| 1 | !WRF:MODEL_LAYER:DYNAMICS |
|---|
| 2 | ! |
|---|
| 3 | |
|---|
| 4 | ! SMALL_STEP code for the geometric height coordinate model |
|---|
| 5 | ! |
|---|
| 6 | !--------------------------------------------------------------------------- |
|---|
| 7 | |
|---|
| 8 | MODULE module_small_step_em |
|---|
| 9 | |
|---|
| 10 | USE module_configure |
|---|
| 11 | USE module_model_constants |
|---|
| 12 | |
|---|
| 13 | CONTAINS |
|---|
| 14 | |
|---|
| 15 | !---------------------------------------------------------------------- |
|---|
| 16 | |
|---|
| 17 | SUBROUTINE small_step_prep( u_1, u_2, v_1, v_2, w_1, w_2, & |
|---|
| 18 | t_1, t_2, ph_1, ph_2, & |
|---|
| 19 | mub, mu_1, mu_2, & |
|---|
| 20 | muu, muus, muv, muvs, & |
|---|
| 21 | mut, muts, mudf, & |
|---|
| 22 | u_save, v_save, w_save, & |
|---|
| 23 | t_save, ph_save, mu_save, & |
|---|
| 24 | ww, ww_save, & |
|---|
| 25 | dnw, c2a, pb, p, alt, & |
|---|
| 26 | msfux, msfuy, msfvx, & |
|---|
| 27 | msfvx_inv, & |
|---|
| 28 | msfvy, msftx, msfty, & |
|---|
| 29 | rdx, rdy, & |
|---|
| 30 | rk_step, & |
|---|
| 31 | ids,ide, jds,jde, kds,kde, & |
|---|
| 32 | ims,ime, jms,jme, kms,kme, & |
|---|
| 33 | its,ite, jts,jte, kts,kte ) |
|---|
| 34 | |
|---|
| 35 | IMPLICIT NONE ! religion first |
|---|
| 36 | |
|---|
| 37 | ! declarations for the stuff coming in |
|---|
| 38 | |
|---|
| 39 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde |
|---|
| 40 | INTEGER, INTENT(IN ) :: ims,ime, jms,jme, kms,kme |
|---|
| 41 | INTEGER, INTENT(IN ) :: its,ite, jts,jte, kts,kte |
|---|
| 42 | |
|---|
| 43 | INTEGER, INTENT(IN ) :: rk_step |
|---|
| 44 | |
|---|
| 45 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme),INTENT(INOUT) :: u_1, & |
|---|
| 46 | v_1, & |
|---|
| 47 | w_1, & |
|---|
| 48 | t_1, & |
|---|
| 49 | ph_1 |
|---|
| 50 | |
|---|
| 51 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme),INTENT( OUT) :: u_save, & |
|---|
| 52 | v_save, & |
|---|
| 53 | w_save, & |
|---|
| 54 | t_save, & |
|---|
| 55 | ph_save |
|---|
| 56 | |
|---|
| 57 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme),INTENT(INOUT) :: u_2, & |
|---|
| 58 | v_2, & |
|---|
| 59 | w_2, & |
|---|
| 60 | t_2, & |
|---|
| 61 | ph_2 |
|---|
| 62 | |
|---|
| 63 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT( OUT) :: c2a, & |
|---|
| 64 | ww_save |
|---|
| 65 | |
|---|
| 66 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN ) :: pb, & |
|---|
| 67 | p, & |
|---|
| 68 | alt, & |
|---|
| 69 | ww |
|---|
| 70 | |
|---|
| 71 | REAL, DIMENSION(ims:ime, jms:jme) , INTENT(INOUT) :: mu_1,mu_2 |
|---|
| 72 | |
|---|
| 73 | REAL, DIMENSION(ims:ime, jms:jme) , INTENT(IN ) :: mub, & |
|---|
| 74 | muu, & |
|---|
| 75 | muv, & |
|---|
| 76 | mut, & |
|---|
| 77 | msfux,& |
|---|
| 78 | msfuy,& |
|---|
| 79 | msfvx,& |
|---|
| 80 | msfvx_inv,& |
|---|
| 81 | msfvy,& |
|---|
| 82 | msftx,& |
|---|
| 83 | msfty |
|---|
| 84 | |
|---|
| 85 | REAL, DIMENSION(ims:ime, jms:jme) , INTENT( OUT) :: muus, & |
|---|
| 86 | muvs, & |
|---|
| 87 | muts, & |
|---|
| 88 | mudf |
|---|
| 89 | |
|---|
| 90 | REAL, DIMENSION(ims:ime, jms:jme) , INTENT( OUT) :: mu_save |
|---|
| 91 | |
|---|
| 92 | REAL, DIMENSION(kms:kme, jms:jme) , INTENT(IN ) :: dnw |
|---|
| 93 | |
|---|
| 94 | REAL, INTENT(IN) :: rdx,rdy |
|---|
| 95 | |
|---|
| 96 | ! local variables |
|---|
| 97 | |
|---|
| 98 | INTEGER :: i, j, k |
|---|
| 99 | INTEGER :: i_start, i_end, j_start, j_end, k_start, k_end |
|---|
| 100 | INTEGER :: i_endu, j_endv |
|---|
| 101 | |
|---|
| 102 | |
|---|
| 103 | !<DESCRIPTION> |
|---|
| 104 | ! |
|---|
| 105 | ! small_step_prep prepares the prognostic variables for the small timestep. |
|---|
| 106 | ! This includes switching time-levels in the arrays and computing coupled |
|---|
| 107 | ! perturbation variables for the small timestep |
|---|
| 108 | ! (i.e. mu*u" = mu(t)*u(t)-mu(*)*u(*); mu*u" is advanced during the small |
|---|
| 109 | ! timesteps |
|---|
| 110 | ! |
|---|
| 111 | !</DESCRIPTION> |
|---|
| 112 | |
|---|
| 113 | i_start = its |
|---|
| 114 | i_end = ite |
|---|
| 115 | j_start = jts |
|---|
| 116 | j_end = jte |
|---|
| 117 | k_start = kts |
|---|
| 118 | k_end = min(kte,kde-1) |
|---|
| 119 | |
|---|
| 120 | i_endu = i_end |
|---|
| 121 | j_endv = j_end |
|---|
| 122 | |
|---|
| 123 | IF(i_end == ide) i_end = i_end - 1 |
|---|
| 124 | IF(j_end == jde) j_end = j_end - 1 |
|---|
| 125 | |
|---|
| 126 | ! if this is the first RK step, reset *_1 to *_2 |
|---|
| 127 | ! (we are replacing the t-dt fields with the time t fields) |
|---|
| 128 | |
|---|
| 129 | IF ((rk_step == 1) ) THEN |
|---|
| 130 | |
|---|
| 131 | ! 1 jun 2001 -> added boundary copy to 2D boundary condition routines, |
|---|
| 132 | ! should be OK now without the following data copy |
|---|
| 133 | !#if 0 |
|---|
| 134 | ! DO j=j_start, j_end |
|---|
| 135 | ! mu_2(0,j)=mu_2(1,j) |
|---|
| 136 | ! mu_2(i_endu,j)=mu_2(i_end,j) |
|---|
| 137 | ! mu_1(0,j)=mu_2(1,j) |
|---|
| 138 | ! mu_1(i_endu,j)=mu_2(i_end,j) |
|---|
| 139 | ! mub(0,j)=mub(1,j) |
|---|
| 140 | ! mub(i_endu,j)=mub(i_end,j) |
|---|
| 141 | ! ENDDO |
|---|
| 142 | ! DO i=i_start, i_end |
|---|
| 143 | ! mu_2(i,0)=mu_2(i,1) |
|---|
| 144 | ! mu_2(i,j_endv)=mu_2(i,j_end) |
|---|
| 145 | ! mu_1(i,0)=mu_2(i,1) |
|---|
| 146 | ! mu_1(i,j_endv)=mu_2(i,j_end) |
|---|
| 147 | ! mub(i,0)=mub(i,1) |
|---|
| 148 | ! mub(i,j_endv)=mub(i,j_end) |
|---|
| 149 | ! ENDDO |
|---|
| 150 | !#endif |
|---|
| 151 | |
|---|
| 152 | DO j=j_start, j_end |
|---|
| 153 | DO i=i_start, i_end |
|---|
| 154 | mu_1(i,j)=mu_2(i,j) |
|---|
| 155 | ww_save(i,kde,j) = 0. |
|---|
| 156 | ww_save(i,1,j) = 0. |
|---|
| 157 | mudf(i,j) = 0. ! initialize external mode div damp to zero |
|---|
| 158 | ENDDO |
|---|
| 159 | ENDDO |
|---|
| 160 | |
|---|
| 161 | DO j=j_start, j_end |
|---|
| 162 | DO k=k_start, k_end |
|---|
| 163 | DO i=i_start, i_endu |
|---|
| 164 | u_1(i,k,j) = u_2(i,k,j) |
|---|
| 165 | ENDDO |
|---|
| 166 | ENDDO |
|---|
| 167 | ENDDO |
|---|
| 168 | |
|---|
| 169 | DO j=j_start, j_endv |
|---|
| 170 | DO k=k_start, k_end |
|---|
| 171 | DO i=i_start, i_end |
|---|
| 172 | v_1(i,k,j) = v_2(i,k,j) |
|---|
| 173 | ENDDO |
|---|
| 174 | ENDDO |
|---|
| 175 | ENDDO |
|---|
| 176 | |
|---|
| 177 | DO j=j_start, j_end |
|---|
| 178 | DO k=k_start, k_end |
|---|
| 179 | DO i=i_start, i_end |
|---|
| 180 | t_1(i,k,j) = t_2(i,k,j) |
|---|
| 181 | ENDDO |
|---|
| 182 | ENDDO |
|---|
| 183 | ENDDO |
|---|
| 184 | |
|---|
| 185 | DO j=j_start, j_end |
|---|
| 186 | DO k=k_start, min(kde,kte) |
|---|
| 187 | DO i=i_start, i_end |
|---|
| 188 | w_1(i,k,j) = w_2(i,k,j) |
|---|
| 189 | ph_1(i,k,j) = ph_2(i,k,j) |
|---|
| 190 | ENDDO |
|---|
| 191 | ENDDO |
|---|
| 192 | ENDDO |
|---|
| 193 | |
|---|
| 194 | DO j=j_start, j_end |
|---|
| 195 | DO i=i_start, i_end |
|---|
| 196 | muts(i,j)=mub(i,j)+mu_2(i,j) |
|---|
| 197 | ENDDO |
|---|
| 198 | DO i=i_start, i_endu |
|---|
| 199 | ! rk_step==1, WCS fix for tiling |
|---|
| 200 | ! muus(i,j)=0.5*(mub(i,j)+mu_2(i,j)+mub(i-1,j)+mu_2(i-1,j)) |
|---|
| 201 | muus(i,j) = muu(i,j) |
|---|
| 202 | ENDDO |
|---|
| 203 | ENDDO |
|---|
| 204 | |
|---|
| 205 | DO j=j_start, j_endv |
|---|
| 206 | DO i=i_start, i_end |
|---|
| 207 | ! rk_step==1, WCS fix for tiling |
|---|
| 208 | ! muvs(i,j)=0.5*(mub(i,j)+mu_2(i,j)+mub(i,j-1)+mu_2(i,j-1)) |
|---|
| 209 | muvs(i,j) = muv(i,j) |
|---|
| 210 | ENDDO |
|---|
| 211 | ENDDO |
|---|
| 212 | |
|---|
| 213 | DO j=j_start, j_end |
|---|
| 214 | DO i=i_start, i_end |
|---|
| 215 | mu_save(i,j)=mu_2(i,j) |
|---|
| 216 | mu_2(i,j)=mu_2(i,j)-mu_2(i,j) |
|---|
| 217 | ENDDO |
|---|
| 218 | ENDDO |
|---|
| 219 | |
|---|
| 220 | ELSE |
|---|
| 221 | |
|---|
| 222 | DO j=j_start, j_end |
|---|
| 223 | DO i=i_start, i_end |
|---|
| 224 | muts(i,j)=mub(i,j)+mu_1(i,j) |
|---|
| 225 | ENDDO |
|---|
| 226 | DO i=i_start, i_endu |
|---|
| 227 | muus(i,j)=0.5*(mub(i,j)+mu_1(i,j)+mub(i-1,j)+mu_1(i-1,j)) |
|---|
| 228 | ENDDO |
|---|
| 229 | ENDDO |
|---|
| 230 | |
|---|
| 231 | DO j=j_start, j_endv |
|---|
| 232 | DO i=i_start, i_end |
|---|
| 233 | muvs(i,j)=0.5*(mub(i,j)+mu_1(i,j)+mub(i,j-1)+mu_1(i,j-1)) |
|---|
| 234 | ENDDO |
|---|
| 235 | ENDDO |
|---|
| 236 | |
|---|
| 237 | DO j=j_start, j_end |
|---|
| 238 | DO i=i_start, i_end |
|---|
| 239 | mu_save(i,j)=mu_2(i,j) |
|---|
| 240 | mu_2(i,j)=mu_1(i,j)-mu_2(i,j) |
|---|
| 241 | ENDDO |
|---|
| 242 | ENDDO |
|---|
| 243 | |
|---|
| 244 | |
|---|
| 245 | END IF |
|---|
| 246 | |
|---|
| 247 | ! set up the small timestep variables |
|---|
| 248 | |
|---|
| 249 | DO j=j_start, j_end |
|---|
| 250 | DO i=i_start, i_end |
|---|
| 251 | ww_save(i,kde,j) = 0. |
|---|
| 252 | ww_save(i,1,j) = 0. |
|---|
| 253 | ENDDO |
|---|
| 254 | ENDDO |
|---|
| 255 | |
|---|
| 256 | DO j=j_start, j_end |
|---|
| 257 | DO k=k_start, k_end |
|---|
| 258 | DO i=i_start, i_end |
|---|
| 259 | c2a(i,k,j) = cpovcv*(pb(i,k,j)+p(i,k,j))/alt(i,k,j) |
|---|
| 260 | ENDDO |
|---|
| 261 | ENDDO |
|---|
| 262 | ENDDO |
|---|
| 263 | |
|---|
| 264 | DO j=j_start, j_end |
|---|
| 265 | DO k=k_start, k_end |
|---|
| 266 | DO i=i_start, i_endu |
|---|
| 267 | u_save(i,k,j) = u_2(i,k,j) |
|---|
| 268 | ! u coupled with my |
|---|
| 269 | u_2(i,k,j) = (muus(i,j)*u_1(i,k,j)-muu(i,j)*u_2(i,k,j))/msfuy(i,j) |
|---|
| 270 | ENDDO |
|---|
| 271 | ENDDO |
|---|
| 272 | ENDDO |
|---|
| 273 | |
|---|
| 274 | DO j=j_start, j_endv |
|---|
| 275 | DO k=k_start, k_end |
|---|
| 276 | DO i=i_start, i_end |
|---|
| 277 | v_save(i,k,j) = v_2(i,k,j) |
|---|
| 278 | ! v coupled with mx |
|---|
| 279 | ! v_2(i,k,j) = (muvs(i,j)*v_1(i,k,j)-muv(i,j)*v_2(i,k,j))/msfvx(i,j) |
|---|
| 280 | v_2(i,k,j) = (muvs(i,j)*v_1(i,k,j)-muv(i,j)*v_2(i,k,j))*msfvx_inv(i,j) |
|---|
| 281 | ENDDO |
|---|
| 282 | ENDDO |
|---|
| 283 | ENDDO |
|---|
| 284 | |
|---|
| 285 | DO j=j_start, j_end |
|---|
| 286 | DO k=k_start, k_end |
|---|
| 287 | DO i=i_start, i_end |
|---|
| 288 | t_save(i,k,j) = t_2(i,k,j) |
|---|
| 289 | t_2(i,k,j) = muts(i,j)*t_1(i,k,j)-mut(i,j)*t_2(i,k,j) |
|---|
| 290 | ENDDO |
|---|
| 291 | ENDDO |
|---|
| 292 | ENDDO |
|---|
| 293 | |
|---|
| 294 | DO j=j_start, j_end |
|---|
| 295 | ! DO k=k_start, min(kde,kte) |
|---|
| 296 | DO k=k_start, kde |
|---|
| 297 | DO i=i_start, i_end |
|---|
| 298 | w_save(i,k,j) = w_2(i,k,j) |
|---|
| 299 | ! w coupled with my |
|---|
| 300 | w_2(i,k,j) = (muts(i,j)* w_1(i,k,j)-mut(i,j)* w_2(i,k,j))/msfty(i,j) |
|---|
| 301 | ph_save(i,k,j) = ph_2(i,k,j) |
|---|
| 302 | ph_2(i,k,j) = ph_1(i,k,j)-ph_2(i,k,j) |
|---|
| 303 | ENDDO |
|---|
| 304 | ENDDO |
|---|
| 305 | ENDDO |
|---|
| 306 | |
|---|
| 307 | DO j=j_start, j_end |
|---|
| 308 | ! DO k=k_start, min(kde,kte) |
|---|
| 309 | DO k=k_start, kde |
|---|
| 310 | DO i=i_start, i_end |
|---|
| 311 | ww_save(i,k,j) = ww(i,k,j) |
|---|
| 312 | ENDDO |
|---|
| 313 | ENDDO |
|---|
| 314 | ENDDO |
|---|
| 315 | |
|---|
| 316 | END SUBROUTINE small_step_prep |
|---|
| 317 | |
|---|
| 318 | !------------------------------------------------------------------------- |
|---|
| 319 | |
|---|
| 320 | |
|---|
| 321 | SUBROUTINE small_step_finish( u_2, u_1, v_2, v_1, w_2, w_1, & |
|---|
| 322 | t_2, t_1, ph_2, ph_1, ww, ww1, & |
|---|
| 323 | mu_2, mu_1, & |
|---|
| 324 | mut, muts, muu, muus, muv, muvs, & |
|---|
| 325 | u_save, v_save, w_save, & |
|---|
| 326 | t_save, ph_save, mu_save, & |
|---|
| 327 | msfux, msfuy, msfvx, msfvy, & |
|---|
| 328 | msftx, msfty, & |
|---|
| 329 | h_diabatic, & |
|---|
| 330 | number_of_small_timesteps,dts, & |
|---|
| 331 | rk_step, rk_order, & |
|---|
| 332 | ids,ide, jds,jde, kds,kde, & |
|---|
| 333 | ims,ime, jms,jme, kms,kme, & |
|---|
| 334 | its,ite, jts,jte, kts,kte ) |
|---|
| 335 | |
|---|
| 336 | |
|---|
| 337 | IMPLICIT NONE ! religion first |
|---|
| 338 | |
|---|
| 339 | ! stuff passed in |
|---|
| 340 | |
|---|
| 341 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde |
|---|
| 342 | INTEGER, INTENT(IN ) :: ims,ime, jms,jme, kms,kme |
|---|
| 343 | INTEGER, INTENT(IN ) :: its,ite, jts,jte, kts,kte |
|---|
| 344 | INTEGER, INTENT(IN ) :: number_of_small_timesteps |
|---|
| 345 | INTEGER, INTENT(IN ) :: rk_step, rk_order |
|---|
| 346 | REAL, INTENT(IN ) :: dts |
|---|
| 347 | |
|---|
| 348 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN ) :: u_1, & |
|---|
| 349 | v_1, & |
|---|
| 350 | w_1, & |
|---|
| 351 | t_1, & |
|---|
| 352 | ww1, & |
|---|
| 353 | ph_1 |
|---|
| 354 | |
|---|
| 355 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: u_2, & |
|---|
| 356 | v_2, & |
|---|
| 357 | w_2, & |
|---|
| 358 | t_2, & |
|---|
| 359 | ww, & |
|---|
| 360 | ph_2 |
|---|
| 361 | |
|---|
| 362 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme),INTENT(IN ) :: u_save, & |
|---|
| 363 | v_save, & |
|---|
| 364 | w_save, & |
|---|
| 365 | t_save, & |
|---|
| 366 | ph_save, & |
|---|
| 367 | h_diabatic |
|---|
| 368 | |
|---|
| 369 | REAL, DIMENSION(ims:ime, jms:jme), INTENT(INOUT) :: muus, muvs |
|---|
| 370 | REAL, DIMENSION(ims:ime, jms:jme), INTENT(INOUT) :: mu_2, mu_1 |
|---|
| 371 | REAL, DIMENSION(ims:ime, jms:jme), INTENT(INOUT) :: mut, muts, & |
|---|
| 372 | muu, muv, mu_save |
|---|
| 373 | REAL, DIMENSION(ims:ime, jms:jme), INTENT(IN ) :: msfux, msfuy, & |
|---|
| 374 | msfvx, msfvy, & |
|---|
| 375 | msftx, msfty |
|---|
| 376 | |
|---|
| 377 | |
|---|
| 378 | ! local stuff |
|---|
| 379 | |
|---|
| 380 | INTEGER :: i,j,k |
|---|
| 381 | INTEGER :: i_start, i_end, j_start, j_end, i_endu, j_endv |
|---|
| 382 | |
|---|
| 383 | !<DESCRIPTION> |
|---|
| 384 | ! |
|---|
| 385 | ! small_step_finish reconstructs the full uncoupled prognostic variables |
|---|
| 386 | ! from the coupled perturbation variables used in the small timesteps. |
|---|
| 387 | ! |
|---|
| 388 | !</DESCRIPTION> |
|---|
| 389 | |
|---|
| 390 | i_start = its |
|---|
| 391 | i_end = ite |
|---|
| 392 | j_start = jts |
|---|
| 393 | j_end = jte |
|---|
| 394 | |
|---|
| 395 | i_endu = i_end |
|---|
| 396 | j_endv = j_end |
|---|
| 397 | |
|---|
| 398 | IF(i_end == ide) i_end = i_end - 1 |
|---|
| 399 | IF(j_end == jde) j_end = j_end - 1 |
|---|
| 400 | |
|---|
| 401 | |
|---|
| 402 | ! 1 jun 2001 -> added boundary copy to 2D boundary condition routines, |
|---|
| 403 | ! should be OK now without the following data copy |
|---|
| 404 | |
|---|
| 405 | !#if 0 |
|---|
| 406 | ! DO j=j_start, j_end |
|---|
| 407 | ! muts(0,j)=muts(1,j) |
|---|
| 408 | ! muts(i_endu,j)=muts(i_end,j) |
|---|
| 409 | ! ENDDO |
|---|
| 410 | ! DO i=i_start, i_end |
|---|
| 411 | ! muts(i,0)=muts(i,1) |
|---|
| 412 | ! muts(i,j_endv)=muts(i,j_end) |
|---|
| 413 | ! ENDDO |
|---|
| 414 | |
|---|
| 415 | ! DO j = j_start, j_endv |
|---|
| 416 | ! DO i = i_start, i_end |
|---|
| 417 | ! muvs(i,j) = 0.5*(muts(i,j) + muts(i,j-1)) |
|---|
| 418 | ! ENDDO |
|---|
| 419 | ! ENDDO |
|---|
| 420 | |
|---|
| 421 | ! DO j = j_start, j_end |
|---|
| 422 | ! DO i = i_start, i_endu |
|---|
| 423 | ! muus(i,j) = 0.5*(muts(i,j) + muts(i-1,j)) |
|---|
| 424 | ! ENDDO |
|---|
| 425 | ! ENDDO |
|---|
| 426 | !#endif |
|---|
| 427 | |
|---|
| 428 | ! addition of time level t back into variables |
|---|
| 429 | |
|---|
| 430 | DO j = j_start, j_endv |
|---|
| 431 | DO k = kds, kde-1 |
|---|
| 432 | DO i = i_start, i_end |
|---|
| 433 | ! v coupled with mx |
|---|
| 434 | v_2(i,k,j) = (msfvx(i,j)*v_2(i,k,j) + v_save(i,k,j)*muv(i,j))/muvs(i,j) |
|---|
| 435 | ENDDO |
|---|
| 436 | ENDDO |
|---|
| 437 | ENDDO |
|---|
| 438 | |
|---|
| 439 | DO j = j_start, j_end |
|---|
| 440 | DO k = kds, kde-1 |
|---|
| 441 | DO i = i_start, i_endu |
|---|
| 442 | ! u coupled with my |
|---|
| 443 | u_2(i,k,j) = (msfuy(i,j)*u_2(i,k,j) + u_save(i,k,j)*muu(i,j))/muus(i,j) |
|---|
| 444 | ENDDO |
|---|
| 445 | ENDDO |
|---|
| 446 | ENDDO |
|---|
| 447 | |
|---|
| 448 | DO j = j_start, j_end |
|---|
| 449 | DO k = kds, kde |
|---|
| 450 | DO i = i_start, i_end |
|---|
| 451 | ! w coupled with my |
|---|
| 452 | w_2(i,k,j) = (msfty(i,j)*w_2(i,k,j) + w_save(i,k,j)*mut(i,j))/muts(i,j) |
|---|
| 453 | ph_2(i,k,j) = ph_2(i,k,j) + ph_save(i,k,j) |
|---|
| 454 | ww(i,k,j) = ww(i,k,j) + ww1(i,k,j) |
|---|
| 455 | ENDDO |
|---|
| 456 | ENDDO |
|---|
| 457 | ENDDO |
|---|
| 458 | |
|---|
| 459 | #ifdef REVERT |
|---|
| 460 | DO j = j_start, j_end |
|---|
| 461 | DO k = kds, kde-1 |
|---|
| 462 | DO i = i_start, i_end |
|---|
| 463 | t_2(i,k,j) = (t_2(i,k,j) + t_save(i,k,j)*mut(i,j))/muts(i,j) |
|---|
| 464 | ENDDO |
|---|
| 465 | ENDDO |
|---|
| 466 | ENDDO |
|---|
| 467 | #else |
|---|
| 468 | IF ( rk_step < rk_order ) THEN |
|---|
| 469 | DO j = j_start, j_end |
|---|
| 470 | DO k = kds, kde-1 |
|---|
| 471 | DO i = i_start, i_end |
|---|
| 472 | t_2(i,k,j) = (t_2(i,k,j) + t_save(i,k,j)*mut(i,j))/muts(i,j) |
|---|
| 473 | ENDDO |
|---|
| 474 | ENDDO |
|---|
| 475 | ENDDO |
|---|
| 476 | ELSE |
|---|
| 477 | |
|---|
| 478 | DO j = j_start, j_end |
|---|
| 479 | DO k = kds, kde-1 |
|---|
| 480 | DO i = i_start, i_end |
|---|
| 481 | t_2(i,k,j) = (t_2(i,k,j) - dts*number_of_small_timesteps*mut(i,j)*h_diabatic(i,k,j) & |
|---|
| 482 | + t_save(i,k,j)*mut(i,j))/muts(i,j) |
|---|
| 483 | ENDDO |
|---|
| 484 | ENDDO |
|---|
| 485 | ENDDO |
|---|
| 486 | ENDIF |
|---|
| 487 | #endif |
|---|
| 488 | |
|---|
| 489 | DO j = j_start, j_end |
|---|
| 490 | DO i = i_start, i_end |
|---|
| 491 | mu_2(i,j) = mu_2(i,j) + mu_save(i,j) |
|---|
| 492 | ENDDO |
|---|
| 493 | ENDDO |
|---|
| 494 | |
|---|
| 495 | END SUBROUTINE small_step_finish |
|---|
| 496 | |
|---|
| 497 | !----------------------------------------------------------------------- |
|---|
| 498 | |
|---|
| 499 | SUBROUTINE calc_p_rho( al, p, ph, & |
|---|
| 500 | alt, t_2, t_1, c2a, pm1, & |
|---|
| 501 | mu, muts, znu, t0, & |
|---|
| 502 | rdnw, dnw, smdiv, & |
|---|
| 503 | non_hydrostatic, step, & |
|---|
| 504 | ids, ide, jds, jde, kds, kde, & |
|---|
| 505 | ims, ime, jms, jme, kms, kme, & |
|---|
| 506 | its,ite, jts,jte, kts,kte ) |
|---|
| 507 | |
|---|
| 508 | IMPLICIT NONE ! religion first |
|---|
| 509 | |
|---|
| 510 | ! declarations for the stuff coming in |
|---|
| 511 | |
|---|
| 512 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde |
|---|
| 513 | INTEGER, INTENT(IN ) :: ims,ime, jms,jme, kms,kme |
|---|
| 514 | INTEGER, INTENT(IN ) :: its,ite, jts,jte, kts,kte |
|---|
| 515 | |
|---|
| 516 | INTEGER, INTENT(IN ) :: step |
|---|
| 517 | |
|---|
| 518 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme),INTENT( OUT) :: al, & |
|---|
| 519 | p |
|---|
| 520 | |
|---|
| 521 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme),INTENT(IN ) :: alt, & |
|---|
| 522 | t_2, & |
|---|
| 523 | t_1, & |
|---|
| 524 | c2a |
|---|
| 525 | |
|---|
| 526 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme),INTENT(INOUT) :: ph, pm1 |
|---|
| 527 | |
|---|
| 528 | REAL, DIMENSION(ims:ime, jms:jme) , INTENT(IN ) :: mu, & |
|---|
| 529 | muts |
|---|
| 530 | |
|---|
| 531 | REAL, DIMENSION(kms:kme) , INTENT(IN ) :: dnw, & |
|---|
| 532 | rdnw, & |
|---|
| 533 | znu |
|---|
| 534 | |
|---|
| 535 | REAL, INTENT(IN ) :: t0, smdiv |
|---|
| 536 | |
|---|
| 537 | LOGICAL, INTENT(IN ) :: non_hydrostatic |
|---|
| 538 | |
|---|
| 539 | ! local variables |
|---|
| 540 | |
|---|
| 541 | INTEGER :: i, j, k |
|---|
| 542 | INTEGER :: i_start, i_end, j_start, j_end, k_start, k_end |
|---|
| 543 | REAL :: ptmp |
|---|
| 544 | |
|---|
| 545 | !<DESCRIPTION> |
|---|
| 546 | ! |
|---|
| 547 | ! For the nonhydrostatic option, |
|---|
| 548 | ! calc_p_rho computes the perturbation inverse density and |
|---|
| 549 | ! perturbation pressure from the hydrostatic relation and the |
|---|
| 550 | ! linearized equation of state, respectively. |
|---|
| 551 | ! |
|---|
| 552 | ! For the hydrostatic option, |
|---|
| 553 | ! calc_p_rho computes the perturbation pressure, perturbation density, |
|---|
| 554 | ! and perturbation geopotential |
|---|
| 555 | ! from the vertical coordinate definition, linearized equation of state |
|---|
| 556 | ! and the hydrostatic relation, respectively. |
|---|
| 557 | ! |
|---|
| 558 | ! forward weighting of the pressure (divergence damping) is also |
|---|
| 559 | ! computed here. |
|---|
| 560 | ! |
|---|
| 561 | !</DESCRIPTION> |
|---|
| 562 | |
|---|
| 563 | i_start = its |
|---|
| 564 | i_end = ite |
|---|
| 565 | j_start = jts |
|---|
| 566 | j_end = jte |
|---|
| 567 | k_start = kts |
|---|
| 568 | k_end = min(kte,kde-1) |
|---|
| 569 | |
|---|
| 570 | IF(i_end == ide) i_end = i_end - 1 |
|---|
| 571 | IF(j_end == jde) j_end = j_end - 1 |
|---|
| 572 | |
|---|
| 573 | IF (non_hydrostatic) THEN |
|---|
| 574 | DO j=j_start, j_end |
|---|
| 575 | DO k=k_start, k_end |
|---|
| 576 | DO i=i_start, i_end |
|---|
| 577 | |
|---|
| 578 | ! al computation is all dry, so ok with moisture |
|---|
| 579 | |
|---|
| 580 | al(i,k,j)=-1./muts(i,j)*(alt(i,k,j)*mu(i,j) & |
|---|
| 581 | +rdnw(k)*(ph(i,k+1,j)-ph(i,k,j))) |
|---|
| 582 | |
|---|
| 583 | ! this is temporally linearized p, no moisture correction needed |
|---|
| 584 | |
|---|
| 585 | p(i,k,j)=c2a(i,k,j)*(alt(i,k,j)*(t_2(i,k,j)-mu(i,j)*t_1(i,k,j)) & |
|---|
| 586 | /(muts(i,j)*(t0+t_1(i,k,j)))-al (i,k,j)) |
|---|
| 587 | |
|---|
| 588 | ENDDO |
|---|
| 589 | ENDDO |
|---|
| 590 | ENDDO |
|---|
| 591 | |
|---|
| 592 | ELSE ! hydrostatic calculation |
|---|
| 593 | |
|---|
| 594 | DO j=j_start, j_end |
|---|
| 595 | DO k=k_start, k_end |
|---|
| 596 | DO i=i_start, i_end |
|---|
| 597 | p(i,k,j)=mu(i,j)*znu(k) |
|---|
| 598 | al(i,k,j)=alt(i,k,j)*(t_2(i,k,j)-mu(i,j)*t_1(i,k,j)) & |
|---|
| 599 | /(muts(i,j)*(t0+t_1(i,k,j)))-p(i,k,j)/c2a(i,k,j) |
|---|
| 600 | ph(i,k+1,j)=ph(i,k,j)-dnw(k)*(muts(i,j)*al (i,k,j) & |
|---|
| 601 | +mu(i,j)*alt(i,k,j)) |
|---|
| 602 | ENDDO |
|---|
| 603 | ENDDO |
|---|
| 604 | ENDDO |
|---|
| 605 | |
|---|
| 606 | END IF |
|---|
| 607 | |
|---|
| 608 | ! divergence damping setup |
|---|
| 609 | |
|---|
| 610 | IF (step == 0) then ! we're initializing small timesteps |
|---|
| 611 | DO j=j_start, j_end |
|---|
| 612 | DO k=k_start, k_end |
|---|
| 613 | DO i=i_start, i_end |
|---|
| 614 | pm1(i,k,j)=p(i,k,j) |
|---|
| 615 | ENDDO |
|---|
| 616 | ENDDO |
|---|
| 617 | ENDDO |
|---|
| 618 | ELSE ! we're in the small timesteps |
|---|
| 619 | DO j=j_start, j_end ! and adding div damping component |
|---|
| 620 | DO k=k_start, k_end |
|---|
| 621 | DO i=i_start, i_end |
|---|
| 622 | ptmp = p(i,k,j) |
|---|
| 623 | p(i,k,j) = p(i,k,j) + smdiv*(p(i,k,j)-pm1(i,k,j)) |
|---|
| 624 | pm1(i,k,j) = ptmp |
|---|
| 625 | ENDDO |
|---|
| 626 | ENDDO |
|---|
| 627 | ENDDO |
|---|
| 628 | END IF |
|---|
| 629 | |
|---|
| 630 | END SUBROUTINE calc_p_rho |
|---|
| 631 | |
|---|
| 632 | !---------------------------------------------------------------------- |
|---|
| 633 | |
|---|
| 634 | SUBROUTINE calc_coef_w( a,alpha,gamma, & |
|---|
| 635 | mut, cqw, & |
|---|
| 636 | rdn, rdnw, c2a, & |
|---|
| 637 | dts, g, epssm, top_lid, & |
|---|
| 638 | ids,ide, jds,jde, kds,kde, & ! domain dims |
|---|
| 639 | ims,ime, jms,jme, kms,kme, & ! memory dims |
|---|
| 640 | its,ite, jts,jte, kts,kte ) ! tile dims |
|---|
| 641 | |
|---|
| 642 | IMPLICIT NONE ! religion first |
|---|
| 643 | |
|---|
| 644 | ! passed in through the call |
|---|
| 645 | |
|---|
| 646 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde |
|---|
| 647 | INTEGER, INTENT(IN ) :: ims,ime, jms,jme, kms,kme |
|---|
| 648 | INTEGER, INTENT(IN ) :: its,ite, jts,jte, kts,kte |
|---|
| 649 | |
|---|
| 650 | LOGICAL, INTENT(IN ) :: top_lid |
|---|
| 651 | |
|---|
| 652 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN ) :: c2a, & |
|---|
| 653 | cqw |
|---|
| 654 | |
|---|
| 655 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: alpha, & |
|---|
| 656 | gamma, & |
|---|
| 657 | a |
|---|
| 658 | |
|---|
| 659 | REAL, DIMENSION(ims:ime, jms:jme), INTENT(IN ) :: mut |
|---|
| 660 | |
|---|
| 661 | REAL, DIMENSION(kms:kme), INTENT(IN ) :: rdn, & |
|---|
| 662 | rdnw |
|---|
| 663 | |
|---|
| 664 | REAL, INTENT(IN ) :: epssm, & |
|---|
| 665 | dts, & |
|---|
| 666 | g |
|---|
| 667 | |
|---|
| 668 | ! Local stack data. |
|---|
| 669 | |
|---|
| 670 | REAL, DIMENSION(ims:ime) :: cof |
|---|
| 671 | REAL :: b, c |
|---|
| 672 | |
|---|
| 673 | INTEGER :: i, j, k, i_start, i_end, j_start, j_end, k_start, k_end |
|---|
| 674 | INTEGER :: ij, ijp, ijm, lid_flag |
|---|
| 675 | |
|---|
| 676 | !<DESCRIPTION> |
|---|
| 677 | ! |
|---|
| 678 | ! calc_coef_w calculates the coefficients needed for the |
|---|
| 679 | ! implicit solution of the vertical momentum and geopotential equations. |
|---|
| 680 | ! This requires solution of a tri-diagonal equation. |
|---|
| 681 | ! |
|---|
| 682 | !</DESCRIPTION> |
|---|
| 683 | |
|---|
| 684 | |
|---|
| 685 | i_start = its |
|---|
| 686 | i_end = ite |
|---|
| 687 | j_start = jts |
|---|
| 688 | j_end = jte |
|---|
| 689 | k_start = kts |
|---|
| 690 | k_end = kte-1 |
|---|
| 691 | |
|---|
| 692 | IF(j_end == jde) j_end = j_end - 1 |
|---|
| 693 | IF(i_end == ide) i_end = i_end - 1 |
|---|
| 694 | |
|---|
| 695 | lid_flag=1 |
|---|
| 696 | IF(top_lid)lid_flag=0 |
|---|
| 697 | |
|---|
| 698 | outer_j_loop: DO j = j_start, j_end |
|---|
| 699 | |
|---|
| 700 | DO i = i_start, i_end |
|---|
| 701 | cof(i) = (.5*dts*g*(1.+epssm)/mut(i,j))**2 |
|---|
| 702 | a(i, 2 ,j) = 0. |
|---|
| 703 | a(i,kde,j) =-2.*cof(i)*rdnw(kde-1)**2*c2a(i,kde-1,j)*lid_flag |
|---|
| 704 | gamma(i,1 ,j) = 0. |
|---|
| 705 | ENDDO |
|---|
| 706 | |
|---|
| 707 | DO k=3,kde-1 |
|---|
| 708 | DO i=i_start, i_end |
|---|
| 709 | a(i,k,j) = -cqw(i,k,j)*cof(i)*rdn(k)* rdnw(k-1)*c2a(i,k-1,j) |
|---|
| 710 | ENDDO |
|---|
| 711 | ENDDO |
|---|
| 712 | |
|---|
| 713 | |
|---|
| 714 | DO k=2,kde-1 |
|---|
| 715 | DO i=i_start, i_end |
|---|
| 716 | b = 1.+cqw(i,k,j)*cof(i)*rdn(k)*(rdnw(k )*c2a(i,k,j ) & |
|---|
| 717 | +rdnw(k-1)*c2a(i,k-1,j)) |
|---|
| 718 | c = -cqw(i,k,j)*cof(i)*rdn(k)*rdnw(k )*c2a(i,k,j ) |
|---|
| 719 | alpha(i,k,j) = 1./(b-a(i,k,j)*gamma(i,k-1,j)) |
|---|
| 720 | gamma(i,k,j) = c*alpha(i,k,j) |
|---|
| 721 | ENDDO |
|---|
| 722 | ENDDO |
|---|
| 723 | |
|---|
| 724 | DO i=i_start, i_end |
|---|
| 725 | b = 1.+2.*cof(i)*rdnw(kde-1)**2*c2a(i,kde-1,j) |
|---|
| 726 | c = 0. |
|---|
| 727 | alpha(i,kde,j) = 1./(b-a(i,kde,j)*gamma(i,kde-1,j)) |
|---|
| 728 | gamma(i,kde,j) = c*alpha(i,kde,j) |
|---|
| 729 | ENDDO |
|---|
| 730 | |
|---|
| 731 | ENDDO outer_j_loop |
|---|
| 732 | |
|---|
| 733 | END SUBROUTINE calc_coef_w |
|---|
| 734 | |
|---|
| 735 | !---------------------------------------------------------------------- |
|---|
| 736 | |
|---|
| 737 | SUBROUTINE advance_uv ( u, ru_tend, v, rv_tend, & |
|---|
| 738 | p, pb, & |
|---|
| 739 | ph, php, alt, al, mu, & |
|---|
| 740 | muu, cqu, muv, cqv, mudf, & |
|---|
| 741 | msfux, msfuy, msfvx, & |
|---|
| 742 | msfvx_inv, msfvy, & |
|---|
| 743 | rdx, rdy, dts, & |
|---|
| 744 | cf1, cf2, cf3, fnm, fnp, & |
|---|
| 745 | emdiv, & |
|---|
| 746 | rdnw, config_flags, spec_zone, & |
|---|
| 747 | non_hydrostatic, top_lid, & |
|---|
| 748 | ids, ide, jds, jde, kds, kde, & |
|---|
| 749 | ims, ime, jms, jme, kms, kme, & |
|---|
| 750 | its, ite, jts, jte, kts, kte ) |
|---|
| 751 | |
|---|
| 752 | |
|---|
| 753 | |
|---|
| 754 | IMPLICIT NONE ! religion first |
|---|
| 755 | |
|---|
| 756 | ! stuff coming in |
|---|
| 757 | |
|---|
| 758 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
|---|
| 759 | |
|---|
| 760 | LOGICAL, INTENT(IN ) :: non_hydrostatic, top_lid |
|---|
| 761 | |
|---|
| 762 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde |
|---|
| 763 | INTEGER, INTENT(IN ) :: ims,ime, jms,jme, kms,kme |
|---|
| 764 | INTEGER, INTENT(IN ) :: its,ite, jts,jte, kts,kte |
|---|
| 765 | INTEGER, INTENT(IN ) :: spec_zone |
|---|
| 766 | |
|---|
| 767 | REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), & |
|---|
| 768 | INTENT(INOUT) :: & |
|---|
| 769 | u, & |
|---|
| 770 | v |
|---|
| 771 | |
|---|
| 772 | REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), & |
|---|
| 773 | INTENT(IN ) :: & |
|---|
| 774 | ru_tend, & |
|---|
| 775 | rv_tend, & |
|---|
| 776 | ph, & |
|---|
| 777 | php, & |
|---|
| 778 | p, & |
|---|
| 779 | pb, & |
|---|
| 780 | alt, & |
|---|
| 781 | al, & |
|---|
| 782 | cqu, & |
|---|
| 783 | cqv |
|---|
| 784 | |
|---|
| 785 | |
|---|
| 786 | REAL, DIMENSION( ims:ime , jms:jme ), INTENT(IN ) :: muu, & |
|---|
| 787 | muv, & |
|---|
| 788 | mu, & |
|---|
| 789 | mudf |
|---|
| 790 | |
|---|
| 791 | |
|---|
| 792 | REAL, DIMENSION( kms:kme ), INTENT(IN ) :: fnm, & |
|---|
| 793 | fnp , & |
|---|
| 794 | rdnw |
|---|
| 795 | |
|---|
| 796 | REAL, DIMENSION( ims:ime , jms:jme ), INTENT(IN ) :: msfux, & |
|---|
| 797 | msfuy, & |
|---|
| 798 | msfvx, & |
|---|
| 799 | msfvy, & |
|---|
| 800 | msfvx_inv |
|---|
| 801 | |
|---|
| 802 | REAL, INTENT(IN ) :: rdx, & |
|---|
| 803 | rdy, & |
|---|
| 804 | dts, & |
|---|
| 805 | cf1, & |
|---|
| 806 | cf2, & |
|---|
| 807 | cf3, & |
|---|
| 808 | emdiv |
|---|
| 809 | |
|---|
| 810 | |
|---|
| 811 | ! Local 3d array from the stack (note tile size) |
|---|
| 812 | |
|---|
| 813 | REAL, DIMENSION (its:ite, kts:kte) :: dpn, dpxy |
|---|
| 814 | REAL, DIMENSION (its:ite) :: mudf_xy |
|---|
| 815 | REAL :: dx, dy |
|---|
| 816 | |
|---|
| 817 | INTEGER :: i,j,k, i_start, i_end, j_start, j_end, k_start, k_end |
|---|
| 818 | INTEGER :: i_endu, j_endv, k_endw |
|---|
| 819 | INTEGER :: i_start_up, i_end_up, j_start_up, j_end_up |
|---|
| 820 | INTEGER :: i_start_vp, i_end_vp, j_start_vp, j_end_vp |
|---|
| 821 | |
|---|
| 822 | INTEGER :: i_start_u_tend, i_end_u_tend, j_start_v_tend, j_end_v_tend |
|---|
| 823 | |
|---|
| 824 | !<DESCRIPTION> |
|---|
| 825 | ! |
|---|
| 826 | ! advance_uv advances the explicit perturbation horizontal momentum |
|---|
| 827 | ! equations (u,v) by adding in the large-timestep tendency along with |
|---|
| 828 | ! the small timestep pressure gradient tendency. |
|---|
| 829 | ! |
|---|
| 830 | !</DESCRIPTION> |
|---|
| 831 | |
|---|
| 832 | ! now, the real work. |
|---|
| 833 | ! set the loop bounds taking into account boundary conditions. |
|---|
| 834 | |
|---|
| 835 | IF( config_flags%nested .or. config_flags%specified ) THEN |
|---|
| 836 | i_start = max( its,ids+spec_zone ) |
|---|
| 837 | i_end = min( ite,ide-spec_zone-1 ) |
|---|
| 838 | j_start = max( jts,jds+spec_zone ) |
|---|
| 839 | j_end = min( jte,jde-spec_zone-1 ) |
|---|
| 840 | k_start = kts |
|---|
| 841 | k_end = min( kte, kde-1 ) |
|---|
| 842 | |
|---|
| 843 | i_endu = min( ite,ide-spec_zone ) |
|---|
| 844 | j_endv = min( jte,jde-spec_zone ) |
|---|
| 845 | k_endw = k_end |
|---|
| 846 | |
|---|
| 847 | IF( config_flags%periodic_x) THEN |
|---|
| 848 | i_start = its |
|---|
| 849 | i_end = ite |
|---|
| 850 | i_endu = i_end |
|---|
| 851 | IF(i_end == ide) i_end = i_end - 1 |
|---|
| 852 | ENDIF |
|---|
| 853 | ELSE |
|---|
| 854 | i_start = its |
|---|
| 855 | i_end = ite |
|---|
| 856 | j_start = jts |
|---|
| 857 | j_end = jte |
|---|
| 858 | k_start = kts |
|---|
| 859 | k_end = kte-1 |
|---|
| 860 | |
|---|
| 861 | i_endu = i_end |
|---|
| 862 | j_endv = j_end |
|---|
| 863 | k_endw = k_end |
|---|
| 864 | |
|---|
| 865 | IF(j_end == jde) j_end = j_end - 1 |
|---|
| 866 | IF(i_end == ide) i_end = i_end - 1 |
|---|
| 867 | ENDIF |
|---|
| 868 | |
|---|
| 869 | i_start_up = i_start |
|---|
| 870 | i_end_up = i_endu |
|---|
| 871 | j_start_up = j_start |
|---|
| 872 | j_end_up = j_end |
|---|
| 873 | |
|---|
| 874 | i_start_vp = i_start |
|---|
| 875 | i_end_vp = i_end |
|---|
| 876 | j_start_vp = j_start |
|---|
| 877 | j_end_vp = j_endv |
|---|
| 878 | |
|---|
| 879 | IF ( (config_flags%open_xs .or. & |
|---|
| 880 | config_flags%symmetric_xs ) & |
|---|
| 881 | .and. (its == ids) ) & |
|---|
| 882 | i_start_up = i_start_up + 1 |
|---|
| 883 | |
|---|
| 884 | IF ( (config_flags%open_xe .or. & |
|---|
| 885 | config_flags%symmetric_xe ) & |
|---|
| 886 | .and. (ite == ide) ) & |
|---|
| 887 | i_end_up = i_end_up - 1 |
|---|
| 888 | |
|---|
| 889 | IF ( (config_flags%open_ys .or. & |
|---|
| 890 | config_flags%symmetric_ys .or. & |
|---|
| 891 | config_flags%polar ) & |
|---|
| 892 | .and. (jts == jds) ) & |
|---|
| 893 | j_start_vp = j_start_vp + 1 |
|---|
| 894 | |
|---|
| 895 | IF ( (config_flags%open_ye .or. & |
|---|
| 896 | config_flags%symmetric_ye .or. & |
|---|
| 897 | config_flags%polar ) & |
|---|
| 898 | .and. (jte == jde) ) & |
|---|
| 899 | j_end_vp = j_end_vp - 1 |
|---|
| 900 | |
|---|
| 901 | i_start_u_tend = i_start |
|---|
| 902 | i_end_u_tend = i_endu |
|---|
| 903 | j_start_v_tend = j_start |
|---|
| 904 | j_end_v_tend = j_endv |
|---|
| 905 | |
|---|
| 906 | IF ( config_flags%symmetric_xs .and. (its == ids) ) & |
|---|
| 907 | i_start_u_tend = i_start_u_tend+1 |
|---|
| 908 | IF ( config_flags%symmetric_xe .and. (ite == ide) ) & |
|---|
| 909 | i_end_u_tend = i_end_u_tend-1 |
|---|
| 910 | IF ( config_flags%symmetric_ys .and. (jts == jds) ) & |
|---|
| 911 | j_start_v_tend = j_start_v_tend+1 |
|---|
| 912 | IF ( config_flags%symmetric_ye .and. (jte == jde) ) & |
|---|
| 913 | j_end_v_tend = j_end_v_tend-1 |
|---|
| 914 | |
|---|
| 915 | dx = 1./rdx |
|---|
| 916 | dy = 1./rdy |
|---|
| 917 | |
|---|
| 918 | ! start real calculations. |
|---|
| 919 | ! first, u |
|---|
| 920 | |
|---|
| 921 | u_outer_j_loop: DO j = j_start, j_end |
|---|
| 922 | |
|---|
| 923 | DO k = k_start, k_end |
|---|
| 924 | DO i = i_start_u_tend, i_end_u_tend |
|---|
| 925 | u(i,k,j) = u(i,k,j) + dts*ru_tend(i,k,j) |
|---|
| 926 | ENDDO |
|---|
| 927 | ENDDO |
|---|
| 928 | |
|---|
| 929 | DO i = i_start_up, i_end_up |
|---|
| 930 | mudf_xy(i)= -emdiv*dx*(mudf(i,j)-mudf(i-1,j))/msfuy(i,j) |
|---|
| 931 | ENDDO |
|---|
| 932 | |
|---|
| 933 | DO k = k_start, k_end |
|---|
| 934 | DO i = i_start_up, i_end_up |
|---|
| 935 | |
|---|
| 936 | ! Comments on map scale factors: |
|---|
| 937 | ! x pressure gradient: ADT eqn 44, penultimate term on RHS |
|---|
| 938 | ! = -(mx/my)*(mu/rho)*partial dp/dx |
|---|
| 939 | ! [i.e., first rho->mu; 2nd still rho; alpha=1/rho] |
|---|
| 940 | ! Klemp et al. splits into 2 terms: |
|---|
| 941 | ! mu alpha partial dp/dx + partial dp/dnu * partial dphi/dx |
|---|
| 942 | ! then into 4 terms: |
|---|
| 943 | ! mu alpha partial dp'/dx + nu mu alpha' partial dmubar/dx + |
|---|
| 944 | ! + mu partial dphi/dx + partial dphi'/dx * (partial dp'/dnu - mu') |
|---|
| 945 | ! |
|---|
| 946 | ! first 3 terms: |
|---|
| 947 | ! ph, alt, p, al, pb not coupled |
|---|
| 948 | ! since we want tendency to fit ADT eqn 44 (coupled) we need to |
|---|
| 949 | ! multiply by (mx/my): |
|---|
| 950 | ! |
|---|
| 951 | dpxy(i,k)= (msfux(i,j)/msfuy(i,j))*.5*rdx*muu(i,j)*( & |
|---|
| 952 | ((ph (i,k+1,j)-ph (i-1,k+1,j))+(ph (i,k,j)-ph (i-1,k,j))) & |
|---|
| 953 | +(alt(i,k ,j)+alt(i-1,k ,j))*(p (i,k,j)-p (i-1,k,j)) & |
|---|
| 954 | +(al (i,k ,j)+al (i-1,k ,j))*(pb (i,k,j)-pb (i-1,k,j)) ) |
|---|
| 955 | |
|---|
| 956 | ENDDO |
|---|
| 957 | ENDDO |
|---|
| 958 | |
|---|
| 959 | IF (non_hydrostatic) THEN |
|---|
| 960 | |
|---|
| 961 | DO i = i_start_up, i_end_up |
|---|
| 962 | dpn(i,1) = .5*( cf1*(p(i,1,j)+p(i-1,1,j)) & |
|---|
| 963 | +cf2*(p(i,2,j)+p(i-1,2,j)) & |
|---|
| 964 | +cf3*(p(i,3,j)+p(i-1,3,j)) ) |
|---|
| 965 | dpn(i,kde) = 0. |
|---|
| 966 | ENDDO |
|---|
| 967 | IF (top_lid) THEN |
|---|
| 968 | DO i = i_start_up, i_end_up |
|---|
| 969 | dpn(i,kde) =.5*( cf1*(p(i-1,kde-1,j)+p(i,kde-1,j)) & |
|---|
| 970 | +cf2*(p(i-1,kde-2,j)+p(i,kde-2,j)) & |
|---|
| 971 | +cf3*(p(i-1,kde-3,j)+p(i,kde-3,j)) ) |
|---|
| 972 | ENDDO |
|---|
| 973 | ENDIF |
|---|
| 974 | |
|---|
| 975 | DO k = k_start+1, k_end |
|---|
| 976 | DO i = i_start_up, i_end_up |
|---|
| 977 | dpn(i,k) = .5*( fnm(k)*(p(i,k ,j)+p(i-1,k ,j)) & |
|---|
| 978 | +fnp(k)*(p(i,k-1,j)+p(i-1,k-1,j)) ) |
|---|
| 979 | ENDDO |
|---|
| 980 | ENDDO |
|---|
| 981 | |
|---|
| 982 | ! Comments on map scale factors: |
|---|
| 983 | ! 4th term: |
|---|
| 984 | ! php, dpn, mu not coupled |
|---|
| 985 | ! since we want tendency to fit ADT eqn 44 (coupled) we need to |
|---|
| 986 | ! multiply by (mx/my): |
|---|
| 987 | |
|---|
| 988 | DO k = k_start, k_end |
|---|
| 989 | DO i = i_start_up, i_end_up |
|---|
| 990 | dpxy(i,k)=dpxy(i,k) + (msfux(i,j)/msfuy(i,j))*rdx*(php(i,k,j)-php(i-1,k,j))* & |
|---|
| 991 | (rdnw(k)*(dpn(i,k+1)-dpn(i,k))-.5*(mu(i-1,j)+mu(i,j))) |
|---|
| 992 | ENDDO |
|---|
| 993 | ENDDO |
|---|
| 994 | |
|---|
| 995 | |
|---|
| 996 | END IF |
|---|
| 997 | |
|---|
| 998 | |
|---|
| 999 | DO k = k_start, k_end |
|---|
| 1000 | DO i = i_start_up, i_end_up |
|---|
| 1001 | u(i,k,j)=u(i,k,j)-dts*cqu(i,k,j)*dpxy(i,k)+mudf_xy(i) |
|---|
| 1002 | ENDDO |
|---|
| 1003 | ENDDO |
|---|
| 1004 | |
|---|
| 1005 | ENDDO u_outer_j_loop |
|---|
| 1006 | |
|---|
| 1007 | ! now v |
|---|
| 1008 | |
|---|
| 1009 | v_outer_j_loop: DO j = j_start_v_tend, j_end_v_tend |
|---|
| 1010 | |
|---|
| 1011 | |
|---|
| 1012 | DO k = k_start, k_end |
|---|
| 1013 | DO i = i_start, i_end |
|---|
| 1014 | v(i,k,j) = v(i,k,j) + dts*rv_tend(i,k,j) |
|---|
| 1015 | ENDDO |
|---|
| 1016 | ENDDO |
|---|
| 1017 | |
|---|
| 1018 | DO i = i_start, i_end |
|---|
| 1019 | mudf_xy(i)= -emdiv*dy*(mudf(i,j)-mudf(i,j-1))*msfvx_inv(i,j) |
|---|
| 1020 | ENDDO |
|---|
| 1021 | |
|---|
| 1022 | IF ( ( j >= j_start_vp) & |
|---|
| 1023 | .and.( j <= j_end_vp ) ) THEN |
|---|
| 1024 | |
|---|
| 1025 | DO k = k_start, k_end |
|---|
| 1026 | DO i = i_start, i_end |
|---|
| 1027 | |
|---|
| 1028 | ! Comments on map scale factors: |
|---|
| 1029 | ! y pressure gradient: ADT eqn 45, penultimate term on RHS |
|---|
| 1030 | ! = -(my/mx)*(mu/rho)*partial dp/dy |
|---|
| 1031 | ! [i.e., first rho->mu; 2nd still rho; alpha=1/rho] |
|---|
| 1032 | ! Klemp et al. splits into 2 terms: |
|---|
| 1033 | ! mu alpha partial dp/dy + partial dp/dnu * partial dphi/dy |
|---|
| 1034 | ! then into 4 terms: |
|---|
| 1035 | ! mu alpha partial dp'/dy + nu mu alpha' partial dmubar/dy + |
|---|
| 1036 | ! + mu partial dphi/dy + partial dphi'/dy * (partial dp'/dnu - mu') |
|---|
| 1037 | ! |
|---|
| 1038 | ! first 3 terms: |
|---|
| 1039 | ! ph, alt, p, al, pb not coupled |
|---|
| 1040 | ! since we want tendency to fit ADT eqn 45 (coupled) we need to |
|---|
| 1041 | ! multiply by (my/mx): |
|---|
| 1042 | ! mudf_xy is NOT a map scale factor coupling |
|---|
| 1043 | ! it is some sort of divergence damping |
|---|
| 1044 | |
|---|
| 1045 | dpxy(i,k)= (msfvy(i,j)/msfvx(i,j))*.5*rdy*muv(i,j)*( & |
|---|
| 1046 | ((ph(i,k+1,j)-ph(i,k+1,j-1))+(ph (i,k,j)-ph (i,k,j-1))) & |
|---|
| 1047 | +(alt(i,k ,j)+alt(i,k ,j-1))*(p (i,k,j)-p (i,k,j-1)) & |
|---|
| 1048 | +(al (i,k ,j)+al (i,k ,j-1))*(pb (i,k,j)-pb (i,k,j-1)) ) |
|---|
| 1049 | ENDDO |
|---|
| 1050 | ENDDO |
|---|
| 1051 | |
|---|
| 1052 | |
|---|
| 1053 | IF (non_hydrostatic) THEN |
|---|
| 1054 | |
|---|
| 1055 | DO i = i_start, i_end |
|---|
| 1056 | dpn(i,1) = .5*( cf1*(p(i,1,j)+p(i,1,j-1)) & |
|---|
| 1057 | +cf2*(p(i,2,j)+p(i,2,j-1)) & |
|---|
| 1058 | +cf3*(p(i,3,j)+p(i,3,j-1)) ) |
|---|
| 1059 | dpn(i,kde) = 0. |
|---|
| 1060 | ENDDO |
|---|
| 1061 | IF (top_lid) THEN |
|---|
| 1062 | DO i = i_start, i_end |
|---|
| 1063 | dpn(i,kde) =.5*( cf1*(p(i,kde-1,j-1)+p(i,kde-1,j)) & |
|---|
| 1064 | +cf2*(p(i,kde-2,j-1)+p(i,kde-2,j)) & |
|---|
| 1065 | +cf3*(p(i,kde-3,j-1)+p(i,kde-3,j)) ) |
|---|
| 1066 | ENDDO |
|---|
| 1067 | ENDIF |
|---|
| 1068 | |
|---|
| 1069 | DO k = k_start+1, k_end |
|---|
| 1070 | DO i = i_start, i_end |
|---|
| 1071 | dpn(i,k) = .5*( fnm(k)*(p(i,k ,j)+p(i,k ,j-1)) & |
|---|
| 1072 | +fnp(k)*(p(i,k-1,j)+p(i,k-1,j-1)) ) |
|---|
| 1073 | ENDDO |
|---|
| 1074 | ENDDO |
|---|
| 1075 | |
|---|
| 1076 | ! Comments on map scale factors: |
|---|
| 1077 | ! 4th term: |
|---|
| 1078 | ! php, dpn, mu not coupled |
|---|
| 1079 | ! since we want tendency to fit ADT eqn 45 (coupled) we need to |
|---|
| 1080 | ! multiply by (my/mx): |
|---|
| 1081 | |
|---|
| 1082 | DO k = k_start, k_end |
|---|
| 1083 | DO i = i_start, i_end |
|---|
| 1084 | dpxy(i,k)=dpxy(i,k) + (msfvy(i,j)/msfvx(i,j))*rdy*(php(i,k,j)-php(i,k,j-1))* & |
|---|
| 1085 | (rdnw(k)*(dpn(i,k+1)-dpn(i,k))-.5*(mu(i,j-1)+mu(i,j))) |
|---|
| 1086 | ENDDO |
|---|
| 1087 | ENDDO |
|---|
| 1088 | |
|---|
| 1089 | |
|---|
| 1090 | END IF |
|---|
| 1091 | |
|---|
| 1092 | |
|---|
| 1093 | DO k = k_start, k_end |
|---|
| 1094 | DO i = i_start, i_end |
|---|
| 1095 | v(i,k,j)=v(i,k,j)-dts*cqv(i,k,j)*dpxy(i,k)+mudf_xy(i) |
|---|
| 1096 | ENDDO |
|---|
| 1097 | ENDDO |
|---|
| 1098 | END IF |
|---|
| 1099 | |
|---|
| 1100 | ENDDO v_outer_j_loop |
|---|
| 1101 | |
|---|
| 1102 | ! The check for j_start_vp and j_end_vp makes sure that the edges in v |
|---|
| 1103 | ! are not updated. Let's add a polar boundary condition check here for |
|---|
| 1104 | ! safety to ensure that v at the poles never gets to be non-zero in the |
|---|
| 1105 | ! small time steps. |
|---|
| 1106 | IF (config_flags%polar) THEN |
|---|
| 1107 | IF (jts == jds) THEN |
|---|
| 1108 | DO k = k_start, k_end |
|---|
| 1109 | DO i = i_start, i_end |
|---|
| 1110 | v(i,k,jds) = 0. |
|---|
| 1111 | ENDDO |
|---|
| 1112 | ENDDO |
|---|
| 1113 | END IF |
|---|
| 1114 | IF (jte == jde) THEN |
|---|
| 1115 | DO k = k_start, k_end |
|---|
| 1116 | DO i = i_start, i_end |
|---|
| 1117 | v(i,k,jde) = 0. |
|---|
| 1118 | ENDDO |
|---|
| 1119 | ENDDO |
|---|
| 1120 | END IF |
|---|
| 1121 | END IF |
|---|
| 1122 | |
|---|
| 1123 | |
|---|
| 1124 | END SUBROUTINE advance_uv |
|---|
| 1125 | |
|---|
| 1126 | !--------------------------------------------------------------------- |
|---|
| 1127 | |
|---|
| 1128 | SUBROUTINE advance_mu_t( ww, ww_1, u, u_1, v, v_1, & |
|---|
| 1129 | mu, mut, muave, muts, muu, muv, & |
|---|
| 1130 | mudf, uam, vam, wwam, t, t_1, & |
|---|
| 1131 | t_ave, ft, mu_tend, & |
|---|
| 1132 | rdx, rdy, dts, epssm, & |
|---|
| 1133 | dnw, fnm, fnp, rdnw, & |
|---|
| 1134 | msfux, msfuy, msfvx, msfvx_inv, & |
|---|
| 1135 | msfvy, msftx, msfty, & |
|---|
| 1136 | step, config_flags, & |
|---|
| 1137 | ids, ide, jds, jde, kds, kde, & |
|---|
| 1138 | ims, ime, jms, jme, kms, kme, & |
|---|
| 1139 | its, ite, jts, jte, kts, kte ) |
|---|
| 1140 | |
|---|
| 1141 | IMPLICIT NONE ! religion first |
|---|
| 1142 | |
|---|
| 1143 | ! stuff coming in |
|---|
| 1144 | |
|---|
| 1145 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
|---|
| 1146 | |
|---|
| 1147 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde |
|---|
| 1148 | INTEGER, INTENT(IN ) :: ims,ime, jms,jme, kms,kme |
|---|
| 1149 | INTEGER, INTENT(IN ) :: its,ite, jts,jte, kts,kte |
|---|
| 1150 | |
|---|
| 1151 | INTEGER, INTENT(IN ) :: step |
|---|
| 1152 | |
|---|
| 1153 | REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), & |
|---|
| 1154 | INTENT(IN ) :: & |
|---|
| 1155 | u, & |
|---|
| 1156 | v, & |
|---|
| 1157 | u_1, & |
|---|
| 1158 | v_1, & |
|---|
| 1159 | t_1, & |
|---|
| 1160 | ft |
|---|
| 1161 | |
|---|
| 1162 | REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), & |
|---|
| 1163 | INTENT(INOUT) :: & |
|---|
| 1164 | ww, & |
|---|
| 1165 | ww_1, & |
|---|
| 1166 | t, & |
|---|
| 1167 | t_ave, & |
|---|
| 1168 | uam, & |
|---|
| 1169 | vam, & |
|---|
| 1170 | wwam |
|---|
| 1171 | |
|---|
| 1172 | REAL, DIMENSION( ims:ime , jms:jme ), INTENT(IN ) :: muu, & |
|---|
| 1173 | muv, & |
|---|
| 1174 | mut, & |
|---|
| 1175 | msfux,& |
|---|
| 1176 | msfuy,& |
|---|
| 1177 | msfvx,& |
|---|
| 1178 | msfvx_inv,& |
|---|
| 1179 | msfvy,& |
|---|
| 1180 | msftx,& |
|---|
| 1181 | msfty,& |
|---|
| 1182 | mu_tend |
|---|
| 1183 | |
|---|
| 1184 | REAL, DIMENSION( ims:ime , jms:jme ), INTENT( OUT) :: muave, & |
|---|
| 1185 | muts, & |
|---|
| 1186 | mudf |
|---|
| 1187 | |
|---|
| 1188 | REAL, DIMENSION( ims:ime , jms:jme ), INTENT(INOUT) :: mu |
|---|
| 1189 | |
|---|
| 1190 | REAL, DIMENSION( kms:kme ), INTENT(IN ) :: fnm, & |
|---|
| 1191 | fnp, & |
|---|
| 1192 | dnw, & |
|---|
| 1193 | rdnw |
|---|
| 1194 | |
|---|
| 1195 | |
|---|
| 1196 | REAL, INTENT(IN ) :: rdx, & |
|---|
| 1197 | rdy, & |
|---|
| 1198 | dts, & |
|---|
| 1199 | epssm |
|---|
| 1200 | |
|---|
| 1201 | ! Local arrays from the stack (note tile size) |
|---|
| 1202 | |
|---|
| 1203 | REAL, DIMENSION (its:ite, kts:kte) :: wdtn, dvdxi |
|---|
| 1204 | REAL, DIMENSION (its:ite) :: dmdt |
|---|
| 1205 | |
|---|
| 1206 | INTEGER :: i,j,k, i_start, i_end, j_start, j_end, k_start, k_end |
|---|
| 1207 | INTEGER :: i_endu, j_endv |
|---|
| 1208 | REAL :: acc |
|---|
| 1209 | |
|---|
| 1210 | !<DESCRIPTION> |
|---|
| 1211 | ! |
|---|
| 1212 | ! advance_mu_t advances the explicit perturbation theta equation and the mass |
|---|
| 1213 | ! conservation equation. In addition, the small timestep omega is updated, |
|---|
| 1214 | ! and some quantities needed in other places are squirrelled away. |
|---|
| 1215 | ! |
|---|
| 1216 | !</DESCRIPTION> |
|---|
| 1217 | |
|---|
| 1218 | ! now, the real work. |
|---|
| 1219 | ! set the loop bounds taking into account boundary conditions. |
|---|
| 1220 | |
|---|
| 1221 | i_start = its |
|---|
| 1222 | i_end = ite |
|---|
| 1223 | j_start = jts |
|---|
| 1224 | j_end = jte |
|---|
| 1225 | k_start = kts |
|---|
| 1226 | k_end = kte-1 |
|---|
| 1227 | |
|---|
| 1228 | i_endu = i_end |
|---|
| 1229 | j_endv = j_end |
|---|
| 1230 | |
|---|
| 1231 | IF(j_end == jde) j_end = j_end - 1 |
|---|
| 1232 | IF(i_end == ide) i_end = i_end - 1 |
|---|
| 1233 | |
|---|
| 1234 | IF ( .NOT. config_flags%periodic_x )THEN |
|---|
| 1235 | IF ( (config_flags%specified .or. config_flags%nested) .and. (its == ids) ) & |
|---|
| 1236 | i_start = i_start + 1 |
|---|
| 1237 | |
|---|
| 1238 | IF ( (config_flags%specified .or. config_flags%nested) .and. (ite == ide) ) & |
|---|
| 1239 | i_end = i_end - 1 |
|---|
| 1240 | ENDIF |
|---|
| 1241 | |
|---|
| 1242 | IF ( (config_flags%specified .or. config_flags%nested) .and. (jts == jds) ) & |
|---|
| 1243 | j_start = j_start + 1 |
|---|
| 1244 | |
|---|
| 1245 | IF ( (config_flags%specified .or. config_flags%nested) .and. (jte == jde) ) & |
|---|
| 1246 | j_end = j_end - 1 |
|---|
| 1247 | |
|---|
| 1248 | |
|---|
| 1249 | ! CALCULATION OF WW (dETA/dt) |
|---|
| 1250 | DO j = j_start, j_end |
|---|
| 1251 | |
|---|
| 1252 | DO i=i_start, i_end |
|---|
| 1253 | dmdt(i) = 0. |
|---|
| 1254 | ENDDO |
|---|
| 1255 | ! NOTE: mu is not coupled with the map scale factor. |
|---|
| 1256 | ! ww (omega) IS coupled with the map scale factor. |
|---|
| 1257 | ! Being coupled with the map scale factor means |
|---|
| 1258 | ! multiplication by (1/msft) in this case. |
|---|
| 1259 | |
|---|
| 1260 | ! Comments on map scale factors |
|---|
| 1261 | ! ADT eqn 47: |
|---|
| 1262 | ! partial drho/dt = -mx*my[partial d/dx(rho u/my) + partial d/dy(rho v/mx)] |
|---|
| 1263 | ! -partial d/dz(rho w) |
|---|
| 1264 | ! with rho -> mu, dividing by my, and with partial d/dnu(rho nu/my [=ww]) |
|---|
| 1265 | ! as the final term (because we're looking for d_nu_/dt) |
|---|
| 1266 | ! |
|---|
| 1267 | ! begin by integrating with respect to nu from bottom to top |
|---|
| 1268 | ! BCs are ww=0 at both |
|---|
| 1269 | ! final term gives 0 |
|---|
| 1270 | ! first term gives Integral([1/my]partial d mu/dt) over total column = dm/dt |
|---|
| 1271 | ! RHS remaining is Integral(-mx[partial d/dx(mu u/my) + |
|---|
| 1272 | ! partial d/dy(mu v/mx)]) over column |
|---|
| 1273 | ! lines below find RHS terms at each level then set dmdt = sum over all levels |
|---|
| 1274 | ! |
|---|
| 1275 | ! [don't divide the below by msfty until find ww, since dmdt is used in |
|---|
| 1276 | ! the meantime] |
|---|
| 1277 | |
|---|
| 1278 | DO k=k_start, k_end |
|---|
| 1279 | DO i=i_start, i_end |
|---|
| 1280 | dvdxi(i,k) = msftx(i,j)*msfty(i,j)*( & |
|---|
| 1281 | rdy*( (v(i,k,j+1)+muv(i,j+1)*v_1(i,k,j+1)*msfvx_inv(i,j+1)) & |
|---|
| 1282 | -(v(i,k,j )+muv(i,j )*v_1(i,k,j )*msfvx_inv(i,j )) ) & |
|---|
| 1283 | +rdx*( (u(i+1,k,j)+muu(i+1,j)*u_1(i+1,k,j)/msfuy(i+1,j)) & |
|---|
| 1284 | -(u(i,k,j )+muu(i ,j)*u_1(i,k,j )/msfuy(i ,j)) )) |
|---|
| 1285 | dmdt(i) = dmdt(i) + dnw(k)*dvdxi(i,k) |
|---|
| 1286 | ENDDO |
|---|
| 1287 | ENDDO |
|---|
| 1288 | DO i=i_start, i_end |
|---|
| 1289 | muave(i,j) = mu(i,j) |
|---|
| 1290 | mu(i,j) = mu(i,j)+dts*(dmdt(i)+mu_tend(i,j)) |
|---|
| 1291 | mudf(i,j) = (dmdt(i)+mu_tend(i,j)) ! save tendency for div damp filter |
|---|
| 1292 | muts(i,j) = mut(i,j)+mu(i,j) |
|---|
| 1293 | muave(i,j) =.5*((1.+epssm)*mu(i,j)+(1.-epssm)*muave(i,j)) |
|---|
| 1294 | ENDDO |
|---|
| 1295 | |
|---|
| 1296 | DO k=2,k_end |
|---|
| 1297 | DO i=i_start, i_end |
|---|
| 1298 | ww(i,k,j)=ww(i,k-1,j)-dnw(k-1)*(dmdt(i)+dvdxi(i,k-1)+mu_tend(i,j))/msfty(i,j) |
|---|
| 1299 | ENDDO |
|---|
| 1300 | END DO |
|---|
| 1301 | |
|---|
| 1302 | ! NOTE: ww_1 (large timestep ww) is already coupled with the |
|---|
| 1303 | ! map scale factor |
|---|
| 1304 | |
|---|
| 1305 | DO k=1,k_end |
|---|
| 1306 | DO i=i_start, i_end |
|---|
| 1307 | ww(i,k,j)=ww(i,k,j)-ww_1(i,k,j) |
|---|
| 1308 | END DO |
|---|
| 1309 | END DO |
|---|
| 1310 | |
|---|
| 1311 | ENDDO |
|---|
| 1312 | |
|---|
| 1313 | ! CALCULATION OF THETA |
|---|
| 1314 | |
|---|
| 1315 | ! NOTE: theta'' is not coupled with the map-scale factor, |
|---|
| 1316 | ! while the theta'' tendency is coupled (i.e., mult by 1/msft) |
|---|
| 1317 | |
|---|
| 1318 | ! Comments on map scale factors |
|---|
| 1319 | ! BUT NOTE THAT both are mass coupled |
|---|
| 1320 | ! in flux form equations (Klemp et al.) Theta = mu*theta |
|---|
| 1321 | ! |
|---|
| 1322 | ! scalar eqn: partial d/dt(rho q/my) = -mx[partial d/dx(q rho u/my) + |
|---|
| 1323 | ! partial d/dy(q rho v/mx)] |
|---|
| 1324 | ! - partial d/dz(q rho w/my) |
|---|
| 1325 | ! with rho -> mu, and with partial d/dnu(q rho nu/my) as the final term |
|---|
| 1326 | ! |
|---|
| 1327 | ! adding previous tendency contribution which was map scale factor coupled |
|---|
| 1328 | ! (had been divided by msfty) |
|---|
| 1329 | ! need to uncouple before updating uncoupled Theta (by adding) |
|---|
| 1330 | |
|---|
| 1331 | DO j=j_start, j_end |
|---|
| 1332 | DO k=1,k_end |
|---|
| 1333 | DO i=i_start, i_end |
|---|
| 1334 | t_ave(i,k,j) = t(i,k,j) |
|---|
| 1335 | t (i,k,j) = t(i,k,j) + msfty(i,j)*dts*ft(i,k,j) |
|---|
| 1336 | END DO |
|---|
| 1337 | END DO |
|---|
| 1338 | ENDDO |
|---|
| 1339 | |
|---|
| 1340 | DO j=j_start, j_end |
|---|
| 1341 | |
|---|
| 1342 | DO i=i_start, i_end |
|---|
| 1343 | wdtn(i,1 )=0. |
|---|
| 1344 | wdtn(i,kde)=0. |
|---|
| 1345 | ENDDO |
|---|
| 1346 | |
|---|
| 1347 | DO k=2,k_end |
|---|
| 1348 | DO i=i_start, i_end |
|---|
| 1349 | ! for scalar eqn RHS term 3 |
|---|
| 1350 | wdtn(i,k)= ww(i,k,j)*(fnm(k)*t_1(i,k ,j)+fnp(k)*t_1(i,k-1,j)) |
|---|
| 1351 | ENDDO |
|---|
| 1352 | ENDDO |
|---|
| 1353 | |
|---|
| 1354 | ! scalar eqn, RHS terms 1, 2 and 3 |
|---|
| 1355 | ! multiply by msfty to uncouple result for Theta from map scale factor |
|---|
| 1356 | |
|---|
| 1357 | DO k=1,k_end |
|---|
| 1358 | DO i=i_start, i_end |
|---|
| 1359 | ! multiplication by msfty uncouples result for Theta |
|---|
| 1360 | t(i,k,j) = t(i,k,j) - dts*msfty(i,j)*( & |
|---|
| 1361 | ! multiplication by mx needed for RHS terms 1 & 2 |
|---|
| 1362 | msftx(i,j)*( & |
|---|
| 1363 | .5*rdy* & |
|---|
| 1364 | ( v(i,k,j+1)*(t_1(i,k,j+1)+t_1(i,k, j )) & |
|---|
| 1365 | -v(i,k,j )*(t_1(i,k, j )+t_1(i,k,j-1)) ) & |
|---|
| 1366 | + .5*rdx* & |
|---|
| 1367 | ( u(i+1,k,j)*(t_1(i+1,k,j)+t_1(i ,k,j)) & |
|---|
| 1368 | -u(i ,k,j)*(t_1(i ,k,j)+t_1(i-1,k,j)) ) ) & |
|---|
| 1369 | + rdnw(k)*( wdtn(i,k+1)-wdtn(i,k) ) ) |
|---|
| 1370 | ENDDO |
|---|
| 1371 | ENDDO |
|---|
| 1372 | |
|---|
| 1373 | ENDDO |
|---|
| 1374 | |
|---|
| 1375 | END SUBROUTINE advance_mu_t |
|---|
| 1376 | |
|---|
| 1377 | |
|---|
| 1378 | |
|---|
| 1379 | !------------------------------------------------------------ |
|---|
| 1380 | |
|---|
| 1381 | SUBROUTINE advance_w( w, rw_tend, ww, w_save, u, v, & |
|---|
| 1382 | mu1, mut, muave, muts, & |
|---|
| 1383 | t_2ave, t_2, t_1, & |
|---|
| 1384 | ph, ph_1, phb, ph_tend, & |
|---|
| 1385 | ht, c2a, cqw, alt, alb, & |
|---|
| 1386 | a, alpha, gamma, & |
|---|
| 1387 | rdx, rdy, dts, t0, epssm, & |
|---|
| 1388 | dnw, fnm, fnp, rdnw, rdn, & |
|---|
| 1389 | cf1, cf2, cf3, msftx, msfty,& |
|---|
| 1390 | config_flags, top_lid, & |
|---|
| 1391 | ids,ide, jds,jde, kds,kde, & ! domain dims |
|---|
| 1392 | ims,ime, jms,jme, kms,kme, & ! memory dims |
|---|
| 1393 | its,ite, jts,jte, kts,kte ) ! tile dims |
|---|
| 1394 | |
|---|
| 1395 | ! We have used msfty for msft_inv but have not thought through w equation |
|---|
| 1396 | ! pieces properly yet, so we will have to hope that it is okay |
|---|
| 1397 | ! We think we have found a slight error in surface w calculation |
|---|
| 1398 | |
|---|
| 1399 | IMPLICIT NONE ! religion first |
|---|
| 1400 | |
|---|
| 1401 | ! stuff coming in |
|---|
| 1402 | |
|---|
| 1403 | |
|---|
| 1404 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
|---|
| 1405 | |
|---|
| 1406 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde |
|---|
| 1407 | INTEGER, INTENT(IN ) :: ims,ime, jms,jme, kms,kme |
|---|
| 1408 | INTEGER, INTENT(IN ) :: its,ite, jts,jte, kts,kte |
|---|
| 1409 | |
|---|
| 1410 | LOGICAL, INTENT(IN ) :: top_lid |
|---|
| 1411 | |
|---|
| 1412 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 1413 | INTENT(INOUT) :: & |
|---|
| 1414 | t_2ave, & |
|---|
| 1415 | w, & |
|---|
| 1416 | ph |
|---|
| 1417 | |
|---|
| 1418 | REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), & |
|---|
| 1419 | INTENT(IN ) :: & |
|---|
| 1420 | rw_tend, & |
|---|
| 1421 | ww, & |
|---|
| 1422 | w_save, & |
|---|
| 1423 | u, & |
|---|
| 1424 | v, & |
|---|
| 1425 | t_2, & |
|---|
| 1426 | t_1, & |
|---|
| 1427 | ph_1, & |
|---|
| 1428 | phb, & |
|---|
| 1429 | ph_tend, & |
|---|
| 1430 | alpha, & |
|---|
| 1431 | gamma, & |
|---|
| 1432 | a, & |
|---|
| 1433 | c2a, & |
|---|
| 1434 | cqw, & |
|---|
| 1435 | alb, & |
|---|
| 1436 | alt |
|---|
| 1437 | |
|---|
| 1438 | REAL, DIMENSION( ims:ime , jms:jme ), & |
|---|
| 1439 | INTENT(IN ) :: & |
|---|
| 1440 | mu1, & |
|---|
| 1441 | mut, & |
|---|
| 1442 | muave, & |
|---|
| 1443 | muts, & |
|---|
| 1444 | ht, & |
|---|
| 1445 | msftx, & |
|---|
| 1446 | msfty |
|---|
| 1447 | |
|---|
| 1448 | REAL, DIMENSION( kms:kme ), INTENT(IN ) :: fnp, & |
|---|
| 1449 | fnm, & |
|---|
| 1450 | rdnw, & |
|---|
| 1451 | rdn, & |
|---|
| 1452 | dnw |
|---|
| 1453 | |
|---|
| 1454 | REAL, INTENT(IN ) :: rdx, & |
|---|
| 1455 | rdy, & |
|---|
| 1456 | dts, & |
|---|
| 1457 | cf1, & |
|---|
| 1458 | cf2, & |
|---|
| 1459 | cf3, & |
|---|
| 1460 | t0, & |
|---|
| 1461 | epssm |
|---|
| 1462 | |
|---|
| 1463 | ! Stack based 3d data, tile size. |
|---|
| 1464 | |
|---|
| 1465 | REAL, DIMENSION( its:ite ) :: mut_inv, msft_inv |
|---|
| 1466 | REAL, DIMENSION( its:ite, kts:kte ) :: rhs, wdwn |
|---|
| 1467 | INTEGER :: i,j,k, i_start, i_end, j_start, j_end, k_start, k_end |
|---|
| 1468 | REAL, DIMENSION (kts:kte) :: dampwt |
|---|
| 1469 | real :: htop,hbot,hdepth,hk |
|---|
| 1470 | real :: pi,dampmag |
|---|
| 1471 | |
|---|
| 1472 | !<DESCRIPTION> |
|---|
| 1473 | ! |
|---|
| 1474 | ! advance_w advances the implicit w and geopotential equations. |
|---|
| 1475 | ! |
|---|
| 1476 | !</DESCRIPTION> |
|---|
| 1477 | |
|---|
| 1478 | ! set loop limits. |
|---|
| 1479 | ! Currently set for periodic boundary conditions |
|---|
| 1480 | |
|---|
| 1481 | i_start = its |
|---|
| 1482 | i_end = ite |
|---|
| 1483 | j_start = jts |
|---|
| 1484 | j_end = jte |
|---|
| 1485 | k_start = kts |
|---|
| 1486 | k_end = kte-1 |
|---|
| 1487 | |
|---|
| 1488 | |
|---|
| 1489 | IF(j_end == jde) j_end = j_end - 1 |
|---|
| 1490 | IF(i_end == ide) i_end = i_end - 1 |
|---|
| 1491 | |
|---|
| 1492 | IF ( .NOT. config_flags%periodic_x )THEN |
|---|
| 1493 | IF ( (config_flags%specified .or. config_flags%nested) .and. (its == ids) ) & |
|---|
| 1494 | i_start = i_start + 1 |
|---|
| 1495 | |
|---|
| 1496 | IF ( (config_flags%specified .or. config_flags%nested) .and. (ite == ide) ) & |
|---|
| 1497 | i_end = i_end - 1 |
|---|
| 1498 | ENDIF |
|---|
| 1499 | |
|---|
| 1500 | IF ( (config_flags%specified .or. config_flags%nested) .and. (jts == jds) ) & |
|---|
| 1501 | j_start = j_start + 1 |
|---|
| 1502 | |
|---|
| 1503 | IF ( (config_flags%specified .or. config_flags%nested) .and. (jte == jde) ) & |
|---|
| 1504 | j_end = j_end - 1 |
|---|
| 1505 | |
|---|
| 1506 | pi = 4.*atan(1.) |
|---|
| 1507 | dampmag = dts*config_flags%dampcoef |
|---|
| 1508 | hdepth=config_flags%zdamp |
|---|
| 1509 | |
|---|
| 1510 | ! calculation of phi and w equations |
|---|
| 1511 | |
|---|
| 1512 | ! Comments on map scale factors: |
|---|
| 1513 | ! phi equation is: |
|---|
| 1514 | ! partial d/dt(rho phi/my) = -mx partial d/dx(phi rho u/my) |
|---|
| 1515 | ! -mx partial d/dy(phi rho v/mx) |
|---|
| 1516 | ! - partial d/dz(phi rho w/my) + rho g w/my |
|---|
| 1517 | ! as with scalar equation, use uncoupled value (here phi) to find the |
|---|
| 1518 | ! coupled tendency (rho phi/my) |
|---|
| 1519 | ! here as usual rho -> ~'mu' |
|---|
| 1520 | ! |
|---|
| 1521 | ! w eqn [divided by my] is: |
|---|
| 1522 | ! partial d/dt(rho w/my) = -mx partial d/dx(w rho u/my) |
|---|
| 1523 | ! -mx partial d/dy(v rho v/mx) |
|---|
| 1524 | ! - partial d/dz(w rho w/my) |
|---|
| 1525 | ! +rho[(u*u+v*v)/a + 2 u omega cos(lat) - |
|---|
| 1526 | ! (1/rho) partial dp/dz - g + Fz]/my |
|---|
| 1527 | ! here as usual rho -> ~'mu' |
|---|
| 1528 | ! |
|---|
| 1529 | ! 'u,v,w' sent here must be coupled variables (= rho w/my etc.) by their usage |
|---|
| 1530 | |
|---|
| 1531 | |
|---|
| 1532 | DO i=i_start, i_end |
|---|
| 1533 | rhs(i,1) = 0. |
|---|
| 1534 | ENDDO |
|---|
| 1535 | |
|---|
| 1536 | j_loop_w: DO j = j_start, j_end |
|---|
| 1537 | DO i=i_start, i_end |
|---|
| 1538 | mut_inv(i) = 1./mut(i,j) |
|---|
| 1539 | msft_inv(i) = 1./msfty(i,j) |
|---|
| 1540 | ENDDO |
|---|
| 1541 | |
|---|
| 1542 | DO k=1, k_end |
|---|
| 1543 | DO i=i_start, i_end |
|---|
| 1544 | t_2ave(i,k,j)=.5*((1.+epssm)*t_2(i,k,j) & |
|---|
| 1545 | +(1.-epssm)*t_2ave(i,k,j)) |
|---|
| 1546 | t_2ave(i,k,j)=(t_2ave(i,k,j) + muave(i,j)*t0) & |
|---|
| 1547 | /(muts(i,j)*(t0+t_1(i,k,j))) |
|---|
| 1548 | wdwn(i,k+1)=.5*(ww(i,k+1,j)+ww(i,k,j))*rdnw(k) & |
|---|
| 1549 | *(ph_1(i,k+1,j)-ph_1(i,k,j)+phb(i,k+1,j)-phb(i,k,j)) |
|---|
| 1550 | rhs(i,k+1) = dts*(ph_tend(i,k+1,j) + .5*g*(1.-epssm)*w(i,k+1,j)) |
|---|
| 1551 | |
|---|
| 1552 | ENDDO |
|---|
| 1553 | ENDDO |
|---|
| 1554 | |
|---|
| 1555 | ! building up RHS of phi equation |
|---|
| 1556 | ! ph_tend contains terms 1 and 2; now adding 3 and 4 in stages: |
|---|
| 1557 | ! here rhs = delta t [ph_tend + ~g*w/2 - ~ww * partial d phi/dz] |
|---|
| 1558 | DO k=2,k_end |
|---|
| 1559 | DO i=i_start, i_end |
|---|
| 1560 | rhs(i,k) = rhs(i,k)-dts*( fnm(k)*wdwn(i,k+1) & |
|---|
| 1561 | +fnp(k)*wdwn(i,k ) ) |
|---|
| 1562 | ENDDO |
|---|
| 1563 | ENDDO |
|---|
| 1564 | |
|---|
| 1565 | ! NOTE: phi'' is not coupled with the map-scale factor (1/m), |
|---|
| 1566 | ! but it's tendency is, so must multiply by msft here |
|---|
| 1567 | |
|---|
| 1568 | ! Comments on map scale factors: |
|---|
| 1569 | ! building up RHS of phi equation |
|---|
| 1570 | ! ph_tend contains terms 1 and 2; now adding 3 and 4 in stages: |
|---|
| 1571 | ! here rhs = ph_previous + (msft/mu)*[rhs_previous - ~ww * delta t * |
|---|
| 1572 | ! partial d phi/dz] |
|---|
| 1573 | ! = ph_previous + (msft*delta t/mu)*[ph_tend + ~g*w/2 - ~ww * |
|---|
| 1574 | ! partial d phi/dz] |
|---|
| 1575 | DO k=2,k_end+1 |
|---|
| 1576 | DO i=i_start, i_end |
|---|
| 1577 | rhs(i,k) = ph(i,k,j) + msfty(i,j)*rhs(i,k)*mut_inv(i) |
|---|
| 1578 | if(top_lid .and. k.eq.k_end+1)rhs(i,k)=0. |
|---|
| 1579 | ENDDO |
|---|
| 1580 | ENDDO |
|---|
| 1581 | |
|---|
| 1582 | ! lower boundary condition on w |
|---|
| 1583 | |
|---|
| 1584 | ! Comments on map scale factors: |
|---|
| 1585 | ! Chain rule: if Z=Z(X,Y) [true at the surface] then |
|---|
| 1586 | ! dZ/dt = dZ/dX * dX/dt + dZ/dY * dY/dt, U=dX/dt, V=dY/dt |
|---|
| 1587 | ! using capitals to denote actual values |
|---|
| 1588 | ! In mapped values, u=U, v=V, z=Z, 1/dX=mx/dx, 1/dY=my/dy |
|---|
| 1589 | ! w = dz/dt = mx u dz/dx + my v dz/dy |
|---|
| 1590 | ! [where dz/dx is just the surface height change between x |
|---|
| 1591 | ! gridpoints, and dz/dy is the change between y gridpoints] |
|---|
| 1592 | ! [cf1, cf2 and cf3 do vertical weighting of u or v values nearest |
|---|
| 1593 | ! the surface] |
|---|
| 1594 | ! if so, shouldn't there be map scale factors below??? |
|---|
| 1595 | |
|---|
| 1596 | DO i=i_start, i_end |
|---|
| 1597 | w(i,1,j)= & |
|---|
| 1598 | |
|---|
| 1599 | .5*rdy*( & |
|---|
| 1600 | (ht(i,j+1)-ht(i,j )) & |
|---|
| 1601 | *(cf1*v(i,1,j+1)+cf2*v(i,2,j+1)+cf3*v(i,3,j+1)) & |
|---|
| 1602 | +(ht(i,j )-ht(i,j-1)) & |
|---|
| 1603 | *(cf1*v(i,1,j )+cf2*v(i,2,j )+cf3*v(i,3,j )) ) & |
|---|
| 1604 | |
|---|
| 1605 | +.5*rdx*( & |
|---|
| 1606 | (ht(i+1,j)-ht(i,j )) & |
|---|
| 1607 | *(cf1*u(i+1,1,j)+cf2*u(i+1,2,j)+cf3*u(i+1,3,j)) & |
|---|
| 1608 | +(ht(i,j )-ht(i-1,j)) & |
|---|
| 1609 | *(cf1*u(i ,1,j)+cf2*u(i ,2,j)+cf3*u(i ,3,j)) ) |
|---|
| 1610 | |
|---|
| 1611 | ENDDO |
|---|
| 1612 | ! |
|---|
| 1613 | ! Jammed 3 doubly nested loops over k/i into 1 for slight improvement |
|---|
| 1614 | ! in efficiency. No change in results (bit-for-bit). JM 20040514 |
|---|
| 1615 | ! (left a blank line where the other two k/i-loops were) |
|---|
| 1616 | ! |
|---|
| 1617 | ! above surface, begin by adding delta t * previous (coupled) w tendency |
|---|
| 1618 | DO k=2,k_end |
|---|
| 1619 | DO i=i_start, i_end |
|---|
| 1620 | w(i,k,j)=w(i,k,j)+dts*rw_tend(i,k,j) & |
|---|
| 1621 | + msft_inv(i)*cqw(i,k,j)*( & |
|---|
| 1622 | +.5*dts*g*mut_inv(i)*rdn(k)* & |
|---|
| 1623 | (c2a(i,k ,j)*rdnw(k ) & |
|---|
| 1624 | *((1.+epssm)*(rhs(i,k+1 )-rhs(i,k )) & |
|---|
| 1625 | +(1.-epssm)*(ph(i,k+1,j)-ph(i,k ,j))) & |
|---|
| 1626 | -c2a(i,k-1,j)*rdnw(k-1) & |
|---|
| 1627 | *((1.+epssm)*(rhs(i,k )-rhs(i,k-1 )) & |
|---|
| 1628 | +(1.-epssm)*(ph(i,k ,j)-ph(i,k-1,j))))) & |
|---|
| 1629 | |
|---|
| 1630 | +dts*g*msft_inv(i)*(rdn(k)* & |
|---|
| 1631 | (c2a(i,k ,j)*alt(i,k ,j)*t_2ave(i,k ,j) & |
|---|
| 1632 | -c2a(i,k-1,j)*alt(i,k-1,j)*t_2ave(i,k-1,j)) & |
|---|
| 1633 | - muave(i,j)) |
|---|
| 1634 | ENDDO |
|---|
| 1635 | ENDDO |
|---|
| 1636 | |
|---|
| 1637 | K=k_end+1 |
|---|
| 1638 | |
|---|
| 1639 | DO i=i_start, i_end |
|---|
| 1640 | w(i,k,j)=w(i,k,j)+dts*rw_tend(i,k,j) & |
|---|
| 1641 | +msft_inv(i)*( & |
|---|
| 1642 | -.5*dts*g*mut_inv(i)*rdnw(k-1)**2*2.*c2a(i,k-1,j) & |
|---|
| 1643 | *((1.+epssm)*(rhs(i,k )-rhs(i,k-1 )) & |
|---|
| 1644 | +(1.-epssm)*(ph(i,k,j)-ph(i,k-1,j))) & |
|---|
| 1645 | -dts*g*(2.*rdnw(k-1)* & |
|---|
| 1646 | c2a(i,k-1,j)*alt(i,k-1,j)*t_2ave(i,k-1,j) & |
|---|
| 1647 | + muave(i,j)) ) |
|---|
| 1648 | if(top_lid)w(i,k,j) = 0. |
|---|
| 1649 | ENDDO |
|---|
| 1650 | |
|---|
| 1651 | DO k=2,k_end+1 |
|---|
| 1652 | DO i=i_start, i_end |
|---|
| 1653 | w(i,k,j)=(w(i,k,j)-a(i,k,j)*w(i,k-1,j))*alpha(i,k,j) |
|---|
| 1654 | ENDDO |
|---|
| 1655 | ENDDO |
|---|
| 1656 | |
|---|
| 1657 | DO k=k_end,2,-1 |
|---|
| 1658 | DO i=i_start, i_end |
|---|
| 1659 | w (i,k,j)=w (i,k,j)-gamma(i,k,j)*w(i,k+1,j) |
|---|
| 1660 | ENDDO |
|---|
| 1661 | ENDDO |
|---|
| 1662 | |
|---|
| 1663 | IF (config_flags%damp_opt .eq. 3) THEN |
|---|
| 1664 | DO k=k_end+1,2,-1 |
|---|
| 1665 | DO i=i_start, i_end |
|---|
| 1666 | htop=(ph_1(i,k_end+1,j)+phb(i,k_end+1,j))/g |
|---|
| 1667 | hk=(ph_1(i,k,j)+phb(i,k,j))/g |
|---|
| 1668 | hbot=htop-hdepth |
|---|
| 1669 | dampwt(k) = 0. |
|---|
| 1670 | if(hk .ge. hbot)then |
|---|
| 1671 | dampwt(k) = dampmag*sin(0.5*pi*(hk-hbot)/hdepth)*sin(0.5*pi*(hk-hbot)/hdepth) |
|---|
| 1672 | endif |
|---|
| 1673 | w(i,k,j) = (w(i,k,j) - dampwt(k)*mut(i,j)*w_save(i,k,j))/(1.+dampwt(k)) |
|---|
| 1674 | ENDDO |
|---|
| 1675 | ENDDO |
|---|
| 1676 | ENDIF |
|---|
| 1677 | |
|---|
| 1678 | DO k=k_end+1,2,-1 |
|---|
| 1679 | DO i=i_start, i_end |
|---|
| 1680 | ph(i,k,j) = rhs(i,k)+msfty(i,j)*.5*dts*g*(1.+epssm) & |
|---|
| 1681 | *w(i,k,j)/muts(i,j) |
|---|
| 1682 | ENDDO |
|---|
| 1683 | ENDDO |
|---|
| 1684 | |
|---|
| 1685 | ENDDO j_loop_w |
|---|
| 1686 | |
|---|
| 1687 | END SUBROUTINE advance_w |
|---|
| 1688 | |
|---|
| 1689 | !--------------------------------------------------------------------- |
|---|
| 1690 | |
|---|
| 1691 | SUBROUTINE sumflux ( ru, rv, ww, & |
|---|
| 1692 | u_lin, v_lin, ww_lin, & |
|---|
| 1693 | muu, muv, & |
|---|
| 1694 | ru_m, rv_m, ww_m, epssm, & |
|---|
| 1695 | msfux, msfuy, msfvx, msfvx_inv, msfvy, & |
|---|
| 1696 | iteration , number_of_small_timesteps, & |
|---|
| 1697 | ids,ide, jds,jde, kds,kde, & |
|---|
| 1698 | ims,ime, jms,jme, kms,kme, & |
|---|
| 1699 | its,ite, jts,jte, kts,kte ) |
|---|
| 1700 | |
|---|
| 1701 | |
|---|
| 1702 | IMPLICIT NONE ! religion first |
|---|
| 1703 | |
|---|
| 1704 | ! declarations for the stuff coming in |
|---|
| 1705 | |
|---|
| 1706 | INTEGER, INTENT(IN ) :: number_of_small_timesteps |
|---|
| 1707 | INTEGER, INTENT(IN ) :: iteration |
|---|
| 1708 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde |
|---|
| 1709 | INTEGER, INTENT(IN ) :: ims,ime, jms,jme, kms,kme |
|---|
| 1710 | INTEGER, INTENT(IN ) :: its,ite, jts,jte, kts,kte |
|---|
| 1711 | |
|---|
| 1712 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN ) :: ru, & |
|---|
| 1713 | rv, & |
|---|
| 1714 | ww, & |
|---|
| 1715 | u_lin, & |
|---|
| 1716 | v_lin, & |
|---|
| 1717 | ww_lin |
|---|
| 1718 | |
|---|
| 1719 | |
|---|
| 1720 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme) , INTENT(INOUT) :: ru_m, & |
|---|
| 1721 | rv_m, & |
|---|
| 1722 | ww_m |
|---|
| 1723 | REAL, DIMENSION(ims:ime, jms:jme) , INTENT(IN ) :: muu, muv, & |
|---|
| 1724 | msfux, msfuy, & |
|---|
| 1725 | msfvx, msfvy, msfvx_inv |
|---|
| 1726 | |
|---|
| 1727 | INTEGER :: mini, minj, mink |
|---|
| 1728 | |
|---|
| 1729 | |
|---|
| 1730 | REAL, INTENT(IN ) :: epssm |
|---|
| 1731 | INTEGER :: i,j,k |
|---|
| 1732 | |
|---|
| 1733 | |
|---|
| 1734 | !<DESCRIPTION> |
|---|
| 1735 | ! |
|---|
| 1736 | ! update the small-timestep time-averaged mass fluxes; these |
|---|
| 1737 | ! are needed for consistent mass-conserving scalar advection. |
|---|
| 1738 | ! |
|---|
| 1739 | !</DESCRIPTION> |
|---|
| 1740 | |
|---|
| 1741 | IF (iteration == 1 )THEN |
|---|
| 1742 | DO j = jts, jte |
|---|
| 1743 | DO k = kts, kte |
|---|
| 1744 | DO i = its, ite |
|---|
| 1745 | ru_m(i,k,j) = 0. |
|---|
| 1746 | rv_m(i,k,j) = 0. |
|---|
| 1747 | ww_m(i,k,j) = 0. |
|---|
| 1748 | ENDDO |
|---|
| 1749 | ENDDO |
|---|
| 1750 | ENDDO |
|---|
| 1751 | ENDIF |
|---|
| 1752 | |
|---|
| 1753 | mini = min(ide-1,ite) |
|---|
| 1754 | minj = min(jde-1,jte) |
|---|
| 1755 | mink = min(kde-1,kte) |
|---|
| 1756 | |
|---|
| 1757 | |
|---|
| 1758 | DO j = jts, minj |
|---|
| 1759 | DO k = kts, mink |
|---|
| 1760 | DO i = its, mini |
|---|
| 1761 | ru_m(i,k,j) = ru_m(i,k,j) + ru(i,k,j) |
|---|
| 1762 | rv_m(i,k,j) = rv_m(i,k,j) + rv(i,k,j) |
|---|
| 1763 | ww_m(i,k,j) = ww_m(i,k,j) + ww(i,k,j) |
|---|
| 1764 | ENDDO |
|---|
| 1765 | ENDDO |
|---|
| 1766 | ENDDO |
|---|
| 1767 | |
|---|
| 1768 | IF (ite .GT. mini) THEN |
|---|
| 1769 | DO j = jts, minj |
|---|
| 1770 | DO k = kts, mink |
|---|
| 1771 | DO i = mini+1, ite |
|---|
| 1772 | ru_m(i,k,j) = ru_m(i,k,j) + ru(i,k,j) |
|---|
| 1773 | ENDDO |
|---|
| 1774 | ENDDO |
|---|
| 1775 | ENDDO |
|---|
| 1776 | END IF |
|---|
| 1777 | IF (jte .GT. minj) THEN |
|---|
| 1778 | DO j = minj+1, jte |
|---|
| 1779 | DO k = kts, mink |
|---|
| 1780 | DO i = its, mini |
|---|
| 1781 | rv_m(i,k,j) = rv_m(i,k,j) + rv(i,k,j) |
|---|
| 1782 | ENDDO |
|---|
| 1783 | ENDDO |
|---|
| 1784 | ENDDO |
|---|
| 1785 | END IF |
|---|
| 1786 | IF ( kte .GT. mink) THEN |
|---|
| 1787 | DO j = jts, minj |
|---|
| 1788 | DO k = mink+1, kte |
|---|
| 1789 | DO i = its, mini |
|---|
| 1790 | ww_m(i,k,j) = ww_m(i,k,j) + ww(i,k,j) |
|---|
| 1791 | ENDDO |
|---|
| 1792 | ENDDO |
|---|
| 1793 | ENDDO |
|---|
| 1794 | END IF |
|---|
| 1795 | |
|---|
| 1796 | IF (iteration == number_of_small_timesteps) THEN |
|---|
| 1797 | |
|---|
| 1798 | DO j = jts, minj |
|---|
| 1799 | DO k = kts, mink |
|---|
| 1800 | DO i = its, mini |
|---|
| 1801 | ru_m(i,k,j) = ru_m(i,k,j) / number_of_small_timesteps & |
|---|
| 1802 | + muu(i,j)*u_lin(i,k,j)/msfuy(i,j) |
|---|
| 1803 | rv_m(i,k,j) = rv_m(i,k,j) / number_of_small_timesteps & |
|---|
| 1804 | + muv(i,j)*v_lin(i,k,j)*msfvx_inv(i,j) |
|---|
| 1805 | ww_m(i,k,j) = ww_m(i,k,j) / number_of_small_timesteps & |
|---|
| 1806 | + ww_lin(i,k,j) |
|---|
| 1807 | ENDDO |
|---|
| 1808 | ENDDO |
|---|
| 1809 | ENDDO |
|---|
| 1810 | |
|---|
| 1811 | |
|---|
| 1812 | IF (ite .GT. mini) THEN |
|---|
| 1813 | DO j = jts, minj |
|---|
| 1814 | DO k = kts, mink |
|---|
| 1815 | DO i = mini+1, ite |
|---|
| 1816 | ru_m(i,k,j) = ru_m(i,k,j) / number_of_small_timesteps & |
|---|
| 1817 | + muu(i,j)*u_lin(i,k,j)/msfuy(i,j) |
|---|
| 1818 | ENDDO |
|---|
| 1819 | ENDDO |
|---|
| 1820 | ENDDO |
|---|
| 1821 | END IF |
|---|
| 1822 | IF (jte .GT. minj) THEN |
|---|
| 1823 | DO j = minj+1, jte |
|---|
| 1824 | DO k = kts, mink |
|---|
| 1825 | DO i = its, mini |
|---|
| 1826 | rv_m(i,k,j) = rv_m(i,k,j) / number_of_small_timesteps & |
|---|
| 1827 | + muv(i,j)*v_lin(i,k,j)*msfvx_inv(i,j) |
|---|
| 1828 | ENDDO |
|---|
| 1829 | ENDDO |
|---|
| 1830 | ENDDO |
|---|
| 1831 | END IF |
|---|
| 1832 | IF ( kte .GT. mink) THEN |
|---|
| 1833 | DO j = jts, minj |
|---|
| 1834 | DO k = mink+1, kte |
|---|
| 1835 | DO i = its, mini |
|---|
| 1836 | ww_m(i,k,j) = ww_m(i,k,j) / number_of_small_timesteps & |
|---|
| 1837 | + ww_lin(i,k,j) |
|---|
| 1838 | ENDDO |
|---|
| 1839 | ENDDO |
|---|
| 1840 | ENDDO |
|---|
| 1841 | END IF |
|---|
| 1842 | |
|---|
| 1843 | ENDIF |
|---|
| 1844 | |
|---|
| 1845 | |
|---|
| 1846 | END SUBROUTINE sumflux |
|---|
| 1847 | |
|---|
| 1848 | !--------------------------------------------------------------------- |
|---|
| 1849 | |
|---|
| 1850 | SUBROUTINE init_module_small_step |
|---|
| 1851 | END SUBROUTINE init_module_small_step |
|---|
| 1852 | |
|---|
| 1853 | END MODULE module_small_step_em |
|---|