[2759] | 1 | !WRF:MODEL_LAYER:PHYSICS |
---|
| 2 | ! |
---|
| 3 | MODULE module_fddaobs_rtfdda |
---|
| 4 | |
---|
| 5 | ! This obs-nudging FDDA module (RTFDDA) is developed by the |
---|
| 6 | ! NCAR/RAL/NSAP (National Security Application Programs), under the |
---|
| 7 | ! sponsorship of ATEC (Army Test and Evaluation Commands). ATEC is |
---|
| 8 | ! acknowledged for releasing this capability for WRF community |
---|
| 9 | ! research applications. |
---|
| 10 | ! |
---|
| 11 | ! The NCAR/RAL RTFDDA module was adapted, and significantly modified |
---|
| 12 | ! from the obs-nudging module in the standard MM5V3.1 which was originally |
---|
| 13 | ! developed by PSU (Stauffer and Seaman, 1994). |
---|
| 14 | ! |
---|
| 15 | ! Yubao Liu (NCAR/RAL): lead developer of the RTFDDA module |
---|
| 16 | ! Al Bourgeois (NCAR/RAL): lead engineer implementing RTFDDA into WRF-ARW |
---|
| 17 | ! Nov. 2006 |
---|
| 18 | ! |
---|
| 19 | ! References: |
---|
| 20 | ! |
---|
| 21 | ! Liu, Y., A. Bourgeois, T. Warner, S. Swerdlin and J. Hacker, 2005: An |
---|
| 22 | ! implementation of obs-nudging-based FDDA into WRF for supporting |
---|
| 23 | ! ATEC test operations. 2005 WRF user workshop. Paper 10.7. |
---|
| 24 | ! |
---|
| 25 | ! Liu, Y., A. Bourgeois, T. Warner, S. Swerdlin and W. Yu, 2006: An update |
---|
| 26 | ! on "obs-nudging"-based FDDA for WRF-ARW: Verification using OSSE |
---|
| 27 | ! and performance of real-time forecasts. 2006 WRF user workshop. Paper 4.7. |
---|
| 28 | |
---|
| 29 | ! |
---|
| 30 | ! Stauffer, D.R., and N.L. Seaman, 1994: Multi-scale four-dimensional data |
---|
| 31 | ! assimilation. J. Appl. Meteor., 33, 416-434. |
---|
| 32 | ! |
---|
| 33 | ! http://www.rap.ucar.edu/projects/armyrange/references.html |
---|
| 34 | ! |
---|
| 35 | ! Modification History: |
---|
| 36 | ! 03212007 Modified fddaobs_init to compute Lambert cone factor. -Al Bourgeois |
---|
| 37 | |
---|
| 38 | CONTAINS |
---|
| 39 | |
---|
| 40 | !------------------------------------------------------------------------------ |
---|
| 41 | SUBROUTINE fddaobs_init(obs_nudge_opt, maxdom, inest, parid, & |
---|
| 42 | idynin, dtramp, fdaend, restart, & |
---|
| 43 | obs_twindo_cg, obs_twindo, itimestep, & |
---|
| 44 | cen_lat, cen_lon, stand_lon, & |
---|
| 45 | true_lat1, true_lat2, map_proj, & |
---|
| 46 | xlat, xlong, & |
---|
| 47 | e_sn, s_sn_cg, e_sn_cg, s_we_cg, e_we_cg, & |
---|
| 48 | #if ( EM_CORE == 1 ) |
---|
| 49 | fdob, & |
---|
| 50 | #endif |
---|
| 51 | iprt, & |
---|
| 52 | ids,ide, jds,jde, kds,kde, & |
---|
| 53 | ims,ime, jms,jme, kms,kme, & |
---|
| 54 | its,ite, jts,jte, kts,kte) |
---|
| 55 | !----------------------------------------------------------------------- |
---|
| 56 | ! This routine does initialization for real time fdda obs-nudging. |
---|
| 57 | ! |
---|
| 58 | !----------------------------------------------------------------------- |
---|
| 59 | USE module_domain |
---|
| 60 | USE module_dm ! for wrf_dm_min_real |
---|
| 61 | !----------------------------------------------------------------------- |
---|
| 62 | IMPLICIT NONE |
---|
| 63 | !----------------------------------------------------------------------- |
---|
| 64 | |
---|
| 65 | !======================================================================= |
---|
| 66 | ! Definitions |
---|
| 67 | !----------- |
---|
| 68 | INTEGER, intent(in) :: maxdom |
---|
| 69 | INTEGER, intent(in) :: obs_nudge_opt(maxdom) |
---|
| 70 | INTEGER, intent(in) :: ids,ide, jds,jde, kds,kde, & |
---|
| 71 | ims,ime, jms,jme, kms,kme, & |
---|
| 72 | its,ite, jts,jte, kts,kte |
---|
| 73 | INTEGER, intent(in) :: inest |
---|
| 74 | INTEGER, intent(in) :: parid(maxdom) |
---|
| 75 | INTEGER, intent(in) :: idynin ! flag for dynamic initialization |
---|
| 76 | REAL, intent(in) :: dtramp ! time period for idynin ramping (min) |
---|
| 77 | REAL, intent(in) :: fdaend(maxdom) ! nudging end time for domain (min) |
---|
| 78 | LOGICAL, intent(in) :: restart |
---|
| 79 | REAL, intent(in) :: obs_twindo_cg ! time window on coarse grid |
---|
| 80 | REAL, intent(in) :: obs_twindo |
---|
| 81 | INTEGER, intent(in) :: itimestep |
---|
| 82 | REAL , INTENT(IN) :: cen_lat ! domain center latitude (for map proj) |
---|
| 83 | REAL , INTENT(IN) :: cen_lon ! domain center longitude (for map proj) |
---|
| 84 | REAL , INTENT(IN) :: stand_lon ! domain standard longitude (for map proj) |
---|
| 85 | REAL, intent(in) :: true_lat1 ! domain truelat1 (for map proj) |
---|
| 86 | REAL, intent(in) :: true_lat2 ! domain truelat2 (for map proj) |
---|
| 87 | INTEGER, intent(in) :: map_proj ! map projection index |
---|
| 88 | REAL, DIMENSION( ims:ime, jms:jme ), & |
---|
| 89 | INTENT(IN) :: xlat, xlong ! lat/long locations on mass point grid |
---|
| 90 | INTEGER, intent(in) :: e_sn ! ending south-north grid index |
---|
| 91 | INTEGER, intent(in) :: s_sn_cg ! starting south-north coarse-grid index |
---|
| 92 | INTEGER, intent(in) :: e_sn_cg ! ending south-north coarse-grid index |
---|
| 93 | INTEGER, intent(in) :: s_we_cg ! starting west-east coarse-grid index |
---|
| 94 | INTEGER, intent(in) :: e_we_cg ! ending west-east coarse-grid index |
---|
| 95 | #if ( EM_CORE == 1 ) |
---|
| 96 | TYPE(fdob_type), intent(inout) :: fdob |
---|
| 97 | #endif |
---|
| 98 | LOGICAL, intent(in) :: iprt ! Flag enabling printing warning messages |
---|
| 99 | |
---|
| 100 | ! Local variables |
---|
| 101 | logical :: nudge_flag ! nudging flag for this nest |
---|
| 102 | integer :: ktau ! current timestep |
---|
| 103 | integer :: nest ! loop counter |
---|
| 104 | integer :: idom ! domain id |
---|
| 105 | integer :: parent ! parent domain |
---|
| 106 | real :: conv ! 180/pi |
---|
| 107 | real :: tl1 ! Lambert standard parallel 1 |
---|
| 108 | real :: tl2 ! Lambert standard parallel 2 |
---|
| 109 | real :: xn1 |
---|
| 110 | real :: known_lat ! Latitude of domain point (i,j)=(1,1) |
---|
| 111 | real :: known_lon ! Longitude of domain point (i,j)=(1,1) |
---|
| 112 | |
---|
| 113 | #if ( EM_CORE == 1 ) |
---|
| 114 | |
---|
| 115 | ! Set flag for nudging on pressure (not sigma) surfaces. |
---|
| 116 | fdob%iwtsig = 0 |
---|
| 117 | |
---|
| 118 | !************************************************************************** |
---|
| 119 | ! *** Initialize datend for dynamic initialization (ajb added 08132008) *** |
---|
| 120 | !************************************************************************** |
---|
| 121 | ! Set ending nudging date (used with dynamic ramp-down) to zero. |
---|
| 122 | fdob%datend = 0. |
---|
| 123 | fdob%ieodi = 0 |
---|
| 124 | |
---|
| 125 | ! Check for dynamic initialization flag |
---|
| 126 | if(idynin.eq.1)then |
---|
| 127 | ! Set datend to time in minutes after which data are assumed to have ended. |
---|
| 128 | if(dtramp.gt.0.)then |
---|
| 129 | fdob%datend = fdaend(inest) - dtramp |
---|
| 130 | else |
---|
| 131 | fdob%datend = fdaend(inest) |
---|
| 132 | endif |
---|
| 133 | if(iprt) then |
---|
| 134 | print*,' ' |
---|
| 135 | print*,' *** DYNAMIC-INITIALIZATION OPTION FOR INEST = ',inest, ' ***' |
---|
| 136 | print*,' FDAEND,DATEND,DTRAMP: ',fdaend(inest),fdob%datend,dtramp |
---|
| 137 | print*,' ' |
---|
| 138 | endif |
---|
| 139 | endif |
---|
| 140 | ! *** end dynamic initialization section *** |
---|
| 141 | !************************************************************************** |
---|
| 142 | |
---|
| 143 | ! Set time window. |
---|
| 144 | fdob%window = obs_twindo |
---|
| 145 | |
---|
| 146 | if(inest.eq.1) then |
---|
| 147 | if(obs_twindo .eq. 0.) then |
---|
| 148 | if(iprt) then |
---|
| 149 | write(6,'(/a)') '*** WARNING: TWINDO=0 on the coarse domain.' |
---|
| 150 | write(6,'(a/)') '*** Did you forget to set twindo in the fdda namelist?' |
---|
| 151 | endif |
---|
| 152 | endif |
---|
| 153 | else ! nest |
---|
| 154 | if(obs_twindo .eq. 0.) then |
---|
| 155 | fdob%window = obs_twindo_cg |
---|
| 156 | if(iprt) then |
---|
| 157 | write(6,'(/a,i2)') 'WARNING: TWINDO=0. for nest ',inest |
---|
| 158 | write(6,'(a,f12.5,a/)') 'Default to coarse-grid value of ', obs_twindo_cg,' hrs' |
---|
| 159 | endif |
---|
| 160 | endif |
---|
| 161 | endif |
---|
| 162 | |
---|
| 163 | ! Initialize flags. |
---|
| 164 | |
---|
| 165 | fdob%domain_tot=0 |
---|
| 166 | do nest=1,maxdom |
---|
| 167 | fdob%domain_tot = fdob%domain_tot + obs_nudge_opt(nest) |
---|
| 168 | end do |
---|
| 169 | |
---|
| 170 | ! Set parameters. |
---|
| 171 | |
---|
| 172 | fdob%pfree = 50.0 |
---|
| 173 | fdob%rinfmn = 1.0 |
---|
| 174 | fdob%rinfmx = 2.0 |
---|
| 175 | fdob%dpsmx = 7.5 |
---|
| 176 | fdob%dcon = 1.0/fdob%dpsmx |
---|
| 177 | |
---|
| 178 | ! Get known lat and lon and store these on all processors in fdob structure, for |
---|
| 179 | ! later use in projection x-formation to map (lat,lon) to (x,y) for each obs. |
---|
| 180 | IF (its .eq. 1 .AND. jts .eq. 1) then |
---|
| 181 | known_lat = xlat(1,1) |
---|
| 182 | known_lon = xlong(1,1) |
---|
| 183 | ELSE |
---|
| 184 | known_lat = 9999. |
---|
| 185 | known_lon = 9999. |
---|
| 186 | END IF |
---|
| 187 | fdob%known_lat = wrf_dm_min_real(known_lat) |
---|
| 188 | fdob%known_lon = wrf_dm_min_real(known_lon) |
---|
| 189 | |
---|
| 190 | fdob%sn_maxcg = e_sn_cg - s_sn_cg + 1 ! coarse domain grid dimension in N-S |
---|
| 191 | fdob%we_maxcg = e_we_cg - s_we_cg + 1 ! coarse domain grid dimension in W-E |
---|
| 192 | fdob%sn_end = e_sn - 1 ! ending S-N grid coordinate |
---|
| 193 | |
---|
| 194 | ! Calculate the nest levels, levidn. Note that each nest |
---|
| 195 | ! must know the nest levels levidn(maxdom) of each domain. |
---|
| 196 | do nest=1,maxdom |
---|
| 197 | |
---|
| 198 | ! Initialize nest level for each domain. |
---|
| 199 | if (nest .eq. 1) then |
---|
| 200 | fdob%levidn(nest) = 0 ! Mother domain has nest level 0 |
---|
| 201 | else |
---|
| 202 | fdob%levidn(nest) = 1 ! All other domains start with 1 |
---|
| 203 | endif |
---|
| 204 | idom = nest |
---|
| 205 | 100 parent = parid(idom) ! Go up the parent tree |
---|
| 206 | |
---|
| 207 | if (parent .gt. 1) then ! If not up to mother domain |
---|
| 208 | fdob%levidn(nest) = fdob%levidn(nest) + 1 |
---|
| 209 | idom = parent |
---|
| 210 | goto 100 |
---|
| 211 | endif |
---|
| 212 | enddo |
---|
| 213 | |
---|
| 214 | ! Check to see if the nudging flag has been set. If not, |
---|
| 215 | ! simply RETURN. |
---|
| 216 | nudge_flag = (obs_nudge_opt(inest) .eq. 1) |
---|
| 217 | if (.not. nudge_flag) return |
---|
| 218 | |
---|
| 219 | ktau = itimestep |
---|
| 220 | if(restart) then |
---|
| 221 | fdob%ktaur = ktau |
---|
| 222 | else |
---|
| 223 | fdob%ktaur = 0 |
---|
| 224 | endif |
---|
| 225 | |
---|
| 226 | RETURN |
---|
| 227 | #endif |
---|
| 228 | END SUBROUTINE fddaobs_init |
---|
| 229 | |
---|
| 230 | #if ( EM_CORE == 1 ) |
---|
| 231 | !----------------------------------------------------------------------- |
---|
| 232 | SUBROUTINE errob(inest, ub, vb, tb, t0, qvb, pbase, pp, rovcp, & |
---|
| 233 | uratx, vratx, tratx, nndgv, & |
---|
| 234 | nerrf, niobf, maxdom, levidn, parid, nstat, & |
---|
| 235 | nstaw, iswind, & |
---|
| 236 | istemp, ismois, ispstr, rio, rjo, rko, varobs, & |
---|
| 237 | errf, i_parent_start, j_parent_start, & |
---|
| 238 | ktau, iratio, npfi, nobs_prt, iprt, & |
---|
| 239 | ids,ide, jds,jde, kds,kde, & |
---|
| 240 | ims,ime, jms,jme, kms,kme, & |
---|
| 241 | its,ite, jts,jte, kts,kte ) |
---|
| 242 | |
---|
| 243 | !----------------------------------------------------------------------- |
---|
| 244 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 245 | USE module_dm, ONLY : get_full_obs_vector |
---|
| 246 | #endif |
---|
| 247 | |
---|
| 248 | !----------------------------------------------------------------------- |
---|
| 249 | IMPLICIT NONE |
---|
| 250 | !----------------------------------------------------------------------- |
---|
| 251 | ! |
---|
| 252 | ! PURPOSE: THIS SUBROUTINE CALCULATES THE DIFFERENCE BETWEEN THE |
---|
| 253 | ! OBSERVED VALUES AND THE FORECAST VALUES AT THE OBSERVATION |
---|
| 254 | ! POINTS. THE OBSERVED VALUES CLOSEST TO THE CURRENT |
---|
| 255 | ! FORECAST TIME (XTIME) WERE DETERMINED IN SUBROUTINE |
---|
| 256 | ! IN4DOB AND STORED IN ARRAY VAROBS. THE DIFFERENCES |
---|
| 257 | ! CALCULATED BY SUBROUTINE ERROB WILL BE STORED IN ARRAY |
---|
| 258 | ! ERRF FOR THE NSTA OBSERVATION LOCATIONS. MISSING |
---|
| 259 | ! OBSERVATIONS ARE DENOTED BY THE DUMMY VALUE 99999. |
---|
| 260 | ! |
---|
| 261 | ! HISTORY: Original author: MM5 version??? |
---|
| 262 | ! 02/04/2004 - Creation of WRF version. Al Bourgeois |
---|
| 263 | ! 08/28/2006 - Conversion from F77 to F90 Al Bourgeois |
---|
| 264 | !------------------------------------------------------------------------------ |
---|
| 265 | |
---|
| 266 | ! THE STORAGE ORDER IN VAROBS AND ERRF IS AS FOLLOWS: |
---|
| 267 | ! IVAR VARIABLE TYPE(TAU-1) |
---|
| 268 | ! ---- -------------------- |
---|
| 269 | ! 1 U error |
---|
| 270 | ! 2 V error |
---|
| 271 | ! 3 T error |
---|
| 272 | ! 4 Q error |
---|
| 273 | ! 5 Surface press error at T points (not used) |
---|
| 274 | ! 6 Model surface press at T-points |
---|
| 275 | ! 7 Model surface press at U-points |
---|
| 276 | ! 8 Model surface press at V-points |
---|
| 277 | ! 9 RKO at U-points |
---|
| 278 | |
---|
| 279 | !----------------------------------------------------------------------- |
---|
| 280 | ! |
---|
| 281 | ! Description of input arguments. |
---|
| 282 | ! |
---|
| 283 | !----------------------------------------------------------------------- |
---|
| 284 | |
---|
| 285 | INTEGER, INTENT(IN) :: inest ! Domain index. |
---|
| 286 | INTEGER, INTENT(IN) :: nndgv ! Number of nudge variables. |
---|
| 287 | INTEGER, INTENT(IN) :: nerrf ! Number of error fields. |
---|
| 288 | INTEGER, INTENT(IN) :: niobf ! Number of observations. |
---|
| 289 | INTEGER, INTENT(IN) :: maxdom ! Maximum number of domains. |
---|
| 290 | INTEGER, INTENT(IN) :: levidn(maxdom) ! Level of nest. |
---|
| 291 | INTEGER, INTENT(IN) :: parid(maxdom) ! Id of parent grid. |
---|
| 292 | INTEGER, INTENT(IN) :: i_parent_start(maxdom) ! Start i index in parent domain. |
---|
| 293 | INTEGER, INTENT(IN) :: j_parent_start(maxdom) ! Start j index in parent domain. |
---|
| 294 | INTEGER, INTENT(IN) :: ktau |
---|
| 295 | INTEGER, INTENT(IN) :: iratio ! Nest to parent gridsize ratio. |
---|
| 296 | INTEGER, INTENT(IN) :: npfi ! Coarse-grid diagnostics freq. |
---|
| 297 | INTEGER, INTENT(IN) :: nobs_prt ! Number of current obs to print info. |
---|
| 298 | LOGICAL, INTENT(IN) :: iprt ! Print flag |
---|
| 299 | INTEGER, INTENT(IN) :: nstat ! # stations held for use |
---|
| 300 | INTEGER, INTENT(IN) :: nstaw ! # stations in current window |
---|
| 301 | INTEGER, intent(in) :: iswind |
---|
| 302 | INTEGER, intent(in) :: istemp |
---|
| 303 | INTEGER, intent(in) :: ismois |
---|
| 304 | INTEGER, intent(in) :: ispstr |
---|
| 305 | INTEGER, INTENT(IN) :: ids,ide, jds,jde, kds,kde ! domain dims. |
---|
| 306 | INTEGER, INTENT(IN) :: ims,ime, jms,jme, kms,kme ! memory dims. |
---|
| 307 | INTEGER, INTENT(IN) :: its,ite, jts,jte, kts,kte ! tile dims. |
---|
| 308 | |
---|
| 309 | REAL, INTENT(IN) :: ub( ims:ime, kms:kme, jms:jme ) |
---|
| 310 | REAL, INTENT(IN) :: vb( ims:ime, kms:kme, jms:jme ) |
---|
| 311 | REAL, INTENT(IN) :: tb( ims:ime, kms:kme, jms:jme ) |
---|
| 312 | REAL, INTENT(IN) :: t0 |
---|
| 313 | REAL, INTENT(IN) :: qvb( ims:ime, kms:kme, jms:jme ) |
---|
| 314 | REAL, INTENT(IN) :: pbase( ims:ime, kms:kme, jms:jme ) |
---|
| 315 | REAL, INTENT(IN) :: pp( ims:ime, kms:kme, jms:jme ) ! Press. perturbation (Pa) |
---|
| 316 | REAL, INTENT(IN) :: rovcp |
---|
| 317 | REAL, INTENT(IN) :: uratx( ims:ime, jms:jme ) ! U to U10 ratio on mass points. |
---|
| 318 | REAL, INTENT(IN) :: vratx( ims:ime, jms:jme ) ! V to V10 ratio on mass points. |
---|
| 319 | REAL, INTENT(IN) :: tratx( ims:ime, jms:jme ) ! T to TH2 ratio on mass points. |
---|
| 320 | REAL, INTENT(IN) :: rio(niobf) ! Obs west-east coordinate (non-stag grid). |
---|
| 321 | REAL, INTENT(IN) :: rjo(niobf) ! Obs south-north coordinate (non-stag grid). |
---|
| 322 | REAL, INTENT(INOUT) :: rko(niobf) |
---|
| 323 | REAL, INTENT(INOUT) :: varobs(nndgv, niobf) |
---|
| 324 | REAL, INTENT(INOUT) :: errf(nerrf, niobf) |
---|
| 325 | |
---|
| 326 | ! Local variables |
---|
| 327 | INTEGER :: iobmg(niobf) ! Obs i-coord on mass grid |
---|
| 328 | INTEGER :: jobmg(niobf) ! Obs j-coord on mass grid |
---|
| 329 | INTEGER :: ia(niobf) |
---|
| 330 | INTEGER :: ib(niobf) |
---|
| 331 | INTEGER :: ic(niobf) |
---|
| 332 | REAL :: pbbo(kds:kde) ! column base pressure (cb) at obs loc. |
---|
| 333 | REAL :: ppbo(kds:kde) ! column pressure perturbation (cb) at obs loc. |
---|
| 334 | |
---|
| 335 | REAL :: ra(niobf) |
---|
| 336 | REAL :: rb(niobf) |
---|
| 337 | REAL :: rc(niobf) |
---|
| 338 | REAL :: dxobmg(niobf) ! Interp. fraction (x dir) referenced to mass-grid |
---|
| 339 | REAL :: dyobmg(niobf) ! Interp. fraction (y dir) referenced to mass-grid |
---|
| 340 | INTEGER MM(MAXDOM) |
---|
| 341 | INTEGER NNL |
---|
| 342 | real :: uratio( ims:ime, jms:jme ) ! U to U10 ratio on momentum points. |
---|
| 343 | real :: vratio( ims:ime, jms:jme ) ! V to V10 ratio on momentum points. |
---|
| 344 | real :: pug1,pug2,pvg1,pvg2 |
---|
| 345 | |
---|
| 346 | ! Define staggers for U, V, and T grids, referenced from non-staggered grid. |
---|
| 347 | real, parameter :: gridx_t = 0.5 ! Mass-point x stagger |
---|
| 348 | real, parameter :: gridy_t = 0.5 ! Mass-point y stagger |
---|
| 349 | real, parameter :: gridx_u = 0.0 ! U-point x stagger |
---|
| 350 | real, parameter :: gridy_u = 0.5 ! U-point y stagger |
---|
| 351 | real, parameter :: gridx_v = 0.5 ! V-point x stagger |
---|
| 352 | real, parameter :: gridy_v = 0.0 ! V-point y stagger |
---|
| 353 | |
---|
| 354 | real :: dummy = 99999. |
---|
| 355 | |
---|
| 356 | real :: pbhi, pphi |
---|
| 357 | real :: press,ttemp !ajb scratch variables |
---|
| 358 | ! real model_temp,pot_temp !ajb scratch variables |
---|
| 359 | |
---|
| 360 | !*** DECLARATIONS FOR IMPLICIT NONE |
---|
| 361 | integer nsta,ivar,n,ityp |
---|
| 362 | integer iob,job,kob,iob_ms,job_ms |
---|
| 363 | integer k,kbot,nml,nlb,nle |
---|
| 364 | integer iobm,jobm,iobp,jobp,kobp,inpf,i,j |
---|
| 365 | integer i_start,i_end,j_start,j_end ! loop ranges for uratio,vratio calc. |
---|
| 366 | integer k_start,k_end |
---|
| 367 | integer ips ! For printing obs information |
---|
| 368 | |
---|
| 369 | real gridx,gridy,dxob,dyob,dzob,dxob_ms,dyob_ms |
---|
| 370 | real pob |
---|
| 371 | real grfacx,grfacy,uratiob,vratiob,tratiob,tratxob,fnpf |
---|
| 372 | real stagx ! For x correction to mass-point stagger |
---|
| 373 | real stagy ! For y correction to mass-point stagger |
---|
| 374 | |
---|
| 375 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 376 | LOGICAL MP_LOCAL_DUMMASK(NIOBF) ! Mask for work to be done on this processor |
---|
| 377 | LOGICAL MP_LOCAL_UOBMASK(NIOBF) ! Dot-point mask |
---|
| 378 | LOGICAL MP_LOCAL_VOBMASK(NIOBF) ! Dot-point mask |
---|
| 379 | LOGICAL MP_LOCAL_COBMASK(NIOBF) ! Cross-point mask |
---|
| 380 | #endif |
---|
| 381 | ! LOGICAL, EXTERNAL :: TILE_MASK |
---|
| 382 | |
---|
| 383 | NSTA=NSTAT |
---|
| 384 | |
---|
| 385 | ! FIRST, DETERMINE THE GRID TYPE CORRECTION FOR U-momentum, V-momentum, |
---|
| 386 | ! AND MASS POINTS, AND WHEN INEST=2, CONVERT THE STORED COARSE MESH INDICES |
---|
| 387 | ! TO THE FINE MESH INDEX EQUIVALENTS |
---|
| 388 | |
---|
| 389 | ! ITYP=1 FOR U-POINTS, ITYP=2 for V-POINTS, and ITYP=3 FOR MASS POINTS |
---|
| 390 | |
---|
| 391 | if (iprt) then |
---|
| 392 | write(6,'(a,i5,a,i2,a,i5,a)') '++++++CALL ERROB AT KTAU = ', & |
---|
| 393 | KTAU,' AND INEST = ',INEST,': NSTA = ',NSTAW,' ++++++' |
---|
| 394 | endif |
---|
| 395 | |
---|
| 396 | ERRF = 0.0 ! Zero out errf array |
---|
| 397 | |
---|
| 398 | ! Set up loop bounds for this grid's boundary conditions |
---|
| 399 | i_start = max( its-1,ids ) |
---|
| 400 | i_end = min( ite+1,ide-1 ) |
---|
| 401 | j_start = max( jts-1,jds ) |
---|
| 402 | j_end = min( jte+1,jde-1 ) |
---|
| 403 | k_start = kts |
---|
| 404 | k_end = min( kte, kde-1 ) |
---|
| 405 | |
---|
| 406 | DO ITYP=1,3 ! Big loop: ityp=1 for U, ityp=2 for V, ityp=3 for T,Q,SP |
---|
| 407 | |
---|
| 408 | ! Set grid stagger |
---|
| 409 | IF(ITYP.EQ.1) THEN ! U-POINT CASE |
---|
| 410 | GRIDX = gridx_u |
---|
| 411 | GRIDY = gridy_u |
---|
| 412 | ELSE IF(ITYP.EQ.2) THEN ! V-POINT CASE |
---|
| 413 | GRIDX = gridx_v |
---|
| 414 | GRIDY = gridy_v |
---|
| 415 | ELSE ! MASS-POINT CASE |
---|
| 416 | GRIDX = gridx_t |
---|
| 417 | GRIDY = gridy_t |
---|
| 418 | ENDIF |
---|
| 419 | |
---|
| 420 | ! Compute URATIO and VRATIO fields on momentum (u,v) points. |
---|
| 421 | IF(ityp.eq.1)THEN |
---|
| 422 | call upoint(i_start,i_end, j_start,j_end, ids,ide, ims,ime, jms,jme, uratx, uratio) |
---|
| 423 | ELSE IF (ityp.eq.2) THEN |
---|
| 424 | call vpoint(i_start,i_end, j_start,j_end, jds,jde, ims,ime, jms,jme, vratx, vratio) |
---|
| 425 | ENDIF |
---|
| 426 | |
---|
| 427 | IF(INEST.EQ.1) THEN ! COARSE MESH CASE... |
---|
| 428 | DO N=1,NSTA |
---|
| 429 | RA(N)=RIO(N)-GRIDX |
---|
| 430 | RB(N)=RJO(N)-GRIDY |
---|
| 431 | IA(N)=RA(N) |
---|
| 432 | IB(N)=RB(N) |
---|
| 433 | IOB=MAX0(1,IA(N)) |
---|
| 434 | IOB=MIN0(IOB,ide-1) |
---|
| 435 | JOB=MAX0(1,IB(N)) |
---|
| 436 | JOB=MIN0(JOB,jde-1) |
---|
| 437 | DXOB=RA(N)-FLOAT(IA(N)) |
---|
| 438 | DYOB=RB(N)-FLOAT(IB(N)) |
---|
| 439 | |
---|
| 440 | ! Save mass-point arrays for computing rko for all var types |
---|
| 441 | if(ityp.eq.1) then |
---|
| 442 | iobmg(n) = MIN0(MAX0(1,int(RIO(n)-gridx_t)),ide-1) |
---|
| 443 | jobmg(n) = MIN0(MAX0(1,int(RJO(n)-gridy_t)),jde-1) |
---|
| 444 | dxobmg(n) = RIO(N)-gridx_t-FLOAT(int(RIO(N)-gridx_t)) |
---|
| 445 | dyobmg(n) = RJO(N)-gridy_t-FLOAT(int(RJO(N)-gridy_t)) |
---|
| 446 | endif |
---|
| 447 | iob_ms = iobmg(n) |
---|
| 448 | job_ms = jobmg(n) |
---|
| 449 | dxob_ms = dxobmg(n) |
---|
| 450 | dyob_ms = dyobmg(n) |
---|
| 451 | |
---|
| 452 | |
---|
| 453 | !if(n.eq.1 .and. iprt) then |
---|
| 454 | ! write(6,*) 'ERROB - COARSE MESH:' |
---|
| 455 | ! write(6,'(a,i1,a,i1,4(a,f5.2),2(a,i3),2(a,f6.3))') 'OBS= ',n, & |
---|
| 456 | ! ' ityp= ',ityp, & |
---|
| 457 | ! ' ra= ',ra(n),' rb= ',rb(n), & |
---|
| 458 | ! ' rio= ',rio(n),' rjo= ',rjo(n), & |
---|
| 459 | ! ' iob= ',iob,' job= ',job, & |
---|
| 460 | ! ' dxob= ',dxob,' dyob= ',dyob |
---|
| 461 | ! write(6,'(a,i3,a,i3,a,f5.2,a,f5.2)') & |
---|
| 462 | ! ' iob_ms= ',iob_ms,' job_ms= ',job_ms, & |
---|
| 463 | ! ' dxob_ms= ',dxob_ms,' dyob_ms= ',dyob_ms |
---|
| 464 | !endif |
---|
| 465 | |
---|
| 466 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 467 | ! Set mask for obs to be handled by this processor |
---|
| 468 | MP_LOCAL_DUMMASK(N) = TILE_MASK(IOB, JOB, its, ite, jts, jte) |
---|
| 469 | |
---|
| 470 | IF ( MP_LOCAL_DUMMASK(N) ) THEN |
---|
| 471 | #endif |
---|
| 472 | |
---|
| 473 | ! Interpolate pressure to obs location column and convert from Pa to cb. |
---|
| 474 | |
---|
| 475 | do k = kds, kde |
---|
| 476 | pbbo(k) = .001*( & |
---|
| 477 | (1.-DYOB_MS)*( (1.-DXOB_MS)*pbase(IOB_MS,K,JOB_MS) + & |
---|
| 478 | DXOB_MS *pbase(IOB_MS+1,K,JOB_MS) ) + & |
---|
| 479 | DYOB_MS* ( (1.-DXOB_MS)*pbase(IOB_MS,K,JOB_MS+1) + & |
---|
| 480 | DXOB_MS *pbase(IOB_MS+1,K,JOB_MS+1) ) ) |
---|
| 481 | ppbo(k) = .001*( & |
---|
| 482 | (1.-DYOB_MS)*( (1.-DXOB_MS)*pp(IOB_MS,K,JOB_MS) + & |
---|
| 483 | DXOB_MS *pp(IOB_MS+1,K,JOB_MS) ) + & |
---|
| 484 | DYOB_MS* ( (1.-DXOB_MS)*pp(IOB_MS,K,JOB_MS+1) + & |
---|
| 485 | DXOB_MS *pp(IOB_MS+1,K,JOB_MS+1) ) ) |
---|
| 486 | |
---|
| 487 | ! write(6,'(a,i2,2(a,f9.3)') ' k= ',k,' pbbo= ',pbbo(k),' ppbo= ',ppbo(k) |
---|
| 488 | enddo |
---|
| 489 | |
---|
| 490 | !ajb 20040119: Note based on bugfix for dot/cross points split across processors, |
---|
| 491 | !ajb which was actually a serial code fix: The ityp=2 (v-points) and |
---|
| 492 | !ajb itype=3 (mass-points) cases should not use the ityp=1 (u-points) |
---|
| 493 | !ajb case rko! This is necessary for bit-for-bit reproducability |
---|
| 494 | !ajb with the parallel run. (coarse mesh) |
---|
| 495 | |
---|
| 496 | |
---|
| 497 | if(abs(rko(n)+99).lt.1.)then |
---|
| 498 | pob = varobs(5,n) |
---|
| 499 | |
---|
| 500 | if(pob .gt.-800000.)then |
---|
| 501 | do k=k_end-1,1,-1 |
---|
| 502 | kbot = k |
---|
| 503 | if(pob .le. pbbo(k)+ppbo(k)) then |
---|
| 504 | goto 199 |
---|
| 505 | endif |
---|
| 506 | enddo |
---|
| 507 | 199 continue |
---|
| 508 | |
---|
| 509 | pphi = ppbo(kbot+1) |
---|
| 510 | pbhi = pbbo(kbot+1) |
---|
| 511 | |
---|
| 512 | rko(n) = real(kbot+1)- & |
---|
| 513 | ( (pob-pbhi-pphi) / (pbbo(kbot)+ppbo(kbot)-pbhi-pphi) ) |
---|
| 514 | |
---|
| 515 | rko(n)=max(rko(n),1.0) |
---|
| 516 | endif |
---|
| 517 | endif |
---|
| 518 | |
---|
| 519 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 520 | ENDIF !end IF( MP_LOCAL_DUMMASK(N) ) !ajb |
---|
| 521 | #endif |
---|
| 522 | |
---|
| 523 | RC(N)=RKO(N) |
---|
| 524 | |
---|
| 525 | ENDDO ! END COARSE MESH LOOP OVER NSTA |
---|
| 526 | |
---|
| 527 | ELSE ! FINE MESH CASE |
---|
| 528 | |
---|
| 529 | !********************************************************************** |
---|
| 530 | !ajb_07012008: Conversion of obs coordinates to the fine mesh here |
---|
| 531 | !ajb is no longer necessary, since implementation of the WRF map pro- |
---|
| 532 | !ajb jections (to each nest directly) is implemented in sub in4dob. |
---|
| 533 | !********************************************************************** |
---|
| 534 | !ajb |
---|
| 535 | !ajb GET (I,J,K) OF OBSERVATIONS ON FINE MESH VALUES. |
---|
| 536 | DO N=1,NSTA |
---|
| 537 | |
---|
| 538 | ! write(6,*) 'UPDATE: ra(n) = ',ra(n),' rb(n) = ',rb(n) |
---|
| 539 | |
---|
| 540 | RA(N)=RIO(N)-GRIDX ! ajb added 07012008 |
---|
| 541 | RB(N)=RJO(N)-GRIDY ! ajb added 07012008 |
---|
| 542 | IA(N)=RA(N) |
---|
| 543 | IB(N)=RB(N) |
---|
| 544 | IOB=MAX0(1,IA(N)) |
---|
| 545 | IOB=MIN0(IOB,ide-1) |
---|
| 546 | JOB=MAX0(1,IB(N)) |
---|
| 547 | JOB=MIN0(JOB,jde-1) |
---|
| 548 | DXOB=RA(N)-FLOAT(IA(N)) |
---|
| 549 | DYOB=RB(N)-FLOAT(IB(N)) |
---|
| 550 | |
---|
| 551 | ! Save mass-point arrays for computing rko for all var types |
---|
| 552 | if(ityp.eq.1) then |
---|
| 553 | stagx = grfacx - gridx_t !Correct x stagger to mass-point |
---|
| 554 | stagy = grfacy - gridy_t !Correct y stagger to mass-point |
---|
| 555 | iobmg(n) = MIN0(MAX0(1,int(RA(n)+stagx)),ide-1) |
---|
| 556 | jobmg(n) = MIN0(MAX0(1,int(RB(n)+stagy)),jde-1) |
---|
| 557 | dxobmg(n) = RA(N)+stagx-FLOAT(int(RA(N)+stagx)) |
---|
| 558 | dyobmg(n) = RB(N)+stagy-FLOAT(int(RB(N)+stagy)) |
---|
| 559 | endif |
---|
| 560 | iob_ms = iobmg(n) |
---|
| 561 | job_ms = jobmg(n) |
---|
| 562 | dxob_ms = dxobmg(n) |
---|
| 563 | dyob_ms = dyobmg(n) |
---|
| 564 | |
---|
| 565 | !if(n.eq.1) then |
---|
| 566 | ! write(6,*) 'ERROB - FINE MESH:' |
---|
| 567 | ! write(6,*) 'RA = ',ra(n),' RB = ',rb(n) |
---|
| 568 | ! write(6,'(a,i1,a,i1,4(a,f5.2),2(a,i3),2(a,f6.3))') 'OBS= ',n, & |
---|
| 569 | ! ' ityp= ',ityp, & |
---|
| 570 | ! ' ra= ',ra(n),' rb= ',rb(n), & |
---|
| 571 | ! ' rio= ',rio(n),' rjo= ',rjo(n), & |
---|
| 572 | ! ' iob= ',iob,' job= ',job, & |
---|
| 573 | ! ' dxob= ',dxob,' dyob= ',dyob |
---|
| 574 | ! write(6,'(a,i3,a,i3,a,f5.2,a,f5.2)') & |
---|
| 575 | ! ' iob_ms= ',iob_ms,' job_ms= ',job_ms, & |
---|
| 576 | ! ' dxob_ms= ',dxob_ms,' dyob_ms= ',dyob_ms |
---|
| 577 | !endif |
---|
| 578 | |
---|
| 579 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 580 | ! Set mask for obs to be handled by this processor |
---|
| 581 | MP_LOCAL_DUMMASK(N) = TILE_MASK(IOB, JOB, its, ite, jts, jte) |
---|
| 582 | |
---|
| 583 | IF ( MP_LOCAL_DUMMASK(N) ) THEN |
---|
| 584 | #endif |
---|
| 585 | |
---|
| 586 | ! Interpolate pressure to obs location column and convert from Pa to cb. |
---|
| 587 | |
---|
| 588 | do k = kds, kde |
---|
| 589 | pbbo(k) = .001*( & |
---|
| 590 | (1.-DYOB_MS)*( (1.-DXOB_MS)*pbase(IOB_MS,K,JOB_MS) + & |
---|
| 591 | DXOB_MS *pbase(IOB_MS+1,K,JOB_MS) ) + & |
---|
| 592 | DYOB_MS* ( (1.-DXOB_MS)*pbase(IOB_MS,K,JOB_MS+1) + & |
---|
| 593 | DXOB_MS *pbase(IOB_MS+1,K,JOB_MS+1) ) ) |
---|
| 594 | ppbo(k) = .001*( & |
---|
| 595 | (1.-DYOB_MS)*( (1.-DXOB_MS)*pp(IOB_MS,K,JOB_MS) + & |
---|
| 596 | DXOB_MS *pp(IOB_MS+1,K,JOB_MS) ) + & |
---|
| 597 | DYOB_MS* ( (1.-DXOB_MS)*pp(IOB_MS,K,JOB_MS+1) + & |
---|
| 598 | DXOB_MS *pp(IOB_MS+1,K,JOB_MS+1) ) ) |
---|
| 599 | |
---|
| 600 | ! write(6,'(a,i2,2(a,f9.3)') ' k= ',k,' pbbo= ',pbbo(k),' ppbo= ',ppbo(k) |
---|
| 601 | enddo |
---|
| 602 | |
---|
| 603 | !ajb 20040119: Note based on bugfix for dot/cross points split across processors, |
---|
| 604 | !ajb which was actually a serial code fix: The ityp=2 (v-points) and |
---|
| 605 | !ajb itype=3 (mass-points) cases should not use the ityp=1 (u-points) |
---|
| 606 | !ajb case) rko! This is necessary for bit-for-bit reproducability |
---|
| 607 | !ajb with parallel run. (fine mesh) |
---|
| 608 | |
---|
| 609 | if(abs(rko(n)+99).lt.1.)then |
---|
| 610 | pob = varobs(5,n) |
---|
| 611 | |
---|
| 612 | if(pob .gt.-800000.)then |
---|
| 613 | do k=k_end-1,1,-1 |
---|
| 614 | kbot = k |
---|
| 615 | if(pob .le. pbbo(k)+ppbo(k)) then |
---|
| 616 | goto 198 |
---|
| 617 | endif |
---|
| 618 | enddo |
---|
| 619 | 198 continue |
---|
| 620 | |
---|
| 621 | pphi = ppbo(kbot+1) |
---|
| 622 | pbhi = pbbo(kbot+1) |
---|
| 623 | |
---|
| 624 | rko(n) = real(kbot+1)- & |
---|
| 625 | ( (pob-pbhi-pphi) / (pbbo(kbot)+ppbo(kbot)-pbhi-pphi) ) |
---|
| 626 | rko(n)=max(rko(n),1.0) |
---|
| 627 | endif |
---|
| 628 | endif |
---|
| 629 | |
---|
| 630 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 631 | ENDIF !end IF( MP_LOCAL_DUMMASK(N) ) !ajb |
---|
| 632 | #endif |
---|
| 633 | |
---|
| 634 | RC(N)=RKO(N) |
---|
| 635 | |
---|
| 636 | ENDDO ! END FINE MESH LOOP OVER NSTA |
---|
| 637 | |
---|
| 638 | ENDIF ! end if(inest.eq.1) |
---|
| 639 | |
---|
| 640 | ! Print obs information. |
---|
| 641 | if (iprt) then |
---|
| 642 | if(ityp.eq.3) then !mass-point case |
---|
| 643 | ips = min(nstaw,nobs_prt) |
---|
| 644 | if(ips.gt.0) then |
---|
| 645 | write(6,*) ' OBS# I J K' |
---|
| 646 | endif |
---|
| 647 | do n=1,ips |
---|
| 648 | write(6,'(2x,i4,3f8.3)') n,ra(n),rb(n),rc(n) |
---|
| 649 | enddo |
---|
| 650 | endif |
---|
| 651 | endif |
---|
| 652 | |
---|
| 653 | ! INITIALIZE THE ARRAY OF DIFFERENCES BETWEEN THE OBSERVATIONS |
---|
| 654 | ! AND THE LOCAL FORECAST VALUES TO ZERO. FOR THE FINE MESH |
---|
| 655 | ! ONLY, SET THE DIFFERENCE TO A LARGE DUMMY VALUE IF THE |
---|
| 656 | ! OBSERVATION IS OUTSIDE THE FINE MESH DOMAIN. |
---|
| 657 | |
---|
| 658 | ! SET DIFFERENCE VALUE TO A DUMMY VALUE FOR OBS POINTS OUTSIDE |
---|
| 659 | ! CURRENT DOMAIN |
---|
| 660 | IF(ITYP.EQ.1) THEN |
---|
| 661 | NLB=1 |
---|
| 662 | NLE=1 |
---|
| 663 | ELSE IF(ITYP.EQ.2) THEN |
---|
| 664 | NLB=2 |
---|
| 665 | NLE=2 |
---|
| 666 | ELSE |
---|
| 667 | NLB=3 |
---|
| 668 | NLE=5 |
---|
| 669 | ENDIF |
---|
| 670 | DO IVAR=NLB,NLE |
---|
| 671 | DO N=1,NSTA |
---|
| 672 | IF((RA(N)-1.).LT.0)THEN |
---|
| 673 | ERRF(IVAR,N)=ERRF(IVAR,N)+DUMMY |
---|
| 674 | ENDIF |
---|
| 675 | IF((RB(N)-1.).LT.0)THEN |
---|
| 676 | ERRF(IVAR,N)=ERRF(IVAR,N)+DUMMY |
---|
| 677 | ENDIF |
---|
| 678 | IF((FLOAT(ide)-2.0*GRIDX-RA(N)-1.E-10).LT.0)THEN |
---|
| 679 | ERRF(IVAR,N)=ERRF(IVAR,N)+DUMMY |
---|
| 680 | ENDIF |
---|
| 681 | IF((FLOAT(jde)-2.0*GRIDY-RB(N)-1.E-10).LT.0)THEN |
---|
| 682 | ERRF(IVAR,N)=ERRF(IVAR,N)+DUMMY |
---|
| 683 | ENDIF |
---|
| 684 | if(rc(n).lt.1.)errf(ivar,n)=errf(ivar,n)+dummy |
---|
| 685 | ENDDO |
---|
| 686 | ENDDO |
---|
| 687 | |
---|
| 688 | ! NOW FIND THE EXACT OFFSET OF EACH OBSERVATION FROM THE |
---|
| 689 | ! GRID POINT TOWARD THE LOWER LEFT |
---|
| 690 | DO N=1,NSTA |
---|
| 691 | IA(N)=RA(N) |
---|
| 692 | IB(N)=RB(N) |
---|
| 693 | IC(N)=RC(N) |
---|
| 694 | ENDDO |
---|
| 695 | DO N=1,NSTA |
---|
| 696 | RA(N)=RA(N)-FLOAT(IA(N)) |
---|
| 697 | RB(N)=RB(N)-FLOAT(IB(N)) |
---|
| 698 | RC(N)=RC(N)-FLOAT(IC(N)) |
---|
| 699 | ENDDO |
---|
| 700 | ! PERFORM A TRILINEAR EIGHT-POINT (3-D) INTERPOLATION |
---|
| 701 | ! TO FIND THE FORECAST VALUE AT THE EXACT OBSERVATION |
---|
| 702 | ! POINTS FOR U, V, T, AND Q. |
---|
| 703 | |
---|
| 704 | ! Compute local masks for dot and cross points. |
---|
| 705 | if(ityp.eq.1) then |
---|
| 706 | DO N=1,NSTA |
---|
| 707 | IOB=MAX0(1,IA(N)) |
---|
| 708 | IOB=MIN0(IOB,ide-1) |
---|
| 709 | JOB=MAX0(1,IB(N)) |
---|
| 710 | JOB=MIN0(JOB,jde-1) |
---|
| 711 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 712 | ! Set mask for U-momemtum points to be handled by this processor |
---|
| 713 | MP_LOCAL_UOBMASK(N) = TILE_MASK(IOB, JOB, its, ite, jts, jte) |
---|
| 714 | #endif |
---|
| 715 | ENDDO |
---|
| 716 | endif |
---|
| 717 | if(ityp.eq.2) then |
---|
| 718 | DO N=1,NSTA |
---|
| 719 | IOB=MAX0(1,IA(N)) |
---|
| 720 | IOB=MIN0(IOB,ide-1) |
---|
| 721 | JOB=MAX0(1,IB(N)) |
---|
| 722 | JOB=MIN0(JOB,jde-1) |
---|
| 723 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 724 | ! Set mask for V-momentum points to be handled by this processor |
---|
| 725 | MP_LOCAL_VOBMASK(N) = TILE_MASK(IOB, JOB, its, ite, jts, jte) |
---|
| 726 | #endif |
---|
| 727 | ENDDO |
---|
| 728 | endif |
---|
| 729 | if(ityp.eq.3) then |
---|
| 730 | DO N=1,NSTA |
---|
| 731 | IOB=MAX0(1,IA(N)) |
---|
| 732 | IOB=MIN0(IOB,ide-1) |
---|
| 733 | JOB=MAX0(1,IB(N)) |
---|
| 734 | JOB=MIN0(JOB,jde-1) |
---|
| 735 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 736 | ! Set mask for cross (mass) points to be handled by this processor |
---|
| 737 | MP_LOCAL_COBMASK(N) = TILE_MASK(IOB, JOB, its, ite, jts, jte) |
---|
| 738 | #endif |
---|
| 739 | ENDDO |
---|
| 740 | endif |
---|
| 741 | |
---|
| 742 | !********************************************************** |
---|
| 743 | ! PROCESS U VARIABLE (IVAR=1) |
---|
| 744 | !********************************************************** |
---|
| 745 | IF(ITYP.EQ.1) THEN |
---|
| 746 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 747 | DO N=1,NSTA |
---|
| 748 | IF(MP_LOCAL_UOBMASK(N)) THEN |
---|
| 749 | ERRF(9,N)=rko(n) !RKO is needed by neighboring processors !ajb |
---|
| 750 | ENDIF |
---|
| 751 | ENDDO |
---|
| 752 | #endif |
---|
| 753 | IF(ISWIND.EQ.1) THEN |
---|
| 754 | DO N=1,NSTA |
---|
| 755 | IOB=MAX0(2,IA(N)) |
---|
| 756 | IOB=MIN0(IOB,ide-1) |
---|
| 757 | IOBM=MAX0(1,IOB-1) |
---|
| 758 | IOBP=MIN0(ide-1,IOB+1) |
---|
| 759 | JOB=MAX0(2,IB(N)) |
---|
| 760 | JOB=MIN0(JOB,jde-1) |
---|
| 761 | JOBM=MAX0(1,JOB-1) |
---|
| 762 | JOBP=MIN0(jde-1,JOB+1) |
---|
| 763 | KOB=MIN0(K_END,IC(N)) |
---|
| 764 | |
---|
| 765 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 766 | IF(MP_LOCAL_UOBMASK(N))THEN ! Do if obs on this processor |
---|
| 767 | #endif |
---|
| 768 | KOBP=MIN0(KOB+1,k_end) |
---|
| 769 | DXOB=RA(N) |
---|
| 770 | DYOB=RB(N) |
---|
| 771 | DZOB=RC(N) |
---|
| 772 | |
---|
| 773 | ! Compute surface pressure values at surrounding U and V points |
---|
| 774 | PUG1 = .5*( pbase(IOBM,1,JOB) + pbase(IOB,1,JOB) ) |
---|
| 775 | PUG2 = .5*( pbase(IOB,1,JOB) + pbase(IOBP,1,JOB) ) |
---|
| 776 | |
---|
| 777 | ! This is to correct obs to model sigma level using reverse similarity theory |
---|
| 778 | if(rko(n).eq.1.0)then |
---|
| 779 | uratiob=((1.-DYOB)*((1.-DXOB)*uratio(IOB,JOB)+ & |
---|
| 780 | DXOB*uratio(IOBP,JOB) & |
---|
| 781 | )+DYOB*((1.-DXOB)*uratio(IOB,JOBP)+ & |
---|
| 782 | DXOB*uratio(IOBP,JOBP))) |
---|
| 783 | else |
---|
| 784 | uratiob=1. |
---|
| 785 | endif |
---|
| 786 | !YLIU Some PBL scheme do not define the vratio/uratio |
---|
| 787 | if(abs(uratiob).lt.1.0e-3) then |
---|
| 788 | uratiob=1. |
---|
| 789 | endif |
---|
| 790 | |
---|
| 791 | ! INITIAL ERRF(IVAR,N) IS ZERO FOR OBSERVATIONS POINTS |
---|
| 792 | ! WITHIN THE DOMAIN, AND A LARGE DUMMY VALUE FOR POINTS |
---|
| 793 | ! OUTSIDE THE CURRENT DOMAIN |
---|
| 794 | |
---|
| 795 | ! U COMPONENT WIND ERROR |
---|
| 796 | ERRF(1,N)=ERRF(1,N)+uratiob*VAROBS(1,N)-((1.-DZOB)* & |
---|
| 797 | ((1.-DyOB)*((1.- & |
---|
| 798 | DxOB)*UB(IOB,KOB,JOB)+DxOB*UB(IOB+1,KOB,JOB) & |
---|
| 799 | )+DyOB*((1.-DxOB)*UB(IOB,KOB,JOB+1)+DxOB* & |
---|
| 800 | UB(IOB+1,KOB,JOB+1)))+DZOB*((1.-DyOB)*((1.-DxOB) & |
---|
| 801 | *UB(IOB,KOBP,JOB)+DxOB*UB(IOB+1,KOBP,JOB))+ & |
---|
| 802 | DyOB*((1.-DxOB)*UB(IOB,KOBP,JOB+1)+DxOB* & |
---|
| 803 | UB(IOB+1,KOBP,JOB+1)))) |
---|
| 804 | |
---|
| 805 | ! if(n.le.10) then |
---|
| 806 | ! write(6,*) |
---|
| 807 | ! write(6,'(a,i3,i3,i3,a,i3,a,i2)') 'ERRF1 at ',iob,job,kob, & |
---|
| 808 | ! ' N = ',n,' inest = ',inest |
---|
| 809 | ! write(6,*) 'VAROBS(1,N) = ',varobs(1,n) |
---|
| 810 | ! write(6,*) 'VAROBS(5,N) = ',varobs(5,n) |
---|
| 811 | ! write(6,*) 'UB(IOB,KOB,JOB) = ',UB(IOB,KOB,JOB) |
---|
| 812 | ! write(6,*) 'UB(IOB+1,KOB,JOB) = ',UB(IOB+1,KOB,JOB) |
---|
| 813 | ! write(6,*) 'UB(IOB,KOB,JOB+1) = ',UB(IOB,KOB,JOB+1) |
---|
| 814 | ! write(6,*) 'UB(IOB+1,KOB,JOB+1) = ',UB(IOB+1,KOB,JOB+1) |
---|
| 815 | ! write(6,*) 'UB(IOB,KOBP,JOB) = ',UB(IOB,KOBP,JOB) |
---|
| 816 | ! write(6,*) 'UB(IOB+1,KOBP,JOB) = ',UB(IOB+1,KOBP,JOB) |
---|
| 817 | ! write(6,*) 'UB(IOB,KOBP,JOB+1) = ',UB(IOB,KOBP,JOB+1) |
---|
| 818 | ! write(6,*) 'UB(IOB+1,KOBP,JOB+1) = ',UB(IOB+1,KOBP,JOB+1) |
---|
| 819 | ! write(6,*) 'uratiob = ',uratiob |
---|
| 820 | ! write(6,*) 'DXOB,DYOB,DZOB = ',DXOB,DYOB,DZOB |
---|
| 821 | ! write(6,*) 'ERRF(1,N) = ',errf(1,n) |
---|
| 822 | ! write(6,*) |
---|
| 823 | ! endif |
---|
| 824 | |
---|
| 825 | |
---|
| 826 | ! Store model surface pressure (not the error!) at U point. |
---|
| 827 | ERRF(7,N)=.001*( (1.-DXOB)*PUG1 + DXOB*PUG2 ) |
---|
| 828 | |
---|
| 829 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 830 | ENDIF ! end IF( MP_LOCAL_UOBMASK(N) ) |
---|
| 831 | #endif |
---|
| 832 | ENDDO ! END U-POINT LOOP OVER OBS |
---|
| 833 | |
---|
| 834 | ENDIF ! end if(iswind.eq.1) |
---|
| 835 | |
---|
| 836 | ENDIF ! ITYP=1: PROCESS U |
---|
| 837 | |
---|
| 838 | !********************************************************** |
---|
| 839 | ! PROCESS V VARIABLE (IVAR=2) |
---|
| 840 | !********************************************************** |
---|
| 841 | IF(ITYP.EQ.2) THEN |
---|
| 842 | |
---|
| 843 | IF(ISWIND.EQ.1) THEN |
---|
| 844 | DO N=1,NSTA |
---|
| 845 | IOB=MAX0(2,IA(N)) |
---|
| 846 | IOB=MIN0(IOB,ide-1) |
---|
| 847 | IOBM=MAX0(1,IOB-1) |
---|
| 848 | IOBP=MIN0(ide-1,IOB+1) |
---|
| 849 | JOB=MAX0(2,IB(N)) |
---|
| 850 | JOB=MIN0(JOB,jde-1) |
---|
| 851 | JOBM=MAX0(1,JOB-1) |
---|
| 852 | JOBP=MIN0(jde-1,JOB+1) |
---|
| 853 | KOB=MIN0(K_END,IC(N)) |
---|
| 854 | |
---|
| 855 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 856 | IF(MP_LOCAL_VOBMASK(N))THEN ! Do if obs on this processor |
---|
| 857 | #endif |
---|
| 858 | KOBP=MIN0(KOB+1,k_end) |
---|
| 859 | DXOB=RA(N) |
---|
| 860 | DYOB=RB(N) |
---|
| 861 | DZOB=RC(N) |
---|
| 862 | |
---|
| 863 | ! Compute surface pressure values at surrounding U and V points |
---|
| 864 | PVG1 = .5*( pbase(IOB,1,JOBM) + pbase(IOB,1,JOB) ) |
---|
| 865 | PVG2 = .5*( pbase(IOB,1,JOB) + pbase(IOB,1,JOBP) ) |
---|
| 866 | |
---|
| 867 | ! This is to correct obs to model sigma level using reverse similarity theory |
---|
| 868 | if(rko(n).eq.1.0)then |
---|
| 869 | vratiob=((1.-DYOB)*((1.-DXOB)*vratio(IOB,JOB)+ & |
---|
| 870 | DXOB*vratio(IOBP,JOB) & |
---|
| 871 | )+DYOB*((1.-DXOB)*vratio(IOB,JOBP)+ & |
---|
| 872 | DXOB*vratio(IOBP,JOBP))) |
---|
| 873 | else |
---|
| 874 | vratiob=1. |
---|
| 875 | endif |
---|
| 876 | !YLIU Some PBL scheme do not define the vratio/uratio |
---|
| 877 | if(abs(vratiob).lt.1.0e-3) then |
---|
| 878 | vratiob=1. |
---|
| 879 | endif |
---|
| 880 | |
---|
| 881 | ! INITIAL ERRF(IVAR,N) IS ZERO FOR OBSERVATIONS POINTS |
---|
| 882 | ! WITHIN THE DOMAIN, AND A LARGE DUMMY VALUE FOR POINTS |
---|
| 883 | ! OUTSIDE THE CURRENT DOMAIN |
---|
| 884 | |
---|
| 885 | ! V COMPONENT WIND ERROR |
---|
| 886 | ERRF(2,N)=ERRF(2,N)+vratiob*VAROBS(2,N)-((1.-DZOB)* & |
---|
| 887 | ((1.-DyOB)*((1.- & |
---|
| 888 | DxOB)*VB(IOB,KOB,JOB)+DxOB*VB(IOB+1,KOB,JOB) & |
---|
| 889 | )+DyOB*((1.-DxOB)*VB(IOB,KOB,JOB+1)+DxOB* & |
---|
| 890 | VB(IOB+1,KOB,JOB+1)))+DZOB*((1.-DyOB)*((1.-DxOB) & |
---|
| 891 | *VB(IOB,KOBP,JOB)+DxOB*VB(IOB+1,KOBP,JOB))+ & |
---|
| 892 | DyOB*((1.-DxOB)*VB(IOB,KOBP,JOB+1)+DxOB* & |
---|
| 893 | VB(IOB+1,KOBP,JOB+1)))) |
---|
| 894 | |
---|
| 895 | ! if(n.le.10) then |
---|
| 896 | ! write(6,*) |
---|
| 897 | ! write(6,'(a,i3,i3,i3,a,i3,a,i2)') 'ERRF2 at ',iob,job,kob, & |
---|
| 898 | ! ' N = ',n,' inest = ',inest |
---|
| 899 | ! write(6,*) 'VAROBS(2,N) = ',varobs(2,n) |
---|
| 900 | ! write(6,*) 'VAROBS(5,N) = ',varobs(5,n) |
---|
| 901 | ! write(6,*) 'VB(IOB,KOB,JOB) = ',VB(IOB,KOB,JOB) |
---|
| 902 | ! write(6,*) 'ERRF(2,N) = ',errf(2,n) |
---|
| 903 | ! write(6,*) 'vratiob = ',vratiob |
---|
| 904 | ! write(6,*) |
---|
| 905 | ! endif |
---|
| 906 | |
---|
| 907 | |
---|
| 908 | ! Store model surface pressure (not the error!) at V point. |
---|
| 909 | ERRF(8,N)=.001*( (1.-DYOB)*PVG1 + DYOB*PVG2 ) |
---|
| 910 | |
---|
| 911 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 912 | ENDIF ! end IF( MP_LOCAL_VOBMASK(N) ) |
---|
| 913 | #endif |
---|
| 914 | ENDDO ! END V-POINT LOOP OVER OBS |
---|
| 915 | |
---|
| 916 | ENDIF ! end if(iswind.eq.1) |
---|
| 917 | |
---|
| 918 | ENDIF ! ITYP=1: PROCESS V |
---|
| 919 | |
---|
| 920 | !********************************************************** |
---|
| 921 | ! PROCESS MASS-POINT VARIABLES IVAR=3 (T) AND IVAR=4 (QV) |
---|
| 922 | !********************************************************** |
---|
| 923 | IF(ITYP.EQ.3) THEN |
---|
| 924 | |
---|
| 925 | IF(ISTEMP.EQ.1 .OR. ISMOIS.EQ.1) THEN |
---|
| 926 | DO N=1,NSTA |
---|
| 927 | IOB=MAX0(1,IA(N)) |
---|
| 928 | IOB=MIN0(IOB,ide-1) |
---|
| 929 | JOB=MAX0(1,IB(N)) |
---|
| 930 | JOB=MIN0(JOB,jde-1) |
---|
| 931 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 932 | IF(MP_LOCAL_COBMASK(N)) THEN ! Do if obs on this processor |
---|
| 933 | #endif |
---|
| 934 | KOB=MIN0(k_end,IC(N)) |
---|
| 935 | KOBP=MIN0(KOB+1,K_END) |
---|
| 936 | DXOB=RA(N) |
---|
| 937 | DYOB=RB(N) |
---|
| 938 | DZOB=RC(N) |
---|
| 939 | |
---|
| 940 | ! This is to correct obs to model sigma level using reverse similarity theory |
---|
| 941 | if(rko(n).eq.1.0)then |
---|
| 942 | tratxob=((1.-DYOB)*((1.-DXOB)*tratx(IOB,JOB)+ & |
---|
| 943 | DXOB*tratx(IOB+1,JOB) & |
---|
| 944 | )+DYOB*((1.-DXOB)*tratx(IOB,JOB+1)+ & |
---|
| 945 | DXOB*tratx(IOB+1,JOB+1))) |
---|
| 946 | else |
---|
| 947 | tratxob=1. |
---|
| 948 | endif |
---|
| 949 | |
---|
| 950 | !yliu |
---|
| 951 | if(abs(tratxob) .lt. 1.0E-3) tratxob=1. |
---|
| 952 | |
---|
| 953 | !ajb testing only |
---|
| 954 | if(iprt .and. n.eq.81) then |
---|
| 955 | write(6,*) 'POTENTIAL TEMP FOR N=81:' |
---|
| 956 | write(6,*) |
---|
| 957 | write(6,*) ' K THETA TEMPERATURE', & |
---|
| 958 | ' PBASE' |
---|
| 959 | write(6,*) |
---|
| 960 | do k=k_end,1,-1 |
---|
| 961 | press = pbase(iob,k,job)+pp(iob,k,job) |
---|
| 962 | ttemp = exp ( alog(300.+TB(IOB,k,JOB)) - & |
---|
| 963 | .2857143*alog(100000./press) ) |
---|
| 964 | write(6,*) k,300.+TB(IOB,k,JOB),ttemp,pbase(iob,k,job) |
---|
| 965 | enddo |
---|
| 966 | endif |
---|
| 967 | !ajb end testing only |
---|
| 968 | |
---|
| 969 | ! TEMPERATURE ERROR |
---|
| 970 | ! if(n.le.10) then |
---|
| 971 | ! write(6,*) 'before: errf(3,n) = ',errf(3,n) |
---|
| 972 | ! endif |
---|
| 973 | ERRF(3,N)=ERRF(3,N)+tratxob*VAROBS(3,N)-((1.-DZOB)* & |
---|
| 974 | ((1.-DyOB)*((1.- & |
---|
| 975 | DxOB)*(TB(IOB,KOB,JOB))+DxOB* & |
---|
| 976 | (TB(IOB+1,KOB,JOB)))+DyOB*((1.-DxOB)* & |
---|
| 977 | (TB(IOB,KOB,JOB+1))+DxOB* & |
---|
| 978 | (TB(IOB+1,KOB,JOB+1))))+DZOB*((1.- & |
---|
| 979 | DyOB)*((1.-DxOB)*(TB(IOB,KOBP,JOB))+DxOB* & |
---|
| 980 | (TB(IOB+1,KOBP,JOB)))+DyOB*((1.-DxOB)* & |
---|
| 981 | (TB(IOB,KOBP,JOB+1))+DxOB* & |
---|
| 982 | (TB(IOB+1,KOBP,JOB+1))))) |
---|
| 983 | |
---|
| 984 | ! if(n.le.10) then |
---|
| 985 | ! write(6,*) |
---|
| 986 | ! write(6,'(a,i3,i3,i3,a,i3,a,i2)') 'ERRF3 at ',iob,job,kob, & |
---|
| 987 | ! ' N = ',n,' inest = ',inest |
---|
| 988 | ! write(6,*) 'VAROBS(3,N) = ',varobs(3,n) |
---|
| 989 | ! write(6,*) 'VAROBS(5,N) = ',varobs(5,n) |
---|
| 990 | ! write(6,*) 'TB(IOB,KOB,JOB) = ',TB(IOB,KOB,JOB) |
---|
| 991 | ! write(6,*) 'TB(IOB+1,KOB,JOB) = ',TB(IOB+1,KOB,JOB) |
---|
| 992 | ! write(6,*) 'TB(IOB,KOB,JOB+1) = ',TB(IOB,KOB,JOB+1) |
---|
| 993 | ! write(6,*) 'TB(IOB+1,KOB,JOB+1) = ',TB(IOB+1,KOB,JOB+1) |
---|
| 994 | ! write(6,*) 'TB(IOB,KOBP,JOB) = ',TB(IOB,KOBP,JOB) |
---|
| 995 | ! write(6,*) 'TB(IOB+1,KOBP,JOB) = ',TB(IOB+1,KOBP,JOB) |
---|
| 996 | ! write(6,*) 'TB(IOB,KOBP,JOB+1) = ',TB(IOB,KOBP,JOB+1) |
---|
| 997 | ! write(6,*) 'TB(IOB+1,KOBP,JOB+1) = ',TB(IOB+1,KOBP,JOB+1) |
---|
| 998 | ! write(6,*) 'tratxob = ',tratxob |
---|
| 999 | ! write(6,*) 'DXOB,DYOB,DZOB = ',DXOB,DYOB,DZOB |
---|
| 1000 | ! write(6,*) 'ERRF(3,N) = ',errf(3,n) |
---|
| 1001 | ! write(6,*) |
---|
| 1002 | ! endif |
---|
| 1003 | |
---|
| 1004 | |
---|
| 1005 | ! MOISTURE ERROR |
---|
| 1006 | ERRF(4,N)=ERRF(4,N)+VAROBS(4,N)-((1.-DZOB)*((1.-DyOB)*((1.- & |
---|
| 1007 | DxOB)*QVB(IOB,KOB,JOB)+DxOB* & |
---|
| 1008 | QVB(IOB+1,KOB,JOB))+DyOB*((1.-DxOB)* & |
---|
| 1009 | QVB(IOB,KOB,JOB+1)+DxOB* & |
---|
| 1010 | QVB(IOB+1,KOB,JOB+1)))+DZOB*((1.- & |
---|
| 1011 | DyOB)*((1.-DxOB)*QVB(IOB,KOBP,JOB)+DxOB & |
---|
| 1012 | *QVB(IOB+1,KOBP,JOB))+DyOB*((1.-DxOB & |
---|
| 1013 | )*QVB(IOB,KOBP,JOB+1)+DxOB* & |
---|
| 1014 | QVB(IOB+1,KOBP,JOB+1)))) |
---|
| 1015 | |
---|
| 1016 | ! Store model surface pressure (not the error!) at T-point |
---|
| 1017 | ERRF(6,N)= .001* & |
---|
| 1018 | ((1.-DyOB)*((1.-DxOB)*pbase(IOB,1,JOB)+DxOB* & |
---|
| 1019 | pbase(IOB+1,1,JOB))+DyOB*((1.-DxOB)* & |
---|
| 1020 | pbase(IOB,1,JOB+1)+DxOB*pbase(IOB+1,1,JOB+1) )) |
---|
| 1021 | |
---|
| 1022 | if(iprt .and. n.eq.81) then |
---|
| 1023 | write(6,*) 'ERRF(6,81) calculation:' |
---|
| 1024 | write(6,*) 'iob,job = ',iob,job |
---|
| 1025 | write(6,*) 'pbase(iob,1,job) = ',pbase(iob,1,job) |
---|
| 1026 | write(6,*) 'pbase(iob+1,1,job) = ',pbase(iob+1,1,job) |
---|
| 1027 | write(6,*) 'pbase(iob,1,job+1) = ',pbase(iob,1,job+1) |
---|
| 1028 | write(6,*) 'pbase(iob+1,1,job+1) = ',pbase(iob+1,1,job+1) |
---|
| 1029 | write(6,*) 'ERRF(6,81) = ',errf(6,n) |
---|
| 1030 | ! call flush(6) |
---|
| 1031 | endif |
---|
| 1032 | |
---|
| 1033 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 1034 | ENDIF ! end IF( MP_LOCAL_COBMASK(N) ) |
---|
| 1035 | #endif |
---|
| 1036 | ENDDO ! END T and QV LOOP OVER OBS |
---|
| 1037 | |
---|
| 1038 | ENDIF !end if(istemp.eq.1 .or. ismois.eq.1) |
---|
| 1039 | |
---|
| 1040 | !********************************************************** |
---|
| 1041 | ! PROCESS SURFACE PRESSURE CROSS-POINT FIELD, IVAR=5, |
---|
| 1042 | ! USING BILINEAR FOUR-POINT 2-D INTERPOLATION |
---|
| 1043 | !********************************************************** |
---|
| 1044 | IF(ISPSTR.EQ.1) THEN |
---|
| 1045 | DO N=1,NSTA |
---|
| 1046 | IOB=MAX0(1,IA(N)) |
---|
| 1047 | IOB=MIN0(IOB,ide-1) |
---|
| 1048 | JOB=MAX0(1,IB(N)) |
---|
| 1049 | JOB=MIN0(JOB,jde-1) |
---|
| 1050 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 1051 | IF(MP_LOCAL_COBMASK(N)) THEN ! Do if obs on this processor |
---|
| 1052 | #endif |
---|
| 1053 | DXOB=RA(N) |
---|
| 1054 | DYOB=RB(N) |
---|
| 1055 | !ajb fix this (put in correct pressure calc for IOB,JOB here) |
---|
| 1056 | ERRF(5,N)=ERRF(5,N)+VAROBS(5,N)-((1.-DyOB)*((1.-DxOB)* & |
---|
| 1057 | pbase(IOB,1,JOB)+DxOB*pbase(IOB+1,1,JOB))+DyOB* & |
---|
| 1058 | ((1.-DxOB)*pbase(IOB,1,JOB+1)+DxOB* & |
---|
| 1059 | pbase(IOB+1,1,JOB+1))) |
---|
| 1060 | |
---|
| 1061 | if(n.eq.81) then |
---|
| 1062 | write(6,*) 'ERRF(5,81) calculation:' |
---|
| 1063 | write(6,*) 'iob,job = ',iob,job |
---|
| 1064 | write(6,*) 'pbase(iob,1,job) = ',pbase(iob,1,job) |
---|
| 1065 | write(6,*) 'pbase(iob+1,1,job) = ',pbase(iob+1,1,job) |
---|
| 1066 | write(6,*) 'pbase(iob,1,job+1) = ',pbase(iob,1,job+1) |
---|
| 1067 | write(6,*) 'pbase(iob+1,1,job+1) = ',pbase(iob+1,1,job+1) |
---|
| 1068 | write(6,*) 'errf(5,81) = ',errf(5,n) |
---|
| 1069 | ! call flush(6) |
---|
| 1070 | endif |
---|
| 1071 | |
---|
| 1072 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 1073 | ENDIF ! end IF( MP_LOCAL_COBMASK(N) ) |
---|
| 1074 | #endif |
---|
| 1075 | |
---|
| 1076 | ENDDO |
---|
| 1077 | |
---|
| 1078 | ENDIF ! end if(ispstr.eq.1) |
---|
| 1079 | |
---|
| 1080 | ENDIF ! end if(ityp.eq.3) |
---|
| 1081 | |
---|
| 1082 | ENDDO ! END BIG LOOP |
---|
| 1083 | |
---|
| 1084 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 1085 | ! Gather the errf values calculated by the processors with the obs. |
---|
| 1086 | CALL get_full_obs_vector(nsta, nerrf, niobf, mp_local_uobmask, & |
---|
| 1087 | mp_local_vobmask, mp_local_cobmask, errf) |
---|
| 1088 | #endif |
---|
| 1089 | |
---|
| 1090 | ! DIFFERENCE BETWEEN OBS AND FCST IS COMPLETED |
---|
| 1091 | IF(INEST.EQ.1)THEN |
---|
| 1092 | INPF=NPFI |
---|
| 1093 | ELSE |
---|
| 1094 | FNPF=IRATIO**LEVIDN(INEST) |
---|
| 1095 | INPF=FNPF*NPFI |
---|
| 1096 | ENDIF |
---|
| 1097 | ! Gross error check for temperature. Set all vars bad. |
---|
| 1098 | do n=1,nsta |
---|
| 1099 | if((abs(errf(3,n)).gt.20.).and. & |
---|
| 1100 | (errf(3,n).gt.-800000.))then |
---|
| 1101 | |
---|
| 1102 | errf(1,n)=-888888. |
---|
| 1103 | errf(2,n)=-888888. |
---|
| 1104 | errf(3,n)=-888888. |
---|
| 1105 | errf(4,n)=-888888. |
---|
| 1106 | varobs(1,n)=-888888. |
---|
| 1107 | varobs(2,n)=-888888. |
---|
| 1108 | varobs(3,n)=-888888. |
---|
| 1109 | varobs(4,n)=-888888. |
---|
| 1110 | endif |
---|
| 1111 | enddo |
---|
| 1112 | |
---|
| 1113 | ! For printout |
---|
| 1114 | ! IF(MOD(KTAU,INPF).NE.0) THEN |
---|
| 1115 | ! RETURN |
---|
| 1116 | ! ENDIF |
---|
| 1117 | |
---|
| 1118 | RETURN |
---|
| 1119 | END SUBROUTINE errob |
---|
| 1120 | |
---|
| 1121 | SUBROUTINE upoint(i_start,i_end, j_start,j_end, ids,ide, ims,ime, jms,jme, & |
---|
| 1122 | arrin, arrout) |
---|
| 1123 | !------------------------------------------------------------------------------ |
---|
| 1124 | ! PURPOSE: This subroutine interpolates a real 2D array defined over mass |
---|
| 1125 | ! coordinate points, to U (momentum) points. |
---|
| 1126 | ! |
---|
| 1127 | !------------------------------------------------------------------------------ |
---|
| 1128 | IMPLICIT NONE |
---|
| 1129 | |
---|
| 1130 | INTEGER, INTENT(IN) :: i_start ! Starting i index for this model tile |
---|
| 1131 | INTEGER, INTENT(IN) :: i_end ! Ending i index for this model tile |
---|
| 1132 | INTEGER, INTENT(IN) :: j_start ! Starting j index for this model tile |
---|
| 1133 | INTEGER, INTENT(IN) :: j_end ! Ending j index for this model tile |
---|
| 1134 | INTEGER, INTENT(IN) :: ids ! Starting i index for entire model domain |
---|
| 1135 | INTEGER, INTENT(IN) :: ide ! Ending i index for entire model domain |
---|
| 1136 | INTEGER, INTENT(IN) :: ims ! Starting i index for model patch |
---|
| 1137 | INTEGER, INTENT(IN) :: ime ! Ending i index for model patch |
---|
| 1138 | INTEGER, INTENT(IN) :: jms ! Starting j index for model patch |
---|
| 1139 | INTEGER, INTENT(IN) :: jme ! Ending j index for model patch |
---|
| 1140 | REAL, INTENT(IN) :: arrin ( ims:ime, jms:jme ) ! input array on mass points |
---|
| 1141 | REAL, INTENT(OUT) :: arrout( ims:ime, jms:jme ) ! output array on U points |
---|
| 1142 | |
---|
| 1143 | ! Local variables |
---|
| 1144 | integer :: i, j |
---|
| 1145 | |
---|
| 1146 | ! Do domain interior first |
---|
| 1147 | do j = j_start, j_end |
---|
| 1148 | do i = max(2,i_start), i_end |
---|
| 1149 | arrout(i,j) = 0.5*(arrin(i,j)+arrin(i-1,j)) |
---|
| 1150 | enddo |
---|
| 1151 | enddo |
---|
| 1152 | |
---|
| 1153 | ! Do west-east boundaries |
---|
| 1154 | if(i_start .eq. ids) then |
---|
| 1155 | do j = j_start, j_end |
---|
| 1156 | arrout(i_start,j) = arrin(i_start,j) |
---|
| 1157 | enddo |
---|
| 1158 | endif |
---|
| 1159 | if(i_end .eq. ide-1) then |
---|
| 1160 | do j = j_start, j_end |
---|
| 1161 | arrout(i_end+1,j) = arrin(i_end,j) |
---|
| 1162 | enddo |
---|
| 1163 | endif |
---|
| 1164 | |
---|
| 1165 | RETURN |
---|
| 1166 | END SUBROUTINE upoint |
---|
| 1167 | |
---|
| 1168 | SUBROUTINE vpoint(i_start,i_end, j_start,j_end, jds,jde, ims,ime, jms,jme, & |
---|
| 1169 | arrin, arrout) |
---|
| 1170 | !------------------------------------------------------------------------------ |
---|
| 1171 | ! PURPOSE: This subroutine interpolates a real 2D array defined over mass |
---|
| 1172 | ! coordinate points, to V (momentum) points. |
---|
| 1173 | ! |
---|
| 1174 | !------------------------------------------------------------------------------ |
---|
| 1175 | IMPLICIT NONE |
---|
| 1176 | |
---|
| 1177 | INTEGER, INTENT(IN) :: i_start ! Starting i index for this model tile |
---|
| 1178 | INTEGER, INTENT(IN) :: i_end ! Ending i index for this model tile |
---|
| 1179 | INTEGER, INTENT(IN) :: j_start ! Starting j index for this model tile |
---|
| 1180 | INTEGER, INTENT(IN) :: j_end ! Ending j index for this model tile |
---|
| 1181 | INTEGER, INTENT(IN) :: jds ! Starting j index for entire model domain |
---|
| 1182 | INTEGER, INTENT(IN) :: jde ! Ending j index for entire model domain |
---|
| 1183 | INTEGER, INTENT(IN) :: ims ! Starting i index for model patch |
---|
| 1184 | INTEGER, INTENT(IN) :: ime ! Ending i index for model patch |
---|
| 1185 | INTEGER, INTENT(IN) :: jms ! Starting j index for model patch |
---|
| 1186 | INTEGER, INTENT(IN) :: jme ! Ending j index for model patch |
---|
| 1187 | REAL, INTENT(IN) :: arrin ( ims:ime, jms:jme ) ! input array on mass points |
---|
| 1188 | REAL, INTENT(OUT) :: arrout( ims:ime, jms:jme ) ! output array on V points |
---|
| 1189 | |
---|
| 1190 | ! Local variables |
---|
| 1191 | integer :: i, j |
---|
| 1192 | |
---|
| 1193 | ! Do domain interior first |
---|
| 1194 | do j = max(2,j_start), j_end |
---|
| 1195 | do i = i_start, i_end |
---|
| 1196 | arrout(i,j) = 0.5*(arrin(i,j)+arrin(i,j-1)) |
---|
| 1197 | enddo |
---|
| 1198 | enddo |
---|
| 1199 | |
---|
| 1200 | ! Do south-north boundaries |
---|
| 1201 | if(j_start .eq. jds) then |
---|
| 1202 | do i = i_start, i_end |
---|
| 1203 | arrout(i,j_start) = arrin(i,j_start) |
---|
| 1204 | enddo |
---|
| 1205 | endif |
---|
| 1206 | if(j_end .eq. jde-1) then |
---|
| 1207 | do i = i_start, i_end |
---|
| 1208 | arrout(i,j_end+1) = arrin(i,j_end) |
---|
| 1209 | enddo |
---|
| 1210 | endif |
---|
| 1211 | |
---|
| 1212 | RETURN |
---|
| 1213 | END SUBROUTINE vpoint |
---|
| 1214 | |
---|
| 1215 | LOGICAL FUNCTION TILE_MASK(iloc, jloc, its, ite, jts, jte) |
---|
| 1216 | !------------------------------------------------------------------------------ |
---|
| 1217 | ! PURPOSE: Check to see if an i, j grid coordinate is in the tile index range. |
---|
| 1218 | ! |
---|
| 1219 | ! Returns: TRUE if the grid coordinate (ILOC,JLOC) is in the tile defined by |
---|
| 1220 | ! tile-range indices (its,jts) and (ite,jte) |
---|
| 1221 | ! FALSE otherwise. |
---|
| 1222 | ! |
---|
| 1223 | !------------------------------------------------------------------------------ |
---|
| 1224 | IMPLICIT NONE |
---|
| 1225 | |
---|
| 1226 | INTEGER, INTENT(IN) :: iloc |
---|
| 1227 | INTEGER, INTENT(IN) :: jloc |
---|
| 1228 | INTEGER, INTENT(IN) :: its |
---|
| 1229 | INTEGER, INTENT(IN) :: ite |
---|
| 1230 | INTEGER, INTENT(IN) :: jts |
---|
| 1231 | INTEGER, INTENT(IN) :: jte |
---|
| 1232 | |
---|
| 1233 | ! Local variables |
---|
| 1234 | LOGICAL :: retval |
---|
| 1235 | |
---|
| 1236 | TILE_MASK = (iloc .LE. ite .AND. iloc .GE. its .AND. & |
---|
| 1237 | jloc .LE. jte .AND. jloc .GE. jts ) |
---|
| 1238 | |
---|
| 1239 | RETURN |
---|
| 1240 | END FUNCTION TILE_MASK |
---|
| 1241 | |
---|
| 1242 | !----------------------------------------------------------------------- |
---|
| 1243 | SUBROUTINE nudob(j, ivar, aten, inest, ifrest, ktau, ktaur, & |
---|
| 1244 | xtime, mu, msfx, msfy, nndgv, nerrf, niobf, maxdom, & |
---|
| 1245 | npfi, ionf, rinxy, twindo, levidn, & |
---|
| 1246 | parid, nstat, i_parent_start, j_parent_start, & |
---|
| 1247 | fdob, lev_in_ob, plfo, nlevs_ob, & |
---|
| 1248 | iratio, dx, dtmin, rio, rjo, rko, & |
---|
| 1249 | timeob, varobs, errf, pbase, ptop, pp, & |
---|
| 1250 | iswind, istemp, ismois, giv, git, giq, & |
---|
| 1251 | savwt, kpblt, nscan, & |
---|
| 1252 | iprt, & |
---|
| 1253 | ids,ide, jds,jde, kds,kde, & ! domain dims |
---|
| 1254 | ims,ime, jms,jme, kms,kme, & ! memory dims |
---|
| 1255 | its,ite, jts,jte, kts,kte ) ! tile dims |
---|
| 1256 | |
---|
| 1257 | !----------------------------------------------------------------------- |
---|
| 1258 | USE module_model_constants |
---|
| 1259 | USE module_domain |
---|
| 1260 | !----------------------------------------------------------------------- |
---|
| 1261 | IMPLICIT NONE |
---|
| 1262 | !----------------------------------------------------------------------- |
---|
| 1263 | ! |
---|
| 1264 | ! PURPOSE: THIS SUBROUTINE GENERATES NUDGING TENDENCIES FOR THE J-TH |
---|
| 1265 | ! VERTICAL SLICE (I-K PLANE) FOR FOUR-DIMENSIONAL DATA |
---|
| 1266 | ! ASSIMILATION FROM INDIVIDUAL OBSERVATIONS. THE NUDGING |
---|
| 1267 | ! TENDENCIES ARE FOUND FROM A ONE-PASS CALCULATION OF |
---|
| 1268 | ! WEIGHTING FACTORS SIMILAR TO THE BENJAMIN-SEAMAN OBJECTIVE |
---|
| 1269 | ! ANALYSIS. THIS SUBROUTINE IS DESIGNED FOR RAPID EXECUTION |
---|
| 1270 | ! AND MINIMAL STORAGE REQUIREMENTS. ALGORITHMS SHOULD BE |
---|
| 1271 | ! VECTORIZED WHEREVER POSSIBLE. |
---|
| 1272 | ! |
---|
| 1273 | ! HISTORY: Original author: MM5 version??? |
---|
| 1274 | ! 02/04/2004 - Creation of WRF version. Al Bourgeois |
---|
| 1275 | ! 08/28/2006 - Conversion from F77 to F90 Al Bourgeois |
---|
| 1276 | !------------------------------------------------------------------------------ |
---|
| 1277 | ! |
---|
| 1278 | ! NOTE: This routine was originally designed for MM5, which uses |
---|
| 1279 | ! a nonstandard (I,J) coordinate system. For WRF, I is the |
---|
| 1280 | ! east-west running coordinate, and J is the south-north |
---|
| 1281 | ! running coordinate. So a "J-slab" here is west-east in |
---|
| 1282 | ! extent, not south-north as for MM5. -ajb 06/10/2004 |
---|
| 1283 | ! |
---|
| 1284 | ! NET WEIGHTING (WT) OF THE DIFFERENCE BETWEEN THE OBSERVATIONS |
---|
| 1285 | ! AND LOCAL FORECAST VALUES IS BASED ON THE MULTIPLE OF THREE |
---|
| 1286 | ! |
---|
| 1287 | ! NET WEIGHTING (WT) OF THE DIFFERENCE BETWEEN THE OBSERVATIONS |
---|
| 1288 | ! AND LOCAL FORECAST VALUES IS BASED ON THE MULTIPLE OF THREE |
---|
| 1289 | ! TYPES OF FACTORS: |
---|
| 1290 | ! 1) TIME WEIGHTING - ONLY OBSERVATIONS WITHIN A SELECTED |
---|
| 1291 | ! TIME WINDOW (TWINDO) CENTERED AT THE CURRENT FORECAST |
---|
| 1292 | ! TIME (XTIME) ARE USED. OBSERVATIONS CLOSEST TO |
---|
| 1293 | ! XTIME ARE TIME-WEIGHTED MOST HEAVILY (TIMEWT) |
---|
| 1294 | ! 2) VERTICAL WEIGHTING - NON-ZERO WEIGHTS (WTSIG) ARE |
---|
| 1295 | ! CALCULATED WITHIN A VERTICAL REGION OF INFLUENCE |
---|
| 1296 | ! (RINSIG). |
---|
| 1297 | ! 3) HORIZONTAL WEIGHTING - NON-ZERO WEIGHTS (WTIJ) ARE |
---|
| 1298 | ! CALCULATED WITHIN A RADIUS OF INFLUENCE (RINXY). THE |
---|
| 1299 | ! VALUE OF RIN IS DEFINED IN KILOMETERS, AND CONVERTED |
---|
| 1300 | ! TO GRID LENGTHS FOR THE APPROPRIATE MESH SIZE. |
---|
| 1301 | ! |
---|
| 1302 | ! THE FIVE FORECAST VARIABLES ARE PROCESSED BY CHANGING THE |
---|
| 1303 | ! VALUE OF IVAR AS FOLLOWS: |
---|
| 1304 | ! IVAR VARIABLE(TAU-1) |
---|
| 1305 | ! ---- --------------- |
---|
| 1306 | ! 1 U |
---|
| 1307 | ! 2 V |
---|
| 1308 | ! 3 T |
---|
| 1309 | ! 4 QV |
---|
| 1310 | ! 5 PSB(CROSS) REMOVED IN V3 |
---|
| 1311 | ! (6) PSB(DOT) |
---|
| 1312 | ! |
---|
| 1313 | !----------------------------------------------------------------------- |
---|
| 1314 | ! |
---|
| 1315 | ! Description of input arguments. |
---|
| 1316 | ! |
---|
| 1317 | !----------------------------------------------------------------------- |
---|
| 1318 | |
---|
| 1319 | INTEGER, INTENT(IN) :: ids,ide, jds,jde, kds,kde ! domain dims. |
---|
| 1320 | INTEGER, INTENT(IN) :: ims,ime, jms,jme, kms,kme ! memory dims. |
---|
| 1321 | INTEGER, INTENT(IN) :: its,ite, jts,jte, kts,kte ! tile dims. |
---|
| 1322 | INTEGER, INTENT(IN) :: j ! south-north running coordinate. |
---|
| 1323 | INTEGER, INTENT(IN) :: ivar |
---|
| 1324 | INTEGER, INTENT(IN) :: inest ! domain index |
---|
| 1325 | LOGICAL, INTENT(IN) :: ifrest |
---|
| 1326 | INTEGER, INTENT(IN) :: ktau |
---|
| 1327 | INTEGER, INTENT(IN) :: ktaur |
---|
| 1328 | REAL, INTENT(IN) :: xtime ! forecast time in minutes |
---|
| 1329 | INTEGER, INTENT(IN) :: nndgv ! number of nudge variables |
---|
| 1330 | INTEGER, INTENT(IN) :: nerrf ! number of error fields |
---|
| 1331 | INTEGER, INTENT(IN) :: niobf ! number of observations |
---|
| 1332 | INTEGER, INTENT(IN) :: maxdom ! maximum number of domains |
---|
| 1333 | INTEGER, INTENT(IN) :: npfi |
---|
| 1334 | INTEGER, INTENT(IN) :: ionf |
---|
| 1335 | REAL, INTENT(IN) :: rinxy |
---|
| 1336 | REAL, INTENT(IN) :: twindo |
---|
| 1337 | INTEGER, INTENT(IN) :: levidn(maxdom) ! level of nest |
---|
| 1338 | INTEGER, INTENT(IN) :: parid(maxdom) ! parent domain id |
---|
| 1339 | INTEGER, INTENT(IN) :: nstat ! number of obs stations |
---|
| 1340 | INTEGER, INTENT(IN) :: i_parent_start(maxdom) ! Start i index in parent domain. |
---|
| 1341 | INTEGER, INTENT(IN) :: j_parent_start(maxdom) ! Start j index in parent domain. |
---|
| 1342 | TYPE(fdob_type), intent(inout) :: fdob |
---|
| 1343 | REAL, INTENT(IN) :: lev_in_ob(niobf) ! Level in sounding-type obs. |
---|
| 1344 | REAL, intent(IN) :: plfo(niobf) |
---|
| 1345 | REAL, INTENT(IN) :: nlevs_ob(niobf) ! Number of levels in sounding. |
---|
| 1346 | INTEGER, INTENT(IN) :: iratio ! Nest to parent gridsize ratio. |
---|
| 1347 | REAL, INTENT(IN) :: dx ! This domain grid cell-size (m) |
---|
| 1348 | REAL, INTENT(IN) :: dtmin |
---|
| 1349 | REAL, INTENT(IN) :: rio(niobf) ! Obs west-east coordinate (non-stag grid). |
---|
| 1350 | REAL, INTENT(IN) :: rjo(niobf) ! Obs south-north coordinate (non-stag grid). |
---|
| 1351 | REAL, INTENT(INOUT) :: rko(niobf) ! Obs vertical coordinate. |
---|
| 1352 | REAL, INTENT(IN) :: timeob(niobf) |
---|
| 1353 | REAL, INTENT(IN) :: varobs(nndgv,niobf) |
---|
| 1354 | REAL, INTENT(IN) :: errf(nerrf, niobf) |
---|
| 1355 | REAL, INTENT(IN) :: pbase( ims:ime, kms:kme ) ! Base pressure. |
---|
| 1356 | REAL, INTENT(IN) :: ptop |
---|
| 1357 | REAL, INTENT(IN) :: pp( ims:ime, kms:kme ) ! Pressure perturbation (Pa) |
---|
| 1358 | REAL, INTENT(IN) :: mu(ims:ime) ! Air mass on u, v, or mass-grid |
---|
| 1359 | REAL, INTENT(IN) :: msfx(ims:ime) ! Map scale (only used for vars u & v) |
---|
| 1360 | REAL, INTENT(IN) :: msfy(ims:ime) ! Map scale (only used for vars u & v) |
---|
| 1361 | INTEGER, intent(in) :: iswind ! Nudge flag for wind |
---|
| 1362 | INTEGER, intent(in) :: istemp ! Nudge flag for temperature |
---|
| 1363 | INTEGER, intent(in) :: ismois ! Nudge flag for moisture |
---|
| 1364 | REAL, intent(in) :: giv ! Coefficient for wind |
---|
| 1365 | REAL, intent(in) :: git ! Coefficient for temperature |
---|
| 1366 | REAL, intent(in) :: giq ! Coefficient for moisture |
---|
| 1367 | REAL, INTENT(INOUT) :: aten( ims:ime, kms:kme) |
---|
| 1368 | REAL, INTENT(INOUT) :: savwt( nndgv, ims:ime, kms:kme ) |
---|
| 1369 | INTEGER, INTENT(IN) :: kpblt(its:ite) |
---|
| 1370 | INTEGER, INTENT(IN) :: nscan ! number of scans |
---|
| 1371 | LOGICAL, INTENT(IN) :: iprt ! print flag |
---|
| 1372 | |
---|
| 1373 | ! Local variables |
---|
| 1374 | integer :: mm(maxdom) |
---|
| 1375 | integer :: kobs ! k-lev below obs (for obs straddling pblt) |
---|
| 1376 | real :: ra(niobf) |
---|
| 1377 | real :: rb(niobf) |
---|
| 1378 | real :: psurf(niobf) |
---|
| 1379 | real :: wtsig(kms:kme),wt(ims:ime,kms:kme),wt2err(ims:ime,kms:kme) |
---|
| 1380 | real :: rscale(ims:ime) ! For converting to rho-coupled units. |
---|
| 1381 | ! real :: tscale(ims:ime,kms:kme) ! For converting to potential temp. units. |
---|
| 1382 | real :: reserf(100) |
---|
| 1383 | character*40 name |
---|
| 1384 | character*3 chr_hr |
---|
| 1385 | |
---|
| 1386 | !*** DECLARATIONS FOR IMPLICIT NONE |
---|
| 1387 | integer :: i,k,iplo,icut,ipl,inpf,infr,jjjn |
---|
| 1388 | integer :: igrid,n,nml,nnl,nsthis,nsmetar,nsspeci,nsship |
---|
| 1389 | integer :: nssynop,nstemp,nspilot,nssatwnds,nssams,nsprofs |
---|
| 1390 | integer :: maxi,mini,maxj,minj,nnn,nsndlev,njcsnd,kob |
---|
| 1391 | integer :: komin,komax,nn,nhi,nlo,nnjc |
---|
| 1392 | integer :: i_s,i_e |
---|
| 1393 | integer :: istq |
---|
| 1394 | real :: gfactor,rfactor,gridx,gridy,rindx,schnes,ris |
---|
| 1395 | real :: grfacx,grfacy |
---|
| 1396 | real :: fdtim,tw1,tw2,tconst,timewt,timewt2,ttim,dift,pob |
---|
| 1397 | real :: ri,rj,rx,ry,rsq,wtij,pdfac,erfivr,dk,slope,rinfac |
---|
| 1398 | real :: rinprs,pijk,pobhi,poblo,pdiffj,w2eowt,gitq |
---|
| 1399 | |
---|
| 1400 | real :: scratch |
---|
| 1401 | |
---|
| 1402 | ! print *,'start nudob, nstat,j,ivar=',nstat,j,ivar |
---|
| 1403 | ! if(ivar.ne.4)return |
---|
| 1404 | !yliu start -- for multi-scans: NSCAN=0: original |
---|
| 1405 | ! NSCAN=1: added a scan with a larger Ri and smaller G |
---|
| 1406 | ! if(NSCAN.ne.0 .and. NSCAN.ne.1) stop |
---|
| 1407 | ! ajb note: Will need to increase memory for SAVWT if NSCAN=1: |
---|
| 1408 | if(NSCAN.ne.0) then |
---|
| 1409 | IF (iprt) write(6,*) 'SAVWT must be resized for NSCAN=1' |
---|
| 1410 | stop |
---|
| 1411 | endif |
---|
| 1412 | IPLO=0 + NSCAN*4 |
---|
| 1413 | GFACTOR=1. + NSCAN*(-1. + 0.33333) |
---|
| 1414 | RFACTOR=1. + NSCAN*(-1. + 3.0) |
---|
| 1415 | !yliu end |
---|
| 1416 | ! jc |
---|
| 1417 | |
---|
| 1418 | ! return if too close to j boundary |
---|
| 1419 | if(inest.eq.1.and.ivar.lt.3.and.(j.le.2.or.j.ge.jde-1)) then |
---|
| 1420 | ! write(6,*) '1 RETURN: IVAR = ',ivar,' J = ',j, |
---|
| 1421 | ! $ ' too close to boundary.' |
---|
| 1422 | return |
---|
| 1423 | endif |
---|
| 1424 | if(inest.eq.1.and.ivar.ge.3.and.(j.le.2.or.j.ge.jde-2)) then |
---|
| 1425 | ! write(6,*) '2 RETURN: IVAR = ',ivar,' J = ',j, |
---|
| 1426 | ! $ ' too close to boundary.' |
---|
| 1427 | return |
---|
| 1428 | endif |
---|
| 1429 | |
---|
| 1430 | ! COMPUTE IPL WHICH REPRESENTS IVAR FOR EACH MESH IN SAVWT MODS |
---|
| 1431 | ICUT=0 |
---|
| 1432 | IF(INEST.GT.1)ICUT=1 |
---|
| 1433 | i_s = max0(2+icut,its) |
---|
| 1434 | i_e = min0(ide-1-icut,ite) |
---|
| 1435 | |
---|
| 1436 | IPL=IVAR + IPLO !yliu +IPLO |
---|
| 1437 | |
---|
| 1438 | ! DEFINE GRID-TYPE OFFSET FACTORS, IGRID AND GRID |
---|
| 1439 | |
---|
| 1440 | INPF=(IRATIO**LEVIDN(INEST))*NPFI |
---|
| 1441 | INFR=(IRATIO**LEVIDN(INEST))*IONF |
---|
| 1442 | |
---|
| 1443 | GRIDX=0.0 |
---|
| 1444 | GRIDY=0.0 |
---|
| 1445 | IGRID=0 |
---|
| 1446 | IF(IVAR.GE.3)THEN |
---|
| 1447 | GRIDX=0.5 |
---|
| 1448 | GRIDY=0.5 |
---|
| 1449 | IGRID=1 |
---|
| 1450 | ELSEIF(IVAR.eq.1) THEN |
---|
| 1451 | GRIDY=0.5 |
---|
| 1452 | GRIDX=0.0 |
---|
| 1453 | IGRID=1 |
---|
| 1454 | ELSEIF(IVAR.eq.2) THEN |
---|
| 1455 | GRIDX=0.5 |
---|
| 1456 | GRIDY=0.0 |
---|
| 1457 | IGRID=1 |
---|
| 1458 | ENDIF |
---|
| 1459 | |
---|
| 1460 | ! TRANSFORM THE HORIZONTAL RADIUS OF INFLUENCE, RINXY, FROM |
---|
| 1461 | ! KILOMETERS TO GRID LENGTHS, RINDX |
---|
| 1462 | |
---|
| 1463 | RINDX=RINXY*1000./DX * RFACTOR !yliu *RFACTOR |
---|
| 1464 | |
---|
| 1465 | ! jc |
---|
| 1466 | ! make horizontal radius vary per nest |
---|
| 1467 | ! rindx=rindx/float(inest) |
---|
| 1468 | ! yliu test1 -- En 3, 4 |
---|
| 1469 | ! rindx=rindx/float(3**(in-1)) !YLIU |
---|
| 1470 | ! jc |
---|
| 1471 | ! make horizontal radius vary per nest |
---|
| 1472 | ! schnes=1/float(inest) !JC |
---|
| 1473 | ! yliu test1 -- En 3, 4 !YLIU |
---|
| 1474 | schnes=1/float(3**(inest-1)) !JC |
---|
| 1475 | ! reduce the Rinf in the nested grid proportionally |
---|
| 1476 | rindx=rindx*schnes |
---|
| 1477 | ! rinfmn =1., rinfmx=2., pfree=50 in param.F |
---|
| 1478 | ! yliu test: for upper-air data, use larger influence radii |
---|
| 1479 | ! Essentially increase the slope -- the same radii |
---|
| 1480 | ! at 500mb and above as the coarse mesh and the |
---|
| 1481 | ! same small radii at sfc as that for sfc obs |
---|
| 1482 | fdob%rinfmx=2. *1.0 /schnes !YLIU |
---|
| 1483 | ! rinfmx=1.2*1.0 /schnes !YLIU |
---|
| 1484 | ! jc |
---|
| 1485 | RIS=RINDX*RINDX |
---|
| 1486 | IF(IFREST.AND.KTAU.EQ.KTAUR)GOTO 5 |
---|
| 1487 | IF(MOD(KTAU,INFR).NE.0)GOTO 126 |
---|
| 1488 | 5 CONTINUE |
---|
| 1489 | IF (iprt) THEN |
---|
| 1490 | IF(J.EQ.10) write(6,6) INEST,J,KTAU,XTIME,IVAR,IPL,rindx |
---|
| 1491 | ENDIF |
---|
| 1492 | 6 FORMAT(1X,'OBS NUDGING FOR IN,J,KTAU,XTIME,', & |
---|
| 1493 | 'IVAR,IPL: ',I2,1X,I2,1X,I5,1X,F8.2,1X,I2,1X,I2, & |
---|
| 1494 | ' rindx=',f4.1) |
---|
| 1495 | |
---|
| 1496 | !******************************************************************** |
---|
| 1497 | !ajb_07012008 Setting ra and rb for the fine mesh her is now simple. |
---|
| 1498 | ! Values are no longer calculated here based on the |
---|
| 1499 | ! coarse mesh, since direct use of WRF map projections |
---|
| 1500 | ! on each nest was implemented in subroutine in4dob. |
---|
| 1501 | !******************************************************************** |
---|
| 1502 | ! SET RA AND RB |
---|
| 1503 | DO N=1,NSTAT |
---|
| 1504 | RA(N)=RIO(N)-GRIDX |
---|
| 1505 | RB(N)=RJO(N)-GRIDY |
---|
| 1506 | ENDDO |
---|
| 1507 | |
---|
| 1508 | ! OUTPUT OBS PER GRID EVERY HOUR |
---|
| 1509 | if ( mod(xtime,60.).gt.56. .and. ivar.eq.3 .and. j.eq.10) then |
---|
| 1510 | IF (iprt) print *,'outputting obs number on grid ', & |
---|
| 1511 | inest,' at time=',xtime |
---|
| 1512 | write(chr_hr(1:3),'(i3)')nint(xtime/60.) |
---|
| 1513 | if(chr_hr(1:1).eq.' ')chr_hr(1:1)='0' |
---|
| 1514 | if(chr_hr(2:2).eq.' ')chr_hr(2:2)='0' |
---|
| 1515 | IF (iprt) print *,'chr_hr=',chr_hr(1:3),nint(xtime/60.) |
---|
| 1516 | open(91,file= & |
---|
| 1517 | 'obs_g'//char(inest+ichar('0'))//'_'//chr_hr(1:3), & |
---|
| 1518 | form='FORMATted',status='unknown') |
---|
| 1519 | write(91,911)nstat |
---|
| 1520 | write(6,911)nstat |
---|
| 1521 | 911 FORMAT('total obs=',i8) |
---|
| 1522 | nsthis=0 |
---|
| 1523 | nsmetar=0 |
---|
| 1524 | nsspeci=0 |
---|
| 1525 | nsship=0 |
---|
| 1526 | nssynop=0 |
---|
| 1527 | nstemp=0 |
---|
| 1528 | nspilot=0 |
---|
| 1529 | nssatwnds=0 |
---|
| 1530 | nssams=0 |
---|
| 1531 | nsprofs=0 |
---|
| 1532 | ! print *,'ide,jde=',ide,jde |
---|
| 1533 | do jjjn=1,nstat |
---|
| 1534 | ! DETERMINE THE TIME-WEIGHT FACTOR FOR N |
---|
| 1535 | FDTIM=XTIME-DTMIN |
---|
| 1536 | ! CONVERT TWINDO AND TIMEOB FROM HOURS TO MINUTES: |
---|
| 1537 | TW1=TWINDO/2.*60. |
---|
| 1538 | TW2=TWINDO*60. |
---|
| 1539 | TCONST=1./TW1 |
---|
| 1540 | TIMEWT2=0.0 |
---|
| 1541 | TTIM=TIMEOB(jjjn)*60. |
---|
| 1542 | !***********TTIM=TARGET TIME IN MINUTES |
---|
| 1543 | DIFT=ABS(FDTIM-TTIM) |
---|
| 1544 | IF(DIFT.LE.TW1)TIMEWT2=1.0 |
---|
| 1545 | |
---|
| 1546 | IF(DIFT.GT.TW1.AND.DIFT.LE.TW2) THEN |
---|
| 1547 | IF(FDTIM.LT.TTIM)TIMEWT2=(FDTIM-(TTIM-TW2))*TCONST |
---|
| 1548 | IF(FDTIM.GT.TTIM)TIMEWT2=((TTIM+TW2)-FDTIM)*TCONST |
---|
| 1549 | ENDIF |
---|
| 1550 | |
---|
| 1551 | ! print *,'timewt2=',timewt2,ttim,fdtim |
---|
| 1552 | if (ra(jjjn).ge.1. .and. rb(jjjn).ge.1. & |
---|
| 1553 | .and.ra(jjjn).le.real(ide) .and. rb(jjjn).le.real(jde) & |
---|
| 1554 | .and.timewt2.gt.0.) then |
---|
| 1555 | if(lev_in_ob(jjjn).eq.1.)nsthis=nsthis+1 |
---|
| 1556 | if(plfo(jjjn).eq.1.)nsmetar=nsmetar+1 |
---|
| 1557 | if(plfo(jjjn).eq.2.)nsspeci=nsspeci+1 |
---|
| 1558 | if(plfo(jjjn).eq.3.)nsship=nsship+1 |
---|
| 1559 | if(plfo(jjjn).eq.4.)nssynop=nssynop+1 |
---|
| 1560 | if(plfo(jjjn).eq.5..and.lev_in_ob(jjjn).eq.1.) nstemp=nstemp+1 |
---|
| 1561 | if(plfo(jjjn).eq.6..and.lev_in_ob(jjjn).eq.1.) nspilot=nspilot+1 |
---|
| 1562 | if(plfo(jjjn).eq.7.)nssatwnds=nssatwnds+1 |
---|
| 1563 | if(plfo(jjjn).eq.8.)nssams=nssams+1 |
---|
| 1564 | if(plfo(jjjn).eq.9..and.lev_in_ob(jjjn).eq.1.) nsprofs=nsprofs+1 |
---|
| 1565 | endif |
---|
| 1566 | enddo |
---|
| 1567 | write(91,912)nsthis |
---|
| 1568 | write(6,912)nsthis |
---|
| 1569 | 912 FORMAT('total obs on this grid=',i8) |
---|
| 1570 | write(91,921)nsmetar |
---|
| 1571 | write(6,921)nsmetar |
---|
| 1572 | 921 FORMAT('total metar obs on this grid=',i8) |
---|
| 1573 | write(91,922)nsspeci |
---|
| 1574 | write(6,922)nsspeci |
---|
| 1575 | 922 FORMAT('total special obs on this grid=',i8) |
---|
| 1576 | write(91,923)nsship |
---|
| 1577 | write(6,923)nsship |
---|
| 1578 | 923 FORMAT('total ship obs on this grid=',i8) |
---|
| 1579 | write(91,924)nssynop |
---|
| 1580 | write(6,924)nssynop |
---|
| 1581 | 924 FORMAT('total synop obs on this grid=',i8) |
---|
| 1582 | write(91,925)nstemp |
---|
| 1583 | write(6,925)nstemp |
---|
| 1584 | 925 FORMAT('total temp obs on this grid=',i8) |
---|
| 1585 | write(91,926)nspilot |
---|
| 1586 | write(6,926)nspilot |
---|
| 1587 | 926 FORMAT('total pilot obs on this grid=',i8) |
---|
| 1588 | write(91,927)nssatwnds |
---|
| 1589 | write(6,927)nssatwnds |
---|
| 1590 | 927 FORMAT('total sat-wind obs on this grid=',i8) |
---|
| 1591 | write(91,928)nssams |
---|
| 1592 | write(6,928)nssams |
---|
| 1593 | 928 FORMAT('total sams obs on this grid=',i8) |
---|
| 1594 | write(91,929)nsprofs |
---|
| 1595 | write(6,929)nsprofs |
---|
| 1596 | 929 FORMAT('total profiler obs on this grid=',i8) |
---|
| 1597 | close(91) |
---|
| 1598 | endif ! END OUTPUT OBS PER GRID EVERY HOUR |
---|
| 1599 | |
---|
| 1600 | |
---|
| 1601 | ! INITIALIZE WEIGHTING ARRAYS TO ZERO |
---|
| 1602 | DO I=its,ite |
---|
| 1603 | DO K=1,kte |
---|
| 1604 | WT(I,K)=0.0 |
---|
| 1605 | WT2ERR(I,K)=0.0 |
---|
| 1606 | ENDDO |
---|
| 1607 | ENDDO |
---|
| 1608 | |
---|
| 1609 | ! DO P* COMPUTATIONS ON DOT POINTS FOR IVAR.LT.3 (U AND V) |
---|
| 1610 | ! AND CROSS POINTS FOR IVAR.GE.3 (T,Q,P*). |
---|
| 1611 | ! |
---|
| 1612 | ! COMPUTE P* AT OBS LOCATION (RA,RB). DO THIS AS SEPARATE VECTOR LOOP H |
---|
| 1613 | ! SO IT IS ALREADY AVAILABLE IN NSTAT LOOP 120 BELOW |
---|
| 1614 | |
---|
| 1615 | ! PSURF IS NOT AVAILABLE GLOBALLY, THEREFORE, THE BILINEAR INTERPOLATION |
---|
| 1616 | ! AROUND THE OBS POINT IS DONE IN ERROB() AND STORED IN ERRF([678],N) FOR |
---|
| 1617 | ! THE POINT (6=PRESS, 7=U-MOM, 8=V-MOM). |
---|
| 1618 | DO N=1,NSTAT |
---|
| 1619 | IF(IVAR.GE.3)THEN |
---|
| 1620 | PSURF(N)=ERRF(6,N) |
---|
| 1621 | ELSE |
---|
| 1622 | IF(IVAR.EQ.1)THEN |
---|
| 1623 | PSURF(N)=ERRF(7,N) ! U-points |
---|
| 1624 | ELSE |
---|
| 1625 | PSURF(N)=ERRF(8,N) ! V-points |
---|
| 1626 | ENDIF |
---|
| 1627 | ENDIF |
---|
| 1628 | ENDDO |
---|
| 1629 | |
---|
| 1630 | ! DETERMINE THE LIMITS OF THE SEARCH REGION FOR THE CURRENT |
---|
| 1631 | ! J-STRIP |
---|
| 1632 | |
---|
| 1633 | MAXJ=J+IFIX(RINDX*fdob%RINFMX+0.99) !ajb |
---|
| 1634 | MINJ=J-IFIX(RINDX*fdob%RINFMX+0.99) !ajb |
---|
| 1635 | |
---|
| 1636 | ! jc comment out this? want to use obs beyond the domain? |
---|
| 1637 | ! MAXJ=MIN0(JL-IGRID,MAXJ) !yliu |
---|
| 1638 | ! MINJ=MAX0(1,MINJ) !yliu |
---|
| 1639 | |
---|
| 1640 | n=1 |
---|
| 1641 | |
---|
| 1642 | !*********************************************************************** |
---|
| 1643 | DO nnn=1,NSTAT ! BEGIN OUTER LOOP FOR THE NSTAT OBSERVATIONS |
---|
| 1644 | !*********************************************************************** |
---|
| 1645 | ! Soundings are consecutive obs, but they need to be treated as a single |
---|
| 1646 | ! entity. Thus change the looping to nnn, with n defined separately. |
---|
| 1647 | |
---|
| 1648 | |
---|
| 1649 | !yliu |
---|
| 1650 | ! note for sfc data: nsndlev=1 and njcsnd=1 |
---|
| 1651 | nsndlev=int(nlevs_ob(n)-lev_in_ob(n))+1 |
---|
| 1652 | |
---|
| 1653 | ! yliu start -- set together with the other parts |
---|
| 1654 | ! test: do the sounding levels as individual obs |
---|
| 1655 | ! nsndlev=1 |
---|
| 1656 | ! yliu end |
---|
| 1657 | njcsnd=nsndlev |
---|
| 1658 | ! set pob here, to be used later |
---|
| 1659 | pob=varobs(5,n) |
---|
| 1660 | |
---|
| 1661 | ! print *, "s-- n=,nsndlev",n,njcsnd,J, ipl |
---|
| 1662 | ! print *, "s--",ivar,(errf(ivar,i),i=n,n+njcsnd) |
---|
| 1663 | ! CHECK TO SEE OF STATION N HAS DATA FOR VARIABLE IVAR |
---|
| 1664 | ! AND IF IT IS SUFFICIENTLY CLOSE TO THE J STRIP. THIS |
---|
| 1665 | ! SHOULD ELIMINATE MOST STATIONS FROM FURTHER CONSIDER- |
---|
| 1666 | ! ATION. |
---|
| 1667 | |
---|
| 1668 | !yliu: Skip bad obs if it is sfc or single level sounding. |
---|
| 1669 | !yliu: Before this (020918), a snd will be skipped if its first |
---|
| 1670 | !yliu level has bad data- often true due to elevation |
---|
| 1671 | |
---|
| 1672 | IF( ABS(ERRF(IVAR,N)).GT.9.E4 .and. njcsnd.eq.1 ) THEN |
---|
| 1673 | ! print *, " bad obs skipped" |
---|
| 1674 | |
---|
| 1675 | ELSEIF( RB(N).LT.FLOAT(MINJ) .OR. RB(N).GT.FLOAT(MAXJ) ) THEN |
---|
| 1676 | ! print *, " skipped obs far away from this J-slice" |
---|
| 1677 | |
---|
| 1678 | !---------------------------------------------------------------------- |
---|
| 1679 | ELSE ! BEGIN SECTION FOR PROCESSING THE OBSERVATION |
---|
| 1680 | !---------------------------------------------------------------------- |
---|
| 1681 | |
---|
| 1682 | ! DETERMINE THE TIME-WEIGHT FACTOR FOR N |
---|
| 1683 | FDTIM=XTIME-DTMIN |
---|
| 1684 | ! TWINDO IS IN MINUTES: |
---|
| 1685 | TW1=TWINDO/2.*60. |
---|
| 1686 | TW2=TWINDO*60. |
---|
| 1687 | TCONST=1./TW1 |
---|
| 1688 | TIMEWT=0.0 |
---|
| 1689 | TTIM=TIMEOB(N)*60. |
---|
| 1690 | !***********TTIM=TARGET TIME IN MINUTES |
---|
| 1691 | DIFT=ABS(FDTIM-TTIM) |
---|
| 1692 | IF(DIFT.LE.TW1)TIMEWT=1.0 |
---|
| 1693 | IF(DIFT.GT.TW1.AND.DIFT.LE.TW2) THEN |
---|
| 1694 | IF(FDTIM.LT.TTIM)TIMEWT=(FDTIM-(TTIM-TW2))*TCONST |
---|
| 1695 | IF(FDTIM.GT.TTIM)TIMEWT=((TTIM+TW2)-FDTIM)*TCONST |
---|
| 1696 | ENDIF |
---|
| 1697 | |
---|
| 1698 | ! DETERMINE THE LIMITS OF APPLICATION OF THE OBS IN THE VERTICAL |
---|
| 1699 | ! FOR THE VERTICAL WEIGHTING, WTSIG |
---|
| 1700 | |
---|
| 1701 | ! ASSIMILATE OBSERVATIONS ON PRESSURE LEVELS, EXCEPT FOR SURFACE |
---|
| 1702 | !ajb 20021210: (Bugfix) RKO is not available globally. It is computed in |
---|
| 1703 | !ajb ERROB() by the processor handling the obs point, and stored in ERRF(9,N). |
---|
| 1704 | |
---|
| 1705 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
| 1706 | rko(n) = errf(9,n) !ajb 20021210 |
---|
| 1707 | #endif |
---|
| 1708 | KOB=nint(RKO(N)) |
---|
| 1709 | KOB=MIN0(kte,KOB) |
---|
| 1710 | KOB=MAX0(1,KOB) |
---|
| 1711 | |
---|
| 1712 | ! ASSIMILATE SURFACE LAYER DATA ON SIGMA |
---|
| 1713 | IF(KOB.EQ.1.AND.IVAR.LE.4.and.nlevs_ob(n).lt.1.5) THEN |
---|
| 1714 | DO K=1,kte |
---|
| 1715 | WTSIG(K)=0.0 |
---|
| 1716 | ENDDO |
---|
| 1717 | ! DEFINE WTSIG: (FOR SRP: SPREAD SURFACE DATA THROUGH LOWEST 200 M) |
---|
| 1718 | ! WTSIG(1)=1.0 |
---|
| 1719 | ! WTSIG(2)=0.67 |
---|
| 1720 | ! WTSIG(3)=0.33 |
---|
| 1721 | ! KOMIN=3 |
---|
| 1722 | ! KOMAX=1 |
---|
| 1723 | ! DEFINE THE MAX AND MIN I VALUES FOR POSSIBLE NONZERO |
---|
| 1724 | ! WEIGHTS, BASED ON THE RADIUS OF INFLUENCE, RINDX (IN GRID LENGTHS). |
---|
| 1725 | ! fix this because kpblt at 1 and il is 0 |
---|
| 1726 | MAXI=IFIX(RA(N)+0.99+RINDX) |
---|
| 1727 | MAXI=MIN0(ide-1,MAXI) |
---|
| 1728 | MINI=IFIX(RA(N)-RINDX-0.99) |
---|
| 1729 | MINI=MAX0(2,MINI) |
---|
| 1730 | !yliu start |
---|
| 1731 | ! use also obs outside of this domain -- surface obs |
---|
| 1732 | ! if(RA(N).LT.0.-RINDX .or. RA(N).GT.float(IL+RINDX) .or. |
---|
| 1733 | ! & RB(N).LT.0.-RINDX .or. RB(N).GT.float(JL+RINDX)) then |
---|
| 1734 | ! print *, " skipped obs far away from this domain" |
---|
| 1735 | ! currently can use obs within this domain or ones very close to (1/3 |
---|
| 1736 | ! influence of radius in the coarse domain) this |
---|
| 1737 | ! domain. In later case, use BC column value to approximate the model value |
---|
| 1738 | ! at obs point -- ERRF need model field in errob.F !! |
---|
| 1739 | if ( RA(N).GE.(0.-RINDX/3) & |
---|
| 1740 | .and. RA(N).LE.float(ide)+RINDX/3 & |
---|
| 1741 | .and. RB(N).GE.(0.-RINDX/3) & |
---|
| 1742 | .and. RB(N).LE.float(jde)+RINDX/3) then |
---|
| 1743 | |
---|
| 1744 | ! or use obs within this domain only |
---|
| 1745 | ! if(RA(N).LT.1 .or. RA(N).GT.float(IL) .or. |
---|
| 1746 | ! & RB(N).LT.1 .or. RB(N).GT.float(JL)) then |
---|
| 1747 | ! print *, " skipped obs far outside of this domain" |
---|
| 1748 | ! if(j.eq.3 .and. ivar.eq.3) then |
---|
| 1749 | ! write(6,*) 'N = ',n,' exit 120 3' |
---|
| 1750 | ! endif |
---|
| 1751 | !yliu end |
---|
| 1752 | ! |
---|
| 1753 | ! LOOP THROUGH THE NECESSARY GRID POINTS SURROUNDING |
---|
| 1754 | ! OBSERVATION N. COMPUTE THE HORIZONTAL DISTANCE TO |
---|
| 1755 | ! THE OBS AND FIND THE WEIGHTING SUM OVER ALL OBS |
---|
| 1756 | RJ=FLOAT(J) |
---|
| 1757 | RX=RJ-RB(N) |
---|
| 1758 | ! WEIGHTS FOR THE 3-D VARIABLES |
---|
| 1759 | ERFIVR=ERRF(IVAR,N) |
---|
| 1760 | ! |
---|
| 1761 | !JM I will be local, because it indexes into PDOC, WT, and others |
---|
| 1762 | |
---|
| 1763 | ! if((ivar.eq.1 .or. ivar.eq.3) .and. n.le.200) then |
---|
| 1764 | ! write(6,'(a,i3,a,i3)')'SURF OBS NEAR: N = ',n,' nest = ',inest |
---|
| 1765 | ! write(6,'(a,f10.3,a,f10.3,a,i3,a,i3,a,i3,a,i2)') |
---|
| 1766 | ! $ ' RA =',RA(N),' RB =',RB(N),' J =',j, |
---|
| 1767 | ! $ ' MINI =',MINI,' MAXI =',MAXI,' NEST =',inest |
---|
| 1768 | ! endif |
---|
| 1769 | |
---|
| 1770 | DO I=max0(its,MINI),min0(ite,MAXI) |
---|
| 1771 | |
---|
| 1772 | RI=FLOAT(I) |
---|
| 1773 | RY=RI-RA(N) |
---|
| 1774 | RIS=RINDX*RINDX |
---|
| 1775 | RSQ=RX*RX+RY*RY |
---|
| 1776 | ! DPRIM=SQRT(RSQ) |
---|
| 1777 | ! THIS FUNCTION DECREASES WTIJ AS PSFC CHANGES WITHIN SEARCH RADIUS |
---|
| 1778 | ! D=DPRIM+RINDX*DCON*ABS(PSBO(N)-PDOC(I,J)) |
---|
| 1779 | ! DSQ=D*D |
---|
| 1780 | ! WTIJ=(RIS-DSQ)/(RIS+DSQ) |
---|
| 1781 | wtij=(ris-rsq)/(ris+rsq) |
---|
| 1782 | scratch = (abs(psurf(n)-.001*pbase(i,1))*fdob%DCON) |
---|
| 1783 | pdfac=1.-AMIN1(1.0,scratch) |
---|
| 1784 | wtij=wtij*pdfac |
---|
| 1785 | WTIJ=AMAX1(0.0,WTIJ) |
---|
| 1786 | |
---|
| 1787 | ! try making sfc obs weighting go thru pbl |
---|
| 1788 | ! jc kpbl is at dot or cross only - need to interpolate? |
---|
| 1789 | ! wtsig(1)=1. |
---|
| 1790 | komax=max0(3,kpblt(i)) |
---|
| 1791 | |
---|
| 1792 | ! jc arbitrary check here |
---|
| 1793 | IF (iprt) THEN |
---|
| 1794 | if (kpblt(i).gt.25 .and. ktau.ne.0) & |
---|
| 1795 | write(6,552)inest,i,j,kpblt(i) |
---|
| 1796 | 552 FORMAT('kpblt is gt 25, inest,i,j,kpblt=',4i4) |
---|
| 1797 | ENDIF |
---|
| 1798 | |
---|
| 1799 | if(kpblt(i).gt.25) komax=3 |
---|
| 1800 | komin=1 |
---|
| 1801 | dk=float(komax) |
---|
| 1802 | |
---|
| 1803 | do k=komin,komax |
---|
| 1804 | |
---|
| 1805 | wtsig(k)=float(komax-k+1)/dk |
---|
| 1806 | WT(I,K)=WT(I,K)+TIMEWT*WTSIG(K)*WTIJ |
---|
| 1807 | |
---|
| 1808 | WT2ERR(I,K)=WT2ERR(I,K)+TIMEWT*TIMEWT*WTIJ*WTIJ*WTSIG(K) & |
---|
| 1809 | *WTSIG(K)*ERFIVR |
---|
| 1810 | |
---|
| 1811 | ! if(ivar.eq.1 .and. i.eq.38 .and. j.eq.78) then |
---|
| 1812 | ! |
---|
| 1813 | ! write(6,'(a,i2,a,f8.3,a,f8.3,a,f8.3,a,f8.3,a,f8.3)') |
---|
| 1814 | ! 'Surface obs, after: k = ',k, & |
---|
| 1815 | ! ' WT2ERR = ',wt2err(i,k), & |
---|
| 1816 | ! ' TIMEWT = ',timewt, & |
---|
| 1817 | ! ' WTIJ = ',wtij, & |
---|
| 1818 | ! ' WSIG = ',wtsig(k), & |
---|
| 1819 | ! ' ERFIVR = ',erfivr |
---|
| 1820 | ! endif |
---|
| 1821 | |
---|
| 1822 | enddo |
---|
| 1823 | |
---|
| 1824 | ENDDO |
---|
| 1825 | |
---|
| 1826 | ! print *, " Surface " |
---|
| 1827 | |
---|
| 1828 | endif ! end check for obs in domain |
---|
| 1829 | ! END SURFACE-LAYER U OR V OBS NUDGING |
---|
| 1830 | |
---|
| 1831 | ELSE |
---|
| 1832 | ! BEGIN CALCULATIONS TO SPREAD OBS INFLUENCE ALONG PRESSURE LEVELS |
---|
| 1833 | ! |
---|
| 1834 | ! print *,'in upper air section' |
---|
| 1835 | ! DEFINE THE MAX AND MIN I VALUES FOR POSSIBLE NONZERO |
---|
| 1836 | ! WEIGHTS, BASED ON THE RADIUS OF INFLUENCE, RINDX, AND RINFAC. |
---|
| 1837 | ! RINFAC VARIES AS A LINEAR FUNCTION FROM FROM RINFMN AT P*+PTOP |
---|
| 1838 | ! TO RINFMX AT PFREE AND "ABOVE" (LOWER PRESSURE). |
---|
| 1839 | !ajb SLOPE=(RINFMN-RINFMX)/(PSBO(N)+PTOP-PFREE) |
---|
| 1840 | |
---|
| 1841 | slope = (fdob%RINFMN-fdob%RINFMX)/(psurf(n)-fdob%PFREE) |
---|
| 1842 | |
---|
| 1843 | RINFAC=SLOPE*POB+fdob%RINFMX-SLOPE*fdob%pfree |
---|
| 1844 | RINFAC=AMAX1(RINFAC,fdob%RINFMN) |
---|
| 1845 | RINFAC=AMIN1(RINFAC,fdob%RINFMX) |
---|
| 1846 | !yliu: for multilevel upper-air data, take the maximum |
---|
| 1847 | ! for the I loop. |
---|
| 1848 | if(nsndlev.gt.1) RINFAC = fdob%RINFMX |
---|
| 1849 | !yliu end |
---|
| 1850 | |
---|
| 1851 | MAXI=IFIX(RA(N)+0.99+RINDX*RINFAC) |
---|
| 1852 | MAXI=MIN0(ide-IGRID,MAXI) |
---|
| 1853 | MINI=IFIX(RA(N)-RINDX*RINFAC-0.99) |
---|
| 1854 | MINI=MAX0(1,MINI) |
---|
| 1855 | |
---|
| 1856 | ! yliu start |
---|
| 1857 | ! use also obs outside of but close to this domain -- upr data |
---|
| 1858 | ! if( RA(N).LT.(0.-RINFAC*RINDX) |
---|
| 1859 | ! & .or. RA(N).GT.float(IL)+RINFAC*RINDX |
---|
| 1860 | ! & .or. RB(N).LT.(0.-RINFAC*RINDX) |
---|
| 1861 | ! & .or. RB(N).GT.float(JL)+RINFAC*RINDX)then |
---|
| 1862 | ! print *, " skipped obs far away from this I-range" |
---|
| 1863 | ! currently can use obs within this domain or ones very close to (1/3 |
---|
| 1864 | ! influence of radius in the coarse domain) this |
---|
| 1865 | ! domain. In later case, use BC column value to approximate the model value |
---|
| 1866 | ! at obs point -- ERRF need model field in errob.F !! |
---|
| 1867 | |
---|
| 1868 | !cc if (i.eq.39 .and. j.eq.34) then |
---|
| 1869 | !cc write(6,*) 'RA(N) = ',ra(n) |
---|
| 1870 | !cc write(6,*) 'rinfac = ',rinfac,' rindx = ',rindx |
---|
| 1871 | !cc endif |
---|
| 1872 | if( RA(N).GE.(0.-RINFAC*RINDX/3) & |
---|
| 1873 | .and. RA(N).LE.float(ide)+RINFAC*RINDX/3 & |
---|
| 1874 | .and. RB(N).GE.(0.-RINFAC*RINDX/3) & |
---|
| 1875 | .and. RB(N).LE.float(jde)+RINFAC*RINDX/3) then |
---|
| 1876 | ! or use obs within this domain only |
---|
| 1877 | ! if(RA(N).LT.1 .or. RA(N).GT.float(IL) .or. |
---|
| 1878 | ! & RB(N).LT.1 .or. RB(N).GT.float(JL)) then |
---|
| 1879 | ! print *, " skipped obs far outside of this domain" |
---|
| 1880 | |
---|
| 1881 | ! yliu end |
---|
| 1882 | ! is this 2 needed here - kpbl not used? |
---|
| 1883 | ! MINI=MAX0(2,MINI) |
---|
| 1884 | |
---|
| 1885 | ! LOOP THROUGH THE NECESSARY GRID POINTS SURROUNDING |
---|
| 1886 | ! OBSERVATION N. COMPUTE THE HORIZONTAL DISTANCE TO |
---|
| 1887 | ! THE OBS AND FIND THE WEIGHTING SUM OVER ALL OBS |
---|
| 1888 | RJ=FLOAT(J) |
---|
| 1889 | RX=RJ-RB(N) |
---|
| 1890 | ! WEIGHTS FOR THE 3-D VARIABLES |
---|
| 1891 | ! |
---|
| 1892 | ERFIVR=ERRF(IVAR,N) |
---|
| 1893 | ! jc |
---|
| 1894 | nsndlev=int(nlevs_ob(n)-lev_in_ob(n))+1 |
---|
| 1895 | ! yliu start |
---|
| 1896 | ! test: do the sounding levels as individual obs |
---|
| 1897 | ! nsndlev=1 |
---|
| 1898 | ! yliu end |
---|
| 1899 | njcsnd=nsndlev |
---|
| 1900 | ! |
---|
| 1901 | DO I=max0(its,MINI),min0(ite,MAXI) |
---|
| 1902 | ! jc |
---|
| 1903 | RI=FLOAT(I) |
---|
| 1904 | RY=RI-RA(N) |
---|
| 1905 | RIS=RINDX*RINFAC*RINDX*RINFAC |
---|
| 1906 | RSQ=RX*RX+RY*RY |
---|
| 1907 | ! yliu test: for upper-air data, keep D1 influence radii |
---|
| 1908 | ! RIS=RIS /schnes /schnes |
---|
| 1909 | WTIJ=(RIS-RSQ)/(RIS+RSQ) |
---|
| 1910 | WTIJ=AMAX1(0.0,WTIJ) |
---|
| 1911 | ! weight ob in vertical with +- 50 mb |
---|
| 1912 | ! yliu: 75 hba for single upper-air, 30hba for multi-level soundings |
---|
| 1913 | if(nsndlev.eq.1) then |
---|
| 1914 | rinprs=7.5 |
---|
| 1915 | else |
---|
| 1916 | rinprs=3.0 |
---|
| 1917 | endif |
---|
| 1918 | ! yliu end |
---|
| 1919 | ! |
---|
| 1920 | !$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ |
---|
| 1921 | ! --- HANDLE 1-LEVEL and MULTI-LEVEL OBSERVATIONS SEPARATELY --- |
---|
| 1922 | !$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ |
---|
| 1923 | |
---|
| 1924 | if(nsndlev.eq.1)then |
---|
| 1925 | !---------------------------------------------------------------------- |
---|
| 1926 | ! --- HANDLE 1-LEVEL OBSERVATIONS --- |
---|
| 1927 | !---------------------------------------------------------------------- |
---|
| 1928 | |
---|
| 1929 | ! if(I.eq.MINI) print *, " Single snd " |
---|
| 1930 | ! ERFIVR is the residual (difference) between the ob and the model |
---|
| 1931 | ! at that point. We can analyze that residual up and down. |
---|
| 1932 | ! First find komin for ob. |
---|
| 1933 | !yliu start -- in the old code, komax and komin were reversed! |
---|
| 1934 | do k=kte,1,-1 |
---|
| 1935 | pijk = .001*(pbase(i,k)+pp(i,k)) |
---|
| 1936 | ! print *,'k,pijk,pob,rinprs=',k,pijk,pob,rinprs |
---|
| 1937 | if(pijk.ge.(pob+rinprs)) then |
---|
| 1938 | komin=k |
---|
| 1939 | go to 325 |
---|
| 1940 | endif |
---|
| 1941 | enddo |
---|
| 1942 | komin=1 |
---|
| 1943 | 325 continue |
---|
| 1944 | ! now find komax for ob |
---|
| 1945 | do k=3,kte |
---|
| 1946 | pijk = .001*(pbase(i,k)+pp(i,k)) |
---|
| 1947 | if(pijk.le.(pob-rinprs)) then |
---|
| 1948 | komax=k |
---|
| 1949 | go to 326 |
---|
| 1950 | endif |
---|
| 1951 | enddo |
---|
| 1952 | komax=kte ! yliu 20050706 |
---|
| 1953 | 326 continue |
---|
| 1954 | |
---|
| 1955 | ! yliu: single-level upper-air data will act either above or below the PBL top |
---|
| 1956 | ! ajb: Reset komin or komax. if kobs>kpblt, komin=kpblt+1, else komax=kpblt |
---|
| 1957 | |
---|
| 1958 | if( (kpblt(i).le.komax) .and. (kpblt(i).ge.komin) ) then |
---|
| 1959 | kobs = 1 |
---|
| 1960 | OBS_K: do k = komin, komax |
---|
| 1961 | if( pob .gt. .001*(pbase(i,k)+pp(i,k)) ) then |
---|
| 1962 | kobs = k |
---|
| 1963 | EXIT OBS_K |
---|
| 1964 | endif |
---|
| 1965 | enddo OBS_K |
---|
| 1966 | |
---|
| 1967 | if(kobs.gt.kpblt(i)) then |
---|
| 1968 | komin=max0(kobs, komin) ! kobs here is kpblt(i)+1 |
---|
| 1969 | else |
---|
| 1970 | komax=min0(kpblt(i), komax) |
---|
| 1971 | endif |
---|
| 1972 | endif |
---|
| 1973 | ! yliu end |
---|
| 1974 | ! |
---|
| 1975 | ! print *,'1 level, komin,komax=',komin,komax |
---|
| 1976 | ! if(i.eq.MINI) then |
---|
| 1977 | ! print *, "yyyyyyyyyyS IPL erfivr=", IPL, ERFIVR,J,pob |
---|
| 1978 | ! ERFIVR=0 |
---|
| 1979 | ! endif |
---|
| 1980 | do k=1,kte |
---|
| 1981 | reserf(k)=0.0 |
---|
| 1982 | wtsig(k)=0.0 |
---|
| 1983 | enddo |
---|
| 1984 | !yliu end |
---|
| 1985 | |
---|
| 1986 | !cc if (i.eq.39 .and. j.eq.34) then |
---|
| 1987 | !cc write(6,*) ' komin = ', komin,' komax = ',komax |
---|
| 1988 | !cc endif |
---|
| 1989 | |
---|
| 1990 | do k=komin,komax |
---|
| 1991 | pijk = .001*(pbase(i,k)+pp(i,k)) |
---|
| 1992 | reserf(k)=erfivr |
---|
| 1993 | wtsig(k)=1.-abs(pijk-pob)/rinprs |
---|
| 1994 | wtsig(k)=amax1(wtsig(k),0.0) |
---|
| 1995 | ! print *,'k,pijk,pob,rinprs,wtsig=',k,pijk,pob,rinprs,wtsig(k) |
---|
| 1996 | ! Now calculate WT and WT2ERR for each i,j,k point cajb |
---|
| 1997 | WT(I,K)=WT(I,K)+TIMEWT*WTIJ*wtsig(k) |
---|
| 1998 | |
---|
| 1999 | WT2ERR(I,K)=WT2ERR(I,K)+TIMEWT*TIMEWT*WTIJ*WTIJ* & |
---|
| 2000 | reserf(k)*wtsig(k)*wtsig(k) |
---|
| 2001 | enddo |
---|
| 2002 | |
---|
| 2003 | else |
---|
| 2004 | !---------------------------------------------------------------------- |
---|
| 2005 | ! --- HANDLE MULTI-LEVEL OBSERVATIONS --- |
---|
| 2006 | !---------------------------------------------------------------------- |
---|
| 2007 | !yliu start |
---|
| 2008 | ! if(I.eq.MINI) print *, " Multi-level snd " |
---|
| 2009 | ! print *, " n=,nsndlev",n,nsndlev,nlevs_ob(n),lev_in_ob(n) & |
---|
| 2010 | ! ,nlevs_ob(n+nsndlev-1),lev_in_ob(n+nsndlev-1) |
---|
| 2011 | if(nlevs_ob(n+nsndlev-1).ne.lev_in_ob(n+nsndlev-1)) then |
---|
| 2012 | IF (iprt) THEN |
---|
| 2013 | print *, "n = ",n,"nsndlev = ",nsndlev |
---|
| 2014 | print *, "nlevs_ob,lev_in_ob", & |
---|
| 2015 | nlevs_ob(n+nsndlev-1),lev_in_ob(n+nsndlev-1) |
---|
| 2016 | print *, "in nudobs.F: sounding level messed up, stopping" |
---|
| 2017 | ENDIF |
---|
| 2018 | stop |
---|
| 2019 | endif |
---|
| 2020 | !yliu end |
---|
| 2021 | ! This is for a multi-level observation |
---|
| 2022 | ! The trick here is that the sounding is "one ob". You don't |
---|
| 2023 | ! want multiple levels to each be treated like separate |
---|
| 2024 | ! and independent observations. |
---|
| 2025 | ! At each i,j want to interpolate sounding to the model levels at that |
---|
| 2026 | ! particular point. |
---|
| 2027 | komin=1 |
---|
| 2028 | komax=kte-2 |
---|
| 2029 | ! this loop goes to 1501 |
---|
| 2030 | ! do from kte-2 to 1 so don't adjust top of model. Arbitrary. |
---|
| 2031 | !yliu start |
---|
| 2032 | do k=1,kte |
---|
| 2033 | reserf(k)=0.0 |
---|
| 2034 | wtsig(k)=0.0 |
---|
| 2035 | enddo |
---|
| 2036 | !yliu end |
---|
| 2037 | |
---|
| 2038 | do k=komax,komin,-1 |
---|
| 2039 | |
---|
| 2040 | pijk = .001*(pbase(i,k)+pp(i,k)) |
---|
| 2041 | |
---|
| 2042 | ! if sigma level pressure is .gt. than the lowest ob level, don't interpolate |
---|
| 2043 | if(pijk.gt.varobs(5,n)) then |
---|
| 2044 | go to 1501 |
---|
| 2045 | endif |
---|
| 2046 | |
---|
| 2047 | ! if sigma level pressure is .lt. than the highest ob level, don't interpolate |
---|
| 2048 | if(pijk.le.varobs(5,n+nsndlev-1)) then |
---|
| 2049 | go to 1501 |
---|
| 2050 | endif |
---|
| 2051 | |
---|
| 2052 | ! now interpolate sounding to this k |
---|
| 2053 | ! yliu start-- recalculate WTij for each k-level |
---|
| 2054 | !ajb SLOPE = (fdob%RINFMN-fdob%RINFMX)/(pdoc(i,j)+PTOP-fdob%PFREE) |
---|
| 2055 | slope = (fdob%RINFMN-fdob%RINFMX)/ (.001*pbase(i,1)-fdob%PFREE) |
---|
| 2056 | RINFAC=SLOPE*pijk+fdob%RINFMX-SLOPE*fdob%PFREE |
---|
| 2057 | RINFAC=AMAX1(RINFAC,fdob%RINFMN) |
---|
| 2058 | RINFAC=AMIN1(RINFAC,fdob%RINFMX) |
---|
| 2059 | RIS=RINDX*RINFAC*RINDX*RINFAC |
---|
| 2060 | RSQ=RX*RX+RY*RY |
---|
| 2061 | |
---|
| 2062 | ! for upper-air data, keep D1 influence radii |
---|
| 2063 | ! RIS=RIS /schnes /schnes |
---|
| 2064 | WTIJ=(RIS-RSQ)/(RIS+RSQ) |
---|
| 2065 | WTIJ=AMAX1(0.0,WTIJ) |
---|
| 2066 | ! yliu end |
---|
| 2067 | |
---|
| 2068 | ! this loop goes to 1503 |
---|
| 2069 | do nn=2,nsndlev |
---|
| 2070 | ! only set pobhi if varobs(ivar) is ok |
---|
| 2071 | pobhi=-888888. |
---|
| 2072 | |
---|
| 2073 | if(varobs(ivar,n+nn-1).gt.-800000. & |
---|
| 2074 | .and. varobs(5,n+nn-1).gt.-800000.) then |
---|
| 2075 | pobhi=varobs(5,n+nn-1) |
---|
| 2076 | nhi=n+nn-1 |
---|
| 2077 | if(pobhi.lt.pijk .and. abs(pobhi-pijk).lt.20.) then |
---|
| 2078 | go to 1502 ! within 200mb of obs height |
---|
| 2079 | endif |
---|
| 2080 | endif |
---|
| 2081 | |
---|
| 2082 | enddo |
---|
| 2083 | |
---|
| 2084 | ! did not find any ob above within 100 mb, so jump out |
---|
| 2085 | go to 1501 |
---|
| 2086 | 1502 continue |
---|
| 2087 | |
---|
| 2088 | nlo=nhi-1 |
---|
| 2089 | do nnjc=nhi-1,n,-1 |
---|
| 2090 | if(varobs(ivar,nnjc).gt.-800000. & |
---|
| 2091 | .and. varobs(5,nnjc).gt.-800000.) then |
---|
| 2092 | poblo=varobs(5,nnjc) |
---|
| 2093 | nlo=nnjc |
---|
| 2094 | if(poblo.gt.pijk .and. abs(poblo-pijk).lt.20.) then |
---|
| 2095 | go to 1505 ! within 200mb of obs height |
---|
| 2096 | endif |
---|
| 2097 | endif |
---|
| 2098 | enddo |
---|
| 2099 | !yliu end -- |
---|
| 2100 | |
---|
| 2101 | ! did not find any ob below within 200 mb, so jump out |
---|
| 2102 | go to 1501 |
---|
| 2103 | 1505 continue |
---|
| 2104 | |
---|
| 2105 | ! interpolate to model level |
---|
| 2106 | pdiffj=alog(pijk/poblo)/alog(pobhi/poblo) |
---|
| 2107 | reserf(k)=errf(ivar,nlo)+ & |
---|
| 2108 | (errf(ivar,nhi)-errf(ivar,nlo))*pdiffj |
---|
| 2109 | wtsig(k)=1. |
---|
| 2110 | |
---|
| 2111 | 1501 continue |
---|
| 2112 | |
---|
| 2113 | ! now calculate WT and WT2ERR for each i,j,k point cajb |
---|
| 2114 | WT(I,K)=WT(I,K)+TIMEWT*WTIJ*wtsig(k) |
---|
| 2115 | |
---|
| 2116 | WT2ERR(I,K)=WT2ERR(I,K)+TIMEWT*TIMEWT*WTIJ*WTIJ* & |
---|
| 2117 | reserf(k)*wtsig(k)*wtsig(k) |
---|
| 2118 | |
---|
| 2119 | ! if(ivar.eq.1 .and. i.eq.38 .and. j.eq.78) then |
---|
| 2120 | ! |
---|
| 2121 | ! if(wt(i,k) .ne. 0.0) then |
---|
| 2122 | ! scratch = WT2ERR(I,K)/WT(I,K) |
---|
| 2123 | ! else |
---|
| 2124 | ! scratch = 999. |
---|
| 2125 | ! endif |
---|
| 2126 | ! |
---|
| 2127 | ! write(6,'(a,i2,a,f8.3,a,f4.2,a,f7.4,a,f4.2,a,f5.3,a,f7.4)') |
---|
| 2128 | ! $ 'Multi-level obs: k = ',k, |
---|
| 2129 | ! $ ' WT2ERR = ',wt2err(i,k), |
---|
| 2130 | ! $ ' WTIJ = ',wtij, |
---|
| 2131 | ! $ ' RSF = ',reserf(k), |
---|
| 2132 | ! $ ' WSIG = ',wtsig(k), |
---|
| 2133 | ! $ ' WT = ',wt(i,k), |
---|
| 2134 | ! $ ' W2EOWT = ',scratch |
---|
| 2135 | ! endif |
---|
| 2136 | |
---|
| 2137 | |
---|
| 2138 | ! end do k |
---|
| 2139 | enddo ! enddo k levels |
---|
| 2140 | ! end multi-levels |
---|
| 2141 | endif ! end if(nsndlev.eq.1) |
---|
| 2142 | !$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ |
---|
| 2143 | ! END 1-LEVEL AND MULTI-LEVEL OBSERVATIONS |
---|
| 2144 | !$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ |
---|
| 2145 | ! |
---|
| 2146 | ENDDO ! END DO MINI,MAXI LOOP |
---|
| 2147 | |
---|
| 2148 | endif ! check for obs in domain |
---|
| 2149 | |
---|
| 2150 | ! END OF NUDGING TO OBS ON PRESSURE LEVELS |
---|
| 2151 | |
---|
| 2152 | ENDIF !end IF(KOB.EQ.1.AND.IVAR.LE.4.and.nlevs_ob(n).lt.1.5) |
---|
| 2153 | |
---|
| 2154 | !---------------------------------------------------------------------- |
---|
| 2155 | ENDIF ! END SECTION FOR PROCESSING OF OBSERVATION |
---|
| 2156 | !---------------------------------------------------------------------- |
---|
| 2157 | |
---|
| 2158 | ! n=n+1 |
---|
| 2159 | n=n+njcsnd |
---|
| 2160 | |
---|
| 2161 | !yliu 1202 continue |
---|
| 2162 | if(n.gt.nstat)then |
---|
| 2163 | ! print *,'n,nstat=',n,nstat,ivar,j |
---|
| 2164 | go to 1203 |
---|
| 2165 | endif |
---|
| 2166 | ! print *, "e-- n=,nsndlev",n,njcsnd,nlevs_ob(n),lev_in_ob(n) |
---|
| 2167 | |
---|
| 2168 | !*********************************************************************** |
---|
| 2169 | ENDDO ! END OUTER LOOP FOR THE NSTAT OBSERVATIONS |
---|
| 2170 | !*********************************************************************** |
---|
| 2171 | |
---|
| 2172 | 1203 continue |
---|
| 2173 | |
---|
| 2174 | ! WEIGHTS AND WEIGHTED DIFFERENCES HAVE BEEN SUMMED. NOW |
---|
| 2175 | ! APPLY THE NUDGING FACTOR AND THE RESULTANT TENDENCY TO |
---|
| 2176 | ! THE ATEN ARRAY |
---|
| 2177 | ! ASSURE THAT WT(I,K) AND WTP(I,K) ARE NONZERO SINCE |
---|
| 2178 | ! THEY ARE USED BELOW IN THE DENOMINATOR. |
---|
| 2179 | DO K=kts,kte |
---|
| 2180 | DO I=its,ite |
---|
| 2181 | IF(WT(I,K).EQ.0)THEN |
---|
| 2182 | WT2ERR(I,K)=0.0 |
---|
| 2183 | ENDIF |
---|
| 2184 | IF(WT(I,K).EQ.0)THEN |
---|
| 2185 | WT(I,K)=1.0 |
---|
| 2186 | ENDIF |
---|
| 2187 | ENDDO |
---|
| 2188 | ENDDO |
---|
| 2189 | |
---|
| 2190 | 126 CONTINUE |
---|
| 2191 | |
---|
| 2192 | IF(IVAR.GE.3)GOTO 170 |
---|
| 2193 | ! this is for u,v |
---|
| 2194 | ! 3-D DOT POINT TENDENCIES |
---|
| 2195 | |
---|
| 2196 | ! Calculate scales for converting nudge factor from u (v) |
---|
| 2197 | ! to rho_u (or rho_v) units. |
---|
| 2198 | |
---|
| 2199 | IF (IVAR == 1) THEN |
---|
| 2200 | call calc_rcouple_scales(mu,msfy,rscale,ims,ime,its,ite) |
---|
| 2201 | ELSE IF (IVAR == 2) THEN |
---|
| 2202 | call calc_rcouple_scales(mu,msfx,rscale,ims,ime,its,ite) |
---|
| 2203 | END IF |
---|
| 2204 | |
---|
| 2205 | DO K=1,kte |
---|
| 2206 | |
---|
| 2207 | DO I=i_s,i_e |
---|
| 2208 | |
---|
| 2209 | IF(MOD(KTAU,INFR).EQ.0.OR.(IFREST.AND.KTAU.EQ.KTAUR))THEN |
---|
| 2210 | W2EOWT=WT2ERR(I,K)/WT(I,K) |
---|
| 2211 | ELSE |
---|
| 2212 | W2EOWT=SAVWT(IPL,I,K) |
---|
| 2213 | ENDIF |
---|
| 2214 | |
---|
| 2215 | ! if(ivar .eq. 1 .and. i.eq.38 .and. j.eq.78 .and. k.eq.1) then |
---|
| 2216 | ! scratch = GIV*RSCALE(I)*W2EOWT*fdob%TFACI*ISWIND*GFACTOR |
---|
| 2217 | ! write(6,*) 'ATEN calc: k = ',k |
---|
| 2218 | ! write(6,*) 'U before: aten = ',aten(i,k),' scr = ',scratch |
---|
| 2219 | ! write(6,*) 'GIV = ',giv,' rscale = ',rscale(i), |
---|
| 2220 | ! $ ' W2EOWT = ',w2eowt |
---|
| 2221 | ! write(6,*) 'TFACI = ',fdob%tfaci,' ISWIND = ',iswind, |
---|
| 2222 | ! $ ' GFACTOR = ',gfactor |
---|
| 2223 | ! endif |
---|
| 2224 | ! |
---|
| 2225 | ! if(ivar .eq. 2 .and. i.eq.39 .and. j.eq.29) then |
---|
| 2226 | ! scratch = GIV*RSCALE(I)*W2EOWT*fdob%TFACI*ISWIND*GFACTOR |
---|
| 2227 | ! write(6,*) 'ATEN calc: k = ',k |
---|
| 2228 | ! write(6,*) 'V before: aten = ',aten(i,k),' scr = ',scratch |
---|
| 2229 | ! write(6,*) 'GIV = ',giv,' rscale = ',rscale(i), |
---|
| 2230 | ! $ ' W2EOWT = ',w2eowt |
---|
| 2231 | ! write(6,*) 'TFACI = ',fdob%tfaci,' ISWIND = ',iswind, |
---|
| 2232 | ! $ ' GFACTOR = ',gfactor |
---|
| 2233 | ! endif |
---|
| 2234 | |
---|
| 2235 | ATEN(i,k)=ATEN(i,k)+GIV*RSCALE(I) & |
---|
| 2236 | *W2EOWT*fdob%TFACI & |
---|
| 2237 | *ISWIND *GFACTOR !yliu *GFACTOR |
---|
| 2238 | |
---|
| 2239 | ! if(ivar .eq. 1 .and. i.eq.38 .and. j.eq.78 .and. k.eq.1) then |
---|
| 2240 | ! write(6,*) 'U after: aten = ',aten(i,k),' scr = ',scratch |
---|
| 2241 | ! endif |
---|
| 2242 | ! if(ivar .eq. 2 .and. i.eq.39 .and. j.eq.29) then |
---|
| 2243 | ! write(6,*) 'V after: aten = ',aten(i,k),' scr = ',scratch |
---|
| 2244 | ! endif |
---|
| 2245 | |
---|
| 2246 | ENDDO |
---|
| 2247 | ENDDO |
---|
| 2248 | |
---|
| 2249 | IF(MOD(KTAU,INFR).EQ.0.OR.(IFREST.AND.KTAU.EQ.KTAUR))THEN |
---|
| 2250 | DO K=1,kte |
---|
| 2251 | DO I=its,ite |
---|
| 2252 | SAVWT(IPL,I,K)=WT2ERR(I,K)/WT(I,K) |
---|
| 2253 | ENDDO |
---|
| 2254 | ENDDO |
---|
| 2255 | ENDIF |
---|
| 2256 | |
---|
| 2257 | RETURN |
---|
| 2258 | |
---|
| 2259 | 170 CONTINUE |
---|
| 2260 | |
---|
| 2261 | ! 3-D CROSS-POINT TENDENCIES |
---|
| 2262 | ! this is for t (ivar=3) and q (ivsr=4) |
---|
| 2263 | IF(3-IVAR.LT.0)THEN |
---|
| 2264 | GITQ=GIQ |
---|
| 2265 | ELSE |
---|
| 2266 | GITQ=GIT |
---|
| 2267 | ENDIF |
---|
| 2268 | IF(3-IVAR.LT.0)THEN |
---|
| 2269 | ISTQ=ISMOIS |
---|
| 2270 | ELSE |
---|
| 2271 | ISTQ=ISTEMP |
---|
| 2272 | ENDIF |
---|
| 2273 | |
---|
| 2274 | DO K=1,kte |
---|
| 2275 | DO I=i_s,i_e |
---|
| 2276 | IF(MOD(KTAU,INFR).EQ.0.OR.(IFREST.AND.KTAU.EQ.KTAUR))THEN |
---|
| 2277 | W2EOWT=WT2ERR(I,K)/WT(I,K) |
---|
| 2278 | ELSE |
---|
| 2279 | W2EOWT=SAVWT(IPL,I,K) |
---|
| 2280 | ENDIF |
---|
| 2281 | |
---|
| 2282 | ! if(ivar .eq. 3 .and. i.eq.39 .and. j.eq.29) then |
---|
| 2283 | ! scratch = GITQ*MU(I)*W2EOWT*fdob%TFACI*ISTQ*GFACTOR |
---|
| 2284 | ! write(6,*) 'ATEN calc: k = ',k |
---|
| 2285 | ! write(6,*) 'T before: aten = ',aten(i,k),' scr = ',scratch |
---|
| 2286 | ! write(6,*) 'GITQ = ',gitq,' MU = ',mu(i), |
---|
| 2287 | ! $ ' W2EOWT = ',w2eowt |
---|
| 2288 | ! write(6,*) ' TFACI = ',fdob%tfaci,' ISTQ = ',istq, |
---|
| 2289 | ! $ ' GFACTOR = ',gfactor |
---|
| 2290 | ! endif |
---|
| 2291 | ! |
---|
| 2292 | ! if(ivar .eq. 4 .and. i.eq.39 .and. j.eq.29) then |
---|
| 2293 | ! scratch = GITQ*MU(I)*W2EOWT*fdob%TFACI*ISTQ*GFACTOR |
---|
| 2294 | ! write(6,*) 'ATEN calc: k = ',k |
---|
| 2295 | ! write(6,*) 'Q before: aten = ',aten(i,k),' scr = ',scratch |
---|
| 2296 | ! write(6,*) 'GITQ = ',gitq,' MU = ',mu(i), |
---|
| 2297 | ! $ ' W2EOWT = ',w2eowt |
---|
| 2298 | ! write(6,*) ' TFACI = ',fdob%tfaci,' ISTQ = ',istq, |
---|
| 2299 | ! $ ' GFACTOR = ',gfactor |
---|
| 2300 | ! endif |
---|
| 2301 | |
---|
| 2302 | ATEN(i,k)=ATEN(i,k)+GITQ*MU(I) & |
---|
| 2303 | *W2EOWT*fdob%TFACI*ISTQ *GFACTOR !yliu *GFACTOR |
---|
| 2304 | |
---|
| 2305 | ! if(ivar .eq. 3 .and. i.eq.39 .and. j.eq.29) then |
---|
| 2306 | ! write(6,*) 'T after: aten = ',aten(i,k),' scr = ',scratch |
---|
| 2307 | ! endif |
---|
| 2308 | ! if(ivar .eq. 4 .and. i.eq.39 .and. j.eq.29) then |
---|
| 2309 | ! write(6,*) 'Q after: aten = ',aten(i,k),' scr = ',scratch |
---|
| 2310 | ! endif |
---|
| 2311 | |
---|
| 2312 | ENDDO |
---|
| 2313 | ENDDO |
---|
| 2314 | |
---|
| 2315 | IF(MOD(KTAU,INFR).EQ.0.OR.(IFREST.AND.KTAU.EQ.KTAUR)) THEN |
---|
| 2316 | DO K=1,kte |
---|
| 2317 | DO I=its,ite |
---|
| 2318 | SAVWT(IPL,I,K)=WT2ERR(I,K)/WT(I,K) |
---|
| 2319 | ENDDO |
---|
| 2320 | ENDDO |
---|
| 2321 | ENDIF |
---|
| 2322 | |
---|
| 2323 | RETURN |
---|
| 2324 | END SUBROUTINE nudob |
---|
| 2325 | |
---|
| 2326 | SUBROUTINE calc_rcouple_scales(a, msf, rscale, ims,ime, its,ite) |
---|
| 2327 | !----------------------------------------------------------------------- |
---|
| 2328 | IMPLICIT NONE |
---|
| 2329 | !----------------------------------------------------------------------- |
---|
| 2330 | |
---|
| 2331 | INTEGER, INTENT(IN) :: ims,ime ! Memory dimensions |
---|
| 2332 | INTEGER, INTENT(IN) :: its,ite ! Tile dimensions |
---|
| 2333 | REAL, INTENT(IN) :: a( ims:ime ) ! Air mass array |
---|
| 2334 | REAL, INTENT(IN) :: msf( ims:ime ) ! Map scale factor array |
---|
| 2335 | REAL, INTENT(OUT) :: rscale( ims:ime ) ! Scales for rho-coupling |
---|
| 2336 | |
---|
| 2337 | ! Local variables |
---|
| 2338 | integer :: i |
---|
| 2339 | |
---|
| 2340 | ! Calculate scales to be used for producing rho-coupled nudging factors. |
---|
| 2341 | do i = its,ite |
---|
| 2342 | rscale(i) = a(i)/msf(i) |
---|
| 2343 | enddo |
---|
| 2344 | |
---|
| 2345 | RETURN |
---|
| 2346 | END SUBROUTINE calc_rcouple_scales |
---|
| 2347 | |
---|
| 2348 | !ajb: Not used |
---|
| 2349 | SUBROUTINE set_real_array(rscale, value, ims,ime, its,ite) |
---|
| 2350 | !----------------------------------------------------------------------- |
---|
| 2351 | IMPLICIT NONE |
---|
| 2352 | !----------------------------------------------------------------------- |
---|
| 2353 | |
---|
| 2354 | INTEGER, INTENT(IN) :: ims,ime ! Memory dimensions |
---|
| 2355 | INTEGER, INTENT(IN) :: its,ite ! Tile dimensions |
---|
| 2356 | REAL, INTENT(IN) :: value ! Constant array value |
---|
| 2357 | REAL, INTENT(OUT) :: rscale( ims:ime ) ! Output array |
---|
| 2358 | |
---|
| 2359 | ! Local variables |
---|
| 2360 | integer :: i |
---|
| 2361 | |
---|
| 2362 | ! Set array to constant value |
---|
| 2363 | do i = its,ite |
---|
| 2364 | rscale(i) = value |
---|
| 2365 | enddo |
---|
| 2366 | |
---|
| 2367 | RETURN |
---|
| 2368 | END SUBROUTINE set_real_array |
---|
| 2369 | |
---|
| 2370 | !ajb: Not used |
---|
| 2371 | SUBROUTINE calc_pottemp_scales(ivar, rcp, pb, p, tscale, & |
---|
| 2372 | ims,ime, its,ite, & |
---|
| 2373 | kms,kme, kts,kte) |
---|
| 2374 | !----------------------------------------------------------------------- |
---|
| 2375 | IMPLICIT NONE |
---|
| 2376 | !----------------------------------------------------------------------- |
---|
| 2377 | |
---|
| 2378 | INTEGER, INTENT(IN) :: ims,ime, kms,kme ! Memory dimensions |
---|
| 2379 | INTEGER, INTENT(IN) :: its,ite, kts,kte ! Tile dimensions |
---|
| 2380 | INTEGER, INTENT(IN) :: ivar ! Variable identifier |
---|
| 2381 | REAL, INTENT(IN) :: rcp ! Constant (2./7.) |
---|
| 2382 | REAL, INTENT(IN) :: pb(ims:ime, kms:kme) ! Base pressure (Pa) array |
---|
| 2383 | REAL, INTENT(IN) :: p(ims:ime, kms:kme) ! Pressure pert. (Pa) array |
---|
| 2384 | REAL, INTENT(OUT) :: tscale(ims:ime, kms:kme) ! Scales for pot. temp. |
---|
| 2385 | ! Local variables |
---|
| 2386 | integer :: i,k |
---|
| 2387 | |
---|
| 2388 | if(ivar.eq.3) then |
---|
| 2389 | |
---|
| 2390 | ! Calculate scales to be used for producing potential temperature nudging factors. |
---|
| 2391 | do k = kts,kte |
---|
| 2392 | do i = its,ite |
---|
| 2393 | tscale(i,k) = ( 1000000. / ( pb(i,k)+p(i,k)) )**rcp |
---|
| 2394 | enddo |
---|
| 2395 | enddo |
---|
| 2396 | else |
---|
| 2397 | ! Set to 1. for moisture scaling. |
---|
| 2398 | do k = kts,kte |
---|
| 2399 | do i = its,ite |
---|
| 2400 | tscale(i,k) = 1.0 |
---|
| 2401 | enddo |
---|
| 2402 | enddo |
---|
| 2403 | endif |
---|
| 2404 | |
---|
| 2405 | RETURN |
---|
| 2406 | END SUBROUTINE calc_pottemp_scales |
---|
| 2407 | #endif |
---|
| 2408 | |
---|
| 2409 | END MODULE module_fddaobs_rtfdda |
---|
| 2410 | |
---|