1 | !_EAL:MODEL_LAYER:INITIALIZATION |
---|
2 | |
---|
3 | #ifndef VERT_UNIT |
---|
4 | ! This MODULE holds the routines which are used to perform various initializations |
---|
5 | ! for the individual domains, specifically for the Eulerian, mass-based coordinate. |
---|
6 | |
---|
7 | !----------------------------------------------------------------------- |
---|
8 | |
---|
9 | MODULE module_initialize_real |
---|
10 | |
---|
11 | USE module_bc |
---|
12 | USE module_configure |
---|
13 | USE module_domain |
---|
14 | USE module_io_domain |
---|
15 | USE module_model_constants |
---|
16 | USE module_state_description |
---|
17 | USE module_timing |
---|
18 | USE module_soil_pre |
---|
19 | USE module_date_time |
---|
20 | USE module_llxy |
---|
21 | #ifdef DM_PARALLEL |
---|
22 | USE module_dm |
---|
23 | #endif |
---|
24 | |
---|
25 | REAL , SAVE :: p_top_save |
---|
26 | INTEGER :: internal_time_loop |
---|
27 | |
---|
28 | CONTAINS |
---|
29 | |
---|
30 | !------------------------------------------------------------------- |
---|
31 | |
---|
32 | SUBROUTINE init_domain ( grid ) |
---|
33 | |
---|
34 | IMPLICIT NONE |
---|
35 | |
---|
36 | ! Input space and data. No gridded meteorological data has been stored, though. |
---|
37 | |
---|
38 | ! TYPE (domain), POINTER :: grid |
---|
39 | TYPE (domain) :: grid |
---|
40 | |
---|
41 | ! Local data. |
---|
42 | |
---|
43 | INTEGER :: idum1, idum2 |
---|
44 | |
---|
45 | CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 ) |
---|
46 | |
---|
47 | CALL init_domain_rk( grid & |
---|
48 | ! |
---|
49 | #include "actual_new_args.inc" |
---|
50 | ! |
---|
51 | ) |
---|
52 | END SUBROUTINE init_domain |
---|
53 | |
---|
54 | !------------------------------------------------------------------- |
---|
55 | |
---|
56 | SUBROUTINE init_domain_rk ( grid & |
---|
57 | ! |
---|
58 | #include "dummy_new_args.inc" |
---|
59 | ! |
---|
60 | ) |
---|
61 | |
---|
62 | USE module_optional_input |
---|
63 | IMPLICIT NONE |
---|
64 | |
---|
65 | ! Input space and data. No gridded meteorological data has been stored, though. |
---|
66 | |
---|
67 | ! TYPE (domain), POINTER :: grid |
---|
68 | TYPE (domain) :: grid |
---|
69 | |
---|
70 | #include "dummy_new_decl.inc" |
---|
71 | |
---|
72 | TYPE (grid_config_rec_type) :: config_flags |
---|
73 | |
---|
74 | ! Local domain indices and counters. |
---|
75 | |
---|
76 | INTEGER :: num_veg_cat , num_soil_top_cat , num_soil_bot_cat |
---|
77 | INTEGER :: loop , num_seaice_changes |
---|
78 | |
---|
79 | INTEGER :: ids, ide, jds, jde, kds, kde, & |
---|
80 | ims, ime, jms, jme, kms, kme, & |
---|
81 | its, ite, jts, jte, kts, kte, & |
---|
82 | ips, ipe, jps, jpe, kps, kpe, & |
---|
83 | i, j, k |
---|
84 | |
---|
85 | INTEGER :: imsx, imex, jmsx, jmex, kmsx, kmex, & |
---|
86 | ipsx, ipex, jpsx, jpex, kpsx, kpex, & |
---|
87 | imsy, imey, jmsy, jmey, kmsy, kmey, & |
---|
88 | ipsy, ipey, jpsy, jpey, kpsy, kpey |
---|
89 | |
---|
90 | INTEGER :: ns |
---|
91 | |
---|
92 | ! Local data |
---|
93 | |
---|
94 | INTEGER :: error |
---|
95 | INTEGER :: im, num_3d_m, num_3d_s |
---|
96 | REAL :: p_surf, p_level |
---|
97 | REAL :: cof1, cof2 |
---|
98 | REAL :: qvf , qvf1 , qvf2 , pd_surf |
---|
99 | REAL :: p00 , t00 , a |
---|
100 | REAL :: hold_znw |
---|
101 | LOGICAL :: were_bad |
---|
102 | |
---|
103 | LOGICAL :: stretch_grid, dry_sounding, debug |
---|
104 | INTEGER IICOUNT |
---|
105 | |
---|
106 | REAL :: p_top_requested , temp |
---|
107 | INTEGER :: num_metgrid_levels |
---|
108 | REAL , DIMENSION(max_eta) :: eta_levels |
---|
109 | REAL :: max_dz |
---|
110 | |
---|
111 | ! INTEGER , PARAMETER :: nl_max = 1000 |
---|
112 | ! REAL , DIMENSION(nl_max) :: grid%dn |
---|
113 | |
---|
114 | integer::oops1,oops2 |
---|
115 | |
---|
116 | REAL :: zap_close_levels |
---|
117 | INTEGER :: force_sfc_in_vinterp |
---|
118 | INTEGER :: interp_type , lagrange_order , extrap_type , t_extrap_type |
---|
119 | LOGICAL :: lowest_lev_from_sfc , use_levels_below_ground , use_surface |
---|
120 | LOGICAL :: we_have_tavgsfc |
---|
121 | |
---|
122 | INTEGER :: lev500 , loop_count |
---|
123 | REAL :: zl , zu , pl , pu , z500 , dz500 , tvsfc , dpmu |
---|
124 | |
---|
125 | LOGICAL , PARAMETER :: want_full_levels = .TRUE. |
---|
126 | LOGICAL , PARAMETER :: want_half_levels = .FALSE. |
---|
127 | |
---|
128 | !-- Carsel and Parrish [1988] |
---|
129 | REAL , DIMENSION(100) :: lqmi |
---|
130 | |
---|
131 | ! Dimension information stored in grid data structure. |
---|
132 | |
---|
133 | CALL get_ijk_from_grid ( grid , & |
---|
134 | ids, ide, jds, jde, kds, kde, & |
---|
135 | ims, ime, jms, jme, kms, kme, & |
---|
136 | ips, ipe, jps, jpe, kps, kpe, & |
---|
137 | imsx, imex, jmsx, jmex, kmsx, kmex, & |
---|
138 | ipsx, ipex, jpsx, jpex, kpsx, kpex, & |
---|
139 | imsy, imey, jmsy, jmey, kmsy, kmey, & |
---|
140 | ipsy, ipey, jpsy, jpey, kpsy, kpey ) |
---|
141 | its = ips ; ite = ipe ; jts = jps ; jte = jpe ; kts = kps ; kte = kpe |
---|
142 | |
---|
143 | |
---|
144 | CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) |
---|
145 | |
---|
146 | ! Check to see if the boundary conditions are set properly in the namelist file. |
---|
147 | ! This checks for sufficiency and redundancy. |
---|
148 | |
---|
149 | CALL boundary_condition_check( config_flags, bdyzone, error, grid%id ) |
---|
150 | |
---|
151 | ! Some sort of "this is the first time" initialization. Who knows. |
---|
152 | |
---|
153 | grid%step_number = 0 |
---|
154 | grid%itimestep=0 |
---|
155 | |
---|
156 | ! Pull in the info in the namelist to compare it to the input data. |
---|
157 | |
---|
158 | grid%real_data_init_type = model_config_rec%real_data_init_type |
---|
159 | |
---|
160 | ! To define the base state, we call a USER MODIFIED routine to set the three |
---|
161 | ! necessary constants: p00 (sea level pressure, Pa), t00 (sea level temperature, K), |
---|
162 | ! and A (temperature difference, from 1000 mb to 300 mb, K). |
---|
163 | |
---|
164 | CALL const_module_initialize ( p00 , t00 , a ) |
---|
165 | |
---|
166 | ! Fix the snow (water equivalent depth, kg/m^2) and the snowh (physical snow |
---|
167 | ! depth, m) fields. |
---|
168 | |
---|
169 | IF ( ( flag_snow .EQ. 0 ) .AND. ( flag_snowh .EQ. 0 ) ) THEN |
---|
170 | DO j=jts,MIN(jde-1,jte) |
---|
171 | DO i=its,MIN(ide-1,ite) |
---|
172 | grid%snow(i,j) = 0. |
---|
173 | grid%snowh(i,j) = 0. |
---|
174 | END DO |
---|
175 | END DO |
---|
176 | |
---|
177 | ELSE IF ( ( flag_snow .EQ. 0 ) .AND. ( flag_snowh .EQ. 1 ) ) THEN |
---|
178 | DO j=jts,MIN(jde-1,jte) |
---|
179 | DO i=its,MIN(ide-1,ite) |
---|
180 | ! ( m -> kg/m^2 ) & ( reduce to liquid, 5:1 ratio ) |
---|
181 | grid%snow(i,j) = grid%snowh(i,j) * 1000. / 5. |
---|
182 | END DO |
---|
183 | END DO |
---|
184 | |
---|
185 | ELSE IF ( ( flag_snow .EQ. 1 ) .AND. ( flag_snowh .EQ. 0 ) ) THEN |
---|
186 | DO j=jts,MIN(jde-1,jte) |
---|
187 | DO i=its,MIN(ide-1,ite) |
---|
188 | ! ( kg/m^2 -> m) & ( liquid to snow depth, 5:1 ratio ) |
---|
189 | grid%snowh(i,j) = grid%snow(i,j) / 1000. * 5. |
---|
190 | END DO |
---|
191 | END DO |
---|
192 | |
---|
193 | END IF |
---|
194 | |
---|
195 | ! For backward compatibility, we might need to assign the map factors from |
---|
196 | ! what they were, to what they are. |
---|
197 | |
---|
198 | IF ( ( config_flags%polar ) .AND. ( flag_mf_xy .EQ. 1 ) ) THEN |
---|
199 | DO j=max(jds+1,jts),min(jde-1,jte) |
---|
200 | DO i=its,min(ide-1,ite) |
---|
201 | grid%msfvx_inv(i,j) = 1./grid%msfvx(i,j) |
---|
202 | END DO |
---|
203 | END DO |
---|
204 | IF(jts == jds) THEN |
---|
205 | DO i=its,ite |
---|
206 | grid%msfvx(i,jts) = 0. |
---|
207 | grid%msfvx_inv(i,jts) = 0. |
---|
208 | END DO |
---|
209 | END IF |
---|
210 | IF(jte == jde) THEN |
---|
211 | DO i=its,ite |
---|
212 | grid%msfvx(i,jte) = 0. |
---|
213 | grid%msfvx_inv(i,jte) = 0. |
---|
214 | END DO |
---|
215 | END IF |
---|
216 | ELSE IF ( ( config_flags%map_proj .EQ. PROJ_CASSINI ) .AND. ( flag_mf_xy .EQ. 1 ) ) THEN |
---|
217 | DO j=jts,jte |
---|
218 | DO i=its,min(ide-1,ite) |
---|
219 | grid%msfvx_inv(i,j) = 1./grid%msfvx(i,j) |
---|
220 | END DO |
---|
221 | END DO |
---|
222 | ELSE IF ( ( .NOT. config_flags%map_proj .EQ. PROJ_CASSINI ) .AND. ( flag_mf_xy .NE. 1 ) ) THEN |
---|
223 | DO j=jts,jte |
---|
224 | DO i=its,ite |
---|
225 | grid%msfvx(i,j) = grid%msfv(i,j) |
---|
226 | grid%msfvy(i,j) = grid%msfv(i,j) |
---|
227 | grid%msfux(i,j) = grid%msfu(i,j) |
---|
228 | grid%msfuy(i,j) = grid%msfu(i,j) |
---|
229 | grid%msftx(i,j) = grid%msft(i,j) |
---|
230 | grid%msfty(i,j) = grid%msft(i,j) |
---|
231 | ENDDO |
---|
232 | ENDDO |
---|
233 | DO j=jts,min(jde,jte) |
---|
234 | DO i=its,min(ide-1,ite) |
---|
235 | grid%msfvx_inv(i,j) = 1./grid%msfvx(i,j) |
---|
236 | END DO |
---|
237 | END DO |
---|
238 | ELSE IF ( ( .NOT. config_flags%map_proj .EQ. PROJ_CASSINI ) .AND. ( flag_mf_xy .EQ. 1 ) ) THEN |
---|
239 | IF ( grid%msfvx(its,jts) .EQ. 0 ) THEN |
---|
240 | CALL wrf_error_fatal ( 'Maybe you do not have the new map factors, try re-running geogrid' ) |
---|
241 | END IF |
---|
242 | DO j=jts,min(jde,jte) |
---|
243 | DO i=its,min(ide-1,ite) |
---|
244 | grid%msfvx_inv(i,j) = 1./grid%msfvx(i,j) |
---|
245 | END DO |
---|
246 | END DO |
---|
247 | ELSE IF ( ( config_flags%map_proj .EQ. PROJ_CASSINI ) .AND. ( flag_mf_xy .NE. 1 ) ) THEN |
---|
248 | CALL wrf_error_fatal ( 'Neither SI data nor older metgrid data can initialize a global domain' ) |
---|
249 | ENDIF |
---|
250 | |
---|
251 | ! Is there any vertical interpolation to do? The "old" data comes in on the correct |
---|
252 | ! vertical locations already. |
---|
253 | |
---|
254 | IF ( flag_metgrid .EQ. 1 ) THEN ! <----- START OF VERTICAL INTERPOLATION PART ----> |
---|
255 | |
---|
256 | ! Variables that are named differently between SI and WPS. |
---|
257 | |
---|
258 | DO j = jts, MIN(jte,jde-1) |
---|
259 | DO i = its, MIN(ite,ide-1) |
---|
260 | grid%tsk(i,j) = grid%tsk_gc(i,j) |
---|
261 | grid%tmn(i,j) = grid%tmn_gc(i,j) |
---|
262 | grid%xlat(i,j) = grid%xlat_gc(i,j) |
---|
263 | grid%xlong(i,j) = grid%xlong_gc(i,j) |
---|
264 | grid%ht(i,j) = grid%ht_gc(i,j) |
---|
265 | END DO |
---|
266 | END DO |
---|
267 | |
---|
268 | ! A user could request that the most coarse grid has the |
---|
269 | ! topography along the outer boundary smoothed. This smoothing |
---|
270 | ! is similar to the coarse/nest interface. The outer rows and |
---|
271 | ! cols come from the existing large scale topo, and then the |
---|
272 | ! next several rows/cols are a linear ramp of the large scale |
---|
273 | ! model and the hi-res topo from WPS. We only do this for the |
---|
274 | ! coarse grid since we are going to make the interface consistent |
---|
275 | ! in the model betwixt the CG and FG domains. |
---|
276 | |
---|
277 | IF ( ( config_flags%smooth_cg_topo ) .AND. & |
---|
278 | ( grid%id .EQ. 1 ) .AND. & |
---|
279 | ( flag_soilhgt .EQ. 1) ) THEN |
---|
280 | CALL blend_terrain ( grid%toposoil , grid%ht , & |
---|
281 | ids , ide , jds , jde , 1 , 1 , & |
---|
282 | ims , ime , jms , jme , 1 , 1 , & |
---|
283 | ips , ipe , jps , jpe , 1 , 1 ) |
---|
284 | |
---|
285 | END IF |
---|
286 | |
---|
287 | ! Filter the input topography if this is a polar projection. |
---|
288 | |
---|
289 | IF ( config_flags%map_proj .EQ. PROJ_CASSINI ) THEN |
---|
290 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
291 | |
---|
292 | ! We stick the topo and map fac in an unused 3d array. The map scale |
---|
293 | ! factor and computational latitude are passed along for the ride |
---|
294 | ! (part of the transpose process - we only do 3d arrays) to determine |
---|
295 | ! "how many" values are used to compute the mean. We want a number |
---|
296 | ! that is consistent with the original grid resolution. |
---|
297 | |
---|
298 | |
---|
299 | DO j = jts, MIN(jte,jde-1) |
---|
300 | DO k = kts, kte |
---|
301 | DO i = its, MIN(ite,ide-1) |
---|
302 | grid%t_init(i,k,j) = 1. |
---|
303 | END DO |
---|
304 | END DO |
---|
305 | DO i = its, MIN(ite,ide-1) |
---|
306 | grid%t_init(i,1,j) = grid%ht(i,j) |
---|
307 | grid%t_init(i,2,j) = grid%msftx(i,j) |
---|
308 | grid%t_init(i,3,j) = grid%clat(i,j) |
---|
309 | END DO |
---|
310 | END DO |
---|
311 | |
---|
312 | # include "XPOSE_POLAR_FILTER_TOPO_z2x.inc" |
---|
313 | |
---|
314 | ! Retrieve the 2d arrays for topo, map factors, and the |
---|
315 | ! computational latitude. |
---|
316 | |
---|
317 | DO j = jpsx, MIN(jpex,jde-1) |
---|
318 | DO i = ipsx, MIN(ipex,ide-1) |
---|
319 | grid%ht_xxx(i,j) = grid%t_xxx(i,1,j) |
---|
320 | grid%mf_xxx(i,j) = grid%t_xxx(i,2,j) |
---|
321 | grid%clat_xxx(i,j) = grid%t_xxx(i,3,j) |
---|
322 | END DO |
---|
323 | END DO |
---|
324 | |
---|
325 | ! Get a mean topo field that is consistent with the grid |
---|
326 | ! distance on each computational latitude loop. |
---|
327 | |
---|
328 | CALL filter_topo ( grid%ht_xxx , grid%clat_xxx , grid%mf_xxx , & |
---|
329 | grid%fft_filter_lat , & |
---|
330 | ids, ide, jds, jde, 1 , 1 , & |
---|
331 | imsx, imex, jmsx, jmex, 1, 1, & |
---|
332 | ipsx, ipex, jpsx, jpex, 1, 1 ) |
---|
333 | |
---|
334 | ! Stick the filtered topo back into the dummy 3d array to |
---|
335 | ! transpose it back to "all z on a patch". |
---|
336 | |
---|
337 | DO j = jpsx, MIN(jpex,jde-1) |
---|
338 | DO i = ipsx, MIN(ipex,ide-1) |
---|
339 | grid%t_xxx(i,1,j) = grid%ht_xxx(i,j) |
---|
340 | END DO |
---|
341 | END DO |
---|
342 | |
---|
343 | # include "XPOSE_POLAR_FILTER_TOPO_x2z.inc" |
---|
344 | |
---|
345 | ! Get the un-transposed topo data. |
---|
346 | |
---|
347 | DO j = jts, MIN(jte,jde-1) |
---|
348 | DO i = its, MIN(ite,ide-1) |
---|
349 | grid%ht(i,j) = grid%t_init(i,1,j) |
---|
350 | END DO |
---|
351 | END DO |
---|
352 | #else |
---|
353 | CALL filter_topo ( grid%ht , grid%clat , grid%msftx , & |
---|
354 | grid%fft_filter_lat , & |
---|
355 | ids, ide, jds, jde, 1,1, & |
---|
356 | ims, ime, jms, jme, 1,1, & |
---|
357 | its, ite, jts, jte, 1,1 ) |
---|
358 | #endif |
---|
359 | END IF |
---|
360 | |
---|
361 | ! If we have any input low-res surface pressure, we store it. |
---|
362 | |
---|
363 | IF ( flag_psfc .EQ. 1 ) THEN |
---|
364 | DO j = jts, MIN(jte,jde-1) |
---|
365 | DO i = its, MIN(ite,ide-1) |
---|
366 | grid%psfc_gc(i,j) = grid%psfc(i,j) |
---|
367 | grid%p_gc(i,1,j) = grid%psfc(i,j) |
---|
368 | END DO |
---|
369 | END DO |
---|
370 | END IF |
---|
371 | |
---|
372 | ! If we have the low-resolution surface elevation, stick that in the |
---|
373 | ! "input" locations of the 3d height. We still have the "hi-res" topo |
---|
374 | ! stuck in the grid%ht array. The grid%landmask if test is required as some sources |
---|
375 | ! have ZERO elevation over water (thank you very much). |
---|
376 | |
---|
377 | IF ( flag_soilhgt .EQ. 1) THEN |
---|
378 | DO j = jts, MIN(jte,jde-1) |
---|
379 | DO i = its, MIN(ite,ide-1) |
---|
380 | ! IF ( grid%landmask(i,j) .GT. 0.5 ) THEN |
---|
381 | grid%ght_gc(i,1,j) = grid%toposoil(i,j) |
---|
382 | grid%ht_gc(i,j)= grid%toposoil(i,j) |
---|
383 | ! END IF |
---|
384 | END DO |
---|
385 | END DO |
---|
386 | END IF |
---|
387 | |
---|
388 | ! Assign surface fields with original input values. If this is hybrid data, |
---|
389 | ! the values are not exactly representative. However - this is only for |
---|
390 | ! plotting purposes and such at the 0h of the forecast, so we are not all that |
---|
391 | ! worried. |
---|
392 | |
---|
393 | DO j = jts, min(jde-1,jte) |
---|
394 | DO i = its, min(ide,ite) |
---|
395 | grid%u10(i,j)=grid%u_gc(i,1,j) |
---|
396 | END DO |
---|
397 | END DO |
---|
398 | |
---|
399 | DO j = jts, min(jde,jte) |
---|
400 | DO i = its, min(ide-1,ite) |
---|
401 | grid%v10(i,j)=grid%v_gc(i,1,j) |
---|
402 | END DO |
---|
403 | END DO |
---|
404 | |
---|
405 | DO j = jts, min(jde-1,jte) |
---|
406 | DO i = its, min(ide-1,ite) |
---|
407 | grid%t2(i,j)=grid%t_gc(i,1,j) |
---|
408 | END DO |
---|
409 | END DO |
---|
410 | |
---|
411 | IF ( flag_qv .EQ. 1 ) THEN |
---|
412 | DO j = jts, min(jde-1,jte) |
---|
413 | DO i = its, min(ide-1,ite) |
---|
414 | grid%q2(i,j)=grid%qv_gc(i,1,j) |
---|
415 | END DO |
---|
416 | END DO |
---|
417 | END IF |
---|
418 | |
---|
419 | ! The number of vertical levels in the input data. There is no staggering for |
---|
420 | ! different variables. |
---|
421 | |
---|
422 | num_metgrid_levels = grid%num_metgrid_levels |
---|
423 | |
---|
424 | ! The requested ptop for real data cases. |
---|
425 | |
---|
426 | p_top_requested = grid%p_top_requested |
---|
427 | |
---|
428 | ! Compute the top pressure, grid%p_top. For isobaric data, this is just the |
---|
429 | ! top level. For the generalized vertical coordinate data, we find the |
---|
430 | ! max pressure on the top level. We have to be careful of two things: |
---|
431 | ! 1) the value has to be communicated, 2) the value can not increase |
---|
432 | ! at subsequent times from the initial value. |
---|
433 | |
---|
434 | IF ( internal_time_loop .EQ. 1 ) THEN |
---|
435 | CALL find_p_top ( grid%p_gc , grid%p_top , & |
---|
436 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
437 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
438 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
439 | |
---|
440 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
441 | grid%p_top = wrf_dm_max_real ( grid%p_top ) |
---|
442 | #endif |
---|
443 | |
---|
444 | ! Compare the requested grid%p_top with the value available from the input data. |
---|
445 | |
---|
446 | IF ( p_top_requested .LT. grid%p_top ) THEN |
---|
447 | print *,'p_top_requested = ',p_top_requested |
---|
448 | print *,'allowable grid%p_top in data = ',grid%p_top |
---|
449 | CALL wrf_error_fatal ( 'p_top_requested < grid%p_top possible from data' ) |
---|
450 | END IF |
---|
451 | |
---|
452 | ! The grid%p_top valus is the max of what is available from the data and the |
---|
453 | ! requested value. We have already compared <, so grid%p_top is directly set to |
---|
454 | ! the value in the namelist. |
---|
455 | |
---|
456 | grid%p_top = p_top_requested |
---|
457 | |
---|
458 | ! For subsequent times, we have to remember what the grid%p_top for the first |
---|
459 | ! time was. Why? If we have a generalized vert coordinate, the grid%p_top value |
---|
460 | ! could fluctuate. |
---|
461 | |
---|
462 | p_top_save = grid%p_top |
---|
463 | |
---|
464 | ELSE |
---|
465 | CALL find_p_top ( grid%p_gc , grid%p_top , & |
---|
466 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
467 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
468 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
469 | |
---|
470 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
471 | grid%p_top = wrf_dm_max_real ( grid%p_top ) |
---|
472 | #endif |
---|
473 | IF ( grid%p_top .GT. p_top_save ) THEN |
---|
474 | print *,'grid%p_top from last time period = ',p_top_save |
---|
475 | print *,'grid%p_top from this time period = ',grid%p_top |
---|
476 | CALL wrf_error_fatal ( 'grid%p_top > previous value' ) |
---|
477 | END IF |
---|
478 | grid%p_top = p_top_save |
---|
479 | ENDIF |
---|
480 | |
---|
481 | ! Get the monthly values interpolated to the current date for the traditional monthly |
---|
482 | ! fields of green-ness fraction and background albedo. |
---|
483 | |
---|
484 | CALL monthly_interp_to_date ( grid%greenfrac , current_date , grid%vegfra , & |
---|
485 | ids , ide , jds , jde , kds , kde , & |
---|
486 | ims , ime , jms , jme , kms , kme , & |
---|
487 | its , ite , jts , jte , kts , kte ) |
---|
488 | |
---|
489 | CALL monthly_interp_to_date ( grid%albedo12m , current_date , grid%albbck , & |
---|
490 | ids , ide , jds , jde , kds , kde , & |
---|
491 | ims , ime , jms , jme , kms , kme , & |
---|
492 | its , ite , jts , jte , kts , kte ) |
---|
493 | |
---|
494 | ! Get the min/max of each i,j for the monthly green-ness fraction. |
---|
495 | |
---|
496 | CALL monthly_min_max ( grid%greenfrac , grid%shdmin , grid%shdmax , & |
---|
497 | ids , ide , jds , jde , kds , kde , & |
---|
498 | ims , ime , jms , jme , kms , kme , & |
---|
499 | its , ite , jts , jte , kts , kte ) |
---|
500 | |
---|
501 | ! The model expects the green-ness values in percent, not fraction. |
---|
502 | |
---|
503 | DO j = jts, MIN(jte,jde-1) |
---|
504 | DO i = its, MIN(ite,ide-1) |
---|
505 | grid%vegfra(i,j) = grid%vegfra(i,j) * 100. |
---|
506 | grid%shdmax(i,j) = grid%shdmax(i,j) * 100. |
---|
507 | grid%shdmin(i,j) = grid%shdmin(i,j) * 100. |
---|
508 | END DO |
---|
509 | END DO |
---|
510 | |
---|
511 | ! The model expects the albedo fields as a fraction, not a percent. Set the |
---|
512 | ! water values to 8%. |
---|
513 | |
---|
514 | DO j = jts, MIN(jte,jde-1) |
---|
515 | DO i = its, MIN(ite,ide-1) |
---|
516 | grid%albbck(i,j) = grid%albbck(i,j) / 100. |
---|
517 | grid%snoalb(i,j) = grid%snoalb(i,j) / 100. |
---|
518 | IF ( grid%landmask(i,j) .LT. 0.5 ) THEN |
---|
519 | grid%albbck(i,j) = 0.08 |
---|
520 | grid%snoalb(i,j) = 0.08 |
---|
521 | END IF |
---|
522 | END DO |
---|
523 | END DO |
---|
524 | |
---|
525 | ! Compute the mixing ratio from the input relative humidity. |
---|
526 | |
---|
527 | IF ( flag_qv .NE. 1 ) THEN |
---|
528 | CALL rh_to_mxrat (grid%rh_gc, grid%t_gc, grid%p_gc, grid%qv_gc , .TRUE. , & |
---|
529 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
530 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
531 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
532 | END IF |
---|
533 | |
---|
534 | ! Two ways to get the surface pressure. 1) If we have the low-res input surface |
---|
535 | ! pressure and the low-res topography, then we can do a simple hydrostatic |
---|
536 | ! relation. 2) Otherwise we compute the surface pressure from the sea-level |
---|
537 | ! pressure. |
---|
538 | ! Note that on output, grid%psfc is now hi-res. The low-res surface pressure and |
---|
539 | ! elevation are grid%psfc_gc and grid%ht_gc (same as grid%ght_gc(k=1)). |
---|
540 | |
---|
541 | IF ( flag_tavgsfc .EQ. 1 ) THEN |
---|
542 | we_have_tavgsfc = .TRUE. |
---|
543 | ELSE |
---|
544 | we_have_tavgsfc = .FALSE. |
---|
545 | END IF |
---|
546 | |
---|
547 | IF ( ( flag_psfc .EQ. 1 ) .AND. & |
---|
548 | ( flag_soilhgt .EQ. 1 ) .AND. & |
---|
549 | ( flag_slp .EQ. 1 ) .AND. & |
---|
550 | ( .NOT. config_flags%sfcp_to_sfcp ) ) THEN |
---|
551 | CALL sfcprs3(grid%ght_gc, grid%p_gc, grid%ht, & |
---|
552 | grid%pslv_gc, grid%psfc, & |
---|
553 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
554 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
555 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
556 | ELSE IF ( ( flag_psfc .EQ. 1 ) .AND. & |
---|
557 | ( flag_soilhgt .EQ. 1 ) .AND. & |
---|
558 | ( config_flags%sfcp_to_sfcp ) ) THEN |
---|
559 | CALL sfcprs2(grid%t_gc, grid%qv_gc, grid%ght_gc, grid%psfc_gc, grid%ht, & |
---|
560 | grid%tavgsfc, grid%p_gc, grid%psfc, we_have_tavgsfc, & |
---|
561 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
562 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
563 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
564 | ELSE IF ( flag_slp .EQ. 1 ) THEN |
---|
565 | CALL sfcprs (grid%t_gc, grid%qv_gc, grid%ght_gc, grid%pslv_gc, grid%ht, & |
---|
566 | grid%tavgsfc, grid%p_gc, grid%psfc, we_have_tavgsfc, & |
---|
567 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
568 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
569 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
570 | ELSE |
---|
571 | CALL wrf_error_fatal ( 'not enough info for a p sfc computation' ) |
---|
572 | END IF |
---|
573 | |
---|
574 | ! If we have no input surface pressure, we'd better stick something in there. |
---|
575 | |
---|
576 | IF ( flag_psfc .NE. 1 ) THEN |
---|
577 | DO j = jts, MIN(jte,jde-1) |
---|
578 | DO i = its, MIN(ite,ide-1) |
---|
579 | grid%psfc_gc(i,j) = grid%psfc(i,j) |
---|
580 | grid%p_gc(i,1,j) = grid%psfc(i,j) |
---|
581 | END DO |
---|
582 | END DO |
---|
583 | END IF |
---|
584 | |
---|
585 | ! Integrate the mixing ratio to get the vapor pressure. |
---|
586 | |
---|
587 | CALL integ_moist ( grid%qv_gc , grid%p_gc , grid%pd_gc , grid%t_gc , grid%ght_gc , grid%intq_gc , & |
---|
588 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
589 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
590 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
591 | |
---|
592 | ! Compute the difference between the dry, total surface pressure (input) and the |
---|
593 | ! dry top pressure (constant). |
---|
594 | |
---|
595 | CALL p_dts ( grid%mu0 , grid%intq_gc , grid%psfc , grid%p_top , & |
---|
596 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
597 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
598 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
599 | |
---|
600 | ! Compute the dry, hydrostatic surface pressure. |
---|
601 | |
---|
602 | CALL p_dhs ( grid%pdhs , grid%ht , p00 , t00 , a , & |
---|
603 | ids , ide , jds , jde , kds , kde , & |
---|
604 | ims , ime , jms , jme , kms , kme , & |
---|
605 | its , ite , jts , jte , kts , kte ) |
---|
606 | |
---|
607 | ! Compute the eta levels if not defined already. |
---|
608 | |
---|
609 | IF ( grid%znw(1) .NE. 1.0 ) THEN |
---|
610 | |
---|
611 | eta_levels(1:kde) = model_config_rec%eta_levels(1:kde) |
---|
612 | max_dz = model_config_rec%max_dz |
---|
613 | |
---|
614 | CALL compute_eta ( grid%znw , & |
---|
615 | eta_levels , max_eta , max_dz , & |
---|
616 | grid%p_top , g , p00 , cvpm , a , r_d , cp , t00 , p1000mb , t0 , & |
---|
617 | ids , ide , jds , jde , kds , kde , & |
---|
618 | ims , ime , jms , jme , kms , kme , & |
---|
619 | its , ite , jts , jte , kts , kte ) |
---|
620 | END IF |
---|
621 | |
---|
622 | ! The input field is temperature, we want potential temp. |
---|
623 | |
---|
624 | CALL t_to_theta ( grid%t_gc , grid%p_gc , p00 , & |
---|
625 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
626 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
627 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
628 | |
---|
629 | IF ( flag_slp .EQ. 1 ) THEN |
---|
630 | |
---|
631 | ! On the eta surfaces, compute the dry pressure = mu eta, stored in |
---|
632 | ! grid%pb, since it is a pressure, and we don't need another kms:kme 3d |
---|
633 | ! array floating around. The grid%pb array is re-computed as the base pressure |
---|
634 | ! later after the vertical interpolations are complete. |
---|
635 | |
---|
636 | CALL p_dry ( grid%mu0 , grid%znw , grid%p_top , grid%pb , want_full_levels , & |
---|
637 | ids , ide , jds , jde , kds , kde , & |
---|
638 | ims , ime , jms , jme , kms , kme , & |
---|
639 | its , ite , jts , jte , kts , kte ) |
---|
640 | |
---|
641 | ! All of the vertical interpolations are done in dry-pressure space. The |
---|
642 | ! input data has had the moisture removed (grid%pd_gc). The target levels (grid%pb) |
---|
643 | ! had the vapor pressure removed from the surface pressure, then they were |
---|
644 | ! scaled by the eta levels. |
---|
645 | |
---|
646 | interp_type = 2 |
---|
647 | lagrange_order = grid%lagrange_order |
---|
648 | lowest_lev_from_sfc = .FALSE. |
---|
649 | use_levels_below_ground = .TRUE. |
---|
650 | use_surface = .TRUE. |
---|
651 | zap_close_levels = grid%zap_close_levels |
---|
652 | force_sfc_in_vinterp = 0 |
---|
653 | t_extrap_type = grid%t_extrap_type |
---|
654 | extrap_type = 1 |
---|
655 | |
---|
656 | ! For the height field, the lowest level pressure is the slp (approximately "dry"). The |
---|
657 | ! lowest level of the input height field (to be associated with slp) then is an array |
---|
658 | ! of zeros. |
---|
659 | |
---|
660 | DO j = jts, MIN(jte,jde-1) |
---|
661 | DO i = its, MIN(ite,ide-1) |
---|
662 | grid%psfc_gc(i,j) = grid%pd_gc(i,1,j) |
---|
663 | grid%pd_gc(i,1,j) = grid%pslv_gc(i,j) - ( grid%p_gc(i,1,j) - grid%pd_gc(i,1,j) ) |
---|
664 | grid%ht_gc(i,j) = grid%ght_gc(i,1,j) |
---|
665 | grid%ght_gc(i,1,j) = 0. |
---|
666 | END DO |
---|
667 | END DO |
---|
668 | |
---|
669 | CALL vert_interp ( grid%ght_gc , grid%pd_gc , grid%ph0 , grid%pb , & |
---|
670 | num_metgrid_levels , 'Z' , & |
---|
671 | interp_type , lagrange_order , extrap_type , & |
---|
672 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
---|
673 | zap_close_levels , force_sfc_in_vinterp , & |
---|
674 | ids , ide , jds , jde , kds , kde , & |
---|
675 | ims , ime , jms , jme , kms , kme , & |
---|
676 | its , ite , jts , jte , kts , kte ) |
---|
677 | |
---|
678 | ! Put things back to normal. |
---|
679 | |
---|
680 | DO j = jts, MIN(jte,jde-1) |
---|
681 | DO i = its, MIN(ite,ide-1) |
---|
682 | grid%pd_gc(i,1,j) = grid%psfc_gc(i,j) |
---|
683 | grid%ght_gc(i,1,j) = grid%ht_gc(i,j) |
---|
684 | END DO |
---|
685 | END DO |
---|
686 | |
---|
687 | END IF |
---|
688 | |
---|
689 | ! Now the rest of the variables on half-levels to inteprolate. |
---|
690 | |
---|
691 | CALL p_dry ( grid%mu0 , grid%znw , grid%p_top , grid%pb , want_half_levels , & |
---|
692 | ids , ide , jds , jde , kds , kde , & |
---|
693 | ims , ime , jms , jme , kms , kme , & |
---|
694 | its , ite , jts , jte , kts , kte ) |
---|
695 | |
---|
696 | interp_type = grid%interp_type |
---|
697 | lagrange_order = grid%lagrange_order |
---|
698 | lowest_lev_from_sfc = grid%lowest_lev_from_sfc |
---|
699 | use_levels_below_ground = grid%use_levels_below_ground |
---|
700 | use_surface = grid%use_surface |
---|
701 | zap_close_levels = grid%zap_close_levels |
---|
702 | force_sfc_in_vinterp = grid%force_sfc_in_vinterp |
---|
703 | t_extrap_type = grid%t_extrap_type |
---|
704 | extrap_type = grid%extrap_type |
---|
705 | |
---|
706 | CALL vert_interp ( grid%qv_gc , grid%pd_gc , moist(:,:,:,P_QV) , grid%pb , & |
---|
707 | num_metgrid_levels , 'Q' , & |
---|
708 | interp_type , lagrange_order , extrap_type , & |
---|
709 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
---|
710 | zap_close_levels , force_sfc_in_vinterp , & |
---|
711 | ids , ide , jds , jde , kds , kde , & |
---|
712 | ims , ime , jms , jme , kms , kme , & |
---|
713 | its , ite , jts , jte , kts , kte ) |
---|
714 | |
---|
715 | CALL vert_interp ( grid%t_gc , grid%pd_gc , grid%t_2 , grid%pb , & |
---|
716 | num_metgrid_levels , 'T' , & |
---|
717 | interp_type , lagrange_order , t_extrap_type , & |
---|
718 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
---|
719 | zap_close_levels , force_sfc_in_vinterp , & |
---|
720 | ids , ide , jds , jde , kds , kde , & |
---|
721 | ims , ime , jms , jme , kms , kme , & |
---|
722 | its , ite , jts , jte , kts , kte ) |
---|
723 | #ifdef RUC_CLOUD |
---|
724 | ! Add -DRUC_CLOUD to ARCHFLAGS in configure.wrf file to activate the following code |
---|
725 | |
---|
726 | num_3d_m = num_moist |
---|
727 | num_3d_s = num_scalar |
---|
728 | |
---|
729 | IF ( flag_qr .EQ. 1 ) THEN |
---|
730 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
---|
731 | IF ( im .EQ. P_QR ) THEN |
---|
732 | CALL vert_interp ( grid%qr_gc , grid%pd_gc , moist(:,:,:,P_QR) , grid%pb , & |
---|
733 | num_metgrid_levels , 'Q' , & |
---|
734 | interp_type , lagrange_order , extrap_type , & |
---|
735 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
---|
736 | zap_close_levels , force_sfc_in_vinterp , & |
---|
737 | ids , ide , jds , jde , kds , kde , & |
---|
738 | ims , ime , jms , jme , kms , kme , & |
---|
739 | its , ite , jts , jte , kts , kte ) |
---|
740 | END IF |
---|
741 | END DO |
---|
742 | END IF |
---|
743 | |
---|
744 | IF ( flag_qc .EQ. 1 ) THEN |
---|
745 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
---|
746 | IF ( im .EQ. P_QC ) THEN |
---|
747 | CALL vert_interp ( grid%qc_gc , grid%pd_gc , moist(:,:,:,P_QC) , grid%pb , & |
---|
748 | num_metgrid_levels , 'Q' , & |
---|
749 | interp_type , lagrange_order , extrap_type , & |
---|
750 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
---|
751 | zap_close_levels , force_sfc_in_vinterp , & |
---|
752 | ids , ide , jds , jde , kds , kde , & |
---|
753 | ims , ime , jms , jme , kms , kme , & |
---|
754 | its , ite , jts , jte , kts , kte ) |
---|
755 | END IF |
---|
756 | END DO |
---|
757 | END IF |
---|
758 | |
---|
759 | IF ( flag_qi .EQ. 1 ) THEN |
---|
760 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
---|
761 | IF ( im .EQ. P_QI ) THEN |
---|
762 | CALL vert_interp ( grid%qi_gc , grid%pd_gc , moist(:,:,:,P_QI) , grid%pb , & |
---|
763 | num_metgrid_levels , 'Q' , & |
---|
764 | interp_type , lagrange_order , extrap_type , & |
---|
765 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
---|
766 | zap_close_levels , force_sfc_in_vinterp , & |
---|
767 | ids , ide , jds , jde , kds , kde , & |
---|
768 | ims , ime , jms , jme , kms , kme , & |
---|
769 | its , ite , jts , jte , kts , kte ) |
---|
770 | END IF |
---|
771 | END DO |
---|
772 | END IF |
---|
773 | |
---|
774 | IF ( flag_qs .EQ. 1 ) THEN |
---|
775 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
---|
776 | IF ( im .EQ. P_QS ) THEN |
---|
777 | CALL vert_interp ( grid%qs_gc , grid%pd_gc , moist(:,:,:,P_QS) , grid%pb , & |
---|
778 | num_metgrid_levels , 'Q' , & |
---|
779 | interp_type , lagrange_order , extrap_type , & |
---|
780 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
---|
781 | zap_close_levels , force_sfc_in_vinterp , & |
---|
782 | ids , ide , jds , jde , kds , kde , & |
---|
783 | ims , ime , jms , jme , kms , kme , & |
---|
784 | its , ite , jts , jte , kts , kte ) |
---|
785 | END IF |
---|
786 | END DO |
---|
787 | END IF |
---|
788 | |
---|
789 | IF ( flag_qg .EQ. 1 ) THEN |
---|
790 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
---|
791 | IF ( im .EQ. P_QG ) THEN |
---|
792 | CALL vert_interp ( grid%qg_gc , grid%pd_gc , moist(:,:,:,P_QG) , grid%pb , & |
---|
793 | num_metgrid_levels , 'Q' , & |
---|
794 | interp_type , lagrange_order , extrap_type , & |
---|
795 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
---|
796 | zap_close_levels , force_sfc_in_vinterp , & |
---|
797 | ids , ide , jds , jde , kds , kde , & |
---|
798 | ims , ime , jms , jme , kms , kme , & |
---|
799 | its , ite , jts , jte , kts , kte ) |
---|
800 | END IF |
---|
801 | END DO |
---|
802 | END IF |
---|
803 | |
---|
804 | IF ( flag_qni .EQ. 1 ) THEN |
---|
805 | DO im = PARAM_FIRST_SCALAR, num_3d_s |
---|
806 | IF ( im .EQ. P_QNI ) THEN |
---|
807 | CALL vert_interp ( grid%qni_gc , grid%pd_gc , scalar(:,:,:,P_QNI) , grid%pb , & |
---|
808 | num_metgrid_levels , 'Q' , & |
---|
809 | interp_type , lagrange_order , extrap_type , & |
---|
810 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
---|
811 | zap_close_levels , force_sfc_in_vinterp , & |
---|
812 | ids , ide , jds , jde , kds , kde , & |
---|
813 | ims , ime , jms , jme , kms , kme , & |
---|
814 | its , ite , jts , jte , kts , kte ) |
---|
815 | END IF |
---|
816 | END DO |
---|
817 | END IF |
---|
818 | #endif |
---|
819 | |
---|
820 | #ifdef DM_PARALLEL |
---|
821 | ips = its ; ipe = ite ; jps = jts ; jpe = jte ; kps = kts ; kpe = kte |
---|
822 | |
---|
823 | ! For the U and V vertical interpolation, we need the pressure defined |
---|
824 | ! at both the locations for the horizontal momentum, which we get by |
---|
825 | ! averaging two pressure values (i and i-1 for U, j and j-1 for V). The |
---|
826 | ! pressure field on input (grid%pd_gc) and the pressure of the new coordinate |
---|
827 | ! (grid%pb) are both communicated with an 8 stencil. |
---|
828 | |
---|
829 | # include "HALO_EM_VINTERP_UV_1.inc" |
---|
830 | #endif |
---|
831 | |
---|
832 | CALL vert_interp ( grid%u_gc , grid%pd_gc , grid%u_2 , grid%pb , & |
---|
833 | num_metgrid_levels , 'U' , & |
---|
834 | interp_type , lagrange_order , extrap_type , & |
---|
835 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
---|
836 | zap_close_levels , force_sfc_in_vinterp , & |
---|
837 | ids , ide , jds , jde , kds , kde , & |
---|
838 | ims , ime , jms , jme , kms , kme , & |
---|
839 | its , ite , jts , jte , kts , kte ) |
---|
840 | |
---|
841 | CALL vert_interp ( grid%v_gc , grid%pd_gc , grid%v_2 , grid%pb , & |
---|
842 | num_metgrid_levels , 'V' , & |
---|
843 | interp_type , lagrange_order , extrap_type , & |
---|
844 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
---|
845 | zap_close_levels , force_sfc_in_vinterp , & |
---|
846 | ids , ide , jds , jde , kds , kde , & |
---|
847 | ims , ime , jms , jme , kms , kme , & |
---|
848 | its , ite , jts , jte , kts , kte ) |
---|
849 | |
---|
850 | END IF ! <----- END OF VERTICAL INTERPOLATION PART ----> |
---|
851 | |
---|
852 | ! Save the grid%tsk field for later use in the sea ice surface temperature |
---|
853 | ! for the Noah LSM scheme. |
---|
854 | |
---|
855 | DO j = jts, MIN(jte,jde-1) |
---|
856 | DO i = its, MIN(ite,ide-1) |
---|
857 | grid%tsk_save(i,j) = grid%tsk(i,j) |
---|
858 | END DO |
---|
859 | END DO |
---|
860 | |
---|
861 | ! Protect against bad grid%tsk values over water by supplying grid%sst (if it is |
---|
862 | ! available, and if the grid%sst is reasonable). |
---|
863 | |
---|
864 | DO j = jts, MIN(jde-1,jte) |
---|
865 | DO i = its, MIN(ide-1,ite) |
---|
866 | IF ( ( grid%landmask(i,j) .LT. 0.5 ) .AND. ( flag_sst .EQ. 1 ) .AND. & |
---|
867 | ( grid%sst(i,j) .GT. 170. ) .AND. ( grid%sst(i,j) .LT. 400. ) ) THEN |
---|
868 | grid%tsk(i,j) = grid%sst(i,j) |
---|
869 | ENDIF |
---|
870 | END DO |
---|
871 | END DO |
---|
872 | |
---|
873 | ! Take the data from the input file and store it in the variables that |
---|
874 | ! use the WRF naming and ordering conventions. |
---|
875 | |
---|
876 | DO j = jts, MIN(jte,jde-1) |
---|
877 | DO i = its, MIN(ite,ide-1) |
---|
878 | IF ( grid%snow(i,j) .GE. 10. ) then |
---|
879 | grid%snowc(i,j) = 1. |
---|
880 | ELSE |
---|
881 | grid%snowc(i,j) = 0.0 |
---|
882 | END IF |
---|
883 | END DO |
---|
884 | END DO |
---|
885 | |
---|
886 | ! Set flag integers for presence of snowh and soilw fields |
---|
887 | |
---|
888 | grid%ifndsnowh = flag_snowh |
---|
889 | IF (num_sw_levels_input .GE. 1) THEN |
---|
890 | grid%ifndsoilw = 1 |
---|
891 | ELSE |
---|
892 | grid%ifndsoilw = 0 |
---|
893 | END IF |
---|
894 | |
---|
895 | ! We require input data for the various LSM schemes. |
---|
896 | |
---|
897 | enough_data : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
---|
898 | |
---|
899 | CASE (LSMSCHEME) |
---|
900 | IF ( num_st_levels_input .LT. 2 ) THEN |
---|
901 | CALL wrf_error_fatal ( 'Not enough soil temperature data for Noah LSM scheme.') |
---|
902 | END IF |
---|
903 | |
---|
904 | CASE (RUCLSMSCHEME) |
---|
905 | IF ( num_st_levels_input .LT. 2 ) THEN |
---|
906 | CALL wrf_error_fatal ( 'Not enough soil temperature data for RUC LSM scheme.') |
---|
907 | END IF |
---|
908 | |
---|
909 | CASE (PXLSMSCHEME) |
---|
910 | IF ( num_st_levels_input .LT. 2 ) THEN |
---|
911 | CALL wrf_error_fatal ( 'Not enough soil temperature data for P-X LSM scheme.') |
---|
912 | END IF |
---|
913 | |
---|
914 | END SELECT enough_data |
---|
915 | |
---|
916 | ! For sf_surface_physics = 1, we want to use close to a 30 cm value |
---|
917 | ! for the bottom level of the soil temps. |
---|
918 | |
---|
919 | fix_bottom_level_for_temp : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
---|
920 | |
---|
921 | CASE (SLABSCHEME) |
---|
922 | IF ( flag_tavgsfc .EQ. 1 ) THEN |
---|
923 | DO j = jts , MIN(jde-1,jte) |
---|
924 | DO i = its , MIN(ide-1,ite) |
---|
925 | grid%tmn(i,j) = grid%tavgsfc(i,j) |
---|
926 | END DO |
---|
927 | END DO |
---|
928 | ELSE IF ( flag_st010040 .EQ. 1 ) THEN |
---|
929 | DO j = jts , MIN(jde-1,jte) |
---|
930 | DO i = its , MIN(ide-1,ite) |
---|
931 | grid%tmn(i,j) = grid%st010040(i,j) |
---|
932 | END DO |
---|
933 | END DO |
---|
934 | ELSE IF ( flag_st000010 .EQ. 1 ) THEN |
---|
935 | DO j = jts , MIN(jde-1,jte) |
---|
936 | DO i = its , MIN(ide-1,ite) |
---|
937 | grid%tmn(i,j) = grid%st000010(i,j) |
---|
938 | END DO |
---|
939 | END DO |
---|
940 | ELSE IF ( flag_soilt020 .EQ. 1 ) THEN |
---|
941 | DO j = jts , MIN(jde-1,jte) |
---|
942 | DO i = its , MIN(ide-1,ite) |
---|
943 | grid%tmn(i,j) = grid%soilt020(i,j) |
---|
944 | END DO |
---|
945 | END DO |
---|
946 | ELSE IF ( flag_st007028 .EQ. 1 ) THEN |
---|
947 | DO j = jts , MIN(jde-1,jte) |
---|
948 | DO i = its , MIN(ide-1,ite) |
---|
949 | grid%tmn(i,j) = grid%st007028(i,j) |
---|
950 | END DO |
---|
951 | END DO |
---|
952 | ELSE |
---|
953 | CALL wrf_debug ( 0 , 'No 10-40 cm, 0-10 cm, 7-28, or 20 cm soil temperature data for grid%tmn') |
---|
954 | CALL wrf_debug ( 0 , 'Using 1 degree static annual mean temps' ) |
---|
955 | END IF |
---|
956 | |
---|
957 | CASE (LSMSCHEME) |
---|
958 | |
---|
959 | CASE (RUCLSMSCHEME) |
---|
960 | |
---|
961 | CASE (PXLSMSCHEME) |
---|
962 | |
---|
963 | IF ( flag_tavgsfc .EQ. 1 ) THEN |
---|
964 | DO j = jts , MIN(jde-1,jte) |
---|
965 | DO i = its , MIN(ide-1,ite) |
---|
966 | grid%tmn(i,j) = grid%tavgsfc(i,j) |
---|
967 | END DO |
---|
968 | END DO |
---|
969 | ELSE IF ( flag_st010040 .EQ. 1 ) THEN |
---|
970 | DO j = jts , MIN(jde-1,jte) |
---|
971 | DO i = its , MIN(ide-1,ite) |
---|
972 | grid%tmn(i,j) = grid%st010040(i,j) |
---|
973 | END DO |
---|
974 | END DO |
---|
975 | ELSE IF ( flag_st040100 .EQ. 1 ) THEN |
---|
976 | DO j = jts , MIN(jde-1,jte) |
---|
977 | DO i = its , MIN(ide-1,ite) |
---|
978 | grid%tmn(i,j) = grid%st040100(i,j) |
---|
979 | END DO |
---|
980 | END DO |
---|
981 | ELSE IF ( flag_st100200 .EQ. 1 ) THEN |
---|
982 | DO j = jts , MIN(jde-1,jte) |
---|
983 | DO i = its , MIN(ide-1,ite) |
---|
984 | grid%tmn(i,j) = grid%st100200(i,j) |
---|
985 | END DO |
---|
986 | END DO |
---|
987 | ELSE |
---|
988 | CALL wrf_debug ( 0 , 'No 10-40 cm or 40-100 cm soil temperature data for grid%em_tmn') |
---|
989 | CALL wrf_debug ( 0 , 'Using 1 degree static annual mean temps' ) |
---|
990 | END IF |
---|
991 | DO j = jts , MIN(jde-1,jte) |
---|
992 | DO i = its , MIN(ide-1,ite) |
---|
993 | grid%tmn(i,j) =(10 * grid%st000010(i,j) + 30 * grid%st010040(i,j) + & |
---|
994 | 60 * grid%st040100(i,j) + 100* grid%st100200(i,j) )/200 |
---|
995 | grid%tmn(i,j) = grid%st010040(i,j) |
---|
996 | !grid%tmn(i,j) = grid%st040100(i,j) |
---|
997 | !grid%tmn(i,j) = grid%st100200(i,j) |
---|
998 | END DO |
---|
999 | END DO |
---|
1000 | |
---|
1001 | END SELECT fix_bottom_level_for_temp |
---|
1002 | |
---|
1003 | ! Adjustments for the seaice field PRIOR to the grid%tslb computations. This is |
---|
1004 | ! is for the 5-layer scheme. |
---|
1005 | |
---|
1006 | num_veg_cat = SIZE ( grid%landusef , DIM=2 ) |
---|
1007 | num_soil_top_cat = SIZE ( grid%soilctop , DIM=2 ) |
---|
1008 | num_soil_bot_cat = SIZE ( grid%soilcbot , DIM=2 ) |
---|
1009 | CALL nl_get_seaice_threshold ( grid%id , grid%seaice_threshold ) |
---|
1010 | CALL nl_get_isice ( grid%id , grid%isice ) |
---|
1011 | CALL nl_get_iswater ( grid%id , grid%iswater ) |
---|
1012 | CALL adjust_for_seaice_pre ( grid%xice , grid%landmask , grid%tsk , grid%ivgtyp , grid%vegcat , grid%lu_index , & |
---|
1013 | grid%xland , grid%landusef , grid%isltyp , grid%soilcat , grid%soilctop , & |
---|
1014 | grid%soilcbot , grid%tmn , & |
---|
1015 | grid%seaice_threshold , & |
---|
1016 | num_veg_cat , num_soil_top_cat , num_soil_bot_cat , & |
---|
1017 | grid%iswater , grid%isice , & |
---|
1018 | model_config_rec%sf_surface_physics(grid%id) , & |
---|
1019 | ids , ide , jds , jde , kds , kde , & |
---|
1020 | ims , ime , jms , jme , kms , kme , & |
---|
1021 | its , ite , jts , jte , kts , kte ) |
---|
1022 | |
---|
1023 | ! surface_input_source=1 => use data from static file (fractional category as input) |
---|
1024 | ! surface_input_source=2 => use data from grib file (dominant category as input) |
---|
1025 | |
---|
1026 | IF ( config_flags%surface_input_source .EQ. 1 ) THEN |
---|
1027 | grid%vegcat (its,jts) = 0 |
---|
1028 | grid%soilcat(its,jts) = 0 |
---|
1029 | END IF |
---|
1030 | |
---|
1031 | ! Generate the vegetation and soil category information from the fractional input |
---|
1032 | ! data, or use the existing dominant category fields if they exist. |
---|
1033 | |
---|
1034 | IF ( ( grid%soilcat(its,jts) .LT. 0.5 ) .AND. ( grid%vegcat(its,jts) .LT. 0.5 ) ) THEN |
---|
1035 | |
---|
1036 | num_veg_cat = SIZE ( grid%landusef , DIM=2 ) |
---|
1037 | num_soil_top_cat = SIZE ( grid%soilctop , DIM=2 ) |
---|
1038 | num_soil_bot_cat = SIZE ( grid%soilcbot , DIM=2 ) |
---|
1039 | |
---|
1040 | CALL process_percent_cat_new ( grid%landmask , & |
---|
1041 | grid%landusef , grid%soilctop , grid%soilcbot , & |
---|
1042 | grid%isltyp , grid%ivgtyp , & |
---|
1043 | num_veg_cat , num_soil_top_cat , num_soil_bot_cat , & |
---|
1044 | ids , ide , jds , jde , kds , kde , & |
---|
1045 | ims , ime , jms , jme , kms , kme , & |
---|
1046 | its , ite , jts , jte , kts , kte , & |
---|
1047 | model_config_rec%iswater(grid%id) ) |
---|
1048 | |
---|
1049 | ! Make all the veg/soil parms the same so as not to confuse the developer. |
---|
1050 | |
---|
1051 | DO j = jts , MIN(jde-1,jte) |
---|
1052 | DO i = its , MIN(ide-1,ite) |
---|
1053 | grid%vegcat(i,j) = grid%ivgtyp(i,j) |
---|
1054 | grid%soilcat(i,j) = grid%isltyp(i,j) |
---|
1055 | END DO |
---|
1056 | END DO |
---|
1057 | |
---|
1058 | ELSE |
---|
1059 | |
---|
1060 | ! Do we have dominant soil and veg data from the input already? |
---|
1061 | |
---|
1062 | IF ( grid%soilcat(its,jts) .GT. 0.5 ) THEN |
---|
1063 | DO j = jts, MIN(jde-1,jte) |
---|
1064 | DO i = its, MIN(ide-1,ite) |
---|
1065 | grid%isltyp(i,j) = NINT( grid%soilcat(i,j) ) |
---|
1066 | END DO |
---|
1067 | END DO |
---|
1068 | END IF |
---|
1069 | IF ( grid%vegcat(its,jts) .GT. 0.5 ) THEN |
---|
1070 | DO j = jts, MIN(jde-1,jte) |
---|
1071 | DO i = its, MIN(ide-1,ite) |
---|
1072 | grid%ivgtyp(i,j) = NINT( grid%vegcat(i,j) ) |
---|
1073 | END DO |
---|
1074 | END DO |
---|
1075 | END IF |
---|
1076 | |
---|
1077 | END IF |
---|
1078 | |
---|
1079 | ! Land use assignment. |
---|
1080 | |
---|
1081 | DO j = jts, MIN(jde-1,jte) |
---|
1082 | DO i = its, MIN(ide-1,ite) |
---|
1083 | grid%lu_index(i,j) = grid%ivgtyp(i,j) |
---|
1084 | IF ( grid%lu_index(i,j) .NE. model_config_rec%iswater(grid%id) ) THEN |
---|
1085 | grid%landmask(i,j) = 1 |
---|
1086 | grid%xland(i,j) = 1 |
---|
1087 | ELSE |
---|
1088 | grid%landmask(i,j) = 0 |
---|
1089 | grid%xland(i,j) = 2 |
---|
1090 | END IF |
---|
1091 | END DO |
---|
1092 | END DO |
---|
1093 | |
---|
1094 | ! Adjust the various soil temperature values depending on the difference in |
---|
1095 | ! in elevation between the current model's elevation and the incoming data's |
---|
1096 | ! orography. |
---|
1097 | |
---|
1098 | adjust_soil : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
---|
1099 | |
---|
1100 | CASE ( SLABSCHEME , LSMSCHEME , RUCLSMSCHEME, PXLSMSCHEME ) |
---|
1101 | CALL adjust_soil_temp_new ( grid%tmn , model_config_rec%sf_surface_physics(grid%id) , & |
---|
1102 | grid%tsk , grid%ht , grid%toposoil , grid%landmask , flag_soilhgt , flag_tavgsfc , & |
---|
1103 | grid%st000010 , grid%st010040 , grid%st040100 , grid%st100200 , grid%st010200 , & |
---|
1104 | flag_st000010 , flag_st010040 , flag_st040100 , flag_st100200 , flag_st010200 , & |
---|
1105 | grid%st000007 , grid%st007028 , grid%st028100 , grid%st100255 , & |
---|
1106 | flag_st000007 , flag_st007028 , flag_st028100 , flag_st100255 , & |
---|
1107 | grid%soilt000 , grid%soilt005 , grid%soilt020 , grid%soilt040 , grid%soilt160 , & |
---|
1108 | grid%soilt300 , & |
---|
1109 | flag_soilt000 , flag_soilt005 , flag_soilt020 , flag_soilt040 , & |
---|
1110 | flag_soilt160 , flag_soilt300 , & |
---|
1111 | ids , ide , jds , jde , kds , kde , & |
---|
1112 | ims , ime , jms , jme , kms , kme , & |
---|
1113 | its , ite , jts , jte , kts , kte ) |
---|
1114 | |
---|
1115 | END SELECT adjust_soil |
---|
1116 | |
---|
1117 | ! Fix grid%tmn and grid%tsk. |
---|
1118 | |
---|
1119 | fix_tsk_tmn : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
---|
1120 | |
---|
1121 | CASE ( SLABSCHEME , LSMSCHEME , RUCLSMSCHEME, PXLSMSCHEME ) |
---|
1122 | DO j = jts, MIN(jde-1,jte) |
---|
1123 | DO i = its, MIN(ide-1,ite) |
---|
1124 | IF ( ( grid%landmask(i,j) .LT. 0.5 ) .AND. ( flag_sst .EQ. 1 ) .AND. & |
---|
1125 | ( grid%sst(i,j) .GT. 170. ) .AND. ( grid%sst(i,j) .LT. 400. ) ) THEN |
---|
1126 | grid%tmn(i,j) = grid%sst(i,j) |
---|
1127 | grid%tsk(i,j) = grid%sst(i,j) |
---|
1128 | ELSE IF ( grid%landmask(i,j) .LT. 0.5 ) THEN |
---|
1129 | grid%tmn(i,j) = grid%tsk(i,j) |
---|
1130 | END IF |
---|
1131 | END DO |
---|
1132 | END DO |
---|
1133 | END SELECT fix_tsk_tmn |
---|
1134 | |
---|
1135 | ! Is the grid%tsk reasonable? |
---|
1136 | |
---|
1137 | IF ( internal_time_loop .NE. 1 ) THEN |
---|
1138 | DO j = jts, MIN(jde-1,jte) |
---|
1139 | DO i = its, MIN(ide-1,ite) |
---|
1140 | IF ( grid%tsk(i,j) .LT. 170 .or. grid%tsk(i,j) .GT. 400. ) THEN |
---|
1141 | grid%tsk(i,j) = grid%t_2(i,1,j) |
---|
1142 | END IF |
---|
1143 | END DO |
---|
1144 | END DO |
---|
1145 | ELSE |
---|
1146 | DO j = jts, MIN(jde-1,jte) |
---|
1147 | DO i = its, MIN(ide-1,ite) |
---|
1148 | IF ( grid%tsk(i,j) .LT. 170 .or. grid%tsk(i,j) .GT. 400. ) THEN |
---|
1149 | print *,'error in the grid%tsk' |
---|
1150 | print *,'i,j=',i,j |
---|
1151 | print *,'grid%landmask=',grid%landmask(i,j) |
---|
1152 | print *,'grid%tsk, grid%sst, grid%tmn=',grid%tsk(i,j),grid%sst(i,j),grid%tmn(i,j) |
---|
1153 | if(grid%tmn(i,j).gt.170. .and. grid%tmn(i,j).lt.400.)then |
---|
1154 | grid%tsk(i,j)=grid%tmn(i,j) |
---|
1155 | else if(grid%sst(i,j).gt.170. .and. grid%sst(i,j).lt.400.)then |
---|
1156 | grid%tsk(i,j)=grid%sst(i,j) |
---|
1157 | else |
---|
1158 | CALL wrf_error_fatal ( 'grid%tsk unreasonable' ) |
---|
1159 | end if |
---|
1160 | END IF |
---|
1161 | END DO |
---|
1162 | END DO |
---|
1163 | END IF |
---|
1164 | |
---|
1165 | ! Is the grid%tmn reasonable? |
---|
1166 | |
---|
1167 | DO j = jts, MIN(jde-1,jte) |
---|
1168 | DO i = its, MIN(ide-1,ite) |
---|
1169 | IF ( ( ( grid%tmn(i,j) .LT. 170. ) .OR. ( grid%tmn(i,j) .GT. 400. ) ) & |
---|
1170 | .AND. ( grid%landmask(i,j) .GT. 0.5 ) ) THEN |
---|
1171 | IF ( model_config_rec%sf_surface_physics(grid%id) .NE. LSMSCHEME ) THEN |
---|
1172 | print *,'error in the grid%tmn' |
---|
1173 | print *,'i,j=',i,j |
---|
1174 | print *,'grid%landmask=',grid%landmask(i,j) |
---|
1175 | print *,'grid%tsk, grid%sst, grid%tmn=',grid%tsk(i,j),grid%sst(i,j),grid%tmn(i,j) |
---|
1176 | END IF |
---|
1177 | |
---|
1178 | if(grid%tsk(i,j).gt.170. .and. grid%tsk(i,j).lt.400.)then |
---|
1179 | grid%tmn(i,j)=grid%tsk(i,j) |
---|
1180 | else if(grid%sst(i,j).gt.170. .and. grid%sst(i,j).lt.400.)then |
---|
1181 | grid%tmn(i,j)=grid%sst(i,j) |
---|
1182 | else |
---|
1183 | CALL wrf_error_fatal ( 'grid%tmn unreasonable' ) |
---|
1184 | endif |
---|
1185 | END IF |
---|
1186 | END DO |
---|
1187 | END DO |
---|
1188 | |
---|
1189 | interpolate_soil_tmw : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
---|
1190 | |
---|
1191 | CASE ( SLABSCHEME , LSMSCHEME , RUCLSMSCHEME, PXLSMSCHEME ) |
---|
1192 | CALL process_soil_real ( grid%tsk , grid%tmn , & |
---|
1193 | grid%landmask , grid%sst , & |
---|
1194 | st_input , sm_input , sw_input , st_levels_input , sm_levels_input , sw_levels_input , & |
---|
1195 | grid%zs , grid%dzs , grid%tslb , grid%smois , grid%sh2o , & |
---|
1196 | flag_sst , flag_soilt000, flag_soilm000, & |
---|
1197 | ids , ide , jds , jde , kds , kde , & |
---|
1198 | ims , ime , jms , jme , kms , kme , & |
---|
1199 | its , ite , jts , jte , kts , kte , & |
---|
1200 | model_config_rec%sf_surface_physics(grid%id) , & |
---|
1201 | model_config_rec%num_soil_layers , & |
---|
1202 | model_config_rec%real_data_init_type , & |
---|
1203 | num_st_levels_input , num_sm_levels_input , num_sw_levels_input , & |
---|
1204 | num_st_levels_alloc , num_sm_levels_alloc , num_sw_levels_alloc ) |
---|
1205 | |
---|
1206 | END SELECT interpolate_soil_tmw |
---|
1207 | |
---|
1208 | ! Minimum soil values, residual, from RUC LSM scheme. For input from Noah or EC, and using |
---|
1209 | ! RUC LSM scheme, this must be subtracted from the input total soil moisture. For |
---|
1210 | ! input RUC data and using the Noah LSM scheme, this value must be added to the soil |
---|
1211 | ! moisture input. |
---|
1212 | |
---|
1213 | lqmi(1:num_soil_top_cat) = & |
---|
1214 | (/0.045, 0.057, 0.065, 0.067, 0.034, 0.078, 0.10, & |
---|
1215 | 0.089, 0.095, 0.10, 0.070, 0.068, 0.078, 0.0, & |
---|
1216 | 0.004, 0.065 /) |
---|
1217 | ! 0.004, 0.065, 0.020, 0.004, 0.008 /) ! has extra levels for playa, lava, and white sand |
---|
1218 | |
---|
1219 | ! At the initial time we care about values of soil moisture and temperature, other times are |
---|
1220 | ! ignored by the model, so we ignore them, too. |
---|
1221 | |
---|
1222 | IF ( domain_ClockIsStartTime(grid) ) THEN |
---|
1223 | account_for_zero_soil_moisture : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
---|
1224 | |
---|
1225 | CASE ( LSMSCHEME ) |
---|
1226 | iicount = 0 |
---|
1227 | IF ( ( FLAG_SM000010 .EQ. 1 ) .OR. ( FLAG_SM000007 .EQ. 1 ) ) THEN |
---|
1228 | DO j = jts, MIN(jde-1,jte) |
---|
1229 | DO i = its, MIN(ide-1,ite) |
---|
1230 | IF ( (grid%landmask(i,j).gt.0.5) .and. ( grid%tslb(i,1,j) .gt. 170 ) .and. & |
---|
1231 | ( grid%tslb(i,1,j) .lt. 400 ) .and. ( grid%smois(i,1,j) .lt. 0.005 ) ) then |
---|
1232 | print *,'Noah -> Noah: bad soil moisture at i,j = ',i,j,grid%smois(i,:,j) |
---|
1233 | iicount = iicount + 1 |
---|
1234 | grid%smois(i,:,j) = 0.005 |
---|
1235 | END IF |
---|
1236 | END DO |
---|
1237 | END DO |
---|
1238 | IF ( iicount .GT. 0 ) THEN |
---|
1239 | print *,'Noah -> Noah: total number of small soil moisture locations = ',iicount |
---|
1240 | END IF |
---|
1241 | ELSE IF ( FLAG_SOILM000 .EQ. 1 ) THEN |
---|
1242 | DO j = jts, MIN(jde-1,jte) |
---|
1243 | DO i = its, MIN(ide-1,ite) |
---|
1244 | grid%smois(i,:,j) = grid%smois(i,:,j) + lqmi(grid%isltyp(i,j)) |
---|
1245 | END DO |
---|
1246 | END DO |
---|
1247 | DO j = jts, MIN(jde-1,jte) |
---|
1248 | DO i = its, MIN(ide-1,ite) |
---|
1249 | IF ( (grid%landmask(i,j).gt.0.5) .and. ( grid%tslb(i,1,j) .gt. 170 ) .and. & |
---|
1250 | ( grid%tslb(i,1,j) .lt. 400 ) .and. ( grid%smois(i,1,j) .lt. 0.005 ) ) then |
---|
1251 | print *,'RUC -> Noah: bad soil moisture at i,j = ',i,j,grid%smois(i,:,j) |
---|
1252 | iicount = iicount + 1 |
---|
1253 | grid%smois(i,:,j) = 0.005 |
---|
1254 | END IF |
---|
1255 | END DO |
---|
1256 | END DO |
---|
1257 | IF ( iicount .GT. 0 ) THEN |
---|
1258 | print *,'RUC -> Noah: total number of small soil moisture locations = ',iicount |
---|
1259 | END IF |
---|
1260 | END IF |
---|
1261 | |
---|
1262 | CASE ( RUCLSMSCHEME ) |
---|
1263 | iicount = 0 |
---|
1264 | IF ( ( FLAG_SM000010 .EQ. 1 ) .OR. ( FLAG_SM000007 .EQ. 1 ) ) THEN |
---|
1265 | DO j = jts, MIN(jde-1,jte) |
---|
1266 | DO i = its, MIN(ide-1,ite) |
---|
1267 | grid%smois(i,:,j) = MAX ( grid%smois(i,:,j) - lqmi(grid%isltyp(i,j)) , 0. ) |
---|
1268 | END DO |
---|
1269 | END DO |
---|
1270 | ELSE IF ( FLAG_SOILM000 .EQ. 1 ) THEN |
---|
1271 | ! no op |
---|
1272 | END IF |
---|
1273 | |
---|
1274 | CASE ( PXLSMSCHEME ) |
---|
1275 | iicount = 0 |
---|
1276 | IF ( FLAG_SM000010 .EQ. 1 ) THEN |
---|
1277 | DO j = jts, MIN(jde-1,jte) |
---|
1278 | DO i = its, MIN(ide-1,ite) |
---|
1279 | grid%smois(i,:,j) = MAX ( grid%smois(i,:,j) - lqmi(grid%isltyp(i,j)) , 0. ) |
---|
1280 | END DO |
---|
1281 | END DO |
---|
1282 | ELSE IF ( FLAG_SOILM000 .EQ. 1 ) THEN |
---|
1283 | ! no op |
---|
1284 | END IF |
---|
1285 | |
---|
1286 | END SELECT account_for_zero_soil_moisture |
---|
1287 | END IF |
---|
1288 | |
---|
1289 | ! Is the grid%tslb reasonable? |
---|
1290 | |
---|
1291 | IF ( internal_time_loop .NE. 1 ) THEN |
---|
1292 | DO j = jts, MIN(jde-1,jte) |
---|
1293 | DO ns = 1 , model_config_rec%num_soil_layers |
---|
1294 | DO i = its, MIN(ide-1,ite) |
---|
1295 | IF ( grid%tslb(i,ns,j) .LT. 170 .or. grid%tslb(i,ns,j) .GT. 400. ) THEN |
---|
1296 | grid%tslb(i,ns,j) = grid%t_2(i,1,j) |
---|
1297 | grid%smois(i,ns,j) = 0.3 |
---|
1298 | END IF |
---|
1299 | END DO |
---|
1300 | END DO |
---|
1301 | END DO |
---|
1302 | ELSE |
---|
1303 | DO j = jts, MIN(jde-1,jte) |
---|
1304 | DO i = its, MIN(ide-1,ite) |
---|
1305 | IF ( ( ( grid%tslb(i,1,j) .LT. 170. ) .OR. ( grid%tslb(i,1,j) .GT. 400. ) ) .AND. & |
---|
1306 | ( grid%landmask(i,j) .GT. 0.5 ) ) THEN |
---|
1307 | IF ( ( model_config_rec%sf_surface_physics(grid%id) .NE. LSMSCHEME ) .AND. & |
---|
1308 | ( model_config_rec%sf_surface_physics(grid%id) .NE. RUCLSMSCHEME ).AND. & |
---|
1309 | ( model_config_rec%sf_surface_physics(grid%id) .NE. PXLSMSCHEME ) ) THEN |
---|
1310 | print *,'error in the grid%tslb' |
---|
1311 | print *,'i,j=',i,j |
---|
1312 | print *,'grid%landmask=',grid%landmask(i,j) |
---|
1313 | print *,'grid%tsk, grid%sst, grid%tmn=',grid%tsk(i,j),grid%sst(i,j),grid%tmn(i,j) |
---|
1314 | print *,'grid%tslb = ',grid%tslb(i,:,j) |
---|
1315 | print *,'old grid%smois = ',grid%smois(i,:,j) |
---|
1316 | grid%smois(i,1,j) = 0.3 |
---|
1317 | grid%smois(i,2,j) = 0.3 |
---|
1318 | grid%smois(i,3,j) = 0.3 |
---|
1319 | grid%smois(i,4,j) = 0.3 |
---|
1320 | END IF |
---|
1321 | |
---|
1322 | IF ( (grid%tsk(i,j).GT.170. .AND. grid%tsk(i,j).LT.400.) .AND. & |
---|
1323 | (grid%tmn(i,j).GT.170. .AND. grid%tmn(i,j).LT.400.) ) THEN |
---|
1324 | fake_soil_temp : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
---|
1325 | CASE ( SLABSCHEME ) |
---|
1326 | DO ns = 1 , model_config_rec%num_soil_layers |
---|
1327 | grid%tslb(i,ns,j) = ( grid%tsk(i,j)*(3.0 - grid%zs(ns)) + & |
---|
1328 | grid%tmn(i,j)*(0.0 - grid%zs(ns)) ) /(3.0 - 0.0) |
---|
1329 | END DO |
---|
1330 | CASE ( LSMSCHEME , RUCLSMSCHEME, PXLSMSCHEME ) |
---|
1331 | CALL wrf_error_fatal ( 'Assigning constant soil moisture, bad idea') |
---|
1332 | DO ns = 1 , model_config_rec%num_soil_layers |
---|
1333 | grid%tslb(i,ns,j) = ( grid%tsk(i,j)*(3.0 - grid%zs(ns)) + & |
---|
1334 | grid%tmn(i,j)*(0.0 - grid%zs(ns)) ) /(3.0 - 0.0) |
---|
1335 | END DO |
---|
1336 | END SELECT fake_soil_temp |
---|
1337 | else if(grid%tsk(i,j).gt.170. .and. grid%tsk(i,j).lt.400.)then |
---|
1338 | CALL wrf_error_fatal ( 'grid%tslb unreasonable 1' ) |
---|
1339 | DO ns = 1 , model_config_rec%num_soil_layers |
---|
1340 | grid%tslb(i,ns,j)=grid%tsk(i,j) |
---|
1341 | END DO |
---|
1342 | else if(grid%sst(i,j).gt.170. .and. grid%sst(i,j).lt.400.)then |
---|
1343 | CALL wrf_error_fatal ( 'grid%tslb unreasonable 2' ) |
---|
1344 | DO ns = 1 , model_config_rec%num_soil_layers |
---|
1345 | grid%tslb(i,ns,j)=grid%sst(i,j) |
---|
1346 | END DO |
---|
1347 | else if(grid%tmn(i,j).gt.170. .and. grid%tmn(i,j).lt.400.)then |
---|
1348 | CALL wrf_error_fatal ( 'grid%tslb unreasonable 3' ) |
---|
1349 | DO ns = 1 , model_config_rec%num_soil_layers |
---|
1350 | grid%tslb(i,ns,j)=grid%tmn(i,j) |
---|
1351 | END DO |
---|
1352 | else |
---|
1353 | CALL wrf_error_fatal ( 'grid%tslb unreasonable 4' ) |
---|
1354 | endif |
---|
1355 | END IF |
---|
1356 | END DO |
---|
1357 | END DO |
---|
1358 | END IF |
---|
1359 | |
---|
1360 | ! Adjustments for the seaice field AFTER the grid%tslb computations. This is |
---|
1361 | ! is for the Noah LSM scheme. |
---|
1362 | |
---|
1363 | num_veg_cat = SIZE ( grid%landusef , DIM=2 ) |
---|
1364 | num_soil_top_cat = SIZE ( grid%soilctop , DIM=2 ) |
---|
1365 | num_soil_bot_cat = SIZE ( grid%soilcbot , DIM=2 ) |
---|
1366 | CALL nl_get_seaice_threshold ( grid%id , grid%seaice_threshold ) |
---|
1367 | CALL nl_get_isice ( grid%id , grid%isice ) |
---|
1368 | CALL nl_get_iswater ( grid%id , grid%iswater ) |
---|
1369 | CALL adjust_for_seaice_post ( grid%xice , grid%landmask , grid%tsk , grid%tsk_save , & |
---|
1370 | grid%ivgtyp , grid%vegcat , grid%lu_index , & |
---|
1371 | grid%xland , grid%landusef , grid%isltyp , grid%soilcat , & |
---|
1372 | grid%soilctop , & |
---|
1373 | grid%soilcbot , grid%tmn , grid%vegfra , & |
---|
1374 | grid%tslb , grid%smois , grid%sh2o , & |
---|
1375 | grid%seaice_threshold , & |
---|
1376 | num_veg_cat , num_soil_top_cat , num_soil_bot_cat , & |
---|
1377 | model_config_rec%num_soil_layers , & |
---|
1378 | grid%iswater , grid%isice , & |
---|
1379 | model_config_rec%sf_surface_physics(grid%id) , & |
---|
1380 | ids , ide , jds , jde , kds , kde , & |
---|
1381 | ims , ime , jms , jme , kms , kme , & |
---|
1382 | its , ite , jts , jte , kts , kte ) |
---|
1383 | |
---|
1384 | ! Let us make sure (again) that the grid%landmask and the veg/soil categories match. |
---|
1385 | |
---|
1386 | oops1=0 |
---|
1387 | oops2=0 |
---|
1388 | DO j = jts, MIN(jde-1,jte) |
---|
1389 | DO i = its, MIN(ide-1,ite) |
---|
1390 | IF ( ( ( grid%landmask(i,j) .LT. 0.5 ) .AND. & |
---|
1391 | ( grid%ivgtyp(i,j) .NE. config_flags%iswater .OR. grid%isltyp(i,j) .NE. 14 ) ) .OR. & |
---|
1392 | ( ( grid%landmask(i,j) .GT. 0.5 ) .AND. & |
---|
1393 | ( grid%ivgtyp(i,j) .EQ. config_flags%iswater .OR. grid%isltyp(i,j) .EQ. 14 ) ) ) THEN |
---|
1394 | IF ( grid%tslb(i,1,j) .GT. 1. ) THEN |
---|
1395 | oops1=oops1+1 |
---|
1396 | grid%ivgtyp(i,j) = 5 |
---|
1397 | grid%isltyp(i,j) = 8 |
---|
1398 | grid%landmask(i,j) = 1 |
---|
1399 | grid%xland(i,j) = 1 |
---|
1400 | ELSE IF ( grid%sst(i,j) .GT. 1. ) THEN |
---|
1401 | oops2=oops2+1 |
---|
1402 | grid%ivgtyp(i,j) = config_flags%iswater |
---|
1403 | grid%isltyp(i,j) = 14 |
---|
1404 | grid%landmask(i,j) = 0 |
---|
1405 | grid%xland(i,j) = 2 |
---|
1406 | ELSE |
---|
1407 | print *,'the grid%landmask and soil/veg cats do not match' |
---|
1408 | print *,'i,j=',i,j |
---|
1409 | print *,'grid%landmask=',grid%landmask(i,j) |
---|
1410 | print *,'grid%ivgtyp=',grid%ivgtyp(i,j) |
---|
1411 | print *,'grid%isltyp=',grid%isltyp(i,j) |
---|
1412 | print *,'iswater=', config_flags%iswater |
---|
1413 | print *,'grid%tslb=',grid%tslb(i,:,j) |
---|
1414 | print *,'grid%sst=',grid%sst(i,j) |
---|
1415 | CALL wrf_error_fatal ( 'mismatch_landmask_ivgtyp' ) |
---|
1416 | END IF |
---|
1417 | END IF |
---|
1418 | END DO |
---|
1419 | END DO |
---|
1420 | if (oops1.gt.0) then |
---|
1421 | print *,'points artificially set to land : ',oops1 |
---|
1422 | endif |
---|
1423 | if(oops2.gt.0) then |
---|
1424 | print *,'points artificially set to water: ',oops2 |
---|
1425 | endif |
---|
1426 | ! fill grid%sst array with grid%tsk if missing in real input (needed for time-varying grid%sst in wrf) |
---|
1427 | DO j = jts, MIN(jde-1,jte) |
---|
1428 | DO i = its, MIN(ide-1,ite) |
---|
1429 | IF ( flag_sst .NE. 1 ) THEN |
---|
1430 | grid%sst(i,j) = grid%tsk(i,j) |
---|
1431 | ENDIF |
---|
1432 | END DO |
---|
1433 | END DO |
---|
1434 | |
---|
1435 | ! From the full level data, we can get the half levels, reciprocals, and layer |
---|
1436 | ! thicknesses. These are all defined at half level locations, so one less level. |
---|
1437 | ! We allow the vertical coordinate to *accidently* come in upside down. We want |
---|
1438 | ! the first full level to be the ground surface. |
---|
1439 | |
---|
1440 | ! Check whether grid%znw (full level) data are truly full levels. If not, we need to adjust them |
---|
1441 | ! to be full levels. |
---|
1442 | ! in this test, we check if grid%znw(1) is neither 0 nor 1 (within a tolerance of 10**-5) |
---|
1443 | |
---|
1444 | were_bad = .false. |
---|
1445 | IF ( ( (grid%znw(1).LT.(1-1.E-5) ) .OR. ( grid%znw(1).GT.(1+1.E-5) ) ).AND. & |
---|
1446 | ( (grid%znw(1).LT.(0-1.E-5) ) .OR. ( grid%znw(1).GT.(0+1.E-5) ) ) ) THEN |
---|
1447 | were_bad = .true. |
---|
1448 | print *,'Your grid%znw input values are probably half-levels. ' |
---|
1449 | print *,grid%znw |
---|
1450 | print *,'WRF expects grid%znw values to be full levels. ' |
---|
1451 | print *,'Adjusting now to full levels...' |
---|
1452 | ! We want to ignore the first value if it's negative |
---|
1453 | IF (grid%znw(1).LT.0) THEN |
---|
1454 | grid%znw(1)=0 |
---|
1455 | END IF |
---|
1456 | DO k=2,kde |
---|
1457 | grid%znw(k)=2*grid%znw(k)-grid%znw(k-1) |
---|
1458 | END DO |
---|
1459 | END IF |
---|
1460 | |
---|
1461 | ! Let's check our changes |
---|
1462 | |
---|
1463 | IF ( ( ( grid%znw(1) .LT. (1-1.E-5) ) .OR. ( grid%znw(1) .GT. (1+1.E-5) ) ).AND. & |
---|
1464 | ( ( grid%znw(1) .LT. (0-1.E-5) ) .OR. ( grid%znw(1) .GT. (0+1.E-5) ) ) ) THEN |
---|
1465 | print *,'The input grid%znw height values were half-levels or erroneous. ' |
---|
1466 | print *,'Attempts to treat the values as half-levels and change them ' |
---|
1467 | print *,'to valid full levels failed.' |
---|
1468 | CALL wrf_error_fatal("bad grid%znw values from input files") |
---|
1469 | ELSE IF ( were_bad ) THEN |
---|
1470 | print *,'...adjusted. grid%znw array now contains full eta level values. ' |
---|
1471 | ENDIF |
---|
1472 | |
---|
1473 | IF ( grid%znw(1) .LT. grid%znw(kde) ) THEN |
---|
1474 | DO k=1, kde/2 |
---|
1475 | hold_znw = grid%znw(k) |
---|
1476 | grid%znw(k)=grid%znw(kde+1-k) |
---|
1477 | grid%znw(kde+1-k)=hold_znw |
---|
1478 | END DO |
---|
1479 | END IF |
---|
1480 | |
---|
1481 | DO k=1, kde-1 |
---|
1482 | grid%dnw(k) = grid%znw(k+1) - grid%znw(k) |
---|
1483 | grid%rdnw(k) = 1./grid%dnw(k) |
---|
1484 | grid%znu(k) = 0.5*(grid%znw(k+1)+grid%znw(k)) |
---|
1485 | END DO |
---|
1486 | |
---|
1487 | ! Now the same sort of computations with the half eta levels, even ANOTHER |
---|
1488 | ! level less than the one above. |
---|
1489 | |
---|
1490 | DO k=2, kde-1 |
---|
1491 | grid%dn(k) = 0.5*(grid%dnw(k)+grid%dnw(k-1)) |
---|
1492 | grid%rdn(k) = 1./grid%dn(k) |
---|
1493 | grid%fnp(k) = .5* grid%dnw(k )/grid%dn(k) |
---|
1494 | grid%fnm(k) = .5* grid%dnw(k-1)/grid%dn(k) |
---|
1495 | END DO |
---|
1496 | |
---|
1497 | ! Scads of vertical coefficients. |
---|
1498 | |
---|
1499 | cof1 = (2.*grid%dn(2)+grid%dn(3))/(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(2) |
---|
1500 | cof2 = grid%dn(2) /(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(3) |
---|
1501 | |
---|
1502 | grid%cf1 = grid%fnp(2) + cof1 |
---|
1503 | grid%cf2 = grid%fnm(2) - cof1 - cof2 |
---|
1504 | grid%cf3 = cof2 |
---|
1505 | |
---|
1506 | grid%cfn = (.5*grid%dnw(kde-1)+grid%dn(kde-1))/grid%dn(kde-1) |
---|
1507 | grid%cfn1 = -.5*grid%dnw(kde-1)/grid%dn(kde-1) |
---|
1508 | |
---|
1509 | ! Inverse grid distances. |
---|
1510 | |
---|
1511 | grid%rdx = 1./config_flags%dx |
---|
1512 | grid%rdy = 1./config_flags%dy |
---|
1513 | |
---|
1514 | ! Some of the many weird geopotential initializations that we'll see today: grid%ph0 is total, |
---|
1515 | ! and grid%ph_2 is a perturbation from the base state geopotential. We set the base geopotential |
---|
1516 | ! at the lowest level to terrain elevation * gravity. |
---|
1517 | |
---|
1518 | DO j=jts,jte |
---|
1519 | DO i=its,ite |
---|
1520 | grid%ph0(i,1,j) = grid%ht(i,j) * g |
---|
1521 | grid%ph_2(i,1,j) = 0. |
---|
1522 | END DO |
---|
1523 | END DO |
---|
1524 | |
---|
1525 | ! Base state potential temperature and inverse density (alpha = 1/rho) from |
---|
1526 | ! the half eta levels and the base-profile surface pressure. Compute 1/rho |
---|
1527 | ! from equation of state. The potential temperature is a perturbation from t0. |
---|
1528 | |
---|
1529 | DO j = jts, MIN(jte,jde-1) |
---|
1530 | DO i = its, MIN(ite,ide-1) |
---|
1531 | |
---|
1532 | ! Base state pressure is a function of eta level and terrain, only, plus |
---|
1533 | ! the hand full of constants: p00 (sea level pressure, Pa), t00 (sea level |
---|
1534 | ! temperature, K), and A (temperature difference, from 1000 mb to 300 mb, K). |
---|
1535 | |
---|
1536 | p_surf = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht(i,j)/a/r_d ) **0.5 ) |
---|
1537 | |
---|
1538 | |
---|
1539 | DO k = 1, kte-1 |
---|
1540 | grid%php(i,k,j) = grid%znw(k)*(p_surf - grid%p_top) + grid%p_top ! temporary, full lev base pressure |
---|
1541 | grid%pb(i,k,j) = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top |
---|
1542 | ! temp = MAX ( 200., t00 + A*LOG(grid%pb(i,k,j)/p00) ) |
---|
1543 | temp = t00 + A*LOG(grid%pb(i,k,j)/p00) |
---|
1544 | grid%t_init(i,k,j) = temp*(p00/grid%pb(i,k,j))**(r_d/cp) - t0 |
---|
1545 | grid%alb(i,k,j) = (r_d/p1000mb)*(grid%t_init(i,k,j)+t0)*(grid%pb(i,k,j)/p1000mb)**cvpm |
---|
1546 | END DO |
---|
1547 | |
---|
1548 | ! Base state mu is defined as base state surface pressure minus grid%p_top |
---|
1549 | |
---|
1550 | grid%mub(i,j) = p_surf - grid%p_top |
---|
1551 | |
---|
1552 | ! Dry surface pressure is defined as the following (this mu is from the input file |
---|
1553 | ! computed from the dry pressure). Here the dry pressure is just reconstituted. |
---|
1554 | |
---|
1555 | pd_surf = grid%mu0(i,j) + grid%p_top |
---|
1556 | |
---|
1557 | ! Integrate base geopotential, starting at terrain elevation. This assures that |
---|
1558 | ! the base state is in exact hydrostatic balance with respect to the model equations. |
---|
1559 | ! This field is on full levels. |
---|
1560 | |
---|
1561 | grid%phb(i,1,j) = grid%ht(i,j) * g |
---|
1562 | DO k = 2,kte |
---|
1563 | grid%phb(i,k,j) = grid%phb(i,k-1,j) - grid%dnw(k-1)*grid%mub(i,j)*grid%alb(i,k-1,j) |
---|
1564 | END DO |
---|
1565 | END DO |
---|
1566 | END DO |
---|
1567 | |
---|
1568 | ! Fill in the outer rows and columns to allow us to be sloppy. |
---|
1569 | |
---|
1570 | IF ( ite .EQ. ide ) THEN |
---|
1571 | i = ide |
---|
1572 | DO j = jts, MIN(jde-1,jte) |
---|
1573 | grid%mub(i,j) = grid%mub(i-1,j) |
---|
1574 | grid%mu_2(i,j) = grid%mu_2(i-1,j) |
---|
1575 | DO k = 1, kte-1 |
---|
1576 | grid%pb(i,k,j) = grid%pb(i-1,k,j) |
---|
1577 | grid%t_init(i,k,j) = grid%t_init(i-1,k,j) |
---|
1578 | grid%alb(i,k,j) = grid%alb(i-1,k,j) |
---|
1579 | END DO |
---|
1580 | DO k = 1, kte |
---|
1581 | grid%phb(i,k,j) = grid%phb(i-1,k,j) |
---|
1582 | END DO |
---|
1583 | END DO |
---|
1584 | END IF |
---|
1585 | |
---|
1586 | IF ( jte .EQ. jde ) THEN |
---|
1587 | j = jde |
---|
1588 | DO i = its, ite |
---|
1589 | grid%mub(i,j) = grid%mub(i,j-1) |
---|
1590 | grid%mu_2(i,j) = grid%mu_2(i,j-1) |
---|
1591 | DO k = 1, kte-1 |
---|
1592 | grid%pb(i,k,j) = grid%pb(i,k,j-1) |
---|
1593 | grid%t_init(i,k,j) = grid%t_init(i,k,j-1) |
---|
1594 | grid%alb(i,k,j) = grid%alb(i,k,j-1) |
---|
1595 | END DO |
---|
1596 | DO k = 1, kte |
---|
1597 | grid%phb(i,k,j) = grid%phb(i,k,j-1) |
---|
1598 | END DO |
---|
1599 | END DO |
---|
1600 | END IF |
---|
1601 | |
---|
1602 | ! Compute the perturbation dry pressure (grid%mub + grid%mu_2 + ptop = dry grid%psfc). |
---|
1603 | |
---|
1604 | DO j = jts, min(jde-1,jte) |
---|
1605 | DO i = its, min(ide-1,ite) |
---|
1606 | grid%mu_2(i,j) = grid%mu0(i,j) - grid%mub(i,j) |
---|
1607 | END DO |
---|
1608 | END DO |
---|
1609 | |
---|
1610 | ! Fill in the outer rows and columns to allow us to be sloppy. |
---|
1611 | |
---|
1612 | IF ( ite .EQ. ide ) THEN |
---|
1613 | i = ide |
---|
1614 | DO j = jts, MIN(jde-1,jte) |
---|
1615 | grid%mu_2(i,j) = grid%mu_2(i-1,j) |
---|
1616 | END DO |
---|
1617 | END IF |
---|
1618 | |
---|
1619 | IF ( jte .EQ. jde ) THEN |
---|
1620 | j = jde |
---|
1621 | DO i = its, ite |
---|
1622 | grid%mu_2(i,j) = grid%mu_2(i,j-1) |
---|
1623 | END DO |
---|
1624 | END IF |
---|
1625 | |
---|
1626 | lev500 = 0 |
---|
1627 | DO j = jts, min(jde-1,jte) |
---|
1628 | DO i = its, min(ide-1,ite) |
---|
1629 | |
---|
1630 | ! Assign the potential temperature (perturbation from t0) and qv on all the mass |
---|
1631 | ! point locations. |
---|
1632 | |
---|
1633 | DO k = 1 , kde-1 |
---|
1634 | grid%t_2(i,k,j) = grid%t_2(i,k,j) - t0 |
---|
1635 | END DO |
---|
1636 | |
---|
1637 | dpmu = 10001. |
---|
1638 | loop_count = 0 |
---|
1639 | |
---|
1640 | DO WHILE ( ( ABS(dpmu) .GT. 10. ) .AND. & |
---|
1641 | ( loop_count .LT. 5 ) ) |
---|
1642 | |
---|
1643 | loop_count = loop_count + 1 |
---|
1644 | |
---|
1645 | ! Integrate the hydrostatic equation (from the RHS of the bigstep vertical momentum |
---|
1646 | ! equation) down from the top to get the pressure perturbation. First get the pressure |
---|
1647 | ! perturbation, moisture, and inverse density (total and perturbation) at the top-most level. |
---|
1648 | |
---|
1649 | k = kte-1 |
---|
1650 | |
---|
1651 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV)) |
---|
1652 | qvf2 = 1./(1.+qvf1) |
---|
1653 | qvf1 = qvf1*qvf2 |
---|
1654 | |
---|
1655 | grid%p(i,k,j) = - 0.5*(grid%mu_2(i,j)+qvf1*grid%mub(i,j))/grid%rdnw(k)/qvf2 |
---|
1656 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
---|
1657 | grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_2(i,k,j)+t0)*qvf& |
---|
1658 | *(((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) |
---|
1659 | grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) |
---|
1660 | |
---|
1661 | ! Now, integrate down the column to compute the pressure perturbation, and diagnose the two |
---|
1662 | ! inverse density fields (total and perturbation). |
---|
1663 | |
---|
1664 | DO k=kte-2,1,-1 |
---|
1665 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV)) |
---|
1666 | qvf2 = 1./(1.+qvf1) |
---|
1667 | qvf1 = qvf1*qvf2 |
---|
1668 | grid%p(i,k,j) = grid%p(i,k+1,j) - (grid%mu_2(i,j) + qvf1*grid%mub(i,j))/qvf2/grid%rdn(k+1) |
---|
1669 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
---|
1670 | grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_2(i,k,j)+t0)*qvf* & |
---|
1671 | (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) |
---|
1672 | grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) |
---|
1673 | END DO |
---|
1674 | |
---|
1675 | #if 1 |
---|
1676 | ! This is the hydrostatic equation used in the model after the small timesteps. In |
---|
1677 | ! the model, grid%al (inverse density) is computed from the geopotential. |
---|
1678 | |
---|
1679 | DO k = 2,kte |
---|
1680 | grid%ph_2(i,k,j) = grid%ph_2(i,k-1,j) - & |
---|
1681 | grid%dnw(k-1) * ( (grid%mub(i,j)+grid%mu_2(i,j))*grid%al(i,k-1,j) & |
---|
1682 | + grid%mu_2(i,j)*grid%alb(i,k-1,j) ) |
---|
1683 | grid%ph0(i,k,j) = grid%ph_2(i,k,j) + grid%phb(i,k,j) |
---|
1684 | END DO |
---|
1685 | #else |
---|
1686 | ! Get the perturbation geopotential from the 3d height array from WPS. |
---|
1687 | |
---|
1688 | DO k = 2,kte |
---|
1689 | grid%ph_2(i,k,j) = grid%ph0(i,k,j)*g - grid%phb(i,k,j) |
---|
1690 | END DO |
---|
1691 | #endif |
---|
1692 | |
---|
1693 | ! Adjust the column pressure so that the computed 500 mb height is close to the |
---|
1694 | ! input value (of course, not when we are doing hybrid input). |
---|
1695 | |
---|
1696 | IF ( ( flag_metgrid .EQ. 1 ) .AND. ( i .EQ. its ) .AND. ( j .EQ. jts ) ) THEN |
---|
1697 | DO k = 1 , num_metgrid_levels |
---|
1698 | IF ( ABS ( grid%p_gc(i,k,j) - 50000. ) .LT. 1. ) THEN |
---|
1699 | lev500 = k |
---|
1700 | EXIT |
---|
1701 | END IF |
---|
1702 | END DO |
---|
1703 | END IF |
---|
1704 | |
---|
1705 | ! We only do the adjustment of height if we have the input data on pressure |
---|
1706 | ! surfaces, and folks have asked to do this option. |
---|
1707 | |
---|
1708 | IF ( ( flag_metgrid .EQ. 1 ) .AND. & |
---|
1709 | ( config_flags%adjust_heights ) .AND. & |
---|
1710 | ( lev500 .NE. 0 ) ) THEN |
---|
1711 | |
---|
1712 | DO k = 2 , kte-1 |
---|
1713 | |
---|
1714 | ! Get the pressures on the full eta levels (grid%php is defined above as |
---|
1715 | ! the full-lev base pressure, an easy array to use for 3d space). |
---|
1716 | |
---|
1717 | pl = grid%php(i,k ,j) + & |
---|
1718 | ( grid%p(i,k-1 ,j) * ( grid%znw(k ) - grid%znu(k ) ) + & |
---|
1719 | grid%p(i,k ,j) * ( grid%znu(k-1 ) - grid%znw(k ) ) ) / & |
---|
1720 | ( grid%znu(k-1 ) - grid%znu(k ) ) |
---|
1721 | pu = grid%php(i,k+1,j) + & |
---|
1722 | ( grid%p(i,k-1+1,j) * ( grid%znw(k +1) - grid%znu(k+1) ) + & |
---|
1723 | grid%p(i,k +1,j) * ( grid%znu(k-1+1) - grid%znw(k+1) ) ) / & |
---|
1724 | ( grid%znu(k-1+1) - grid%znu(k+1) ) |
---|
1725 | |
---|
1726 | ! If these pressure levels trap 500 mb, use them to interpolate |
---|
1727 | ! to the 500 mb level of the computed height. |
---|
1728 | |
---|
1729 | IF ( ( pl .GE. 50000. ) .AND. ( pu .LT. 50000. ) ) THEN |
---|
1730 | zl = ( grid%ph_2(i,k ,j) + grid%phb(i,k ,j) ) / g |
---|
1731 | zu = ( grid%ph_2(i,k+1,j) + grid%phb(i,k+1,j) ) / g |
---|
1732 | |
---|
1733 | z500 = ( zl * ( LOG(50000.) - LOG(pu ) ) + & |
---|
1734 | zu * ( LOG(pl ) - LOG(50000.) ) ) / & |
---|
1735 | ( LOG(pl) - LOG(pu) ) |
---|
1736 | ! z500 = ( zl * ( (50000.) - (pu ) ) + & |
---|
1737 | ! zu * ( (pl ) - (50000.) ) ) / & |
---|
1738 | ! ( (pl) - (pu) ) |
---|
1739 | |
---|
1740 | ! Compute the difference of the 500 mb heights (computed minus input), and |
---|
1741 | ! then the change in grid%mu_2. The grid%php is still full-levels, base pressure. |
---|
1742 | |
---|
1743 | dz500 = z500 - grid%ght_gc(i,lev500,j) |
---|
1744 | tvsfc = ((grid%t_2(i,1,j)+t0)*((grid%p(i,1,j)+grid%php(i,1,j))/p1000mb)**(r_d/cp)) * & |
---|
1745 | (1.+0.6*moist(i,1,j,P_QV)) |
---|
1746 | dpmu = ( grid%php(i,1,j) + grid%p(i,1,j) ) * EXP ( g * dz500 / ( r_d * tvsfc ) ) |
---|
1747 | dpmu = dpmu - ( grid%php(i,1,j) + grid%p(i,1,j) ) |
---|
1748 | grid%mu_2(i,j) = grid%mu_2(i,j) - dpmu |
---|
1749 | EXIT |
---|
1750 | END IF |
---|
1751 | |
---|
1752 | END DO |
---|
1753 | ELSE |
---|
1754 | dpmu = 0. |
---|
1755 | END IF |
---|
1756 | |
---|
1757 | END DO |
---|
1758 | |
---|
1759 | END DO |
---|
1760 | END DO |
---|
1761 | |
---|
1762 | ! If this is data from the SI, then we probably do not have the original |
---|
1763 | ! surface data laying around. Note that these are all the lowest levels |
---|
1764 | ! of the respective 3d arrays. For surface pressure, we assume that the |
---|
1765 | ! vertical gradient of grid%p prime is zilch. This is not all that important. |
---|
1766 | ! These are filled in so that the various plotting routines have something |
---|
1767 | ! to play with at the initial time for the model. |
---|
1768 | |
---|
1769 | IF ( flag_metgrid .NE. 1 ) THEN |
---|
1770 | DO j = jts, min(jde-1,jte) |
---|
1771 | DO i = its, min(ide,ite) |
---|
1772 | grid%u10(i,j)=grid%u_2(i,1,j) |
---|
1773 | END DO |
---|
1774 | END DO |
---|
1775 | |
---|
1776 | DO j = jts, min(jde,jte) |
---|
1777 | DO i = its, min(ide-1,ite) |
---|
1778 | grid%v10(i,j)=grid%v_2(i,1,j) |
---|
1779 | END DO |
---|
1780 | END DO |
---|
1781 | |
---|
1782 | DO j = jts, min(jde-1,jte) |
---|
1783 | DO i = its, min(ide-1,ite) |
---|
1784 | p_surf = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht(i,j)/a/r_d ) **0.5 ) |
---|
1785 | grid%psfc(i,j)=p_surf + grid%p(i,1,j) |
---|
1786 | grid%q2(i,j)=moist(i,1,j,P_QV) |
---|
1787 | grid%th2(i,j)=grid%t_2(i,1,j)+300. |
---|
1788 | grid%t2(i,j)=grid%th2(i,j)*(((grid%p(i,1,j)+grid%pb(i,1,j))/p00)**(r_d/cp)) |
---|
1789 | END DO |
---|
1790 | END DO |
---|
1791 | |
---|
1792 | ! If this data is from WPS, then we have previously assigned the surface |
---|
1793 | ! data for u, v, and t. If we have an input qv, welp, we assigned that one, |
---|
1794 | ! too. Now we pick up the left overs, and if RH came in - we assign the |
---|
1795 | ! mixing ratio. |
---|
1796 | |
---|
1797 | ELSE IF ( flag_metgrid .EQ. 1 ) THEN |
---|
1798 | |
---|
1799 | DO j = jts, min(jde-1,jte) |
---|
1800 | DO i = its, min(ide-1,ite) |
---|
1801 | p_surf = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht(i,j)/a/r_d ) **0.5 ) |
---|
1802 | grid%psfc(i,j)=p_surf + grid%p(i,1,j) |
---|
1803 | grid%th2(i,j)=grid%t2(i,j)*(p00/(grid%p(i,1,j)+grid%pb(i,1,j)))**(r_d/cp) |
---|
1804 | END DO |
---|
1805 | END DO |
---|
1806 | IF ( flag_qv .NE. 1 ) THEN |
---|
1807 | DO j = jts, min(jde-1,jte) |
---|
1808 | DO i = its, min(ide-1,ite) |
---|
1809 | grid%q2(i,j)=moist(i,1,j,P_QV) |
---|
1810 | END DO |
---|
1811 | END DO |
---|
1812 | END IF |
---|
1813 | |
---|
1814 | END IF |
---|
1815 | |
---|
1816 | ips = its ; ipe = ite ; jps = jts ; jpe = jte ; kps = kts ; kpe = kte |
---|
1817 | #ifdef DM_PARALLEL |
---|
1818 | # include "HALO_EM_INIT_1.inc" |
---|
1819 | # include "HALO_EM_INIT_2.inc" |
---|
1820 | # include "HALO_EM_INIT_3.inc" |
---|
1821 | # include "HALO_EM_INIT_4.inc" |
---|
1822 | # include "HALO_EM_INIT_5.inc" |
---|
1823 | #endif |
---|
1824 | |
---|
1825 | RETURN |
---|
1826 | |
---|
1827 | END SUBROUTINE init_domain_rk |
---|
1828 | |
---|
1829 | !--------------------------------------------------------------------- |
---|
1830 | |
---|
1831 | SUBROUTINE const_module_initialize ( p00 , t00 , a ) |
---|
1832 | USE module_configure |
---|
1833 | IMPLICIT NONE |
---|
1834 | ! For the real-data-cases only. |
---|
1835 | REAL , INTENT(OUT) :: p00 , t00 , a |
---|
1836 | CALL nl_get_base_pres ( 1 , p00 ) |
---|
1837 | CALL nl_get_base_temp ( 1 , t00 ) |
---|
1838 | CALL nl_get_base_lapse ( 1 , a ) |
---|
1839 | END SUBROUTINE const_module_initialize |
---|
1840 | |
---|
1841 | !------------------------------------------------------------------- |
---|
1842 | |
---|
1843 | SUBROUTINE rebalance_driver ( grid ) |
---|
1844 | |
---|
1845 | IMPLICIT NONE |
---|
1846 | |
---|
1847 | TYPE (domain) :: grid |
---|
1848 | |
---|
1849 | CALL rebalance( grid & |
---|
1850 | ! |
---|
1851 | #include "actual_new_args.inc" |
---|
1852 | ! |
---|
1853 | ) |
---|
1854 | |
---|
1855 | END SUBROUTINE rebalance_driver |
---|
1856 | |
---|
1857 | !--------------------------------------------------------------------- |
---|
1858 | |
---|
1859 | SUBROUTINE rebalance ( grid & |
---|
1860 | ! |
---|
1861 | #include "dummy_new_args.inc" |
---|
1862 | ! |
---|
1863 | ) |
---|
1864 | IMPLICIT NONE |
---|
1865 | |
---|
1866 | TYPE (domain) :: grid |
---|
1867 | |
---|
1868 | #include "dummy_new_decl.inc" |
---|
1869 | |
---|
1870 | TYPE (grid_config_rec_type) :: config_flags |
---|
1871 | |
---|
1872 | REAL :: p_surf , pd_surf, p_surf_int , pb_int , ht_hold |
---|
1873 | REAL :: qvf , qvf1 , qvf2 |
---|
1874 | REAL :: p00 , t00 , a |
---|
1875 | REAL , DIMENSION(:,:,:) , ALLOCATABLE :: t_init_int |
---|
1876 | |
---|
1877 | ! Local domain indices and counters. |
---|
1878 | |
---|
1879 | INTEGER :: num_veg_cat , num_soil_top_cat , num_soil_bot_cat |
---|
1880 | |
---|
1881 | INTEGER :: & |
---|
1882 | ids, ide, jds, jde, kds, kde, & |
---|
1883 | ims, ime, jms, jme, kms, kme, & |
---|
1884 | its, ite, jts, jte, kts, kte, & |
---|
1885 | ips, ipe, jps, jpe, kps, kpe, & |
---|
1886 | i, j, k |
---|
1887 | |
---|
1888 | SELECT CASE ( model_data_order ) |
---|
1889 | CASE ( DATA_ORDER_ZXY ) |
---|
1890 | kds = grid%sd31 ; kde = grid%ed31 ; |
---|
1891 | ids = grid%sd32 ; ide = grid%ed32 ; |
---|
1892 | jds = grid%sd33 ; jde = grid%ed33 ; |
---|
1893 | |
---|
1894 | kms = grid%sm31 ; kme = grid%em31 ; |
---|
1895 | ims = grid%sm32 ; ime = grid%em32 ; |
---|
1896 | jms = grid%sm33 ; jme = grid%em33 ; |
---|
1897 | |
---|
1898 | kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch |
---|
1899 | its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch |
---|
1900 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
---|
1901 | |
---|
1902 | CASE ( DATA_ORDER_XYZ ) |
---|
1903 | ids = grid%sd31 ; ide = grid%ed31 ; |
---|
1904 | jds = grid%sd32 ; jde = grid%ed32 ; |
---|
1905 | kds = grid%sd33 ; kde = grid%ed33 ; |
---|
1906 | |
---|
1907 | ims = grid%sm31 ; ime = grid%em31 ; |
---|
1908 | jms = grid%sm32 ; jme = grid%em32 ; |
---|
1909 | kms = grid%sm33 ; kme = grid%em33 ; |
---|
1910 | |
---|
1911 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
---|
1912 | jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch |
---|
1913 | kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch |
---|
1914 | |
---|
1915 | CASE ( DATA_ORDER_XZY ) |
---|
1916 | ids = grid%sd31 ; ide = grid%ed31 ; |
---|
1917 | kds = grid%sd32 ; kde = grid%ed32 ; |
---|
1918 | jds = grid%sd33 ; jde = grid%ed33 ; |
---|
1919 | |
---|
1920 | ims = grid%sm31 ; ime = grid%em31 ; |
---|
1921 | kms = grid%sm32 ; kme = grid%em32 ; |
---|
1922 | jms = grid%sm33 ; jme = grid%em33 ; |
---|
1923 | |
---|
1924 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
---|
1925 | kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch |
---|
1926 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
---|
1927 | |
---|
1928 | END SELECT |
---|
1929 | |
---|
1930 | ALLOCATE ( t_init_int(ims:ime,kms:kme,jms:jme) ) |
---|
1931 | |
---|
1932 | ! Some of the many weird geopotential initializations that we'll see today: grid%ph0 is total, |
---|
1933 | ! and grid%ph_2 is a perturbation from the base state geopotential. We set the base geopotential |
---|
1934 | ! at the lowest level to terrain elevation * gravity. |
---|
1935 | |
---|
1936 | DO j=jts,jte |
---|
1937 | DO i=its,ite |
---|
1938 | grid%ph0(i,1,j) = grid%ht_fine(i,j) * g |
---|
1939 | grid%ph_2(i,1,j) = 0. |
---|
1940 | END DO |
---|
1941 | END DO |
---|
1942 | |
---|
1943 | ! To define the base state, we call a USER MODIFIED routine to set the three |
---|
1944 | ! necessary constants: p00 (sea level pressure, Pa), t00 (sea level temperature, K), |
---|
1945 | ! and A (temperature difference, from 1000 mb to 300 mb, K). |
---|
1946 | |
---|
1947 | CALL const_module_initialize ( p00 , t00 , a ) |
---|
1948 | |
---|
1949 | ! Base state potential temperature and inverse density (alpha = 1/rho) from |
---|
1950 | ! the half eta levels and the base-profile surface pressure. Compute 1/rho |
---|
1951 | ! from equation of state. The potential temperature is a perturbation from t0. |
---|
1952 | |
---|
1953 | DO j = jts, MIN(jte,jde-1) |
---|
1954 | DO i = its, MIN(ite,ide-1) |
---|
1955 | |
---|
1956 | ! Base state pressure is a function of eta level and terrain, only, plus |
---|
1957 | ! the hand full of constants: p00 (sea level pressure, Pa), t00 (sea level |
---|
1958 | ! temperature, K), and A (temperature difference, from 1000 mb to 300 mb, K). |
---|
1959 | ! The fine grid terrain is ht_fine, the interpolated is grid%ht. |
---|
1960 | |
---|
1961 | p_surf = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht_fine(i,j)/a/r_d ) **0.5 ) |
---|
1962 | p_surf_int = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht(i,j) /a/r_d ) **0.5 ) |
---|
1963 | |
---|
1964 | DO k = 1, kte-1 |
---|
1965 | grid%pb(i,k,j) = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top |
---|
1966 | pb_int = grid%znu(k)*(p_surf_int - grid%p_top) + grid%p_top |
---|
1967 | grid%t_init(i,k,j) = (t00 + A*LOG(grid%pb(i,k,j)/p00))*(p00/grid%pb(i,k,j))**(r_d/cp) - t0 |
---|
1968 | t_init_int(i,k,j)= (t00 + A*LOG(pb_int /p00))*(p00/pb_int )**(r_d/cp) - t0 |
---|
1969 | grid%alb(i,k,j) = (r_d/p1000mb)*(grid%t_init(i,k,j)+t0)*(grid%pb(i,k,j)/p1000mb)**cvpm |
---|
1970 | END DO |
---|
1971 | |
---|
1972 | ! Base state mu is defined as base state surface pressure minus grid%p_top |
---|
1973 | |
---|
1974 | grid%mub(i,j) = p_surf - grid%p_top |
---|
1975 | |
---|
1976 | ! Dry surface pressure is defined as the following (this mu is from the input file |
---|
1977 | ! computed from the dry pressure). Here the dry pressure is just reconstituted. |
---|
1978 | |
---|
1979 | pd_surf = ( grid%mub(i,j) + grid%mu_2(i,j) ) + grid%p_top |
---|
1980 | |
---|
1981 | ! Integrate base geopotential, starting at terrain elevation. This assures that |
---|
1982 | ! the base state is in exact hydrostatic balance with respect to the model equations. |
---|
1983 | ! This field is on full levels. |
---|
1984 | |
---|
1985 | grid%phb(i,1,j) = grid%ht_fine(i,j) * g |
---|
1986 | DO k = 2,kte |
---|
1987 | grid%phb(i,k,j) = grid%phb(i,k-1,j) - grid%dnw(k-1)*grid%mub(i,j)*grid%alb(i,k-1,j) |
---|
1988 | END DO |
---|
1989 | END DO |
---|
1990 | END DO |
---|
1991 | |
---|
1992 | ! Replace interpolated terrain with fine grid values. |
---|
1993 | |
---|
1994 | DO j = jts, MIN(jte,jde-1) |
---|
1995 | DO i = its, MIN(ite,ide-1) |
---|
1996 | grid%ht(i,j) = grid%ht_fine(i,j) |
---|
1997 | END DO |
---|
1998 | END DO |
---|
1999 | |
---|
2000 | ! Perturbation fields. |
---|
2001 | |
---|
2002 | DO j = jts, min(jde-1,jte) |
---|
2003 | DO i = its, min(ide-1,ite) |
---|
2004 | |
---|
2005 | ! The potential temperature is THETAnest = THETAinterp + ( TBARnest - TBARinterp) |
---|
2006 | |
---|
2007 | DO k = 1 , kde-1 |
---|
2008 | grid%t_2(i,k,j) = grid%t_2(i,k,j) + ( grid%t_init(i,k,j) - t_init_int(i,k,j) ) |
---|
2009 | END DO |
---|
2010 | |
---|
2011 | ! Integrate the hydrostatic equation (from the RHS of the bigstep vertical momentum |
---|
2012 | ! equation) down from the top to get the pressure perturbation. First get the pressure |
---|
2013 | ! perturbation, moisture, and inverse density (total and perturbation) at the top-most level. |
---|
2014 | |
---|
2015 | k = kte-1 |
---|
2016 | |
---|
2017 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV)) |
---|
2018 | qvf2 = 1./(1.+qvf1) |
---|
2019 | qvf1 = qvf1*qvf2 |
---|
2020 | |
---|
2021 | grid%p(i,k,j) = - 0.5*(grid%mu_2(i,j)+qvf1*grid%mub(i,j))/grid%rdnw(k)/qvf2 |
---|
2022 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
---|
2023 | grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_2(i,k,j)+t0)*qvf* & |
---|
2024 | (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) |
---|
2025 | grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) |
---|
2026 | |
---|
2027 | ! Now, integrate down the column to compute the pressure perturbation, and diagnose the two |
---|
2028 | ! inverse density fields (total and perturbation). |
---|
2029 | |
---|
2030 | DO k=kte-2,1,-1 |
---|
2031 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV)) |
---|
2032 | qvf2 = 1./(1.+qvf1) |
---|
2033 | qvf1 = qvf1*qvf2 |
---|
2034 | grid%p(i,k,j) = grid%p(i,k+1,j) - (grid%mu_2(i,j) + qvf1*grid%mub(i,j))/qvf2/grid%rdn(k+1) |
---|
2035 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
---|
2036 | grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_2(i,k,j)+t0)*qvf* & |
---|
2037 | (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) |
---|
2038 | grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) |
---|
2039 | END DO |
---|
2040 | |
---|
2041 | ! This is the hydrostatic equation used in the model after the small timesteps. In |
---|
2042 | ! the model, grid%al (inverse density) is computed from the geopotential. |
---|
2043 | |
---|
2044 | DO k = 2,kte |
---|
2045 | grid%ph_2(i,k,j) = grid%ph_2(i,k-1,j) - & |
---|
2046 | grid%dnw(k-1) * ( (grid%mub(i,j)+grid%mu_2(i,j))*grid%al(i,k-1,j) & |
---|
2047 | + grid%mu_2(i,j)*grid%alb(i,k-1,j) ) |
---|
2048 | grid%ph0(i,k,j) = grid%ph_2(i,k,j) + grid%phb(i,k,j) |
---|
2049 | END DO |
---|
2050 | |
---|
2051 | END DO |
---|
2052 | END DO |
---|
2053 | |
---|
2054 | DEALLOCATE ( t_init_int ) |
---|
2055 | |
---|
2056 | ips = its ; ipe = ite ; jps = jts ; jpe = jte ; kps = kts ; kpe = kte |
---|
2057 | #ifdef DM_PARALLEL |
---|
2058 | # include "HALO_EM_INIT_1.inc" |
---|
2059 | # include "HALO_EM_INIT_2.inc" |
---|
2060 | # include "HALO_EM_INIT_3.inc" |
---|
2061 | # include "HALO_EM_INIT_4.inc" |
---|
2062 | # include "HALO_EM_INIT_5.inc" |
---|
2063 | #endif |
---|
2064 | END SUBROUTINE rebalance |
---|
2065 | |
---|
2066 | !--------------------------------------------------------------------- |
---|
2067 | |
---|
2068 | RECURSIVE SUBROUTINE find_my_parent ( grid_ptr_in , grid_ptr_out , id_i_am , id_wanted , found_the_id ) |
---|
2069 | |
---|
2070 | USE module_domain |
---|
2071 | |
---|
2072 | TYPE(domain) , POINTER :: grid_ptr_in , grid_ptr_out |
---|
2073 | TYPE(domain) , POINTER :: grid_ptr_sibling |
---|
2074 | INTEGER :: id_wanted , id_i_am |
---|
2075 | LOGICAL :: found_the_id |
---|
2076 | |
---|
2077 | found_the_id = .FALSE. |
---|
2078 | grid_ptr_sibling => grid_ptr_in |
---|
2079 | DO WHILE ( ASSOCIATED ( grid_ptr_sibling ) ) |
---|
2080 | |
---|
2081 | IF ( grid_ptr_sibling%grid_id .EQ. id_wanted ) THEN |
---|
2082 | found_the_id = .TRUE. |
---|
2083 | grid_ptr_out => grid_ptr_sibling |
---|
2084 | RETURN |
---|
2085 | ELSE IF ( grid_ptr_sibling%num_nests .GT. 0 ) THEN |
---|
2086 | grid_ptr_sibling => grid_ptr_sibling%nests(1)%ptr |
---|
2087 | CALL find_my_parent ( grid_ptr_sibling , grid_ptr_out , id_i_am , id_wanted , found_the_id ) |
---|
2088 | ELSE |
---|
2089 | grid_ptr_sibling => grid_ptr_sibling%sibling |
---|
2090 | END IF |
---|
2091 | |
---|
2092 | END DO |
---|
2093 | |
---|
2094 | END SUBROUTINE find_my_parent |
---|
2095 | |
---|
2096 | #endif |
---|
2097 | |
---|
2098 | !--------------------------------------------------------------------- |
---|
2099 | |
---|
2100 | #ifdef VERT_UNIT |
---|
2101 | |
---|
2102 | !This is a main program for a small unit test for the vertical interpolation. |
---|
2103 | |
---|
2104 | program vint |
---|
2105 | |
---|
2106 | implicit none |
---|
2107 | |
---|
2108 | integer , parameter :: ij = 3 |
---|
2109 | integer , parameter :: keta = 30 |
---|
2110 | integer , parameter :: kgen =20 |
---|
2111 | |
---|
2112 | integer :: ids , ide , jds , jde , kds , kde , & |
---|
2113 | ims , ime , jms , jme , kms , kme , & |
---|
2114 | its , ite , jts , jte , kts , kte |
---|
2115 | |
---|
2116 | integer :: generic |
---|
2117 | |
---|
2118 | real , dimension(1:ij,kgen,1:ij) :: fo , po |
---|
2119 | real , dimension(1:ij,1:keta,1:ij) :: fn_calc , fn_interp , pn |
---|
2120 | |
---|
2121 | integer, parameter :: interp_type = 1 ! 2 |
---|
2122 | ! integer, parameter :: lagrange_order = 2 ! 1 |
---|
2123 | integer :: lagrange_order |
---|
2124 | logical, parameter :: lowest_lev_from_sfc = .FALSE. ! .TRUE. |
---|
2125 | logical, parameter :: use_levels_below_ground = .FALSE. ! .TRUE. |
---|
2126 | logical, parameter :: use_surface = .FALSE. ! .TRUE. |
---|
2127 | real , parameter :: zap_close_levels = 500. ! 100. |
---|
2128 | integer, parameter :: force_sfc_in_vinterp = 0 ! 6 |
---|
2129 | |
---|
2130 | integer :: k |
---|
2131 | |
---|
2132 | ids = 1 ; ide = ij ; jds = 1 ; jde = ij ; kds = 1 ; kde = keta |
---|
2133 | ims = 1 ; ime = ij ; jms = 1 ; jme = ij ; kms = 1 ; kme = keta |
---|
2134 | its = 1 ; ite = ij ; jts = 1 ; jte = ij ; kts = 1 ; kte = keta |
---|
2135 | |
---|
2136 | generic = kgen |
---|
2137 | |
---|
2138 | print *,' ' |
---|
2139 | print *,'------------------------------------' |
---|
2140 | print *,'UNIT TEST FOR VERTICAL INTERPOLATION' |
---|
2141 | print *,'------------------------------------' |
---|
2142 | print *,' ' |
---|
2143 | do lagrange_order = 1 , 2 |
---|
2144 | print *,' ' |
---|
2145 | print *,'------------------------------------' |
---|
2146 | print *,'Lagrange Order = ',lagrange_order |
---|
2147 | print *,'------------------------------------' |
---|
2148 | print *,' ' |
---|
2149 | call fillitup ( fo , po , fn_calc , pn , & |
---|
2150 | ids , ide , jds , jde , kds , kde , & |
---|
2151 | ims , ime , jms , jme , kms , kme , & |
---|
2152 | its , ite , jts , jte , kts , kte , & |
---|
2153 | generic , lagrange_order ) |
---|
2154 | |
---|
2155 | print *,' ' |
---|
2156 | print *,'Level Pressure Field' |
---|
2157 | print *,' (Pa) (generic)' |
---|
2158 | print *,'------------------------------------' |
---|
2159 | print *,' ' |
---|
2160 | do k = 1 , generic |
---|
2161 | write (*,fmt='(i2,2x,f12.3,1x,g15.8)' ) & |
---|
2162 | k,po(2,k,2),fo(2,k,2) |
---|
2163 | end do |
---|
2164 | print *,' ' |
---|
2165 | |
---|
2166 | call vert_interp ( fo , po , fn_interp , pn , & |
---|
2167 | generic , 'T' , & |
---|
2168 | interp_type , lagrange_order , & |
---|
2169 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
---|
2170 | zap_close_levels , force_sfc_in_vinterp , & |
---|
2171 | ids , ide , jds , jde , kds , kde , & |
---|
2172 | ims , ime , jms , jme , kms , kme , & |
---|
2173 | its , ite , jts , jte , kts , kte ) |
---|
2174 | |
---|
2175 | print *,'Multi-Order Interpolator' |
---|
2176 | print *,'------------------------------------' |
---|
2177 | print *,' ' |
---|
2178 | print *,'Level Pressure Field Field Field' |
---|
2179 | print *,' (Pa) Calc Interp Diff' |
---|
2180 | print *,'------------------------------------' |
---|
2181 | print *,' ' |
---|
2182 | do k = kts , kte-1 |
---|
2183 | write (*,fmt='(i2,2x,f12.3,1x,3(g15.7))' ) & |
---|
2184 | k,pn(2,k,2),fn_calc(2,k,2),fn_interp(2,k,2),fn_calc(2,k,2)-fn_interp(2,k,2) |
---|
2185 | end do |
---|
2186 | |
---|
2187 | call vert_interp_old ( fo , po , fn_interp , pn , & |
---|
2188 | generic , 'T' , & |
---|
2189 | interp_type , lagrange_order , & |
---|
2190 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
---|
2191 | zap_close_levels , force_sfc_in_vinterp , & |
---|
2192 | ids , ide , jds , jde , kds , kde , & |
---|
2193 | ims , ime , jms , jme , kms , kme , & |
---|
2194 | its , ite , jts , jte , kts , kte ) |
---|
2195 | |
---|
2196 | print *,'Linear Interpolator' |
---|
2197 | print *,'------------------------------------' |
---|
2198 | print *,' ' |
---|
2199 | print *,'Level Pressure Field Field Field' |
---|
2200 | print *,' (Pa) Calc Interp Diff' |
---|
2201 | print *,'------------------------------------' |
---|
2202 | print *,' ' |
---|
2203 | do k = kts , kte-1 |
---|
2204 | write (*,fmt='(i2,2x,f12.3,1x,3(g15.7))' ) & |
---|
2205 | k,pn(2,k,2),fn_calc(2,k,2),fn_interp(2,k,2),fn_calc(2,k,2)-fn_interp(2,k,2) |
---|
2206 | end do |
---|
2207 | end do |
---|
2208 | |
---|
2209 | end program vint |
---|
2210 | |
---|
2211 | subroutine wrf_error_fatal (string) |
---|
2212 | character (len=*) :: string |
---|
2213 | print *,string |
---|
2214 | stop |
---|
2215 | end subroutine wrf_error_fatal |
---|
2216 | |
---|
2217 | subroutine fillitup ( fo , po , fn , pn , & |
---|
2218 | ids , ide , jds , jde , kds , kde , & |
---|
2219 | ims , ime , jms , jme , kms , kme , & |
---|
2220 | its , ite , jts , jte , kts , kte , & |
---|
2221 | generic , lagrange_order ) |
---|
2222 | |
---|
2223 | implicit none |
---|
2224 | |
---|
2225 | integer , intent(in) :: ids , ide , jds , jde , kds , kde , & |
---|
2226 | ims , ime , jms , jme , kms , kme , & |
---|
2227 | its , ite , jts , jte , kts , kte |
---|
2228 | |
---|
2229 | integer , intent(in) :: generic , lagrange_order |
---|
2230 | |
---|
2231 | real , dimension(ims:ime,generic,jms:jme) , intent(out) :: fo , po |
---|
2232 | real , dimension(ims:ime,kms:kme,jms:jme) , intent(out) :: fn , pn |
---|
2233 | |
---|
2234 | integer :: i , j , k |
---|
2235 | |
---|
2236 | real , parameter :: piov2 = 3.14159265358 / 2. |
---|
2237 | |
---|
2238 | k = 1 |
---|
2239 | do j = jts , jte |
---|
2240 | do i = its , ite |
---|
2241 | po(i,k,j) = 102000. |
---|
2242 | end do |
---|
2243 | end do |
---|
2244 | |
---|
2245 | do k = 2 , generic |
---|
2246 | do j = jts , jte |
---|
2247 | do i = its , ite |
---|
2248 | po(i,k,j) = ( 5000. * ( 1 - (k-1) ) + 100000. * ( (k-1) - (generic-1) ) ) / (1. - real(generic-1) ) |
---|
2249 | end do |
---|
2250 | end do |
---|
2251 | end do |
---|
2252 | |
---|
2253 | if ( lagrange_order .eq. 1 ) then |
---|
2254 | do k = 1 , generic |
---|
2255 | do j = jts , jte |
---|
2256 | do i = its , ite |
---|
2257 | fo(i,k,j) = po(i,k,j) |
---|
2258 | ! fo(i,k,j) = sin(po(i,k,j) * piov2 / 102000. ) |
---|
2259 | end do |
---|
2260 | end do |
---|
2261 | end do |
---|
2262 | else if ( lagrange_order .eq. 2 ) then |
---|
2263 | do k = 1 , generic |
---|
2264 | do j = jts , jte |
---|
2265 | do i = its , ite |
---|
2266 | fo(i,k,j) = (((po(i,k,j)-5000.)/102000.)*((102000.-po(i,k,j))/102000.))*102000. |
---|
2267 | ! fo(i,k,j) = sin(po(i,k,j) * piov2 / 102000. ) |
---|
2268 | end do |
---|
2269 | end do |
---|
2270 | end do |
---|
2271 | end if |
---|
2272 | |
---|
2273 | !!!!!!!!!!!! |
---|
2274 | |
---|
2275 | do k = kts , kte |
---|
2276 | do j = jts , jte |
---|
2277 | do i = its , ite |
---|
2278 | pn(i,k,j) = ( 5000. * ( 0 - (k-1) ) + 102000. * ( (k-1) - (kte-1) ) ) / (-1. * real(kte-1) ) |
---|
2279 | end do |
---|
2280 | end do |
---|
2281 | end do |
---|
2282 | |
---|
2283 | do k = kts , kte-1 |
---|
2284 | do j = jts , jte |
---|
2285 | do i = its , ite |
---|
2286 | pn(i,k,j) = ( pn(i,k,j) + pn(i,k+1,j) ) /2. |
---|
2287 | end do |
---|
2288 | end do |
---|
2289 | end do |
---|
2290 | |
---|
2291 | |
---|
2292 | if ( lagrange_order .eq. 1 ) then |
---|
2293 | do k = kts , kte-1 |
---|
2294 | do j = jts , jte |
---|
2295 | do i = its , ite |
---|
2296 | fn(i,k,j) = pn(i,k,j) |
---|
2297 | ! fn(i,k,j) = sin(pn(i,k,j) * piov2 / 102000. ) |
---|
2298 | end do |
---|
2299 | end do |
---|
2300 | end do |
---|
2301 | else if ( lagrange_order .eq. 2 ) then |
---|
2302 | do k = kts , kte-1 |
---|
2303 | do j = jts , jte |
---|
2304 | do i = its , ite |
---|
2305 | fn(i,k,j) = (((pn(i,k,j)-5000.)/102000.)*((102000.-pn(i,k,j))/102000.))*102000. |
---|
2306 | ! fn(i,k,j) = sin(pn(i,k,j) * piov2 / 102000. ) |
---|
2307 | end do |
---|
2308 | end do |
---|
2309 | end do |
---|
2310 | end if |
---|
2311 | |
---|
2312 | end subroutine fillitup |
---|
2313 | |
---|
2314 | #endif |
---|
2315 | |
---|
2316 | !--------------------------------------------------------------------- |
---|
2317 | |
---|
2318 | SUBROUTINE vert_interp ( fo , po , fnew , pnu , & |
---|
2319 | generic , var_type , & |
---|
2320 | interp_type , lagrange_order , extrap_type , & |
---|
2321 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
---|
2322 | zap_close_levels , force_sfc_in_vinterp , & |
---|
2323 | ids , ide , jds , jde , kds , kde , & |
---|
2324 | ims , ime , jms , jme , kms , kme , & |
---|
2325 | its , ite , jts , jte , kts , kte ) |
---|
2326 | |
---|
2327 | ! Vertically interpolate the new field. The original field on the original |
---|
2328 | ! pressure levels is provided, and the new pressure surfaces to interpolate to. |
---|
2329 | |
---|
2330 | IMPLICIT NONE |
---|
2331 | |
---|
2332 | INTEGER , INTENT(IN) :: interp_type , lagrange_order , extrap_type |
---|
2333 | LOGICAL , INTENT(IN) :: lowest_lev_from_sfc , use_levels_below_ground , use_surface |
---|
2334 | REAL , INTENT(IN) :: zap_close_levels |
---|
2335 | INTEGER , INTENT(IN) :: force_sfc_in_vinterp |
---|
2336 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
2337 | ims , ime , jms , jme , kms , kme , & |
---|
2338 | its , ite , jts , jte , kts , kte |
---|
2339 | INTEGER , INTENT(IN) :: generic |
---|
2340 | |
---|
2341 | CHARACTER (LEN=1) :: var_type |
---|
2342 | |
---|
2343 | REAL , DIMENSION(ims:ime,generic,jms:jme) , INTENT(IN) :: fo , po |
---|
2344 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: pnu |
---|
2345 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: fnew |
---|
2346 | |
---|
2347 | REAL , DIMENSION(ims:ime,generic,jms:jme) :: forig , porig |
---|
2348 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) :: pnew |
---|
2349 | |
---|
2350 | ! Local vars |
---|
2351 | |
---|
2352 | INTEGER :: i , j , k , ko , kn , k1 , k2 , ko_1 , ko_2 , knext |
---|
2353 | INTEGER :: istart , iend , jstart , jend , kstart , kend |
---|
2354 | INTEGER , DIMENSION(ims:ime,kms:kme ) :: k_above , k_below |
---|
2355 | INTEGER , DIMENSION(ims:ime ) :: ks |
---|
2356 | INTEGER , DIMENSION(ims:ime ) :: ko_above_sfc |
---|
2357 | INTEGER :: count , zap , zap_below , zap_above , kst , kcount |
---|
2358 | INTEGER :: kinterp_start , kinterp_end , sfc_level |
---|
2359 | |
---|
2360 | LOGICAL :: any_below_ground |
---|
2361 | |
---|
2362 | REAL :: p1 , p2 , pn, hold |
---|
2363 | REAL , DIMENSION(1:generic) :: ordered_porig , ordered_forig |
---|
2364 | REAL , DIMENSION(kts:kte) :: ordered_pnew , ordered_fnew |
---|
2365 | |
---|
2366 | ! Horiontal loop bounds for different variable types. |
---|
2367 | |
---|
2368 | IF ( var_type .EQ. 'U' ) THEN |
---|
2369 | istart = its |
---|
2370 | iend = ite |
---|
2371 | jstart = jts |
---|
2372 | jend = MIN(jde-1,jte) |
---|
2373 | kstart = kts |
---|
2374 | kend = kte-1 |
---|
2375 | DO j = jstart,jend |
---|
2376 | DO k = 1,generic |
---|
2377 | DO i = MAX(ids+1,its) , MIN(ide-1,ite) |
---|
2378 | porig(i,k,j) = ( po(i,k,j) + po(i-1,k,j) ) * 0.5 |
---|
2379 | END DO |
---|
2380 | END DO |
---|
2381 | IF ( ids .EQ. its ) THEN |
---|
2382 | DO k = 1,generic |
---|
2383 | porig(its,k,j) = po(its,k,j) |
---|
2384 | END DO |
---|
2385 | END IF |
---|
2386 | IF ( ide .EQ. ite ) THEN |
---|
2387 | DO k = 1,generic |
---|
2388 | porig(ite,k,j) = po(ite-1,k,j) |
---|
2389 | END DO |
---|
2390 | END IF |
---|
2391 | |
---|
2392 | DO k = kstart,kend |
---|
2393 | DO i = MAX(ids+1,its) , MIN(ide-1,ite) |
---|
2394 | pnew(i,k,j) = ( pnu(i,k,j) + pnu(i-1,k,j) ) * 0.5 |
---|
2395 | END DO |
---|
2396 | END DO |
---|
2397 | IF ( ids .EQ. its ) THEN |
---|
2398 | DO k = kstart,kend |
---|
2399 | pnew(its,k,j) = pnu(its,k,j) |
---|
2400 | END DO |
---|
2401 | END IF |
---|
2402 | IF ( ide .EQ. ite ) THEN |
---|
2403 | DO k = kstart,kend |
---|
2404 | pnew(ite,k,j) = pnu(ite-1,k,j) |
---|
2405 | END DO |
---|
2406 | END IF |
---|
2407 | END DO |
---|
2408 | ELSE IF ( var_type .EQ. 'V' ) THEN |
---|
2409 | istart = its |
---|
2410 | iend = MIN(ide-1,ite) |
---|
2411 | jstart = jts |
---|
2412 | jend = jte |
---|
2413 | kstart = kts |
---|
2414 | kend = kte-1 |
---|
2415 | DO i = istart,iend |
---|
2416 | DO k = 1,generic |
---|
2417 | DO j = MAX(jds+1,jts) , MIN(jde-1,jte) |
---|
2418 | porig(i,k,j) = ( po(i,k,j) + po(i,k,j-1) ) * 0.5 |
---|
2419 | END DO |
---|
2420 | END DO |
---|
2421 | IF ( jds .EQ. jts ) THEN |
---|
2422 | DO k = 1,generic |
---|
2423 | porig(i,k,jts) = po(i,k,jts) |
---|
2424 | END DO |
---|
2425 | END IF |
---|
2426 | IF ( jde .EQ. jte ) THEN |
---|
2427 | DO k = 1,generic |
---|
2428 | porig(i,k,jte) = po(i,k,jte-1) |
---|
2429 | END DO |
---|
2430 | END IF |
---|
2431 | |
---|
2432 | DO k = kstart,kend |
---|
2433 | DO j = MAX(jds+1,jts) , MIN(jde-1,jte) |
---|
2434 | pnew(i,k,j) = ( pnu(i,k,j) + pnu(i,k,j-1) ) * 0.5 |
---|
2435 | END DO |
---|
2436 | END DO |
---|
2437 | IF ( jds .EQ. jts ) THEN |
---|
2438 | DO k = kstart,kend |
---|
2439 | pnew(i,k,jts) = pnu(i,k,jts) |
---|
2440 | END DO |
---|
2441 | END IF |
---|
2442 | IF ( jde .EQ. jte ) THEN |
---|
2443 | DO k = kstart,kend |
---|
2444 | pnew(i,k,jte) = pnu(i,k,jte-1) |
---|
2445 | END DO |
---|
2446 | END IF |
---|
2447 | END DO |
---|
2448 | ELSE IF ( ( var_type .EQ. 'W' ) .OR. ( var_type .EQ. 'Z' ) ) THEN |
---|
2449 | istart = its |
---|
2450 | iend = MIN(ide-1,ite) |
---|
2451 | jstart = jts |
---|
2452 | jend = MIN(jde-1,jte) |
---|
2453 | kstart = kts |
---|
2454 | kend = kte |
---|
2455 | DO j = jstart,jend |
---|
2456 | DO k = 1,generic |
---|
2457 | DO i = istart,iend |
---|
2458 | porig(i,k,j) = po(i,k,j) |
---|
2459 | END DO |
---|
2460 | END DO |
---|
2461 | |
---|
2462 | DO k = kstart,kend |
---|
2463 | DO i = istart,iend |
---|
2464 | pnew(i,k,j) = pnu(i,k,j) |
---|
2465 | END DO |
---|
2466 | END DO |
---|
2467 | END DO |
---|
2468 | ELSE IF ( ( var_type .EQ. 'T' ) .OR. ( var_type .EQ. 'Q' ) ) THEN |
---|
2469 | istart = its |
---|
2470 | iend = MIN(ide-1,ite) |
---|
2471 | jstart = jts |
---|
2472 | jend = MIN(jde-1,jte) |
---|
2473 | kstart = kts |
---|
2474 | kend = kte-1 |
---|
2475 | DO j = jstart,jend |
---|
2476 | DO k = 1,generic |
---|
2477 | DO i = istart,iend |
---|
2478 | porig(i,k,j) = po(i,k,j) |
---|
2479 | END DO |
---|
2480 | END DO |
---|
2481 | |
---|
2482 | DO k = kstart,kend |
---|
2483 | DO i = istart,iend |
---|
2484 | pnew(i,k,j) = pnu(i,k,j) |
---|
2485 | END DO |
---|
2486 | END DO |
---|
2487 | END DO |
---|
2488 | ELSE |
---|
2489 | istart = its |
---|
2490 | iend = MIN(ide-1,ite) |
---|
2491 | jstart = jts |
---|
2492 | jend = MIN(jde-1,jte) |
---|
2493 | kstart = kts |
---|
2494 | kend = kte-1 |
---|
2495 | DO j = jstart,jend |
---|
2496 | DO k = 1,generic |
---|
2497 | DO i = istart,iend |
---|
2498 | porig(i,k,j) = po(i,k,j) |
---|
2499 | END DO |
---|
2500 | END DO |
---|
2501 | |
---|
2502 | DO k = kstart,kend |
---|
2503 | DO i = istart,iend |
---|
2504 | pnew(i,k,j) = pnu(i,k,j) |
---|
2505 | END DO |
---|
2506 | END DO |
---|
2507 | END DO |
---|
2508 | END IF |
---|
2509 | |
---|
2510 | DO j = jstart , jend |
---|
2511 | |
---|
2512 | ! The lowest level is the surface. Levels 2 through "generic" are supposed to |
---|
2513 | ! be "bottom-up". Flip if they are not. This is based on the input pressure |
---|
2514 | ! array. |
---|
2515 | |
---|
2516 | IF ( porig(its,2,j) .LT. porig(its,generic,j) ) THEN |
---|
2517 | DO kn = 2 , ( generic + 1 ) / 2 |
---|
2518 | DO i = istart , iend |
---|
2519 | hold = porig(i,kn,j) |
---|
2520 | porig(i,kn,j) = porig(i,generic+2-kn,j) |
---|
2521 | porig(i,generic+2-kn,j) = hold |
---|
2522 | forig(i,kn,j) = fo (i,generic+2-kn,j) |
---|
2523 | forig(i,generic+2-kn,j) = fo (i,kn,j) |
---|
2524 | END DO |
---|
2525 | DO i = istart , iend |
---|
2526 | forig(i,1,j) = fo (i,1,j) |
---|
2527 | END DO |
---|
2528 | END DO |
---|
2529 | ELSE |
---|
2530 | DO kn = 1 , generic |
---|
2531 | DO i = istart , iend |
---|
2532 | forig(i,kn,j) = fo (i,kn,j) |
---|
2533 | END DO |
---|
2534 | END DO |
---|
2535 | END IF |
---|
2536 | |
---|
2537 | ! Skip all of the levels below ground in the original data based upon the surface pressure. |
---|
2538 | ! The ko_above_sfc is the index in the pressure array that is above the surface. If there |
---|
2539 | ! are no levels underground, this is index = 2. The remaining levels are eligible for use |
---|
2540 | ! in the vertical interpolation. |
---|
2541 | |
---|
2542 | DO i = istart , iend |
---|
2543 | ko_above_sfc(i) = -1 |
---|
2544 | END DO |
---|
2545 | DO ko = kstart+1 , kend |
---|
2546 | DO i = istart , iend |
---|
2547 | IF ( ko_above_sfc(i) .EQ. -1 ) THEN |
---|
2548 | IF ( porig(i,1,j) .GT. porig(i,ko,j) ) THEN |
---|
2549 | ko_above_sfc(i) = ko |
---|
2550 | END IF |
---|
2551 | END IF |
---|
2552 | END DO |
---|
2553 | END DO |
---|
2554 | |
---|
2555 | ! Piece together columns of the original input data. Pass the vertical columns to |
---|
2556 | ! the iterpolator. |
---|
2557 | |
---|
2558 | DO i = istart , iend |
---|
2559 | |
---|
2560 | ! If the surface value is in the middle of the array, three steps: 1) do the |
---|
2561 | ! values below the ground (this is just to catch the occasional value that is |
---|
2562 | ! inconsistently below the surface based on input data), 2) do the surface level, then |
---|
2563 | ! 3) add in the levels that are above the surface. For the levels next to the surface, |
---|
2564 | ! we check to remove any levels that are "too close". When building the column of input |
---|
2565 | ! pressures, we also attend to the request for forcing the surface analysis to be used |
---|
2566 | ! in a few lower eta-levels. |
---|
2567 | |
---|
2568 | ! Fill in the column from up to the level just below the surface with the input |
---|
2569 | ! presssure and the input field (orig or old, which ever). For an isobaric input |
---|
2570 | ! file, this data is isobaric. |
---|
2571 | |
---|
2572 | ! How many levels have we skipped in the input column. |
---|
2573 | |
---|
2574 | zap = 0 |
---|
2575 | zap_below = 0 |
---|
2576 | zap_above = 0 |
---|
2577 | |
---|
2578 | IF ( ko_above_sfc(i) .GT. 2 ) THEN |
---|
2579 | count = 1 |
---|
2580 | DO ko = 2 , ko_above_sfc(i)-1 |
---|
2581 | ordered_porig(count) = porig(i,ko,j) |
---|
2582 | ordered_forig(count) = forig(i,ko,j) |
---|
2583 | count = count + 1 |
---|
2584 | END DO |
---|
2585 | |
---|
2586 | ! Make sure the pressure just below the surface is not "too close", this |
---|
2587 | ! will cause havoc with the higher order interpolators. In case of a "too close" |
---|
2588 | ! instance, we toss out the offending level (NOT the surface one) by simply |
---|
2589 | ! decrementing the accumulating loop counter. |
---|
2590 | |
---|
2591 | IF ( ordered_porig(count-1) - porig(i,1,j) .LT. zap_close_levels ) THEN |
---|
2592 | count = count -1 |
---|
2593 | zap = 1 |
---|
2594 | zap_below = 1 |
---|
2595 | END IF |
---|
2596 | |
---|
2597 | ! Add in the surface values. |
---|
2598 | |
---|
2599 | ordered_porig(count) = porig(i,1,j) |
---|
2600 | ordered_forig(count) = forig(i,1,j) |
---|
2601 | count = count + 1 |
---|
2602 | |
---|
2603 | ! A usual way to do the vertical interpolation is to pay more attention to the |
---|
2604 | ! surface data. Why? Well it has about 20x the density as the upper air, so we |
---|
2605 | ! hope the analysis is better there. We more strongly use this data by artificially |
---|
2606 | ! tossing out levels above the surface that are beneath a certain number of prescribed |
---|
2607 | ! eta levels at this (i,j). The "zap" value is how many levels of input we are |
---|
2608 | ! removing, which is used to tell the interpolator how many valid values are in |
---|
2609 | ! the column. The "count" value is the increment to the index of levels, and is |
---|
2610 | ! only used for assignments. |
---|
2611 | |
---|
2612 | IF ( force_sfc_in_vinterp .GT. 0 ) THEN |
---|
2613 | |
---|
2614 | ! Get the pressure at the eta level. We want to remove all input pressure levels |
---|
2615 | ! between the level above the surface to the pressure at this eta surface. That |
---|
2616 | ! forces the surface value to be used through the selected eta level. Keep track |
---|
2617 | ! of two things: the level to use above the eta levels, and how many levels we are |
---|
2618 | ! skipping. |
---|
2619 | |
---|
2620 | knext = ko_above_sfc(i) |
---|
2621 | find_level : DO ko = ko_above_sfc(i) , generic |
---|
2622 | IF ( porig(i,ko,j) .LE. pnew(i,force_sfc_in_vinterp,j) ) THEN |
---|
2623 | knext = ko |
---|
2624 | exit find_level |
---|
2625 | ELSE |
---|
2626 | zap = zap + 1 |
---|
2627 | zap_above = zap_above + 1 |
---|
2628 | END IF |
---|
2629 | END DO find_level |
---|
2630 | |
---|
2631 | ! No request for special interpolation, so we just assign the next level to use |
---|
2632 | ! above the surface as, ta da, the first level above the surface. I know, wow. |
---|
2633 | |
---|
2634 | ELSE |
---|
2635 | knext = ko_above_sfc(i) |
---|
2636 | END IF |
---|
2637 | |
---|
2638 | ! One more time, make sure the pressure just above the surface is not "too close", this |
---|
2639 | ! will cause havoc with the higher order interpolators. In case of a "too close" |
---|
2640 | ! instance, we toss out the offending level above the surface (NOT the surface one) by simply |
---|
2641 | ! incrementing the loop counter. Here, count-1 is the surface level and knext is either |
---|
2642 | ! the next level up OR it is the level above the prescribed number of eta surfaces. |
---|
2643 | |
---|
2644 | IF ( ordered_porig(count-1) - porig(i,knext,j) .LT. zap_close_levels ) THEN |
---|
2645 | kst = knext+1 |
---|
2646 | zap = zap + 1 |
---|
2647 | zap_above = zap_above + 1 |
---|
2648 | ELSE |
---|
2649 | kst = knext |
---|
2650 | END IF |
---|
2651 | |
---|
2652 | DO ko = kst , generic |
---|
2653 | ordered_porig(count) = porig(i,ko,j) |
---|
2654 | ordered_forig(count) = forig(i,ko,j) |
---|
2655 | count = count + 1 |
---|
2656 | END DO |
---|
2657 | |
---|
2658 | ! This is easy, the surface is the lowest level, just stick them in, in this order. OK, |
---|
2659 | ! there are a couple of subtleties. We have to check for that special interpolation that |
---|
2660 | ! skips some input levels so that the surface is used for the lowest few eta levels. Also, |
---|
2661 | ! we must macke sure that we still do not have levels that are "too close" together. |
---|
2662 | |
---|
2663 | ELSE |
---|
2664 | |
---|
2665 | ! Initialize no input levels have yet been removed from consideration. |
---|
2666 | |
---|
2667 | zap = 0 |
---|
2668 | |
---|
2669 | ! The surface is the lowest level, so it gets set right away to location 1. |
---|
2670 | |
---|
2671 | ordered_porig(1) = porig(i,1,j) |
---|
2672 | ordered_forig(1) = forig(i,1,j) |
---|
2673 | |
---|
2674 | ! We start filling in the array at loc 2, as in just above the level we just stored. |
---|
2675 | |
---|
2676 | count = 2 |
---|
2677 | |
---|
2678 | ! Are we forcing the interpolator to skip valid input levels so that the |
---|
2679 | ! surface data is used through more levels? Essentially as above. |
---|
2680 | |
---|
2681 | IF ( force_sfc_in_vinterp .GT. 0 ) THEN |
---|
2682 | knext = 2 |
---|
2683 | find_level2: DO ko = 2 , generic |
---|
2684 | IF ( porig(i,ko,j) .LE. pnew(i,force_sfc_in_vinterp,j) ) THEN |
---|
2685 | knext = ko |
---|
2686 | exit find_level2 |
---|
2687 | ELSE |
---|
2688 | zap = zap + 1 |
---|
2689 | zap_above = zap_above + 1 |
---|
2690 | END IF |
---|
2691 | END DO find_level2 |
---|
2692 | ELSE |
---|
2693 | knext = 2 |
---|
2694 | END IF |
---|
2695 | |
---|
2696 | ! Fill in the data above the surface. The "knext" index is either the one |
---|
2697 | ! just above the surface OR it is the index associated with the level that |
---|
2698 | ! is just above the pressure at this (i,j) of the top eta level that is to |
---|
2699 | ! be directly impacted with the surface level in interpolation. |
---|
2700 | |
---|
2701 | DO ko = knext , generic |
---|
2702 | IF ( ordered_porig(count-1) - porig(i,ko,j) .LT. zap_close_levels ) THEN |
---|
2703 | zap = zap + 1 |
---|
2704 | zap_above = zap_above + 1 |
---|
2705 | CYCLE |
---|
2706 | END IF |
---|
2707 | ordered_porig(count) = porig(i,ko,j) |
---|
2708 | ordered_forig(count) = forig(i,ko,j) |
---|
2709 | count = count + 1 |
---|
2710 | END DO |
---|
2711 | |
---|
2712 | END IF |
---|
2713 | |
---|
2714 | ! Now get the column of the "new" pressure data. So, this one is easy. |
---|
2715 | |
---|
2716 | DO kn = kstart , kend |
---|
2717 | ordered_pnew(kn) = pnew(i,kn,j) |
---|
2718 | END DO |
---|
2719 | |
---|
2720 | ! How many levels (count) are we shipping to the Lagrange interpolator. |
---|
2721 | |
---|
2722 | IF ( ( use_levels_below_ground ) .AND. ( use_surface ) ) THEN |
---|
2723 | |
---|
2724 | ! Use all levels, including the input surface, and including the pressure |
---|
2725 | ! levels below ground. We know to stop when we have reached the top of |
---|
2726 | ! the input pressure data. |
---|
2727 | |
---|
2728 | count = 0 |
---|
2729 | find_how_many_1 : DO ko = 1 , generic |
---|
2730 | IF ( porig(i,generic,j) .EQ. ordered_porig(ko) ) THEN |
---|
2731 | count = count + 1 |
---|
2732 | EXIT find_how_many_1 |
---|
2733 | ELSE |
---|
2734 | count = count + 1 |
---|
2735 | END IF |
---|
2736 | END DO find_how_many_1 |
---|
2737 | kinterp_start = 1 |
---|
2738 | kinterp_end = kinterp_start + count - 1 |
---|
2739 | |
---|
2740 | ELSE IF ( ( use_levels_below_ground ) .AND. ( .NOT. use_surface ) ) THEN |
---|
2741 | |
---|
2742 | ! Use all levels (excluding the input surface) and including the pressure |
---|
2743 | ! levels below ground. We know to stop when we have reached the top of |
---|
2744 | ! the input pressure data. |
---|
2745 | |
---|
2746 | count = 0 |
---|
2747 | find_sfc_2 : DO ko = 1 , generic |
---|
2748 | IF ( porig(i,1,j) .EQ. ordered_porig(ko) ) THEN |
---|
2749 | sfc_level = ko |
---|
2750 | EXIT find_sfc_2 |
---|
2751 | END IF |
---|
2752 | END DO find_sfc_2 |
---|
2753 | |
---|
2754 | DO ko = sfc_level , generic-1 |
---|
2755 | ordered_porig(ko) = ordered_porig(ko+1) |
---|
2756 | ordered_forig(ko) = ordered_forig(ko+1) |
---|
2757 | END DO |
---|
2758 | ordered_porig(generic) = 1.E-5 |
---|
2759 | ordered_forig(generic) = 1.E10 |
---|
2760 | |
---|
2761 | count = 0 |
---|
2762 | find_how_many_2 : DO ko = 1 , generic |
---|
2763 | IF ( porig(i,generic,j) .EQ. ordered_porig(ko) ) THEN |
---|
2764 | count = count + 1 |
---|
2765 | EXIT find_how_many_2 |
---|
2766 | ELSE |
---|
2767 | count = count + 1 |
---|
2768 | END IF |
---|
2769 | END DO find_how_many_2 |
---|
2770 | kinterp_start = 1 |
---|
2771 | kinterp_end = kinterp_start + count - 1 |
---|
2772 | |
---|
2773 | ELSE IF ( ( .NOT. use_levels_below_ground ) .AND. ( use_surface ) ) THEN |
---|
2774 | |
---|
2775 | ! Use all levels above the input surface pressure. |
---|
2776 | |
---|
2777 | kcount = ko_above_sfc(i)-1-zap_below |
---|
2778 | count = 0 |
---|
2779 | DO ko = 1 , generic |
---|
2780 | IF ( porig(i,ko,j) .EQ. ordered_porig(kcount) ) THEN |
---|
2781 | ! write (6,fmt='(f11.3,f11.3,g11.5)') porig(i,ko,j),ordered_porig(kcount),ordered_forig(kcount) |
---|
2782 | kcount = kcount + 1 |
---|
2783 | count = count + 1 |
---|
2784 | ELSE |
---|
2785 | ! write (6,fmt='(f11.3 )') porig(i,ko,j) |
---|
2786 | END IF |
---|
2787 | END DO |
---|
2788 | kinterp_start = ko_above_sfc(i)-1-zap_below |
---|
2789 | kinterp_end = kinterp_start + count - 1 |
---|
2790 | |
---|
2791 | END IF |
---|
2792 | |
---|
2793 | ! The polynomials are either in pressure or LOG(pressure). |
---|
2794 | |
---|
2795 | IF ( interp_type .EQ. 1 ) THEN |
---|
2796 | CALL lagrange_setup ( var_type , & |
---|
2797 | ordered_porig(kinterp_start:kinterp_end) , & |
---|
2798 | ordered_forig(kinterp_start:kinterp_end) , & |
---|
2799 | count , lagrange_order , extrap_type , & |
---|
2800 | ordered_pnew(kstart:kend) , ordered_fnew , kend-kstart+1 ,i,j) |
---|
2801 | ELSE |
---|
2802 | CALL lagrange_setup ( var_type , & |
---|
2803 | LOG(ordered_porig(kinterp_start:kinterp_end)) , & |
---|
2804 | ordered_forig(kinterp_start:kinterp_end) , & |
---|
2805 | count , lagrange_order , extrap_type , & |
---|
2806 | LOG(ordered_pnew(kstart:kend)) , ordered_fnew , kend-kstart+1 ,i,j) |
---|
2807 | END IF |
---|
2808 | |
---|
2809 | ! Save the computed data. |
---|
2810 | |
---|
2811 | DO kn = kstart , kend |
---|
2812 | fnew(i,kn,j) = ordered_fnew(kn) |
---|
2813 | END DO |
---|
2814 | |
---|
2815 | ! There may have been a request to have the surface data from the input field |
---|
2816 | ! to be assigned as to the lowest eta level. This assumes thin layers (usually |
---|
2817 | ! the isobaric original field has the surface from 2-m T and RH, and 10-m U and V). |
---|
2818 | |
---|
2819 | IF ( lowest_lev_from_sfc ) THEN |
---|
2820 | fnew(i,1,j) = forig(i,ko_above_sfc(i)-1,j) |
---|
2821 | END IF |
---|
2822 | |
---|
2823 | END DO |
---|
2824 | |
---|
2825 | END DO |
---|
2826 | |
---|
2827 | END SUBROUTINE vert_interp |
---|
2828 | |
---|
2829 | !--------------------------------------------------------------------- |
---|
2830 | |
---|
2831 | SUBROUTINE vert_interp_old ( forig , po , fnew , pnu , & |
---|
2832 | generic , var_type , & |
---|
2833 | interp_type , lagrange_order , extrap_type , & |
---|
2834 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
---|
2835 | zap_close_levels , force_sfc_in_vinterp , & |
---|
2836 | ids , ide , jds , jde , kds , kde , & |
---|
2837 | ims , ime , jms , jme , kms , kme , & |
---|
2838 | its , ite , jts , jte , kts , kte ) |
---|
2839 | |
---|
2840 | ! Vertically interpolate the new field. The original field on the original |
---|
2841 | ! pressure levels is provided, and the new pressure surfaces to interpolate to. |
---|
2842 | |
---|
2843 | IMPLICIT NONE |
---|
2844 | |
---|
2845 | INTEGER , INTENT(IN) :: interp_type , lagrange_order , extrap_type |
---|
2846 | LOGICAL , INTENT(IN) :: lowest_lev_from_sfc , use_levels_below_ground , use_surface |
---|
2847 | REAL , INTENT(IN) :: zap_close_levels |
---|
2848 | INTEGER , INTENT(IN) :: force_sfc_in_vinterp |
---|
2849 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
2850 | ims , ime , jms , jme , kms , kme , & |
---|
2851 | its , ite , jts , jte , kts , kte |
---|
2852 | INTEGER , INTENT(IN) :: generic |
---|
2853 | |
---|
2854 | CHARACTER (LEN=1) :: var_type |
---|
2855 | |
---|
2856 | REAL , DIMENSION(ims:ime,generic,jms:jme) , INTENT(IN) :: forig , po |
---|
2857 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: pnu |
---|
2858 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: fnew |
---|
2859 | |
---|
2860 | REAL , DIMENSION(ims:ime,generic,jms:jme) :: porig |
---|
2861 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) :: pnew |
---|
2862 | |
---|
2863 | ! Local vars |
---|
2864 | |
---|
2865 | INTEGER :: i , j , k , ko , kn , k1 , k2 , ko_1 , ko_2 |
---|
2866 | INTEGER :: istart , iend , jstart , jend , kstart , kend |
---|
2867 | INTEGER , DIMENSION(ims:ime,kms:kme ) :: k_above , k_below |
---|
2868 | INTEGER , DIMENSION(ims:ime ) :: ks |
---|
2869 | INTEGER , DIMENSION(ims:ime ) :: ko_above_sfc |
---|
2870 | |
---|
2871 | LOGICAL :: any_below_ground |
---|
2872 | |
---|
2873 | REAL :: p1 , p2 , pn |
---|
2874 | integer vert_extrap |
---|
2875 | vert_extrap = 0 |
---|
2876 | |
---|
2877 | ! Horiontal loop bounds for different variable types. |
---|
2878 | |
---|
2879 | IF ( var_type .EQ. 'U' ) THEN |
---|
2880 | istart = its |
---|
2881 | iend = ite |
---|
2882 | jstart = jts |
---|
2883 | jend = MIN(jde-1,jte) |
---|
2884 | kstart = kts |
---|
2885 | kend = kte-1 |
---|
2886 | DO j = jstart,jend |
---|
2887 | DO k = 1,generic |
---|
2888 | DO i = MAX(ids+1,its) , MIN(ide-1,ite) |
---|
2889 | porig(i,k,j) = ( po(i,k,j) + po(i-1,k,j) ) * 0.5 |
---|
2890 | END DO |
---|
2891 | END DO |
---|
2892 | IF ( ids .EQ. its ) THEN |
---|
2893 | DO k = 1,generic |
---|
2894 | porig(its,k,j) = po(its,k,j) |
---|
2895 | END DO |
---|
2896 | END IF |
---|
2897 | IF ( ide .EQ. ite ) THEN |
---|
2898 | DO k = 1,generic |
---|
2899 | porig(ite,k,j) = po(ite-1,k,j) |
---|
2900 | END DO |
---|
2901 | END IF |
---|
2902 | |
---|
2903 | DO k = kstart,kend |
---|
2904 | DO i = MAX(ids+1,its) , MIN(ide-1,ite) |
---|
2905 | pnew(i,k,j) = ( pnu(i,k,j) + pnu(i-1,k,j) ) * 0.5 |
---|
2906 | END DO |
---|
2907 | END DO |
---|
2908 | IF ( ids .EQ. its ) THEN |
---|
2909 | DO k = kstart,kend |
---|
2910 | pnew(its,k,j) = pnu(its,k,j) |
---|
2911 | END DO |
---|
2912 | END IF |
---|
2913 | IF ( ide .EQ. ite ) THEN |
---|
2914 | DO k = kstart,kend |
---|
2915 | pnew(ite,k,j) = pnu(ite-1,k,j) |
---|
2916 | END DO |
---|
2917 | END IF |
---|
2918 | END DO |
---|
2919 | ELSE IF ( var_type .EQ. 'V' ) THEN |
---|
2920 | istart = its |
---|
2921 | iend = MIN(ide-1,ite) |
---|
2922 | jstart = jts |
---|
2923 | jend = jte |
---|
2924 | kstart = kts |
---|
2925 | kend = kte-1 |
---|
2926 | DO i = istart,iend |
---|
2927 | DO k = 1,generic |
---|
2928 | DO j = MAX(jds+1,jts) , MIN(jde-1,jte) |
---|
2929 | porig(i,k,j) = ( po(i,k,j) + po(i,k,j-1) ) * 0.5 |
---|
2930 | END DO |
---|
2931 | END DO |
---|
2932 | IF ( jds .EQ. jts ) THEN |
---|
2933 | DO k = 1,generic |
---|
2934 | porig(i,k,jts) = po(i,k,jts) |
---|
2935 | END DO |
---|
2936 | END IF |
---|
2937 | IF ( jde .EQ. jte ) THEN |
---|
2938 | DO k = 1,generic |
---|
2939 | porig(i,k,jte) = po(i,k,jte-1) |
---|
2940 | END DO |
---|
2941 | END IF |
---|
2942 | |
---|
2943 | DO k = kstart,kend |
---|
2944 | DO j = MAX(jds+1,jts) , MIN(jde-1,jte) |
---|
2945 | pnew(i,k,j) = ( pnu(i,k,j) + pnu(i,k,j-1) ) * 0.5 |
---|
2946 | END DO |
---|
2947 | END DO |
---|
2948 | IF ( jds .EQ. jts ) THEN |
---|
2949 | DO k = kstart,kend |
---|
2950 | pnew(i,k,jts) = pnu(i,k,jts) |
---|
2951 | END DO |
---|
2952 | END IF |
---|
2953 | IF ( jde .EQ. jte ) THEN |
---|
2954 | DO k = kstart,kend |
---|
2955 | pnew(i,k,jte) = pnu(i,k,jte-1) |
---|
2956 | END DO |
---|
2957 | END IF |
---|
2958 | END DO |
---|
2959 | ELSE IF ( ( var_type .EQ. 'W' ) .OR. ( var_type .EQ. 'Z' ) ) THEN |
---|
2960 | istart = its |
---|
2961 | iend = MIN(ide-1,ite) |
---|
2962 | jstart = jts |
---|
2963 | jend = MIN(jde-1,jte) |
---|
2964 | kstart = kts |
---|
2965 | kend = kte |
---|
2966 | DO j = jstart,jend |
---|
2967 | DO k = 1,generic |
---|
2968 | DO i = istart,iend |
---|
2969 | porig(i,k,j) = po(i,k,j) |
---|
2970 | END DO |
---|
2971 | END DO |
---|
2972 | |
---|
2973 | DO k = kstart,kend |
---|
2974 | DO i = istart,iend |
---|
2975 | pnew(i,k,j) = pnu(i,k,j) |
---|
2976 | END DO |
---|
2977 | END DO |
---|
2978 | END DO |
---|
2979 | ELSE IF ( ( var_type .EQ. 'T' ) .OR. ( var_type .EQ. 'Q' ) ) THEN |
---|
2980 | istart = its |
---|
2981 | iend = MIN(ide-1,ite) |
---|
2982 | jstart = jts |
---|
2983 | jend = MIN(jde-1,jte) |
---|
2984 | kstart = kts |
---|
2985 | kend = kte-1 |
---|
2986 | DO j = jstart,jend |
---|
2987 | DO k = 1,generic |
---|
2988 | DO i = istart,iend |
---|
2989 | porig(i,k,j) = po(i,k,j) |
---|
2990 | END DO |
---|
2991 | END DO |
---|
2992 | |
---|
2993 | DO k = kstart,kend |
---|
2994 | DO i = istart,iend |
---|
2995 | pnew(i,k,j) = pnu(i,k,j) |
---|
2996 | END DO |
---|
2997 | END DO |
---|
2998 | END DO |
---|
2999 | ELSE |
---|
3000 | istart = its |
---|
3001 | iend = MIN(ide-1,ite) |
---|
3002 | jstart = jts |
---|
3003 | jend = MIN(jde-1,jte) |
---|
3004 | kstart = kts |
---|
3005 | kend = kte-1 |
---|
3006 | DO j = jstart,jend |
---|
3007 | DO k = 1,generic |
---|
3008 | DO i = istart,iend |
---|
3009 | porig(i,k,j) = po(i,k,j) |
---|
3010 | END DO |
---|
3011 | END DO |
---|
3012 | |
---|
3013 | DO k = kstart,kend |
---|
3014 | DO i = istart,iend |
---|
3015 | pnew(i,k,j) = pnu(i,k,j) |
---|
3016 | END DO |
---|
3017 | END DO |
---|
3018 | END DO |
---|
3019 | END IF |
---|
3020 | |
---|
3021 | DO j = jstart , jend |
---|
3022 | |
---|
3023 | ! Skip all of the levels below ground in the original data based upon the surface pressure. |
---|
3024 | ! The ko_above_sfc is the index in the pressure array that is above the surface. If there |
---|
3025 | ! are no levels underground, this is index = 2. The remaining levels are eligible for use |
---|
3026 | ! in the vertical interpolation. |
---|
3027 | |
---|
3028 | DO i = istart , iend |
---|
3029 | ko_above_sfc(i) = -1 |
---|
3030 | END DO |
---|
3031 | DO ko = kstart+1 , kend |
---|
3032 | DO i = istart , iend |
---|
3033 | IF ( ko_above_sfc(i) .EQ. -1 ) THEN |
---|
3034 | IF ( porig(i,1,j) .GT. porig(i,ko,j) ) THEN |
---|
3035 | ko_above_sfc(i) = ko |
---|
3036 | END IF |
---|
3037 | END IF |
---|
3038 | END DO |
---|
3039 | END DO |
---|
3040 | |
---|
3041 | ! Initialize interpolation location. These are the levels in the original pressure |
---|
3042 | ! data that are physically below and above the targeted new pressure level. |
---|
3043 | |
---|
3044 | DO kn = kts , kte |
---|
3045 | DO i = its , ite |
---|
3046 | k_above(i,kn) = -1 |
---|
3047 | k_below(i,kn) = -2 |
---|
3048 | END DO |
---|
3049 | END DO |
---|
3050 | |
---|
3051 | ! Starting location is no lower than previous found location. This is for O(n logn) |
---|
3052 | ! and not O(n^2), where n is the number of vertical levels to search. |
---|
3053 | |
---|
3054 | DO i = its , ite |
---|
3055 | ks(i) = 1 |
---|
3056 | END DO |
---|
3057 | |
---|
3058 | ! Find trapping layer for interpolation. The kn index runs through all of the "new" |
---|
3059 | ! levels of data. |
---|
3060 | |
---|
3061 | DO kn = kstart , kend |
---|
3062 | |
---|
3063 | DO i = istart , iend |
---|
3064 | |
---|
3065 | ! For each "new" level (kn), we search to find the trapping levels in the "orig" |
---|
3066 | ! data. Most of the time, the "new" levels are the eta surfaces, and the "orig" |
---|
3067 | ! levels are the input pressure levels. |
---|
3068 | |
---|
3069 | found_trap_above : DO ko = ks(i) , generic-1 |
---|
3070 | |
---|
3071 | ! Because we can have levels in the interpolation that are not valid, |
---|
3072 | ! let's toss out any candidate orig pressure values that are below ground |
---|
3073 | ! based on the surface pressure. If the level =1, then this IS the surface |
---|
3074 | ! level, so we HAVE to keep that one, but maybe not the ones above. If the |
---|
3075 | ! level (ks) is NOT=1, then we have to just CYCLE our loop to find a legit |
---|
3076 | ! below-pressure value. If we are not below ground, then we choose two |
---|
3077 | ! neighboring levels to test whether they surround the new pressure level. |
---|
3078 | |
---|
3079 | ! The input trapping levels that we are trying is the surface and the first valid |
---|
3080 | ! level above the surface. |
---|
3081 | |
---|
3082 | IF ( ( ko .LT. ko_above_sfc(i) ) .AND. ( ko .EQ. 1 ) ) THEN |
---|
3083 | ko_1 = ko |
---|
3084 | ko_2 = ko_above_sfc(i) |
---|
3085 | |
---|
3086 | ! The "below" level is underground, cycle until we get to a valid pressure |
---|
3087 | ! above ground. |
---|
3088 | |
---|
3089 | ELSE IF ( ( ko .LT. ko_above_sfc(i) ) .AND. ( ko .NE. 1 ) ) THEN |
---|
3090 | CYCLE found_trap_above |
---|
3091 | |
---|
3092 | ! The "below" level is above the surface, so we are in the clear to test these |
---|
3093 | ! two levels out. |
---|
3094 | |
---|
3095 | ELSE |
---|
3096 | ko_1 = ko |
---|
3097 | ko_2 = ko+1 |
---|
3098 | |
---|
3099 | END IF |
---|
3100 | |
---|
3101 | ! The test of the candidate levels: "below" has to have a larger pressure, and |
---|
3102 | ! "above" has to have a smaller pressure. |
---|
3103 | |
---|
3104 | ! OK, we found the correct two surrounding levels. The locations are saved for use in the |
---|
3105 | ! interpolation. |
---|
3106 | |
---|
3107 | IF ( ( porig(i,ko_1,j) .GE. pnew(i,kn,j) ) .AND. & |
---|
3108 | ( porig(i,ko_2,j) .LT. pnew(i,kn,j) ) ) THEN |
---|
3109 | k_above(i,kn) = ko_2 |
---|
3110 | k_below(i,kn) = ko_1 |
---|
3111 | ks(i) = ko_1 |
---|
3112 | EXIT found_trap_above |
---|
3113 | |
---|
3114 | ! What do we do is we need to extrapolate the data underground? This happens when the |
---|
3115 | ! lowest pressure that we have is physically "above" the new target pressure. Our |
---|
3116 | ! actions depend on the type of variable we are interpolating. |
---|
3117 | |
---|
3118 | ELSE IF ( porig(i,1,j) .LT. pnew(i,kn,j) ) THEN |
---|
3119 | |
---|
3120 | ! For horizontal winds and moisture, we keep a constant value under ground. |
---|
3121 | |
---|
3122 | IF ( ( var_type .EQ. 'U' ) .OR. & |
---|
3123 | ( var_type .EQ. 'V' ) .OR. & |
---|
3124 | ( var_type .EQ. 'Q' ) ) THEN |
---|
3125 | k_above(i,kn) = 1 |
---|
3126 | ks(i) = 1 |
---|
3127 | |
---|
3128 | ! For temperature and height, we extrapolate the data. Hopefully, we are not |
---|
3129 | ! extrapolating too far. For pressure level input, the eta levels are always |
---|
3130 | ! contained within the surface to p_top levels, so no extrapolation is ever |
---|
3131 | ! required. |
---|
3132 | |
---|
3133 | ELSE IF ( ( var_type .EQ. 'Z' ) .OR. & |
---|
3134 | ( var_type .EQ. 'T' ) ) THEN |
---|
3135 | k_above(i,kn) = ko_above_sfc(i) |
---|
3136 | k_below(i,kn) = 1 |
---|
3137 | ks(i) = 1 |
---|
3138 | |
---|
3139 | ! Just a catch all right now. |
---|
3140 | |
---|
3141 | ELSE |
---|
3142 | k_above(i,kn) = 1 |
---|
3143 | ks(i) = 1 |
---|
3144 | END IF |
---|
3145 | |
---|
3146 | EXIT found_trap_above |
---|
3147 | |
---|
3148 | ! The other extrapolation that might be required is when we are going above the |
---|
3149 | ! top level of the input data. Usually this means we chose a P_PTOP value that |
---|
3150 | ! was inappropriate, and we should stop and let someone fix this mess. |
---|
3151 | |
---|
3152 | ELSE IF ( porig(i,generic,j) .GT. pnew(i,kn,j) ) THEN |
---|
3153 | print *,'data is too high, try a lower p_top' |
---|
3154 | print *,'pnew=',pnew(i,kn,j) |
---|
3155 | print *,'porig=',porig(i,:,j) |
---|
3156 | CALL wrf_error_fatal ('requested p_top is higher than input data, lower p_top') |
---|
3157 | |
---|
3158 | END IF |
---|
3159 | END DO found_trap_above |
---|
3160 | END DO |
---|
3161 | END DO |
---|
3162 | |
---|
3163 | ! Linear vertical interpolation. |
---|
3164 | |
---|
3165 | DO kn = kstart , kend |
---|
3166 | DO i = istart , iend |
---|
3167 | IF ( k_above(i,kn) .EQ. 1 ) THEN |
---|
3168 | fnew(i,kn,j) = forig(i,1,j) |
---|
3169 | ELSE |
---|
3170 | k2 = MAX ( k_above(i,kn) , 2) |
---|
3171 | k1 = MAX ( k_below(i,kn) , 1) |
---|
3172 | IF ( k1 .EQ. k2 ) THEN |
---|
3173 | CALL wrf_error_fatal ( 'identical values in the interp, bad for divisions' ) |
---|
3174 | END IF |
---|
3175 | IF ( interp_type .EQ. 1 ) THEN |
---|
3176 | p1 = porig(i,k1,j) |
---|
3177 | p2 = porig(i,k2,j) |
---|
3178 | pn = pnew(i,kn,j) |
---|
3179 | ELSE IF ( interp_type .EQ. 2 ) THEN |
---|
3180 | p1 = ALOG(porig(i,k1,j)) |
---|
3181 | p2 = ALOG(porig(i,k2,j)) |
---|
3182 | pn = ALOG(pnew(i,kn,j)) |
---|
3183 | END IF |
---|
3184 | IF ( ( p1-pn) * (p2-pn) > 0. ) THEN |
---|
3185 | ! CALL wrf_error_fatal ( 'both trapping pressures are on the same side of the new pressure' ) |
---|
3186 | ! CALL wrf_debug ( 0 , 'both trapping pressures are on the same side of the new pressure' ) |
---|
3187 | vert_extrap = vert_extrap + 1 |
---|
3188 | END IF |
---|
3189 | fnew(i,kn,j) = ( forig(i,k1,j) * ( p2 - pn ) + & |
---|
3190 | forig(i,k2,j) * ( pn - p1 ) ) / & |
---|
3191 | ( p2 - p1 ) |
---|
3192 | END IF |
---|
3193 | END DO |
---|
3194 | END DO |
---|
3195 | |
---|
3196 | search_below_ground : DO kn = kstart , kend |
---|
3197 | any_below_ground = .FALSE. |
---|
3198 | DO i = istart , iend |
---|
3199 | IF ( k_above(i,kn) .EQ. 1 ) THEN |
---|
3200 | fnew(i,kn,j) = forig(i,1,j) |
---|
3201 | any_below_ground = .TRUE. |
---|
3202 | END IF |
---|
3203 | END DO |
---|
3204 | IF ( .NOT. any_below_ground ) THEN |
---|
3205 | EXIT search_below_ground |
---|
3206 | END IF |
---|
3207 | END DO search_below_ground |
---|
3208 | |
---|
3209 | ! There may have been a request to have the surface data from the input field |
---|
3210 | ! to be assigned as to the lowest eta level. This assumes thin layers (usually |
---|
3211 | ! the isobaric original field has the surface from 2-m T and RH, and 10-m U and V). |
---|
3212 | |
---|
3213 | DO i = istart , iend |
---|
3214 | IF ( lowest_lev_from_sfc ) THEN |
---|
3215 | fnew(i,1,j) = forig(i,ko_above_sfc(i),j) |
---|
3216 | END IF |
---|
3217 | END DO |
---|
3218 | |
---|
3219 | END DO |
---|
3220 | print *,'VERT EXTRAP = ', vert_extrap |
---|
3221 | |
---|
3222 | END SUBROUTINE vert_interp_old |
---|
3223 | |
---|
3224 | !--------------------------------------------------------------------- |
---|
3225 | |
---|
3226 | SUBROUTINE lagrange_setup ( var_type , all_x , all_y , all_dim , n , extrap_type , & |
---|
3227 | target_x , target_y , target_dim ,i,j) |
---|
3228 | |
---|
3229 | ! We call a Lagrange polynomial interpolator. The parallel concerns are put off as this |
---|
3230 | ! is initially set up for vertical use. The purpose is an input column of pressure (all_x), |
---|
3231 | ! and the associated pressure level data (all_y). These are assumed to be sorted (ascending |
---|
3232 | ! or descending, no matter). The locations to be interpolated to are the pressures in |
---|
3233 | ! target_x, probably the new vertical coordinate values. The field that is output is the |
---|
3234 | ! target_y, which is defined at the target_x location. Mostly we expect to be 2nd order |
---|
3235 | ! overlapping polynomials, with only a single 2nd order method near the top and bottom. |
---|
3236 | ! When n=1, this is linear; when n=2, this is a second order interpolator. |
---|
3237 | |
---|
3238 | IMPLICIT NONE |
---|
3239 | |
---|
3240 | CHARACTER (LEN=1) :: var_type |
---|
3241 | INTEGER , INTENT(IN) :: all_dim , n , extrap_type , target_dim |
---|
3242 | REAL, DIMENSION(all_dim) , INTENT(IN) :: all_x , all_y |
---|
3243 | REAL , DIMENSION(target_dim) , INTENT(IN) :: target_x |
---|
3244 | REAL , DIMENSION(target_dim) , INTENT(OUT) :: target_y |
---|
3245 | |
---|
3246 | ! Brought in for debug purposes, all of the computations are in a single column. |
---|
3247 | |
---|
3248 | INTEGER , INTENT(IN) :: i,j |
---|
3249 | |
---|
3250 | ! Local vars |
---|
3251 | |
---|
3252 | REAL , DIMENSION(n+1) :: x , y |
---|
3253 | REAL :: a , b |
---|
3254 | REAL :: target_y_1 , target_y_2 |
---|
3255 | LOGICAL :: found_loc |
---|
3256 | INTEGER :: loop , loc_center_left , loc_center_right , ist , iend , target_loop |
---|
3257 | INTEGER :: vboundb , vboundt |
---|
3258 | |
---|
3259 | ! Local vars for the problem of extrapolating theta below ground. |
---|
3260 | |
---|
3261 | REAL :: temp_1 , temp_2 , temp_3 , temp_y |
---|
3262 | REAL :: depth_of_extrap_in_p , avg_of_extrap_p , temp_extrap_starting_point , dhdp , dh , dt |
---|
3263 | REAL , PARAMETER :: RovCp = 287. / 1004. |
---|
3264 | REAL , PARAMETER :: CRC_const1 = 11880.516 ! m |
---|
3265 | REAL , PARAMETER :: CRC_const2 = 0.1902632 ! |
---|
3266 | REAL , PARAMETER :: CRC_const3 = 0.0065 ! K/km |
---|
3267 | |
---|
3268 | IF ( all_dim .LT. n+1 ) THEN |
---|
3269 | print *,'all_dim = ',all_dim |
---|
3270 | print *,'order = ',n |
---|
3271 | print *,'i,j = ',i,j |
---|
3272 | print *,'p array = ',all_x |
---|
3273 | print *,'f array = ',all_y |
---|
3274 | print *,'p target= ',target_x |
---|
3275 | CALL wrf_error_fatal ( 'troubles, the interpolating order is too large for this few input values' ) |
---|
3276 | END IF |
---|
3277 | |
---|
3278 | IF ( n .LT. 1 ) THEN |
---|
3279 | CALL wrf_error_fatal ( 'pal, linear is about as low as we go' ) |
---|
3280 | END IF |
---|
3281 | |
---|
3282 | ! We can pinch in the area of the higher order interpolation with vbound. If |
---|
3283 | ! vbound = 0, no pinching. If vbound = m, then we make the lower "m" and upper |
---|
3284 | ! "m" eta levels use a linear interpolation. |
---|
3285 | |
---|
3286 | vboundb = 4 |
---|
3287 | vboundt = 0 |
---|
3288 | |
---|
3289 | ! Loop over the list of target x and y values. |
---|
3290 | |
---|
3291 | DO target_loop = 1 , target_dim |
---|
3292 | |
---|
3293 | ! Find the two trapping x values, and keep the indices. |
---|
3294 | |
---|
3295 | found_loc = .FALSE. |
---|
3296 | find_trap : DO loop = 1 , all_dim -1 |
---|
3297 | a = target_x(target_loop) - all_x(loop) |
---|
3298 | b = target_x(target_loop) - all_x(loop+1) |
---|
3299 | IF ( a*b .LE. 0.0 ) THEN |
---|
3300 | loc_center_left = loop |
---|
3301 | loc_center_right = loop+1 |
---|
3302 | found_loc = .TRUE. |
---|
3303 | EXIT find_trap |
---|
3304 | END IF |
---|
3305 | END DO find_trap |
---|
3306 | |
---|
3307 | IF ( ( .NOT. found_loc ) .AND. ( target_x(target_loop) .GT. all_x(1) ) ) THEN |
---|
3308 | |
---|
3309 | ! Isothermal extrapolation. |
---|
3310 | |
---|
3311 | IF ( ( extrap_type .EQ. 1 ) .AND. ( var_type .EQ. 'T' ) ) THEN |
---|
3312 | |
---|
3313 | temp_1 = all_y(1) * ( all_x(1) / 100000. ) ** RovCp |
---|
3314 | target_y(target_loop) = temp_1 * ( 100000. / target_x(target_loop) ) ** RovCp |
---|
3315 | |
---|
3316 | ! Standard atmosphere -6.5 K/km lapse rate for the extrapolation. |
---|
3317 | |
---|
3318 | ELSE IF ( ( extrap_type .EQ. 2 ) .AND. ( var_type .EQ. 'T' ) ) THEN |
---|
3319 | |
---|
3320 | depth_of_extrap_in_p = target_x(target_loop) - all_x(1) |
---|
3321 | avg_of_extrap_p = ( target_x(target_loop) + all_x(1) ) * 0.5 |
---|
3322 | temp_extrap_starting_point = all_y(1) * ( all_x(1) / 100000. ) ** RovCp |
---|
3323 | dhdp = CRC_const1 * CRC_const2 * ( avg_of_extrap_p / 100. ) ** ( CRC_const2 - 1. ) |
---|
3324 | dh = dhdp * ( depth_of_extrap_in_p / 100. ) |
---|
3325 | dt = dh * CRC_const3 |
---|
3326 | target_y(target_loop) = ( temp_extrap_starting_point + dt ) * ( 100000. / target_x(target_loop) ) ** RovCp |
---|
3327 | |
---|
3328 | ! Adiabatic extrapolation for theta. |
---|
3329 | |
---|
3330 | ELSE IF ( ( extrap_type .EQ. 3 ) .AND. ( var_type .EQ. 'T' ) ) THEN |
---|
3331 | |
---|
3332 | target_y(target_loop) = all_y(1) |
---|
3333 | |
---|
3334 | |
---|
3335 | ! Wild extrapolation for non-temperature vars. |
---|
3336 | |
---|
3337 | ELSE IF ( extrap_type .EQ. 1 ) THEN |
---|
3338 | |
---|
3339 | target_y(target_loop) = ( all_y(2) * ( target_x(target_loop) - all_x(3) ) + & |
---|
3340 | all_y(3) * ( all_x(2) - target_x(target_loop) ) ) / & |
---|
3341 | ( all_x(2) - all_x(3) ) |
---|
3342 | |
---|
3343 | ! Use a constant value below ground. |
---|
3344 | |
---|
3345 | ELSE IF ( extrap_type .EQ. 2 ) THEN |
---|
3346 | |
---|
3347 | target_y(target_loop) = all_y(1) |
---|
3348 | |
---|
3349 | ELSE IF ( extrap_type .EQ. 3 ) THEN |
---|
3350 | CALL wrf_error_fatal ( 'You are not allowed to use extrap_option #3 for any var except for theta.' ) |
---|
3351 | |
---|
3352 | END IF |
---|
3353 | CYCLE |
---|
3354 | ELSE IF ( .NOT. found_loc ) THEN |
---|
3355 | print *,'i,j = ',i,j |
---|
3356 | print *,'target pressure and value = ',target_x(target_loop),target_y(target_loop) |
---|
3357 | DO loop = 1 , all_dim |
---|
3358 | print *,'column of pressure and value = ',all_x(loop),all_y(loop) |
---|
3359 | END DO |
---|
3360 | CALL wrf_error_fatal ( 'troubles, could not find trapping x locations' ) |
---|
3361 | END IF |
---|
3362 | |
---|
3363 | ! Even or odd order? We can put the value in the middle if this is |
---|
3364 | ! an odd order interpolator. For the even guys, we'll do it twice |
---|
3365 | ! and shift the range one index, then get an average. |
---|
3366 | |
---|
3367 | IF ( MOD(n,2) .NE. 0 ) THEN |
---|
3368 | IF ( ( loc_center_left -(((n+1)/2)-1) .GE. 1 ) .AND. & |
---|
3369 | ( loc_center_right+(((n+1)/2)-1) .LE. all_dim ) ) THEN |
---|
3370 | ist = loc_center_left -(((n+1)/2)-1) |
---|
3371 | iend = ist + n |
---|
3372 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y(target_loop) ) |
---|
3373 | ELSE |
---|
3374 | IF ( .NOT. found_loc ) THEN |
---|
3375 | CALL wrf_error_fatal ( 'I doubt this will happen, I will only do 2nd order for now' ) |
---|
3376 | END IF |
---|
3377 | END IF |
---|
3378 | |
---|
3379 | ELSE IF ( ( MOD(n,2) .EQ. 0 ) .AND. & |
---|
3380 | ( ( target_loop .GE. 1 + vboundb ) .AND. ( target_loop .LE. target_dim - vboundt ) ) ) THEN |
---|
3381 | IF ( ( loc_center_left -(((n )/2)-1) .GE. 1 ) .AND. & |
---|
3382 | ( loc_center_right+(((n )/2) ) .LE. all_dim ) .AND. & |
---|
3383 | ( loc_center_left -(((n )/2) ) .GE. 1 ) .AND. & |
---|
3384 | ( loc_center_right+(((n )/2)-1) .LE. all_dim ) ) THEN |
---|
3385 | ist = loc_center_left -(((n )/2)-1) |
---|
3386 | iend = ist + n |
---|
3387 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y_1 ) |
---|
3388 | ist = loc_center_left -(((n )/2) ) |
---|
3389 | iend = ist + n |
---|
3390 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y_2 ) |
---|
3391 | target_y(target_loop) = ( target_y_1 + target_y_2 ) * 0.5 |
---|
3392 | |
---|
3393 | ELSE IF ( ( loc_center_left -(((n )/2)-1) .GE. 1 ) .AND. & |
---|
3394 | ( loc_center_right+(((n )/2) ) .LE. all_dim ) ) THEN |
---|
3395 | ist = loc_center_left -(((n )/2)-1) |
---|
3396 | iend = ist + n |
---|
3397 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y(target_loop) ) |
---|
3398 | ELSE IF ( ( loc_center_left -(((n )/2) ) .GE. 1 ) .AND. & |
---|
3399 | ( loc_center_right+(((n )/2)-1) .LE. all_dim ) ) THEN |
---|
3400 | ist = loc_center_left -(((n )/2) ) |
---|
3401 | iend = ist + n |
---|
3402 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y(target_loop) ) |
---|
3403 | ELSE |
---|
3404 | CALL wrf_error_fatal ( 'unauthorized area, you should not be here' ) |
---|
3405 | END IF |
---|
3406 | |
---|
3407 | ELSE IF ( MOD(n,2) .EQ. 0 ) THEN |
---|
3408 | ist = loc_center_left |
---|
3409 | iend = loc_center_right |
---|
3410 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , 1 , target_x(target_loop) , target_y(target_loop) ) |
---|
3411 | |
---|
3412 | END IF |
---|
3413 | |
---|
3414 | END DO |
---|
3415 | |
---|
3416 | END SUBROUTINE lagrange_setup |
---|
3417 | |
---|
3418 | !--------------------------------------------------------------------- |
---|
3419 | |
---|
3420 | SUBROUTINE lagrange_interp ( x , y , n , target_x , target_y ) |
---|
3421 | |
---|
3422 | ! Interpolation using Lagrange polynomials. |
---|
3423 | ! P(x) = f(x0)Ln0(x) + ... + f(xn)Lnn(x) |
---|
3424 | ! where Lnk(x) = (x -x0)(x -x1)...(x -xk-1)(x -xk+1)...(x -xn) |
---|
3425 | ! --------------------------------------------- |
---|
3426 | ! (xk-x0)(xk-x1)...(xk-xk-1)(xk-xk+1)...(xk-xn) |
---|
3427 | |
---|
3428 | IMPLICIT NONE |
---|
3429 | |
---|
3430 | INTEGER , INTENT(IN) :: n |
---|
3431 | REAL , DIMENSION(0:n) , INTENT(IN) :: x , y |
---|
3432 | REAL , INTENT(IN) :: target_x |
---|
3433 | |
---|
3434 | REAL , INTENT(OUT) :: target_y |
---|
3435 | |
---|
3436 | ! Local vars |
---|
3437 | |
---|
3438 | INTEGER :: i , k |
---|
3439 | REAL :: numer , denom , Px |
---|
3440 | REAL , DIMENSION(0:n) :: Ln |
---|
3441 | |
---|
3442 | Px = 0. |
---|
3443 | DO i = 0 , n |
---|
3444 | numer = 1. |
---|
3445 | denom = 1. |
---|
3446 | DO k = 0 , n |
---|
3447 | IF ( k .EQ. i ) CYCLE |
---|
3448 | numer = numer * ( target_x - x(k) ) |
---|
3449 | denom = denom * ( x(i) - x(k) ) |
---|
3450 | END DO |
---|
3451 | Ln(i) = y(i) * numer / denom |
---|
3452 | Px = Px + Ln(i) |
---|
3453 | END DO |
---|
3454 | target_y = Px |
---|
3455 | |
---|
3456 | END SUBROUTINE lagrange_interp |
---|
3457 | |
---|
3458 | #ifndef VERT_UNIT |
---|
3459 | !--------------------------------------------------------------------- |
---|
3460 | |
---|
3461 | SUBROUTINE p_dry ( mu0 , eta , pdht , pdry , full_levs , & |
---|
3462 | ids , ide , jds , jde , kds , kde , & |
---|
3463 | ims , ime , jms , jme , kms , kme , & |
---|
3464 | its , ite , jts , jte , kts , kte ) |
---|
3465 | |
---|
3466 | ! Compute reference pressure and the reference mu. |
---|
3467 | |
---|
3468 | IMPLICIT NONE |
---|
3469 | |
---|
3470 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
3471 | ims , ime , jms , jme , kms , kme , & |
---|
3472 | its , ite , jts , jte , kts , kte |
---|
3473 | |
---|
3474 | LOGICAL :: full_levs |
---|
3475 | |
---|
3476 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(IN) :: mu0 |
---|
3477 | REAL , DIMENSION( kms:kme ) , INTENT(IN) :: eta |
---|
3478 | REAL :: pdht |
---|
3479 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: pdry |
---|
3480 | |
---|
3481 | ! Local vars |
---|
3482 | |
---|
3483 | INTEGER :: i , j , k |
---|
3484 | REAL , DIMENSION( kms:kme ) :: eta_h |
---|
3485 | |
---|
3486 | IF ( full_levs ) THEN |
---|
3487 | DO j = jts , MIN ( jde-1 , jte ) |
---|
3488 | DO k = kts , kte |
---|
3489 | DO i = its , MIN (ide-1 , ite ) |
---|
3490 | pdry(i,k,j) = eta(k) * mu0(i,j) + pdht |
---|
3491 | END DO |
---|
3492 | END DO |
---|
3493 | END DO |
---|
3494 | |
---|
3495 | ELSE |
---|
3496 | DO k = kts , kte-1 |
---|
3497 | eta_h(k) = ( eta(k) + eta(k+1) ) * 0.5 |
---|
3498 | END DO |
---|
3499 | |
---|
3500 | DO j = jts , MIN ( jde-1 , jte ) |
---|
3501 | DO k = kts , kte-1 |
---|
3502 | DO i = its , MIN (ide-1 , ite ) |
---|
3503 | pdry(i,k,j) = eta_h(k) * mu0(i,j) + pdht |
---|
3504 | END DO |
---|
3505 | END DO |
---|
3506 | END DO |
---|
3507 | END IF |
---|
3508 | |
---|
3509 | END SUBROUTINE p_dry |
---|
3510 | |
---|
3511 | !--------------------------------------------------------------------- |
---|
3512 | |
---|
3513 | SUBROUTINE p_dts ( pdts , intq , psfc , p_top , & |
---|
3514 | ids , ide , jds , jde , kds , kde , & |
---|
3515 | ims , ime , jms , jme , kms , kme , & |
---|
3516 | its , ite , jts , jte , kts , kte ) |
---|
3517 | |
---|
3518 | ! Compute difference between the dry, total surface pressure and the top pressure. |
---|
3519 | |
---|
3520 | IMPLICIT NONE |
---|
3521 | |
---|
3522 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
3523 | ims , ime , jms , jme , kms , kme , & |
---|
3524 | its , ite , jts , jte , kts , kte |
---|
3525 | |
---|
3526 | REAL , INTENT(IN) :: p_top |
---|
3527 | REAL , DIMENSION(ims:ime,jms:jme) , INTENT(IN) :: psfc |
---|
3528 | REAL , DIMENSION(ims:ime,jms:jme) , INTENT(IN) :: intq |
---|
3529 | REAL , DIMENSION(ims:ime,jms:jme) , INTENT(OUT) :: pdts |
---|
3530 | |
---|
3531 | ! Local vars |
---|
3532 | |
---|
3533 | INTEGER :: i , j , k |
---|
3534 | |
---|
3535 | DO j = jts , MIN ( jde-1 , jte ) |
---|
3536 | DO i = its , MIN (ide-1 , ite ) |
---|
3537 | pdts(i,j) = psfc(i,j) - intq(i,j) - p_top |
---|
3538 | END DO |
---|
3539 | END DO |
---|
3540 | |
---|
3541 | END SUBROUTINE p_dts |
---|
3542 | |
---|
3543 | !--------------------------------------------------------------------- |
---|
3544 | |
---|
3545 | SUBROUTINE p_dhs ( pdhs , ht , p0 , t0 , a , & |
---|
3546 | ids , ide , jds , jde , kds , kde , & |
---|
3547 | ims , ime , jms , jme , kms , kme , & |
---|
3548 | its , ite , jts , jte , kts , kte ) |
---|
3549 | |
---|
3550 | ! Compute dry, hydrostatic surface pressure. |
---|
3551 | |
---|
3552 | IMPLICIT NONE |
---|
3553 | |
---|
3554 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
3555 | ims , ime , jms , jme , kms , kme , & |
---|
3556 | its , ite , jts , jte , kts , kte |
---|
3557 | |
---|
3558 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(IN) :: ht |
---|
3559 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: pdhs |
---|
3560 | |
---|
3561 | REAL , INTENT(IN) :: p0 , t0 , a |
---|
3562 | |
---|
3563 | ! Local vars |
---|
3564 | |
---|
3565 | INTEGER :: i , j , k |
---|
3566 | |
---|
3567 | REAL , PARAMETER :: Rd = 287. |
---|
3568 | REAL , PARAMETER :: g = 9.8 |
---|
3569 | |
---|
3570 | DO j = jts , MIN ( jde-1 , jte ) |
---|
3571 | DO i = its , MIN (ide-1 , ite ) |
---|
3572 | pdhs(i,j) = p0 * EXP ( -t0/a + SQRT ( (t0/a)**2 - 2. * g * ht(i,j)/(a * Rd) ) ) |
---|
3573 | END DO |
---|
3574 | END DO |
---|
3575 | |
---|
3576 | END SUBROUTINE p_dhs |
---|
3577 | |
---|
3578 | !--------------------------------------------------------------------- |
---|
3579 | |
---|
3580 | SUBROUTINE find_p_top ( p , p_top , & |
---|
3581 | ids , ide , jds , jde , kds , kde , & |
---|
3582 | ims , ime , jms , jme , kms , kme , & |
---|
3583 | its , ite , jts , jte , kts , kte ) |
---|
3584 | |
---|
3585 | ! Find the largest pressure in the top level. This is our p_top. We are |
---|
3586 | ! assuming that the top level is the location where the pressure is a minimum |
---|
3587 | ! for each column. In cases where the top surface is not isobaric, a |
---|
3588 | ! communicated value must be shared in the calling routine. Also in cases |
---|
3589 | ! where the top surface is not isobaric, care must be taken that the new |
---|
3590 | ! maximum pressure is not greater than the previous value. This test is |
---|
3591 | ! also handled in the calling routine. |
---|
3592 | |
---|
3593 | IMPLICIT NONE |
---|
3594 | |
---|
3595 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
3596 | ims , ime , jms , jme , kms , kme , & |
---|
3597 | its , ite , jts , jte , kts , kte |
---|
3598 | |
---|
3599 | REAL :: p_top |
---|
3600 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: p |
---|
3601 | |
---|
3602 | ! Local vars |
---|
3603 | |
---|
3604 | INTEGER :: i , j , k, min_lev |
---|
3605 | |
---|
3606 | i = its |
---|
3607 | j = jts |
---|
3608 | p_top = p(i,2,j) |
---|
3609 | min_lev = 2 |
---|
3610 | DO k = 2 , kte |
---|
3611 | IF ( p_top .GT. p(i,k,j) ) THEN |
---|
3612 | p_top = p(i,k,j) |
---|
3613 | min_lev = k |
---|
3614 | END IF |
---|
3615 | END DO |
---|
3616 | |
---|
3617 | k = min_lev |
---|
3618 | p_top = p(its,k,jts) |
---|
3619 | DO j = jts , MIN ( jde-1 , jte ) |
---|
3620 | DO i = its , MIN (ide-1 , ite ) |
---|
3621 | p_top = MAX ( p_top , p(i,k,j) ) |
---|
3622 | END DO |
---|
3623 | END DO |
---|
3624 | |
---|
3625 | END SUBROUTINE find_p_top |
---|
3626 | |
---|
3627 | !--------------------------------------------------------------------- |
---|
3628 | |
---|
3629 | SUBROUTINE t_to_theta ( t , p , p00 , & |
---|
3630 | ids , ide , jds , jde , kds , kde , & |
---|
3631 | ims , ime , jms , jme , kms , kme , & |
---|
3632 | its , ite , jts , jte , kts , kte ) |
---|
3633 | |
---|
3634 | ! Compute dry, hydrostatic surface pressure. |
---|
3635 | |
---|
3636 | IMPLICIT NONE |
---|
3637 | |
---|
3638 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
3639 | ims , ime , jms , jme , kms , kme , & |
---|
3640 | its , ite , jts , jte , kts , kte |
---|
3641 | |
---|
3642 | REAL , INTENT(IN) :: p00 |
---|
3643 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: p |
---|
3644 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(INOUT) :: t |
---|
3645 | |
---|
3646 | ! Local vars |
---|
3647 | |
---|
3648 | INTEGER :: i , j , k |
---|
3649 | |
---|
3650 | REAL , PARAMETER :: Rd = 287. |
---|
3651 | REAL , PARAMETER :: Cp = 1004. |
---|
3652 | |
---|
3653 | DO j = jts , MIN ( jde-1 , jte ) |
---|
3654 | DO k = kts , kte |
---|
3655 | DO i = its , MIN (ide-1 , ite ) |
---|
3656 | t(i,k,j) = t(i,k,j) * ( p00 / p(i,k,j) ) ** (Rd / Cp) |
---|
3657 | END DO |
---|
3658 | END DO |
---|
3659 | END DO |
---|
3660 | |
---|
3661 | END SUBROUTINE t_to_theta |
---|
3662 | |
---|
3663 | !--------------------------------------------------------------------- |
---|
3664 | |
---|
3665 | SUBROUTINE integ_moist ( q_in , p_in , pd_out , t_in , ght_in , intq , & |
---|
3666 | ids , ide , jds , jde , kds , kde , & |
---|
3667 | ims , ime , jms , jme , kms , kme , & |
---|
3668 | its , ite , jts , jte , kts , kte ) |
---|
3669 | |
---|
3670 | ! Integrate the moisture field vertically. Mostly used to get the total |
---|
3671 | ! vapor pressure, which can be subtracted from the total pressure to get |
---|
3672 | ! the dry pressure. |
---|
3673 | |
---|
3674 | IMPLICIT NONE |
---|
3675 | |
---|
3676 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
3677 | ims , ime , jms , jme , kms , kme , & |
---|
3678 | its , ite , jts , jte , kts , kte |
---|
3679 | |
---|
3680 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: q_in , p_in , t_in , ght_in |
---|
3681 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: pd_out |
---|
3682 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: intq |
---|
3683 | |
---|
3684 | ! Local vars |
---|
3685 | |
---|
3686 | INTEGER :: i , j , k |
---|
3687 | INTEGER , DIMENSION(ims:ime) :: level_above_sfc |
---|
3688 | REAL , DIMENSION(ims:ime,jms:jme) :: psfc , tsfc , qsfc, zsfc |
---|
3689 | REAL , DIMENSION(ims:ime,kms:kme) :: q , p , t , ght, pd |
---|
3690 | |
---|
3691 | REAL :: rhobar , qbar , dz |
---|
3692 | REAL :: p1 , p2 , t1 , t2 , q1 , q2 , z1, z2 |
---|
3693 | |
---|
3694 | LOGICAL :: upside_down |
---|
3695 | |
---|
3696 | REAL , PARAMETER :: Rd = 287. |
---|
3697 | REAL , PARAMETER :: g = 9.8 |
---|
3698 | |
---|
3699 | ! Get a surface value, always the first level of a 3d field. |
---|
3700 | |
---|
3701 | DO j = jts , MIN ( jde-1 , jte ) |
---|
3702 | DO i = its , MIN (ide-1 , ite ) |
---|
3703 | psfc(i,j) = p_in(i,kts,j) |
---|
3704 | tsfc(i,j) = t_in(i,kts,j) |
---|
3705 | qsfc(i,j) = q_in(i,kts,j) |
---|
3706 | zsfc(i,j) = ght_in(i,kts,j) |
---|
3707 | END DO |
---|
3708 | END DO |
---|
3709 | |
---|
3710 | IF ( p_in(its,kts+1,jts) .LT. p_in(its,kte,jts) ) THEN |
---|
3711 | upside_down = .TRUE. |
---|
3712 | ELSE |
---|
3713 | upside_down = .FALSE. |
---|
3714 | END IF |
---|
3715 | |
---|
3716 | DO j = jts , MIN ( jde-1 , jte ) |
---|
3717 | |
---|
3718 | ! Initialize the integrated quantity of moisture to zero. |
---|
3719 | |
---|
3720 | DO i = its , MIN (ide-1 , ite ) |
---|
3721 | intq(i,j) = 0. |
---|
3722 | END DO |
---|
3723 | |
---|
3724 | IF ( upside_down ) THEN |
---|
3725 | DO i = its , MIN (ide-1 , ite ) |
---|
3726 | p(i,kts) = p_in(i,kts,j) |
---|
3727 | t(i,kts) = t_in(i,kts,j) |
---|
3728 | q(i,kts) = q_in(i,kts,j) |
---|
3729 | ght(i,kts) = ght_in(i,kts,j) |
---|
3730 | DO k = kts+1,kte |
---|
3731 | p(i,k) = p_in(i,kte+2-k,j) |
---|
3732 | t(i,k) = t_in(i,kte+2-k,j) |
---|
3733 | q(i,k) = q_in(i,kte+2-k,j) |
---|
3734 | ght(i,k) = ght_in(i,kte+2-k,j) |
---|
3735 | END DO |
---|
3736 | END DO |
---|
3737 | ELSE |
---|
3738 | DO i = its , MIN (ide-1 , ite ) |
---|
3739 | DO k = kts,kte |
---|
3740 | p(i,k) = p_in(i,k ,j) |
---|
3741 | t(i,k) = t_in(i,k ,j) |
---|
3742 | q(i,k) = q_in(i,k ,j) |
---|
3743 | ght(i,k) = ght_in(i,k ,j) |
---|
3744 | END DO |
---|
3745 | END DO |
---|
3746 | END IF |
---|
3747 | |
---|
3748 | ! Find the first level above the ground. If all of the levels are above ground, such as |
---|
3749 | ! a terrain following lower coordinate, then the first level above ground is index #2. |
---|
3750 | |
---|
3751 | DO i = its , MIN (ide-1 , ite ) |
---|
3752 | level_above_sfc(i) = -1 |
---|
3753 | IF ( p(i,kts+1) .LT. psfc(i,j) ) THEN |
---|
3754 | level_above_sfc(i) = kts+1 |
---|
3755 | ELSE |
---|
3756 | find_k : DO k = kts+1,kte-1 |
---|
3757 | IF ( ( p(i,k )-psfc(i,j) .GE. 0. ) .AND. & |
---|
3758 | ( p(i,k+1)-psfc(i,j) .LT. 0. ) ) THEN |
---|
3759 | level_above_sfc(i) = k+1 |
---|
3760 | EXIT find_k |
---|
3761 | END IF |
---|
3762 | END DO find_k |
---|
3763 | IF ( level_above_sfc(i) .EQ. -1 ) THEN |
---|
3764 | print *,'i,j = ',i,j |
---|
3765 | print *,'p = ',p(i,:) |
---|
3766 | print *,'p sfc = ',psfc(i,j) |
---|
3767 | CALL wrf_error_fatal ( 'Could not find level above ground') |
---|
3768 | END IF |
---|
3769 | END IF |
---|
3770 | END DO |
---|
3771 | |
---|
3772 | DO i = its , MIN (ide-1 , ite ) |
---|
3773 | |
---|
3774 | ! Account for the moisture above the ground. |
---|
3775 | |
---|
3776 | pd(i,kte) = p(i,kte) |
---|
3777 | DO k = kte-1,level_above_sfc(i),-1 |
---|
3778 | rhobar = ( p(i,k ) / ( Rd * t(i,k ) ) + & |
---|
3779 | p(i,k+1) / ( Rd * t(i,k+1) ) ) * 0.5 |
---|
3780 | qbar = ( q(i,k ) + q(i,k+1) ) * 0.5 |
---|
3781 | dz = ght(i,k+1) - ght(i,k) |
---|
3782 | intq(i,j) = intq(i,j) + g * qbar * rhobar / (1. + qbar) * dz |
---|
3783 | pd(i,k) = p(i,k) - intq(i,j) |
---|
3784 | END DO |
---|
3785 | |
---|
3786 | ! Account for the moisture between the surface and the first level up. |
---|
3787 | |
---|
3788 | IF ( ( p(i,level_above_sfc(i)-1)-psfc(i,j) .GE. 0. ) .AND. & |
---|
3789 | ( p(i,level_above_sfc(i) )-psfc(i,j) .LT. 0. ) .AND. & |
---|
3790 | ( level_above_sfc(i) .GT. kts ) ) THEN |
---|
3791 | p1 = psfc(i,j) |
---|
3792 | p2 = p(i,level_above_sfc(i)) |
---|
3793 | t1 = tsfc(i,j) |
---|
3794 | t2 = t(i,level_above_sfc(i)) |
---|
3795 | q1 = qsfc(i,j) |
---|
3796 | q2 = q(i,level_above_sfc(i)) |
---|
3797 | z1 = zsfc(i,j) |
---|
3798 | z2 = ght(i,level_above_sfc(i)) |
---|
3799 | rhobar = ( p1 / ( Rd * t1 ) + & |
---|
3800 | p2 / ( Rd * t2 ) ) * 0.5 |
---|
3801 | qbar = ( q1 + q2 ) * 0.5 |
---|
3802 | dz = z2 - z1 |
---|
3803 | IF ( dz .GT. 0.1 ) THEN |
---|
3804 | intq(i,j) = intq(i,j) + g * qbar * rhobar / (1. + qbar) * dz |
---|
3805 | END IF |
---|
3806 | |
---|
3807 | ! Fix the underground values. |
---|
3808 | |
---|
3809 | DO k = level_above_sfc(i)-1,kts+1,-1 |
---|
3810 | pd(i,k) = p(i,k) - intq(i,j) |
---|
3811 | END DO |
---|
3812 | END IF |
---|
3813 | pd(i,kts) = psfc(i,j) - intq(i,j) |
---|
3814 | |
---|
3815 | END DO |
---|
3816 | |
---|
3817 | IF ( upside_down ) THEN |
---|
3818 | DO i = its , MIN (ide-1 , ite ) |
---|
3819 | pd_out(i,kts,j) = pd(i,kts) |
---|
3820 | DO k = kts+1,kte |
---|
3821 | pd_out(i,kte+2-k,j) = pd(i,k) |
---|
3822 | END DO |
---|
3823 | END DO |
---|
3824 | ELSE |
---|
3825 | DO i = its , MIN (ide-1 , ite ) |
---|
3826 | DO k = kts,kte |
---|
3827 | pd_out(i,k,j) = pd(i,k) |
---|
3828 | END DO |
---|
3829 | END DO |
---|
3830 | END IF |
---|
3831 | |
---|
3832 | END DO |
---|
3833 | |
---|
3834 | END SUBROUTINE integ_moist |
---|
3835 | |
---|
3836 | !--------------------------------------------------------------------- |
---|
3837 | |
---|
3838 | SUBROUTINE rh_to_mxrat (rh, t, p, q , wrt_liquid , & |
---|
3839 | ids , ide , jds , jde , kds , kde , & |
---|
3840 | ims , ime , jms , jme , kms , kme , & |
---|
3841 | its , ite , jts , jte , kts , kte ) |
---|
3842 | |
---|
3843 | IMPLICIT NONE |
---|
3844 | |
---|
3845 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
3846 | ims , ime , jms , jme , kms , kme , & |
---|
3847 | its , ite , jts , jte , kts , kte |
---|
3848 | |
---|
3849 | LOGICAL , INTENT(IN) :: wrt_liquid |
---|
3850 | |
---|
3851 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: p , t |
---|
3852 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(INOUT) :: rh |
---|
3853 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: q |
---|
3854 | |
---|
3855 | ! Local vars |
---|
3856 | |
---|
3857 | INTEGER :: i , j , k |
---|
3858 | |
---|
3859 | REAL :: ew , q1 , t1 |
---|
3860 | |
---|
3861 | REAL, PARAMETER :: T_REF = 0.0 |
---|
3862 | REAL, PARAMETER :: MW_AIR = 28.966 |
---|
3863 | REAL, PARAMETER :: MW_VAP = 18.0152 |
---|
3864 | |
---|
3865 | REAL, PARAMETER :: A0 = 6.107799961 |
---|
3866 | REAL, PARAMETER :: A1 = 4.436518521e-01 |
---|
3867 | REAL, PARAMETER :: A2 = 1.428945805e-02 |
---|
3868 | REAL, PARAMETER :: A3 = 2.650648471e-04 |
---|
3869 | REAL, PARAMETER :: A4 = 3.031240396e-06 |
---|
3870 | REAL, PARAMETER :: A5 = 2.034080948e-08 |
---|
3871 | REAL, PARAMETER :: A6 = 6.136820929e-11 |
---|
3872 | |
---|
3873 | REAL, PARAMETER :: ES0 = 6.1121 |
---|
3874 | |
---|
3875 | REAL, PARAMETER :: C1 = 9.09718 |
---|
3876 | REAL, PARAMETER :: C2 = 3.56654 |
---|
3877 | REAL, PARAMETER :: C3 = 0.876793 |
---|
3878 | REAL, PARAMETER :: EIS = 6.1071 |
---|
3879 | REAL :: RHS |
---|
3880 | REAL, PARAMETER :: TF = 273.16 |
---|
3881 | REAL :: TK |
---|
3882 | |
---|
3883 | REAL :: ES |
---|
3884 | REAL :: QS |
---|
3885 | REAL, PARAMETER :: EPS = 0.622 |
---|
3886 | REAL, PARAMETER :: SVP1 = 0.6112 |
---|
3887 | REAL, PARAMETER :: SVP2 = 17.67 |
---|
3888 | REAL, PARAMETER :: SVP3 = 29.65 |
---|
3889 | REAL, PARAMETER :: SVPT0 = 273.15 |
---|
3890 | |
---|
3891 | ! This subroutine computes mixing ratio (q, kg/kg) from basic variables |
---|
3892 | ! pressure (p, Pa), temperature (t, K) and relative humidity (rh, 1-100%). |
---|
3893 | ! The reference temperature (t_ref, C) is used to describe the temperature |
---|
3894 | ! at which the liquid and ice phase change occurs. |
---|
3895 | |
---|
3896 | DO j = jts , MIN ( jde-1 , jte ) |
---|
3897 | DO k = kts , kte |
---|
3898 | DO i = its , MIN (ide-1 , ite ) |
---|
3899 | rh(i,k,j) = MIN ( MAX ( rh(i,k,j) , 0. ) , 100. ) |
---|
3900 | END DO |
---|
3901 | END DO |
---|
3902 | END DO |
---|
3903 | |
---|
3904 | IF ( wrt_liquid ) THEN |
---|
3905 | DO j = jts , MIN ( jde-1 , jte ) |
---|
3906 | DO k = kts , kte |
---|
3907 | DO i = its , MIN (ide-1 , ite ) |
---|
3908 | |
---|
3909 | ! es is reduced by RH here to avoid problems in low-pressure cases |
---|
3910 | |
---|
3911 | es=.01*rh(i,k,j)*svp1*10.*EXP(svp2*(t(i,k,j)-svpt0)/(t(i,k,j)-svp3)) |
---|
3912 | IF (es .ge. p(i,k,j)/100.)THEN |
---|
3913 | q(i,k,j)=1.0 |
---|
3914 | print *,'warning: vapor pressure exceeds total pressure ' |
---|
3915 | print *,'setting mixing ratio to 1' |
---|
3916 | ELSE |
---|
3917 | q(i,k,j)=eps*es/(p(i,k,j)/100.-es) |
---|
3918 | ENDIF |
---|
3919 | END DO |
---|
3920 | END DO |
---|
3921 | END DO |
---|
3922 | |
---|
3923 | ELSE |
---|
3924 | DO j = jts , MIN ( jde-1 , jte ) |
---|
3925 | DO k = kts , kte |
---|
3926 | DO i = its , MIN (ide-1 , ite ) |
---|
3927 | |
---|
3928 | t1 = t(i,k,j) - 273.16 |
---|
3929 | |
---|
3930 | ! Obviously dry. |
---|
3931 | |
---|
3932 | IF ( t1 .lt. -200. ) THEN |
---|
3933 | q(i,k,j) = 0 |
---|
3934 | |
---|
3935 | ELSE |
---|
3936 | |
---|
3937 | ! First compute the ambient vapor pressure of water |
---|
3938 | |
---|
3939 | IF ( ( t1 .GE. t_ref ) .AND. ( t1 .GE. -47.) ) THEN ! liq phase ESLO |
---|
3940 | ew = a0 + t1 * (a1 + t1 * (a2 + t1 * (a3 + t1 * (a4 + t1 * (a5 + t1 * a6))))) |
---|
3941 | |
---|
3942 | ELSE IF ( ( t1 .GE. t_ref ) .AND. ( t1 .LT. -47. ) ) then !liq phas poor ES |
---|
3943 | ew = es0 * exp(17.67 * t1 / ( t1 + 243.5)) |
---|
3944 | |
---|
3945 | ELSE |
---|
3946 | tk = t(i,k,j) |
---|
3947 | rhs = -c1 * (tf / tk - 1.) - c2 * alog10(tf / tk) + & |
---|
3948 | c3 * (1. - tk / tf) + alog10(eis) |
---|
3949 | ew = 10. ** rhs |
---|
3950 | |
---|
3951 | END IF |
---|
3952 | |
---|
3953 | ! Now sat vap pres obtained compute local vapor pressure |
---|
3954 | |
---|
3955 | ew = MAX ( ew , 0. ) * rh(i,k,j) * 0.01 |
---|
3956 | |
---|
3957 | ! Now compute the specific humidity using the partial vapor |
---|
3958 | ! pressures of water vapor (ew) and dry air (p-ew). The |
---|
3959 | ! constants assume that the pressure is in hPa, so we divide |
---|
3960 | ! the pressures by 100. |
---|
3961 | |
---|
3962 | q1 = mw_vap * ew |
---|
3963 | q1 = q1 / (q1 + mw_air * (p(i,k,j)/100. - ew)) |
---|
3964 | |
---|
3965 | q(i,k,j) = q1 / (1. - q1 ) |
---|
3966 | |
---|
3967 | END IF |
---|
3968 | |
---|
3969 | END DO |
---|
3970 | END DO |
---|
3971 | END DO |
---|
3972 | |
---|
3973 | END IF |
---|
3974 | |
---|
3975 | END SUBROUTINE rh_to_mxrat |
---|
3976 | |
---|
3977 | !--------------------------------------------------------------------- |
---|
3978 | |
---|
3979 | SUBROUTINE compute_eta ( znw , & |
---|
3980 | eta_levels , max_eta , max_dz , & |
---|
3981 | p_top , g , p00 , cvpm , a , r_d , cp , t00 , p1000mb , t0 , & |
---|
3982 | ids , ide , jds , jde , kds , kde , & |
---|
3983 | ims , ime , jms , jme , kms , kme , & |
---|
3984 | its , ite , jts , jte , kts , kte ) |
---|
3985 | |
---|
3986 | ! Compute eta levels, either using given values from the namelist (hardly |
---|
3987 | ! a computation, yep, I know), or assuming a constant dz above the PBL, |
---|
3988 | ! knowing p_top and the number of eta levels. |
---|
3989 | |
---|
3990 | IMPLICIT NONE |
---|
3991 | |
---|
3992 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
3993 | ims , ime , jms , jme , kms , kme , & |
---|
3994 | its , ite , jts , jte , kts , kte |
---|
3995 | REAL , INTENT(IN) :: max_dz |
---|
3996 | REAL , INTENT(IN) :: p_top , g , p00 , cvpm , a , r_d , cp , t00 , p1000mb , t0 |
---|
3997 | INTEGER , INTENT(IN) :: max_eta |
---|
3998 | REAL , DIMENSION (max_eta) , INTENT(IN) :: eta_levels |
---|
3999 | |
---|
4000 | REAL , DIMENSION (kts:kte) , INTENT(OUT) :: znw |
---|
4001 | |
---|
4002 | ! Local vars |
---|
4003 | |
---|
4004 | INTEGER :: k |
---|
4005 | REAL :: mub , t_init , p_surf , pb, ztop, ztop_pbl , dz , temp |
---|
4006 | REAL , DIMENSION(kts:kte) :: dnw |
---|
4007 | |
---|
4008 | INTEGER , PARAMETER :: prac_levels = 17 |
---|
4009 | INTEGER :: loop , loop1 |
---|
4010 | REAL , DIMENSION(prac_levels) :: znw_prac , znu_prac , dnw_prac |
---|
4011 | REAL , DIMENSION(kts:kte) :: alb , phb |
---|
4012 | |
---|
4013 | ! Gee, do the eta levels come in from the namelist? |
---|
4014 | |
---|
4015 | IF ( ABS(eta_levels(1)+1.) .GT. 0.0000001 ) THEN |
---|
4016 | |
---|
4017 | ! Check to see if the array is oriented OK, we can easily fix an upside down oops. |
---|
4018 | |
---|
4019 | IF ( ( ABS(eta_levels(1 )-1.) .LT. 0.0000001 ) .AND. & |
---|
4020 | ( ABS(eta_levels(kde)-0.) .LT. 0.0000001 ) ) THEN |
---|
4021 | DO k = kds+1 , kde-1 |
---|
4022 | znw(k) = eta_levels(k) |
---|
4023 | END DO |
---|
4024 | znw( 1) = 1. |
---|
4025 | znw(kde) = 0. |
---|
4026 | ELSE IF ( ( ABS(eta_levels(kde)-1.) .LT. 0.0000001 ) .AND. & |
---|
4027 | ( ABS(eta_levels(1 )-0.) .LT. 0.0000001 ) ) THEN |
---|
4028 | DO k = kds+1 , kde-1 |
---|
4029 | znw(k) = eta_levels(kde+1-k) |
---|
4030 | END DO |
---|
4031 | znw( 1) = 1. |
---|
4032 | znw(kde) = 0. |
---|
4033 | ELSE |
---|
4034 | CALL wrf_error_fatal ( 'First eta level should be 1.0 and the last 0.0 in namelist' ) |
---|
4035 | END IF |
---|
4036 | |
---|
4037 | ! Check to see if the input full-level eta array is monotonic. |
---|
4038 | |
---|
4039 | DO k = kds , kde-1 |
---|
4040 | IF ( znw(k) .LE. znw(k+1) ) THEN |
---|
4041 | PRINT *,'eta on full levels is not monotonic' |
---|
4042 | PRINT *,'eta (',k,') = ',znw(k) |
---|
4043 | PRINT *,'eta (',k+1,') = ',znw(k+1) |
---|
4044 | CALL wrf_error_fatal ( 'Fix non-monotonic "eta_levels" in the namelist.input file' ) |
---|
4045 | END IF |
---|
4046 | END DO |
---|
4047 | |
---|
4048 | ! Compute eta levels assuming a constant delta z above the PBL. |
---|
4049 | |
---|
4050 | ELSE |
---|
4051 | |
---|
4052 | ! Compute top of the atmosphere with some silly levels. We just want to |
---|
4053 | ! integrate to get a reasonable value for ztop. We use the planned PBL-esque |
---|
4054 | ! levels, and then just coarse resolution above that. We know p_top, and we |
---|
4055 | ! have the base state vars. |
---|
4056 | |
---|
4057 | p_surf = p00 |
---|
4058 | |
---|
4059 | znw_prac = (/ 1.000 , 0.993 , 0.983 , 0.970 , 0.954 , 0.934 , 0.909 , & |
---|
4060 | 0.88 , 0.8 , 0.7 , 0.6 , 0.5 , 0.4 , 0.3 , 0.2 , 0.1 , 0.0 /) |
---|
4061 | |
---|
4062 | DO k = 1 , prac_levels - 1 |
---|
4063 | znu_prac(k) = ( znw_prac(k) + znw_prac(k+1) ) * 0.5 |
---|
4064 | dnw_prac(k) = znw_prac(k+1) - znw_prac(k) |
---|
4065 | END DO |
---|
4066 | |
---|
4067 | DO k = 1, prac_levels-1 |
---|
4068 | pb = znu_prac(k)*(p_surf - p_top) + p_top |
---|
4069 | ! temp = MAX ( 200., t00 + A*LOG(pb/p00) ) |
---|
4070 | temp = t00 + A*LOG(pb/p00) |
---|
4071 | t_init = temp*(p00/pb)**(r_d/cp) - t0 |
---|
4072 | alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
---|
4073 | END DO |
---|
4074 | |
---|
4075 | ! Base state mu is defined as base state surface pressure minus p_top |
---|
4076 | |
---|
4077 | mub = p_surf - p_top |
---|
4078 | |
---|
4079 | ! Integrate base geopotential, starting at terrain elevation. |
---|
4080 | |
---|
4081 | phb(1) = 0. |
---|
4082 | DO k = 2,prac_levels |
---|
4083 | phb(k) = phb(k-1) - dnw_prac(k-1)*mub*alb(k-1) |
---|
4084 | END DO |
---|
4085 | |
---|
4086 | ! So, now we know the model top in meters. Get the average depth above the PBL |
---|
4087 | ! of each of the remaining levels. We are going for a constant delta z thickness. |
---|
4088 | |
---|
4089 | ztop = phb(prac_levels) / g |
---|
4090 | ztop_pbl = phb(8 ) / g |
---|
4091 | dz = ( ztop - ztop_pbl ) / REAL ( kde - 8 ) |
---|
4092 | |
---|
4093 | ! Standard levels near the surface so no one gets in trouble. |
---|
4094 | |
---|
4095 | DO k = 1 , 8 |
---|
4096 | znw(k) = znw_prac(k) |
---|
4097 | END DO |
---|
4098 | |
---|
4099 | ! Using d phb(k)/ d eta(k) = -mub * alb(k), eqn 2.9 |
---|
4100 | ! Skamarock et al, NCAR TN 468. Use full levels, so |
---|
4101 | ! use twice the thickness. |
---|
4102 | |
---|
4103 | DO k = 8, kte-1-2 |
---|
4104 | pb = znw(k) * (p_surf - p_top) + p_top |
---|
4105 | ! temp = MAX ( 200., t00 + A*LOG(pb/p00) ) |
---|
4106 | temp = t00 + A*LOG(pb/p00) |
---|
4107 | t_init = temp*(p00/pb)**(r_d/cp) - t0 |
---|
4108 | alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
---|
4109 | znw(k+1) = znw(k) - dz*g / ( mub*alb(k) ) |
---|
4110 | END DO |
---|
4111 | znw(kte-2) = 0.000 |
---|
4112 | |
---|
4113 | ! There is some iteration. We want the top level, ztop, to be |
---|
4114 | ! consistent with the delta z, and we want the half level values |
---|
4115 | ! to be consistent with the eta levels. The inner loop to 10 gets |
---|
4116 | ! the eta levels very accurately, but has a residual at the top, due |
---|
4117 | ! to dz changing. We reset dz five times, and then things seem OK. |
---|
4118 | |
---|
4119 | DO loop1 = 1 , 5 |
---|
4120 | DO loop = 1 , 10 |
---|
4121 | DO k = 8, kte-1-2 |
---|
4122 | pb = (znw(k)+znw(k+1))*0.5 * (p_surf - p_top) + p_top |
---|
4123 | ! temp = MAX ( 200., t00 + A*LOG(pb/p00) ) |
---|
4124 | temp = t00 + A*LOG(pb/p00) |
---|
4125 | t_init = temp*(p00/pb)**(r_d/cp) - t0 |
---|
4126 | alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
---|
4127 | znw(k+1) = znw(k) - dz*g / ( mub*alb(k) ) |
---|
4128 | END DO |
---|
4129 | IF ( ( loop1 .EQ. 5 ) .AND. ( loop .EQ. 10 ) ) THEN |
---|
4130 | print *,'Converged znw(kte) should be about 0.0 = ',znw(kte-2) |
---|
4131 | END IF |
---|
4132 | znw(kte-2) = 0.000 |
---|
4133 | END DO |
---|
4134 | |
---|
4135 | ! Here is where we check the eta levels values we just computed. |
---|
4136 | |
---|
4137 | DO k = 1, kde-1-2 |
---|
4138 | pb = (znw(k)+znw(k+1))*0.5 * (p_surf - p_top) + p_top |
---|
4139 | ! temp = MAX ( 200., t00 + A*LOG(pb/p00) ) |
---|
4140 | temp = t00 + A*LOG(pb/p00) |
---|
4141 | t_init = temp*(p00/pb)**(r_d/cp) - t0 |
---|
4142 | alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
---|
4143 | END DO |
---|
4144 | |
---|
4145 | phb(1) = 0. |
---|
4146 | DO k = 2,kde-2 |
---|
4147 | phb(k) = phb(k-1) - (znw(k)-znw(k-1)) * mub*alb(k-1) |
---|
4148 | END DO |
---|
4149 | |
---|
4150 | ! Reset the model top and the dz, and iterate. |
---|
4151 | |
---|
4152 | ztop = phb(kde-2)/g |
---|
4153 | ztop_pbl = phb(8)/g |
---|
4154 | dz = ( ztop - ztop_pbl ) / REAL ( (kde-2) - 8 ) |
---|
4155 | END DO |
---|
4156 | |
---|
4157 | IF ( dz .GT. max_dz ) THEN |
---|
4158 | print *,'z (m) = ',phb(1)/g |
---|
4159 | do k = 2 ,kte-2 |
---|
4160 | print *,'z (m) and dz (m) = ',phb(k)/g,(phb(k)-phb(k-1))/g |
---|
4161 | end do |
---|
4162 | print *,'dz (m) above fixed eta levels = ',dz |
---|
4163 | print *,'namelist max_dz (m) = ',max_dz |
---|
4164 | print *,'namelist p_top (Pa) = ',p_top |
---|
4165 | CALL wrf_debug ( 0, 'You need one of three things:' ) |
---|
4166 | CALL wrf_debug ( 0, '1) More eta levels to reduce the dz: e_vert' ) |
---|
4167 | CALL wrf_debug ( 0, '2) A lower p_top so your total height is reduced: p_top_requested') |
---|
4168 | CALL wrf_debug ( 0, '3) Increase the maximum allowable eta thickness: max_dz') |
---|
4169 | CALL wrf_debug ( 0, 'All are namelist options') |
---|
4170 | CALL wrf_error_fatal ( 'dz above fixed eta levels is too large') |
---|
4171 | END IF |
---|
4172 | |
---|
4173 | ! Add those 2 levels back into the middle, just above the 8 levels |
---|
4174 | ! that semi define a boundary layer. After we open up the levels, |
---|
4175 | ! then we just linearly interpolate in znw. So now levels 1-8 are |
---|
4176 | ! specified as the fixed boundary layer levels given in this routine. |
---|
4177 | ! The top levels, 12 through kte are those computed. The middle |
---|
4178 | ! levels 9, 10, and 11 are equi-spaced in znw, and are each 1/2 the |
---|
4179 | ! the znw thickness of levels 11 through 12. |
---|
4180 | |
---|
4181 | DO k = kte-2 , 9 , -1 |
---|
4182 | znw(k+2) = znw(k) |
---|
4183 | END DO |
---|
4184 | |
---|
4185 | znw( 9) = 0.75 * znw( 8) + 0.25 * znw(12) |
---|
4186 | znw(10) = 0.50 * znw( 8) + 0.50 * znw(12) |
---|
4187 | znw(11) = 0.25 * znw( 8) + 0.75 * znw(12) |
---|
4188 | |
---|
4189 | END IF |
---|
4190 | |
---|
4191 | END SUBROUTINE compute_eta |
---|
4192 | |
---|
4193 | !--------------------------------------------------------------------- |
---|
4194 | |
---|
4195 | SUBROUTINE monthly_min_max ( field_in , field_min , field_max , & |
---|
4196 | ids , ide , jds , jde , kds , kde , & |
---|
4197 | ims , ime , jms , jme , kms , kme , & |
---|
4198 | its , ite , jts , jte , kts , kte ) |
---|
4199 | |
---|
4200 | ! Plow through each month, find the max, min values for each i,j. |
---|
4201 | |
---|
4202 | IMPLICIT NONE |
---|
4203 | |
---|
4204 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
4205 | ims , ime , jms , jme , kms , kme , & |
---|
4206 | its , ite , jts , jte , kts , kte |
---|
4207 | |
---|
4208 | REAL , DIMENSION(ims:ime,12,jms:jme) , INTENT(IN) :: field_in |
---|
4209 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: field_min , field_max |
---|
4210 | |
---|
4211 | ! Local vars |
---|
4212 | |
---|
4213 | INTEGER :: i , j , l |
---|
4214 | REAL :: minner , maxxer |
---|
4215 | |
---|
4216 | DO j = jts , MIN(jde-1,jte) |
---|
4217 | DO i = its , MIN(ide-1,ite) |
---|
4218 | minner = field_in(i,1,j) |
---|
4219 | maxxer = field_in(i,1,j) |
---|
4220 | DO l = 2 , 12 |
---|
4221 | IF ( field_in(i,l,j) .LT. minner ) THEN |
---|
4222 | minner = field_in(i,l,j) |
---|
4223 | END IF |
---|
4224 | IF ( field_in(i,l,j) .GT. maxxer ) THEN |
---|
4225 | maxxer = field_in(i,l,j) |
---|
4226 | END IF |
---|
4227 | END DO |
---|
4228 | field_min(i,j) = minner |
---|
4229 | field_max(i,j) = maxxer |
---|
4230 | END DO |
---|
4231 | END DO |
---|
4232 | |
---|
4233 | END SUBROUTINE monthly_min_max |
---|
4234 | |
---|
4235 | !--------------------------------------------------------------------- |
---|
4236 | |
---|
4237 | SUBROUTINE monthly_interp_to_date ( field_in , date_str , field_out , & |
---|
4238 | ids , ide , jds , jde , kds , kde , & |
---|
4239 | ims , ime , jms , jme , kms , kme , & |
---|
4240 | its , ite , jts , jte , kts , kte ) |
---|
4241 | |
---|
4242 | ! Linrarly in time interpolate data to a current valid time. The data is |
---|
4243 | ! assumed to come in "monthly", valid at the 15th of every month. |
---|
4244 | |
---|
4245 | IMPLICIT NONE |
---|
4246 | |
---|
4247 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
4248 | ims , ime , jms , jme , kms , kme , & |
---|
4249 | its , ite , jts , jte , kts , kte |
---|
4250 | |
---|
4251 | CHARACTER (LEN=24) , INTENT(IN) :: date_str |
---|
4252 | REAL , DIMENSION(ims:ime,12,jms:jme) , INTENT(IN) :: field_in |
---|
4253 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: field_out |
---|
4254 | |
---|
4255 | ! Local vars |
---|
4256 | |
---|
4257 | INTEGER :: i , j , l |
---|
4258 | INTEGER , DIMENSION(0:13) :: middle |
---|
4259 | INTEGER :: target_julyr , target_julday , target_date |
---|
4260 | INTEGER :: julyr , julday , int_month , month1 , month2 |
---|
4261 | REAL :: gmt |
---|
4262 | CHARACTER (LEN=4) :: yr |
---|
4263 | CHARACTER (LEN=2) :: mon , day15 |
---|
4264 | |
---|
4265 | |
---|
4266 | WRITE(day15,FMT='(I2.2)') 15 |
---|
4267 | DO l = 1 , 12 |
---|
4268 | WRITE(mon,FMT='(I2.2)') l |
---|
4269 | CALL get_julgmt ( date_str(1:4)//'-'//mon//'-'//day15//'_'//'00:00:00.0000' , julyr , julday , gmt ) |
---|
4270 | middle(l) = julyr*1000 + julday |
---|
4271 | END DO |
---|
4272 | |
---|
4273 | l = 0 |
---|
4274 | middle(l) = middle( 1) - 31 |
---|
4275 | |
---|
4276 | l = 13 |
---|
4277 | middle(l) = middle(12) + 31 |
---|
4278 | |
---|
4279 | CALL get_julgmt ( date_str , target_julyr , target_julday , gmt ) |
---|
4280 | target_date = target_julyr * 1000 + target_julday |
---|
4281 | find_month : DO l = 0 , 12 |
---|
4282 | IF ( ( middle(l) .LT. target_date ) .AND. ( middle(l+1) .GE. target_date ) ) THEN |
---|
4283 | DO j = jts , MIN ( jde-1 , jte ) |
---|
4284 | DO i = its , MIN (ide-1 , ite ) |
---|
4285 | int_month = l |
---|
4286 | IF ( ( int_month .EQ. 0 ) .OR. ( int_month .EQ. 12 ) ) THEN |
---|
4287 | month1 = 12 |
---|
4288 | month2 = 1 |
---|
4289 | ELSE |
---|
4290 | month1 = int_month |
---|
4291 | month2 = month1 + 1 |
---|
4292 | END IF |
---|
4293 | field_out(i,j) = ( field_in(i,month2,j) * ( target_date - middle(l) ) + & |
---|
4294 | field_in(i,month1,j) * ( middle(l+1) - target_date ) ) / & |
---|
4295 | ( middle(l+1) - middle(l) ) |
---|
4296 | END DO |
---|
4297 | END DO |
---|
4298 | EXIT find_month |
---|
4299 | END IF |
---|
4300 | END DO find_month |
---|
4301 | |
---|
4302 | END SUBROUTINE monthly_interp_to_date |
---|
4303 | |
---|
4304 | !--------------------------------------------------------------------- |
---|
4305 | |
---|
4306 | SUBROUTINE sfcprs (t, q, height, pslv, ter, avgsfct, p, & |
---|
4307 | psfc, ez_method, & |
---|
4308 | ids , ide , jds , jde , kds , kde , & |
---|
4309 | ims , ime , jms , jme , kms , kme , & |
---|
4310 | its , ite , jts , jte , kts , kte ) |
---|
4311 | |
---|
4312 | |
---|
4313 | ! Computes the surface pressure using the input height, |
---|
4314 | ! temperature and q (already computed from relative |
---|
4315 | ! humidity) on p surfaces. Sea level pressure is used |
---|
4316 | ! to extrapolate a first guess. |
---|
4317 | |
---|
4318 | IMPLICIT NONE |
---|
4319 | |
---|
4320 | REAL, PARAMETER :: g = 9.8 |
---|
4321 | REAL, PARAMETER :: gamma = 6.5E-3 |
---|
4322 | REAL, PARAMETER :: pconst = 10000.0 |
---|
4323 | REAL, PARAMETER :: Rd = 287. |
---|
4324 | REAL, PARAMETER :: TC = 273.15 + 17.5 |
---|
4325 | |
---|
4326 | REAL, PARAMETER :: gammarg = gamma * Rd / g |
---|
4327 | REAL, PARAMETER :: rov2 = Rd / 2. |
---|
4328 | |
---|
4329 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
4330 | ims , ime , jms , jme , kms , kme , & |
---|
4331 | its , ite , jts , jte , kts , kte |
---|
4332 | LOGICAL , INTENT ( IN ) :: ez_method |
---|
4333 | |
---|
4334 | REAL , DIMENSION (ims:ime,kms:kme,jms:jme) , INTENT(IN ):: t, q, height, p |
---|
4335 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(IN ):: pslv , ter, avgsfct |
---|
4336 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(OUT):: psfc |
---|
4337 | |
---|
4338 | INTEGER :: i |
---|
4339 | INTEGER :: j |
---|
4340 | INTEGER :: k |
---|
4341 | INTEGER , DIMENSION (its:ite,jts:jte) :: k500 , k700 , k850 |
---|
4342 | |
---|
4343 | LOGICAL :: l1 |
---|
4344 | LOGICAL :: l2 |
---|
4345 | LOGICAL :: l3 |
---|
4346 | LOGICAL :: OK |
---|
4347 | |
---|
4348 | REAL :: gamma78 ( its:ite,jts:jte ) |
---|
4349 | REAL :: gamma57 ( its:ite,jts:jte ) |
---|
4350 | REAL :: ht ( its:ite,jts:jte ) |
---|
4351 | REAL :: p1 ( its:ite,jts:jte ) |
---|
4352 | REAL :: t1 ( its:ite,jts:jte ) |
---|
4353 | REAL :: t500 ( its:ite,jts:jte ) |
---|
4354 | REAL :: t700 ( its:ite,jts:jte ) |
---|
4355 | REAL :: t850 ( its:ite,jts:jte ) |
---|
4356 | REAL :: tfixed ( its:ite,jts:jte ) |
---|
4357 | REAL :: tsfc ( its:ite,jts:jte ) |
---|
4358 | REAL :: tslv ( its:ite,jts:jte ) |
---|
4359 | |
---|
4360 | ! We either compute the surface pressure from a time averaged surface temperature |
---|
4361 | ! (what we will call the "easy way"), or we try to remove the diurnal impact on the |
---|
4362 | ! surface temperature (what we will call the "other way"). Both are essentially |
---|
4363 | ! corrections to a sea level pressure with a high-resolution topography field. |
---|
4364 | |
---|
4365 | IF ( ez_method ) THEN |
---|
4366 | |
---|
4367 | DO j = jts , MIN(jde-1,jte) |
---|
4368 | DO i = its , MIN(ide-1,ite) |
---|
4369 | psfc(i,j) = pslv(i,j) * ( 1.0 + gamma * ter(i,j) / avgsfct(i,j) ) ** ( - g / ( Rd * gamma ) ) |
---|
4370 | END DO |
---|
4371 | END DO |
---|
4372 | |
---|
4373 | ELSE |
---|
4374 | |
---|
4375 | ! Find the locations of the 850, 700 and 500 mb levels. |
---|
4376 | |
---|
4377 | k850 = 0 ! find k at: P=850 |
---|
4378 | k700 = 0 ! P=700 |
---|
4379 | k500 = 0 ! P=500 |
---|
4380 | |
---|
4381 | i = its |
---|
4382 | j = jts |
---|
4383 | DO k = kts+1 , kte |
---|
4384 | IF (NINT(p(i,k,j)) .EQ. 85000) THEN |
---|
4385 | k850(i,j) = k |
---|
4386 | ELSE IF (NINT(p(i,k,j)) .EQ. 70000) THEN |
---|
4387 | k700(i,j) = k |
---|
4388 | ELSE IF (NINT(p(i,k,j)) .EQ. 50000) THEN |
---|
4389 | k500(i,j) = k |
---|
4390 | END IF |
---|
4391 | END DO |
---|
4392 | |
---|
4393 | IF ( ( k850(i,j) .EQ. 0 ) .OR. ( k700(i,j) .EQ. 0 ) .OR. ( k500(i,j) .EQ. 0 ) ) THEN |
---|
4394 | |
---|
4395 | DO j = jts , MIN(jde-1,jte) |
---|
4396 | DO i = its , MIN(ide-1,ite) |
---|
4397 | psfc(i,j) = pslv(i,j) * ( 1.0 + gamma * ter(i,j) / t(i,1,j) ) ** ( - g / ( Rd * gamma ) ) |
---|
4398 | END DO |
---|
4399 | END DO |
---|
4400 | |
---|
4401 | RETURN |
---|
4402 | #if 0 |
---|
4403 | |
---|
4404 | ! Possibly it is just that we have a generalized vertical coord, so we do not |
---|
4405 | ! have the values exactly. Do a simple assignment to a close vertical level. |
---|
4406 | |
---|
4407 | DO j = jts , MIN(jde-1,jte) |
---|
4408 | DO i = its , MIN(ide-1,ite) |
---|
4409 | DO k = kts+1 , kte-1 |
---|
4410 | IF ( ( p(i,k,j) - 85000. ) * ( p(i,k+1,j) - 85000. ) .LE. 0.0 ) THEN |
---|
4411 | k850(i,j) = k |
---|
4412 | END IF |
---|
4413 | IF ( ( p(i,k,j) - 70000. ) * ( p(i,k+1,j) - 70000. ) .LE. 0.0 ) THEN |
---|
4414 | k700(i,j) = k |
---|
4415 | END IF |
---|
4416 | IF ( ( p(i,k,j) - 50000. ) * ( p(i,k+1,j) - 50000. ) .LE. 0.0 ) THEN |
---|
4417 | k500(i,j) = k |
---|
4418 | END IF |
---|
4419 | END DO |
---|
4420 | END DO |
---|
4421 | END DO |
---|
4422 | |
---|
4423 | ! If we *still* do not have the k levels, punt. I mean, we did try. |
---|
4424 | |
---|
4425 | OK = .TRUE. |
---|
4426 | DO j = jts , MIN(jde-1,jte) |
---|
4427 | DO i = its , MIN(ide-1,ite) |
---|
4428 | IF ( ( k850(i,j) .EQ. 0 ) .OR. ( k700(i,j) .EQ. 0 ) .OR. ( k500(i,j) .EQ. 0 ) ) THEN |
---|
4429 | OK = .FALSE. |
---|
4430 | PRINT '(A)','(i,j) = ',i,j,' Error in finding p level for 850, 700 or 500 hPa.' |
---|
4431 | DO K = kts+1 , kte |
---|
4432 | PRINT '(A,I3,A,F10.2,A)','K = ',k,' PRESSURE = ',p(i,k,j),' Pa' |
---|
4433 | END DO |
---|
4434 | PRINT '(A)','Expected 850, 700, and 500 mb values, at least.' |
---|
4435 | END IF |
---|
4436 | END DO |
---|
4437 | END DO |
---|
4438 | IF ( .NOT. OK ) THEN |
---|
4439 | CALL wrf_error_fatal ( 'wrong pressure levels' ) |
---|
4440 | END IF |
---|
4441 | #endif |
---|
4442 | |
---|
4443 | ! We are here if the data is isobaric and we found the levels for 850, 700, |
---|
4444 | ! and 500 mb right off the bat. |
---|
4445 | |
---|
4446 | ELSE |
---|
4447 | DO j = jts , MIN(jde-1,jte) |
---|
4448 | DO i = its , MIN(ide-1,ite) |
---|
4449 | k850(i,j) = k850(its,jts) |
---|
4450 | k700(i,j) = k700(its,jts) |
---|
4451 | k500(i,j) = k500(its,jts) |
---|
4452 | END DO |
---|
4453 | END DO |
---|
4454 | END IF |
---|
4455 | |
---|
4456 | ! The 850 hPa level of geopotential height is called something special. |
---|
4457 | |
---|
4458 | DO j = jts , MIN(jde-1,jte) |
---|
4459 | DO i = its , MIN(ide-1,ite) |
---|
4460 | ht(i,j) = height(i,k850(i,j),j) |
---|
4461 | END DO |
---|
4462 | END DO |
---|
4463 | |
---|
4464 | ! The variable ht is now -ter/ht(850 hPa). The plot thickens. |
---|
4465 | |
---|
4466 | DO j = jts , MIN(jde-1,jte) |
---|
4467 | DO i = its , MIN(ide-1,ite) |
---|
4468 | ht(i,j) = -ter(i,j) / ht(i,j) |
---|
4469 | END DO |
---|
4470 | END DO |
---|
4471 | |
---|
4472 | ! Make an isothermal assumption to get a first guess at the surface |
---|
4473 | ! pressure. This is to tell us which levels to use for the lapse |
---|
4474 | ! rates in a bit. |
---|
4475 | |
---|
4476 | DO j = jts , MIN(jde-1,jte) |
---|
4477 | DO i = its , MIN(ide-1,ite) |
---|
4478 | psfc(i,j) = pslv(i,j) * (pslv(i,j) / p(i,k850(i,j),j)) ** ht(i,j) |
---|
4479 | END DO |
---|
4480 | END DO |
---|
4481 | |
---|
4482 | ! Get a pressure more than pconst Pa above the surface - p1. The |
---|
4483 | ! p1 is the top of the level that we will use for our lapse rate |
---|
4484 | ! computations. |
---|
4485 | |
---|
4486 | DO j = jts , MIN(jde-1,jte) |
---|
4487 | DO i = its , MIN(ide-1,ite) |
---|
4488 | IF ( ( psfc(i,j) - 95000. ) .GE. 0. ) THEN |
---|
4489 | p1(i,j) = 85000. |
---|
4490 | ELSE IF ( ( psfc(i,j) - 70000. ) .GE. 0. ) THEN |
---|
4491 | p1(i,j) = psfc(i,j) - pconst |
---|
4492 | ELSE |
---|
4493 | p1(i,j) = 50000. |
---|
4494 | END IF |
---|
4495 | END DO |
---|
4496 | END DO |
---|
4497 | |
---|
4498 | ! Compute virtual temperatures for k850, k700, and k500 layers. Now |
---|
4499 | ! you see why we wanted Q on pressure levels, it all is beginning |
---|
4500 | ! to make sense. |
---|
4501 | |
---|
4502 | DO j = jts , MIN(jde-1,jte) |
---|
4503 | DO i = its , MIN(ide-1,ite) |
---|
4504 | t850(i,j) = t(i,k850(i,j),j) * (1. + 0.608 * q(i,k850(i,j),j)) |
---|
4505 | t700(i,j) = t(i,k700(i,j),j) * (1. + 0.608 * q(i,k700(i,j),j)) |
---|
4506 | t500(i,j) = t(i,k500(i,j),j) * (1. + 0.608 * q(i,k500(i,j),j)) |
---|
4507 | END DO |
---|
4508 | END DO |
---|
4509 | |
---|
4510 | ! Compute lapse rates between these three levels. These are |
---|
4511 | ! environmental values for each (i,j). |
---|
4512 | |
---|
4513 | DO j = jts , MIN(jde-1,jte) |
---|
4514 | DO i = its , MIN(ide-1,ite) |
---|
4515 | gamma78(i,j) = ALOG(t850(i,j) / t700(i,j)) / ALOG (p(i,k850(i,j),j) / p(i,k700(i,j),j) ) |
---|
4516 | gamma57(i,j) = ALOG(t700(i,j) / t500(i,j)) / ALOG (p(i,k700(i,j),j) / p(i,k500(i,j),j) ) |
---|
4517 | END DO |
---|
4518 | END DO |
---|
4519 | |
---|
4520 | DO j = jts , MIN(jde-1,jte) |
---|
4521 | DO i = its , MIN(ide-1,ite) |
---|
4522 | IF ( ( psfc(i,j) - 95000. ) .GE. 0. ) THEN |
---|
4523 | t1(i,j) = t850(i,j) |
---|
4524 | ELSE IF ( ( psfc(i,j) - 85000. ) .GE. 0. ) THEN |
---|
4525 | t1(i,j) = t700(i,j) * (p1(i,j) / (p(i,k700(i,j),j))) ** gamma78(i,j) |
---|
4526 | ELSE IF ( ( psfc(i,j) - 70000. ) .GE. 0.) THEN |
---|
4527 | t1(i,j) = t500(i,j) * (p1(i,j) / (p(i,k500(i,j),j))) ** gamma57(i,j) |
---|
4528 | ELSE |
---|
4529 | t1(i,j) = t500(i,j) |
---|
4530 | ENDIF |
---|
4531 | END DO |
---|
4532 | END DO |
---|
4533 | |
---|
4534 | ! From our temperature way up in the air, we extrapolate down to |
---|
4535 | ! the sea level to get a guess at the sea level temperature. |
---|
4536 | |
---|
4537 | DO j = jts , MIN(jde-1,jte) |
---|
4538 | DO i = its , MIN(ide-1,ite) |
---|
4539 | tslv(i,j) = t1(i,j) * (pslv(i,j) / p1(i,j)) ** gammarg |
---|
4540 | END DO |
---|
4541 | END DO |
---|
4542 | |
---|
4543 | ! The new surface temperature is computed from the with new sea level |
---|
4544 | ! temperature, just using the elevation and a lapse rate. This lapse |
---|
4545 | ! rate is -6.5 K/km. |
---|
4546 | |
---|
4547 | DO j = jts , MIN(jde-1,jte) |
---|
4548 | DO i = its , MIN(ide-1,ite) |
---|
4549 | tsfc(i,j) = tslv(i,j) - gamma * ter(i,j) |
---|
4550 | END DO |
---|
4551 | END DO |
---|
4552 | |
---|
4553 | ! A small correction to the sea-level temperature, in case it is too warm. |
---|
4554 | |
---|
4555 | DO j = jts , MIN(jde-1,jte) |
---|
4556 | DO i = its , MIN(ide-1,ite) |
---|
4557 | tfixed(i,j) = tc - 0.005 * (tsfc(i,j) - tc) ** 2 |
---|
4558 | END DO |
---|
4559 | END DO |
---|
4560 | |
---|
4561 | DO j = jts , MIN(jde-1,jte) |
---|
4562 | DO i = its , MIN(ide-1,ite) |
---|
4563 | l1 = tslv(i,j) .LT. tc |
---|
4564 | l2 = tsfc(i,j) .LE. tc |
---|
4565 | l3 = .NOT. l1 |
---|
4566 | IF ( l2 .AND. l3 ) THEN |
---|
4567 | tslv(i,j) = tc |
---|
4568 | ELSE IF ( ( .NOT. l2 ) .AND. l3 ) THEN |
---|
4569 | tslv(i,j) = tfixed(i,j) |
---|
4570 | END IF |
---|
4571 | END DO |
---|
4572 | END DO |
---|
4573 | |
---|
4574 | ! Finally, we can get to the surface pressure. |
---|
4575 | |
---|
4576 | DO j = jts , MIN(jde-1,jte) |
---|
4577 | DO i = its , MIN(ide-1,ite) |
---|
4578 | p1(i,j) = - ter(i,j) * g / ( rov2 * ( tsfc(i,j) + tslv(i,j) ) ) |
---|
4579 | psfc(i,j) = pslv(i,j) * EXP ( p1(i,j) ) |
---|
4580 | END DO |
---|
4581 | END DO |
---|
4582 | |
---|
4583 | END IF |
---|
4584 | |
---|
4585 | ! Surface pressure and sea-level pressure are the same at sea level. |
---|
4586 | |
---|
4587 | ! DO j = jts , MIN(jde-1,jte) |
---|
4588 | ! DO i = its , MIN(ide-1,ite) |
---|
4589 | ! IF ( ABS ( ter(i,j) ) .LT. 0.1 ) THEN |
---|
4590 | ! psfc(i,j) = pslv(i,j) |
---|
4591 | ! END IF |
---|
4592 | ! END DO |
---|
4593 | ! END DO |
---|
4594 | |
---|
4595 | END SUBROUTINE sfcprs |
---|
4596 | |
---|
4597 | !--------------------------------------------------------------------- |
---|
4598 | |
---|
4599 | SUBROUTINE sfcprs2(t, q, height, psfc_in, ter, avgsfct, p, & |
---|
4600 | psfc, ez_method, & |
---|
4601 | ids , ide , jds , jde , kds , kde , & |
---|
4602 | ims , ime , jms , jme , kms , kme , & |
---|
4603 | its , ite , jts , jte , kts , kte ) |
---|
4604 | |
---|
4605 | |
---|
4606 | ! Computes the surface pressure using the input height, |
---|
4607 | ! temperature and q (already computed from relative |
---|
4608 | ! humidity) on p surfaces. Sea level pressure is used |
---|
4609 | ! to extrapolate a first guess. |
---|
4610 | |
---|
4611 | IMPLICIT NONE |
---|
4612 | |
---|
4613 | REAL, PARAMETER :: g = 9.8 |
---|
4614 | REAL, PARAMETER :: Rd = 287. |
---|
4615 | |
---|
4616 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
4617 | ims , ime , jms , jme , kms , kme , & |
---|
4618 | its , ite , jts , jte , kts , kte |
---|
4619 | LOGICAL , INTENT ( IN ) :: ez_method |
---|
4620 | |
---|
4621 | REAL , DIMENSION (ims:ime,kms:kme,jms:jme) , INTENT(IN ):: t, q, height, p |
---|
4622 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(IN ):: psfc_in , ter, avgsfct |
---|
4623 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(OUT):: psfc |
---|
4624 | |
---|
4625 | INTEGER :: i |
---|
4626 | INTEGER :: j |
---|
4627 | INTEGER :: k |
---|
4628 | |
---|
4629 | REAL :: tv_sfc_avg , tv_sfc , del_z |
---|
4630 | |
---|
4631 | ! Compute the new surface pressure from the old surface pressure, and a |
---|
4632 | ! known change in elevation at the surface. |
---|
4633 | |
---|
4634 | ! del_z = diff in surface topo, lo-res vs hi-res |
---|
4635 | ! psfc = psfc_in * exp ( g del_z / (Rd Tv_sfc ) ) |
---|
4636 | |
---|
4637 | |
---|
4638 | IF ( ez_method ) THEN |
---|
4639 | DO j = jts , MIN(jde-1,jte) |
---|
4640 | DO i = its , MIN(ide-1,ite) |
---|
4641 | tv_sfc_avg = avgsfct(i,j) * (1. + 0.608 * q(i,1,j)) |
---|
4642 | del_z = height(i,1,j) - ter(i,j) |
---|
4643 | psfc(i,j) = psfc_in(i,j) * EXP ( g * del_z / ( Rd * tv_sfc_avg ) ) |
---|
4644 | END DO |
---|
4645 | END DO |
---|
4646 | ELSE |
---|
4647 | DO j = jts , MIN(jde-1,jte) |
---|
4648 | DO i = its , MIN(ide-1,ite) |
---|
4649 | tv_sfc = t(i,1,j) * (1. + 0.608 * q(i,1,j)) |
---|
4650 | del_z = height(i,1,j) - ter(i,j) |
---|
4651 | psfc(i,j) = psfc_in(i,j) * EXP ( g * del_z / ( Rd * tv_sfc ) ) |
---|
4652 | END DO |
---|
4653 | END DO |
---|
4654 | END IF |
---|
4655 | |
---|
4656 | END SUBROUTINE sfcprs2 |
---|
4657 | |
---|
4658 | !--------------------------------------------------------------------- |
---|
4659 | |
---|
4660 | SUBROUTINE sfcprs3( height , p , ter , slp , psfc , & |
---|
4661 | ids , ide , jds , jde , kds , kde , & |
---|
4662 | ims , ime , jms , jme , kms , kme , & |
---|
4663 | its , ite , jts , jte , kts , kte ) |
---|
4664 | |
---|
4665 | ! Computes the surface pressure by vertically interpolating |
---|
4666 | ! linearly (or log) in z the pressure, to the targeted topography. |
---|
4667 | |
---|
4668 | IMPLICIT NONE |
---|
4669 | |
---|
4670 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
4671 | ims , ime , jms , jme , kms , kme , & |
---|
4672 | its , ite , jts , jte , kts , kte |
---|
4673 | |
---|
4674 | REAL , DIMENSION (ims:ime,kms:kme,jms:jme) , INTENT(IN ):: height, p |
---|
4675 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(IN ):: ter , slp |
---|
4676 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(OUT):: psfc |
---|
4677 | |
---|
4678 | INTEGER :: i |
---|
4679 | INTEGER :: j |
---|
4680 | INTEGER :: k |
---|
4681 | |
---|
4682 | LOGICAL :: found_loc |
---|
4683 | |
---|
4684 | REAL :: zl , zu , pl , pu , zm |
---|
4685 | |
---|
4686 | ! Loop over each grid point |
---|
4687 | |
---|
4688 | DO j = jts , MIN(jde-1,jte) |
---|
4689 | DO i = its , MIN(ide-1,ite) |
---|
4690 | |
---|
4691 | ! Find the trapping levels |
---|
4692 | |
---|
4693 | found_loc = .FALSE. |
---|
4694 | |
---|
4695 | ! Normal sort of scenario - the model topography is somewhere between |
---|
4696 | ! the height values of 1000 mb and the top of the model. |
---|
4697 | |
---|
4698 | found_k_loc : DO k = kts+1 , kte-2 |
---|
4699 | IF ( ( height(i,k ,j) .LE. ter(i,j) ) .AND. & |
---|
4700 | ( height(i,k+1,j) .GT. ter(i,j) ) ) THEN |
---|
4701 | zl = height(i,k ,j) |
---|
4702 | zu = height(i,k+1,j) |
---|
4703 | zm = ter(i,j) |
---|
4704 | pl = p(i,k ,j) |
---|
4705 | pu = p(i,k+1,j) |
---|
4706 | psfc(i,j) = EXP ( ( LOG(pl) * ( zm - zu ) + LOG(pu) * ( zl - zm ) ) / ( zl - zu ) ) |
---|
4707 | found_loc = .TRUE. |
---|
4708 | EXIT found_k_loc |
---|
4709 | END IF |
---|
4710 | END DO found_k_loc |
---|
4711 | |
---|
4712 | ! Interpolate betwixt slp and the first isobaric level above - this is probably the |
---|
4713 | ! usual thing over the ocean. |
---|
4714 | |
---|
4715 | IF ( .NOT. found_loc ) THEN |
---|
4716 | IF ( slp(i,j) .GE. p(i,2,j) ) THEN |
---|
4717 | zl = 0. |
---|
4718 | zu = height(i,2 ,j) |
---|
4719 | zm = ter(i,j) |
---|
4720 | pl = slp(i,j) |
---|
4721 | pu = p(i,2 ,j) |
---|
4722 | psfc(i,j) = EXP ( ( LOG(pl) * ( zm - zu ) + LOG(pu) * ( zl - zm ) ) / ( zl - zu ) ) |
---|
4723 | found_loc = .TRUE. |
---|
4724 | ELSE |
---|
4725 | found_slp_loc : DO k = kts+1 , kte-2 |
---|
4726 | IF ( ( slp(i,j) .GE. p(i,k+1,j) ) .AND. & |
---|
4727 | ( slp(i,j) .LT. p(i,k ,j) ) ) THEN |
---|
4728 | zl = 0. |
---|
4729 | zu = height(i,k+1,j) |
---|
4730 | zm = ter(i,j) |
---|
4731 | pl = slp(i,j) |
---|
4732 | pu = p(i,k+1,j) |
---|
4733 | psfc(i,j) = EXP ( ( LOG(pl) * ( zm - zu ) + LOG(pu) * ( zl - zm ) ) / ( zl - zu ) ) |
---|
4734 | found_loc = .TRUE. |
---|
4735 | EXIT found_slp_loc |
---|
4736 | END IF |
---|
4737 | END DO found_slp_loc |
---|
4738 | END IF |
---|
4739 | END IF |
---|
4740 | |
---|
4741 | ! Did we do what we wanted done. |
---|
4742 | |
---|
4743 | IF ( .NOT. found_loc ) THEN |
---|
4744 | print *,'i,j = ',i,j |
---|
4745 | print *,'p column = ',p(i,2:,j) |
---|
4746 | print *,'z column = ',height(i,2:,j) |
---|
4747 | print *,'model topo = ',ter(i,j) |
---|
4748 | CALL wrf_error_fatal ( ' probs with sfc p computation ' ) |
---|
4749 | END IF |
---|
4750 | |
---|
4751 | END DO |
---|
4752 | END DO |
---|
4753 | |
---|
4754 | END SUBROUTINE sfcprs3 |
---|
4755 | !--------------------------------------------------------------------- |
---|
4756 | |
---|
4757 | SUBROUTINE filter_topo ( ht_in , xlat , msftx , fft_filter_lat , & |
---|
4758 | ids , ide , jds , jde , kds , kde , & |
---|
4759 | ims , ime , jms , jme , kms , kme , & |
---|
4760 | its , ite , jts , jte , kts , kte ) |
---|
4761 | |
---|
4762 | IMPLICIT NONE |
---|
4763 | |
---|
4764 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
4765 | ims , ime , jms , jme , kms , kme , & |
---|
4766 | its , ite , jts , jte , kts , kte |
---|
4767 | |
---|
4768 | REAL , INTENT(IN) :: fft_filter_lat |
---|
4769 | REAL , DIMENSION(ims:ime,jms:jme) , INTENT(INOUT) :: ht_in |
---|
4770 | REAL , DIMENSION(ims:ime,jms:jme) , INTENT(IN) :: xlat , msftx |
---|
4771 | |
---|
4772 | |
---|
4773 | ! Local vars |
---|
4774 | |
---|
4775 | INTEGER :: i , j , j_lat_pos , j_lat_neg |
---|
4776 | INTEGER :: i_kicker , ik , i1, i2, i3, i4 |
---|
4777 | REAL :: length_scale , sum |
---|
4778 | REAL , DIMENSION(its:ite,jts:jte) :: ht_out |
---|
4779 | |
---|
4780 | ! The filtering is a simple average on a latitude loop. Possibly a LONG list of |
---|
4781 | ! numbers. We assume that ALL of the 2d arrays have been transposed so that |
---|
4782 | ! each patch has the entire domain size of the i-dim local. |
---|
4783 | |
---|
4784 | IF ( ( its .NE. ids ) .OR. ( ite .NE. ide ) ) THEN |
---|
4785 | CALL wrf_error_fatal ( 'filtering assumes all values on X' ) |
---|
4786 | END IF |
---|
4787 | |
---|
4788 | ! Starting at the south pole, we find where the |
---|
4789 | ! grid distance is big enough, then go back a point. Continuing to the |
---|
4790 | ! north pole, we find the first small grid distance. These are the |
---|
4791 | ! computational latitude loops and the associated computational poles. |
---|
4792 | |
---|
4793 | j_lat_neg = 0 |
---|
4794 | j_lat_pos = jde + 1 |
---|
4795 | loop_neg : DO j = jts , MIN(jde-1,jte) |
---|
4796 | IF ( xlat(its,j) .LT. 0.0 ) THEN |
---|
4797 | IF ( ABS(xlat(its,j)) .LT. fft_filter_lat ) THEN |
---|
4798 | j_lat_neg = j - 1 |
---|
4799 | EXIT loop_neg |
---|
4800 | END IF |
---|
4801 | END IF |
---|
4802 | END DO loop_neg |
---|
4803 | |
---|
4804 | loop_pos : DO j = jts , MIN(jde-1,jte) |
---|
4805 | IF ( xlat(its,j) .GT. 0.0 ) THEN |
---|
4806 | IF ( xlat(its,j) .GE. fft_filter_lat ) THEN |
---|
4807 | j_lat_pos = j |
---|
4808 | EXIT loop_pos |
---|
4809 | END IF |
---|
4810 | END IF |
---|
4811 | END DO loop_pos |
---|
4812 | |
---|
4813 | ! Set output values to initial input topo values for whole patch. |
---|
4814 | |
---|
4815 | DO j = jts , MIN(jde-1,jte) |
---|
4816 | DO i = its , MIN(ide-1,ite) |
---|
4817 | ht_out(i,j) = ht_in(i,j) |
---|
4818 | END DO |
---|
4819 | END DO |
---|
4820 | |
---|
4821 | ! Filter the topo at the negative lats. |
---|
4822 | |
---|
4823 | DO j = j_lat_neg , jts , -1 |
---|
4824 | i_kicker = MIN( MAX ( NINT(msftx(its,j)) , 1 ) , (ide - ids) / 2 ) |
---|
4825 | print *,'j = ' , j, ', kicker = ',i_kicker |
---|
4826 | DO i = its , MIN(ide-1,ite) |
---|
4827 | IF ( ( i - i_kicker .GE. its ) .AND. ( i + i_kicker .LE. ide-1 ) ) THEN |
---|
4828 | sum = 0.0 |
---|
4829 | DO ik = 1 , i_kicker |
---|
4830 | sum = sum + ht_in(i+ik,j) + ht_in(i-ik,j) |
---|
4831 | END DO |
---|
4832 | ht_out(i,j) = ( ht_in(i,j) + sum ) / REAL ( 2 * i_kicker + 1 ) |
---|
4833 | ELSE IF ( ( i - i_kicker .LT. its ) .AND. ( i + i_kicker .LE. ide-1 ) ) THEN |
---|
4834 | sum = 0.0 |
---|
4835 | DO ik = 1 , i_kicker |
---|
4836 | sum = sum + ht_in(i+ik,j) |
---|
4837 | END DO |
---|
4838 | i1 = i - i_kicker + ide -1 |
---|
4839 | i2 = ide-1 |
---|
4840 | i3 = ids |
---|
4841 | i4 = i-1 |
---|
4842 | DO ik = i1 , i2 |
---|
4843 | sum = sum + ht_in(ik,j) |
---|
4844 | END DO |
---|
4845 | DO ik = i3 , i4 |
---|
4846 | sum = sum + ht_in(ik,j) |
---|
4847 | END DO |
---|
4848 | ht_out(i,j) = ( ht_in(i,j) + sum ) / REAL ( 2 * i_kicker + 1 ) |
---|
4849 | ELSE IF ( ( i - i_kicker .GE. its ) .AND. ( i + i_kicker .GT. ide-1 ) ) THEN |
---|
4850 | sum = 0.0 |
---|
4851 | DO ik = 1 , i_kicker |
---|
4852 | sum = sum + ht_in(i-ik,j) |
---|
4853 | END DO |
---|
4854 | i1 = i+1 |
---|
4855 | i2 = ide-1 |
---|
4856 | i3 = ids |
---|
4857 | i4 = ids + ( i_kicker+i ) - ide |
---|
4858 | DO ik = i1 , i2 |
---|
4859 | sum = sum + ht_in(ik,j) |
---|
4860 | END DO |
---|
4861 | DO ik = i3 , i4 |
---|
4862 | sum = sum + ht_in(ik,j) |
---|
4863 | END DO |
---|
4864 | ht_out(i,j) = ( ht_in(i,j) + sum ) / REAL ( 2 * i_kicker + 1 ) |
---|
4865 | END IF |
---|
4866 | END DO |
---|
4867 | END DO |
---|
4868 | |
---|
4869 | ! Filter the topo at the positive lats. |
---|
4870 | |
---|
4871 | DO j = j_lat_pos , MIN(jde-1,jte) |
---|
4872 | i_kicker = MIN( MAX ( NINT(msftx(its,j)) , 1 ) , (ide - ids) / 2 ) |
---|
4873 | print *,'j = ' , j, ', kicker = ',i_kicker |
---|
4874 | DO i = its , MIN(ide-1,ite) |
---|
4875 | IF ( ( i - i_kicker .GE. its ) .AND. ( i + i_kicker .LE. ide-1 ) ) THEN |
---|
4876 | sum = 0.0 |
---|
4877 | DO ik = 1 , i_kicker |
---|
4878 | sum = sum + ht_in(i+ik,j) + ht_in(i-ik,j) |
---|
4879 | END DO |
---|
4880 | ht_out(i,j) = ( ht_in(i,j) + sum ) / REAL ( 2 * i_kicker + 1 ) |
---|
4881 | ELSE IF ( ( i - i_kicker .LT. its ) .AND. ( i + i_kicker .LE. ide-1 ) ) THEN |
---|
4882 | sum = 0.0 |
---|
4883 | DO ik = 1 , i_kicker |
---|
4884 | sum = sum + ht_in(i+ik,j) |
---|
4885 | END DO |
---|
4886 | i1 = i - i_kicker + ide -1 |
---|
4887 | i2 = ide-1 |
---|
4888 | i3 = ids |
---|
4889 | i4 = i-1 |
---|
4890 | DO ik = i1 , i2 |
---|
4891 | sum = sum + ht_in(ik,j) |
---|
4892 | END DO |
---|
4893 | DO ik = i3 , i4 |
---|
4894 | sum = sum + ht_in(ik,j) |
---|
4895 | END DO |
---|
4896 | ht_out(i,j) = ( ht_in(i,j) + sum ) / REAL ( 2 * i_kicker + 1 ) |
---|
4897 | ELSE IF ( ( i - i_kicker .GE. its ) .AND. ( i + i_kicker .GT. ide-1 ) ) THEN |
---|
4898 | sum = 0.0 |
---|
4899 | DO ik = 1 , i_kicker |
---|
4900 | sum = sum + ht_in(i-ik,j) |
---|
4901 | END DO |
---|
4902 | i1 = i+1 |
---|
4903 | i2 = ide-1 |
---|
4904 | i3 = ids |
---|
4905 | i4 = ids + ( i_kicker+i ) - ide |
---|
4906 | DO ik = i1 , i2 |
---|
4907 | sum = sum + ht_in(ik,j) |
---|
4908 | END DO |
---|
4909 | DO ik = i3 , i4 |
---|
4910 | sum = sum + ht_in(ik,j) |
---|
4911 | END DO |
---|
4912 | ht_out(i,j) = ( ht_in(i,j) + sum ) / REAL ( 2 * i_kicker + 1 ) |
---|
4913 | END IF |
---|
4914 | END DO |
---|
4915 | END DO |
---|
4916 | |
---|
4917 | ! Set output values to initial input topo values for whole patch. |
---|
4918 | |
---|
4919 | DO j = jts , MIN(jde-1,jte) |
---|
4920 | DO i = its , MIN(ide-1,ite) |
---|
4921 | ht_in(i,j) = ht_out(i,j) |
---|
4922 | END DO |
---|
4923 | END DO |
---|
4924 | |
---|
4925 | END SUBROUTINE filter_topo |
---|
4926 | |
---|
4927 | !--------------------------------------------------------------------- |
---|
4928 | |
---|
4929 | SUBROUTINE init_module_initialize |
---|
4930 | END SUBROUTINE init_module_initialize |
---|
4931 | |
---|
4932 | !--------------------------------------------------------------------- |
---|
4933 | |
---|
4934 | END MODULE module_initialize_real |
---|
4935 | #endif |
---|