MAXJ=MIN0(JL-IGRID,MAXJ) !yliu |
---|
1638 | ! MINJ=MAX0(1,MINJ) !yliu |
---|
1639 | |
---|
1640 | n=1 |
---|
1641 | |
---|
1642 | !*********************************************************************** |
---|
1643 | DO nnn=1,NSTAT ! BEGIN OUTER LOOP FOR THE NSTAT OBSERVATIONS |
---|
1644 | !*********************************************************************** |
---|
1645 | ! Soundings are consecutive obs, but they need to be treated as a single |
---|
1646 | ! entity. Thus change the looping to nnn, with n defined separately. |
---|
1647 | |
---|
1648 | |
---|
1649 | !yliu |
---|
1650 | ! note for sfc data: nsndlev=1 and njcsnd=1 |
---|
1651 | nsndlev=int(nlevs_ob(n)-lev_in_ob(n))+1 |
---|
1652 | |
---|
1653 | ! yliu start -- set together with the other parts |
---|
1654 | ! test: do the sounding levels as individual obs |
---|
1655 | ! nsndlev=1 |
---|
1656 | ! yliu end |
---|
1657 | njcsnd=nsndlev |
---|
1658 | ! set pob here, to be used later |
---|
1659 | pob=varobs(5,n) |
---|
1660 | |
---|
1661 | ! print *, "s-- n=,nsndlev",n,njcsnd,J, ipl |
---|
1662 | ! print *, "s--",ivar,(errf(ivar,i),i=n,n+njcsnd) |
---|
1663 | ! CHECK TO SEE OF STATION N HAS DATA FOR VARIABLE IVAR |
---|
1664 | ! AND IF IT IS SUFFICIENTLY CLOSE TO THE J STRIP. THIS |
---|
1665 | ! SHOULD ELIMINATE MOST STATIONS FROM FURTHER CONSIDER- |
---|
1666 | ! ATION. |
---|
1667 | |
---|
1668 | !yliu: Skip bad obs if it is sfc or single level sounding. |
---|
1669 | !yliu: Before this (020918), a snd will be skipped if its first |
---|
1670 | !yliu level has bad data- often true due to elevation |
---|
1671 | |
---|
1672 | IF( ABS(ERRF(IVAR,N)).GT.9.E4 .and. njcsnd.eq.1 ) THEN |
---|
1673 | ! print *, " bad obs skipped" |
---|
1674 | |
---|
1675 | ELSEIF( RB(N).LT.FLOAT(MINJ) .OR. RB(N).GT.FLOAT(MAXJ) ) THEN |
---|
1676 | ! print *, " skipped obs far away from this J-slice" |
---|
1677 | |
---|
1678 | !---------------------------------------------------------------------- |
---|
1679 | ELSE ! BEGIN SECTION FOR PROCESSING THE OBSERVATION |
---|
1680 | !---------------------------------------------------------------------- |
---|
1681 | |
---|
1682 | ! DETERMINE THE TIME-WEIGHT FACTOR FOR N |
---|
1683 | FDTIM=XTIME-DTMIN |
---|
1684 | ! TWINDO IS IN MINUTES: |
---|
1685 | TW1=TWINDO/2.*60. |
---|
1686 | TW2=TWINDO*60. |
---|
1687 | TCONST=1./TW1 |
---|
1688 | TIMEWT=0.0 |
---|
1689 | TTIM=TIMEOB(N)*60. |
---|
1690 | !***********TTIM=TARGET TIME IN MINUTES |
---|
1691 | DIFT=ABS(FDTIM-TTIM) |
---|
1692 | IF(DIFT.LE.TW1)TIMEWT=1.0 |
---|
1693 | IF(DIFT.GT.TW1.AND.DIFT.LE.TW2) THEN |
---|
1694 | IF(FDTIM.LT.TTIM)TIMEWT=(FDTIM-(TTIM-TW2))*TCONST |
---|
1695 | IF(FDTIM.GT.TTIM)TIMEWT=((TTIM+TW2)-FDTIM)*TCONST |
---|
1696 | ENDIF |
---|
1697 | |
---|
1698 | ! DETERMINE THE LIMITS OF APPLICATION OF THE OBS IN THE VERTICAL |
---|
1699 | ! FOR THE VERTICAL WEIGHTING, WTSIG |
---|
1700 | |
---|
1701 | ! ASSIMILATE OBSERVATIONS ON PRESSURE LEVELS, EXCEPT FOR SURFACE |
---|
1702 | !ajb 20021210: (Bugfix) RKO is not available globally. It is computed in |
---|
1703 | !ajb ERROB() by the processor handling the obs point, and stored in ERRF(9,N). |
---|
1704 | |
---|
1705 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
1706 | rko(n) = errf(9,n) !ajb 20021210 |
---|
1707 | #endif |
---|
1708 | KOB=nint(RKO(N)) |
---|
1709 | KOB=MIN0(kte,KOB) |
---|
1710 | KOB=MAX0(1,KOB) |
---|
1711 | |
---|
1712 | ! ASSIMILATE SURFACE LAYER DATA ON SIGMA |
---|
1713 | IF(KOB.EQ.1.AND.IVAR.LE.4.and.nlevs_ob(n).lt.1.5) THEN |
---|
1714 | DO K=1,kte |
---|
1715 | WTSIG(K)=0.0 |
---|
1716 | ENDDO |
---|
1717 | ! DEFINE WTSIG: (FOR SRP: SPREAD SURFACE DATA THROUGH LOWEST 200 M) |
---|
1718 | ! WTSIG(1)=1.0 |
---|
1719 | ! WTSIG(2)=0.67 |
---|
1720 | ! WTSIG(3)=0.33 |
---|
1721 | ! KOMIN=3 |
---|
1722 | ! KOMAX=1 |
---|
1723 | ! DEFINE THE MAX AND MIN I VALUES FOR POSSIBLE NONZERO |
---|
1724 | ! WEIGHTS, BASED ON THE RADIUS OF INFLUENCE, RINDX (IN GRID LENGTHS). |
---|
1725 | ! fix this because kpblt at 1 and il is 0 |
---|
1726 | MAXI=IFIX(RA(N)+0.99+RINDX) |
---|
1727 | MAXI=MIN0(ide-1,MAXI) |
---|
1728 | MINI=IFIX(RA(N)-RINDX-0.99) |
---|
1729 | MINI=MAX0(2,MINI) |
---|
1730 | !yliu start |
---|
1731 | ! use also obs outside of this domain -- surface obs |
---|
1732 | ! if(RA(N).LT.0.-RINDX .or. RA(N).GT.float(IL+RINDX) .or. |
---|
1733 | ! & RB(N).LT.0.-RINDX .or. RB(N).GT.float(JL+RINDX)) then |
---|
1734 | ! print *, " skipped obs far away from this domain" |
---|
1735 | ! currently can use obs within this domain or ones very close to (1/3 |
---|
1736 | ! influence of radius in the coarse domain) this |
---|
1737 | ! domain. In later case, use BC column value to approximate the model value |
---|
1738 | ! at obs point -- ERRF need model field in errob.F !! |
---|
1739 | if ( RA(N).GE.(0.-RINDX/3) & |
---|
1740 | .and. RA(N).LE.float(ide)+RINDX/3 & |
---|
1741 | .and. RB(N).GE.(0.-RINDX/3) & |
---|
1742 | .and. RB(N).LE.float(jde)+RINDX/3) then |
---|
1743 | |
---|
1744 | ! or use obs within this domain only |
---|
1745 | ! if(RA(N).LT.1 .or. RA(N).GT.float(IL) .or. |
---|
1746 | ! & RB(N).LT.1 .or. RB(N).GT.float(JL)) then |
---|
1747 | ! print *, " skipped obs far outside of this domain" |
---|
1748 | ! if(j.eq.3 .and. ivar.eq.3) then |
---|
1749 | ! write(6,*) 'N = ',n,' exit 120 3' |
---|
1750 | ! endif |
---|
1751 | !yliu end |
---|
1752 | ! |
---|
1753 | ! LOOP THROUGH THE NECESSARY GRID POINTS SURROUNDING |
---|
1754 | ! OBSERVATION N. COMPUTE THE HORIZONTAL DISTANCE TO |
---|
1755 | ! THE OBS AND FIND THE WEIGHTING SUM OVER ALL OBS |
---|
1756 | RJ=FLOAT(J) |
---|
1757 | RX=RJ-RB(N) |
---|
1758 | ! WEIGHTS FOR THE 3-D VARIABLES |
---|
1759 | ERFIVR=ERRF(IVAR,N) |
---|
1760 | ! |
---|
1761 | !JM I will be local, because it indexes into PDOC, WT, and others |
---|
1762 | |
---|
1763 | ! if((ivar.eq.1 .or. ivar.eq.3) .and. n.le.200) then |
---|
1764 | ! write(6,'(a,i3,a,i3)')'SURF OBS NEAR: N = ',n,' nest = ',inest |
---|
1765 | ! write(6,'(a,f10.3,a,f10.3,a,i3,a,i3,a,i3,a,i2)') |
---|
1766 | ! $ ' RA =',RA(N),' RB =',RB(N),' J =',j, |
---|
1767 | ! $ ' MINI =',MINI,' MAXI =',MAXI,' NEST =',inest |
---|
1768 | ! endif |
---|
1769 | |
---|
1770 | DO I=max0(its,MINI),min0(ite,MAXI) |
---|
1771 | |
---|
1772 | RI=FLOAT(I) |
---|
1773 | RY=RI-RA(N) |
---|
1774 | RIS=RINDX*RINDX |
---|
1775 | RSQ=RX*RX+RY*RY |
---|
1776 | ! DPRIM=SQRT(RSQ) |
---|
1777 | ! THIS FUNCTION DECREASES WTIJ AS PSFC CHANGES WITHIN SEARCH RADIUS |
---|
1778 | ! D=DPRIM+RINDX*DCON*ABS(PSBO(N)-PDOC(I,J)) |
---|
1779 | ! DSQ=D*D |
---|
1780 | ! WTIJ=(RIS-DSQ)/(RIS+DSQ) |
---|
1781 | wtij=(ris-rsq)/(ris+rsq) |
---|
1782 | scratch = (abs(psurf(n)-.001*pbase(i,1))*fdob%DCON) |
---|
1783 | pdfac=1.-AMIN1(1.0,scratch) |
---|
1784 | wtij=wtij*pdfac |
---|
1785 | WTIJ=AMAX1(0.0,WTIJ) |
---|
1786 | |
---|
1787 | ! try making sfc obs weighting go thru pbl |
---|
1788 | ! jc kpbl is at dot or cross only - need to interpolate? |
---|
1789 | ! wtsig(1)=1. |
---|
1790 | komax=max0(3,kpblt(i)) |
---|
1791 | |
---|
1792 | ! jc arbitrary check here |
---|
1793 | IF (iprt) THEN |
---|
1794 | if (kpblt(i).gt.25 .and. ktau.ne.0) & |
---|
1795 | write(6,552)inest,i,j,kpblt(i) |
---|
1796 | 552 FORMAT('kpblt is gt 25, inest,i,j,kpblt=',4i4) |
---|
1797 | ENDIF |
---|
1798 | |
---|
1799 | if(kpblt(i).gt.25) komax=3 |
---|
1800 | komin=1 |
---|
1801 | dk=float(komax) |
---|
1802 | |
---|
1803 | do k=komin,komax |
---|
1804 | |
---|
1805 | wtsig(k)=float(komax-k+1)/dk |
---|
1806 | WT(I,K)=WT(I,K)+TIMEWT*WTSIG(K)*WTIJ |
---|
1807 | |
---|
1808 | WT2ERR(I,K)=WT2ERR(I,K)+TIMEWT*TIMEWT*WTIJ*WTIJ*WTSIG(K) & |
---|
1809 | *WTSIG(K)*ERFIVR |
---|
1810 | |
---|
1811 | ! if(ivar.eq.1 .and. i.eq.38 .and. j.eq.78) then |
---|
1812 | ! |
---|
1813 | ! write(6,'(a,i2,a,f8.3,a,f8.3,a,f8.3,a,f8.3,a,f8.3)') |
---|
1814 | ! 'Surface obs, after: k = ',k, & |
---|
1815 | ! ' WT2ERR = ',wt2err(i,k), & |
---|
1816 | ! ' TIMEWT = ',timewt, & |
---|
1817 | ! ' WTIJ = ',wtij, & |
---|
1818 | ! ' WSIG = ',wtsig(k), & |
---|
1819 | ! ' ERFIVR = ',erfivr |
---|
1820 | ! endif |
---|
1821 | |
---|
1822 | enddo |
---|
1823 | |
---|
1824 | ENDDO |
---|
1825 | |
---|
1826 | ! print *, " Surface " |
---|
1827 | |
---|
1828 | endif ! end check for obs in domain |
---|
1829 | ! END SURFACE-LAYER U OR V OBS NUDGING |
---|
1830 | |
---|
1831 | ELSE |
---|
1832 | ! BEGIN CALCULATIONS TO SPREAD OBS INFLUENCE ALONG PRESSURE LEVELS |
---|
1833 | ! |
---|
1834 | ! print *,'in upper air section' |
---|
1835 | ! DEFINE THE MAX AND MIN I VALUES FOR POSSIBLE NONZERO |
---|
1836 | ! WEIGHTS, BASED ON THE RADIUS OF INFLUENCE, RINDX, AND RINFAC. |
---|
1837 | ! RINFAC VARIES AS A LINEAR FUNCTION FROM FROM RINFMN AT P*+PTOP |
---|
1838 | ! TO RINFMX AT PFREE AND "ABOVE" (LOWER PRESSURE). |
---|
1839 | !ajb SLOPE=(RINFMN-RINFMX)/(PSBO(N)+PTOP-PFREE) |
---|
1840 | |
---|
1841 | slope = (fdob%RINFMN-fdob%RINFMX)/(psurf(n)-fdob%PFREE) |
---|
1842 | |
---|
1843 | RINFAC=SLOPE*POB+fdob%RINFMX-SLOPE*fdob%pfree |
---|
1844 | RINFAC=AMAX1(RINFAC,fdob%RINFMN) |
---|
1845 | RINFAC=AMIN1(RINFAC,fdob%RINFMX) |
---|
1846 | !yliu: for multilevel upper-air data, take the maximum |
---|
1847 | ! for the I loop. |
---|
1848 | if(nsndlev.gt.1) RINFAC = fdob%RINFMX |
---|
1849 | !yliu end |
---|
1850 | |
---|
1851 | MAXI=IFIX(RA(N)+0.99+RINDX*RINFAC) |
---|
1852 | MAXI=MIN0(ide-IGRID,MAXI) |
---|
1853 | MINI=IFIX(RA(N)-RINDX*RINFAC-0.99) |
---|
1854 | MINI=MAX0(1,MINI) |
---|
1855 | |
---|
1856 | ! yliu start |
---|
1857 | ! use also obs outside of but close to this domain -- upr data |
---|
1858 | ! if( RA(N).LT.(0.-RINFAC*RINDX) |
---|
1859 | ! & .or. RA(N).GT.float(IL)+RINFAC*RINDX |
---|
1860 | ! & .or. RB(N).LT.(0.-RINFAC*RINDX) |
---|
1861 | ! & .or. RB(N).GT.float(JL)+RINFAC*RINDX)then |
---|
1862 | ! print *, " skipped obs far away from this I-range" |
---|
1863 | ! currently can use obs within this domain or ones very close to (1/3 |
---|
1864 | ! influence of radius in the coarse domain) this |
---|
1865 | ! domain. In later case, use BC column value to approximate the model value |
---|
1866 | ! at obs point -- ERRF need model field in errob.F !! |
---|
1867 | |
---|
1868 | !cc if (i.eq.39 .and. j.eq.34) then |
---|
1869 | !cc write(6,*) 'RA(N) = ',ra(n) |
---|
1870 | !cc write(6,*) 'rinfac = ',rinfac,' rindx = ',rindx |
---|
1871 | !cc endif |
---|
1872 | if( RA(N).GE.(0.-RINFAC*RINDX/3) & |
---|
1873 | .and. RA(N).LE.float(ide)+RINFAC*RINDX/3 & |
---|
1874 | .and. RB(N).GE.(0.-RINFAC*RINDX/3) & |
---|
1875 | .and. RB(N).LE.float(jde)+RINFAC*RINDX/3) then |
---|
1876 | ! or use obs within this domain only |
---|
1877 | ! if(RA(N).LT.1 .or. RA(N).GT.float(IL) .or. |
---|
1878 | ! & RB(N).LT.1 .or. RB(N).GT.float(JL)) then |
---|
1879 | ! print *, " skipped obs far outside of this domain" |
---|
1880 | |
---|
1881 | ! yliu end |
---|
1882 | ! is this 2 needed here - kpbl not used? |
---|
1883 | ! MINI=MAX0(2,MINI) |
---|
1884 | |
---|
1885 | ! LOOP THROUGH THE NECESSARY GRID POINTS SURROUNDING |
---|
1886 | ! OBSERVATION N. COMPUTE THE HORIZONTAL DISTANCE TO |
---|
1887 | ! THE OBS AND FIND THE WEIGHTING SUM OVER ALL OBS |
---|
1888 | RJ=FLOAT(J) |
---|
1889 | RX=RJ-RB(N) |
---|
1890 | ! WEIGHTS FOR THE 3-D VARIABLES |
---|
1891 | ! |
---|
1892 | ERFIVR=ERRF(IVAR,N) |
---|
1893 | ! jc |
---|
1894 | nsndlev=int(nlevs_ob(n)-lev_in_ob(n))+1 |
---|
1895 | ! yliu start |
---|
1896 | ! test: do the sounding levels as individual obs |
---|
1897 | ! nsndlev=1 |
---|
1898 | ! yliu end |
---|
1899 | njcsnd=nsndlev |
---|
1900 | ! |
---|
1901 | DO I=max0(its,MINI),min0(ite,MAXI) |
---|
1902 | ! jc |
---|
1903 | RI=FLOAT(I) |
---|
1904 | RY=RI-RA(N) |
---|
1905 | RIS=RINDX*RINFAC*RINDX*RINFAC |
---|
1906 | RSQ=RX*RX+RY*RY |
---|
1907 | ! yliu test: for upper-air data, keep D1 influence radii |
---|
1908 | ! RIS=RIS /schnes /schnes |
---|
1909 | WTIJ=(RIS-RSQ)/(RIS+RSQ) |
---|
1910 | WTIJ=AMAX1(0.0,WTIJ) |
---|
1911 | ! weight ob in vertical with +- 50 mb |
---|
1912 | ! yliu: 75 hba for single upper-air, 30hba for multi-level soundings |
---|
1913 | if(nsndlev.eq.1) then |
---|
1914 | rinprs=7.5 |
---|
1915 | else |
---|
1916 | rinprs=3.0 |
---|
1917 | endif |
---|
1918 | ! yliu end |
---|
1919 | ! |
---|
1920 | !$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ |
---|
1921 | ! --- HANDLE 1-LEVEL and MULTI-LEVEL OBSERVATIONS SEPARATELY --- |
---|
1922 | !$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ |
---|
1923 | |
---|
1924 | if(nsndlev.eq.1)then |
---|
1925 | !---------------------------------------------------------------------- |
---|
1926 | ! --- HANDLE 1-LEVEL OBSERVATIONS --- |
---|
1927 | !---------------------------------------------------------------------- |
---|
1928 | |
---|
1929 | ! if(I.eq.MINI) print *, " Single snd " |
---|
1930 | ! ERFIVR is the residual (difference) between the ob and the model |
---|
1931 | ! at that point. We can analyze that residual up and down. |
---|
1932 | ! First find komin for ob. |
---|
1933 | !yliu start -- in the old code, komax and komin were reversed! |
---|
1934 | do k=kte,1,-1 |
---|
1935 | pijk = .001*(pbase(i,k)+pp(i,k)) |
---|
1936 | ! print *,'k,pijk,pob,rinprs=',k,pijk,pob,rinprs |
---|
1937 | if(pijk.ge.(pob+rinprs)) then |
---|
1938 | komin=k |
---|
1939 | go to 325 |
---|
1940 | endif |
---|
1941 | enddo |
---|
1942 | komin=1 |
---|
1943 | 325 continue |
---|
1944 | ! now find komax for ob |
---|
1945 | do k=3,kte |
---|
1946 | pijk = .001*(pbase(i,k)+pp(i,k)) |
---|
1947 | if(pijk.le.(pob-rinprs)) then |
---|
1948 | komax=k |
---|
1949 | go to 326 |
---|
1950 | endif |
---|
1951 | enddo |
---|
1952 | komax=kte ! yliu 20050706 |
---|
1953 | 326 continue |
---|
1954 | |
---|
1955 | ! yliu: single-level upper-air data will act either above or below the PBL top |
---|
1956 | ! ajb: Reset komin or komax. if kobs>kpblt, komin=kpblt+1, else komax=kpblt |
---|
1957 | |
---|
1958 | if( (kpblt(i).le.komax) .and. (kpblt(i).ge.komin) ) then |
---|
1959 | kobs = 1 |
---|
1960 | OBS_K: do k = komin, komax |
---|
1961 | if( pob .gt. .001*(pbase(i,k)+pp(i,k)) ) then |
---|
1962 | kobs = k |
---|
1963 | EXIT OBS_K |
---|
1964 | endif |
---|
1965 | enddo OBS_K |
---|
1966 | |
---|
1967 | if(kobs.gt.kpblt(i)) then |
---|
1968 | komin=max0(kobs, komin) ! kobs here is kpblt(i)+1 |
---|
1969 | else |
---|
1970 | komax=min0(kpblt(i), komax) |
---|
1971 | endif |
---|
1972 | endif |
---|
1973 | ! yliu end |
---|
1974 | ! |
---|
1975 | ! print *,'1 level, komin,komax=',komin,komax |
---|
1976 | ! if(i.eq.MINI) then |
---|
1977 | ! print *, "yyyyyyyyyyS IPL erfivr=", IPL, ERFIVR,J,pob |
---|
1978 | ! ERFIVR=0 |
---|
1979 | ! endif |
---|
1980 | do k=1,kte |
---|
1981 | reserf(k)=0.0 |
---|
1982 | wtsig(k)=0.0 |
---|
1983 | enddo |
---|
1984 | !yliu end |
---|
1985 | |
---|
1986 | !cc if (i.eq.39 .and. j.eq.34) then |
---|
1987 | !cc write(6,*) ' komin = ', komin,' komax = ',komax |
---|
1988 | !cc endif |
---|
1989 | |
---|
1990 | do k=komin,komax |
---|
1991 | pijk = .001*(pbase(i,k)+pp(i,k)) |
---|
1992 | reserf(k)=erfivr |
---|
1993 | wtsig(k)=1.-abs(pijk-pob)/rinprs |
---|
1994 | wtsig(k)=amax1(wtsig(k),0.0) |
---|
1995 | ! print *,'k,pijk,pob,rinprs,wtsig=',k,pijk,pob,rinprs,wtsig(k) |
---|
1996 | ! Now calculate WT and WT2ERR for each i,j,k point cajb |
---|
1997 | WT(I,K)=WT(I,K)+TIMEWT*WTIJ*wtsig(k) |
---|
1998 | |
---|
1999 | WT2ERR(I,K)=WT2ERR(I,K)+TIMEWT*TIMEWT*WTIJ*WTIJ* & |
---|
2000 | reserf(k)*wtsig(k)*wtsig(k) |
---|
2001 | enddo |
---|
2002 | |
---|
2003 | else |
---|
2004 | !---------------------------------------------------------------------- |
---|
2005 | ! --- HANDLE MULTI-LEVEL OBSERVATIONS --- |
---|
2006 | !---------------------------------------------------------------------- |
---|
2007 | !yliu start |
---|
2008 | ! if(I.eq.MINI) print *, " Multi-level snd " |
---|
2009 | ! print *, " n=,nsndlev",n,nsndlev,nlevs_ob(n),lev_in_ob(n) & |
---|
2010 | ! ,nlevs_ob(n+nsndlev-1),lev_in_ob(n+nsndlev-1) |
---|
2011 | if(nlevs_ob(n+nsndlev-1).ne.lev_in_ob(n+nsndlev-1)) then |
---|
2012 | IF (iprt) THEN |
---|
2013 | print *, "n = ",n,"nsndlev = ",nsndlev |
---|
2014 | print *, "nlevs_ob,lev_in_ob", & |
---|
2015 | nlevs_ob(n+nsndlev-1),lev_in_ob(n+nsndlev-1) |
---|
2016 | print *, "in nudobs.F: sounding level messed up, stopping" |
---|
2017 | ENDIF |
---|
2018 | stop |
---|
2019 | endif |
---|
2020 | !yliu end |
---|
2021 | ! This is for a multi-level observation |
---|
2022 | ! The trick here is that the sounding is "one ob". You don't |
---|
2023 | ! want multiple levels to each be treated like separate |
---|
2024 | ! and independent observations. |
---|
2025 | ! At each i,j want to interpolate sounding to the model levels at that |
---|
2026 | ! particular point. |
---|
2027 | komin=1 |
---|
2028 | komax=kte-2 |
---|
2029 | ! this loop goes to 1501 |
---|
2030 | ! do from kte-2 to 1 so don't adjust top of model. Arbitrary. |
---|
2031 | !yliu start |
---|
2032 | do k=1,kte |
---|
2033 | reserf(k)=0.0 |
---|
2034 | wtsig(k)=0.0 |
---|
2035 | enddo |
---|
2036 | !yliu end |
---|
2037 | |
---|
2038 | do k=komax,komin,-1 |
---|
2039 | |
---|
2040 | pijk = .001*(pbase(i,k)+pp(i,k)) |
---|
2041 | |
---|
2042 | ! if sigma level pressure is .gt. than the lowest ob level, don't interpolate |
---|
2043 | if(pijk.gt.varobs(5,n)) then |
---|
2044 | go to 1501 |
---|
2045 | endif |
---|
2046 | |
---|
2047 | ! if sigma level pressure is .lt. than the highest ob level, don't interpolate |
---|
2048 | if(pijk.le.varobs(5,n+nsndlev-1)) then |
---|
2049 | go to 1501 |
---|
2050 | endif |
---|
2051 | |
---|
2052 | ! now interpolate sounding to this k |
---|
2053 | ! yliu start-- recalculate WTij for each k-level |
---|
2054 | !ajb SLOPE = (fdob%RINFMN-fdob%RINFMX)/(pdoc(i,j)+PTOP-fdob%PFREE) |
---|
2055 | slope = (fdob%RINFMN-fdob%RINFMX)/ (.001*pbase(i,1)-fdob%PFREE) |
---|
2056 | RINFAC=SLOPE*pijk+fdob%RINFMX-SLOPE*fdob%PFREE |
---|
2057 | RINFAC=AMAX1(RINFAC,fdob%RINFMN) |
---|
2058 | RINFAC=AMIN1(RINFAC,fdob%RINFMX) |
---|
2059 | RIS=RINDX*RINFAC*RINDX*RINFAC |
---|
2060 | RSQ=RX*RX+RY*RY |
---|
2061 | |
---|
2062 | ! for upper-air data, keep D1 influence radii |
---|
2063 | ! RIS=RIS /schnes /schnes |
---|
2064 | WTIJ=(RIS-RSQ)/(RIS+RSQ) |
---|
2065 | WTIJ=AMAX1(0.0,WTIJ) |
---|
2066 | ! yliu end |
---|
2067 | |
---|
2068 | ! this loop goes to 1503 |
---|
2069 | do nn=2,nsndlev |
---|
2070 | ! only set pobhi if varobs(ivar) is ok |
---|
2071 | pobhi=-888888. |
---|
2072 | |
---|
2073 | if(varobs(ivar,n+nn-1).gt.-800000. & |
---|
2074 | .and. varobs(5,n+nn-1).gt.-800000.) then |
---|
2075 | pobhi=varobs(5,n+nn-1) |
---|
2076 | nhi=n+nn-1 |
---|
2077 | if(pobhi.lt.pijk .and. abs(pobhi-pijk).lt.20.) then |
---|
2078 | go to 1502 ! within 200mb of obs height |
---|
2079 | endif |
---|
2080 | endif |
---|
2081 | |
---|
2082 | enddo |
---|
2083 | |
---|
2084 | ! did not find any ob above within 100 mb, so jump out |
---|
2085 | go to 1501 |
---|
2086 | 1502 continue |
---|
2087 | |
---|
2088 | nlo=nhi-1 |
---|
2089 | do nnjc=nhi-1,n,-1 |
---|
2090 | if(varobs(ivar,nnjc).gt.-800000. & |
---|
2091 | .and. varobs(5,nnjc).gt.-800000.) then |
---|
2092 | poblo=varobs(5,nnjc) |
---|
2093 | nlo=nnjc |
---|
2094 | if(poblo.gt.pijk .and. abs(poblo-pijk).lt.20.) then |
---|
2095 | go to 1505 ! within 200mb of obs height |
---|
2096 | endif |
---|
2097 | endif |
---|
2098 | enddo |
---|
2099 | !yliu end -- |
---|
2100 | |
---|
2101 | ! did not find any ob below within 200 mb, so jump out |
---|
2102 | go to 1501 |
---|
2103 | 1505 continue |
---|
2104 | |
---|
2105 | ! interpolate to model level |
---|
2106 | pdiffj=alog(pijk/poblo)/alog(pobhi/poblo) |
---|
2107 | reserf(k)=errf(ivar,nlo)+ & |
---|
2108 | (errf(ivar,nhi)-errf(ivar,nlo))*pdiffj |
---|
2109 | wtsig(k)=1. |
---|
2110 | |
---|
2111 | 1501 continue |
---|
2112 | |
---|
2113 | ! now calculate WT and WT2ERR for each i,j,k point cajb |
---|
2114 | WT(I,K)=WT(I,K)+TIMEWT*WTIJ*wtsig(k) |
---|
2115 | |
---|
2116 | WT2ERR(I,K)=WT2ERR(I,K)+TIMEWT*TIMEWT*WTIJ*WTIJ* & |
---|
2117 | reserf(k)*wtsig(k)*wtsig(k) |
---|
2118 | |
---|
2119 | ! if(ivar.eq.1 .and. i.eq.38 .and. j.eq.78) then |
---|
2120 | ! |
---|
2121 | ! if(wt(i,k) .ne. 0.0) then |
---|
2122 | ! scratch = WT2ERR(I,K)/WT(I,K) |
---|
2123 | ! else |
---|
2124 | ! scratch = 999. |
---|
2125 | ! endif |
---|
2126 | ! |
---|
2127 | ! write(6,'(a,i2,a,f8.3,a,f4.2,a,f7.4,a,f4.2,a,f5.3,a,f7.4)') |
---|
2128 | ! $ 'Multi-level obs: k = ',k, |
---|
2129 | ! $ ' WT2ERR = ',wt2err(i,k), |
---|
2130 | ! $ ' WTIJ = ',wtij, |
---|
2131 | ! $ ' RSF = ',reserf(k), |
---|
2132 | ! $ ' WSIG = ',wtsig(k), |
---|
2133 | ! $ ' WT = ',wt(i,k), |
---|
2134 | ! $ ' W2EOWT = ',scratch |
---|
2135 | ! endif |
---|
2136 | |
---|
2137 | |
---|
2138 | ! end do k |
---|
2139 | enddo ! enddo k levels |
---|
2140 | ! end multi-levels |
---|
2141 | endif ! end if(nsndlev.eq.1) |
---|
2142 | !$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ |
---|
2143 | ! END 1-LEVEL AND MULTI-LEVEL OBSERVATIONS |
---|
2144 | !$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ |
---|
2145 | ! |
---|
2146 | ENDDO ! END DO MINI,MAXI LOOP |
---|
2147 | |
---|
2148 | endif ! check for obs in domain |
---|
2149 | |
---|
2150 | ! END OF NUDGING TO OBS ON PRESSURE LEVELS |
---|
2151 | |
---|
2152 | ENDIF !end IF(KOB.EQ.1.AND.IVAR.LE.4.and.nlevs_ob(n).lt.1.5) |
---|
2153 | |
---|
2154 | !---------------------------------------------------------------------- |
---|
2155 | ENDIF ! END SECTION FOR PROCESSING OF OBSERVATION |
---|
2156 | !---------------------------------------------------------------------- |
---|
2157 | |
---|
2158 | ! n=n+1 |
---|
2159 | n=n+njcsnd |
---|
2160 | |
---|
2161 | !yliu 1202 continue |
---|
2162 | if(n.gt.nstat)then |
---|
2163 | ! print *,'n,nstat=',n,nstat,ivar,j |
---|
2164 | go to 1203 |
---|
2165 | endif |
---|
2166 | ! print *, "e-- n=,nsndlev",n,njcsnd,nlevs_ob(n),lev_in_ob(n) |
---|
2167 | |
---|
2168 | !*********************************************************************** |
---|
2169 | ENDDO ! END OUTER LOOP FOR THE NSTAT OBSERVATIONS |
---|
2170 | !*********************************************************************** |
---|
2171 | |
---|
2172 | 1203 continue |
---|
2173 | |
---|
2174 | ! WEIGHTS AND WEIGHTED DIFFERENCES HAVE BEEN SUMMED. NOW |
---|
2175 | ! APPLY THE NUDGING FACTOR AND THE RESULTANT TENDENCY TO |
---|
2176 | ! THE ATEN ARRAY |
---|
2177 | ! ASSURE THAT WT(I,K) AND WTP(I,K) ARE NONZERO SINCE |
---|
2178 | ! THEY ARE USED BELOW IN THE DENOMINATOR. |
---|
2179 | DO K=kts,kte |
---|
2180 | DO I=its,ite |
---|
2181 | IF(WT(I,K).EQ.0)THEN |
---|
2182 | WT2ERR(I,K)=0.0 |
---|
2183 | ENDIF |
---|
2184 | IF(WT(I,K).EQ.0)THEN |
---|
2185 | WT(I,K)=1.0 |
---|
2186 | ENDIF |
---|
2187 | ENDDO |
---|
2188 | ENDDO |
---|
2189 | |
---|
2190 | 126 CONTINUE |
---|
2191 | |
---|
2192 | IF(IVAR.GE.3)GOTO 170 |
---|
2193 | ! this is for u,v |
---|
2194 | ! 3-D DOT POINT TENDENCIES |
---|
2195 | |
---|
2196 | ! Calculate scales for converting nudge factor from u (v) |
---|
2197 | ! to rho_u (or rho_v) units. |
---|
2198 | |
---|
2199 | IF (IVAR == 1) THEN |
---|
2200 | call calc_rcouple_scales(mu,msfy,rscale,ims,ime,its,ite) |
---|
2201 | ELSE IF (IVAR == 2) THEN |
---|
2202 | call calc_rcouple_scales(mu,msfx,rscale,ims,ime,its,ite) |
---|
2203 | END IF |
---|
2204 | |
---|
2205 | DO K=1,kte |
---|
2206 | |
---|
2207 | DO I=i_s,i_e |
---|
2208 | |
---|
2209 | IF(MOD(KTAU,INFR).EQ.0.OR.(IFREST.AND.KTAU.EQ.KTAUR))THEN |
---|
2210 | W2EOWT=WT2ERR(I,K)/WT(I,K) |
---|
2211 | ELSE |
---|
2212 | W2EOWT=SAVWT(IPL,I,K) |
---|
2213 | ENDIF |
---|
2214 | |
---|
2215 | ! if(ivar .eq. 1 .and. i.eq.38 .and. j.eq.78 .and. k.eq.1) then |
---|
2216 | ! scratch = GIV*RSCALE(I)*W2EOWT*fdob%TFACI*ISWIND*GFACTOR |
---|
2217 | ! write(6,*) 'ATEN calc: k = ',k |
---|
2218 | ! write(6,*) 'U before: aten = ',aten(i,k),' scr = ',scratch |
---|
2219 | ! write(6,*) 'GIV = ',giv,' rscale = ',rscale(i), |
---|
2220 | ! $ ' W2EOWT = ',w2eowt |
---|
2221 | ! write(6,*) 'TFACI = ',fdob%tfaci,' ISWIND = ',iswind, |
---|
2222 | ! $ ' GFACTOR = ',gfactor |
---|
2223 | ! endif |
---|
2224 | ! |
---|
2225 | ! if(ivar .eq. 2 .and. i.eq.39 .and. j.eq.29) then |
---|
2226 | ! scratch = GIV*RSCALE(I)*W2EOWT*fdob%TFACI*ISWIND*GFACTOR |
---|
2227 | ! write(6,*) 'ATEN calc: k = ',k |
---|
2228 | ! write(6,*) 'V before: aten = ',aten(i,k),' scr = ',scratch |
---|
2229 | ! write(6,*) 'GIV = ',giv,' rscale = ',rscale(i), |
---|
2230 | ! $ ' W2EOWT = ',w2eowt |
---|
2231 | ! write(6,*) 'TFACI = ',fdob%tfaci,' ISWIND = ',iswind, |
---|
2232 | ! $ ' GFACTOR = ',gfactor |
---|
2233 | ! endif |
---|
2234 | |
---|
2235 | ATEN(i,k)=ATEN(i,k)+GIV*RSCALE(I) & |
---|
2236 | *W2EOWT*fdob%TFACI & |
---|
2237 | *ISWIND *GFACTOR !yliu *GFACTOR |
---|
2238 | |
---|
2239 | ! if(ivar .eq. 1 .and. i.eq.38 .and. j.eq.78 .and. k.eq.1) then |
---|
2240 | ! write(6,*) 'U after: aten = ',aten(i,k),' scr = ',scratch |
---|
2241 | ! endif |
---|
2242 | ! if(ivar .eq. 2 .and. i.eq.39 .and. j.eq.29) then |
---|
2243 | ! write(6,*) 'V after: aten = ',aten(i,k),' scr = ',scratch |
---|
2244 | ! endif |
---|
2245 | |
---|
2246 | ENDDO |
---|
2247 | ENDDO |
---|
2248 | |
---|
2249 | IF(MOD(KTAU,INFR).EQ.0.OR.(IFREST.AND.KTAU.EQ.KTAUR))THEN |
---|
2250 | DO K=1,kte |
---|
2251 | DO I=its,ite |
---|
2252 | SAVWT(IPL,I,K)=WT2ERR(I,K)/WT(I,K) |
---|
2253 | ENDDO |
---|
2254 | ENDDO |
---|
2255 | ENDIF |
---|
2256 | |
---|
2257 | RETURN |
---|
2258 | |
---|
2259 | 170 CONTINUE |
---|
2260 | |
---|
2261 | ! 3-D CROSS-POINT TENDENCIES |
---|
2262 | ! this is for t (ivar=3) and q (ivsr=4) |
---|
2263 | IF(3-IVAR.LT.0)THEN |
---|
2264 | GITQ=GIQ |
---|
2265 | ELSE |
---|
2266 | GITQ=GIT |
---|
2267 | ENDIF |
---|
2268 | IF(3-IVAR.LT.0)THEN |
---|
2269 | ISTQ=ISMOIS |
---|
2270 | ELSE |
---|
2271 | ISTQ=ISTEMP |
---|
2272 | ENDIF |
---|
2273 | |
---|
2274 | DO K=1,kte |
---|
2275 | DO I=i_s,i_e |
---|
2276 | IF(MOD(KTAU,INFR).EQ.0.OR.(IFREST.AND.KTAU.EQ.KTAUR))THEN |
---|
2277 | W2EOWT=WT2ERR(I,K)/WT(I,K) |
---|
2278 | ELSE |
---|
2279 | W2EOWT=SAVWT(IPL,I,K) |
---|
2280 | ENDIF |
---|
2281 | |
---|
2282 | ! if(ivar .eq. 3 .and. i.eq.39 .and. j.eq.29) then |
---|
2283 | ! scratch = GITQ*MU(I)*W2EOWT*fdob%TFACI*ISTQ*GFACTOR |
---|
2284 | ! write(6,*) 'ATEN calc: k = ',k |
---|
2285 | ! write(6,*) 'T before: aten = ',aten(i,k),' scr = ',scratch |
---|
2286 | ! write(6,*) 'GITQ = ',gitq,' MU = ',mu(i), |
---|
2287 | ! $ ' W2EOWT = ',w2eowt |
---|
2288 | ! write(6,*) ' TFACI = ',fdob%tfaci,' ISTQ = ',istq, |
---|
2289 | ! $ ' GFACTOR = ',gfactor |
---|
2290 | ! endif |
---|
2291 | ! |
---|
2292 | ! if(ivar .eq. 4 .and. i.eq.39 .and. j.eq.29) then |
---|
2293 | ! scratch = GITQ*MU(I)*W2EOWT*fdob%TFACI*ISTQ*GFACTOR |
---|
2294 | ! write(6,*) 'ATEN calc: k = ',k |
---|
2295 | ! write(6,*) 'Q before: aten = ',aten(i,k),' scr = ',scratch |
---|
2296 | ! write(6,*) 'GITQ = ',gitq,' MU = ',mu(i), |
---|
2297 | ! $ ' W2EOWT = ',w2eowt |
---|
2298 | ! write(6,*) ' TFACI = ',fdob%tfaci,' ISTQ = ',istq, |
---|
2299 | ! $ ' GFACTOR = ',gfactor |
---|
2300 | ! endif |
---|
2301 | |
---|
2302 | ATEN(i,k)=ATEN(i,k)+GITQ*MU(I) & |
---|
2303 | *W2EOWT*fdob%TFACI*ISTQ *GFACTOR !yliu *GFACTOR |
---|
2304 | |
---|
2305 | ! if(ivar .eq. 3 .and. i.eq.39 .and. j.eq.29) then |
---|
2306 | ! write(6,*) 'T after: aten = ',aten(i,k),' scr = ',scratch |
---|
2307 | ! endif |
---|
2308 | ! if(ivar .eq. 4 .and. i.eq.39 .and. j.eq.29) then |
---|
2309 | ! write(6,*) 'Q after: aten = ',aten(i,k),' scr = ',scratch |
---|
2310 | ! endif |
---|
2311 | |
---|
2312 | ENDDO |
---|
2313 | ENDDO |
---|
2314 | |
---|
2315 | IF(MOD(KTAU,INFR).EQ.0.OR.(IFREST.AND.KTAU.EQ.KTAUR)) THEN |
---|
2316 | DO K=1,kte |
---|
2317 | DO I=its,ite |
---|
2318 | SAVWT(IPL,I,K)=WT2ERR(I,K)/WT(I,K) |
---|
2319 | ENDDO |
---|
2320 | ENDDO |
---|
2321 | ENDIF |
---|
2322 | |
---|
2323 | RETURN |
---|
2324 | END SUBROUTINE nudob |
---|
2325 | |
---|
2326 | SUBROUTINE calc_rcouple_scales(a, msf, rscale, ims,ime, its,ite) |
---|
2327 | !----------------------------------------------------------------------- |
---|
2328 | IMPLICIT NONE |
---|
2329 | !----------------------------------------------------------------------- |
---|
2330 | |
---|
2331 | INTEGER, INTENT(IN) :: ims,ime ! Memory dimensions |
---|
2332 | INTEGER, INTENT(IN) :: its,ite ! Tile dimensions |
---|
2333 | REAL, INTENT(IN) :: a( ims:ime ) ! Air mass array |
---|
2334 | REAL, INTENT(IN) :: msf( ims:ime ) ! Map scale factor array |
---|
2335 | REAL, INTENT(OUT) :: rscale( ims:ime ) ! Scales for rho-coupling |
---|
2336 | |
---|
2337 | ! Local variables |
---|
2338 | integer :: i |
---|
2339 | |
---|
2340 | ! Calculate scales to be used for producing rho-coupled nudging factors. |
---|
2341 | do i = its,ite |
---|
2342 | rscale(i) = a(i)/msf(i) |
---|
2343 | enddo |
---|
2344 | |
---|
2345 | RETURN |
---|
2346 | END SUBROUTINE calc_rcouple_scales |
---|
2347 | |
---|
2348 | !ajb: Not used |
---|
2349 | SUBROUTINE set_real_array(rscale, value, ims,ime, its,ite) |
---|
2350 | !----------------------------------------------------------------------- |
---|
2351 | IMPLICIT NONE |
---|
2352 | !----------------------------------------------------------------------- |
---|
2353 | |
---|
2354 | INTEGER, INTENT(IN) :: ims,ime ! Memory dimensions |
---|
2355 | INTEGER, INTENT(IN) :: its,ite ! Tile dimensions |
---|
2356 | REAL, INTENT(IN) :: value ! Constant array value |
---|
2357 | REAL, INTENT(OUT) :: rscale( ims:ime ) ! Output array |
---|
2358 | |
---|
2359 | ! Local variables |
---|
2360 | integer :: i |
---|
2361 | |
---|
2362 | ! Set array to constant value |
---|
2363 | do i = its,ite |
---|
2364 | rscale(i) = value |
---|
2365 | enddo |
---|
2366 | |
---|
2367 | RETURN |
---|
2368 | END SUBROUTINE set_real_array |
---|
2369 | |
---|
2370 | !ajb: Not used |
---|
2371 | SUBROUTINE calc_pottemp_scales(ivar, rcp, pb, p, tscale, & |
---|
2372 | ims,ime, its,ite, & |
---|
2373 | kms,kme, kts,kte) |
---|
2374 | !----------------------------------------------------------------------- |
---|
2375 | IMPLICIT NONE |
---|
2376 | !----------------------------------------------------------------------- |
---|
2377 | |
---|
2378 | INTEGER, INTENT(IN) :: ims,ime, kms,kme ! Memory dimensions |
---|
2379 | INTEGER, INTENT(IN) :: its,ite, kts,kte ! Tile dimensions |
---|
2380 | INTEGER, INTENT(IN) :: ivar ! Variable identifier |
---|
2381 | REAL, INTENT(IN) :: rcp ! Constant (2./7.) |
---|
2382 | REAL, INTENT(IN) :: pb(ims:ime, kms:kme) ! Base pressure (Pa) array |
---|
2383 | REAL, INTENT(IN) :: p(ims:ime, kms:kme) ! Pressure pert. (Pa) array |
---|
2384 | REAL, INTENT(OUT) :: tscale(ims:ime, kms:kme) ! Scales for pot. temp. |
---|
2385 | ! Local variables |
---|
2386 | integer :: i,k |
---|
2387 | |
---|
2388 | if(ivar.eq.3) then |
---|
2389 | |
---|
2390 | ! Calculate scales to be used for producing potential temperature nudging factors. |
---|
2391 | do k = kts,kte |
---|
2392 | do i = its,ite |
---|
2393 | tscale(i,k) = ( 1000000. / ( pb(i,k)+p(i,k)) )**rcp |
---|
2394 | enddo |
---|
2395 | enddo |
---|
2396 | else |
---|
2397 | ! Set to 1. for moisture scaling. |
---|
2398 | do k = kts,kte |
---|
2399 | do i = its,ite |
---|
2400 | tscale(i,k) = 1.0 |
---|
2401 | enddo |
---|
2402 | enddo |
---|
2403 | endif |
---|
2404 | |
---|
2405 | RETURN |
---|
2406 | END SUBROUTINE calc_pottemp_scales |
---|
2407 | #endif |
---|
2408 | |
---|
2409 | END MODULE module_fddaobs_rtfdda |
---|
2410 | |
---|