1 | !REAL:MODEL_LAYER:INITIALIZATION |
---|
2 | |
---|
3 | ! This MODULE holds the routines which are used to perform various initializations |
---|
4 | ! for the individual domains, specifically for the Eulerian, mass-based coordinate. |
---|
5 | |
---|
6 | !----------------------------------------------------------------------- |
---|
7 | |
---|
8 | MODULE module_initialize_real |
---|
9 | |
---|
10 | USE module_bc |
---|
11 | USE module_configure |
---|
12 | USE module_domain |
---|
13 | USE module_io_domain |
---|
14 | USE module_model_constants |
---|
15 | ! USE module_si_io_nmm |
---|
16 | USE module_state_description |
---|
17 | USE module_timing |
---|
18 | USE module_soil_pre |
---|
19 | #ifdef DM_PARALLEL |
---|
20 | USE module_dm |
---|
21 | USE module_ext_internal |
---|
22 | #endif |
---|
23 | |
---|
24 | INTEGER :: internal_time_loop |
---|
25 | INTEGER:: MPI_COMM_COMP,MYPE |
---|
26 | |
---|
27 | CONTAINS |
---|
28 | |
---|
29 | !------------------------------------------------------------------- |
---|
30 | |
---|
31 | SUBROUTINE init_domain ( grid ) |
---|
32 | |
---|
33 | IMPLICIT NONE |
---|
34 | |
---|
35 | ! Input space and data. No gridded meteorological data has been stored, though. |
---|
36 | |
---|
37 | ! TYPE (domain), POINTER :: grid |
---|
38 | TYPE (domain) :: grid |
---|
39 | |
---|
40 | ! Local data. |
---|
41 | |
---|
42 | INTEGER :: idum1, idum2 |
---|
43 | |
---|
44 | CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 ) |
---|
45 | |
---|
46 | CALL init_domain_nmm (grid & |
---|
47 | ! |
---|
48 | #include <actual_args.inc> |
---|
49 | ! |
---|
50 | ) |
---|
51 | |
---|
52 | END SUBROUTINE init_domain |
---|
53 | |
---|
54 | !------------------------------------------------------------------- |
---|
55 | !--------------------------------------------------------------------- |
---|
56 | SUBROUTINE init_domain_nmm ( grid & |
---|
57 | ! |
---|
58 | # include <dummy_args.inc> |
---|
59 | ! |
---|
60 | ) |
---|
61 | |
---|
62 | USE module_optional_input |
---|
63 | IMPLICIT NONE |
---|
64 | |
---|
65 | ! Input space and data. No gridded meteorological data has been stored, though. |
---|
66 | |
---|
67 | ! TYPE (domain), POINTER :: grid |
---|
68 | TYPE (domain) :: grid |
---|
69 | |
---|
70 | # include <dummy_decl.inc> |
---|
71 | |
---|
72 | TYPE (grid_config_rec_type) :: config_flags |
---|
73 | |
---|
74 | ! Local domain indices and counters. |
---|
75 | |
---|
76 | INTEGER :: num_veg_cat , num_soil_top_cat , num_soil_bot_cat |
---|
77 | |
---|
78 | INTEGER :: & |
---|
79 | ids, ide, jds, jde, kds, kde, & |
---|
80 | ims, ime, jms, jme, kms, kme, & |
---|
81 | its, ite, jts, jte, kts, kte, & |
---|
82 | ips, ipe, jps, jpe, kps, kpe, & |
---|
83 | i, j, k, NNXP, NNYP |
---|
84 | |
---|
85 | ! Local data |
---|
86 | |
---|
87 | CHARACTER(LEN=19):: start_date |
---|
88 | |
---|
89 | #ifdef DM_PARALLEL |
---|
90 | |
---|
91 | LOGICAL,EXTERNAL :: WRF_DM_ON_MONITOR |
---|
92 | |
---|
93 | ! INTEGER :: DOMDESC |
---|
94 | REAL,ALLOCATABLE :: SICE_G(:,:), SM_G(:,:) |
---|
95 | INTEGER, ALLOCATABLE:: IHE_G(:),IHW_G(:) |
---|
96 | INTEGER, ALLOCATABLE:: ITEMP(:,:) |
---|
97 | INTEGER :: my_e,my_n,my_s,my_w,my_ne,my_nw,my_se,my_sw,myi,myj,npe |
---|
98 | INTEGER :: istat,inpes,jnpes |
---|
99 | #endif |
---|
100 | |
---|
101 | |
---|
102 | CHARACTER (LEN=255) :: message |
---|
103 | |
---|
104 | INTEGER :: error |
---|
105 | REAL :: p_surf, p_level |
---|
106 | REAL :: cof1, cof2 |
---|
107 | REAL :: qvf , qvf1 , qvf2 , pd_surf |
---|
108 | REAL :: p00 , t00 , a |
---|
109 | REAL :: hold_znw, rmin,rmax |
---|
110 | |
---|
111 | REAL :: p_top_requested , ptsgm |
---|
112 | INTEGER :: num_metgrid_levels, ICOUNT |
---|
113 | REAL , DIMENSION(max_eta) :: eta_levels |
---|
114 | |
---|
115 | LOGICAL :: stretch_grid, dry_sounding, debug, log_flag_sst, hyb_coor |
---|
116 | |
---|
117 | REAL, ALLOCATABLE,DIMENSION(:,:):: ADUM2D,SNOWC,HT,TG_ALT, & |
---|
118 | PDVP,PSFC_OUTV |
---|
119 | |
---|
120 | REAL, ALLOCATABLE,DIMENSION(:,:,:):: P3D_OUT,P3DV_OUT,P3DV_IN, & |
---|
121 | QTMP,QTMP2 |
---|
122 | |
---|
123 | INTEGER, ALLOCATABLE, DIMENSION(:):: KHL2,KVL2,KHH2,KVH2, & |
---|
124 | KHLA,KHHA,KVLA,KVHA |
---|
125 | |
---|
126 | ! INTEGER, ALLOCATABLE, DIMENSION(:,:):: LU_INDEX |
---|
127 | |
---|
128 | REAL, ALLOCATABLE, DIMENSION(:):: DXJ,WPDARJ,CPGFUJ,CURVJ, & |
---|
129 | FCPJ,FDIVJ,EMJ,EMTJ,FADJ, & |
---|
130 | HDACJ,DDMPUJ,DDMPVJ |
---|
131 | |
---|
132 | REAL, ALLOCATABLE,DIMENSION(:),SAVE:: SG1,SG2,DSG1,DSG2, & |
---|
133 | SGML1,SGML2 |
---|
134 | |
---|
135 | !-- Carsel and Parrish [1988] |
---|
136 | REAL , DIMENSION(100) :: lqmi |
---|
137 | integer iicount |
---|
138 | |
---|
139 | REAL:: TPH0D,TLM0D |
---|
140 | REAL:: TPH0,WB,SB,TDLM,TDPH |
---|
141 | REAL:: WBI,SBI,EBI,ANBI,STPH0,CTPH0 |
---|
142 | REAL:: TSPH,DTAD,DTCF |
---|
143 | REAL:: ACDT,CDDAMP,DXP,FP |
---|
144 | REAL:: WBD,SBD |
---|
145 | REAL:: RSNOW,SNOFAC |
---|
146 | REAL, PARAMETER:: SALP=2.60 |
---|
147 | REAL, PARAMETER:: SNUP=0.040 |
---|
148 | REAL:: SMCSUM,STCSUM,SEAICESUM,FISX |
---|
149 | REAL:: cur_smc, aposs_smc |
---|
150 | |
---|
151 | INTEGER,PARAMETER:: DOUBLE=SELECTED_REAL_KIND(15,300) |
---|
152 | REAL(KIND=DOUBLE):: TERM1,APH,TLM,TPH,DLM,DPH,STPH,CTPH |
---|
153 | |
---|
154 | INTEGER:: KHH,KVH,JAM,JA, IHL, IHH, L |
---|
155 | INTEGER:: II,JJ,ISRCH,ISUM,ITER,Ilook,Jlook |
---|
156 | |
---|
157 | REAL, PARAMETER:: DTR=0.01745329 |
---|
158 | REAL, PARAMETER:: W_NMM=0.08 |
---|
159 | REAL, PARAMETER:: COAC=1.6 |
---|
160 | REAL, PARAMETER:: CODAMP=6.4 |
---|
161 | REAL, PARAMETER:: TWOM=.00014584 |
---|
162 | REAL, PARAMETER:: CP=1004.6 |
---|
163 | REAL, PARAMETER:: DFC=1.0 |
---|
164 | REAL, PARAMETER:: DDFC=8.0 |
---|
165 | REAL, PARAMETER:: ROI=916.6 |
---|
166 | REAL, PARAMETER:: R=287.04 |
---|
167 | REAL, PARAMETER:: CI=2060.0 |
---|
168 | REAL, PARAMETER:: ROS=1500. |
---|
169 | REAL, PARAMETER:: CS=1339.2 |
---|
170 | REAL, PARAMETER:: DS=0.050 |
---|
171 | REAL, PARAMETER:: AKS=.0000005 |
---|
172 | REAL, PARAMETER:: DZG=2.85 |
---|
173 | REAL, PARAMETER:: DI=.1000 |
---|
174 | REAL, PARAMETER:: AKI=0.000001075 |
---|
175 | REAL, PARAMETER:: DZI=2.0 |
---|
176 | REAL, PARAMETER:: THL=210. |
---|
177 | REAL, PARAMETER:: PLQ=70000. |
---|
178 | REAL, PARAMETER:: ERAD=6371200. |
---|
179 | REAL, PARAMETER:: TG0=258.16 |
---|
180 | REAL, PARAMETER:: TGA=30.0 |
---|
181 | |
---|
182 | if (ALLOCATED(ADUM2D)) DEALLOCATE(ADUM2D) |
---|
183 | if (ALLOCATED(TG_ALT)) DEALLOCATE(TG_ALT) |
---|
184 | |
---|
185 | #define COPY_IN |
---|
186 | #include <scalar_derefs.inc> |
---|
187 | #ifdef DM_PARALLEL |
---|
188 | # include <data_calls.inc> |
---|
189 | #endif |
---|
190 | |
---|
191 | SELECT CASE ( model_data_order ) |
---|
192 | CASE ( DATA_ORDER_ZXY ) |
---|
193 | kds = grid%sd31 ; kde = grid%ed31 ; |
---|
194 | ids = grid%sd32 ; ide = grid%ed32 ; |
---|
195 | jds = grid%sd33 ; jde = grid%ed33 ; |
---|
196 | |
---|
197 | kms = grid%sm31 ; kme = grid%em31 ; |
---|
198 | ims = grid%sm32 ; ime = grid%em32 ; |
---|
199 | jms = grid%sm33 ; jme = grid%em33 ; |
---|
200 | |
---|
201 | kts = grid%sp31 ; kte = grid%ep31 ; ! tile is entire patch |
---|
202 | its = grid%sp32 ; ite = grid%ep32 ; ! tile is entire patch |
---|
203 | jts = grid%sp33 ; jte = grid%ep33 ; ! tile is entire patch |
---|
204 | |
---|
205 | CASE ( DATA_ORDER_XYZ ) |
---|
206 | ids = grid%sd31 ; ide = grid%ed31 ; |
---|
207 | jds = grid%sd32 ; jde = grid%ed32 ; |
---|
208 | kds = grid%sd33 ; kde = grid%ed33 ; |
---|
209 | |
---|
210 | ims = grid%sm31 ; ime = grid%em31 ; |
---|
211 | jms = grid%sm32 ; jme = grid%em32 ; |
---|
212 | kms = grid%sm33 ; kme = grid%em33 ; |
---|
213 | |
---|
214 | its = grid%sp31 ; ite = grid%ep31 ; ! tile is entire patch |
---|
215 | jts = grid%sp32 ; jte = grid%ep32 ; ! tile is entire patch |
---|
216 | kts = grid%sp33 ; kte = grid%ep33 ; ! tile is entire patch |
---|
217 | |
---|
218 | CASE ( DATA_ORDER_XZY ) |
---|
219 | ids = grid%sd31 ; ide = grid%ed31 ; |
---|
220 | kds = grid%sd32 ; kde = grid%ed32 ; |
---|
221 | jds = grid%sd33 ; jde = grid%ed33 ; |
---|
222 | |
---|
223 | ims = grid%sm31 ; ime = grid%em31 ; |
---|
224 | kms = grid%sm32 ; kme = grid%em32 ; |
---|
225 | jms = grid%sm33 ; jme = grid%em33 ; |
---|
226 | |
---|
227 | its = grid%sp31 ; ite = grid%ep31 ; ! tile is entire patch |
---|
228 | kts = grid%sp32 ; kte = grid%ep32 ; ! tile is entire patch |
---|
229 | jts = grid%sp33 ; jte = grid%ep33 ; ! tile is entire patch |
---|
230 | |
---|
231 | END SELECT |
---|
232 | |
---|
233 | #ifdef DM_PARALLEL |
---|
234 | CALL WRF_GET_MYPROC(MYPE) |
---|
235 | CALL WRF_GET_DM_COMMUNICATOR(MPI_COMM_COMP) |
---|
236 | call wrf_get_nprocx(inpes) |
---|
237 | call wrf_get_nprocy(jnpes) |
---|
238 | ! |
---|
239 | allocate(itemp(inpes,jnpes),stat=istat) |
---|
240 | npe=0 |
---|
241 | ! |
---|
242 | do j=1,jnpes |
---|
243 | do i=1,inpes |
---|
244 | itemp(i,j)=npe |
---|
245 | if(npe==mype)then |
---|
246 | myi=i |
---|
247 | myj=j |
---|
248 | endif |
---|
249 | npe=npe+1 |
---|
250 | enddo |
---|
251 | enddo |
---|
252 | ! |
---|
253 | my_n=-1 |
---|
254 | if(myj+1<=jnpes)my_n=itemp(myi,myj+1) |
---|
255 | ! |
---|
256 | my_e=-1 |
---|
257 | if(myi+1<=inpes)my_e=itemp(myi+1,myj) |
---|
258 | ! |
---|
259 | my_s=-1 |
---|
260 | if(myj-1>=1)my_s=itemp(myi,myj-1) |
---|
261 | ! |
---|
262 | my_w=-1 |
---|
263 | if(myi-1>=1)my_w=itemp(myi-1,myj) |
---|
264 | ! |
---|
265 | my_ne=-1 |
---|
266 | if((myi+1<=inpes).and.(myj+1<=jnpes)) & |
---|
267 | my_ne=itemp(myi+1,myj+1) |
---|
268 | ! |
---|
269 | my_se=-1 |
---|
270 | if((myi+1<=inpes).and.(myj-1>=1)) & |
---|
271 | my_se=itemp(myi+1,myj-1) |
---|
272 | ! |
---|
273 | my_sw=-1 |
---|
274 | if((myi-1>=1).and.(myj-1>=1)) & |
---|
275 | my_sw=itemp(myi-1,myj-1) |
---|
276 | ! |
---|
277 | my_nw=-1 |
---|
278 | if((myi-1>=1).and.(myj+1<=jnpes)) & |
---|
279 | my_nw=itemp(myi-1,myj+1) |
---|
280 | ! |
---|
281 | ! my_neb(1)=my_n |
---|
282 | ! my_neb(2)=my_e |
---|
283 | ! my_neb(3)=my_s |
---|
284 | ! my_neb(4)=my_w |
---|
285 | ! my_neb(5)=my_ne |
---|
286 | ! my_neb(6)=my_se |
---|
287 | ! my_neb(7)=my_sw |
---|
288 | ! my_neb(8)=my_nw |
---|
289 | ! |
---|
290 | deallocate(itemp) |
---|
291 | #endif |
---|
292 | |
---|
293 | grid%DT=float(grid%TIME_STEP) |
---|
294 | |
---|
295 | NNXP=min(ITE,IDE-1) |
---|
296 | NNYP=min(JTE,JDE-1) |
---|
297 | |
---|
298 | write(message,*) 'IDE, JDE: ', IDE,JDE |
---|
299 | write(message,*) 'NNXP, NNYP: ', NNXP,NNYP |
---|
300 | CALL wrf_message(message) |
---|
301 | |
---|
302 | JAM=6+2*(JDE-JDS-10) |
---|
303 | |
---|
304 | if (internal_time_loop .eq. 1) then |
---|
305 | ALLOCATE(ADUM2D(grid%sm31:grid%em31,jms:jme)) |
---|
306 | ALLOCATE(KHL2(JTS:NNYP),KVL2(JTS:NNYP),KHH2(JTS:NNYP),KVH2(JTS:NNYP)) |
---|
307 | ALLOCATE(DXJ(JTS:NNYP),WPDARJ(JTS:NNYP),CPGFUJ(JTS:NNYP),CURVJ(JTS:NNYP)) |
---|
308 | ALLOCATE(FCPJ(JTS:NNYP),FDIVJ(JTS:NNYP),& |
---|
309 | FADJ(JTS:NNYP)) |
---|
310 | ALLOCATE(HDACJ(JTS:NNYP),DDMPUJ(JTS:NNYP),DDMPVJ(JTS:NNYP)) |
---|
311 | ALLOCATE(KHLA(JAM),KHHA(JAM)) |
---|
312 | ALLOCATE(KVLA(JAM),KVHA(JAM)) |
---|
313 | endif |
---|
314 | |
---|
315 | |
---|
316 | CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) |
---|
317 | |
---|
318 | write(message,*) 'cen_lat: ', config_flags%cen_lat |
---|
319 | CALL wrf_debug(100,message) |
---|
320 | write(message,*) 'cen_lon: ', config_flags%cen_lon |
---|
321 | CALL wrf_debug(100,message) |
---|
322 | write(message,*) 'dx: ', config_flags%dx |
---|
323 | CALL wrf_debug(100,message) |
---|
324 | write(message,*) 'dy: ', config_flags%dy |
---|
325 | CALL wrf_debug(100,message) |
---|
326 | write(message,*) 'config_flags%start_year: ', config_flags%start_year |
---|
327 | CALL wrf_debug(100,message) |
---|
328 | write(message,*) 'config_flags%start_month: ', config_flags%start_month |
---|
329 | CALL wrf_debug(100,message) |
---|
330 | write(message,*) 'config_flags%start_day: ', config_flags%start_day |
---|
331 | CALL wrf_debug(100,message) |
---|
332 | write(message,*) 'config_flags%start_hour: ', config_flags%start_hour |
---|
333 | CALL wrf_debug(100,message) |
---|
334 | |
---|
335 | write(start_date,435) config_flags%start_year, config_flags%start_month, & |
---|
336 | config_flags%start_day, config_flags%start_hour |
---|
337 | 435 format(I4,'-',I2.2,'-',I2.2,'_',I2.2,':00:00') |
---|
338 | |
---|
339 | dlmd=config_flags%dx |
---|
340 | dphd=config_flags%dy |
---|
341 | tph0d=config_flags%cen_lat |
---|
342 | tlm0d=config_flags%cen_lon |
---|
343 | |
---|
344 | !========================================================================== |
---|
345 | |
---|
346 | !! |
---|
347 | |
---|
348 | ! Check to see if the boundary conditions are set |
---|
349 | ! properly in the namelist file. |
---|
350 | ! This checks for sufficiency and redundancy. |
---|
351 | |
---|
352 | CALL boundary_condition_check( config_flags, bdyzone, error, grid%id ) |
---|
353 | |
---|
354 | ! Some sort of "this is the first time" initialization. Who knows. |
---|
355 | |
---|
356 | grid%itimestep=0 |
---|
357 | |
---|
358 | ! Pull in the info in the namelist to compare it to the input data. |
---|
359 | |
---|
360 | grid%real_data_init_type = model_config_rec%real_data_init_type |
---|
361 | write(message,*) 'what is flag_metgrid: ', flag_metgrid |
---|
362 | CALL wrf_message(message) |
---|
363 | |
---|
364 | IF ( flag_metgrid .EQ. 1 ) THEN ! <----- START OF VERTICAL INTERPOLATION PART ----> |
---|
365 | |
---|
366 | num_metgrid_levels = grid%num_metgrid_levels |
---|
367 | |
---|
368 | IF (ght_gc(its,jts,num_metgrid_levels/2) .lt. ght_gc(its,jts,num_metgrid_levels/2+1)) THEN |
---|
369 | |
---|
370 | |
---|
371 | write(message,*) 'normal ground up file order' |
---|
372 | hyb_coor=.false. |
---|
373 | CALL wrf_message(message) |
---|
374 | |
---|
375 | ELSE |
---|
376 | |
---|
377 | hyb_coor=.true. |
---|
378 | write(message,*) 'reverse the order of coordinate' |
---|
379 | CALL wrf_message(message) |
---|
380 | |
---|
381 | CALL reverse_vert_coord(ght_gc, 2, num_metgrid_levels & |
---|
382 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
383 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
384 | &, ITS,ITE,JTS,JTE,KTS,KTE ) |
---|
385 | |
---|
386 | CALL reverse_vert_coord(p_gc, 2, num_metgrid_levels & |
---|
387 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
388 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
389 | &, ITS,ITE,JTS,JTE,KTS,KTE ) |
---|
390 | |
---|
391 | CALL reverse_vert_coord(t_gc, 2, num_metgrid_levels & |
---|
392 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
393 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
394 | &, ITS,ITE,JTS,JTE,KTS,KTE ) |
---|
395 | |
---|
396 | CALL reverse_vert_coord(u_gc, 2, num_metgrid_levels & |
---|
397 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
398 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
399 | &, ITS,ITE,JTS,JTE,KTS,KTE ) |
---|
400 | |
---|
401 | CALL reverse_vert_coord(v_gc, 2, num_metgrid_levels & |
---|
402 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
403 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
404 | &, ITS,ITE,JTS,JTE,KTS,KTE ) |
---|
405 | |
---|
406 | CALL reverse_vert_coord(rh_gc, 2, num_metgrid_levels & |
---|
407 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
408 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
409 | &, ITS,ITE,JTS,JTE,KTS,KTE ) |
---|
410 | |
---|
411 | endif |
---|
412 | |
---|
413 | |
---|
414 | IF (hyb_coor) THEN |
---|
415 | ! limit extreme deviations from source model topography |
---|
416 | ! due to potential for nasty extrapolation/interpolation issues |
---|
417 | ! |
---|
418 | write(message,*) 'min, max of ht_gc before adjust: ', minval(ht_gc), maxval(ht_gc) |
---|
419 | CALL wrf_debug(100,message) |
---|
420 | ICOUNT=0 |
---|
421 | DO J=JTS,min(JTE,JDE-1) |
---|
422 | DO I=ITS,min(ITE,IDE-1) |
---|
423 | IF ((ht_gc(I,J) - ght_gc(I,J,2)) .LT. -150.) THEN |
---|
424 | ht_gc(I,J)=ght_gc(I,J,2)-150. |
---|
425 | IF (ICOUNT .LT. 20) THEN |
---|
426 | write(message,*) 'increasing NMM topo toward RUC ', I,J |
---|
427 | CALL wrf_debug(100,message) |
---|
428 | ICOUNT=ICOUNT+1 |
---|
429 | ENDIF |
---|
430 | ELSEIF ((ht_gc(I,J) - ght_gc(I,J,2)) .GT. 150.) THEN |
---|
431 | ht_gc(I,J)=ght_gc(I,J,2)+150. |
---|
432 | IF (ICOUNT .LT. 20) THEN |
---|
433 | write(message,*) 'decreasing NMM topo toward RUC ', I,J |
---|
434 | CALL wrf_debug(100,message) |
---|
435 | ICOUNT=ICOUNT+1 |
---|
436 | ENDIF |
---|
437 | ENDIF |
---|
438 | END DO |
---|
439 | END DO |
---|
440 | |
---|
441 | write(message,*) 'min, max of ht_gc after correct: ', minval(ht_gc), maxval(ht_gc) |
---|
442 | CALL wrf_debug(100,message) |
---|
443 | ENDIF |
---|
444 | |
---|
445 | CALL boundary_smooth(ht_gc,landmask, grid, 12 , 12 & |
---|
446 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
447 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
448 | &, ITS,ITE,JTS,JTE,KTS,KTE ) |
---|
449 | |
---|
450 | DO j = jts, MIN(jte,jde-1) |
---|
451 | DO i = its, MIN(ite,ide-1) |
---|
452 | if (LANDMASK(I,J) .gt. 0.5) SM(I,J)=0. |
---|
453 | if (LANDMASK(I,J) .le. 0.5) SM(I,J)=1. |
---|
454 | if (tsk_gc(I,J) .gt. 0.) then |
---|
455 | NMM_TSK(I,J)=tsk_gc(I,J) |
---|
456 | else |
---|
457 | NMM_TSK(I,J)=t_gc(I,J,1) ! stopgap measure |
---|
458 | endif |
---|
459 | ! |
---|
460 | GLAT(I,J)=hlat_gc(I,J)*DEGRAD |
---|
461 | GLON(I,J)=hlon_gc(I,J)*DEGRAD |
---|
462 | WEASD(I,J)=SNOW(I,J) |
---|
463 | XICE(I,J)=XICE_gc(I,J) |
---|
464 | ENDDO |
---|
465 | ENDDO |
---|
466 | ! First item is to define the target vertical coordinate |
---|
467 | |
---|
468 | num_metgrid_levels = grid%num_metgrid_levels |
---|
469 | eta_levels(1:kde) = model_config_rec%eta_levels(1:kde) |
---|
470 | ptsgm = model_config_rec%ptsgm |
---|
471 | p_top_requested = grid%p_top_requested |
---|
472 | pt=p_top_requested |
---|
473 | |
---|
474 | if (internal_time_loop .eq. 1) then |
---|
475 | |
---|
476 | if (eta_levels(1) .ne. 1.0) then |
---|
477 | write(message,*) '********************************************************************* ' |
---|
478 | CALL wrf_message(message) |
---|
479 | write(message,*) '** eta_levels appears not to be specified in the namelist' |
---|
480 | CALL wrf_message(message) |
---|
481 | write(message,*) '** We will call compute_nmm_levels to define layer thicknesses.' |
---|
482 | CALL wrf_message(message) |
---|
483 | write(message,*) '** These levels should be reasonable for running the model, ' |
---|
484 | CALL wrf_message(message) |
---|
485 | write(message,*) '** but may not be ideal for the simulation being made. Consider ' |
---|
486 | CALL wrf_message(message) |
---|
487 | write(message,*) '** defining your own levels by specifying eta_levels in the model ' |
---|
488 | CALL wrf_message(message) |
---|
489 | write(message,*) '** namelist. ' |
---|
490 | CALL wrf_message(message) |
---|
491 | write(message,*) '********************************************************************** ' |
---|
492 | CALL wrf_message(message) |
---|
493 | |
---|
494 | CALL compute_nmm_levels(KDE,p_top_requested,eta_levels) |
---|
495 | |
---|
496 | DO L=1,KDE |
---|
497 | write(message,*) 'L, eta_levels(L) returned :: ', L,eta_levels(L) |
---|
498 | CALL wrf_message(message) |
---|
499 | ENDDO |
---|
500 | |
---|
501 | endif |
---|
502 | |
---|
503 | write(message,*) 'KDE-1: ', KDE-1 |
---|
504 | CALL wrf_debug(1,message) |
---|
505 | allocate(SG1(1:KDE-1)) |
---|
506 | allocate(SG2(1:KDE-1)) |
---|
507 | allocate(DSG1(1:KDE-1)) |
---|
508 | allocate(DSG2(1:KDE-1)) |
---|
509 | allocate(SGML1(1:KDE)) |
---|
510 | allocate(SGML2(1:KDE)) |
---|
511 | |
---|
512 | CALL define_nmm_vertical_coord (kde-1, ptsgm, pt,pdtop, eta_levels, & |
---|
513 | ETA1,DETA1,AETA1, & |
---|
514 | ETA2,DETA2,AETA2, DFL, DFRLG ) |
---|
515 | |
---|
516 | DO L=KDS,KDE-1 |
---|
517 | DETA(L)=eta_levels(L)-eta_levels(L+1) |
---|
518 | ENDDO |
---|
519 | endif |
---|
520 | |
---|
521 | if (.NOT. allocated(PDVP)) allocate(PDVP(IMS:IME,JMS:JME)) |
---|
522 | if (.NOT. allocated(P3D_OUT)) allocate(P3D_OUT(IMS:IME,JMS:JME,KDS:KDE-1)) |
---|
523 | if (.NOT. allocated(PSFC_OUTV)) allocate(PSFC_OUTV(IMS:IME,JMS:JME)) |
---|
524 | if (.NOT. allocated(P3DV_OUT)) allocate(P3DV_OUT(IMS:IME,JMS:JME,KDS:KDE-1)) |
---|
525 | if (.NOT. allocated(P3DV_IN)) allocate(P3DV_IN(IMS:IME,JMS:JME,num_metgrid_levels)) |
---|
526 | |
---|
527 | write(message,*) 'num_metgrid_levels: ', num_metgrid_levels |
---|
528 | CALL wrf_message(message) |
---|
529 | |
---|
530 | DO j = jts, MIN(jte,jde-1) |
---|
531 | DO i = its, MIN(ite,ide-1) |
---|
532 | FIS(I,J)=ht_gc(I,J)*g |
---|
533 | ! |
---|
534 | ! IF ( p_gc(I,J,1) .ne. 200100. .AND. (ht_gc(I,J) .eq. ght_gc(I,J,1)) .AND. ht_gc(I,J) .ne. 0) THEN |
---|
535 | IF ( p_gc(I,J,1) .ne. 200100. .AND. (abs(ht_gc(I,J)-ght_gc(I,J,1)) .lt. 0.01) .AND. ht_gc(I,J) .ne. 0) THEN |
---|
536 | IF (mod(I,10) .eq. 0 .and. mod(J,10) .eq. 0) THEN |
---|
537 | write(message,*) 'ht_gc and toposoil to swap, flag_soilhgt ::: ', & |
---|
538 | I,J, ht_gc(I,J),toposoil(I,J),flag_soilhgt |
---|
539 | CALL wrf_debug(10,message) |
---|
540 | ENDIF |
---|
541 | IF ( ( flag_soilhgt.EQ. 1 ) ) THEN |
---|
542 | ght_gc(I,J,1)=toposoil(I,J) |
---|
543 | ENDIF |
---|
544 | ENDIF |
---|
545 | |
---|
546 | ENDDO |
---|
547 | ENDDO |
---|
548 | |
---|
549 | CALL compute_nmm_surfacep (ht_gc, ght_gc, p_gc , t_gc & |
---|
550 | &, psfc_out, num_metgrid_levels & |
---|
551 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
552 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
553 | &, ITS,ITE,JTS,JTE,KTS,KTE ) ! H points |
---|
554 | |
---|
555 | CALL compute_3d_pressure (psfc_out,AETA1,AETA2 & |
---|
556 | &, pdtop,pt,pd,p3d_out & |
---|
557 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
558 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
559 | &, ITS,ITE,JTS,JTE,KTS,KTE ) |
---|
560 | |
---|
561 | #ifdef DM_PARALLEL |
---|
562 | ips=its ; ipe=ite ; jps=jts ; jpe=jte ; kps=kts ; kpe=kte |
---|
563 | # include "HALO_NMM_MG2.inc" |
---|
564 | #endif |
---|
565 | |
---|
566 | #ifdef DM_PARALLEL |
---|
567 | # include "HALO_NMM_MG3.inc" |
---|
568 | #endif |
---|
569 | |
---|
570 | do K=1,num_metgrid_levels |
---|
571 | do J=JTS,min(JTE,JDE-1) |
---|
572 | do I=ITS,min(ITE,IDE-1) |
---|
573 | |
---|
574 | IF (K .eq. KTS) THEN |
---|
575 | IF (J .eq. JDS .and. I .lt. IDE-1) THEN ! S boundary |
---|
576 | PDVP(I,J)=0.5*(PD(I,J)+PD(I+1,J)) |
---|
577 | PSFC_OUTV(I,J)=0.5*(PSFC_OUT(I,J)+PSFC_OUT(I+1,J)) |
---|
578 | ELSEIF (J .eq. JDE-1 .and. I .lt. IDE-1) THEN ! N boundary |
---|
579 | PDVP(I,J)=0.5*(PD(I,J)+PD(I+1,J)) |
---|
580 | PSFC_OUTV(I,J)=0.5*(PSFC_OUT(I,J)+PSFC_OUT(I+1,J)) |
---|
581 | ELSEIF (I .eq. IDS .and. mod(J,2) .eq. 0) THEN ! W boundary |
---|
582 | PDVP(I,J)=0.5*(PD(I,J-1)+PD(I,J+1)) |
---|
583 | PSFC_OUTV(I,J)=0.5*(PSFC_OUT(I,J-1)+PSFC_OUT(I,J+1)) |
---|
584 | ELSEIF (I .eq. IDE-1 .and. mod(J,2) .eq. 0) THEN ! E boundary |
---|
585 | PDVP(I,J)=0.5*(PD(I,J-1)+PD(I,J+1)) |
---|
586 | PSFC_OUTV(I,J)=0.5*(PSFC_OUT(I,J-1)+PSFC_OUT(I,J+1)) |
---|
587 | ELSEIF (I .eq. IDE-1 .and. mod(J,2) .eq. 1) THEN ! phantom E boundary |
---|
588 | PDVP(I,J)=PD(I,J) |
---|
589 | PSFC_OUTV(I,J)=PSFC_OUT(I,J) |
---|
590 | ELSEIF (mod(J,2) .eq. 0) THEN ! interior even row |
---|
591 | PDVP(I,J)=0.25*(PD(I,J)+PD(I-1,J)+PD(I,J+1)+PD(I,J-1)) |
---|
592 | PSFC_OUTV(I,J)=0.25*(PSFC_OUT(I,J)+PSFC_OUT(I-1,J)+ & |
---|
593 | PSFC_OUT(I,J+1)+PSFC_OUT(I,J-1)) |
---|
594 | ELSE ! interior odd row |
---|
595 | PDVP(I,J)=0.25*(PD(I,J)+PD(I+1,J)+PD(I,J+1)+PD(I,J-1)) |
---|
596 | PSFC_OUTV(I,J)=0.25*(PSFC_OUT(I,J)+PSFC_OUT(I+1,J)+ & |
---|
597 | PSFC_OUT(I,J+1)+PSFC_OUT(I,J-1)) |
---|
598 | ENDIF |
---|
599 | ENDIF |
---|
600 | |
---|
601 | IF (J .eq. JDS .and. I .lt. IDE-1) THEN ! S boundary |
---|
602 | P3DV_IN(I,J,K)=0.5*(p_gc(I,J,K)+p_gc(I+1,J,K)) |
---|
603 | ELSEIF (J .eq. JDE-1 .and. I .lt. IDE-1) THEN ! N boundary |
---|
604 | P3DV_IN(I,J,K)=0.5*(p_gc(I,J,K)+p_gc(I+1,J,K)) |
---|
605 | ELSEIF (I .eq. IDS .and. mod(J,2) .eq. 0) THEN ! W boundary |
---|
606 | P3DV_IN(I,J,K)=0.5*(p_gc(I,J-1,K)+p_gc(I,J+1,K)) |
---|
607 | ELSEIF (I .eq. IDE-1 .and. mod(J,2) .eq. 0) THEN ! E boundary |
---|
608 | P3DV_IN(I,J,K)=0.5*(p_gc(I,J-1,K)+p_gc(I,J+1,K)) |
---|
609 | ELSEIF (I .eq. IDE-1 .and. mod(J,2) .eq. 1) THEN ! phantom E boundary |
---|
610 | P3DV_IN(I,J,K)=p_gc(I,J,K) |
---|
611 | ELSEIF (mod(J,2) .eq. 0) THEN ! interior even row |
---|
612 | P3DV_IN(I,J,K)=0.25*(p_gc(I,J,K)+p_gc(I-1,J,K) + & |
---|
613 | p_gc(I,J+1,K)+p_gc(I,J-1,K)) |
---|
614 | ELSE ! interior odd row |
---|
615 | P3DV_IN(I,J,K)=0.25*(p_gc(I,J,K)+p_gc(I+1,J,K) + & |
---|
616 | p_gc(I,J+1,K)+p_gc(I,J-1,K)) |
---|
617 | ENDIF |
---|
618 | |
---|
619 | enddo |
---|
620 | enddo |
---|
621 | enddo |
---|
622 | |
---|
623 | CALL compute_3d_pressure (psfc_outv,AETA1,AETA2 & |
---|
624 | &, pdtop,pt,pdvp,p3dv_out & |
---|
625 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
626 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
627 | &, ITS,ITE,JTS,JTE,KTS,KTE ) |
---|
628 | |
---|
629 | CALL interp_press2press_lin(p_gc, p3d_out & |
---|
630 | &, t_gc, T,num_metgrid_levels & |
---|
631 | &, .TRUE.,.TRUE.,.TRUE. & ! extrap, ignore_lowest, t_field |
---|
632 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
633 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
634 | &, ITS,ITE,JTS,JTE,KTS,KTE, internal_time_loop ) |
---|
635 | |
---|
636 | |
---|
637 | CALL interp_press2press_lin(p3dv_in, p3dv_out & |
---|
638 | &, u_gc, U,num_metgrid_levels & |
---|
639 | &, .FALSE.,.TRUE.,.FALSE. & |
---|
640 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
641 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
642 | &, ITS,ITE,JTS,JTE,KTS,KTE, internal_time_loop ) |
---|
643 | |
---|
644 | CALL interp_press2press_lin(p3dv_in, p3dv_out & |
---|
645 | &, V_gc, V,num_metgrid_levels & |
---|
646 | &, .FALSE.,.TRUE.,.FALSE. & |
---|
647 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
648 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
649 | &, ITS,ITE,JTS,JTE,KTS,KTE, internal_time_loop ) |
---|
650 | |
---|
651 | IF (hyb_coor) THEN |
---|
652 | CALL wind_adjust(p3dv_in,p3dv_out,U_gc,V_gc,U,V & |
---|
653 | &, num_metgrid_levels,5000. & |
---|
654 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
655 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
656 | &, ITS,ITE,JTS,JTE,KTS,KTE ) |
---|
657 | ENDIF |
---|
658 | |
---|
659 | |
---|
660 | ALLOCATE(qtmp(IMS:IME,JMS:JME,num_metgrid_levels)) |
---|
661 | ALLOCATE(qtmp2(IMS:IME,JMS:JME,num_metgrid_levels)) |
---|
662 | |
---|
663 | CALL rh_to_mxrat (rh_gc, t_gc, p_gc, qtmp , .TRUE. , & |
---|
664 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
665 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
666 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
667 | |
---|
668 | do K=1,num_metgrid_levels |
---|
669 | do J=JTS,min(JTE,JDE-1) |
---|
670 | do I=ITS,min(ITE,IDE-1) |
---|
671 | QTMP2(I,J,K)=QTMP(I,J,K)/(1.0+QTMP(I,J,K)) |
---|
672 | end do |
---|
673 | end do |
---|
674 | end do |
---|
675 | |
---|
676 | CALL interp_press2press_log(p_gc, p3d_out & |
---|
677 | &, QTMP2, Q,num_metgrid_levels & |
---|
678 | &, .FALSE.,.TRUE. & |
---|
679 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
680 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
681 | &, ITS,ITE,JTS,JTE,KTS,KTE, internal_time_loop ) |
---|
682 | |
---|
683 | IF (ALLOCATED(QTMP)) DEALLOCATE(QTMP) |
---|
684 | IF (ALLOCATED(QTMP)) DEALLOCATE(QTMP2) |
---|
685 | |
---|
686 | ! Get the monthly values interpolated to the current date |
---|
687 | ! for the traditional monthly |
---|
688 | ! fields of green-ness fraction and background albedo. |
---|
689 | |
---|
690 | if (internal_time_loop .eq. 1) then |
---|
691 | |
---|
692 | CALL monthly_interp_to_date ( greenfrac_gc , current_date , vegfra , & |
---|
693 | ids , ide , jds , jde , kds , kde , & |
---|
694 | ims , ime , jms , jme , kms , kme , & |
---|
695 | its , ite , jts , jte , kts , kte ) |
---|
696 | |
---|
697 | CALL monthly_interp_to_date ( albedo12m_gc , current_date , albbck , & |
---|
698 | ids , ide , jds , jde , kds , kde , & |
---|
699 | ims , ime , jms , jme , kms , kme , & |
---|
700 | its , ite , jts , jte , kts , kte ) |
---|
701 | |
---|
702 | ! Get the min/max of each i,j for the monthly green-ness fraction. |
---|
703 | |
---|
704 | CALL monthly_min_max ( greenfrac_gc , shdmin , shdmax , & |
---|
705 | ids , ide , jds , jde , kds , kde , & |
---|
706 | ims , ime , jms , jme , kms , kme , & |
---|
707 | its , ite , jts , jte , kts , kte ) |
---|
708 | |
---|
709 | ! The model expects the green-ness values in percent, not fraction. |
---|
710 | |
---|
711 | DO j = jts, MIN(jte,jde-1) |
---|
712 | DO i = its, MIN(ite,ide-1) |
---|
713 | !! vegfra(i,j) = vegfra(i,j) * 100. |
---|
714 | shdmax(i,j) = shdmax(i,j) * 100. |
---|
715 | shdmin(i,j) = shdmin(i,j) * 100. |
---|
716 | VEGFRC(I,J)=VEGFRA(I,J) |
---|
717 | END DO |
---|
718 | END DO |
---|
719 | |
---|
720 | ! The model expects the albedo fields as |
---|
721 | ! a fraction, not a percent. Set the water values to 8%. |
---|
722 | |
---|
723 | DO j = jts, MIN(jte,jde-1) |
---|
724 | DO i = its, MIN(ite,ide-1) |
---|
725 | if (albbck(i,j) .lt. 5.) then |
---|
726 | write(message,*) 'reset albedo to 8%... I,J,albbck:: ', I,J,albbck(I,J) |
---|
727 | CALL wrf_debug(10,message) |
---|
728 | albbck(I,J)=8. |
---|
729 | endif |
---|
730 | albbck(i,j) = albbck(i,j) / 100. |
---|
731 | snoalb(i,j) = snoalb(i,j) / 100. |
---|
732 | IF ( landmask(i,j) .LT. 0.5 ) THEN |
---|
733 | albbck(i,j) = 0.08 |
---|
734 | snoalb(i,j) = 0.08 |
---|
735 | END IF |
---|
736 | albase(i,j)=albbck(i,j) |
---|
737 | mxsnal(i,j)=snoalb(i,j) |
---|
738 | END DO |
---|
739 | END DO |
---|
740 | |
---|
741 | endif |
---|
742 | |
---|
743 | ! new deallocs |
---|
744 | DEALLOCATE(p3d_out,p3dv_out,p3dv_in) |
---|
745 | |
---|
746 | END IF ! <----- END OF VERTICAL INTERPOLATION PART ----> |
---|
747 | |
---|
748 | if (internal_time_loop .eq. 1) then |
---|
749 | |
---|
750 | !!! WEASD has "snow water equivalent" in mm |
---|
751 | |
---|
752 | DO j = jts, MIN(jte,jde-1) |
---|
753 | DO i = its, MIN(ite,ide-1) |
---|
754 | |
---|
755 | IF(SM(I,J).GT.0.9) THEN |
---|
756 | |
---|
757 | IF (XICE(I,J) .gt. 0) then |
---|
758 | SI(I,J)=1.0 |
---|
759 | ENDIF |
---|
760 | |
---|
761 | ! SEA |
---|
762 | EPSR(I,J)=.97 |
---|
763 | EMBCK(I,J)=.97 |
---|
764 | GFFC(I,J)=0. |
---|
765 | ALBEDO(I,J)=.06 |
---|
766 | ALBASE(I,J)=.06 |
---|
767 | IF(SI (I,J).GT.0. ) THEN |
---|
768 | ! SEA-ICE |
---|
769 | SM(I,J)=0. |
---|
770 | SI(I,J)=0. |
---|
771 | SICE(I,J)=1. |
---|
772 | GFFC(I,J)=0. ! just leave zero as irrelevant |
---|
773 | ALBEDO(I,J)=.60 |
---|
774 | ALBASE(I,J)=.60 |
---|
775 | ENDIF |
---|
776 | ELSE |
---|
777 | |
---|
778 | SI(I,J)=5.0*WEASD(I,J)/1000. |
---|
779 | ! LAND |
---|
780 | EPSR(I,J)=1.0 |
---|
781 | EMBCK(I,J)=1.0 |
---|
782 | GFFC(I,J)=0.0 ! just leave zero as irrelevant |
---|
783 | SICE(I,J)=0. |
---|
784 | SNO(I,J)=SI(I,J)*.20 |
---|
785 | ENDIF |
---|
786 | ENDDO |
---|
787 | ENDDO |
---|
788 | |
---|
789 | ! DETERMINE ALBEDO OVER LAND |
---|
790 | DO j = jts, MIN(jte,jde-1) |
---|
791 | DO i = its, MIN(ite,ide-1) |
---|
792 | IF(SM(I,J).LT.0.9.AND.SICE(I,J).LT.0.9) THEN |
---|
793 | ! SNOWFREE ALBEDO |
---|
794 | IF ( (SNO(I,J) .EQ. 0.0) .OR. & |
---|
795 | (ALBASE(I,J) .GE. MXSNAL(I,J) ) ) THEN |
---|
796 | ALBEDO(I,J) = ALBASE(I,J) |
---|
797 | ELSE |
---|
798 | ! MODIFY ALBEDO IF SNOWCOVER: |
---|
799 | ! BELOW SNOWDEPTH THRESHOLD... |
---|
800 | IF (SNO(I,J) .LT. SNUP) THEN |
---|
801 | RSNOW = SNO(I,J)/SNUP |
---|
802 | SNOFAC = 1. - ( EXP(-SALP*RSNOW) - RSNOW*EXP(-SALP)) |
---|
803 | ! ABOVE SNOWDEPTH THRESHOLD... |
---|
804 | ELSE |
---|
805 | SNOFAC = 1.0 |
---|
806 | ENDIF |
---|
807 | ! CALCULATE ALBEDO ACCOUNTING FOR SNOWDEPTH AND VGFRCK |
---|
808 | ALBEDO(I,J) = ALBASE(I,J) & |
---|
809 | + (1.0-VEGFRA(I,J))*SNOFAC*(MXSNAL(I,J)-ALBASE(I,J)) |
---|
810 | ENDIF |
---|
811 | END IF |
---|
812 | SI(I,J)=5.0*WEASD(I,J) |
---|
813 | SNO(I,J)=WEASD(I,J) |
---|
814 | |
---|
815 | !! convert VEGFRA |
---|
816 | VEGFRA(I,J)=VEGFRA(I,J)*100. |
---|
817 | ! |
---|
818 | ENDDO |
---|
819 | ENDDO |
---|
820 | |
---|
821 | #ifdef DM_PARALLEL |
---|
822 | |
---|
823 | ALLOCATE(SM_G(IDS:IDE,JDS:JDE),SICE_G(IDS:IDE,JDS:JDE)) |
---|
824 | |
---|
825 | CALL WRF_PATCH_TO_GLOBAL_REAL( SICE(IMS,JMS) & |
---|
826 | &, SICE_G,grid%DOMDESC & |
---|
827 | &, 'z','xy' & |
---|
828 | &, IDS,IDE-1,JDS,JDE-1,1,1 & |
---|
829 | &, IMS,IME,JMS,JME,1,1 & |
---|
830 | &, ITS,ITE,JTS,JTE,1,1 ) |
---|
831 | |
---|
832 | CALL WRF_PATCH_TO_GLOBAL_REAL( SM(IMS,JMS) & |
---|
833 | &, SM_G,grid%DOMDESC & |
---|
834 | &, 'z','xy' & |
---|
835 | &, IDS,IDE-1,JDS,JDE-1,1,1 & |
---|
836 | &, IMS,IME,JMS,JME,1,1 & |
---|
837 | &, ITS,ITE,JTS,JTE,1,1 ) |
---|
838 | |
---|
839 | |
---|
840 | IF (WRF_DM_ON_MONITOR()) THEN |
---|
841 | |
---|
842 | 637 format(40(f3.0,1x)) |
---|
843 | |
---|
844 | allocate(IHE_G(JDS:JDE-1),IHW_G(JDS:JDE-1)) |
---|
845 | DO j = JDS, JDE-1 |
---|
846 | IHE_G(J)=MOD(J+1,2) |
---|
847 | IHW_G(J)=IHE_G(J)-1 |
---|
848 | ENDDO |
---|
849 | |
---|
850 | DO ITER=1,10 |
---|
851 | DO j = jds+1, (jde-1)-1 |
---|
852 | DO i = ids+1, (ide-1)-1 |
---|
853 | |
---|
854 | ! any sea ice around point in question? |
---|
855 | |
---|
856 | IF (SM_G(I,J) .ge. 0.9) THEN |
---|
857 | SEAICESUM=SICE_G(I+IHE_G(J),J+1)+SICE_G(I+IHW_G(J),J+1)+ & |
---|
858 | SICE_G(I+IHE_G(J),J-1)+SICE_G(I+IHW_G(J),J-1) |
---|
859 | IF (SEAICESUM .ge. 1. .and. SEAICESUM .lt. 3.) THEN |
---|
860 | |
---|
861 | IF ((SICE_G(I+IHE_G(J),J+1).lt.0.1 .and. SM_G(I+IHE_G(J),J+1).lt.0.1) .OR. & |
---|
862 | (SICE_G(I+IHW_G(J),J+1).lt.0.1 .and. SM_G(I+IHW_G(J),J+1).lt.0.1) .OR. & |
---|
863 | (SICE_G(I+IHE_G(J),J-1).lt.0.1 .and. SM_G(I+IHE_G(J),J-1).lt.0.1) .OR. & |
---|
864 | (SICE_G(I+IHW_G(J),J-1).lt.0.1 .and. SM_G(I+IHW_G(J),J-1).lt.0.1)) THEN |
---|
865 | |
---|
866 | ! HAVE SEA ICE AND A SURROUNDING LAND POINT - CONVERT TO SEA ICE |
---|
867 | |
---|
868 | write(message,*) 'making seaice (1): ', I,J |
---|
869 | CALL wrf_debug(100,message) |
---|
870 | SICE_G(I,J)=1.0 |
---|
871 | SM_G(I,J)=0. |
---|
872 | |
---|
873 | ENDIF |
---|
874 | |
---|
875 | ELSEIF (SEAICESUM .ge. 3) THEN |
---|
876 | |
---|
877 | ! WATER POINT SURROUNDED BY ICE - CONVERT TO SEA ICE |
---|
878 | |
---|
879 | write(message,*) 'making seaice (2): ', I,J |
---|
880 | CALL wrf_debug(100,message) |
---|
881 | SICE_G(I,J)=1.0 |
---|
882 | SM_G(I,J)=0. |
---|
883 | ENDIF |
---|
884 | |
---|
885 | ENDIF |
---|
886 | |
---|
887 | ENDDO |
---|
888 | ENDDO |
---|
889 | ENDDO |
---|
890 | |
---|
891 | ENDIF |
---|
892 | |
---|
893 | CALL WRF_GLOBAL_TO_PATCH_REAL( SICE_G, SICE & |
---|
894 | &, grid%DOMDESC & |
---|
895 | &, 'z','xy' & |
---|
896 | &, IDS,IDE-1,JDS,JDE-1,1,1 & |
---|
897 | &, IMS,IME,JMS,JME,1,1 & |
---|
898 | &, ITS,ITE,JTS,JTE,1,1 ) |
---|
899 | |
---|
900 | CALL WRF_GLOBAL_TO_PATCH_REAL( SM_G,SM & |
---|
901 | &, grid%DOMDESC & |
---|
902 | &, 'z','xy' & |
---|
903 | &, IDS,IDE-1,JDS,JDE-1,1,1 & |
---|
904 | &, IMS,IME,JMS,JME,1,1 & |
---|
905 | &, ITS,ITE,JTS,JTE,1,1 ) |
---|
906 | |
---|
907 | IF (WRF_DM_ON_MONITOR()) THEN |
---|
908 | |
---|
909 | DEALLOCATE(SM_G,SICE_G) |
---|
910 | DEALLOCATE(IHE_G,IHW_G) |
---|
911 | |
---|
912 | ENDIF |
---|
913 | |
---|
914 | ! write(message,*) 'revised sea ice on patch' |
---|
915 | ! CALL wrf_debug(100,message) |
---|
916 | ! DO J=JTE,JTS,-(((JTE-JTS)/25)+1) |
---|
917 | ! write(message,637) (SICE(I,J),I=ITS,ITE,ITE/20) |
---|
918 | ! CALL wrf_debug(100,message) |
---|
919 | ! END DO |
---|
920 | |
---|
921 | #else |
---|
922 | ! serial sea ice reprocessing |
---|
923 | |
---|
924 | DO j = jts, MIN(jte,jde-1) |
---|
925 | IHE(J)=MOD(J+1,2) |
---|
926 | IHW(J)=IHE(J)-1 |
---|
927 | ENDDO |
---|
928 | |
---|
929 | DO ITER=1,10 |
---|
930 | DO j = jts+1, MIN(jte,jde-1)-1 |
---|
931 | DO i = its+1, MIN(ite,ide-1)-1 |
---|
932 | |
---|
933 | ! any sea ice around point in question? |
---|
934 | |
---|
935 | IF (SM(I,J) .gt. 0.9) THEN |
---|
936 | SEAICESUM=SICE(I+IHE(J),J+1)+SICE(I+IHW(J),J+1)+ & |
---|
937 | SICE(I+IHE(J),J-1)+SICE(I+IHW(J),J-1) |
---|
938 | IF (SEAICESUM .ge. 1. .and. SEAICESUM .lt. 3.) THEN |
---|
939 | IF ((SICE(I+IHE(J),J+1).lt.0.1 .and. SM(I+IHE(J),J+1).lt.0.1) .OR. & |
---|
940 | (SICE(I+IHW(J),J+1).lt.0.1 .and. SM(I+IHW(J),J+1).lt.0.1) .OR. & |
---|
941 | (SICE(I+IHE(J),J-1).lt.0.1 .and. SM(I+IHE(J),J-1).lt.0.1) .OR. & |
---|
942 | (SICE(I+IHW(J),J-1).lt.0.1 .and. SM(I+IHW(J),J-1).lt.0.1)) THEN |
---|
943 | |
---|
944 | ! HAVE SEA ICE AND A SURROUNDING LAND POINT - CONVERT TO SEA ICE |
---|
945 | SICE(I,J)=1.0 |
---|
946 | SM(I,J)=0. |
---|
947 | ENDIF |
---|
948 | ELSEIF (SEAICESUM .ge. 3) THEN |
---|
949 | ! WATER POINT SURROUNDED BY ICE - CONVERT TO SEA ICE |
---|
950 | SICE(I,J)=1.0 |
---|
951 | SM(I,J)=0. |
---|
952 | ENDIF |
---|
953 | ENDIF |
---|
954 | |
---|
955 | ENDDO |
---|
956 | ENDDO |
---|
957 | ENDDO |
---|
958 | |
---|
959 | #endif |
---|
960 | |
---|
961 | ! this block meant to guarantee land/sea agreement between SM and landmask |
---|
962 | |
---|
963 | DO j = jts, MIN(jte,jde-1) |
---|
964 | DO i = its, MIN(ite,ide-1) |
---|
965 | |
---|
966 | IF (SM(I,J) .gt. 0.5) THEN |
---|
967 | landmask(I,J)=0.0 |
---|
968 | ELSEIF (SM(I,J) .lt. 0.5 .and. SICE(I,J) .gt. 0.9) then |
---|
969 | landmask(I,J)=0.0 |
---|
970 | ELSEIF (SM(I,J) .lt. 0.5 .and. SICE(I,J) .lt. 0.1) then |
---|
971 | landmask(I,J)=1.0 |
---|
972 | ELSE |
---|
973 | write(message,*) 'missed point in landmask definition ' , I,J |
---|
974 | CALL wrf_message(message) |
---|
975 | landmask(I,J)=0.0 |
---|
976 | ENDIF |
---|
977 | ! |
---|
978 | IF (SICE(I,J) .gt. 0.5 .and. NMM_TSK(I,J) .lt. 0.1 .and. SST(I,J) .gt. 0.) THEN |
---|
979 | write(message,*) 'set NMM_TSK to: ', SST(I,J) |
---|
980 | CALL wrf_message(message) |
---|
981 | NMM_TSK(I,J)=SST(I,J) |
---|
982 | SST(I,J)=0. |
---|
983 | endif |
---|
984 | |
---|
985 | ENDDO |
---|
986 | ENDDO |
---|
987 | |
---|
988 | ! For sf_surface_physics = 1, we want to use close to a 10 cm value |
---|
989 | ! for the bottom level of the soil temps. |
---|
990 | |
---|
991 | IF ( ( model_config_rec%sf_surface_physics(grid%id) .EQ. 1 ) .AND. & |
---|
992 | ( flag_st000010 .EQ. 1 ) ) THEN |
---|
993 | DO j = jts , MIN(jde-1,jte) |
---|
994 | DO i = its , MIN(ide-1,ite) |
---|
995 | soiltb(i,j) = st000010(i,j) |
---|
996 | END DO |
---|
997 | END DO |
---|
998 | END IF |
---|
999 | |
---|
1000 | ! Adjust the various soil temperature values depending on the difference in |
---|
1001 | ! in elevation between the current model's elevation and the incoming data's |
---|
1002 | ! orography. |
---|
1003 | |
---|
1004 | IF ( ( flag_toposoil .EQ. 1 ) ) THEN |
---|
1005 | |
---|
1006 | ALLOCATE(HT(ims:ime,jms:jme)) |
---|
1007 | |
---|
1008 | DO J=jms,jme |
---|
1009 | DO I=ims,ime |
---|
1010 | HT(I,J)=FIS(I,J)/9.81 |
---|
1011 | END DO |
---|
1012 | END DO |
---|
1013 | |
---|
1014 | ! if (maxval(toposoil) .gt. 100.) then |
---|
1015 | ! |
---|
1016 | ! Being avoided. Something to revisit eventually. |
---|
1017 | ! |
---|
1018 | !1219 might be simply a matter of including TOPOSOIL |
---|
1019 | ! |
---|
1020 | ! CODE NOT TESTED AT NCEP USING THIS FUNCTIONALITY, |
---|
1021 | ! SO TO BE SAFE WILL AVOID FOR RETRO RUNS. |
---|
1022 | ! |
---|
1023 | ! CALL adjust_soil_temp_new ( soiltb , 2 , & |
---|
1024 | ! nmm_tsk , ht , toposoil , landmask, flag_toposoil , & |
---|
1025 | ! st000010 , st010040 , st040100 , st100200 , st010200 , & |
---|
1026 | ! flag_st000010 , flag_st010040 , flag_st040100 , & |
---|
1027 | ! flag_st100200 , flag_st010200 , & |
---|
1028 | ! soilt000 , soilt005 , soilt020 , soilt040 , & |
---|
1029 | ! soilt160 , soilt300 , & |
---|
1030 | ! flag_soilt000 , flag_soilt005 , flag_soilt020 , & |
---|
1031 | ! flag_soilt040 , flag_soilt160 , flag_soilt300 , & |
---|
1032 | ! ids , ide , jds , jde , kds , kde , & |
---|
1033 | ! ims , ime , jms , jme , kms , kme , & |
---|
1034 | ! its , ite , jts , jte , kts , kte ) |
---|
1035 | ! endif |
---|
1036 | |
---|
1037 | END IF |
---|
1038 | |
---|
1039 | ! Process the LSM data. |
---|
1040 | |
---|
1041 | ! surface_input_source=1 => use data from static file |
---|
1042 | ! (fractional category as input) |
---|
1043 | ! surface_input_source=2 => use data from grib file |
---|
1044 | ! (dominant category as input) |
---|
1045 | |
---|
1046 | IF ( config_flags%surface_input_source .EQ. 1 ) THEN |
---|
1047 | vegcat (its,jts) = 0 |
---|
1048 | soilcat(its,jts) = 0 |
---|
1049 | END IF |
---|
1050 | |
---|
1051 | ! Generate the vegetation and soil category information |
---|
1052 | ! from the fractional input |
---|
1053 | ! data, or use the existing dominant category fields if they exist. |
---|
1054 | |
---|
1055 | IF ((soilcat(its,jts) .LT. 0.5) .AND. (vegcat(its,jts) .LT. 0.5)) THEN |
---|
1056 | |
---|
1057 | num_veg_cat = SIZE ( landusef_gc , DIM=3 ) |
---|
1058 | num_soil_top_cat = SIZE ( soilctop_gc , DIM=3 ) |
---|
1059 | num_soil_bot_cat = SIZE ( soilcbot_gc , DIM=3 ) |
---|
1060 | |
---|
1061 | do J=JMS,JME |
---|
1062 | do K=1,num_veg_cat |
---|
1063 | do I=IMS,IME |
---|
1064 | landusef(I,K,J)=landusef_gc(I,J,K) |
---|
1065 | enddo |
---|
1066 | enddo |
---|
1067 | enddo |
---|
1068 | |
---|
1069 | do J=JMS,JME |
---|
1070 | do K=1,num_soil_top_cat |
---|
1071 | do I=IMS,IME |
---|
1072 | soilctop(I,K,J)=soilctop_gc(I,J,K) |
---|
1073 | enddo |
---|
1074 | enddo |
---|
1075 | enddo |
---|
1076 | |
---|
1077 | do J=JMS,JME |
---|
1078 | do K=1,num_soil_bot_cat |
---|
1079 | do I=IMS,IME |
---|
1080 | soilcbot(I,K,J)=soilcbot_gc(I,J,K) |
---|
1081 | enddo |
---|
1082 | enddo |
---|
1083 | enddo |
---|
1084 | |
---|
1085 | ! sm (1=water, 0=land) |
---|
1086 | ! landmask(0=water, 1=land) |
---|
1087 | |
---|
1088 | |
---|
1089 | write(message,*) 'landmask into process_percent_cat_new' |
---|
1090 | |
---|
1091 | CALL wrf_debug(1,message) |
---|
1092 | do J=JTE,JTS,-(((JTE-JTS)/20)+1) |
---|
1093 | write(message,641) (landmask(I,J),I=ITS,min(ITE,IDE-1),((ITE-ITS)/15)+1) |
---|
1094 | CALL wrf_debug(1,message) |
---|
1095 | enddo |
---|
1096 | 641 format(25(f3.0,1x)) |
---|
1097 | |
---|
1098 | CALL process_percent_cat_new ( landmask , & |
---|
1099 | landusef , soilctop , soilcbot , & |
---|
1100 | isltyp , ivgtyp , & |
---|
1101 | num_veg_cat , num_soil_top_cat , num_soil_bot_cat , & |
---|
1102 | ids , ide , jds , jde , kds , kde , & |
---|
1103 | ims , ime , jms , jme , kms , kme , & |
---|
1104 | its , ite , jts , jte , kts , kte , & |
---|
1105 | model_config_rec%iswater(grid%id) ) |
---|
1106 | |
---|
1107 | DO j = jts , MIN(jde-1,jte) |
---|
1108 | DO i = its , MIN(ide-1,ite) |
---|
1109 | vegcat(i,j) = ivgtyp(i,j) |
---|
1110 | soilcat(i,j) = isltyp(i,j) |
---|
1111 | END DO |
---|
1112 | END DO |
---|
1113 | |
---|
1114 | ELSE |
---|
1115 | |
---|
1116 | ! Do we have dominant soil and veg data from the input already? |
---|
1117 | |
---|
1118 | IF ( soilcat(its,jts) .GT. 0.5 ) THEN |
---|
1119 | DO j = jts, MIN(jde-1,jte) |
---|
1120 | DO i = its, MIN(ide-1,ite) |
---|
1121 | isltyp(i,j) = NINT( soilcat(i,j) ) |
---|
1122 | END DO |
---|
1123 | END DO |
---|
1124 | END IF |
---|
1125 | IF ( vegcat(its,jts) .GT. 0.5 ) THEN |
---|
1126 | DO j = jts, MIN(jde-1,jte) |
---|
1127 | DO i = its, MIN(ide-1,ite) |
---|
1128 | ivgtyp(i,j) = NINT( vegcat(i,j) ) |
---|
1129 | END DO |
---|
1130 | END DO |
---|
1131 | END IF |
---|
1132 | |
---|
1133 | ENDIF |
---|
1134 | |
---|
1135 | DO j = jts, MIN(jde-1,jte) |
---|
1136 | DO i = its, MIN(ide-1,ite) |
---|
1137 | |
---|
1138 | IF (SICE(I,J) .lt. 0.1) THEN |
---|
1139 | IF (landmask(I,J) .gt. 0.5 .and. sm(I,J) .gt. 0.5) THEN |
---|
1140 | write(message,*) 'land mask and SM both > 0.5: ', & |
---|
1141 | I,J,landmask(I,J),sm(I,J) |
---|
1142 | CALL wrf_message(message) |
---|
1143 | SM(I,J)=0. |
---|
1144 | ELSEIF (landmask(I,J) .lt. 0.5 .and. sm(I,J) .lt. 0.5) THEN |
---|
1145 | write(message,*) 'land mask and SM both < 0.5: ', & |
---|
1146 | I,J, landmask(I,J),sm(I,J) |
---|
1147 | CALL wrf_message(message) |
---|
1148 | SM(I,J)=1. |
---|
1149 | ENDIF |
---|
1150 | ELSE |
---|
1151 | IF (landmask(I,J) .gt. 0.5 .and. SM(I,J)+SICE(I,J) .gt. 0.9) then |
---|
1152 | write(message,*) 'landmask says LAND, SM/SICE say SEAICE: ', I,J |
---|
1153 | ENDIF |
---|
1154 | ENDIF |
---|
1155 | |
---|
1156 | ENDDO |
---|
1157 | ENDDO |
---|
1158 | |
---|
1159 | DO j = jts, MIN(jde-1,jte) |
---|
1160 | DO i = its, MIN(ide-1,ite) |
---|
1161 | |
---|
1162 | if (SICE(I,J) .gt. 0.9) then |
---|
1163 | ISLTYP(I,J)=16 |
---|
1164 | IVGTYP(I,J)=24 |
---|
1165 | endif |
---|
1166 | |
---|
1167 | ENDDO |
---|
1168 | ENDDO |
---|
1169 | |
---|
1170 | DO j = jts, MIN(jde-1,jte) |
---|
1171 | DO i = its, MIN(ide-1,ite) |
---|
1172 | |
---|
1173 | if (SM(I,J) .lt. 0.5) then |
---|
1174 | SST(I,J)=0. |
---|
1175 | endif |
---|
1176 | |
---|
1177 | if (SM(I,J) .gt. 0.5) then |
---|
1178 | if (SST(I,J) .lt. 0.1) then |
---|
1179 | SST(I,J)=NMM_TSK(I,J) |
---|
1180 | endif |
---|
1181 | NMM_TSK(I,J)=0. |
---|
1182 | endif |
---|
1183 | |
---|
1184 | IF ( (NMM_TSK(I,J)+SST(I,J)) .lt. 200. .or. & |
---|
1185 | (NMM_TSK(I,J)+SST(I,J)) .gt. 350. ) THEN |
---|
1186 | write(message,*) 'TSK, SST trouble at : ', I,J |
---|
1187 | CALL wrf_message(message) |
---|
1188 | write(message,*) 'SM, NMM_TSK,SST ', SM(I,J),NMM_TSK(I,J),SST(I,J) |
---|
1189 | CALL wrf_message(message) |
---|
1190 | ENDIF |
---|
1191 | |
---|
1192 | ENDDO |
---|
1193 | ENDDO |
---|
1194 | |
---|
1195 | write(message,*) 'SM' |
---|
1196 | CALL wrf_message(message) |
---|
1197 | |
---|
1198 | DO J=min(jde-1,jte),jts,-((jte-jts)/15+1) |
---|
1199 | write(message,635) (sm(i,J),I=its,ite,((ite-its)/10)+1) |
---|
1200 | CALL wrf_message(message) |
---|
1201 | END DO |
---|
1202 | |
---|
1203 | write(message,*) 'SST/NMM_TSK' |
---|
1204 | CALL wrf_debug(10,message) |
---|
1205 | DO J=min(jde-1,jte),jts,-((jte-jts)/15+1) |
---|
1206 | write(message,635) (SST(I,J)+NMM_TSK(I,J),I=ITS,min(ide-1,ite),((ite-its)/10)+1) |
---|
1207 | CALL wrf_debug(10,message) |
---|
1208 | END DO |
---|
1209 | |
---|
1210 | 635 format(20(f5.1,1x)) |
---|
1211 | |
---|
1212 | DO j = jts, MIN(jde-1,jte) |
---|
1213 | DO i = its, MIN(ide-1,ite) |
---|
1214 | IF ( ( landmask(i,j) .LT. 0.5 ) .AND. ( flag_sst .EQ. 1 ) ) THEN |
---|
1215 | soiltb(i,j) = sst(i,j) |
---|
1216 | ELSE IF ( landmask(i,j) .GT. 0.5 ) THEN |
---|
1217 | soiltb(i,j) = nmm_tsk(i,j) |
---|
1218 | END IF |
---|
1219 | END DO |
---|
1220 | END DO |
---|
1221 | |
---|
1222 | ! END IF |
---|
1223 | |
---|
1224 | ! Land use categories, dominant soil and vegetation types (if available). |
---|
1225 | |
---|
1226 | ! allocate(lu_index(ims:ime,jms:jme)) |
---|
1227 | |
---|
1228 | DO j = jts, MIN(jde-1,jte) |
---|
1229 | DO i = its, MIN(ide-1,ite) |
---|
1230 | lu_index(i,j) = ivgtyp(i,j) |
---|
1231 | END DO |
---|
1232 | END DO |
---|
1233 | |
---|
1234 | if (flag_sst .eq. 1) log_flag_sst=.true. |
---|
1235 | if (flag_sst .eq. 0) log_flag_sst=.false. |
---|
1236 | |
---|
1237 | write(message,*) 'st_input dimensions: ', size(st_input,dim=1), & |
---|
1238 | size(st_input,dim=2),size(st_input,dim=3) |
---|
1239 | CALL wrf_debug(100,message) |
---|
1240 | |
---|
1241 | ! write(message,*) 'maxval st_input(1): ', maxval(st_input(:,1,:)) |
---|
1242 | ! CALL wrf_message(message) |
---|
1243 | ! write(message,*) 'maxval st_input(2): ', maxval(st_input(:,2,:)) |
---|
1244 | ! CALL wrf_message(message) |
---|
1245 | ! write(message,*) 'maxval st_input(3): ', maxval(st_input(:,3,:)) |
---|
1246 | ! CALL wrf_message(message) |
---|
1247 | ! write(message,*) 'maxval st_input(4): ', maxval(st_input(:,4,:)) |
---|
1248 | ! CALL wrf_message(message) |
---|
1249 | |
---|
1250 | ! ============================================================= |
---|
1251 | |
---|
1252 | IF (.NOT. ALLOCATED(TG_ALT))ALLOCATE(TG_ALT(grid%sm31:grid%em31,jms:jme)) |
---|
1253 | |
---|
1254 | TPH0=TPH0D*DTR |
---|
1255 | WBD=-(((ide-1)-1)*DLMD) |
---|
1256 | WB= WBD*DTR |
---|
1257 | SBD=-(((jde-1)/2)*DPHD) |
---|
1258 | SB= SBD*DTR |
---|
1259 | DLM=DLMD*DTR |
---|
1260 | DPH=DPHD*DTR |
---|
1261 | TDLM=DLM+DLM |
---|
1262 | TDPH=DPH+DPH |
---|
1263 | WBI=WB+TDLM |
---|
1264 | SBI=SB+TDPH |
---|
1265 | EBI=WB+(ide-2)*TDLM |
---|
1266 | ANBI=SB+(jde-2)*DPH |
---|
1267 | STPH0=SIN(TPH0) |
---|
1268 | CTPH0=COS(TPH0) |
---|
1269 | TSPH=3600./GRID%DT |
---|
1270 | DO J=JTS,min(JTE,JDE-1) |
---|
1271 | TLM=WB-TDLM+MOD(J,2)*DLM !For velocity points on the E grid |
---|
1272 | TPH=SB+float(J-1)*DPH |
---|
1273 | STPH=SIN(TPH) |
---|
1274 | CTPH=COS(TPH) |
---|
1275 | DO I=ITS,MIN(ITE,IDE-1) |
---|
1276 | |
---|
1277 | if (I .eq. ITS) THEN |
---|
1278 | TLM=TLM+TDLM*ITS |
---|
1279 | else |
---|
1280 | TLM=TLM+TDLM |
---|
1281 | endif |
---|
1282 | |
---|
1283 | TERM1=(STPH0*CTPH*COS(TLM)+CTPH0*STPH) |
---|
1284 | FP=TWOM*(TERM1) |
---|
1285 | F(I,J)=0.5*GRID%DT*FP |
---|
1286 | ENDDO |
---|
1287 | ENDDO |
---|
1288 | DO J=JTS,min(JTE,JDE-1) |
---|
1289 | TLM=WB-TDLM+MOD(J+1,2)*DLM !For mass points on the E grid |
---|
1290 | TPH=SB+float(J-1)*DPH |
---|
1291 | STPH=SIN(TPH) |
---|
1292 | CTPH=COS(TPH) |
---|
1293 | DO I=ITS,MIN(ITE,IDE-1) |
---|
1294 | |
---|
1295 | if (I .eq. ITS) THEN |
---|
1296 | TLM=TLM+TDLM*ITS |
---|
1297 | else |
---|
1298 | TLM=TLM+TDLM |
---|
1299 | endif |
---|
1300 | |
---|
1301 | TERM1=(STPH0*CTPH*COS(TLM)+CTPH0*STPH) |
---|
1302 | TERM1=MIN(TERM1,1.0D0) |
---|
1303 | TERM1=MAX(TERM1,-1.0D0) |
---|
1304 | APH=ASIN(TERM1) |
---|
1305 | TG_ALT(I,J)=TG0+TGA*COS(APH)-FIS(I,J)/3333. |
---|
1306 | ENDDO |
---|
1307 | ENDDO |
---|
1308 | |
---|
1309 | DO j = jts, MIN(jde-1,jte) |
---|
1310 | DO i = its, MIN(ide-1,ite) |
---|
1311 | ! IF ( ( landmask(i,j) .LT. 0.5 ) .AND. ( flag_sst .EQ. 1 ) .AND. & |
---|
1312 | ! SICE(I,J) .eq. 0. ) THEN |
---|
1313 | ! TG(i,j) = sst(i,j) |
---|
1314 | ! ELSEIF (SICE(I,J) .eq. 1) THEN |
---|
1315 | ! TG(i,j) = 271.16 |
---|
1316 | ! END IF |
---|
1317 | |
---|
1318 | if (TG(I,J) .lt. 200.) then ! only use default TG_ALT definition if |
---|
1319 | ! not getting TGROUND from SI |
---|
1320 | TG(I,J)=TG_ALT(I,J) |
---|
1321 | endif |
---|
1322 | |
---|
1323 | if (TG(I,J) .lt. 200. .or. TG(I,J) .gt. 320.) then |
---|
1324 | write(message,*) 'problematic TG point at : ', I,J |
---|
1325 | CALL wrf_message( message ) |
---|
1326 | endif |
---|
1327 | |
---|
1328 | adum2d(i,j)=nmm_tsk(I,J)+sst(I,J) |
---|
1329 | |
---|
1330 | END DO |
---|
1331 | END DO |
---|
1332 | |
---|
1333 | DEALLOCATE(TG_ALT) |
---|
1334 | |
---|
1335 | write(message,*) 'call process_soil_real with num_st_levels_input: ', num_st_levels_input |
---|
1336 | CALL wrf_message( message ) |
---|
1337 | |
---|
1338 | ! ============================================================= |
---|
1339 | |
---|
1340 | CALL process_soil_real ( adum2d, TG , & |
---|
1341 | landmask, sst, & |
---|
1342 | st_input, sm_input, sw_input, & |
---|
1343 | st_levels_input , sm_levels_input , & |
---|
1344 | sw_levels_input , & |
---|
1345 | sldpth , dzsoil , stc , smc , sh2o, & |
---|
1346 | flag_sst , flag_soilt000, flag_soilm000, & |
---|
1347 | ids , ide , jds , jde , kds , kde , & |
---|
1348 | ims , ime , jms , jme , kms , kme , & |
---|
1349 | its , ite , jts , jte , kts , kte , & |
---|
1350 | model_config_rec%sf_surface_physics(grid%id) , & |
---|
1351 | model_config_rec%num_soil_layers , & |
---|
1352 | model_config_rec%real_data_init_type , & |
---|
1353 | num_st_levels_input , num_sm_levels_input , & |
---|
1354 | num_sw_levels_input , & |
---|
1355 | num_st_levels_alloc , num_sm_levels_alloc , & |
---|
1356 | num_sw_levels_alloc ) |
---|
1357 | |
---|
1358 | ! ============================================================= |
---|
1359 | |
---|
1360 | ! Minimum soil values, residual, from RUC LSM scheme. |
---|
1361 | ! For input from Noah and using |
---|
1362 | ! RUC LSM scheme, this must be subtracted from the input |
---|
1363 | ! total soil moisture. For input RUC data and using the Noah LSM scheme, |
---|
1364 | ! this value must be added to the soil moisture_input. |
---|
1365 | |
---|
1366 | lqmi(1:num_soil_top_cat) = & |
---|
1367 | (/0.045, 0.057, 0.065, 0.067, 0.034, 0.078, 0.10, & |
---|
1368 | 0.089, 0.095, 0.10, 0.070, 0.068, 0.078, 0.0, & |
---|
1369 | 0.004, 0.065 /) !dusan , 0.020, 0.004, 0.008 /) |
---|
1370 | |
---|
1371 | ! At the initial time we care about values of soil moisture and temperature, |
---|
1372 | ! other times are ignored by the model, so we ignore them, too. |
---|
1373 | |
---|
1374 | account_for_zero_soil_moisture : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
---|
1375 | |
---|
1376 | CASE ( LSMSCHEME , NMMLSMSCHEME) |
---|
1377 | iicount = 0 |
---|
1378 | IF ( FLAG_SM000010 .EQ. 1 ) THEN |
---|
1379 | DO j = jts, MIN(jde-1,jte) |
---|
1380 | DO i = its, MIN(ide-1,ite) |
---|
1381 | IF ((landmask(i,j).gt.0.5) .and. (stc(i,1,j) .gt. 200) .and. & |
---|
1382 | (stc(i,1,j) .lt. 400) .and. (smc(i,1,j) .lt. 0.005)) then |
---|
1383 | write(message,*) 'Noah > Noah: bad soil moisture at i,j = ',i,j,smc(i,:,j) |
---|
1384 | CALL wrf_message(message) |
---|
1385 | iicount = iicount + 1 |
---|
1386 | smc(i,:,j) = 0.005 |
---|
1387 | END IF |
---|
1388 | END DO |
---|
1389 | END DO |
---|
1390 | IF ( iicount .GT. 0 ) THEN |
---|
1391 | write(message,*) 'Noah -> Noah: total number of small soil moisture locations= ',& |
---|
1392 | iicount |
---|
1393 | CALL wrf_message(message) |
---|
1394 | END IF |
---|
1395 | ELSE IF ( FLAG_SOILM000 .EQ. 1 ) THEN |
---|
1396 | DO j = jts, MIN(jde-1,jte) |
---|
1397 | DO i = its, MIN(ide-1,ite) |
---|
1398 | smc(i,:,j) = smc(i,:,j) + lqmi(isltyp(i,j)) |
---|
1399 | END DO |
---|
1400 | END DO |
---|
1401 | DO j = jts, MIN(jde-1,jte) |
---|
1402 | DO i = its, MIN(ide-1,ite) |
---|
1403 | IF ((landmask(i,j).gt.0.5) .and. (stc(i,1,j) .gt. 200) .and. & |
---|
1404 | (stc(i,1,j) .lt. 400) .and. (smc(i,1,j) .lt. 0.004)) then |
---|
1405 | write(message,*) 'RUC -> Noah: bad soil moisture at i,j = ' & |
---|
1406 | ,i,j,smc(i,:,j) |
---|
1407 | CALL wrf_message(message) |
---|
1408 | iicount = iicount + 1 |
---|
1409 | smc(i,:,j) = 0.004 |
---|
1410 | END IF |
---|
1411 | END DO |
---|
1412 | END DO |
---|
1413 | IF ( iicount .GT. 0 ) THEN |
---|
1414 | write(message,*) 'RUC -> Noah: total number of small soil moisture locations = ',& |
---|
1415 | iicount |
---|
1416 | CALL wrf_message(message) |
---|
1417 | END IF |
---|
1418 | END IF |
---|
1419 | CASE ( RUCLSMSCHEME ) |
---|
1420 | iicount = 0 |
---|
1421 | IF ( FLAG_SM000010 .EQ. 1 ) THEN |
---|
1422 | DO j = jts, MIN(jde-1,jte) |
---|
1423 | DO i = its, MIN(ide-1,ite) |
---|
1424 | smc(i,:,j) = MAX ( smc(i,:,j) - lqmi(isltyp(i,j)) , 0. ) |
---|
1425 | END DO |
---|
1426 | END DO |
---|
1427 | ELSE IF ( FLAG_SOILM000 .EQ. 1 ) THEN |
---|
1428 | ! no op |
---|
1429 | END IF |
---|
1430 | |
---|
1431 | END SELECT account_for_zero_soil_moisture |
---|
1432 | |
---|
1433 | !!! zero out NMM_TSK at water points again |
---|
1434 | |
---|
1435 | DO j = jts, MIN(jde-1,jte) |
---|
1436 | DO i = its, MIN(ide-1,ite) |
---|
1437 | if (SM(I,J) .gt. 0.5) then |
---|
1438 | NMM_TSK(I,J)=0. |
---|
1439 | endif |
---|
1440 | END DO |
---|
1441 | END DO |
---|
1442 | |
---|
1443 | !! check on STC |
---|
1444 | |
---|
1445 | DO j = jts, MIN(jde-1,jte) |
---|
1446 | DO i = its, MIN(ide-1,ite) |
---|
1447 | |
---|
1448 | IF (SICE(I,J) .gt. 0.9) then |
---|
1449 | DO L = 1, grid%num_soil_layers |
---|
1450 | STC(I,L,J)=271.16 ! TG value used by Eta/NMM |
---|
1451 | END DO |
---|
1452 | END IF |
---|
1453 | |
---|
1454 | IF (SM(I,J) .gt. 0.9) then |
---|
1455 | DO L = 1, grid%num_soil_layers |
---|
1456 | STC(I,L,J)=273.16 ! TG value used by Eta/NMM |
---|
1457 | END DO |
---|
1458 | END IF |
---|
1459 | |
---|
1460 | END DO |
---|
1461 | END DO |
---|
1462 | |
---|
1463 | DO j = jts, MIN(jde-1,jte) |
---|
1464 | DO i = its, MIN(ide-1,ite) |
---|
1465 | |
---|
1466 | if (SM(I,J) .lt. 0.1 .and. STC(I,1,J) .lt. 0.1) THEN |
---|
1467 | write(message,*) 'troublesome SM,STC,SMC value: ', I,J,SM(I,J), stc(I,1,J),smc(I,1,J) |
---|
1468 | CALL wrf_message(message) |
---|
1469 | do JJ=J-1,J+1 |
---|
1470 | do L=1, grid%num_soil_layers |
---|
1471 | do II=I-1,I+1 |
---|
1472 | |
---|
1473 | if (II .ge. its .and. II .le. MIN(ide-1,ite) .and. & |
---|
1474 | JJ .ge. jts .and. JJ .le. MIN(jde-1,jte)) then |
---|
1475 | |
---|
1476 | STC(I,L,J)=amax1(STC(I,L,J),STC(II,L,JJ)) |
---|
1477 | cur_smc=SMC(I,L,J) |
---|
1478 | |
---|
1479 | if ( SMC(II,L,JJ) .gt. 0.005 .and. SMC(II,L,JJ) .lt. 1.0) then |
---|
1480 | aposs_smc=SMC(II,L,JJ) |
---|
1481 | |
---|
1482 | if ( cur_smc .eq. 0 ) then |
---|
1483 | cur_smc=aposs_smc |
---|
1484 | SMC(I,L,J)=cur_smc |
---|
1485 | else |
---|
1486 | cur_smc=amin1(cur_smc,aposs_smc) |
---|
1487 | cur_smc=amin1(cur_smc,aposs_smc) |
---|
1488 | SMC(I,L,J)=cur_smc |
---|
1489 | endif |
---|
1490 | endif |
---|
1491 | |
---|
1492 | endif ! bounds check |
---|
1493 | |
---|
1494 | enddo |
---|
1495 | enddo |
---|
1496 | enddo |
---|
1497 | write(message,*) 'STC, SMC(1) now: ', stc(I,1,J),smc(I,1,J) |
---|
1498 | CALL wrf_message(message) |
---|
1499 | endif |
---|
1500 | |
---|
1501 | if (STC(I,1,J) .lt. 0.1) then |
---|
1502 | write(message,*) 'QUITTING DUE TO STILL troublesome STC value: ', I,J, stc(I,1,J),smc(I,1,J) |
---|
1503 | call wrf_error_fatal(message) |
---|
1504 | endif |
---|
1505 | |
---|
1506 | ENDDO |
---|
1507 | ENDDO |
---|
1508 | |
---|
1509 | !hardwire soil stuff for time being |
---|
1510 | |
---|
1511 | ! RTDPTH=0. |
---|
1512 | ! RTDPTH(1)=0.1 |
---|
1513 | ! RTDPTH(2)=0.3 |
---|
1514 | ! RTDPTH(3)=0.6 |
---|
1515 | |
---|
1516 | ! SLDPTH=0. |
---|
1517 | ! SLDPTH(1)=0.1 |
---|
1518 | ! SLDPTH(2)=0.3 |
---|
1519 | ! SLDPTH(3)=0.6 |
---|
1520 | ! SLDPTH(4)=1.0 |
---|
1521 | |
---|
1522 | !!! main body of nmm_specific starts here |
---|
1523 | ! |
---|
1524 | do J=jts,min(jte,jde-1) |
---|
1525 | do I=its,min(ite,ide-1) |
---|
1526 | RES(I,J)=1. |
---|
1527 | enddo |
---|
1528 | enddo |
---|
1529 | |
---|
1530 | !! HBM2 |
---|
1531 | |
---|
1532 | HBM2=0. |
---|
1533 | |
---|
1534 | do J=jts,min(jte,jde-1) |
---|
1535 | do I=its,min(ite,ide-1) |
---|
1536 | |
---|
1537 | IF ( (J .ge. 3 .and. J .le. (jde-1)-2) .AND. & |
---|
1538 | (I .ge. 2 .and. I .le. (ide-1)-2+mod(J,2)) ) THEN |
---|
1539 | HBM2(I,J)=1. |
---|
1540 | ENDIF |
---|
1541 | enddo |
---|
1542 | enddo |
---|
1543 | |
---|
1544 | !! HBM3 |
---|
1545 | HBM3=0. |
---|
1546 | |
---|
1547 | !! LOOP OVER LOCAL DIMENSIONS |
---|
1548 | |
---|
1549 | do J=jts,min(jte,jde-1) |
---|
1550 | IHWG(J)=mod(J+1,2)-1 |
---|
1551 | IF (J .ge. 4 .and. J .le. (jde-1)-3) THEN |
---|
1552 | IHL=(ids+1)-IHWG(J) |
---|
1553 | IHH=(ide-1)-2 |
---|
1554 | do I=its,min(ite,ide-1) |
---|
1555 | IF (I .ge. IHL .and. I .le. IHH) HBM3(I,J)=1. |
---|
1556 | enddo |
---|
1557 | ENDIF |
---|
1558 | enddo |
---|
1559 | |
---|
1560 | !! VBM2 |
---|
1561 | |
---|
1562 | VBM2=0. |
---|
1563 | |
---|
1564 | do J=jts,min(jte,jde-1) |
---|
1565 | do I=its,min(ite,ide-1) |
---|
1566 | |
---|
1567 | IF ( (J .ge. 3 .and. J .le. (jde-1)-2) .AND. & |
---|
1568 | (I .ge. 2 .and. I .le. (ide-1)-1-mod(J,2)) ) THEN |
---|
1569 | |
---|
1570 | VBM2(I,J)=1. |
---|
1571 | |
---|
1572 | ENDIF |
---|
1573 | |
---|
1574 | enddo |
---|
1575 | enddo |
---|
1576 | |
---|
1577 | !! VBM3 |
---|
1578 | |
---|
1579 | VBM3=0. |
---|
1580 | |
---|
1581 | do J=jts,min(jte,jde-1) |
---|
1582 | do I=its,min(ite,ide-1) |
---|
1583 | |
---|
1584 | IF ( (J .ge. 4 .and. J .le. (jde-1)-3) .AND. & |
---|
1585 | (I .ge. 3-mod(J,2) .and. I .le. (ide-1)-2) ) THEN |
---|
1586 | VBM3(I,J)=1. |
---|
1587 | ENDIF |
---|
1588 | |
---|
1589 | enddo |
---|
1590 | enddo |
---|
1591 | |
---|
1592 | DTAD=1.0 |
---|
1593 | ! IDTCF=DTCF, IDTCF=4 |
---|
1594 | DTCF=4.0 ! used? |
---|
1595 | |
---|
1596 | DY_NMM=ERAD*DPH |
---|
1597 | CPGFV=-GRID%DT/(48.*DY_NMM) |
---|
1598 | EN= GRID%DT/( 4.*DY_NMM)*DTAD |
---|
1599 | ENT=GRID%DT/(16.*DY_NMM)*DTAD |
---|
1600 | |
---|
1601 | DO J=jts,nnyp |
---|
1602 | KHL2(J)=(IDE-1)*(J-1)-(J-1)/2+2 |
---|
1603 | KVL2(J)=(IDE-1)*(J-1)-J/2+2 |
---|
1604 | KHH2(J)=(IDE-1)*J-J/2-1 |
---|
1605 | KVH2(J)=(IDE-1)*J-(J+1)/2-1 |
---|
1606 | ENDDO |
---|
1607 | |
---|
1608 | TPH=SB-DPH |
---|
1609 | |
---|
1610 | DO J=jts,min(jte,jde-1) |
---|
1611 | TPH=SB+float(J-1)*DPH |
---|
1612 | DXP=ERAD*DLM*COS(TPH) |
---|
1613 | DXJ(J)=DXP |
---|
1614 | WPDARJ(J)=-W_NMM * & |
---|
1615 | ((ERAD*DLM*AMIN1(COS(ANBI),COS(SBI)))**2+DY_NMM**2)/ & |
---|
1616 | (GRID%DT*32.*DXP*DY_NMM) |
---|
1617 | |
---|
1618 | CPGFUJ(J)=-GRID%DT/(48.*DXP) |
---|
1619 | CURVJ(J)=.5*GRID%DT*TAN(TPH)/ERAD |
---|
1620 | FCPJ(J)=GRID%DT/(CP*192.*DXP*DY_NMM) |
---|
1621 | FDIVJ(J)=1./(12.*DXP*DY_NMM) |
---|
1622 | ! EMJ(J)= GRID%DT/( 4.*DXP)*DTAD |
---|
1623 | ! EMTJ(J)=GRID%DT/(16.*DXP)*DTAD |
---|
1624 | FADJ(J)=-GRID%DT/(48.*DXP*DY_NMM)*DTAD |
---|
1625 | ACDT=GRID%DT*SQRT((ERAD*DLM*AMIN1(COS(ANBI),COS(SBI)))**2+DY_NMM**2) |
---|
1626 | CDDAMP=CODAMP*ACDT |
---|
1627 | HDACJ(J)=COAC*ACDT/(4.*DXP*DY_NMM) |
---|
1628 | DDMPUJ(J)=CDDAMP/DXP |
---|
1629 | DDMPVJ(J)=CDDAMP/DY_NMM |
---|
1630 | ENDDO |
---|
1631 | |
---|
1632 | DO J=JTS,min(JTE,JDE-1) |
---|
1633 | TLM=WB-TDLM+MOD(J,2)*DLM |
---|
1634 | TPH=SB+float(J-1)*DPH |
---|
1635 | STPH=SIN(TPH) |
---|
1636 | CTPH=COS(TPH) |
---|
1637 | DO I=ITS,MIN(ITE,IDE-1) |
---|
1638 | |
---|
1639 | if (I .eq. ITS) THEN |
---|
1640 | TLM=TLM+TDLM*ITS |
---|
1641 | else |
---|
1642 | TLM=TLM+TDLM |
---|
1643 | endif |
---|
1644 | |
---|
1645 | FP=TWOM*(CTPH0*STPH+STPH0*CTPH*COS(TLM)) |
---|
1646 | F(I,J)=0.5*GRID%DT*FP |
---|
1647 | |
---|
1648 | ENDDO |
---|
1649 | ENDDO |
---|
1650 | |
---|
1651 | ! --------------DERIVED VERTICAL GRID CONSTANTS-------------------------- |
---|
1652 | |
---|
1653 | EF4T=.5*GRID%DT/CP |
---|
1654 | F4Q = -GRID%DT*DTAD |
---|
1655 | F4D =-.5*GRID%DT*DTAD |
---|
1656 | |
---|
1657 | DO L=KDS,KDE-1 |
---|
1658 | RDETA(L)=1./DETA(L) |
---|
1659 | F4Q2(L)=-.25*GRID%DT*DTAD/DETA(L) |
---|
1660 | ENDDO |
---|
1661 | |
---|
1662 | DO J=JTS,min(JTE,JDE-1) |
---|
1663 | DO I=ITS,min(ITE,IDE-1) |
---|
1664 | DX_NMM(I,J)=DXJ(J) |
---|
1665 | WPDAR(I,J)=WPDARJ(J)*HBM2(I,J) |
---|
1666 | CPGFU(I,J)=CPGFUJ(J)*VBM2(I,J) |
---|
1667 | CURV(I,J)=CURVJ(J)*VBM2(I,J) |
---|
1668 | FCP(I,J)=FCPJ(J)*HBM2(I,J) |
---|
1669 | FDIV(I,J)=FDIVJ(J)*HBM2(I,J) |
---|
1670 | FAD(I,J)=FADJ(J) |
---|
1671 | HDACV(I,J)=HDACJ(J)*VBM2(I,J) |
---|
1672 | HDAC(I,J)=HDACJ(J)*1.25*HBM2(I,J) |
---|
1673 | ENDDO |
---|
1674 | ENDDO |
---|
1675 | |
---|
1676 | DO J=JTS, MIN(JDE-1,JTE) |
---|
1677 | |
---|
1678 | IF (J.LE.5.OR.J.GE.(JDE-1)-4) THEN |
---|
1679 | |
---|
1680 | KHH=(IDE-1)-2+MOD(J,2) ! KHH is global...loop over I that have |
---|
1681 | DO I=ITS,MIN(IDE-1,ITE) |
---|
1682 | IF (I .ge. 2 .and. I .le. KHH) THEN |
---|
1683 | HDAC(I,J)=HDAC(I,J)* DFC |
---|
1684 | ENDIF |
---|
1685 | ENDDO |
---|
1686 | |
---|
1687 | ELSE |
---|
1688 | |
---|
1689 | KHH=2+MOD(J,2) |
---|
1690 | DO I=ITS,MIN(IDE-1,ITE) |
---|
1691 | IF (I .ge. 2 .and. I .le. KHH) THEN |
---|
1692 | HDAC(I,J)=HDAC(I,J)* DFC |
---|
1693 | ENDIF |
---|
1694 | ENDDO |
---|
1695 | |
---|
1696 | KHH=(IDE-1)-2+MOD(J,2) |
---|
1697 | |
---|
1698 | DO I=ITS,MIN(IDE-1,ITE) |
---|
1699 | IF (I .ge. (IDE-1)-2 .and. I .le. KHH) THEN |
---|
1700 | HDAC(I,J)=HDAC(I,J)* DFC |
---|
1701 | ENDIF |
---|
1702 | ENDDO |
---|
1703 | ENDIF |
---|
1704 | ENDDO |
---|
1705 | |
---|
1706 | DO J=JTS,min(JTE,JDE-1) |
---|
1707 | DO I=ITS,min(ITE,IDE-1) |
---|
1708 | DDMPU(I,J)=DDMPUJ(J)*VBM2(I,J) |
---|
1709 | DDMPV(I,J)=DDMPVJ(J)*VBM2(I,J) |
---|
1710 | HDACV(I,J)=HDACV(I,J)*VBM2(I,J) |
---|
1711 | ENDDO |
---|
1712 | ENDDO |
---|
1713 | ! --------------INCREASING DIFFUSION ALONG THE BOUNDARIES---------------- |
---|
1714 | |
---|
1715 | DO J=JTS,MIN(JDE-1,JTE) |
---|
1716 | IF (J.LE.5.OR.J.GE.JDE-1-4) THEN |
---|
1717 | KVH=(IDE-1)-1-MOD(J,2) |
---|
1718 | DO I=ITS,min(IDE-1,ITE) |
---|
1719 | IF (I .ge. 2 .and. I .le. KVH) THEN |
---|
1720 | DDMPU(I,J)=DDMPU(I,J)*DDFC |
---|
1721 | DDMPV(I,J)=DDMPV(I,J)*DDFC |
---|
1722 | HDACV(I,J)=HDACV(I,J)* DFC |
---|
1723 | ENDIF |
---|
1724 | ENDDO |
---|
1725 | ELSE |
---|
1726 | KVH=3-MOD(J,2) |
---|
1727 | DO I=ITS,min(IDE-1,ITE) |
---|
1728 | IF (I .ge. 2 .and. I .le. KVH) THEN |
---|
1729 | DDMPU(I,J)=DDMPU(I,J)*DDFC |
---|
1730 | DDMPV(I,J)=DDMPV(I,J)*DDFC |
---|
1731 | HDACV(I,J)=HDACV(I,J)* DFC |
---|
1732 | ENDIF |
---|
1733 | ENDDO |
---|
1734 | KVH=(IDE-1)-1-MOD(J,2) |
---|
1735 | DO I=ITS,min(IDE-1,ITE) |
---|
1736 | IF (I .ge. IDE-1-2 .and. I .le. KVH) THEN |
---|
1737 | DDMPU(I,J)=DDMPU(I,J)*DDFC |
---|
1738 | DDMPV(I,J)=DDMPV(I,J)*DDFC |
---|
1739 | HDACV(I,J)=HDACV(I,J)* DFC |
---|
1740 | ENDIF |
---|
1741 | ENDDO |
---|
1742 | ENDIF |
---|
1743 | ENDDO |
---|
1744 | |
---|
1745 | write(message,*) 'STC(1)' |
---|
1746 | CALL wrf_message(message) |
---|
1747 | DO J=min(jde-1,jte),jts,-((jte-jts)/15+1) |
---|
1748 | write(message,635) (stc(I,1,J),I=its,min(ite,ide-1),(ite-its)/12+1) |
---|
1749 | CALL wrf_message(message) |
---|
1750 | ENDDO |
---|
1751 | |
---|
1752 | write(message,*) 'SMC(1)' |
---|
1753 | CALL wrf_message(message) |
---|
1754 | DO J=min(jde-1,jte),jts,-((jte-jts)/15+1) |
---|
1755 | write(message,635) (smc(I,1,J),I=its,min(ite,ide-1),(ite-its)/12+1) |
---|
1756 | CALL wrf_message(message) |
---|
1757 | ENDDO |
---|
1758 | |
---|
1759 | DO j = jts, MIN(jde-1,jte) |
---|
1760 | DO i= ITS, MIN(IDE-1,ITE) |
---|
1761 | |
---|
1762 | if (SM(I,J) .lt. 0.1 .and. SMC(I,1,J) .gt. 0.5 .and. SICE(I,J) .lt. 0.1) then |
---|
1763 | write(message,*) 'very moist on land point: ', I,J,SMC(I,1,J) |
---|
1764 | CALL wrf_debug(10,message) |
---|
1765 | endif |
---|
1766 | |
---|
1767 | enddo |
---|
1768 | enddo |
---|
1769 | |
---|
1770 | !!! compute EMT, EM on global domain, and only on task 0. |
---|
1771 | |
---|
1772 | #ifdef DM_PARALLEL |
---|
1773 | IF (wrf_dm_on_monitor()) THEN !!!! NECESSARY TO LIMIT THIS TO TASK ZERO? |
---|
1774 | #else |
---|
1775 | IF (JDS .eq. JTS) THEN !! set unfailable condition for serial job |
---|
1776 | #endif |
---|
1777 | |
---|
1778 | ALLOCATE(EMJ(JDS:JDE-1),EMTJ(JDS:JDE-1)) |
---|
1779 | |
---|
1780 | DO J=JDS,JDE-1 |
---|
1781 | TPH=SB+float(J-1)*DPH |
---|
1782 | DXP=ERAD*DLM*COS(TPH) |
---|
1783 | EMJ(J)= GRID%DT/( 4.*DXP)*DTAD |
---|
1784 | EMTJ(J)=GRID%DT/(16.*DXP)*DTAD |
---|
1785 | ENDDO |
---|
1786 | |
---|
1787 | JA=0 |
---|
1788 | DO 161 J=3,5 |
---|
1789 | JA=JA+1 |
---|
1790 | KHLA(JA)=2 |
---|
1791 | KHHA(JA)=(IDE-1)-1-MOD(J+1,2) |
---|
1792 | 161 EMT(JA)=EMTJ(J) |
---|
1793 | DO 162 J=(JDE-1)-4,(JDE-1)-2 |
---|
1794 | JA=JA+1 |
---|
1795 | KHLA(JA)=2 |
---|
1796 | KHHA(JA)=(IDE-1)-1-MOD(J+1,2) |
---|
1797 | 162 EMT(JA)=EMTJ(J) |
---|
1798 | DO 163 J=6,(JDE-1)-5 |
---|
1799 | JA=JA+1 |
---|
1800 | KHLA(JA)=2 |
---|
1801 | KHHA(JA)=2+MOD(J,2) |
---|
1802 | 163 EMT(JA)=EMTJ(J) |
---|
1803 | DO 164 J=6,(JDE-1)-5 |
---|
1804 | JA=JA+1 |
---|
1805 | KHLA(JA)=(IDE-1)-2 |
---|
1806 | KHHA(JA)=(IDE-1)-1-MOD(J+1,2) |
---|
1807 | 164 EMT(JA)=EMTJ(J) |
---|
1808 | |
---|
1809 | ! --------------SPREADING OF UPSTREAM VELOCITY-POINT ADVECTION FACTOR---- |
---|
1810 | |
---|
1811 | JA=0 |
---|
1812 | DO 171 J=3,5 |
---|
1813 | JA=JA+1 |
---|
1814 | KVLA(JA)=2 |
---|
1815 | KVHA(JA)=(IDE-1)-1-MOD(J,2) |
---|
1816 | 171 EM(JA)=EMJ(J) |
---|
1817 | DO 172 J=(JDE-1)-4,(JDE-1)-2 |
---|
1818 | JA=JA+1 |
---|
1819 | KVLA(JA)=2 |
---|
1820 | KVHA(JA)=(IDE-1)-1-MOD(J,2) |
---|
1821 | 172 EM(JA)=EMJ(J) |
---|
1822 | DO 173 J=6,(JDE-1)-5 |
---|
1823 | JA=JA+1 |
---|
1824 | KVLA(JA)=2 |
---|
1825 | KVHA(JA)=2+MOD(J+1,2) |
---|
1826 | 173 EM(JA)=EMJ(J) |
---|
1827 | DO 174 J=6,(JDE-1)-5 |
---|
1828 | JA=JA+1 |
---|
1829 | KVLA(JA)=(IDE-1)-2 |
---|
1830 | KVHA(JA)=(IDE-1)-1-MOD(J,2) |
---|
1831 | 174 EM(JA)=EMJ(J) |
---|
1832 | |
---|
1833 | 696 continue |
---|
1834 | ENDIF ! wrf_dm_on_monitor/serial job |
---|
1835 | |
---|
1836 | call NMM_SH2O(IMS,IME,JMS,JME,ITS,NNXP,JTS,NNYP,grid%num_soil_layers,ISLTYP, & |
---|
1837 | SM,SICE,STC,SMC,SH2O) |
---|
1838 | |
---|
1839 | !! must be a better place to put this, but will eliminate "phantom" |
---|
1840 | !! wind points here (no wind point on eastern boundary of odd numbered rows) |
---|
1841 | |
---|
1842 | IF ( abs(IDE-1-ITE) .eq. 1 ) THEN ! along eastern boundary |
---|
1843 | write(message,*) 'zero phantom winds' |
---|
1844 | CALL wrf_message(message) |
---|
1845 | DO K=1,KDE-1 |
---|
1846 | DO J=JDS,JDE-1,2 |
---|
1847 | IF (J .ge. JTS .and. J .le. JTE) THEN |
---|
1848 | u(IDE-1,J,K)=0. |
---|
1849 | v(IDE-1,J,K)=0. |
---|
1850 | ENDIF |
---|
1851 | ENDDO |
---|
1852 | ENDDO |
---|
1853 | ENDIF |
---|
1854 | |
---|
1855 | 969 continue |
---|
1856 | |
---|
1857 | DO j = jms, jme |
---|
1858 | DO i = ims, ime |
---|
1859 | fisx=max(fis(i,j),0.) |
---|
1860 | Z0(I,J) =SM(I,J)*Z0SEA+(1.-SM(I,J))* & |
---|
1861 | & (0.*Z0MAX+FISx *FCM+Z0LAND) |
---|
1862 | ENDDO |
---|
1863 | ENDDO |
---|
1864 | |
---|
1865 | write(message,*) 'Z0 over memory, leaving module_initialize_real' |
---|
1866 | CALL wrf_message(message) |
---|
1867 | DO J=JME,JMS,-((JME-JMS)/20+1) |
---|
1868 | write(message,635) (Z0(I,J),I=IMS,IME,(IME-IMS)/14+1) |
---|
1869 | CALL wrf_message(message) |
---|
1870 | ENDDO |
---|
1871 | |
---|
1872 | |
---|
1873 | endif ! on first_time check |
---|
1874 | |
---|
1875 | write(message,*) 'leaving init_domain_nmm' |
---|
1876 | CALL wrf_message( TRIM(message) ) |
---|
1877 | ! |
---|
1878 | write(message,*)'STUFF MOVED TO REGISTRY:',grid%IDTAD, & |
---|
1879 | & grid%NSOIL,grid%NRADL,grid%NRADS,grid%NPHS,grid%NCNVC,grid%sigma |
---|
1880 | CALL wrf_message( TRIM(message) ) |
---|
1881 | !================================================================================== |
---|
1882 | |
---|
1883 | #define COPY_OUT |
---|
1884 | #include <scalar_derefs.inc> |
---|
1885 | RETURN |
---|
1886 | |
---|
1887 | END SUBROUTINE init_domain_nmm |
---|
1888 | |
---|
1889 | !------------------------------------------------------ |
---|
1890 | |
---|
1891 | SUBROUTINE define_nmm_vertical_coord ( LM, PTSGM, PT, PDTOP,HYBLEVS, & |
---|
1892 | SG1,DSG1,SGML1, & |
---|
1893 | SG2,DSG2,SGML2,DFL, DFRLG ) |
---|
1894 | |
---|
1895 | IMPLICIT NONE |
---|
1896 | |
---|
1897 | ! USE module_model_constants |
---|
1898 | |
---|
1899 | !!! certain physical parameters here probably don't need to be defined, as defined |
---|
1900 | !!! elsewhere within WRF. Done for initial testing purposes. |
---|
1901 | |
---|
1902 | INTEGER :: LM, LPT2, L |
---|
1903 | REAL :: PTSGM, PT, PL, PT2, PDTOP |
---|
1904 | REAL :: RGOG, PSIG,PHYB,PHYBM |
---|
1905 | REAL, PARAMETER :: Rd = 287.04 ! J deg{-1} kg{-1} |
---|
1906 | REAL, PARAMETER :: CP=1004.6,GAMMA=.0065,PRF0=101325.,T0=288. |
---|
1907 | REAL, PARAMETER :: g=9.81 |
---|
1908 | |
---|
1909 | REAL, DIMENSION(LM) :: DSG,DSG1,DSG2 |
---|
1910 | REAL, DIMENSION(LM) :: SGML1,SGML2 |
---|
1911 | REAL, DIMENSION(LM+1) :: SG1,SG2,HYBLEVS,DFL,DFRLG |
---|
1912 | |
---|
1913 | CHARACTER(LEN=255) :: message |
---|
1914 | |
---|
1915 | LPT2=LM+1 |
---|
1916 | |
---|
1917 | write(message,*) 'pt= ', pt |
---|
1918 | CALL wrf_message(message) |
---|
1919 | |
---|
1920 | DO L=LM+1,1,-1 |
---|
1921 | pl=HYBLEVS(L)*(101325.-pt)+pt |
---|
1922 | if(pl.lt.ptSGm) LPT2=l |
---|
1923 | ENDDO |
---|
1924 | |
---|
1925 | IF(LPT2.lt.LM+1) THEN |
---|
1926 | pt2=HYBLEVS(LPT2)*(101325.-pt)+pt |
---|
1927 | ELSE |
---|
1928 | pt2=pt |
---|
1929 | ENDIF |
---|
1930 | |
---|
1931 | write(message,*) '*** Sigma system starts at ',pt2,' Pa, from level ',LPT2 |
---|
1932 | CALL wrf_message(message) |
---|
1933 | |
---|
1934 | pdtop=pt2-pt |
---|
1935 | |
---|
1936 | write(message,*) 'allocating DSG,DSG1,DSG2 as ', LM |
---|
1937 | CALL wrf_debug(10,message) |
---|
1938 | |
---|
1939 | DSG=-99. |
---|
1940 | |
---|
1941 | DO L=1,LM |
---|
1942 | DSG(L)=HYBLEVS(L)- HYBLEVS(L+1) |
---|
1943 | ENDDO |
---|
1944 | |
---|
1945 | DSG1=0. |
---|
1946 | DSG2=0. |
---|
1947 | |
---|
1948 | DO L=LM,1,-1 |
---|
1949 | |
---|
1950 | IF(L.ge.LPT2) then |
---|
1951 | DSG1(L)=DSG(L) |
---|
1952 | ELSE |
---|
1953 | DSG2(L)=DSG(L) |
---|
1954 | ENDIF |
---|
1955 | |
---|
1956 | ENDDO |
---|
1957 | |
---|
1958 | SGML1=-99. |
---|
1959 | SGML2=-99. |
---|
1960 | |
---|
1961 | IF(LPT2.le.LM+1) THEN |
---|
1962 | |
---|
1963 | DO L=LM+1,LPT2,-1 |
---|
1964 | SG2(L)=0. |
---|
1965 | ENDDO |
---|
1966 | |
---|
1967 | DO L=LPT2,2,-1 |
---|
1968 | SG2(L-1)=SG2(L)+DSG2(L-1) |
---|
1969 | ENDDO |
---|
1970 | |
---|
1971 | DO L=LPT2-1,1,-1 |
---|
1972 | SG2(L)=SG2(L)/SG2(1) |
---|
1973 | ENDDO |
---|
1974 | SG2(1)=1. |
---|
1975 | |
---|
1976 | DO L=LPT2-1,1,-1 |
---|
1977 | DSG2(L)=SG2(L)-SG2(L+1) |
---|
1978 | SGML2(l)=(SG2(l)+SG2(l+1))*0.5 |
---|
1979 | ENDDO |
---|
1980 | |
---|
1981 | ENDIF |
---|
1982 | |
---|
1983 | DO L=LM,LPT2,-1 |
---|
1984 | DSG2(L)=0. |
---|
1985 | SGML2(L)=0. |
---|
1986 | ENDDO |
---|
1987 | |
---|
1988 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1989 | |
---|
1990 | SG1(LM+1)=0. |
---|
1991 | |
---|
1992 | DO L=LM+1,LPT2,-1 |
---|
1993 | SG1(L-1)=SG1(L)+DSG1(L-1) |
---|
1994 | ENDDO |
---|
1995 | |
---|
1996 | DO L=LM,LPT2,-1 |
---|
1997 | SG1(L)=SG1(L)/SG1(LPT2-1) |
---|
1998 | ENDDO |
---|
1999 | |
---|
2000 | SG1(LPT2-1)=1. |
---|
2001 | |
---|
2002 | do l=LPT2-2,1,-1 |
---|
2003 | SG1(l)=1. |
---|
2004 | enddo |
---|
2005 | |
---|
2006 | |
---|
2007 | DO L=LM,LPT2,-1 |
---|
2008 | DSG1(L)=SG1(L)-SG1(L+1) |
---|
2009 | SGML1(L)=(SG1(L)+SG1(L+1))*0.5 |
---|
2010 | ENDDO |
---|
2011 | |
---|
2012 | DO L=LPT2-1,1,-1 |
---|
2013 | DSG1(L)=0. |
---|
2014 | SGML1(L)=1. |
---|
2015 | ENDDO |
---|
2016 | |
---|
2017 | 1000 format('l,hyblevs,psig,SG1,SG2,phyb,phybm') |
---|
2018 | 1100 format(' ',i4,f7.4,f10.2,2f7.4,2f10.2) |
---|
2019 | |
---|
2020 | write(message,1000) |
---|
2021 | CALL wrf_debug(100,message) |
---|
2022 | |
---|
2023 | do l=1,LM+1 |
---|
2024 | psig=HYBLEVS(L)*(101325.-pt)+pt |
---|
2025 | phyb=SG1(l)*pdtop+SG2(l)*(101325.-pdtop-pt)+pt |
---|
2026 | if(l.lt.LM+1) then |
---|
2027 | phybm=SGML1(l)*pdtop+SGML2(l)*(101325.-pdtop-pt)+pt |
---|
2028 | else |
---|
2029 | phybm=-99. |
---|
2030 | endif |
---|
2031 | |
---|
2032 | write(message,1100) l,HYBLEVS(L),psig & |
---|
2033 | ,SG1(l),SG2(l),phyb,phybm |
---|
2034 | CALL wrf_debug(100,message) |
---|
2035 | enddo |
---|
2036 | |
---|
2037 | |
---|
2038 | 632 format(f9.6) |
---|
2039 | |
---|
2040 | write(message,*) 'SG1' |
---|
2041 | CALL wrf_debug(100,message) |
---|
2042 | do L=LM+1,1,-1 |
---|
2043 | write(message,632) SG1(L) |
---|
2044 | CALL wrf_debug(100,message) |
---|
2045 | enddo |
---|
2046 | |
---|
2047 | write(message,*) 'SG2' |
---|
2048 | CALL wrf_debug(100,message) |
---|
2049 | do L=LM+1,1,-1 |
---|
2050 | write(message,632) SG2(L) |
---|
2051 | CALL wrf_debug(100,message) |
---|
2052 | enddo |
---|
2053 | |
---|
2054 | write(message,*) 'DSG1' |
---|
2055 | CALL wrf_debug(100,message) |
---|
2056 | do L=LM,1,-1 |
---|
2057 | write(message,632) DSG1(L) |
---|
2058 | CALL wrf_debug(100,message) |
---|
2059 | enddo |
---|
2060 | |
---|
2061 | write(message,*) 'DSG2' |
---|
2062 | CALL wrf_debug(100,message) |
---|
2063 | do L=LM,1,-1 |
---|
2064 | write(message,632) DSG2(L) |
---|
2065 | CALL wrf_debug(100,message) |
---|
2066 | enddo |
---|
2067 | |
---|
2068 | write(message,*) 'SGML1' |
---|
2069 | CALL wrf_debug(100,message) |
---|
2070 | do L=LM,1,-1 |
---|
2071 | write(message,632) SGML1(L) |
---|
2072 | CALL wrf_debug(100,message) |
---|
2073 | enddo |
---|
2074 | |
---|
2075 | write(message,*) 'SGML2' |
---|
2076 | CALL wrf_debug(100,message) |
---|
2077 | do L=LM,1,-1 |
---|
2078 | write(message,632) SGML2(L) |
---|
2079 | CALL wrf_debug(100,message) |
---|
2080 | enddo |
---|
2081 | |
---|
2082 | rgog=(rd*gamma)/g |
---|
2083 | DO L=1,LM+1 |
---|
2084 | DFL(L)=g*T0*(1.-((pt+SG1(L)*pdtop+SG2(L)*(101325.-pt2)) & |
---|
2085 | /101325.)**rgog)/gamma |
---|
2086 | DFRLG(L)=DFL(L)/g |
---|
2087 | write(message,*) 'L, DFL(L): ', L, DFL(L) |
---|
2088 | CALL wrf_debug(100,message) |
---|
2089 | ENDDO |
---|
2090 | |
---|
2091 | END SUBROUTINE define_nmm_vertical_coord |
---|
2092 | |
---|
2093 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2094 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2095 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2096 | |
---|
2097 | SUBROUTINE compute_nmm_surfacep ( TERRAIN_HGT_T, Z3D_IN, PRESS3D_IN, T3D_IN & |
---|
2098 | &, psfc_out,generic & |
---|
2099 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
2100 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
2101 | &, ITS,ITE,JTS,JTE,KTS,KTE ) |
---|
2102 | |
---|
2103 | |
---|
2104 | IMPLICIT NONE |
---|
2105 | |
---|
2106 | real, allocatable:: dum2d(:,:),DUM2DB(:,:) |
---|
2107 | |
---|
2108 | integer :: IDS,IDE,JDS,JDE,KDS,KDE |
---|
2109 | integer :: IMS,IME,JMS,JME,KMS,KME |
---|
2110 | integer :: ITS,ITE,JTS,JTE,KTS,KTE,Ilook,Jlook |
---|
2111 | integer :: I,J,II,generic,L,KINSERT,K,bot_lev,LL |
---|
2112 | integer :: IHE(JMS:JME),IHW(JMS:JME), loopinc,iloopinc |
---|
2113 | |
---|
2114 | real :: TERRAIN_HGT_T(IMS:IME,JMS:JME) |
---|
2115 | real :: Z3D_IN(IMS:IME,JMS:JME,generic) |
---|
2116 | real :: T3D_IN(IMS:IME,JMS:JME,generic) |
---|
2117 | real :: PRESS3D_IN(IMS:IME,JMS:JME,generic) |
---|
2118 | real :: PSFC_IN(IMS:IME,JMS:JME),TOPO_IN(IMS:IME,JMS:JME) |
---|
2119 | real :: psfc_out(IMS:IME,JMS:JME),rincr(IMS:IME,JMS:JME) |
---|
2120 | real :: dif1,dif2,dif3,dif4,dlnpdz,BOT_INPUT_HGT,BOT_INPUT_PRESS,dpdz,rhs |
---|
2121 | real :: zin(generic),pin(generic) |
---|
2122 | |
---|
2123 | character (len=255) :: message |
---|
2124 | |
---|
2125 | logical :: DEFINED_PSFC(IMS:IME,JMS:JME), DEFINED_PSFCB(IMS:IME,JMS:JME) |
---|
2126 | |
---|
2127 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2128 | |
---|
2129 | Ilook=25 |
---|
2130 | Jlook=25 |
---|
2131 | |
---|
2132 | DO j = JMS, JME |
---|
2133 | IHE(J)=MOD(J+1,2) |
---|
2134 | IHW(J)=IHE(J)-1 |
---|
2135 | ENDDO |
---|
2136 | |
---|
2137 | DO J=JMS,JME |
---|
2138 | DO I=IMS,IME |
---|
2139 | DEFINED_PSFC(I,J)=.FALSE. |
---|
2140 | DEFINED_PSFCB(I,J)=.FALSE. |
---|
2141 | IF (PRESS3D_IN(I,J,1) .ne. 200100.) THEN |
---|
2142 | PSFC_IN(I,J)=PRESS3D_IN(I,J,1) |
---|
2143 | TOPO_IN(I,J)=Z3D_IN(I,J,1) |
---|
2144 | ELSE |
---|
2145 | PSFC_IN(I,J)=PRESS3D_IN(I,J,2) |
---|
2146 | TOPO_IN(I,J)=Z3D_IN(I,J,2) |
---|
2147 | ENDIF |
---|
2148 | ENDDO |
---|
2149 | ENDDO |
---|
2150 | |
---|
2151 | ! input surface pressure smoothing over the ocean - still needed for NAM? |
---|
2152 | |
---|
2153 | II_loop: do II=1,8 |
---|
2154 | |
---|
2155 | CYCLE II_loop |
---|
2156 | |
---|
2157 | do J=JTS+1,min(JTE,JDE-1)-1 |
---|
2158 | do I=ITS+1,min(ITE,IDE-1)-1 |
---|
2159 | rincr(I,J)=0. |
---|
2160 | |
---|
2161 | if (PSFC_IN(I,J) .gt. 100000. .and. & |
---|
2162 | PSFC_IN(I+IHE(J),J+1) .gt. 100000. .and. & |
---|
2163 | PSFC_IN(I+IHE(J),J-1) .gt. 100000. .and. & |
---|
2164 | PSFC_IN(I+IHW(J),J+1) .gt. 100000. .and. & |
---|
2165 | PSFC_IN(I+IHW(J),J-1) .gt. 100000. ) then |
---|
2166 | |
---|
2167 | dif1=abs(PSFC_IN(I,J)-PSFC_IN(I+IHE(J),J+1)) |
---|
2168 | dif2=abs(PSFC_IN(I,J)-PSFC_IN(I+IHE(J),J-1)) |
---|
2169 | dif3=abs(PSFC_IN(I,J)-PSFC_IN(I+IHW(J),J+1)) |
---|
2170 | dif4=abs(PSFC_IN(I,J)-PSFC_IN(I+IHW(J),J-1)) |
---|
2171 | |
---|
2172 | if (max(dif1,dif2,dif3,dif4) .lt. 200. .and. TOPO_IN(I,J).le. 0.5 .and. & |
---|
2173 | TOPO_IN(I+IHE(J),J+1) .le. 0.5 .and. & |
---|
2174 | TOPO_IN(I+IHW(J),J+1) .le. 0.5 .and. & |
---|
2175 | TOPO_IN(I+IHE(J),J-1) .le. 0.5 .and. & |
---|
2176 | TOPO_IN(I+IHW(J),J-1) .lt. 0.5) then |
---|
2177 | |
---|
2178 | rincr(I,J)=0.125*( 4.*PSFC_IN(I,J)+ & |
---|
2179 | PSFC_IN(I+IHE(J),J+1)+PSFC_IN(I+IHE(J),J-1)+ & |
---|
2180 | PSFC_IN(I+IHW(J),J+1)+PSFC_IN(I+IHW(J),J-1) ) & |
---|
2181 | - PSFC_IN(I,J) |
---|
2182 | |
---|
2183 | ! if (rincr(I,J) .ne. 0 .and. abs(rincr(I,J)) .gt. 20.) then |
---|
2184 | ! write(message,*) 'II, I,J,rincr: ', II, I,J,rincr(I,J) |
---|
2185 | ! CALL wrf_message(message) |
---|
2186 | ! endif |
---|
2187 | |
---|
2188 | endif |
---|
2189 | endif |
---|
2190 | |
---|
2191 | ENDDO |
---|
2192 | ENDDO |
---|
2193 | |
---|
2194 | DO J=JTS+1,min(JTE,JDE-1)-1 |
---|
2195 | DO I=ITS+1,min(ITE,IDE-1)-1 |
---|
2196 | PSFC_IN(I,J)=PSFC_IN(I,J) + rincr(I,J) |
---|
2197 | ENDDO |
---|
2198 | ENDDO |
---|
2199 | |
---|
2200 | ! write(message,*) ' -------------------------------------------------- ' |
---|
2201 | ! CALL wrf_message(message) |
---|
2202 | |
---|
2203 | end do II_loop |
---|
2204 | |
---|
2205 | ALLOCATE(DUM2D(IMS:IME,JMS:JME)) |
---|
2206 | |
---|
2207 | DO J=JMS,JME |
---|
2208 | DO I=IMS,IME |
---|
2209 | DUM2D(I,J)=-9. |
---|
2210 | END DO |
---|
2211 | END DO |
---|
2212 | |
---|
2213 | DO J=JTS,min(JTE,JDE-1) |
---|
2214 | I_loop: DO I=ITS,min(ITE,IDE-1) |
---|
2215 | |
---|
2216 | IF (PSFC_IN(I,J) .lt. 0.1) THEN |
---|
2217 | write(message,*) 'QUITTING BECAUSE I,J, PSFC_IN: ', I,J,PSFC_IN(I,J) |
---|
2218 | call wrf_error_fatal(message) |
---|
2219 | ENDIF |
---|
2220 | |
---|
2221 | BOT_INPUT_PRESS=PSFC_IN(I,J) |
---|
2222 | BOT_INPUT_HGT=TOPO_IN(I,J) |
---|
2223 | |
---|
2224 | IF (I .eq. Ilook .AND. J .eq. Jlook) THEN |
---|
2225 | |
---|
2226 | write(message,*) ' TERRAIN_HGT_T: ', I,J, TERRAIN_HGT_T(I,J) |
---|
2227 | CALL wrf_message(message) |
---|
2228 | write(message,*) ' PSFC_IN, TOPO_IN: ', & |
---|
2229 | I, J, PSFC_IN(I,J),TOPO_IN(I,J) |
---|
2230 | CALL wrf_message(message) |
---|
2231 | |
---|
2232 | DO L=1,generic |
---|
2233 | write(message,*) ' L,PRESS3D_IN, Z3D_IN: ', & |
---|
2234 | I,J,L, PRESS3D_IN(I,J,L),Z3D_IN(I,J,L) |
---|
2235 | CALL wrf_debug(10,message) |
---|
2236 | END DO |
---|
2237 | ENDIF |
---|
2238 | |
---|
2239 | DO L=2,generic-1 |
---|
2240 | |
---|
2241 | IF ( PRESS3D_IN(i,j,L) .gt. PSFC_IN(I,J) .AND. & |
---|
2242 | Z3D_IN(I,J,L) .lt. TERRAIN_HGT_T(I,J) .AND. & |
---|
2243 | Z3D_IN(I,J,L+1) .gt. TERRAIN_HGT_T(I,J) ) THEN |
---|
2244 | |
---|
2245 | BOT_INPUT_PRESS=PRESS3D_IN(i,j,L) |
---|
2246 | BOT_INPUT_HGT=Z3D_IN(I,J,L) |
---|
2247 | |
---|
2248 | ! IF (I .eq. Ilook .and. J .eq. Jlook) THEN |
---|
2249 | ! write(message,*) 'BOT_INPUT_PRESS, BOT_INPUT_HGT NOW : ', & |
---|
2250 | ! Ilook,Jlook, BOT_INPUT_PRESS, BOT_INPUT_HGT |
---|
2251 | ! CALL wrf_message(message) |
---|
2252 | ! ENDIF |
---|
2253 | |
---|
2254 | ENDIF |
---|
2255 | END DO |
---|
2256 | |
---|
2257 | !!!!!!!!!!!!!!!!!!!!!! START HYDRO CHECK |
---|
2258 | |
---|
2259 | IF ( PRESS3D_IN(i,j,1) .ne. 200100. .AND. & |
---|
2260 | (PSFC_IN(I,J) .gt. PRESS3D_IN(i,j,2) .OR. & |
---|
2261 | TOPO_IN(I,J) .lt. Z3D_IN(I,J,2)) ) THEN ! extrapolate downward |
---|
2262 | |
---|
2263 | IF (J .eq. JTS .AND. I .eq. ITS) THEN |
---|
2264 | write(message,*) 'hydro check - should only be for isobaric input' |
---|
2265 | CALL wrf_message(message) |
---|
2266 | ENDIF |
---|
2267 | |
---|
2268 | IF (Z3D_IN(I,J,2) .ne. TOPO_IN(I,J)) THEN |
---|
2269 | dpdz=(PRESS3D_IN(i,j,2)-PSFC_IN(I,J))/(Z3D_IN(I,J,2)-TOPO_IN(I,J)) |
---|
2270 | rhs=-9.81*((PRESS3D_IN(i,j,2)+ PSFC_IN(I,J))/2.)/(287.04* T3D_IN(I,J,2)) |
---|
2271 | |
---|
2272 | IF ( abs(PRESS3D_IN(i,j,2)-PSFC_IN(I,J)) .gt. 290.) THEN |
---|
2273 | IF (dpdz .lt. 1.05*rhs .OR. dpdz .gt. 0.95*rhs) THEN |
---|
2274 | write(message,*) 'I,J,P(2),Psfc,Z(2),Zsfc: ', & |
---|
2275 | I,J,PRESS3D_IN(i,j,2),PSFC_IN(I,J),Z3D_IN(I,J,2),TOPO_IN(I,J) |
---|
2276 | IF (mod(I,5).eq.0 .AND. mod(J,5).eq.0) CALL wrf_debug(50,message) |
---|
2277 | CYCLE I_loop |
---|
2278 | ENDIF |
---|
2279 | |
---|
2280 | ENDIF |
---|
2281 | |
---|
2282 | ELSE ! z(2) equals TOPO_IN |
---|
2283 | |
---|
2284 | IF (PRESS3D_IN(i,j,2) .eq. PSFC_IN(I,J)) THEN |
---|
2285 | ! write(message,*) 'all equal at I,J: ', I,J |
---|
2286 | ! CALL wrf_message(message) |
---|
2287 | ELSE |
---|
2288 | ! write(message,*) 'heights equal, pressures not: ', & |
---|
2289 | ! PRESS3D_IN(i,j,2), PSFC_IN(I,J) |
---|
2290 | ! CALL wrf_message(message) |
---|
2291 | CYCLE I_loop |
---|
2292 | ENDIF |
---|
2293 | |
---|
2294 | ENDIF |
---|
2295 | |
---|
2296 | IF ( abs(PRESS3D_IN(i,j,2)-PSFC_IN(I,J)) .gt. 290.) THEN |
---|
2297 | IF (PRESS3D_IN(i,j,2) .lt. PSFC_IN(I,J) .and. & |
---|
2298 | Z3D_IN(I,J,2) .lt. TOPO_IN(I,J)) THEN |
---|
2299 | ! write(message,*) 'surface data mismatch(a) at I,J: ', I,J |
---|
2300 | ! CALL wrf_message(message) |
---|
2301 | CYCLE I_loop |
---|
2302 | ELSEIF (PRESS3D_IN(i,j,2) .gt. PSFC_IN(I,J) .AND. & |
---|
2303 | Z3D_IN(I,J,2) .gt. TOPO_IN(I,J)) THEN |
---|
2304 | ! write(message,*) 'surface data mismatch(b) at I,J: ', I,J |
---|
2305 | ! CALL wrf_message(message) |
---|
2306 | CYCLE I_loop |
---|
2307 | ENDIF |
---|
2308 | ENDIF |
---|
2309 | ENDIF |
---|
2310 | |
---|
2311 | !!!!!!! loop over a few more levels |
---|
2312 | |
---|
2313 | DO L=3,6 |
---|
2314 | IF ( PRESS3D_IN(i,j,1) .ne. 200100. .AND. & |
---|
2315 | (((PSFC_IN(I,J)-PRESS3D_IN(i,j,L)) .lt. 400.) .OR. & |
---|
2316 | TOPO_IN(I,J) .lt. Z3D_IN(I,J,L))) then |
---|
2317 | |
---|
2318 | IF (Z3D_IN(I,J,L) .ne. TOPO_IN(I,J)) THEN |
---|
2319 | dpdz=(PRESS3D_IN(i,j,L)-PSFC_IN(I,J))/ & |
---|
2320 | (Z3D_IN(I,J,L)-TOPO_IN(I,J)) |
---|
2321 | rhs=-9.81*((PRESS3D_IN(i,j,L)+ PSFC_IN(I,J))/2.)/ & |
---|
2322 | (287.04*T3D_IN(I,J,L)) |
---|
2323 | IF ( abs(PRESS3D_IN(i,j,L)-PSFC_IN(I,J)) .gt. 290.) THEN |
---|
2324 | IF (dpdz .lt. 1.05*rhs .or. dpdz .gt. 0.95*rhs) THEN |
---|
2325 | write(message,*) 'I,J,L,Piso,Psfc,Ziso,Zsfc: ', & |
---|
2326 | I,J,L,PRESS3D_IN(i,j,L),PSFC_IN(I,J),& |
---|
2327 | Z3D_IN(I,J,L),TOPO_IN(I,J) |
---|
2328 | IF (mod(I,5).eq.0 .AND. mod(J,5).eq.0) & |
---|
2329 | CALL wrf_debug(50,message) |
---|
2330 | CYCLE I_loop |
---|
2331 | ENDIF |
---|
2332 | ENDIF |
---|
2333 | ELSE |
---|
2334 | IF (PRESS3D_IN(i,j,2) .eq. PSFC_IN(I,J)) THEN |
---|
2335 | ! write(message,*) 'all equal at I,J: ', I,J |
---|
2336 | ! CALL wrf_message(message) |
---|
2337 | ELSE |
---|
2338 | CYCLE I_loop |
---|
2339 | ENDIF |
---|
2340 | ENDIF |
---|
2341 | ENDIF |
---|
2342 | |
---|
2343 | IF ( abs(PRESS3D_IN(i,j,L)-PSFC_IN(I,J)) .gt. 290.) THEN |
---|
2344 | IF (PRESS3D_IN(i,j,L) .lt. PSFC_IN(I,J) .AND. & |
---|
2345 | Z3D_IN(I,J,L) .lt. TOPO_IN(I,J)) THEN |
---|
2346 | CYCLE I_loop |
---|
2347 | ELSEIF (PRESS3D_IN(i,j,L) .gt. PSFC_IN(I,J) .AND. & |
---|
2348 | Z3D_IN(I,J,L) .gt. TOPO_IN(I,J)) THEN |
---|
2349 | CYCLE I_loop |
---|
2350 | ENDIF |
---|
2351 | ENDIF |
---|
2352 | END DO |
---|
2353 | !!!!!!!!!!!!!!!!!!!!!! END HYDRO CHECK |
---|
2354 | |
---|
2355 | IF (TERRAIN_HGT_T(I,J) .eq. BOT_INPUT_HGT ) THEN |
---|
2356 | dum2d(I,J)=BOT_INPUT_PRESS |
---|
2357 | |
---|
2358 | IF (BOT_INPUT_HGT .ne. 0. .and. (BOT_INPUT_HGT-INT(BOT_INPUT_HGT) .ne. 0.) ) THEN |
---|
2359 | write(message,*) 'with BOT_INPUT_HGT: ', BOT_INPUT_HGT, & |
---|
2360 | 'set dum2d to bot_input_pres: ', I,J,dum2d(I,J) |
---|
2361 | CALL wrf_message(message) |
---|
2362 | ENDIF |
---|
2363 | |
---|
2364 | IF (dum2d(I,J) .lt. 50000. .OR. dum2d(I,J) .gt. 109000.) THEN |
---|
2365 | write(message,*) 'bad dum2d(a): ', I,J,DUM2D(I,J) |
---|
2366 | CALL wrf_message(message) |
---|
2367 | ENDIF |
---|
2368 | |
---|
2369 | ELSEIF (TERRAIN_HGT_T(I,J) .lt. BOT_INPUT_HGT ) THEN |
---|
2370 | |
---|
2371 | ! target is below lowest possible input...extrapolate |
---|
2372 | |
---|
2373 | IF ( BOT_INPUT_PRESS-PRESS3D_IN(I,J,2) .gt. 500. ) THEN |
---|
2374 | dlnpdz= (log(BOT_INPUT_PRESS)-log(PRESS3D_IN(i,j,2)) ) / & |
---|
2375 | (BOT_INPUT_HGT-Z3D_IN(i,j,2)) |
---|
2376 | IF (I .eq. Ilook .and. J .eq. Jlook) THEN |
---|
2377 | write(message,*) 'I,J,dlnpdz(a): ', I,J,dlnpdz |
---|
2378 | CALL wrf_message(message) |
---|
2379 | ENDIF |
---|
2380 | |
---|
2381 | ELSE |
---|
2382 | |
---|
2383 | !! thin layer and/or just have lowest level - difference with 3rd level data |
---|
2384 | IF ( abs(BOT_INPUT_PRESS - PRESS3D_IN(i,j,3)) .gt. 290. ) THEN |
---|
2385 | |
---|
2386 | dlnpdz= (log(BOT_INPUT_PRESS)-log(PRESS3D_IN(i,j,3)) ) / & |
---|
2387 | (BOT_INPUT_HGT-Z3D_IN(i,j,3)) |
---|
2388 | |
---|
2389 | IF (I .eq. Ilook .and. J .eq. Jlook) then |
---|
2390 | write(message,*) 'p diff: ', BOT_INPUT_PRESS, PRESS3D_IN(i,j,3) |
---|
2391 | CALL wrf_message(message) |
---|
2392 | write(message,*) 'z diff: ', BOT_INPUT_HGT, Z3D_IN(i,j,3) |
---|
2393 | CALL wrf_message(message) |
---|
2394 | ENDIF |
---|
2395 | |
---|
2396 | ELSE |
---|
2397 | |
---|
2398 | !! Loop up to level 7 looking for a sufficiently thick layer |
---|
2399 | |
---|
2400 | FIND_THICK: DO LL=4,7 |
---|
2401 | IF( abs(BOT_INPUT_PRESS - PRESS3D_IN(i,j,LL)) .gt. 290.) THEN |
---|
2402 | dlnpdz= (log(BOT_INPUT_PRESS)-log(PRESS3D_IN(i,j,LL)) ) / & |
---|
2403 | (BOT_INPUT_HGT-Z3D_IN(i,j,LL)) |
---|
2404 | EXIT FIND_THICK |
---|
2405 | ENDIF |
---|
2406 | END DO FIND_THICK |
---|
2407 | |
---|
2408 | ENDIF |
---|
2409 | |
---|
2410 | ENDIF |
---|
2411 | |
---|
2412 | dum2d(I,J)= exp(log(BOT_INPUT_PRESS) + dlnpdz * & |
---|
2413 | (TERRAIN_HGT_T(I,J) - BOT_INPUT_HGT) ) |
---|
2414 | |
---|
2415 | IF (dum2d(I,J) .lt. 50000. .or. dum2d(I,J) .gt. 108000.) THEN |
---|
2416 | write(message,*) 'bad dum2d(b): ', I,J,DUM2D(I,J) |
---|
2417 | CALL wrf_message(message) |
---|
2418 | write(message,*) 'BOT_INPUT_PRESS, dlnpdz, TERRAIN_HGT_T, BOT_INPUT_HGT: ', & |
---|
2419 | BOT_INPUT_PRESS, dlnpdz, TERRAIN_HGT_T(I,J), BOT_INPUT_HGT |
---|
2420 | CALL wrf_message(message) |
---|
2421 | write(message,*) 'Z3D_IN: ', Z3D_IN(I,J,1:10) |
---|
2422 | CALL wrf_message(message) |
---|
2423 | write(message,*) 'PRESS3D_IN: ', PRESS3D_IN(I,J,1:10) |
---|
2424 | CALL wrf_message(message) |
---|
2425 | ENDIF |
---|
2426 | |
---|
2427 | ELSE ! target level bounded by input levels |
---|
2428 | |
---|
2429 | DO L=2,generic-1 |
---|
2430 | IF (TERRAIN_HGT_T(I,J) .gt. Z3D_IN(i,j,L) .AND. & |
---|
2431 | TERRAIN_HGT_T(I,J) .lt. Z3D_IN(i,j,L+1) ) THEN |
---|
2432 | dlnpdz= (log(PRESS3D_IN(i,j,l))-log(PRESS3D_IN(i,j,L+1)) ) / & |
---|
2433 | (Z3D_IN(i,j,l)-Z3D_IN(i,j,L+1)) |
---|
2434 | dum2d(I,J)= log(PRESS3D_IN(i,j,l)) + & |
---|
2435 | dlnpdz * (TERRAIN_HGT_T(I,J) - Z3D_IN(i,j,L) ) |
---|
2436 | dum2d(i,j)=exp(dum2d(i,j)) |
---|
2437 | IF (dum2d(I,J) .lt. 50000. .or. dum2d(I,J) .gt. 108000.) THEN |
---|
2438 | write(message,*) 'bad dum2d(c): ', I,J,DUM2D(I,J) |
---|
2439 | CALL wrf_message(message) |
---|
2440 | ENDIF |
---|
2441 | ENDIF |
---|
2442 | ENDDO |
---|
2443 | |
---|
2444 | !!! account for situation where BOT_INPUT_HGT < TERRAIN_HGT_T < Z3D_IN(:,2,:) |
---|
2445 | IF (dum2d(I,J) .eq. -9 .AND. BOT_INPUT_HGT .lt. TERRAIN_HGT_T(I,J) & |
---|
2446 | .AND. TERRAIN_HGT_T(I,J) .lt. Z3D_IN(I,J,2)) then |
---|
2447 | |
---|
2448 | IF (mod(I,50) .eq. 0 .AND. mod(J,50) .eq. 0) THEN |
---|
2449 | write(message,*) 'I,J,BOT_INPUT_HGT, bot_pres, TERRAIN_HGT_T: ', & |
---|
2450 | I,J,BOT_INPUT_HGT, BOT_INPUT_PRESS, TERRAIN_HGT_T(I,J) |
---|
2451 | CALL wrf_message(message) |
---|
2452 | ENDIF |
---|
2453 | |
---|
2454 | dlnpdz= (log(PSFC_IN(i,j))-log(PRESS3D_IN(i,j,2)) ) / & |
---|
2455 | (TOPO_IN(i,j)-Z3D_IN(i,j,2)) |
---|
2456 | dum2d(I,J)= log(PSFC_IN(i,j)) + & |
---|
2457 | dlnpdz * (TERRAIN_HGT_T(I,J) - TOPO_IN(i,j) ) |
---|
2458 | dum2d(i,j)= exp(dum2d(i,j)) |
---|
2459 | IF (dum2d(I,J) .lt. 50000. .or. dum2d(I,J) .gt. 108000.) THEN |
---|
2460 | write(message,*) 'bad dum2d(d): ', I,J,DUM2D(I,J) |
---|
2461 | CALL wrf_message(message) |
---|
2462 | ENDIF |
---|
2463 | ENDIF |
---|
2464 | |
---|
2465 | IF (dum2d(I,J) .eq. -9.) THEN |
---|
2466 | write(message,*) 'must have flukey situation in new ', I,J |
---|
2467 | CALL wrf_message(message) |
---|
2468 | write(message,*) 'I,J,BOT_INPUT_HGT, bot_pres, TERRAIN_HGT_T: ', & |
---|
2469 | I,J,BOT_INPUT_HGT, BOT_INPUT_PRESS, TERRAIN_HGT_T(I,J) |
---|
2470 | CALL wrf_message(message) |
---|
2471 | |
---|
2472 | DO L=1,generic-1 |
---|
2473 | IF ( TERRAIN_HGT_T(I,J) .eq. Z3D_IN(i,j,L) ) THEN |
---|
2474 | ! problematic with HGT_M substitution for "input" surface height? |
---|
2475 | dum2d(i,j)=PRESS3D_IN(I,J,L) |
---|
2476 | IF (dum2d(I,J) .lt. 50000. .or. dum2d(I,J) .gt. 108000.) THEN |
---|
2477 | write(message,*) 'bad dum2d(e): ', I,J,DUM2D(I,J) |
---|
2478 | CALL wrf_message(message) |
---|
2479 | ENDIF |
---|
2480 | ENDIF |
---|
2481 | ENDDO |
---|
2482 | |
---|
2483 | IF ( TERRAIN_HGT_T(I,J) .eq. TOPO_IN(I,J)) THEN |
---|
2484 | dum2d(I,J)=PSFC_IN(I,J) |
---|
2485 | IF (dum2d(I,J) .lt. 50000. .or. dum2d(I,J) .gt. 108000.) THEN |
---|
2486 | write(message,*) 'bad dum2d(f): ', I,J,DUM2D(I,J) |
---|
2487 | CALL wrf_message(message) |
---|
2488 | ENDIF |
---|
2489 | write(message,*) 'matched input topo, psfc: ', I,J,TOPO_IN(I,J),PSFC_IN(I,J) |
---|
2490 | CALL wrf_message(message) |
---|
2491 | ENDIF |
---|
2492 | |
---|
2493 | IF (dum2d(I,J) .eq. -9.) THEN |
---|
2494 | CALL wrf_error_fatal("quitting due to undefined surface pressure") |
---|
2495 | ENDIF |
---|
2496 | ENDIF |
---|
2497 | |
---|
2498 | DEFINED_PSFC(I,J)=.TRUE. |
---|
2499 | |
---|
2500 | IF (I .eq. Ilook .AND. J .eq. Jlook) THEN |
---|
2501 | write(message,*) 'newstyle psfc: ', I,J,dum2d(I,J) |
---|
2502 | CALL wrf_message(message) |
---|
2503 | ENDIF |
---|
2504 | |
---|
2505 | ENDIF |
---|
2506 | |
---|
2507 | ENDDO I_loop |
---|
2508 | ENDDO |
---|
2509 | |
---|
2510 | write(message,*) 'psfc points (new style)' |
---|
2511 | CALL wrf_message(message) |
---|
2512 | loopinc=max( (JTE-JTS)/20,1) |
---|
2513 | iloopinc=max( (ITE-ITS)/10,1) |
---|
2514 | |
---|
2515 | DO J=min(JTE,JDE-1),JTS,-loopinc |
---|
2516 | write(message,633) (dum2d(I,J)/100.,I=ITS,min(ITE,IDE-1),iloopinc) |
---|
2517 | END DO |
---|
2518 | |
---|
2519 | 633 format(35(f5.0,1x)) |
---|
2520 | |
---|
2521 | write(message,*) 'PSFC extremes (new style)' |
---|
2522 | CALL wrf_message(message) |
---|
2523 | write(message,*) minval(dum2d,MASK=DEFINED_PSFC),maxval(dum2d,MASK=DEFINED_PSFC) |
---|
2524 | CALL wrf_message(message) |
---|
2525 | |
---|
2526 | ! IF (minval(dum2d,MASK=DEFINED_PSFC) .lt. 50000. .or. maxval(dum2d,MASK=DEFINED_PSFC) .gt. 108000.) THEN |
---|
2527 | |
---|
2528 | DO J=JTS,min(JTE,JDE-1) |
---|
2529 | DO I=ITS,min(ITE,IDE-1) |
---|
2530 | |
---|
2531 | IF (DEFINED_PSFC(I,J) .AND. dum2d(I,J) .lt. 50000. ) THEN |
---|
2532 | IF (TERRAIN_HGT_T(I,J) .gt. 4500.) THEN |
---|
2533 | WRITE(message,*) 'low surface pressure allowed because surface height is: ', TERRAIN_HGT_T(I,J) |
---|
2534 | CALL wrf_debug(2,message) |
---|
2535 | ELSE |
---|
2536 | CALL wrf_error_fatal("quit due to unrealistic surface pressure") |
---|
2537 | ENDIF |
---|
2538 | ENDIF |
---|
2539 | |
---|
2540 | IF (DEFINED_PSFC(I,J) .AND. dum2d(I,J) .gt. 108000. ) THEN |
---|
2541 | IF (TERRAIN_HGT_T(I,J) .lt. -10.) THEN |
---|
2542 | WRITE(message,*) 'high surface pressure allowed because surface height is: ', TERRAIN_HGT_T(I,J) |
---|
2543 | CALL wrf_debug(2,message) |
---|
2544 | ELSE |
---|
2545 | CALL wrf_error_fatal("quit due to unrealistic surface pressure") |
---|
2546 | ENDIF |
---|
2547 | ENDIF |
---|
2548 | |
---|
2549 | END DO |
---|
2550 | END DO |
---|
2551 | |
---|
2552 | |
---|
2553 | |
---|
2554 | !! "traditional" isobaric only approach ------------------------------------------------ |
---|
2555 | |
---|
2556 | ALLOCATE (DUM2DB(IMS:IME,JMS:JME)) |
---|
2557 | DO J=JMS,JME |
---|
2558 | DO I=IMS,IME |
---|
2559 | DUM2DB(I,J)=-9. |
---|
2560 | END DO |
---|
2561 | END DO |
---|
2562 | |
---|
2563 | DO J=JTS,min(JTE,JDE-1) |
---|
2564 | DO I=ITS,min(ITE,IDE-1) |
---|
2565 | |
---|
2566 | IF (TERRAIN_HGT_T(I,J) .lt. Z3D_IN(i,j,2)) THEN ! targ below lowest |
---|
2567 | |
---|
2568 | IF ( abs(PRESS3D_IN(i,j,2)-PRESS3D_IN(i,j,3)) .gt. 290.) THEN |
---|
2569 | dlnpdz= (log(PRESS3D_IN(i,j,2))-log(PRESS3D_IN(i,j,3)) ) / & |
---|
2570 | (Z3D_IN(i,j,2)-Z3D_IN(i,j,3)) |
---|
2571 | ELSE |
---|
2572 | dlnpdz= (log(PRESS3D_IN(i,j,2))-log(PRESS3D_IN(i,j,4)) ) / & |
---|
2573 | (Z3D_IN(i,j,2)-Z3D_IN(i,j,4)) |
---|
2574 | ENDIF |
---|
2575 | |
---|
2576 | DUM2DB(I,J)= exp( log(PRESS3D_IN(i,j,2)) + dlnpdz * & |
---|
2577 | (TERRAIN_HGT_T(I,J) - Z3D_IN(i,j,2)) ) |
---|
2578 | |
---|
2579 | IF (I .eq. Ilook .and. J .eq. Jlook) THEN |
---|
2580 | write(message,*) 'I,K, trad: dlnpdz, press_in(2), terrain_t, Z3D_IN(2): ', I,J,dlnpdz, & |
---|
2581 | PRESS3D_IN(i,j,2), TERRAIN_HGT_T(I,J), Z3D_IN(i,j,2) |
---|
2582 | CALL wrf_message(message) |
---|
2583 | ENDIF |
---|
2584 | |
---|
2585 | DEFINED_PSFCB(i,j)=.true. |
---|
2586 | |
---|
2587 | ELSEIF (TERRAIN_HGT_T(I,J) .gt. Z3D_IN(i,j,2)) THEN ! target level bounded by input levels |
---|
2588 | |
---|
2589 | DO L=2,generic-1 |
---|
2590 | IF (TERRAIN_HGT_T(I,J) .gt. Z3D_IN(i,j,L) .AND. & |
---|
2591 | TERRAIN_HGT_T(I,J) .lt. Z3D_IN(i,j,L+1) ) THEN |
---|
2592 | |
---|
2593 | dlnpdz= (log(PRESS3D_IN(i,j,l))-log(PRESS3D_IN(i,j,L+1)) ) / & |
---|
2594 | (Z3D_IN(i,j,l)-Z3D_IN(i,j,L+1)) |
---|
2595 | |
---|
2596 | DUM2DB(I,J)= log(PRESS3D_IN(i,j,l)) + & |
---|
2597 | dlnpdz * (TERRAIN_HGT_T(I,J) - Z3D_IN(i,j,L) ) |
---|
2598 | DUM2DB(i,j)=exp(DUM2DB(i,j)) |
---|
2599 | |
---|
2600 | DEFINED_PSFCB(i,j)=.true. |
---|
2601 | |
---|
2602 | IF (DUM2DB(I,J) .lt. 13000.) THEN |
---|
2603 | write(message,*) 'I,J,L,terrain,Z3d(L),z3d(L+1),p3d(L),p3d(l+1): ', I,J,L, & |
---|
2604 | TERRAIN_HGT_T(I,J),Z3D_IN(I,J,L),Z3D_IN(I,J,L+1),PRESS3D_IN(I,J,L), & |
---|
2605 | PRESS3D_IN(I,J,L+1) |
---|
2606 | CALL wrf_error_fatal(message) |
---|
2607 | ENDIF |
---|
2608 | ENDIF |
---|
2609 | ENDDO |
---|
2610 | |
---|
2611 | ELSEIF (TERRAIN_HGT_T(I,J) .eq. Z3D_IN(i,j,2)) THEN |
---|
2612 | DUM2DB(i,j)=PRESS3D_IN(I,J,2) |
---|
2613 | DEFINED_PSFCB(i,j)=.true. |
---|
2614 | ENDIF |
---|
2615 | |
---|
2616 | IF (DUM2DB(I,J) .eq. -9.) THEN |
---|
2617 | write(message,*) 'must have flukey situation in trad ', I,J |
---|
2618 | CALL wrf_message(message) |
---|
2619 | DO L=1,generic-1 |
---|
2620 | IF ( TERRAIN_HGT_T(I,J) .eq. Z3D_IN(i,j,L) ) THEN |
---|
2621 | DUM2DB(i,j)=PRESS3D_IN(I,J,L) |
---|
2622 | DEFINED_PSFCB(i,j)=.true. |
---|
2623 | ENDIF |
---|
2624 | ENDDO |
---|
2625 | ENDIF |
---|
2626 | |
---|
2627 | IF (DUM2DB(I,J) .eq. -9.) THEN |
---|
2628 | write(message,*) 'HOPELESS PSFC, I QUIT' |
---|
2629 | CALL wrf_error_fatal(message) |
---|
2630 | ENDIF |
---|
2631 | |
---|
2632 | if (I .eq. Ilook .and. J .eq. Jlook) THEN |
---|
2633 | write(message,*) ' traditional psfc: ', I,J,DUM2DB(I,J) |
---|
2634 | CALL wrf_message(message) |
---|
2635 | ENDIF |
---|
2636 | |
---|
2637 | ENDDO |
---|
2638 | ENDDO |
---|
2639 | |
---|
2640 | write(message,*) 'psfc points (traditional)' |
---|
2641 | CALL wrf_message(message) |
---|
2642 | DO J=min(JTE,JDE-1),JTS,-loopinc |
---|
2643 | write(message,633) (DUM2DB(I,J)/100.,I=its,min(ite,IDE-1),iloopinc) |
---|
2644 | CALL wrf_message(message) |
---|
2645 | ENDDO |
---|
2646 | |
---|
2647 | write(message,*) 'PSFC extremes (traditional)' |
---|
2648 | CALL wrf_message(message) |
---|
2649 | write(message,*) minval(DUM2DB,MASK=DEFINED_PSFCB),maxval(DUM2DB,MASK=DEFINED_PSFCB) |
---|
2650 | CALL wrf_message(message) |
---|
2651 | |
---|
2652 | DO J=JTS,min(JTE,JDE-1) |
---|
2653 | DO I=ITS,min(ITE,IDE-1) |
---|
2654 | |
---|
2655 | IF (DEFINED_PSFCB(I,J) .AND. dum2db(I,J) .lt. 50000. ) THEN |
---|
2656 | IF (TERRAIN_HGT_T(I,J) .gt. 4500.) THEN |
---|
2657 | WRITE(message,*) 'low surface pressure allowed because surface height is: ', TERRAIN_HGT_T(I,J) |
---|
2658 | CALL wrf_debug(2,message) |
---|
2659 | ELSE |
---|
2660 | CALL wrf_error_fatal("quit due to unrealistic surface pressure") |
---|
2661 | ENDIF |
---|
2662 | ENDIF |
---|
2663 | |
---|
2664 | IF (DEFINED_PSFCB(I,J) .AND. dum2db(I,J) .gt. 108000. ) THEN |
---|
2665 | IF (TERRAIN_HGT_T(I,J) .lt. -10.) THEN |
---|
2666 | WRITE(message,*) 'high surface pressure allowed because surface height is: ', TERRAIN_HGT_T(I,J) |
---|
2667 | CALL wrf_debug(2,message) |
---|
2668 | ELSE |
---|
2669 | CALL wrf_error_fatal("quit due to unrealistic surface pressure") |
---|
2670 | ENDIF |
---|
2671 | ENDIF |
---|
2672 | |
---|
2673 | ! IF (DEFINED_PSFCB(I,J) .AND. ( dum2db(I,J) .lt. 50000. .OR. dum2db(I,J) .gt. 108000. )) THEN |
---|
2674 | ! IF (TERRAIN_HGT_T(I,J) .gt. -10. .and. TERRAIN_HGT_T(I,J) .lt. 5000.) THEN |
---|
2675 | ! write(0,*) 'I,J, terrain_hgt_t, dum2db: ', I,J, terrain_hgt_t(I,J),dum2db(I,J) |
---|
2676 | ! CALL wrf_error_fatal("quit due to unrealistic surface pressure") |
---|
2677 | ! ELSE |
---|
2678 | ! WRITE(message,*) 'surface pressure allowed because surface height is extreme value of: ', TERRAIN_HGT_T(I,J) |
---|
2679 | ! CALL wrf_debug(2,message) |
---|
2680 | ! ENDIF |
---|
2681 | ! ENDIF |
---|
2682 | |
---|
2683 | ENDDO |
---|
2684 | ENDDO |
---|
2685 | |
---|
2686 | !!!!! end traditional |
---|
2687 | |
---|
2688 | DO J=JTS,min(JTE,JDE-1) |
---|
2689 | DO I=ITS,min(ITE,IDE-1) |
---|
2690 | IF (DEFINED_PSFCB(I,J) .and. DEFINED_PSFC(I,J)) THEN |
---|
2691 | |
---|
2692 | IF ( abs(dum2d(I,J)-DUM2DB(I,J)) .gt. 400.) THEN |
---|
2693 | write(message,*) 'BIG DIFF I,J, dum2d, DUM2DB: ', I,J,dum2d(I,J),DUM2DB(I,J) |
---|
2694 | CALL wrf_message(message) |
---|
2695 | ENDIF |
---|
2696 | |
---|
2697 | !! do we have enough confidence in new style to give it more than 50% weight? |
---|
2698 | psfc_out(I,J)=0.5*(dum2d(I,J)+DUM2DB(I,J)) |
---|
2699 | |
---|
2700 | ELSEIF (DEFINED_PSFC(I,J)) THEN |
---|
2701 | psfc_out(I,J)=dum2d(I,J) |
---|
2702 | ELSEIF (DEFINED_PSFCB(I,J)) THEN |
---|
2703 | psfc_out(I,J)=DUM2DB(I,J) |
---|
2704 | ELSE |
---|
2705 | write(message,*) 'I,J,dum2d,DUM2DB: ', I,J,dum2d(I,J),DUM2DB(I,J) |
---|
2706 | CALL wrf_message(message) |
---|
2707 | write(message,*) 'I,J,DEFINED_PSFC(I,J),DEFINED_PSFCB(I,J): ', I,J,DEFINED_PSFC(I,J),DEFINED_PSFCB(I,J) |
---|
2708 | CALL wrf_message(message) |
---|
2709 | call wrf_error_fatal("psfc_out completely undefined") |
---|
2710 | ENDIF |
---|
2711 | |
---|
2712 | IF (I .eq. Ilook .AND. J .eq. Jlook) THEN |
---|
2713 | write(message,*) ' combined psfc: ', I,J,psfc_out(I,J) |
---|
2714 | CALL wrf_message(message) |
---|
2715 | ENDIF |
---|
2716 | |
---|
2717 | IF (PSFC_OUT(I,J) .lt. 50000. ) THEN |
---|
2718 | IF (TERRAIN_HGT_T(I,J) .gt. 4500.) THEN |
---|
2719 | WRITE(message,*) 'low surface pressure allowed because surface height is: ', TERRAIN_HGT_T(I,J) |
---|
2720 | CALL wrf_debug(2,message) |
---|
2721 | ELSE |
---|
2722 | write(message,*) 'possibly bad combo on psfc_out: ', I,J, psfc_out(I,J) |
---|
2723 | CALL wrf_debug(2,message) |
---|
2724 | write(message,*) 'DEFINED_PSFC, dum2d: ', DEFINED_PSFC(I,J),dum2d(I,J) |
---|
2725 | CALL wrf_debug(2,message) |
---|
2726 | write(message,*) 'DEFINED_PSFCB, DUM2DB: ', DEFINED_PSFCB(I,J),DUM2DB(I,J) |
---|
2727 | CALL wrf_debug(2,message) |
---|
2728 | CALL wrf_error_fatal("quit due to unrealistic surface pressure") |
---|
2729 | ENDIF |
---|
2730 | ENDIF |
---|
2731 | |
---|
2732 | IF (PSFC_OUT(I,J) .gt. 108000. ) THEN |
---|
2733 | IF (TERRAIN_HGT_T(I,J) .lt. -10.) THEN |
---|
2734 | WRITE(message,*) 'high surface pressure allowed because surface height is: ', TERRAIN_HGT_T(I,J) |
---|
2735 | CALL wrf_debug(2,message) |
---|
2736 | ELSE |
---|
2737 | write(message,*) 'possibly bad combo on psfc_out: ', I,J, psfc_out(I,J) |
---|
2738 | CALL wrf_debug(2,message) |
---|
2739 | write(message,*) 'DEFINED_PSFC, dum2d: ', DEFINED_PSFC(I,J),dum2d(I,J) |
---|
2740 | CALL wrf_debug(2,message) |
---|
2741 | write(message,*) 'DEFINED_PSFCB, DUM2DB: ', DEFINED_PSFCB(I,J),DUM2DB(I,J) |
---|
2742 | CALL wrf_debug(2,message) |
---|
2743 | CALL wrf_error_fatal("quit due to unrealistic surface pressure") |
---|
2744 | ENDIF |
---|
2745 | ENDIF |
---|
2746 | |
---|
2747 | ENDDO |
---|
2748 | ENDDO |
---|
2749 | |
---|
2750 | deallocate(dum2d,dum2db) |
---|
2751 | |
---|
2752 | END SUBROUTINE compute_nmm_surfacep |
---|
2753 | |
---|
2754 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2755 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2756 | |
---|
2757 | SUBROUTINE compute_3d_pressure(psfc_out,SGML1,SGML2,pdtop,pt & |
---|
2758 | &, pd,p3d_out & |
---|
2759 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
2760 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
2761 | &, ITS,ITE,JTS,JTE,KTS,KTE ) |
---|
2762 | |
---|
2763 | |
---|
2764 | INTEGER :: IDS,IDE,JDS,JDE,KDS,KDE |
---|
2765 | INTEGER :: IMS,IME,JMS,JME,KMS,KME |
---|
2766 | INTEGER :: ITS,ITE,JTS,JTE,KTS,KTE |
---|
2767 | |
---|
2768 | REAL, INTENT(IN) :: psfc_out(IMS:IME,JMS:JME) |
---|
2769 | REAL, INTENT(IN) :: SGML1(KDE),SGML2(KDE),pdtop,pt |
---|
2770 | |
---|
2771 | REAL, INTENT(OUT):: p3d_out(IMS:IME,JMS:JME,KDS:KDE-1) |
---|
2772 | REAL, INTENT(OUT):: PD(IMS:IME,JMS:JME) |
---|
2773 | |
---|
2774 | CHARACTER (len=255) :: message |
---|
2775 | |
---|
2776 | ! write(message,*) 'pdtop, pt, psfc_out(1,1): ', pdtop, pt, psfc_out(1,1) |
---|
2777 | ! CALL wrf_message(message) |
---|
2778 | |
---|
2779 | DO J=JTS,min(JTE,JDE-1) |
---|
2780 | DO I=ITS,min(ITE,IDE-1) |
---|
2781 | PD(I,J)=psfc_out(I,J)-PDTOP-PT |
---|
2782 | ENDDO |
---|
2783 | ENDDO |
---|
2784 | |
---|
2785 | DO J=JTS,min(JTE,JDE-1) |
---|
2786 | DO K=KDS,KDE-1 |
---|
2787 | DO I=ITS,min(ITE,IDE-1) |
---|
2788 | p3d_out(I,J,K)=PD(I,J)*SGML2(K)+PDTOP*SGML1(K)+PT |
---|
2789 | |
---|
2790 | IF (p3d_out(I,J,K) .ge. psfc_out(I,J) .or. p3d_out(I,J,K) .le. pt) THEN |
---|
2791 | write(message,*) 'I,K,J,p3d_out: ', I,K,J,p3d_out(I,J,K) |
---|
2792 | CALL wrf_error_fatal(message) |
---|
2793 | ENDIF |
---|
2794 | |
---|
2795 | ENDDO |
---|
2796 | ENDDO |
---|
2797 | ENDDO |
---|
2798 | |
---|
2799 | END SUBROUTINE compute_3d_pressure |
---|
2800 | |
---|
2801 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2802 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2803 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2804 | |
---|
2805 | SUBROUTINE interp_press2press_lin(press_in,press_out, & |
---|
2806 | data_in, data_out,generic & |
---|
2807 | &, extrapolate,ignore_lowest,TFIELD & |
---|
2808 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
2809 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
2810 | &, ITS,ITE,JTS,JTE,KTS,KTE, internal_time ) |
---|
2811 | |
---|
2812 | ! Interpolates data from one set of pressure surfaces to |
---|
2813 | ! another set of pressures |
---|
2814 | |
---|
2815 | INTEGER :: IDS,IDE,JDS,JDE,KDS,KDE |
---|
2816 | INTEGER :: IMS,IME,JMS,JME,KMS,KME |
---|
2817 | INTEGER :: ITS,ITE,JTS,JTE,KTS,KTE,generic |
---|
2818 | INTEGER :: internal_time |
---|
2819 | |
---|
2820 | ! REAL, INTENT(IN) :: press_in(IMS:IME,generic,JMS:JME) |
---|
2821 | REAL, INTENT(IN) :: press_in(IMS:IME,JMS:JME,generic) |
---|
2822 | REAL, INTENT(IN) :: press_out(IMS:IME,JMS:JME,KDS:KDE-1) |
---|
2823 | ! REAL, INTENT(IN) :: data_in(IMS:IME,generic,JMS:JME) |
---|
2824 | REAL, INTENT(IN) :: data_in(IMS:IME,JMS:JME,generic) |
---|
2825 | REAL, INTENT(OUT) :: data_out(IMS:IME,JMS:JME,KMS:KME) |
---|
2826 | LOGICAL, INTENT(IN) :: extrapolate, ignore_lowest, TFIELD |
---|
2827 | LOGICAL :: col_smooth |
---|
2828 | |
---|
2829 | INTEGER :: i,j |
---|
2830 | INTEGER :: k,kk |
---|
2831 | REAL :: desired_press |
---|
2832 | REAL :: dvaldlnp,dlnp,tadiabat,tiso |
---|
2833 | |
---|
2834 | REAL, PARAMETER :: ADIAFAC=9.81/1004. |
---|
2835 | REAL, PARAMETER :: TSTEXTRAPFAC=.0065 |
---|
2836 | |
---|
2837 | |
---|
2838 | |
---|
2839 | DO K=KMS,KME |
---|
2840 | DO J=JMS,JME |
---|
2841 | DO I=IMS,IME |
---|
2842 | DATA_OUT(I,J,K)=-99999.9 |
---|
2843 | ENDDO |
---|
2844 | ENDDO |
---|
2845 | ENDDO |
---|
2846 | |
---|
2847 | IF (ignore_lowest) then |
---|
2848 | LMIN=2 |
---|
2849 | ELSE |
---|
2850 | LMIN=1 |
---|
2851 | ENDIF |
---|
2852 | |
---|
2853 | DO j = JTS, min(JTE,JDE-1) |
---|
2854 | test_i: DO i = ITS, min(ITE,IDE-1) |
---|
2855 | |
---|
2856 | IF (internal_time_loop .gt. 1) THEN |
---|
2857 | IF (J .ne. JDS .and. J .ne. JDE-1 .and. & |
---|
2858 | I .ne. IDS .and. I .ne. IDE-1 ) THEN |
---|
2859 | !! not on boundary |
---|
2860 | CYCLE test_i |
---|
2861 | ENDIF |
---|
2862 | ENDIF |
---|
2863 | |
---|
2864 | |
---|
2865 | col_smooth=.false. |
---|
2866 | |
---|
2867 | output_loop: DO k = KDS,KDE-1 |
---|
2868 | |
---|
2869 | desired_press = press_out(i,j,k) |
---|
2870 | |
---|
2871 | if (K .gt. KDS) then |
---|
2872 | if (TFIELD .and. col_smooth .and. desired_press .le. press_in(i,j,LMIN) & |
---|
2873 | .and. press_out(i,j,k-1) .ge. press_in(i,j,LMIN)) then |
---|
2874 | MAX_SMOOTH=K |
---|
2875 | ! write(message,*) 'I,J, MAX_SMOOTH: ', I,J, MAX_SMOOTH |
---|
2876 | ! CALL wrf_debug(100,message) |
---|
2877 | endif |
---|
2878 | endif |
---|
2879 | |
---|
2880 | ! keep track of where the extrapolation begins |
---|
2881 | |
---|
2882 | IF (desired_press .GT. press_in(i,j,LMIN)) THEN |
---|
2883 | IF (TFIELD .and. K .eq. 1 .and. (desired_press - press_in(i,j,LMIN)) .gt. 3000.) then |
---|
2884 | col_smooth=.TRUE. ! due to large extrapolation distance |
---|
2885 | ENDIF |
---|
2886 | |
---|
2887 | |
---|
2888 | IF ((desired_press - press_in(i,j,LMIN)).LT. 50.) THEN ! 0.5 mb |
---|
2889 | data_out(i,j,k) = data_in(i,j,LMIN) |
---|
2890 | ELSE |
---|
2891 | IF (extrapolate) THEN |
---|
2892 | ! Extrapolate downward because desired P level is below |
---|
2893 | ! the lowest level in our input data. Extrapolate using simple |
---|
2894 | ! 1st derivative of value with respect to ln P for the bottom 2 |
---|
2895 | ! input layers. |
---|
2896 | |
---|
2897 | ! Add a check to make sure we are not using the gradient of |
---|
2898 | ! a very thin layer |
---|
2899 | |
---|
2900 | if (TFIELD) then |
---|
2901 | tiso=0.5*(data_in(i,j,1)+data_in(i,j,2)) |
---|
2902 | endif |
---|
2903 | |
---|
2904 | |
---|
2905 | IF ( (press_in(i,j,LMIN)-press_in(i,j,LMIN+1)) .GT. 500.) THEN ! likely isobaric data |
---|
2906 | dlnp = log(press_in(i,j,LMIN))-log(press_in(i,j,LMIN+1)) |
---|
2907 | dvaldlnp = (data_in(i,j,LMIN) - data_in(i,j,LMIN+1)) / dlnp |
---|
2908 | ELSE ! assume terrain following |
---|
2909 | dlnp = log(press_in(i,j,LMIN))-log(press_in(i,j,LMIN+5)) |
---|
2910 | dvaldlnp = (data_in(i,j,LMIN) - data_in(i,j,LMIN+5)) / dlnp |
---|
2911 | ENDIF |
---|
2912 | data_out(i,j,k) = data_in(i,j,LMIN) + dvaldlnp * & |
---|
2913 | ( log(desired_press)-log(press_in(i,j,LMIN)) ) |
---|
2914 | |
---|
2915 | if (TFIELD .and. data_out(i,j,k) .lt. tiso-0.2) then |
---|
2916 | |
---|
2917 | ! restrict slope to -1K/10 hPa |
---|
2918 | dvaldlnp=max(dvaldlnp, -1.0/ & |
---|
2919 | log( press_in(i,j,LMIN) / & |
---|
2920 | ( press_in(i,j,LMIN)-1000.) )) |
---|
2921 | |
---|
2922 | data_out(I,J,K)= data_in(i,j,LMIN) + dvaldlnp * & |
---|
2923 | ( log(desired_press)-log(press_in(i,j,LMIN)) ) |
---|
2924 | |
---|
2925 | elseif (TFIELD .and. data_out(i,j,k) .gt. tiso+0.2) then |
---|
2926 | |
---|
2927 | ! restrict slope to +0.8K/10 hPa |
---|
2928 | dvaldlnp=min(dvaldlnp, 0.8/ & |
---|
2929 | log( press_in(i,j,LMIN) / & |
---|
2930 | ( press_in(i,j,LMIN)-1000.) )) |
---|
2931 | |
---|
2932 | data_out(I,J,K)= data_in(i,j,LMIN) + dvaldlnp * & |
---|
2933 | ( log(desired_press)-log(press_in(i,j,LMIN)) ) |
---|
2934 | |
---|
2935 | endif |
---|
2936 | |
---|
2937 | ELSE |
---|
2938 | data_out(i,j,k) = data_in(i,j,LMIN) |
---|
2939 | ENDIF |
---|
2940 | ENDIF |
---|
2941 | ELSE IF (desired_press .LT. press_in(i,j,generic)) THEN |
---|
2942 | IF ( (press_in(i,j,generic) - desired_press) .LT. 10.) THEN |
---|
2943 | data_out(i,j,k) = data_in(i,j,generic) |
---|
2944 | ELSE |
---|
2945 | IF (extrapolate) THEN |
---|
2946 | ! Extrapolate upward |
---|
2947 | IF ((press_in(i,j,generic-1)-press_in(i,j,generic)).GT.50.) THEN |
---|
2948 | dlnp =log(press_in(i,j,generic))-log(press_in(i,j,generic-1)) |
---|
2949 | dvaldlnp=(data_in(i,j,generic)-data_in(i,j,generic-1))/dlnp |
---|
2950 | ELSE |
---|
2951 | dlnp =log(press_in(i,j,generic))-log(press_in(i,j,generic-2)) |
---|
2952 | dvaldlnp=(data_in(i,j,generic)-data_in(i,j,generic-2))/dlnp |
---|
2953 | ENDIF |
---|
2954 | data_out(i,j,k) = data_in(i,j,generic) + & |
---|
2955 | dvaldlnp * (log(desired_press)-log(press_in(i,j,generic))) |
---|
2956 | ELSE |
---|
2957 | data_out(i,j,k) = data_in(i,j,generic) |
---|
2958 | ENDIF |
---|
2959 | ENDIF |
---|
2960 | ELSE |
---|
2961 | ! We can trap between two levels and linearly interpolate |
---|
2962 | |
---|
2963 | input_loop: DO kk = LMIN, generic-1 |
---|
2964 | IF (desired_press .EQ. press_in(i,j,kk) )THEN |
---|
2965 | data_out(i,j,k) = data_in(i,j,kk) |
---|
2966 | EXIT input_loop |
---|
2967 | ELSE IF ( (desired_press .LT. press_in(i,j,kk)) .AND. & |
---|
2968 | (desired_press .GT. press_in(i,j,kk+1)) ) THEN |
---|
2969 | |
---|
2970 | ! do trapped in lnp |
---|
2971 | |
---|
2972 | dlnp = log(press_in(i,j,kk)) - log(press_in(i,j,kk+1)) |
---|
2973 | dvaldlnp = (data_in(i,j,kk)-data_in(i,j,kk+1))/dlnp |
---|
2974 | data_out(i,j,k) = data_in(i,j,kk+1)+ & |
---|
2975 | dvaldlnp*(log(desired_press)-log(press_in(i,j,kk+1))) |
---|
2976 | |
---|
2977 | EXIT input_loop |
---|
2978 | ENDIF |
---|
2979 | |
---|
2980 | ENDDO input_loop |
---|
2981 | ENDIF |
---|
2982 | ENDDO output_loop |
---|
2983 | |
---|
2984 | if (col_smooth) then |
---|
2985 | do K=max(KDS,MAX_SMOOTH-4),MAX_SMOOTH+4 |
---|
2986 | data_out(I,J,K)=0.5*(data_out(I,J,K)+data_out(I,J,K+1)) |
---|
2987 | enddo |
---|
2988 | endif |
---|
2989 | |
---|
2990 | ENDDO test_i |
---|
2991 | ENDDO |
---|
2992 | END SUBROUTINE interp_press2press_lin |
---|
2993 | |
---|
2994 | SUBROUTINE wind_adjust(press_in,press_out, & |
---|
2995 | U_in, V_in,U_out,V_out & |
---|
2996 | &, generic,depth_replace & |
---|
2997 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
2998 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
2999 | &, ITS,ITE,JTS,JTE,KTS,KTE ) |
---|
3000 | |
---|
3001 | INTEGER :: IDS,IDE,JDS,JDE,KDS,KDE |
---|
3002 | INTEGER :: IMS,IME,JMS,JME,KMS,KME |
---|
3003 | INTEGER :: ITS,ITE,JTS,JTE,KTS,KTE,generic |
---|
3004 | INTEGER :: MAXLIN,MAXLOUT |
---|
3005 | |
---|
3006 | REAL, INTENT(IN) :: press_in(IMS:IME,JMS:JME,generic) |
---|
3007 | REAL, INTENT(IN) :: press_out(IMS:IME,JMS:JME,KDS:KDE-1) |
---|
3008 | REAL, INTENT(IN) :: U_in(IMS:IME,JMS:JME,generic) |
---|
3009 | REAL, INTENT(IN) :: V_in(IMS:IME,JMS:JME,generic) |
---|
3010 | REAL, INTENT(INOUT) :: U_out(IMS:IME,KMS:KME,JMS:JME) |
---|
3011 | REAL, INTENT(INOUT) :: V_out(IMS:IME,KMS:KME,JMS:JME) |
---|
3012 | REAL :: p1d_in(generic) |
---|
3013 | REAL :: p1d_out(KDS:KDE-1) |
---|
3014 | |
---|
3015 | |
---|
3016 | DO j = JTS, min(JTE,JDE-1) |
---|
3017 | DO i = ITS, min(ITE,IDE-1) |
---|
3018 | |
---|
3019 | ! IF (press_out(I,J,1) .lt. press_in(I,J,2)) then |
---|
3020 | IF( (press_in(I,J,2)-press_out(I,J,1)) .gt. 200.) then |
---|
3021 | |
---|
3022 | U_out(I,1,J)=U_in(I,J,2) |
---|
3023 | V_out(I,1,J)=V_in(I,J,2) |
---|
3024 | |
---|
3025 | INLOOP: DO L=2,generic |
---|
3026 | p1d_in(L)=-9999. |
---|
3027 | IF ( (press_in(I,J,2)-press_in(I,J,L)) .lt. depth_replace) THEN |
---|
3028 | p1d_in(L)=(press_in(I,J,2)-press_in(I,J,L)) |
---|
3029 | MAXLIN=L |
---|
3030 | ELSE |
---|
3031 | p1d_in(L)=(press_in(I,J,2)-press_in(I,J,L)) |
---|
3032 | EXIT INLOOP |
---|
3033 | ENDIF |
---|
3034 | END DO INLOOP |
---|
3035 | |
---|
3036 | OUTLOOP: DO L=KDS,KDE-1 |
---|
3037 | p1d_out(L)=-9999. |
---|
3038 | IF ( (press_out(I,J,1)-press_out(I,J,L)) .lt. depth_replace) THEN |
---|
3039 | p1d_out(L)=(press_out(I,J,1)-press_out(I,J,L)) |
---|
3040 | MAXLOUT=L |
---|
3041 | ELSE |
---|
3042 | EXIT OUTLOOP |
---|
3043 | ENDIF |
---|
3044 | END DO OUTLOOP |
---|
3045 | |
---|
3046 | DO L=1,MAXLOUT |
---|
3047 | ptarg=p1d_out(L) |
---|
3048 | |
---|
3049 | FINDLOOP: DO LL=2,MAXLIN |
---|
3050 | |
---|
3051 | if (p1d_in(LL) .lt. ptarg .and. p1d_in(LL+1) .gt. ptarg) then |
---|
3052 | |
---|
3053 | dlnp=log(p1d_in(LL))-log(p1d_in(LL+1)) |
---|
3054 | dudlnp=(U_in(I,J,LL)-U_in(I,J,LL+1))/dlnp |
---|
3055 | dvdlnp=(V_in(I,J,LL)-V_in(I,J,LL+1))/dlnp |
---|
3056 | U_out(I,L,J)=U_in(I,J,LL)+dudlnp*(log(ptarg)-log(p1d_in(LL))) |
---|
3057 | V_out(I,L,J)=V_in(I,J,LL)+dvdlnp*(log(ptarg)-log(p1d_in(LL))) |
---|
3058 | |
---|
3059 | EXIT FINDLOOP |
---|
3060 | endif |
---|
3061 | |
---|
3062 | END DO FINDLOOP |
---|
3063 | END DO ! MAXLOUT loop |
---|
3064 | |
---|
3065 | |
---|
3066 | ENDIF |
---|
3067 | |
---|
3068 | ENDDO |
---|
3069 | ENDDO |
---|
3070 | |
---|
3071 | |
---|
3072 | |
---|
3073 | END SUBROUTINE wind_adjust |
---|
3074 | !-------------------------------------------------------------------- |
---|
3075 | |
---|
3076 | SUBROUTINE interp_press2press_log(press_in,press_out, & |
---|
3077 | data_in, data_out, generic & |
---|
3078 | &, extrapolate,ignore_lowest & |
---|
3079 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
3080 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
3081 | &, ITS,ITE,JTS,JTE,KTS,KTE, internal_time ) |
---|
3082 | |
---|
3083 | ! Interpolates ln(data) from one set of pressure surfaces to |
---|
3084 | ! another set of pressures |
---|
3085 | |
---|
3086 | INTEGER :: IDS,IDE,JDS,JDE,KDS,KDE |
---|
3087 | INTEGER :: IMS,IME,JMS,JME,KMS,KME |
---|
3088 | INTEGER :: ITS,ITE,JTS,JTE,KTS,KTE,generic |
---|
3089 | INTEGER :: internal_time |
---|
3090 | |
---|
3091 | ! REAL, INTENT(IN) :: press_in(IMS:IME,generic,JMS:JME) |
---|
3092 | REAL, INTENT(IN) :: press_in(IMS:IME,JMS:JME,generic) |
---|
3093 | REAL, INTENT(IN) :: press_out(IMS:IME,JMS:JME,KDS:KDE-1) |
---|
3094 | ! REAL, INTENT(IN) :: data_in(IMS:IME,generic,JMS:JME) |
---|
3095 | ! REAL, INTENT(IN) :: data_in(IMS:IME,JMS:JME,generic) |
---|
3096 | REAL :: data_in(IMS:IME,JMS:JME,generic) |
---|
3097 | REAL, INTENT(OUT) :: data_out(IMS:IME,JMS:JME,KMS:KME) |
---|
3098 | LOGICAL, INTENT(IN) :: extrapolate, ignore_lowest |
---|
3099 | |
---|
3100 | INTEGER :: i,j |
---|
3101 | INTEGER :: k,kk |
---|
3102 | REAL :: desired_press |
---|
3103 | REAL :: dlnvaldlnp,dlnp |
---|
3104 | |
---|
3105 | |
---|
3106 | DO K=1,generic |
---|
3107 | DO j = JTS, min(JTE,JDE-1) |
---|
3108 | DO i = ITS, min(ITE,IDE-1) |
---|
3109 | DATA_IN(I,J,K)=max(DATA_in(I,J,K),1.e-13) |
---|
3110 | ENDDO |
---|
3111 | ENDDO |
---|
3112 | ENDDO |
---|
3113 | |
---|
3114 | DO K=KMS,KME |
---|
3115 | DO J=JMS,JME |
---|
3116 | DO I=IMS,IME |
---|
3117 | DATA_OUT(I,J,K)=-99999.9 |
---|
3118 | ENDDO |
---|
3119 | ENDDO |
---|
3120 | ENDDO |
---|
3121 | |
---|
3122 | IF (ignore_lowest) then |
---|
3123 | LMIN=2 |
---|
3124 | ELSE |
---|
3125 | LMIN=1 |
---|
3126 | ENDIF |
---|
3127 | |
---|
3128 | DO j = JTS, min(JTE,JDE-1) |
---|
3129 | test_i: DO i = ITS, min(ITE,IDE-1) |
---|
3130 | |
---|
3131 | IF (internal_time .gt. 1) THEN |
---|
3132 | IF (J .ne. JDS .and. J .ne. JDE-1 .and. & |
---|
3133 | I .ne. IDS .and. I .ne. IDE-1 ) THEN |
---|
3134 | !! not on boundary |
---|
3135 | CYCLE test_i |
---|
3136 | ENDIF |
---|
3137 | ENDIF |
---|
3138 | |
---|
3139 | |
---|
3140 | output_loop: DO k = KDS,KDE-1 |
---|
3141 | |
---|
3142 | desired_press = press_out(i,j,k) |
---|
3143 | |
---|
3144 | IF (desired_press .GT. press_in(i,j,LMIN)) THEN |
---|
3145 | |
---|
3146 | IF ((desired_press - press_in(i,j,LMIN)).LT. 10.) THEN ! 0.1 mb |
---|
3147 | data_out(i,j,k) = data_in(i,j,LMIN) |
---|
3148 | ELSE |
---|
3149 | IF (extrapolate) THEN |
---|
3150 | ! Extrapolate downward because desired P level is below |
---|
3151 | ! the lowest level in our input data. Extrapolate using simple |
---|
3152 | ! 1st derivative of value with respect to ln P for the bottom 2 |
---|
3153 | ! input layers. |
---|
3154 | |
---|
3155 | ! Add a check to make sure we are not using the gradient of |
---|
3156 | ! a very thin layer |
---|
3157 | |
---|
3158 | IF ( (press_in(i,j,LMIN)-press_in(i,j,LMIN+1)) .GT. 100.) THEN |
---|
3159 | dlnp = log(press_in(i,j,LMIN))-log(press_in(i,j,LMIN+1)) |
---|
3160 | dlnvaldlnp = ( log(data_in(i,j,LMIN)) - log(data_in(i,j,LMIN+1)) ) / dlnp |
---|
3161 | |
---|
3162 | ELSE |
---|
3163 | |
---|
3164 | dlnp = log(press_in(i,j,LMIN))-log(press_in(i,j,LMIN+2)) |
---|
3165 | dlnvaldlnp = (log(data_in(i,j,LMIN)) - log(data_in(i,j,LMIN+2))) / dlnp |
---|
3166 | |
---|
3167 | ENDIF |
---|
3168 | |
---|
3169 | data_out(i,j,k) = exp(log(data_in(i,j,LMIN)) + dlnvaldlnp * & |
---|
3170 | ( log(desired_press)-log(press_in(i,j,LMIN)))) |
---|
3171 | ELSE |
---|
3172 | data_out(i,j,k) = data_in(i,j,LMIN) |
---|
3173 | ENDIF |
---|
3174 | ENDIF |
---|
3175 | ELSE IF (desired_press .LT. press_in(i,j,generic)) THEN |
---|
3176 | IF ( (press_in(i,j,generic) - desired_press) .LT. 10.) THEN |
---|
3177 | data_out(i,j,k) = data_in(i,j,generic) |
---|
3178 | ELSE |
---|
3179 | IF (extrapolate) THEN |
---|
3180 | ! Extrapolate upward |
---|
3181 | IF ((press_in(i,j,generic-1)-press_in(i,j,generic)).GT.50.) THEN |
---|
3182 | dlnp =log(press_in(i,j,generic))-log(press_in(i,j,generic-1)) |
---|
3183 | dlnvaldlnp=(log(data_in(i,j,generic))-log(data_in(i,j,generic-1)))/dlnp |
---|
3184 | ELSE |
---|
3185 | dlnp =log(press_in(i,j,generic))-log(press_in(i,j,generic-2)) |
---|
3186 | dlnvaldlnp=(log(data_in(i,j,generic))-log(data_in(i,j,generic-2)))/dlnp |
---|
3187 | ENDIF |
---|
3188 | data_out(i,j,k) = exp(log(data_in(i,j,generic)) + & |
---|
3189 | dlnvaldlnp * (log(desired_press)-log(press_in(i,j,generic)))) |
---|
3190 | ELSE |
---|
3191 | data_out(i,j,k) = data_in(i,j,generic) |
---|
3192 | ENDIF |
---|
3193 | ENDIF |
---|
3194 | ELSE |
---|
3195 | ! We can trap between two levels and linearly interpolate |
---|
3196 | |
---|
3197 | input_loop: DO kk = LMIN, generic-1 |
---|
3198 | IF (desired_press .EQ. press_in(i,j,kk) )THEN |
---|
3199 | data_out(i,j,k) = data_in(i,j,kk) |
---|
3200 | EXIT input_loop |
---|
3201 | ELSE IF ( (desired_press .LT. press_in(i,j,kk)) .AND. & |
---|
3202 | (desired_press .GT. press_in(i,j,kk+1)) ) THEN |
---|
3203 | |
---|
3204 | ! do trapped in lnp |
---|
3205 | |
---|
3206 | dlnp = log(press_in(i,j,kk)) - log(press_in(i,j,kk+1)) |
---|
3207 | dlnvaldlnp = (log(data_in(i,j,kk))-log(data_in(i,j,kk+1)))/dlnp |
---|
3208 | data_out(i,j,k) = exp(log(data_in(i,j,kk+1))+ & |
---|
3209 | dlnvaldlnp*(log(desired_press)-log(press_in(i,j,kk+1)))) |
---|
3210 | |
---|
3211 | EXIT input_loop |
---|
3212 | |
---|
3213 | ENDIF |
---|
3214 | |
---|
3215 | ENDDO input_loop |
---|
3216 | ENDIF |
---|
3217 | ENDDO output_loop |
---|
3218 | ENDDO test_i |
---|
3219 | ENDDO |
---|
3220 | END SUBROUTINE interp_press2press_log |
---|
3221 | |
---|
3222 | !------------------------------------------------------------------- |
---|
3223 | SUBROUTINE rh_to_mxrat (rh, t, p, q , wrt_liquid , & |
---|
3224 | ids , ide , jds , jde , kds , kde , & |
---|
3225 | ims , ime , jms , jme , kms , kme , & |
---|
3226 | its , ite , jts , jte , kts , kte ) |
---|
3227 | |
---|
3228 | IMPLICIT NONE |
---|
3229 | |
---|
3230 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
3231 | ims , ime , jms , jme , kms , kme , & |
---|
3232 | its , ite , jts , jte , kts , kte |
---|
3233 | |
---|
3234 | LOGICAL , INTENT(IN) :: wrt_liquid |
---|
3235 | |
---|
3236 | ! REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: p , t |
---|
3237 | ! REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(INOUT) :: rh |
---|
3238 | REAL , DIMENSION(ims:ime,jms:jme,kms:kme) , INTENT(IN) :: p , t |
---|
3239 | REAL , DIMENSION(ims:ime,jms:jme,kms:kme) , INTENT(INOUT) :: rh |
---|
3240 | REAL , DIMENSION(ims:ime,jms:jme,kms:kme) , INTENT(OUT) :: q |
---|
3241 | |
---|
3242 | ! Local vars |
---|
3243 | |
---|
3244 | INTEGER :: i , j , k |
---|
3245 | |
---|
3246 | REAL :: ew , q1 , t1 |
---|
3247 | |
---|
3248 | REAL, PARAMETER :: T_REF = 0.0 |
---|
3249 | REAL, PARAMETER :: MW_AIR = 28.966 |
---|
3250 | REAL, PARAMETER :: MW_VAP = 18.0152 |
---|
3251 | |
---|
3252 | REAL, PARAMETER :: A0 = 6.107799961 |
---|
3253 | REAL, PARAMETER :: A1 = 4.436518521e-01 |
---|
3254 | REAL, PARAMETER :: A2 = 1.428945805e-02 |
---|
3255 | REAL, PARAMETER :: A3 = 2.650648471e-04 |
---|
3256 | REAL, PARAMETER :: A4 = 3.031240396e-06 |
---|
3257 | REAL, PARAMETER :: A5 = 2.034080948e-08 |
---|
3258 | REAL, PARAMETER :: A6 = 6.136820929e-11 |
---|
3259 | |
---|
3260 | REAL, PARAMETER :: ES0 = 6.1121 |
---|
3261 | |
---|
3262 | REAL, PARAMETER :: C1 = 9.09718 |
---|
3263 | REAL, PARAMETER :: C2 = 3.56654 |
---|
3264 | REAL, PARAMETER :: C3 = 0.876793 |
---|
3265 | REAL, PARAMETER :: EIS = 6.1071 |
---|
3266 | REAL :: RHS |
---|
3267 | REAL, PARAMETER :: TF = 273.16 |
---|
3268 | REAL :: TK |
---|
3269 | |
---|
3270 | REAL :: ES |
---|
3271 | REAL :: QS |
---|
3272 | REAL, PARAMETER :: EPS = 0.622 |
---|
3273 | REAL, PARAMETER :: SVP1 = 0.6112 |
---|
3274 | REAL, PARAMETER :: SVP2 = 17.67 |
---|
3275 | REAL, PARAMETER :: SVP3 = 29.65 |
---|
3276 | REAL, PARAMETER :: SVPT0 = 273.15 |
---|
3277 | |
---|
3278 | ! This subroutine computes mixing ratio (q, kg/kg) from basic variables |
---|
3279 | ! pressure (p, Pa), temperature (t, K) and relative humidity (rh, 1-100%). |
---|
3280 | ! The reference temperature (t_ref, C) is used to describe the temperature |
---|
3281 | ! at which the liquid and ice phase change occurs. |
---|
3282 | |
---|
3283 | DO k = kts , kte |
---|
3284 | DO j = jts , MIN ( jde-1 , jte ) |
---|
3285 | DO i = its , MIN (ide-1 , ite ) |
---|
3286 | rh(i,j,k) = MIN ( MAX ( rh(i,j,k) , 1. ) , 100. ) |
---|
3287 | END DO |
---|
3288 | END DO |
---|
3289 | END DO |
---|
3290 | |
---|
3291 | IF ( wrt_liquid ) THEN |
---|
3292 | DO k = kts , kte |
---|
3293 | DO j = jts , MIN ( jde-1 , jte ) |
---|
3294 | DO i = its , MIN (ide-1 , ite ) |
---|
3295 | es=svp1*10.*EXP(svp2*(t(i,j,k)-svpt0)/(t(i,j,k)-svp3)) |
---|
3296 | qs=eps*es/(p(i,j,k)/100.-es) |
---|
3297 | q(i,j,k)=MAX(.01*rh(i,j,k)*qs,0.0) |
---|
3298 | END DO |
---|
3299 | END DO |
---|
3300 | END DO |
---|
3301 | |
---|
3302 | ELSE |
---|
3303 | DO k = kts , kte |
---|
3304 | DO j = jts , MIN ( jde-1 , jte ) |
---|
3305 | DO i = its , MIN (ide-1 , ite ) |
---|
3306 | |
---|
3307 | t1 = t(i,j,k) - 273.16 |
---|
3308 | |
---|
3309 | ! Obviously dry. |
---|
3310 | |
---|
3311 | IF ( t1 .lt. -200. ) THEN |
---|
3312 | q(i,j,k) = 0 |
---|
3313 | |
---|
3314 | ELSE |
---|
3315 | |
---|
3316 | ! First compute the ambient vapor pressure of water |
---|
3317 | |
---|
3318 | IF ( ( t1 .GE. t_ref ) .AND. ( t1 .GE. -47.) ) THEN ! liq phase ESLO |
---|
3319 | ew = a0 + t1 * (a1 + t1 * (a2 + t1 * (a3 + t1 * (a4 + t1 * (a5 + t1 * a6))))) |
---|
3320 | |
---|
3321 | ELSE IF ( ( t1 .GE. t_ref ) .AND. ( t1 .LT. -47. ) ) then !liq phas poor ES |
---|
3322 | ew = es0 * exp(17.67 * t1 / ( t1 + 243.5)) |
---|
3323 | |
---|
3324 | ELSE |
---|
3325 | tk = t(i,j,k) |
---|
3326 | rhs = -c1 * (tf / tk - 1.) - c2 * alog10(tf / tk) + & |
---|
3327 | c3 * (1. - tk / tf) + alog10(eis) |
---|
3328 | ew = 10. ** rhs |
---|
3329 | |
---|
3330 | END IF |
---|
3331 | |
---|
3332 | ! Now sat vap pres obtained compute local vapor pressure |
---|
3333 | |
---|
3334 | ew = MAX ( ew , 0. ) * rh(i,j,k) * 0.01 |
---|
3335 | |
---|
3336 | ! Now compute the specific humidity using the partial vapor |
---|
3337 | ! pressures of water vapor (ew) and dry air (p-ew). The |
---|
3338 | ! constants assume that the pressure is in hPa, so we divide |
---|
3339 | ! the pressures by 100. |
---|
3340 | |
---|
3341 | q1 = mw_vap * ew |
---|
3342 | q1 = q1 / (q1 + mw_air * (p(i,j,k)/100. - ew)) |
---|
3343 | |
---|
3344 | q(i,j,k) = q1 / (1. - q1 ) |
---|
3345 | |
---|
3346 | END IF |
---|
3347 | |
---|
3348 | END DO |
---|
3349 | END DO |
---|
3350 | END DO |
---|
3351 | |
---|
3352 | END IF |
---|
3353 | |
---|
3354 | END SUBROUTINE rh_to_mxrat |
---|
3355 | |
---|
3356 | !--=------------------------------------------------------------------ |
---|
3357 | |
---|
3358 | SUBROUTINE boundary_smooth(h, landmask, grid, nsmth , nrow & |
---|
3359 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
3360 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
3361 | &, ITS,ITE,JTS,JTE,KTS,KTE ) |
---|
3362 | |
---|
3363 | implicit none |
---|
3364 | |
---|
3365 | TYPE (domain) :: grid |
---|
3366 | |
---|
3367 | integer :: IDS,IDE,JDS,JDE,KDS,KDE |
---|
3368 | integer :: IMS,IME,JMS,JME,KMS,KME |
---|
3369 | integer :: ITS,ITE,JTS,JTE,KTS,KTE |
---|
3370 | integer:: ihw(JDS:JDE-1),ihe(JDS:JDE-1),nsmth,nrow |
---|
3371 | real:: h(IMS:IME,JMS:JME),landmask(IMS:IME,JMS:JME) |
---|
3372 | real :: h_old(IMS:IME,JMS:JME) |
---|
3373 | real :: hbms(IDS:IDE-1,JDS:JDE-1) |
---|
3374 | real :: hse(IDS:IDE-1,JDS:JDE-1) |
---|
3375 | real :: hne(IDS:IDE-1,JDS:JDE-1) |
---|
3376 | integer :: IPS,IPE,JPS,JPE,KPS,KPE |
---|
3377 | integer :: ihl, ihh, m2l, ibas,jmelin |
---|
3378 | integer :: I,J,KS,IOFFSET,JSTART,JEND |
---|
3379 | character (len=255) :: message |
---|
3380 | |
---|
3381 | ips=its |
---|
3382 | ipe=ite |
---|
3383 | jps=jts |
---|
3384 | jpe=jte |
---|
3385 | kps=kts |
---|
3386 | kpe=kte |
---|
3387 | |
---|
3388 | do j= JTS,min(JTE,JDE-1) |
---|
3389 | ihw(J)=-mod(J,2) |
---|
3390 | ihe(j)=ihw(J)+1 |
---|
3391 | end do |
---|
3392 | |
---|
3393 | do J=JTS,min(JTE,JDE-1) |
---|
3394 | do I=ITS,min(ITE,IDE-1) |
---|
3395 | hbms(I,J)=landmask(I,J) |
---|
3396 | enddo |
---|
3397 | enddo |
---|
3398 | |
---|
3399 | jmelin=(JDE-1)-nrow+1 |
---|
3400 | ibas=nrow/2 |
---|
3401 | m2l=mod(nrow,2) |
---|
3402 | |
---|
3403 | do j=jts,min(jte,jde-1) |
---|
3404 | ihl=ibas+mod(j,2)+m2l*mod(J+1,2) |
---|
3405 | ihh=(IDE-1)-ibas-m2l*mod(J+1,2) |
---|
3406 | do i=its,min(ite,ide-1) |
---|
3407 | if (I .ge. ihl .and. I .le. ihh .and. J .ge. nrow .and. J .le. jmelin) then |
---|
3408 | hbms(I,J)=0. |
---|
3409 | endif |
---|
3410 | end do |
---|
3411 | end do |
---|
3412 | |
---|
3413 | 634 format(30(f2.0,1x)) |
---|
3414 | |
---|
3415 | do KS=1,nsmth |
---|
3416 | |
---|
3417 | grid%ht_gc=h |
---|
3418 | #ifdef DM_PARALLEL |
---|
3419 | # include "HALO_NMM_MG.inc" |
---|
3420 | #endif |
---|
3421 | h=grid%ht_gc |
---|
3422 | h_old=grid%ht_gc |
---|
3423 | |
---|
3424 | do J=JTS,min(JTE,JDE-1) |
---|
3425 | do I=ITS, min(ITE,IDE-1) |
---|
3426 | if (I .ge. (IDS+mod(J,2)) .and. J .gt. JDS .and. J .lt. JDE-1 .and. I .lt. IDE-1) then |
---|
3427 | h(i,j)= ( h_old(i+ihe(j),j+1) + h_old(i+ihw(j),j-1) + h_old(i+ihe(j),j-1) + h_old(i+ihw(j),j+1) - & |
---|
3428 | 4. *h_old(i,j) )*hbms(i,j)*0.125+h_old(i,j) |
---|
3429 | endif |
---|
3430 | |
---|
3431 | enddo |
---|
3432 | enddo |
---|
3433 | |
---|
3434 | ! special treatment for four corners |
---|
3435 | |
---|
3436 | if (hbms(1,1) .eq. 1 .and. ITS .le. 1 .and. JTS .le. 1) then |
---|
3437 | h(1,1)=0.75*h(1,1)+0.125*h(1+ihe(1),2)+ & |
---|
3438 | 0.0625*(h(2,1)+h(1,3)) |
---|
3439 | endif |
---|
3440 | |
---|
3441 | if (hbms(IDE-1,1) .eq. 1 .and. ITE .ge. IDE-2 .and. JTS .le. 1) then |
---|
3442 | h(IDE-1,1)=0.75*h(IDE-1,1)+0.125*h(IDE-1+ihw(1),2)+ & |
---|
3443 | 0.0625*(h(IDE-1-1,1)+h(IDE-1,3)) |
---|
3444 | endif |
---|
3445 | |
---|
3446 | if (hbms(1,JDE-1) .eq. 1 .and. ITS .le. 1 .and. JTE .ge. JDE-2) then |
---|
3447 | h(1,JDE-1)=0.75*h(1,JDE-1)+0.125*h(1+ihe(JDE-1),JDE-1-1)+ & |
---|
3448 | 0.0625*(h(2,JDE-1)+h(1,JDE-1-2)) |
---|
3449 | endif |
---|
3450 | |
---|
3451 | if (hbms(IDE-1,JDE-1) .eq. 1 .and. ITE .ge. IDE-2 .and. JTE .ge. JDE-2) then |
---|
3452 | h(IDE-1,JDE-1)=0.75*h(IDE-1,JDE-1)+0.125*h(IDE-1+ihw(JDE-1),JDE-1-1)+ & |
---|
3453 | 0.0625*(h(IDE-1-1,JDE-1)+h(IDE-1,JDE-1-2)) |
---|
3454 | endif |
---|
3455 | |
---|
3456 | do J=JMS,JME |
---|
3457 | do I=IMS,IME |
---|
3458 | grid%ht_gc(I,J)=h(I,J) |
---|
3459 | enddo |
---|
3460 | enddo |
---|
3461 | #ifdef DM_PARALLEL |
---|
3462 | # include "HALO_NMM_MG.inc" |
---|
3463 | #endif |
---|
3464 | do J=JMS,JME |
---|
3465 | do I=IMS,IME |
---|
3466 | h(I,J)=grid%ht_gc(I,J) |
---|
3467 | enddo |
---|
3468 | enddo |
---|
3469 | |
---|
3470 | |
---|
3471 | ! S bound |
---|
3472 | if (JTS .eq. JDS) then |
---|
3473 | J=JTS |
---|
3474 | |
---|
3475 | do I=ITS,ITE |
---|
3476 | if (I .ge. IDS+1 .and. I .le. IDE-2) then |
---|
3477 | if (hbms(I,J) .eq. 1) then |
---|
3478 | h(I,J)=0.75*h(I,J)+0.125*(h(I+ihw(J),J+1)+h(I+ihe(J),J+1)) |
---|
3479 | endif |
---|
3480 | endif |
---|
3481 | enddo |
---|
3482 | |
---|
3483 | endif |
---|
3484 | |
---|
3485 | ! N bound |
---|
3486 | if (JTE .eq. JDE) then |
---|
3487 | J=JDE-1 |
---|
3488 | write(message,*) 'DOING N BOUND SMOOTHING for J= ', J |
---|
3489 | CALL wrf_message(message) |
---|
3490 | do I=ITS,min(ITE,IDE-1) |
---|
3491 | if (hbms(I,J) .eq. 1 .and. I .ge. IDS+1 .and. I .le. IDE-2) then |
---|
3492 | h(I,J)=0.75*h(I,J)+0.125*(h(I+ihw(J),J-1)+h(I+ihe(J),J-1)) |
---|
3493 | endif |
---|
3494 | enddo |
---|
3495 | endif |
---|
3496 | |
---|
3497 | ! W bound |
---|
3498 | if (ITS .eq. IDS) then |
---|
3499 | I=ITS |
---|
3500 | do J=JTS,min(JTE,JDE-1) |
---|
3501 | if (hbms(I,J) .eq. 1 .and. J .ge. JDS+2 .and. J .le. JDE-3 .and. mod(J,2) .eq. 1) then |
---|
3502 | h(I,J)=0.75*h(I,J)+0.125*(h(I+ihe(J),J+1)+h(I+ihe(J),J-1)) |
---|
3503 | endif |
---|
3504 | enddo |
---|
3505 | endif |
---|
3506 | |
---|
3507 | ! E bound |
---|
3508 | if (ITE .eq. IDE) then |
---|
3509 | write(message,*) 'DOING E BOUND SMOOTHING for I= ', min(ITE,IDE-1) |
---|
3510 | CALL wrf_message(message) |
---|
3511 | I=min(ITE,IDE-1) |
---|
3512 | do J=JTS,min(JTE,JDE-1) |
---|
3513 | if (hbms(I,J) .eq. 1 .and. J .ge. JDS+2 .and. J .le. JDE-3 .and. mod(J,2) .eq. 1) then |
---|
3514 | h(I,J)=0.75*h(I,J)+0.125*(h(I+ihw(J),J+1)+h(I+ihw(J),J-1)) |
---|
3515 | endif |
---|
3516 | enddo |
---|
3517 | endif |
---|
3518 | |
---|
3519 | enddo ! end ks loop |
---|
3520 | |
---|
3521 | do J=JMS,JME |
---|
3522 | do I=IMS,IME |
---|
3523 | grid%ht_gc(I,J)=h(I,J) |
---|
3524 | enddo |
---|
3525 | enddo |
---|
3526 | #ifdef DM_PARALLEL |
---|
3527 | #include "HALO_NMM_MG.inc" |
---|
3528 | #endif |
---|
3529 | do J=JMS,JME |
---|
3530 | do I=IMS,IME |
---|
3531 | h(I,J)=grid%ht_gc(I,J) |
---|
3532 | enddo |
---|
3533 | enddo |
---|
3534 | |
---|
3535 | ! extra smoothing along inner boundary |
---|
3536 | |
---|
3537 | if (JTS .eq. JDS) then |
---|
3538 | if (ITE .eq. IDE) then |
---|
3539 | IOFFSET=1 |
---|
3540 | else |
---|
3541 | IOFFSET=0 |
---|
3542 | endif |
---|
3543 | ! Southern Boundary |
---|
3544 | do i=its,min(ITE,IDE-1)-IOFFSET |
---|
3545 | h(i,2)=0.25*(h(i,1)+h(i+1,1)+ & |
---|
3546 | h(i,3)+h(i+1,3)) |
---|
3547 | enddo |
---|
3548 | endif |
---|
3549 | |
---|
3550 | |
---|
3551 | if (JTE .eq. JDE) then |
---|
3552 | if (ITE .eq. IDE) then |
---|
3553 | IOFFSET=1 |
---|
3554 | else |
---|
3555 | IOFFSET=0 |
---|
3556 | endif |
---|
3557 | do i=its,min(ITE,IDE-1)-IOFFSET |
---|
3558 | h(i,(JDE-1)-1)=0.25*(h(i,(JDE-1)-2)+h(i+1,(JDE-1)-2)+ & |
---|
3559 | h(i,JDE-1)+h(i+1,JDE-1)) |
---|
3560 | enddo |
---|
3561 | endif |
---|
3562 | |
---|
3563 | if (JTS .eq. 1) then |
---|
3564 | JSTART=4 |
---|
3565 | else |
---|
3566 | JSTART=JTS+mod(JTS,2) ! needs to be even |
---|
3567 | endif |
---|
3568 | |
---|
3569 | if (JTE .eq. JDE) then |
---|
3570 | JEND=(JDE-1)-3 |
---|
3571 | else |
---|
3572 | JEND=JTE |
---|
3573 | endif |
---|
3574 | |
---|
3575 | if (ITS .eq. IDS) then |
---|
3576 | |
---|
3577 | ! Western Boundary |
---|
3578 | do j=JSTART,JEND,2 |
---|
3579 | h(1,j)=0.25*(h(1,j-1)+h(2,j-1)+ & |
---|
3580 | h(1,j+1)+h(2,j+1)) |
---|
3581 | |
---|
3582 | enddo |
---|
3583 | endif |
---|
3584 | |
---|
3585 | |
---|
3586 | if (ITE .eq. IDE) then |
---|
3587 | ! Eastern Boundary |
---|
3588 | do j=JSTART,JEND,2 |
---|
3589 | h((IDE-1)-1,j)=0.25*(h((IDE-1)-1,j-1)+h((IDE-1),j-1)+ & |
---|
3590 | h((IDE-1)-1,j+1)+h((IDE-1),j+1)) |
---|
3591 | enddo |
---|
3592 | endif |
---|
3593 | |
---|
3594 | |
---|
3595 | END SUBROUTINE boundary_smooth |
---|
3596 | |
---|
3597 | !-------------------------------------------------------------------- |
---|
3598 | |
---|
3599 | SUBROUTINE monthly_interp_to_date ( field_in , date_str , field_out , & |
---|
3600 | ids , ide , jds , jde , kds , kde , & |
---|
3601 | ims , ime , jms , jme , kms , kme , & |
---|
3602 | its , ite , jts , jte , kts , kte ) |
---|
3603 | |
---|
3604 | ! Linrarly in time interpolate data to a current valid time. The data is |
---|
3605 | ! assumed to come in "monthly", valid at the 15th of every month. |
---|
3606 | |
---|
3607 | IMPLICIT NONE |
---|
3608 | |
---|
3609 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
3610 | ims , ime , jms , jme , kms , kme , & |
---|
3611 | its , ite , jts , jte , kts , kte |
---|
3612 | |
---|
3613 | CHARACTER (LEN=24) , INTENT(IN) :: date_str |
---|
3614 | REAL , DIMENSION(ims:ime,jms:jme,12) , INTENT(IN) :: field_in |
---|
3615 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: field_out |
---|
3616 | |
---|
3617 | ! Local vars |
---|
3618 | |
---|
3619 | INTEGER :: i , j , l |
---|
3620 | INTEGER , DIMENSION(0:13) :: middle |
---|
3621 | INTEGER :: target_julyr , target_julday , target_date |
---|
3622 | INTEGER :: julyr , julday , int_month, next_month |
---|
3623 | REAL :: gmt |
---|
3624 | CHARACTER (LEN=4) :: yr |
---|
3625 | CHARACTER (LEN=2) :: mon , day15 |
---|
3626 | |
---|
3627 | |
---|
3628 | WRITE(day15,FMT='(I2.2)') 15 |
---|
3629 | DO l = 1 , 12 |
---|
3630 | WRITE(mon,FMT='(I2.2)') l |
---|
3631 | CALL get_julgmt ( date_str(1:4)//'-'//mon//'-'//day15//'_'//'00:00:00.0000' , julyr , julday , gmt ) |
---|
3632 | middle(l) = julyr*1000 + julday |
---|
3633 | END DO |
---|
3634 | |
---|
3635 | l = 0 |
---|
3636 | middle(l) = middle( 1) - 31 |
---|
3637 | |
---|
3638 | l = 13 |
---|
3639 | middle(l) = middle(12) + 31 |
---|
3640 | |
---|
3641 | CALL get_julgmt ( date_str , target_julyr , target_julday , gmt ) |
---|
3642 | target_date = target_julyr * 1000 + target_julday |
---|
3643 | find_month : DO l = 0 , 12 |
---|
3644 | IF ( ( middle(l) .LT. target_date ) .AND. ( middle(l+1) .GE. target_date ) ) THEN |
---|
3645 | DO j = jts , MIN ( jde-1 , jte ) |
---|
3646 | DO i = its , MIN (ide-1 , ite ) |
---|
3647 | int_month = MOD ( l , 12 ) |
---|
3648 | IF ( int_month .EQ. 0 ) int_month = 12 |
---|
3649 | |
---|
3650 | IF (int_month == 12) THEN |
---|
3651 | next_month=1 |
---|
3652 | ELSE |
---|
3653 | next_month=int_month+1 |
---|
3654 | ENDIF |
---|
3655 | |
---|
3656 | field_out(i,j) = ( field_in(i,j,next_month) * ( target_date - middle(l) ) + & |
---|
3657 | field_in(i,j,int_month ) * ( middle(l+1) - target_date ) ) / & |
---|
3658 | ( middle(l+1) - middle(l) ) |
---|
3659 | END DO |
---|
3660 | END DO |
---|
3661 | EXIT find_month |
---|
3662 | END IF |
---|
3663 | END DO find_month |
---|
3664 | END SUBROUTINE monthly_interp_to_date |
---|
3665 | |
---|
3666 | !--------------------------------------------------------------------- |
---|
3667 | SUBROUTINE monthly_min_max ( field_in , field_min , field_max , & |
---|
3668 | ids , ide , jds , jde , kds , kde , & |
---|
3669 | ims , ime , jms , jme , kms , kme , & |
---|
3670 | its , ite , jts , jte , kts , kte ) |
---|
3671 | |
---|
3672 | ! Plow through each month, find the max, min values for each i,j. |
---|
3673 | |
---|
3674 | IMPLICIT NONE |
---|
3675 | |
---|
3676 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
3677 | ims , ime , jms , jme , kms , kme , & |
---|
3678 | its , ite , jts , jte , kts , kte |
---|
3679 | |
---|
3680 | REAL , DIMENSION(ims:ime,jms:jme,12) , INTENT(IN) :: field_in |
---|
3681 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: field_min , field_max |
---|
3682 | |
---|
3683 | ! Local vars |
---|
3684 | |
---|
3685 | INTEGER :: i , j , l |
---|
3686 | REAL :: minner , maxxer |
---|
3687 | |
---|
3688 | DO j = jts , MIN(jde-1,jte) |
---|
3689 | DO i = its , MIN(ide-1,ite) |
---|
3690 | minner = field_in(i,j,1) |
---|
3691 | maxxer = field_in(i,j,1) |
---|
3692 | DO l = 2 , 12 |
---|
3693 | IF ( field_in(i,j,l) .LT. minner ) THEN |
---|
3694 | minner = field_in(i,j,l) |
---|
3695 | END IF |
---|
3696 | IF ( field_in(i,j,l) .GT. maxxer ) THEN |
---|
3697 | maxxer = field_in(i,j,l) |
---|
3698 | END IF |
---|
3699 | END DO |
---|
3700 | field_min(i,j) = minner |
---|
3701 | field_max(i,j) = maxxer |
---|
3702 | END DO |
---|
3703 | END DO |
---|
3704 | |
---|
3705 | END SUBROUTINE monthly_min_max |
---|
3706 | |
---|
3707 | !----------------------------------------------------------------------- |
---|
3708 | |
---|
3709 | SUBROUTINE reverse_vert_coord ( field, start_z, end_z & |
---|
3710 | &, IDS,IDE,JDS,JDE,KDS,KDE & |
---|
3711 | &, IMS,IME,JMS,JME,KMS,KME & |
---|
3712 | &, ITS,ITE,JTS,JTE,KTS,KTE ) |
---|
3713 | |
---|
3714 | IMPLICIT NONE |
---|
3715 | |
---|
3716 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
3717 | ims , ime , jms , jme , kms , kme , & |
---|
3718 | its , ite , jts , jte , kts , kte, & |
---|
3719 | start_z, end_z |
---|
3720 | |
---|
3721 | REAL, INTENT(INOUT) :: field(IMS:IME,JMS:JME,end_z) |
---|
3722 | ! local |
---|
3723 | |
---|
3724 | INTEGER :: I,J,L |
---|
3725 | REAL, ALLOCATABLE :: dum3d(:,:,:) |
---|
3726 | |
---|
3727 | allocate(dum3d(IMS:IME,JMS:JME,end_z)) |
---|
3728 | |
---|
3729 | DO L=start_z,end_z |
---|
3730 | DO J=jts,min(jte,jde-1) |
---|
3731 | DO I=its,min(ite,ide-1) |
---|
3732 | dum3d(I,J,L)=field(I,J,end_z-L+start_z) |
---|
3733 | END DO |
---|
3734 | END DO |
---|
3735 | END DO |
---|
3736 | |
---|
3737 | DO L=start_z,end_z |
---|
3738 | DO J=jts,min(jte,jde-1) |
---|
3739 | DO I=its,min(ite,ide-1) |
---|
3740 | field(I,J,L)=dum3d(I,J,L) |
---|
3741 | END DO |
---|
3742 | END DO |
---|
3743 | END DO |
---|
3744 | |
---|
3745 | DEALLOCATE(dum3d) |
---|
3746 | |
---|
3747 | END SUBROUTINE reverse_vert_coord |
---|
3748 | |
---|
3749 | |
---|
3750 | !-------------------------------------------------------------------- |
---|
3751 | |
---|
3752 | SUBROUTINE compute_nmm_levels(ninterface, ptop, eta_levels) |
---|
3753 | |
---|
3754 | USE module_model_constants |
---|
3755 | |
---|
3756 | IMPLICIT NONE |
---|
3757 | |
---|
3758 | character(len=132):: message |
---|
3759 | integer :: ninterface,Lthick,L |
---|
3760 | real, parameter:: gamma=.0065 |
---|
3761 | real, parameter:: t_stand=288. |
---|
3762 | real, parameter:: p_stand=101325. |
---|
3763 | |
---|
3764 | real :: maxdz_compute, ptop |
---|
3765 | real :: plower,pupper,tlay, sum |
---|
3766 | |
---|
3767 | real :: eta_levels(ninterface) |
---|
3768 | real, allocatable:: Z(:) |
---|
3769 | real, allocatable:: deta_levels_spline(:) |
---|
3770 | |
---|
3771 | logical:: print_pbl_warn |
---|
3772 | |
---|
3773 | !---------------------------------------------------- |
---|
3774 | |
---|
3775 | allocate(Z(ninterface)) |
---|
3776 | allocate(deta_levels_spline(ninterface-1)) |
---|
3777 | |
---|
3778 | CALL compute_eta_spline(ninterface-1,deta_levels_spline,ptop) |
---|
3779 | |
---|
3780 | sum=0. |
---|
3781 | DO L=1,ninterface-1 |
---|
3782 | sum=sum+deta_levels_spline(L) |
---|
3783 | ENDDO |
---|
3784 | |
---|
3785 | eta_levels(1)=1.00 |
---|
3786 | |
---|
3787 | DO L=2,ninterface |
---|
3788 | eta_levels(L)=eta_levels(L-1)-deta_levels_spline(L-1) |
---|
3789 | ENDDO |
---|
3790 | |
---|
3791 | eta_levels(ninterface)=0.00 |
---|
3792 | |
---|
3793 | DO L=2,ninterface-1 |
---|
3794 | eta_levels(L)=0.5*(eta_levels(L))+0.25*(eta_levels(L-1)+eta_levels(L+1)) |
---|
3795 | ENDDO |
---|
3796 | |
---|
3797 | Z(1)=0. |
---|
3798 | maxdz_compute=0. |
---|
3799 | print_pbl_warn=.false. |
---|
3800 | |
---|
3801 | DO L=2,ninterface |
---|
3802 | tlay=max( t_stand-gamma*Z(L-1), 216.5) |
---|
3803 | plower=ptop+(p_stand-ptop)*eta_levels(L-1) |
---|
3804 | pupper=ptop+(p_stand-ptop)*eta_levels(L) |
---|
3805 | Z(L)=Z(L-1)+(tlay*r_d/g)*(log(plower)-log(pupper)) |
---|
3806 | |
---|
3807 | if (plower .gt. 85000. .and. pupper .lt. 85000. .and. L .lt. 10) then |
---|
3808 | print_pbl_warn=.true. |
---|
3809 | endif |
---|
3810 | |
---|
3811 | write(message,*) 'L, eta(l), pupper, Z(L): ', L, eta_levels(L),pupper,Z(L) |
---|
3812 | CALL wrf_debug(100,message) |
---|
3813 | |
---|
3814 | if (Z(L)-Z(L-1) .gt. maxdz_compute) then |
---|
3815 | Lthick=L |
---|
3816 | endif |
---|
3817 | |
---|
3818 | maxdz_compute=max(maxdz_compute,Z(L)-Z(L-1)) |
---|
3819 | ENDDO |
---|
3820 | |
---|
3821 | if (print_pbl_warn) then |
---|
3822 | write(message,*) 'WARNING - PBL MAY BE POORLY RESOLVED WITH NUMBER OF VERTICAL LEVELS' |
---|
3823 | CALL wrf_message(message) |
---|
3824 | write(message,*) ' - CONSIDER INCREASING THE VERTICAL RESOLUTION' |
---|
3825 | CALL wrf_message(message) |
---|
3826 | endif |
---|
3827 | |
---|
3828 | write(message,*) 'thickest layer was: ', maxdz_compute , 'meters thick at level: ', Lthick |
---|
3829 | CALL wrf_message(message) |
---|
3830 | |
---|
3831 | END SUBROUTINE compute_nmm_levels |
---|
3832 | |
---|
3833 | !--------------------------- |
---|
3834 | |
---|
3835 | SUBROUTINE compute_eta_spline(LM, dsg, ptop) |
---|
3836 | |
---|
3837 | IMPLICIT NONE |
---|
3838 | |
---|
3839 | real:: dsg(LM), ptop, sum, rsum |
---|
3840 | real, allocatable:: xold(:),dold(:) |
---|
3841 | real, allocatable:: xnew(:),sgm(:) |
---|
3842 | real, allocatable:: pps(:),qqs(:),y2s(:) |
---|
3843 | integer nlev,LM,L,KOLD |
---|
3844 | |
---|
3845 | IF (LM .ge. 46) THEN |
---|
3846 | KOLD=9 |
---|
3847 | allocate(xold(KOLD)) |
---|
3848 | allocate(dold(KOLD)) |
---|
3849 | |
---|
3850 | xold(1)=.00 |
---|
3851 | dold(1)=.006 |
---|
3852 | xold(2)=.13 |
---|
3853 | dold(2)=.009 |
---|
3854 | xold(3)=.19 |
---|
3855 | dold(3)=.012 |
---|
3856 | xold(4)=.30 |
---|
3857 | dold(4)=.036 |
---|
3858 | xold(5)=.42 |
---|
3859 | dold(5)=.041 |
---|
3860 | xold(6)=.56 |
---|
3861 | dold(6)=.040 |
---|
3862 | xold(7)=.69 |
---|
3863 | dold(7)=.018 |
---|
3864 | |
---|
3865 | if (ptop .ge. 2000.) then |
---|
3866 | xold(8)=.90 |
---|
3867 | dold(8)=.012 |
---|
3868 | xold(9)=1.0 |
---|
3869 | dold(9)=.006 |
---|
3870 | else |
---|
3871 | xold(8)=.90 |
---|
3872 | dold(8)=.008 |
---|
3873 | xold(9)=1.0 |
---|
3874 | dold(9)=.003 |
---|
3875 | endif |
---|
3876 | |
---|
3877 | ELSE |
---|
3878 | |
---|
3879 | KOLD=8 |
---|
3880 | allocate(xold(KOLD)) |
---|
3881 | allocate(dold(KOLD)) |
---|
3882 | |
---|
3883 | xold(1)=.00 |
---|
3884 | dold(1)=.006 |
---|
3885 | xold(2)=.18 |
---|
3886 | dold(2)=.015 |
---|
3887 | xold(3)=.32 |
---|
3888 | dold(3)=.035 |
---|
3889 | xold(4)=.50 |
---|
3890 | dold(4)=.040 |
---|
3891 | xold(5)=.68 |
---|
3892 | dold(5)=.030 |
---|
3893 | xold(6)=.75 |
---|
3894 | dold(6)=.017 |
---|
3895 | xold(7)=.85 |
---|
3896 | dold(7)=.012 |
---|
3897 | |
---|
3898 | if (ptop .ge. 2000.) then |
---|
3899 | xold(8)=1.0 |
---|
3900 | dold(8)=.013 |
---|
3901 | else |
---|
3902 | xold(8)=1.0 |
---|
3903 | dold(8)=.008 |
---|
3904 | endif |
---|
3905 | |
---|
3906 | ENDIF |
---|
3907 | |
---|
3908 | allocate(xnew(lm)) |
---|
3909 | allocate(sgm(lm)) |
---|
3910 | allocate(pps(lm)) |
---|
3911 | allocate(qqs(lm)) |
---|
3912 | allocate(y2s(lm)) |
---|
3913 | |
---|
3914 | DO L=1,LM |
---|
3915 | xnew(l)=float(l-1)/float(lm-1) |
---|
3916 | ENDDO |
---|
3917 | |
---|
3918 | y2s=0. |
---|
3919 | |
---|
3920 | CALL spline(kold,kold,xold,dold,y2s,lm,xnew,dsg,pps,qqs) |
---|
3921 | |
---|
3922 | sum=0. |
---|
3923 | DO l=1,lm |
---|
3924 | sum=sum+dsg(l) |
---|
3925 | ENDDO |
---|
3926 | |
---|
3927 | rsum=1./sum |
---|
3928 | sgm(1)=0. |
---|
3929 | |
---|
3930 | DO L=1,lm-1 |
---|
3931 | dsg(l)=dsg(l)*rsum |
---|
3932 | sgm(l+1)=sgm(l)+dsg(l) |
---|
3933 | ENDDO |
---|
3934 | sgm(lm+1)=1. |
---|
3935 | dsg(lm)=sgm(lm+1)-sgm(lm) |
---|
3936 | |
---|
3937 | END SUBROUTINE compute_eta_spline |
---|
3938 | |
---|
3939 | ! ------------------------------------------------------------------- |
---|
3940 | |
---|
3941 | subroutine spline(JTBX,NOLD,XOLD,YOLD,Y2,NNEW,XNEW,YNEW,P,Q) |
---|
3942 | ! ******************************************************************** |
---|
3943 | ! * * |
---|
3944 | ! * THIS IS A ONE-DIMENSIONAL CUBIC SPLINE FITTING ROUTINE * |
---|
3945 | ! * PROGRAMED FOR A SMALL SCALAR MACHINE. * |
---|
3946 | ! * * |
---|
3947 | ! * PROGRAMER Z. JANJIC * |
---|
3948 | ! * * |
---|
3949 | ! * NOLD - NUMBER OF GIVEN VALUES OF THE FUNCTION. MUST BE GE 3. * |
---|
3950 | ! * XOLD - LOCATIONS OF THE POINTS AT WHICH THE VALUES OF THE * |
---|
3951 | ! * FUNCTION ARE GIVEN. MUST BE IN ASCENDING ORDER. * |
---|
3952 | ! * YOLD - THE GIVEN VALUES OF THE FUNCTION AT THE POINTS XOLD. * |
---|
3953 | ! * Y2 - THE SECOND DERIVATIVES AT THE POINTS XOLD. IF NATURAL * |
---|
3954 | ! * SPLINE IS FITTED Y2(1)=0. AND Y2(NOLD)=0. MUST BE * |
---|
3955 | ! * SPECIFIED. * |
---|
3956 | ! * NNEW - NUMBER OF VALUES OF THE FUNCTION TO BE CALCULATED. * |
---|
3957 | ! * XNEW - LOCATIONS OF THE POINTS AT WHICH THE VALUES OF THE * |
---|
3958 | ! * FUNCTION ARE CALCULATED. XNEW(K) MUST BE GE XOLD(1) * |
---|
3959 | ! * AND LE XOLD(NOLD). * |
---|
3960 | ! * YNEW - THE VALUES OF THE FUNCTION TO BE CALCULATED. * |
---|
3961 | ! * P, Q - AUXILIARY VECTORS OF THE LENGTH NOLD-2. * |
---|
3962 | ! * * |
---|
3963 | ! ******************************************************************** |
---|
3964 | ! |
---|
3965 | ! LOG: |
---|
3966 | ! |
---|
3967 | ! PYLE - June 2007 - eliminated use of GO TO statements. |
---|
3968 | ! |
---|
3969 | !----------------------------------------------------------------------- |
---|
3970 | IMPLICIT NONE |
---|
3971 | !----------------------------------------------------------------------- |
---|
3972 | INTEGER,INTENT(IN) :: JTBX,NNEW,NOLD |
---|
3973 | REAL,DIMENSION(JTBX),INTENT(IN) :: XNEW,XOLD,YOLD |
---|
3974 | REAL,DIMENSION(JTBX),INTENT(INOUT) :: P,Q,Y2 |
---|
3975 | REAL,DIMENSION(JTBX),INTENT(OUT) :: YNEW |
---|
3976 | ! |
---|
3977 | INTEGER :: K,K1,K2,KOLD,NOLDM1 |
---|
3978 | REAL :: AK,BK,CK,DEN,DX,DXC,DXL,DXR,DYDXL,DYDXR & |
---|
3979 | & ,RDX,RTDXC,X,XK,XSQ,Y2K,Y2KP1 |
---|
3980 | !----------------------------------------------------------------------- |
---|
3981 | NOLDM1=NOLD-1 |
---|
3982 | |
---|
3983 | DXL=XOLD(2)-XOLD(1) |
---|
3984 | DXR=XOLD(3)-XOLD(2) |
---|
3985 | DYDXL=(YOLD(2)-YOLD(1))/DXL |
---|
3986 | DYDXR=(YOLD(3)-YOLD(2))/DXR |
---|
3987 | RTDXC=0.5/(DXL+DXR) |
---|
3988 | |
---|
3989 | P(1)= RTDXC*(6.*(DYDXR-DYDXL)-DXL*Y2(1)) |
---|
3990 | Q(1)=-RTDXC*DXR |
---|
3991 | |
---|
3992 | first_loop: DO K=3,NOLD-1 |
---|
3993 | IF(NOLD==3) exit first_loop ! should be impossible to execute |
---|
3994 | DXL=DXR |
---|
3995 | DYDXL=DYDXR |
---|
3996 | DXR=XOLD(K+1)-XOLD(K) |
---|
3997 | DYDXR=(YOLD(K+1)-YOLD(K))/DXR |
---|
3998 | DXC=DXL+DXR |
---|
3999 | DEN=1./(DXL*Q(K-2)+DXC+DXC) |
---|
4000 | P(K-1)= DEN*(6.*(DYDXR-DYDXL)-DXL*P(K-2)) |
---|
4001 | Q(K-1)=-DEN*DXR |
---|
4002 | END DO first_loop |
---|
4003 | |
---|
4004 | DO K=NOLDM1,2,-1 |
---|
4005 | Y2(K)=P(K-1)+Q(K-1)*Y2(K+1) |
---|
4006 | END DO |
---|
4007 | |
---|
4008 | !----------------------------------------------------------------------- |
---|
4009 | second_loop: DO K1=1,NNEW+1 |
---|
4010 | XK=XNEW(K1) |
---|
4011 | third_loop: DO K2=2,NOLD |
---|
4012 | IF(XOLD(K2)>XK)THEN |
---|
4013 | KOLD=K2-1 |
---|
4014 | exit third_loop |
---|
4015 | ENDIF |
---|
4016 | END DO third_loop |
---|
4017 | |
---|
4018 | IF (XOLD(K2) .le. XK) THEN |
---|
4019 | YNEW(K1)=YOLD(NOLD) |
---|
4020 | CYCLE second_loop |
---|
4021 | ENDIF |
---|
4022 | |
---|
4023 | IF (K1 .eq. 1 .or. K .ne. KOLD) THEN |
---|
4024 | K=KOLD |
---|
4025 | Y2K=Y2(K) |
---|
4026 | Y2KP1=Y2(K+1) |
---|
4027 | DX=XOLD(K+1)-XOLD(K) |
---|
4028 | RDX=1./DX |
---|
4029 | AK=.1666667*RDX*(Y2KP1-Y2K) |
---|
4030 | BK=0.5*Y2K |
---|
4031 | CK=RDX*(YOLD(K+1)-YOLD(K))-.1666667*DX*(Y2KP1+Y2K+Y2K) |
---|
4032 | ENDIF |
---|
4033 | |
---|
4034 | X=XK-XOLD(K) |
---|
4035 | XSQ=X*X |
---|
4036 | YNEW(K1)=AK*XSQ*X+BK*XSQ+CK*X+YOLD(K) |
---|
4037 | END DO second_loop |
---|
4038 | |
---|
4039 | END SUBROUTINE SPLINE |
---|
4040 | |
---|
4041 | !-------------------------------------------------------------------- |
---|
4042 | SUBROUTINE NMM_SH2O(IMS,IME,JMS,JME,ISTART,IM,JSTART,JM,& |
---|
4043 | NSOIL,ISLTPK, & |
---|
4044 | SM,SICE,STC,SMC,SH2O) |
---|
4045 | |
---|
4046 | !! INTEGER, PARAMETER:: NSOTYP=9 |
---|
4047 | ! INTEGER, PARAMETER:: NSOTYP=16 |
---|
4048 | INTEGER, PARAMETER:: NSOTYP=19 !!!!!!!!MAYBE??? |
---|
4049 | |
---|
4050 | REAL :: PSIS(NSOTYP),BETA(NSOTYP),SMCMAX(NSOTYP) |
---|
4051 | REAL :: STC(IMS:IME,NSOIL,JMS:JME), & |
---|
4052 | SMC(IMS:IME,NSOIL,JMS:JME) |
---|
4053 | REAL :: SH2O(IMS:IME,NSOIL,JMS:JME),SICE(IMS:IME,JMS:JME),& |
---|
4054 | SM(IMS:IME,JMS:JME) |
---|
4055 | REAL :: HLICE,GRAV,T0,BLIM |
---|
4056 | INTEGER :: ISLTPK(IMS:IME,JMS:JME) |
---|
4057 | CHARACTER(LEN=255) :: message |
---|
4058 | |
---|
4059 | ! Constants used in cold start SH2O initialization |
---|
4060 | DATA HLICE/3.335E5/,GRAV/9.81/,T0/273.15/ |
---|
4061 | DATA BLIM/5.5/ |
---|
4062 | ! DATA PSIS /0.04,0.62,0.47,0.14,0.10,0.26,0.14,0.36,0.04/ |
---|
4063 | ! DATA BETA /4.26,8.72,11.55,4.74,10.73,8.17,6.77,5.25,4.26/ |
---|
4064 | ! DATA SMCMAX /0.421,0.464,0.468,0.434,0.406, & |
---|
4065 | ! 0.465,0.404,0.439,0.421/ |
---|
4066 | |
---|
4067 | |
---|
4068 | !!! NOT SURE...PSIS=SATPSI, BETA=BB?? |
---|
4069 | |
---|
4070 | DATA PSIS /0.069, 0.036, 0.141, 0.759, 0.759, 0.355, & |
---|
4071 | 0.135, 0.617, 0.263, 0.098, 0.324, 0.468, & |
---|
4072 | 0.355, 0.000, 0.069, 0.036, 0.468, 0.069, 0.069 / |
---|
4073 | |
---|
4074 | DATA BETA/2.79, 4.26, 4.74, 5.33, 5.33, 5.25, & |
---|
4075 | 6.66, 8.72, 8.17, 10.73, 10.39, 11.55, & |
---|
4076 | 5.25, 0.00, 2.79, 4.26, 11.55, 2.79, 2.79 / |
---|
4077 | |
---|
4078 | DATA SMCMAX/0.339, 0.421, 0.434, 0.476, 0.476, 0.439, & |
---|
4079 | 0.404, 0.464, 0.465, 0.406, 0.468, 0.468, & |
---|
4080 | 0.439, 1.000, 0.200, 0.421, 0.468, 0.200, 0.339/ |
---|
4081 | |
---|
4082 | DO K=1,NSOIL |
---|
4083 | DO J=JSTART,JM |
---|
4084 | DO I=ISTART,IM |
---|
4085 | |
---|
4086 | !tst |
---|
4087 | IF (SMC(I,K,J) .gt. SMCMAX(ISLTPK(I,J))) then |
---|
4088 | if (K .eq. 1) then |
---|
4089 | write(message,*) 'I,J,reducing SMC from ' ,I,J,SMC(I,K,J), 'to ', SMCMAX(ISLTPK(I,J)) |
---|
4090 | CALL wrf_debug(100,message) |
---|
4091 | endif |
---|
4092 | SMC(I,K,J)=SMCMAX(ISLTPK(I,J)) |
---|
4093 | ENDIF |
---|
4094 | !tst |
---|
4095 | |
---|
4096 | IF ( (SM(I,J) .lt. 0.5) .and. (SICE(I,J) .lt. 0.5) ) THEN |
---|
4097 | |
---|
4098 | IF (ISLTPK(I,J) .gt. 19) THEN |
---|
4099 | WRITE(message,*) 'FORCING ISLTPK at : ', I,J |
---|
4100 | CALL wrf_message(message) |
---|
4101 | ISLTPK(I,J)=9 |
---|
4102 | ELSEIF (ISLTPK(I,J) .le. 0) then |
---|
4103 | WRITE(message,*) 'FORCING ISLTPK at : ', I,J |
---|
4104 | CALL wrf_message(message) |
---|
4105 | ISLTPK(I,J)=1 |
---|
4106 | ENDIF |
---|
4107 | |
---|
4108 | |
---|
4109 | ! cold start: determine liquid soil water content (SH2O) |
---|
4110 | ! SH2O <= SMC for T < 273.149K (-0.001C) |
---|
4111 | |
---|
4112 | IF (STC(I,K,J) .LT. 273.149) THEN |
---|
4113 | |
---|
4114 | ! first guess following explicit solution for Flerchinger Eqn from Koren |
---|
4115 | ! et al, JGR, 1999, Eqn 17 (KCOUNT=0 in FUNCTION FRH2O). |
---|
4116 | |
---|
4117 | BX = BETA(ISLTPK(I,J)) |
---|
4118 | IF ( BETA(ISLTPK(I,J)) .GT. BLIM ) BX = BLIM |
---|
4119 | |
---|
4120 | if ( GRAV*(-PSIS(ISLTPK(I,J))) .eq. 0 ) then |
---|
4121 | write(message,*) 'TROUBLE' |
---|
4122 | CALL wrf_message(message) |
---|
4123 | write(message,*) 'I,J: ', i,J |
---|
4124 | CALL wrf_message(message) |
---|
4125 | write(message,*) 'grav, isltpk, psis(isltpk): ', grav,isltpk(I,J),& |
---|
4126 | psis(isltpk(I,J)) |
---|
4127 | CALL wrf_message(message) |
---|
4128 | endif |
---|
4129 | |
---|
4130 | if (BX .eq. 0 .or. STC(I,K,J) .eq. 0) then |
---|
4131 | write(message,*) 'TROUBLE -- I,J,BX, STC: ', I,J,BX,STC(I,K,J) |
---|
4132 | CALL wrf_message(message) |
---|
4133 | endif |
---|
4134 | FK = (((HLICE/(GRAV*(-PSIS(ISLTPK(I,J)))))* & |
---|
4135 | ((STC(I,K,J)-T0)/STC(I,K,J)))** & |
---|
4136 | (-1/BX))*SMCMAX(ISLTPK(I,J)) |
---|
4137 | IF (FK .LT. 0.02) FK = 0.02 |
---|
4138 | SH2O(I,K,J) = MIN ( FK, SMC(I,K,J) ) |
---|
4139 | ! ---------------------------------------------------------------------- |
---|
4140 | ! now use iterative solution for liquid soil water content using |
---|
4141 | ! FUNCTION FRH2O (from the Eta "NOAH" land-surface model) with the |
---|
4142 | ! initial guess for SH2O from above explicit first guess. |
---|
4143 | |
---|
4144 | SH2O(I,K,J)=FRH2O_init(STC(I,K,J),SMC(I,K,J),SH2O(I,K,J), & |
---|
4145 | SMCMAX(ISLTPK(I,J)),BETA(ISLTPK(I,J)), & |
---|
4146 | PSIS(ISLTPK(I,J))) |
---|
4147 | |
---|
4148 | ELSE ! above freezing |
---|
4149 | SH2O(I,K,J)=SMC(I,K,J) |
---|
4150 | ENDIF |
---|
4151 | |
---|
4152 | |
---|
4153 | ELSE ! water point |
---|
4154 | SH2O(I,K,J)=SMC(I,K,J) |
---|
4155 | |
---|
4156 | ENDIF ! test on land/ice/sea |
---|
4157 | if (SH2O(I,K,J) .gt. SMCMAX(ISLTPK(I,J))) then |
---|
4158 | write(message,*) 'SH2O > THAN SMCMAX ', I,J,SH2O(I,K,J),SMCMAX(ISLTPK(I,J)),SMC(I,K,J) |
---|
4159 | CALL wrf_message(message) |
---|
4160 | endif |
---|
4161 | |
---|
4162 | ENDDO |
---|
4163 | ENDDO |
---|
4164 | ENDDO |
---|
4165 | |
---|
4166 | END SUBROUTINE NMM_SH2O |
---|
4167 | |
---|
4168 | !------------------------------------------------------------------- |
---|
4169 | |
---|
4170 | FUNCTION FRH2O_init(TKELV,SMC,SH2O,SMCMAX,B,PSIS) |
---|
4171 | |
---|
4172 | IMPLICIT NONE |
---|
4173 | |
---|
4174 | ! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
4175 | ! PURPOSE: CALCULATE AMOUNT OF SUPERCOOLED LIQUID SOIL WATER CONTENT |
---|
4176 | ! IF TEMPERATURE IS BELOW 273.15K (T0). REQUIRES NEWTON-TYPE ITERATION |
---|
4177 | ! TO SOLVE THE NONLINEAR IMPLICIT EQUATION GIVEN IN EQN 17 OF |
---|
4178 | ! KOREN ET AL. (1999, JGR, VOL 104(D16), 19569-19585). |
---|
4179 | ! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
4180 | ! |
---|
4181 | ! New version (JUNE 2001): much faster and more accurate newton iteration |
---|
4182 | ! achieved by first taking log of eqn cited above -- less than 4 |
---|
4183 | ! (typically 1 or 2) iterations achieves convergence. Also, explicit |
---|
4184 | ! 1-step solution option for special case of parameter Ck=0, which reduces |
---|
4185 | ! the original implicit equation to a simpler explicit form, known as the |
---|
4186 | ! ""Flerchinger Eqn". Improved handling of solution in the limit of |
---|
4187 | ! freezing point temperature T0. |
---|
4188 | ! |
---|
4189 | ! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
4190 | ! |
---|
4191 | ! INPUT: |
---|
4192 | ! |
---|
4193 | ! TKELV.........Temperature (Kelvin) |
---|
4194 | ! SMC...........Total soil moisture content (volumetric) |
---|
4195 | ! SH2O..........Liquid soil moisture content (volumetric) |
---|
4196 | ! SMCMAX........Saturation soil moisture content (from REDPRM) |
---|
4197 | ! B.............Soil type "B" parameter (from REDPRM) |
---|
4198 | ! PSIS..........Saturated soil matric potential (from REDPRM) |
---|
4199 | ! |
---|
4200 | ! OUTPUT: |
---|
4201 | ! FRH2O.........supercooled liquid water content. |
---|
4202 | ! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
4203 | |
---|
4204 | REAL B |
---|
4205 | REAL BLIM |
---|
4206 | REAL BX |
---|
4207 | REAL CK |
---|
4208 | REAL DENOM |
---|
4209 | REAL DF |
---|
4210 | REAL DH2O |
---|
4211 | REAL DICE |
---|
4212 | REAL DSWL |
---|
4213 | REAL ERROR |
---|
4214 | REAL FK |
---|
4215 | REAL FRH2O_init |
---|
4216 | REAL GS |
---|
4217 | REAL HLICE |
---|
4218 | REAL PSIS |
---|
4219 | REAL SH2O |
---|
4220 | REAL SMC |
---|
4221 | REAL SMCMAX |
---|
4222 | REAL SWL |
---|
4223 | REAL SWLK |
---|
4224 | REAL TKELV |
---|
4225 | REAL T0 |
---|
4226 | |
---|
4227 | INTEGER NLOG |
---|
4228 | INTEGER KCOUNT |
---|
4229 | PARAMETER (CK=8.0) |
---|
4230 | ! PARAMETER (CK=0.0) |
---|
4231 | PARAMETER (BLIM=5.5) |
---|
4232 | ! PARAMETER (BLIM=7.0) |
---|
4233 | PARAMETER (ERROR=0.005) |
---|
4234 | |
---|
4235 | PARAMETER (HLICE=3.335E5) |
---|
4236 | PARAMETER (GS = 9.81) |
---|
4237 | PARAMETER (DICE=920.0) |
---|
4238 | PARAMETER (DH2O=1000.0) |
---|
4239 | PARAMETER (T0=273.15) |
---|
4240 | |
---|
4241 | ! ### LIMITS ON PARAMETER B: B < 5.5 (use parameter BLIM) #### |
---|
4242 | ! ### SIMULATIONS SHOWED IF B > 5.5 UNFROZEN WATER CONTENT #### |
---|
4243 | ! ### IS NON-REALISTICALLY HIGH AT VERY LOW TEMPERATURES #### |
---|
4244 | ! ################################################################ |
---|
4245 | ! |
---|
4246 | BX = B |
---|
4247 | IF ( B .GT. BLIM ) BX = BLIM |
---|
4248 | ! ------------------------------------------------------------------ |
---|
4249 | |
---|
4250 | ! INITIALIZING ITERATIONS COUNTER AND ITERATIVE SOLUTION FLAG. |
---|
4251 | NLOG=0 |
---|
4252 | KCOUNT=0 |
---|
4253 | |
---|
4254 | ! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
4255 | ! C IF TEMPERATURE NOT SIGNIFICANTLY BELOW FREEZING (T0), SH2O = SMC |
---|
4256 | ! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
4257 | |
---|
4258 | |
---|
4259 | IF (TKELV .GT. (T0 - 1.E-3)) THEN |
---|
4260 | |
---|
4261 | FRH2O_init=SMC |
---|
4262 | |
---|
4263 | ELSE |
---|
4264 | |
---|
4265 | ! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
4266 | IF (CK .NE. 0.0) THEN |
---|
4267 | |
---|
4268 | ! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
4269 | ! CCCCCCCCC OPTION 1: ITERATED SOLUTION FOR NONZERO CK CCCCCCCCCCC |
---|
4270 | ! CCCCCCCCCCCC IN KOREN ET AL, JGR, 1999, EQN 17 CCCCCCCCCCCCCCCCC |
---|
4271 | |
---|
4272 | ! INITIAL GUESS FOR SWL (frozen content) |
---|
4273 | SWL = SMC-SH2O |
---|
4274 | ! KEEP WITHIN BOUNDS. |
---|
4275 | IF (SWL .GT. (SMC-0.02)) SWL=SMC-0.02 |
---|
4276 | IF(SWL .LT. 0.) SWL=0. |
---|
4277 | ! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
4278 | ! C START OF ITERATIONS |
---|
4279 | ! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
4280 | DO WHILE (NLOG .LT. 10 .AND. KCOUNT .EQ. 0) |
---|
4281 | NLOG = NLOG+1 |
---|
4282 | DF = ALOG(( PSIS*GS/HLICE ) * ( ( 1.+CK*SWL )**2. ) * & |
---|
4283 | ( SMCMAX/(SMC-SWL) )**BX) - ALOG(-(TKELV-T0)/TKELV) |
---|
4284 | DENOM = 2. * CK / ( 1.+CK*SWL ) + BX / ( SMC - SWL ) |
---|
4285 | SWLK = SWL - DF/DENOM |
---|
4286 | ! BOUNDS USEFUL FOR MATHEMATICAL SOLUTION. |
---|
4287 | IF (SWLK .GT. (SMC-0.02)) SWLK = SMC - 0.02 |
---|
4288 | IF(SWLK .LT. 0.) SWLK = 0. |
---|
4289 | ! MATHEMATICAL SOLUTION BOUNDS APPLIED. |
---|
4290 | DSWL=ABS(SWLK-SWL) |
---|
4291 | SWL=SWLK |
---|
4292 | ! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
4293 | ! CC IF MORE THAN 10 ITERATIONS, USE EXPLICIT METHOD (CK=0 APPROX.) |
---|
4294 | ! CC WHEN DSWL LESS OR EQ. ERROR, NO MORE ITERATIONS REQUIRED. |
---|
4295 | ! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
4296 | IF ( DSWL .LE. ERROR ) THEN |
---|
4297 | KCOUNT=KCOUNT+1 |
---|
4298 | END IF |
---|
4299 | END DO |
---|
4300 | ! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
4301 | ! C END OF ITERATIONS |
---|
4302 | ! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
4303 | ! BOUNDS APPLIED WITHIN DO-BLOCK ARE VALID FOR PHYSICAL SOLUTION. |
---|
4304 | FRH2O_init = SMC - SWL |
---|
4305 | |
---|
4306 | ! CCCCCCCCCCCCCCCCCCCCCCCC END OPTION 1 CCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
4307 | |
---|
4308 | ENDIF |
---|
4309 | |
---|
4310 | IF (KCOUNT .EQ. 0) THEN |
---|
4311 | ! Print*,'Flerchinger used in NEW version. Iterations=',NLOG |
---|
4312 | |
---|
4313 | ! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
4314 | ! CCCCC OPTION 2: EXPLICIT SOLUTION FOR FLERCHINGER EQ. i.e. CK=0 CCCCCCCC |
---|
4315 | ! CCCCCCCCCCCCC IN KOREN ET AL., JGR, 1999, EQN 17 CCCCCCCCCCCCCCC |
---|
4316 | |
---|
4317 | FK=(((HLICE/(GS*(-PSIS)))*((TKELV-T0)/TKELV))**(-1/BX))*SMCMAX |
---|
4318 | ! APPLY PHYSICAL BOUNDS TO FLERCHINGER SOLUTION |
---|
4319 | IF (FK .LT. 0.02) FK = 0.02 |
---|
4320 | FRH2O_init = MIN ( FK, SMC ) |
---|
4321 | |
---|
4322 | ! CCCCCCCCCCCCCCCCCCCCCCCCC END OPTION 2 CCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
4323 | |
---|
4324 | ENDIF |
---|
4325 | |
---|
4326 | ENDIF |
---|
4327 | |
---|
4328 | RETURN |
---|
4329 | |
---|
4330 | END FUNCTION FRH2O_init |
---|
4331 | |
---|
4332 | |
---|
4333 | !-------------------------------------------------------------------- |
---|
4334 | |
---|
4335 | SUBROUTINE init_module_initialize |
---|
4336 | END SUBROUTINE init_module_initialize |
---|
4337 | |
---|
4338 | !--------------------------------------------------------------------- |
---|
4339 | |
---|
4340 | END MODULE module_initialize_real |
---|