[2759] | 1 | !WRF:MODEL_LAYER:DYNAMICS |
---|
| 2 | ! |
---|
| 3 | MODULE module_advect_em |
---|
| 4 | |
---|
| 5 | USE module_bc |
---|
| 6 | USE module_model_constants |
---|
| 7 | USE module_wrf_error |
---|
| 8 | |
---|
| 9 | CONTAINS |
---|
| 10 | |
---|
| 11 | |
---|
| 12 | SUBROUTINE mass_flux_divergence ( field, field_old, tendency, & |
---|
| 13 | ru, rv, rom, & |
---|
| 14 | mut, config_flags, & |
---|
| 15 | msfux, msfuy, msfvx, msfvy, & |
---|
| 16 | msftx, msfty, & |
---|
| 17 | fzm, fzp, & |
---|
| 18 | rdx, rdy, rdzw, & |
---|
| 19 | ids, ide, jds, jde, kds, kde, & |
---|
| 20 | ims, ime, jms, jme, kms, kme, & |
---|
| 21 | its, ite, jts, jte, kts, kte ) |
---|
| 22 | |
---|
| 23 | IMPLICIT NONE |
---|
| 24 | |
---|
| 25 | ! Input data |
---|
| 26 | |
---|
| 27 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
| 28 | |
---|
| 29 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
| 30 | ims, ime, jms, jme, kms, kme, & |
---|
| 31 | its, ite, jts, jte, kts, kte |
---|
| 32 | |
---|
| 33 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: field, & |
---|
| 34 | field_old, & |
---|
| 35 | ru, & |
---|
| 36 | rv, & |
---|
| 37 | rom |
---|
| 38 | |
---|
| 39 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
---|
| 40 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
| 41 | |
---|
| 42 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfux, & |
---|
| 43 | msfuy, & |
---|
| 44 | msfvx, & |
---|
| 45 | msfvy, & |
---|
| 46 | msftx, & |
---|
| 47 | msfty |
---|
| 48 | |
---|
| 49 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
| 50 | fzp, & |
---|
| 51 | rdzw |
---|
| 52 | |
---|
| 53 | REAL , INTENT(IN ) :: rdx, & |
---|
| 54 | rdy |
---|
| 55 | |
---|
| 56 | ! Local data |
---|
| 57 | |
---|
| 58 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
| 59 | INTEGER :: i_start, i_end, j_start, j_end |
---|
| 60 | INTEGER :: imin, imax, jmin, jmax |
---|
| 61 | |
---|
| 62 | REAL :: mrdx, mrdy, ub, vb, uw, vw |
---|
| 63 | REAL , DIMENSION(its:ite,kts:kte) :: vflux |
---|
| 64 | |
---|
| 65 | LOGICAL :: specified |
---|
| 66 | |
---|
| 67 | !--------------- horizontal flux |
---|
| 68 | |
---|
| 69 | specified = .false. |
---|
| 70 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
---|
| 71 | |
---|
| 72 | ktf=MIN(kte,kde-1) |
---|
| 73 | i_start = its |
---|
| 74 | i_end = MIN(ite,ide-1) |
---|
| 75 | j_start = jts |
---|
| 76 | j_end = MIN(jte,jde-1) |
---|
| 77 | |
---|
| 78 | DO j = j_start, j_end |
---|
| 79 | DO k = kts, ktf |
---|
| 80 | DO i = i_start, i_end |
---|
| 81 | mrdx=msftx(i,j)*rdx |
---|
| 82 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.5 & |
---|
| 83 | *(ru(i+1,k,j)*(field(i+1,k,j)+field(i ,k,j)) & |
---|
| 84 | -ru(i ,k,j)*(field(i ,k,j)+field(i-1,k,j))) |
---|
| 85 | ENDDO |
---|
| 86 | ENDDO |
---|
| 87 | ENDDO |
---|
| 88 | |
---|
| 89 | DO j = j_start, j_end |
---|
| 90 | DO k = kts, ktf |
---|
| 91 | DO i = i_start, i_end |
---|
| 92 | mrdy=msfty(i,j)*rdy |
---|
| 93 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.5 & |
---|
| 94 | *(rv(i,k,j+1)*(field(i,k,j+1)+field(i,k,j )) & |
---|
| 95 | -rv(i,k,j )*(field(i,k,j )+field(i,k,j-1))) |
---|
| 96 | ENDDO |
---|
| 97 | ENDDO |
---|
| 98 | ENDDO |
---|
| 99 | |
---|
| 100 | !---------------- vertical flux divergence |
---|
| 101 | |
---|
| 102 | |
---|
| 103 | DO i = i_start, i_end |
---|
| 104 | vflux(i,kts)=0. |
---|
| 105 | vflux(i,kte)=0. |
---|
| 106 | ENDDO |
---|
| 107 | |
---|
| 108 | DO j = j_start, j_end |
---|
| 109 | |
---|
| 110 | DO k = kts+1, ktf |
---|
| 111 | DO i = i_start, i_end |
---|
| 112 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 113 | ENDDO |
---|
| 114 | ENDDO |
---|
| 115 | |
---|
| 116 | DO k = kts, ktf |
---|
| 117 | DO i = i_start, i_end |
---|
| 118 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
| 119 | ENDDO |
---|
| 120 | ENDDO |
---|
| 121 | |
---|
| 122 | ENDDO |
---|
| 123 | |
---|
| 124 | END SUBROUTINE mass_flux_divergence |
---|
| 125 | |
---|
| 126 | !------------------------------------------------------------------------------- |
---|
| 127 | |
---|
| 128 | SUBROUTINE advect_u ( u, u_old, tendency, & |
---|
| 129 | ru, rv, rom, & |
---|
| 130 | mut, time_step, config_flags, & |
---|
| 131 | msfux, msfuy, msfvx, msfvy, & |
---|
| 132 | msftx, msfty, & |
---|
| 133 | fzm, fzp, & |
---|
| 134 | rdx, rdy, rdzw, & |
---|
| 135 | ids, ide, jds, jde, kds, kde, & |
---|
| 136 | ims, ime, jms, jme, kms, kme, & |
---|
| 137 | its, ite, jts, jte, kts, kte ) |
---|
| 138 | |
---|
| 139 | IMPLICIT NONE |
---|
| 140 | |
---|
| 141 | ! Input data |
---|
| 142 | |
---|
| 143 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
| 144 | |
---|
| 145 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
| 146 | ims, ime, jms, jme, kms, kme, & |
---|
| 147 | its, ite, jts, jte, kts, kte |
---|
| 148 | |
---|
| 149 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: u, & |
---|
| 150 | u_old, & |
---|
| 151 | ru, & |
---|
| 152 | rv, & |
---|
| 153 | rom |
---|
| 154 | |
---|
| 155 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
---|
| 156 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
| 157 | |
---|
| 158 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfux, & |
---|
| 159 | msfuy, & |
---|
| 160 | msfvx, & |
---|
| 161 | msfvy, & |
---|
| 162 | msftx, & |
---|
| 163 | msfty |
---|
| 164 | |
---|
| 165 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
| 166 | fzp, & |
---|
| 167 | rdzw |
---|
| 168 | |
---|
| 169 | REAL , INTENT(IN ) :: rdx, & |
---|
| 170 | rdy |
---|
| 171 | INTEGER , INTENT(IN ) :: time_step |
---|
| 172 | |
---|
| 173 | ! Local data |
---|
| 174 | |
---|
| 175 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
| 176 | INTEGER :: i_start, i_end, j_start, j_end |
---|
| 177 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
---|
| 178 | INTEGER :: jmin, jmax, jp, jm, imin, imax, im, ip |
---|
| 179 | INTEGER :: jp1, jp0, jtmp |
---|
| 180 | |
---|
| 181 | INTEGER :: horz_order, vert_order |
---|
| 182 | |
---|
| 183 | REAL :: mrdx, mrdy, ub, vb, uw, vw, dvm, dvp |
---|
| 184 | REAL , DIMENSION(its:ite, kts:kte) :: vflux |
---|
| 185 | |
---|
| 186 | |
---|
| 187 | REAL, DIMENSION( its-1:ite+1, kts:kte ) :: fqx |
---|
| 188 | REAL, DIMENSION( its:ite, kts:kte, 2) :: fqy |
---|
| 189 | |
---|
| 190 | LOGICAL :: degrade_xs, degrade_ys |
---|
| 191 | LOGICAL :: degrade_xe, degrade_ye |
---|
| 192 | |
---|
| 193 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
---|
| 194 | |
---|
| 195 | REAL :: flux3, flux4, flux5, flux6 |
---|
| 196 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel |
---|
| 197 | |
---|
| 198 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
| 199 | ( 7.*(q_i + q_im1) - (q_ip1 + q_im2) )/12.0 |
---|
| 200 | |
---|
| 201 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
| 202 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
---|
| 203 | sign(1,time_step)*sign(1.,ua)*((q_ip1 - q_im2)-3.*(q_i-q_im1))/12.0 |
---|
| 204 | |
---|
| 205 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
| 206 | ( 37.*(q_i+q_im1) - 8.*(q_ip1+q_im2) & |
---|
| 207 | +(q_ip2+q_im3) )/60.0 |
---|
| 208 | |
---|
| 209 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
| 210 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
---|
| 211 | -sign(1,time_step)*sign(1.,ua)*( & |
---|
| 212 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) )/60.0 |
---|
| 213 | |
---|
| 214 | |
---|
| 215 | LOGICAL :: specified |
---|
| 216 | |
---|
| 217 | specified = .false. |
---|
| 218 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
---|
| 219 | |
---|
| 220 | ! set order for vertical and horzontal flux operators |
---|
| 221 | |
---|
| 222 | horz_order = config_flags%h_mom_adv_order |
---|
| 223 | vert_order = config_flags%v_mom_adv_order |
---|
| 224 | |
---|
| 225 | ktf=MIN(kte,kde-1) |
---|
| 226 | |
---|
| 227 | ! begin with horizontal flux divergence |
---|
| 228 | |
---|
| 229 | horizontal_order_test : IF( horz_order == 6 ) THEN |
---|
| 230 | |
---|
| 231 | ! determine boundary mods for flux operators |
---|
| 232 | ! We degrade the flux operators from 3rd/4th order |
---|
| 233 | ! to second order one gridpoint in from the boundaries for |
---|
| 234 | ! all boundary conditions except periodic and symmetry - these |
---|
| 235 | ! conditions have boundary zone data fill for correct application |
---|
| 236 | ! of the higher order flux stencils |
---|
| 237 | |
---|
| 238 | degrade_xs = .true. |
---|
| 239 | degrade_xe = .true. |
---|
| 240 | degrade_ys = .true. |
---|
| 241 | degrade_ye = .true. |
---|
| 242 | |
---|
| 243 | IF( config_flags%periodic_x .or. & |
---|
| 244 | config_flags%symmetric_xs .or. & |
---|
| 245 | (its > ids+2) ) degrade_xs = .false. |
---|
| 246 | IF( config_flags%periodic_x .or. & |
---|
| 247 | config_flags%symmetric_xe .or. & |
---|
| 248 | (ite < ide-2) ) degrade_xe = .false. |
---|
| 249 | IF( config_flags%periodic_y .or. & |
---|
| 250 | config_flags%symmetric_ys .or. & |
---|
| 251 | (jts > jds+2) ) degrade_ys = .false. |
---|
| 252 | IF( config_flags%periodic_y .or. & |
---|
| 253 | config_flags%symmetric_ye .or. & |
---|
| 254 | (jte < jde-3) ) degrade_ye = .false. |
---|
| 255 | |
---|
| 256 | !--------------- y - advection first |
---|
| 257 | |
---|
| 258 | i_start = its |
---|
| 259 | i_end = ite |
---|
| 260 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
| 261 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-1,ite) |
---|
| 262 | IF ( config_flags%periodic_x ) i_start = its |
---|
| 263 | IF ( config_flags%periodic_x ) i_end = ite |
---|
| 264 | |
---|
| 265 | j_start = jts |
---|
| 266 | j_end = MIN(jte,jde-1) |
---|
| 267 | |
---|
| 268 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
| 269 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 270 | |
---|
| 271 | j_start_f = j_start |
---|
| 272 | j_end_f = j_end+1 |
---|
| 273 | |
---|
| 274 | IF(degrade_ys) then |
---|
| 275 | j_start = MAX(jts,jds+1) |
---|
| 276 | j_start_f = jds+3 |
---|
| 277 | ENDIF |
---|
| 278 | |
---|
| 279 | IF(degrade_ye) then |
---|
| 280 | j_end = MIN(jte,jde-2) |
---|
| 281 | j_end_f = jde-3 |
---|
| 282 | ENDIF |
---|
| 283 | |
---|
| 284 | IF(config_flags%polar) j_end = MIN(jte,jde-1) |
---|
| 285 | |
---|
| 286 | ! compute fluxes, 5th or 6th order |
---|
| 287 | |
---|
| 288 | jp1 = 2 |
---|
| 289 | jp0 = 1 |
---|
| 290 | |
---|
| 291 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
---|
| 292 | |
---|
| 293 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
| 294 | |
---|
| 295 | DO k=kts,ktf |
---|
| 296 | DO i = i_start, i_end |
---|
| 297 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
| 298 | fqy( i, k, jp1 ) = vel*flux6( & |
---|
| 299 | u(i,k,j-3), u(i,k,j-2), u(i,k,j-1), & |
---|
| 300 | u(i,k,j ), u(i,k,j+1), u(i,k,j+2), vel ) |
---|
| 301 | ENDDO |
---|
| 302 | ENDDO |
---|
| 303 | |
---|
| 304 | ! we must be close to some boundary where we need to reduce the order of the stencil |
---|
| 305 | |
---|
| 306 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
| 307 | |
---|
| 308 | DO k=kts,ktf |
---|
| 309 | DO i = i_start, i_end |
---|
| 310 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
---|
| 311 | *(u(i,k,j)+u(i,k,j-1)) |
---|
| 312 | ENDDO |
---|
| 313 | ENDDO |
---|
| 314 | |
---|
| 315 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
| 316 | |
---|
| 317 | DO k=kts,ktf |
---|
| 318 | DO i = i_start, i_end |
---|
| 319 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
| 320 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
| 321 | u(i,k,j-2),u(i,k,j-1), u(i,k,j),u(i,k,j+1),vel ) |
---|
| 322 | ENDDO |
---|
| 323 | ENDDO |
---|
| 324 | |
---|
| 325 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
| 326 | |
---|
| 327 | DO k=kts,ktf |
---|
| 328 | DO i = i_start, i_end |
---|
| 329 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
---|
| 330 | *(u(i,k,j)+u(i,k,j-1)) |
---|
| 331 | ENDDO |
---|
| 332 | ENDDO |
---|
| 333 | |
---|
| 334 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
| 335 | |
---|
| 336 | DO k=kts,ktf |
---|
| 337 | DO i = i_start, i_end |
---|
| 338 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
| 339 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
| 340 | u(i,k,j-2),u(i,k,j-1), & |
---|
| 341 | u(i,k,j),u(i,k,j+1),vel ) |
---|
| 342 | ENDDO |
---|
| 343 | ENDDO |
---|
| 344 | |
---|
| 345 | END IF |
---|
| 346 | |
---|
| 347 | !stopped |
---|
| 348 | |
---|
| 349 | ! y flux-divergence into tendency |
---|
| 350 | |
---|
| 351 | ! Comments for polar boundary condition |
---|
| 352 | ! Flow is only from one side for points next to poles |
---|
| 353 | ! S. pole at j=jds, N. pole at j=jde for v-stagger points |
---|
| 354 | ! Tendencies affected are held at j=jds and j=jde-1 (non-stagger) |
---|
| 355 | ! jp0 will always hold the flux from the south, and |
---|
| 356 | ! jp1 will hold the flux from the north. |
---|
| 357 | ! |
---|
| 358 | ! When j=jds+1 we are 1 in from S. pole, and jp1 contains fqy(jds+1), jp0 has fqy(jds) |
---|
| 359 | ! tendency(j-1) = - mx/dy * (u rho v (jds+1)/mx - u rho v (jds)/mx) |
---|
| 360 | ! v(jds) = 0 |
---|
| 361 | ! tendency(j-1) = - mx/dy * (u rho v (jds+1)/mx) = - mx/dy * fqy(jp1) |
---|
| 362 | ! |
---|
| 363 | ! When j=jde-1 we are 1 in from N. pole, and jp1 contains fqy(jde-1), jp0 has fqy(jde-2) |
---|
| 364 | ! tendency(j-1) = - mx/dy * (u rho v (jde)/mx - u rho v (jde-1)/mx) |
---|
| 365 | ! v(jde) = 0 |
---|
| 366 | ! tendency(j-1) = + mx/dy * (u rho v (jde-1)/mx) = + mx/dy * fqy(jp0) |
---|
| 367 | |
---|
| 368 | ! (j > j_start) will miss the u(,,jds) tendency |
---|
| 369 | IF ( config_flags%polar .AND. (j == jds+1) ) THEN |
---|
| 370 | DO k=kts,ktf |
---|
| 371 | DO i = i_start, i_end |
---|
| 372 | mrdy=msfux(i,j-1)*rdy ! ADT eqn 44, 2nd term on RHS |
---|
| 373 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*fqy(i,k,jp1) |
---|
| 374 | END DO |
---|
| 375 | END DO |
---|
| 376 | ! This would be seen by (j > j_start) but we need to zero out the NP tendency |
---|
| 377 | ELSE IF( config_flags%polar .AND. (j == jde) ) THEN |
---|
| 378 | DO k=kts,ktf |
---|
| 379 | DO i = i_start, i_end |
---|
| 380 | mrdy=msfux(i,j-1)*rdy ! ADT eqn 44, 2nd term on RHS |
---|
| 381 | tendency(i,k,j-1) = tendency(i,k,j-1) + mrdy*fqy(i,k,jp0) |
---|
| 382 | END DO |
---|
| 383 | END DO |
---|
| 384 | ELSE ! normal code |
---|
| 385 | |
---|
| 386 | IF(j > j_start) THEN |
---|
| 387 | |
---|
| 388 | DO k=kts,ktf |
---|
| 389 | DO i = i_start, i_end |
---|
| 390 | mrdy=msfux(i,j-1)*rdy ! ADT eqn 44, 2nd term on RHS |
---|
| 391 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
| 392 | ENDDO |
---|
| 393 | ENDDO |
---|
| 394 | |
---|
| 395 | ENDIF |
---|
| 396 | |
---|
| 397 | END IF |
---|
| 398 | |
---|
| 399 | |
---|
| 400 | jtmp = jp1 |
---|
| 401 | jp1 = jp0 |
---|
| 402 | jp0 = jtmp |
---|
| 403 | |
---|
| 404 | ENDDO j_loop_y_flux_6 |
---|
| 405 | |
---|
| 406 | ! next, x - flux divergence |
---|
| 407 | |
---|
| 408 | i_start = its |
---|
| 409 | i_end = ite |
---|
| 410 | |
---|
| 411 | j_start = jts |
---|
| 412 | j_end = MIN(jte,jde-1) |
---|
| 413 | |
---|
| 414 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
| 415 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 416 | |
---|
| 417 | i_start_f = i_start |
---|
| 418 | i_end_f = i_end+1 |
---|
| 419 | |
---|
| 420 | IF(degrade_xs) then |
---|
| 421 | i_start = MAX(ids+1,its) |
---|
| 422 | i_start_f = ids+3 |
---|
| 423 | ENDIF |
---|
| 424 | |
---|
| 425 | IF(degrade_xe) then |
---|
| 426 | i_end = MIN(ide-1,ite) |
---|
| 427 | i_end_f = ide-2 |
---|
| 428 | ENDIF |
---|
| 429 | |
---|
| 430 | ! compute fluxes |
---|
| 431 | |
---|
| 432 | DO j = j_start, j_end |
---|
| 433 | |
---|
| 434 | ! 5th or 6th order flux |
---|
| 435 | |
---|
| 436 | DO k=kts,ktf |
---|
| 437 | DO i = i_start_f, i_end_f |
---|
| 438 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
| 439 | fqx( i,k ) = vel*flux6( u(i-3,k,j), u(i-2,k,j), & |
---|
| 440 | u(i-1,k,j), u(i ,k,j), & |
---|
| 441 | u(i+1,k,j), u(i+2,k,j), & |
---|
| 442 | vel ) |
---|
| 443 | ENDDO |
---|
| 444 | ENDDO |
---|
| 445 | |
---|
| 446 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
| 447 | ! specified uses upstream normal wind at boundaries |
---|
| 448 | |
---|
| 449 | IF( degrade_xs ) THEN |
---|
| 450 | |
---|
| 451 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
| 452 | i = ids+1 |
---|
| 453 | DO k=kts,ktf |
---|
| 454 | ub = u(i-1,k,j) |
---|
| 455 | IF (specified .AND. u(i,k,j) .LT. 0.)ub = u(i,k,j) |
---|
| 456 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
| 457 | *(u(i,k,j)+ub) |
---|
| 458 | ENDDO |
---|
| 459 | END IF |
---|
| 460 | |
---|
| 461 | i = ids+2 |
---|
| 462 | DO k=kts,ktf |
---|
| 463 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
| 464 | fqx( i, k ) = vel*flux4( u(i-2,k,j), u(i-1,k,j), & |
---|
| 465 | u(i ,k,j), u(i+1,k,j), & |
---|
| 466 | vel ) |
---|
| 467 | ENDDO |
---|
| 468 | |
---|
| 469 | ENDIF |
---|
| 470 | |
---|
| 471 | IF( degrade_xe ) THEN |
---|
| 472 | |
---|
| 473 | IF( i_end == ide-1 ) THEN ! second order flux next to the boundary |
---|
| 474 | i = ide |
---|
| 475 | DO k=kts,ktf |
---|
| 476 | ub = u(i,k,j) |
---|
| 477 | IF (specified .AND. u(i-1,k,j) .GT. 0.)ub = u(i-1,k,j) |
---|
| 478 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
| 479 | *(u(i-1,k,j)+ub) |
---|
| 480 | ENDDO |
---|
| 481 | ENDIF |
---|
| 482 | |
---|
| 483 | DO k=kts,ktf |
---|
| 484 | i = ide-1 |
---|
| 485 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
| 486 | fqx( i,k ) = vel*flux4( u(i-2,k,j), u(i-1,k,j), & |
---|
| 487 | u(i ,k,j), u(i+1,k,j), & |
---|
| 488 | vel ) |
---|
| 489 | ENDDO |
---|
| 490 | |
---|
| 491 | ENDIF |
---|
| 492 | |
---|
| 493 | ! x flux-divergence into tendency |
---|
| 494 | |
---|
| 495 | DO k=kts,ktf |
---|
| 496 | DO i = i_start, i_end |
---|
| 497 | mrdx=msfux(i,j)*rdx ! ADT eqn 44, 1st term on RHS |
---|
| 498 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
| 499 | ENDDO |
---|
| 500 | ENDDO |
---|
| 501 | |
---|
| 502 | ENDDO |
---|
| 503 | |
---|
| 504 | ELSE IF( horz_order == 5 ) THEN |
---|
| 505 | |
---|
| 506 | ! 5th order horizontal flux calculation |
---|
| 507 | ! This code is EXACTLY the same as the 6th order code |
---|
| 508 | ! EXCEPT the 5th order and 3rd operators are used in |
---|
| 509 | ! place of the 6th and 4th order operators |
---|
| 510 | |
---|
| 511 | ! determine boundary mods for flux operators |
---|
| 512 | ! We degrade the flux operators from 3rd/4th order |
---|
| 513 | ! to second order one gridpoint in from the boundaries for |
---|
| 514 | ! all boundary conditions except periodic and symmetry - these |
---|
| 515 | ! conditions have boundary zone data fill for correct application |
---|
| 516 | ! of the higher order flux stencils |
---|
| 517 | |
---|
| 518 | degrade_xs = .true. |
---|
| 519 | degrade_xe = .true. |
---|
| 520 | degrade_ys = .true. |
---|
| 521 | degrade_ye = .true. |
---|
| 522 | |
---|
| 523 | IF( config_flags%periodic_x .or. & |
---|
| 524 | config_flags%symmetric_xs .or. & |
---|
| 525 | (its > ids+2) ) degrade_xs = .false. |
---|
| 526 | IF( config_flags%periodic_x .or. & |
---|
| 527 | config_flags%symmetric_xe .or. & |
---|
| 528 | (ite < ide-2) ) degrade_xe = .false. |
---|
| 529 | IF( config_flags%periodic_y .or. & |
---|
| 530 | config_flags%symmetric_ys .or. & |
---|
| 531 | (jts > jds+2) ) degrade_ys = .false. |
---|
| 532 | IF( config_flags%periodic_y .or. & |
---|
| 533 | config_flags%symmetric_ye .or. & |
---|
| 534 | (jte < jde-3) ) degrade_ye = .false. |
---|
| 535 | |
---|
| 536 | !--------------- y - advection first |
---|
| 537 | |
---|
| 538 | i_start = its |
---|
| 539 | i_end = ite |
---|
| 540 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
| 541 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-1,ite) |
---|
| 542 | IF ( config_flags%periodic_x ) i_start = its |
---|
| 543 | IF ( config_flags%periodic_x ) i_end = ite |
---|
| 544 | |
---|
| 545 | j_start = jts |
---|
| 546 | j_end = MIN(jte,jde-1) |
---|
| 547 | |
---|
| 548 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
| 549 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 550 | |
---|
| 551 | j_start_f = j_start |
---|
| 552 | j_end_f = j_end+1 |
---|
| 553 | |
---|
| 554 | IF(degrade_ys) then |
---|
| 555 | j_start = MAX(jts,jds+1) |
---|
| 556 | j_start_f = jds+3 |
---|
| 557 | ENDIF |
---|
| 558 | |
---|
| 559 | IF(degrade_ye) then |
---|
| 560 | j_end = MIN(jte,jde-2) |
---|
| 561 | j_end_f = jde-3 |
---|
| 562 | ENDIF |
---|
| 563 | |
---|
| 564 | IF(config_flags%polar) j_end = MIN(jte,jde-1) |
---|
| 565 | |
---|
| 566 | ! compute fluxes, 5th or 6th order |
---|
| 567 | |
---|
| 568 | jp1 = 2 |
---|
| 569 | jp0 = 1 |
---|
| 570 | |
---|
| 571 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
---|
| 572 | |
---|
| 573 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
| 574 | |
---|
| 575 | DO k=kts,ktf |
---|
| 576 | DO i = i_start, i_end |
---|
| 577 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
| 578 | fqy( i, k, jp1 ) = vel*flux5( & |
---|
| 579 | u(i,k,j-3), u(i,k,j-2), u(i,k,j-1), & |
---|
| 580 | u(i,k,j ), u(i,k,j+1), u(i,k,j+2), vel ) |
---|
| 581 | ENDDO |
---|
| 582 | ENDDO |
---|
| 583 | |
---|
| 584 | ! we must be close to some boundary where we need to reduce the order of the stencil |
---|
| 585 | |
---|
| 586 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
| 587 | |
---|
| 588 | DO k=kts,ktf |
---|
| 589 | DO i = i_start, i_end |
---|
| 590 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
---|
| 591 | *(u(i,k,j)+u(i,k,j-1)) |
---|
| 592 | ENDDO |
---|
| 593 | ENDDO |
---|
| 594 | |
---|
| 595 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
| 596 | |
---|
| 597 | DO k=kts,ktf |
---|
| 598 | DO i = i_start, i_end |
---|
| 599 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
| 600 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
| 601 | u(i,k,j-2),u(i,k,j-1), u(i,k,j),u(i,k,j+1),vel ) |
---|
| 602 | ENDDO |
---|
| 603 | ENDDO |
---|
| 604 | |
---|
| 605 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
| 606 | |
---|
| 607 | DO k=kts,ktf |
---|
| 608 | DO i = i_start, i_end |
---|
| 609 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
---|
| 610 | *(u(i,k,j)+u(i,k,j-1)) |
---|
| 611 | ENDDO |
---|
| 612 | ENDDO |
---|
| 613 | |
---|
| 614 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
| 615 | |
---|
| 616 | DO k=kts,ktf |
---|
| 617 | DO i = i_start, i_end |
---|
| 618 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
| 619 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
| 620 | u(i,k,j-2),u(i,k,j-1), & |
---|
| 621 | u(i,k,j),u(i,k,j+1),vel ) |
---|
| 622 | ENDDO |
---|
| 623 | ENDDO |
---|
| 624 | |
---|
| 625 | END IF |
---|
| 626 | |
---|
| 627 | ! y flux-divergence into tendency |
---|
| 628 | |
---|
| 629 | ! (j > j_start) will miss the u(,,jds) tendency |
---|
| 630 | IF ( config_flags%polar .AND. (j == jds+1) ) THEN |
---|
| 631 | DO k=kts,ktf |
---|
| 632 | DO i = i_start, i_end |
---|
| 633 | mrdy=msfux(i,j-1)*rdy ! ADT eqn 44, 2nd term on RHS |
---|
| 634 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*fqy(i,k,jp1) |
---|
| 635 | END DO |
---|
| 636 | END DO |
---|
| 637 | ! This would be seen by (j > j_start) but we need to zero out the NP tendency |
---|
| 638 | ELSE IF( config_flags%polar .AND. (j == jde) ) THEN |
---|
| 639 | DO k=kts,ktf |
---|
| 640 | DO i = i_start, i_end |
---|
| 641 | mrdy=msfux(i,j-1)*rdy ! ADT eqn 44, 2nd term on RHS |
---|
| 642 | tendency(i,k,j-1) = tendency(i,k,j-1) + mrdy*fqy(i,k,jp0) |
---|
| 643 | END DO |
---|
| 644 | END DO |
---|
| 645 | ELSE ! normal code |
---|
| 646 | |
---|
| 647 | IF(j > j_start) THEN |
---|
| 648 | |
---|
| 649 | DO k=kts,ktf |
---|
| 650 | DO i = i_start, i_end |
---|
| 651 | mrdy=msfux(i,j-1)*rdy ! ADT eqn 44, 2nd term on RHS |
---|
| 652 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
| 653 | ENDDO |
---|
| 654 | ENDDO |
---|
| 655 | |
---|
| 656 | ENDIF |
---|
| 657 | |
---|
| 658 | END IF |
---|
| 659 | |
---|
| 660 | |
---|
| 661 | jtmp = jp1 |
---|
| 662 | jp1 = jp0 |
---|
| 663 | jp0 = jtmp |
---|
| 664 | |
---|
| 665 | ENDDO j_loop_y_flux_5 |
---|
| 666 | |
---|
| 667 | ! next, x - flux divergence |
---|
| 668 | |
---|
| 669 | i_start = its |
---|
| 670 | i_end = ite |
---|
| 671 | |
---|
| 672 | j_start = jts |
---|
| 673 | j_end = MIN(jte,jde-1) |
---|
| 674 | |
---|
| 675 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
| 676 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 677 | |
---|
| 678 | i_start_f = i_start |
---|
| 679 | i_end_f = i_end+1 |
---|
| 680 | |
---|
| 681 | IF(degrade_xs) then |
---|
| 682 | i_start = MAX(ids+1,its) |
---|
| 683 | i_start_f = ids+3 |
---|
| 684 | ENDIF |
---|
| 685 | |
---|
| 686 | IF(degrade_xe) then |
---|
| 687 | i_end = MIN(ide-1,ite) |
---|
| 688 | i_end_f = ide-2 |
---|
| 689 | ENDIF |
---|
| 690 | |
---|
| 691 | ! compute fluxes |
---|
| 692 | |
---|
| 693 | DO j = j_start, j_end |
---|
| 694 | |
---|
| 695 | ! 5th or 6th order flux |
---|
| 696 | |
---|
| 697 | DO k=kts,ktf |
---|
| 698 | DO i = i_start_f, i_end_f |
---|
| 699 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
| 700 | fqx( i,k ) = vel*flux5( u(i-3,k,j), u(i-2,k,j), & |
---|
| 701 | u(i-1,k,j), u(i ,k,j), & |
---|
| 702 | u(i+1,k,j), u(i+2,k,j), & |
---|
| 703 | vel ) |
---|
| 704 | ENDDO |
---|
| 705 | ENDDO |
---|
| 706 | |
---|
| 707 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
| 708 | ! specified uses upstream normal wind at boundaries |
---|
| 709 | |
---|
| 710 | IF( degrade_xs ) THEN |
---|
| 711 | |
---|
| 712 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
| 713 | i = ids+1 |
---|
| 714 | DO k=kts,ktf |
---|
| 715 | ub = u(i-1,k,j) |
---|
| 716 | IF (specified .AND. u(i,k,j) .LT. 0.)ub = u(i,k,j) |
---|
| 717 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
| 718 | *(u(i,k,j)+ub) |
---|
| 719 | ENDDO |
---|
| 720 | END IF |
---|
| 721 | |
---|
| 722 | i = ids+2 |
---|
| 723 | DO k=kts,ktf |
---|
| 724 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
| 725 | fqx( i, k ) = vel*flux3( u(i-2,k,j), u(i-1,k,j), & |
---|
| 726 | u(i ,k,j), u(i+1,k,j), & |
---|
| 727 | vel ) |
---|
| 728 | ENDDO |
---|
| 729 | |
---|
| 730 | ENDIF |
---|
| 731 | |
---|
| 732 | IF( degrade_xe ) THEN |
---|
| 733 | |
---|
| 734 | IF( i_end == ide-1 ) THEN ! second order flux next to the boundary |
---|
| 735 | i = ide |
---|
| 736 | DO k=kts,ktf |
---|
| 737 | ub = u(i,k,j) |
---|
| 738 | IF (specified .AND. u(i-1,k,j) .GT. 0.)ub = u(i-1,k,j) |
---|
| 739 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
| 740 | *(u(i-1,k,j)+ub) |
---|
| 741 | ENDDO |
---|
| 742 | ENDIF |
---|
| 743 | |
---|
| 744 | DO k=kts,ktf |
---|
| 745 | i = ide-1 |
---|
| 746 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
| 747 | fqx( i,k ) = vel*flux3( u(i-2,k,j), u(i-1,k,j), & |
---|
| 748 | u(i ,k,j), u(i+1,k,j), & |
---|
| 749 | vel ) |
---|
| 750 | ENDDO |
---|
| 751 | |
---|
| 752 | ENDIF |
---|
| 753 | |
---|
| 754 | ! x flux-divergence into tendency |
---|
| 755 | |
---|
| 756 | DO k=kts,ktf |
---|
| 757 | DO i = i_start, i_end |
---|
| 758 | mrdx=msfux(i,j)*rdx ! ADT eqn 44, 1st term on RHS |
---|
| 759 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
| 760 | ENDDO |
---|
| 761 | ENDDO |
---|
| 762 | |
---|
| 763 | ENDDO |
---|
| 764 | |
---|
| 765 | ELSE IF( horz_order == 4 ) THEN |
---|
| 766 | |
---|
| 767 | ! determine boundary mods for flux operators |
---|
| 768 | ! We degrade the flux operators from 3rd/4th order |
---|
| 769 | ! to second order one gridpoint in from the boundaries for |
---|
| 770 | ! all boundary conditions except periodic and symmetry - these |
---|
| 771 | ! conditions have boundary zone data fill for correct application |
---|
| 772 | ! of the higher order flux stencils |
---|
| 773 | |
---|
| 774 | degrade_xs = .true. |
---|
| 775 | degrade_xe = .true. |
---|
| 776 | degrade_ys = .true. |
---|
| 777 | degrade_ye = .true. |
---|
| 778 | |
---|
| 779 | IF( config_flags%periodic_x .or. & |
---|
| 780 | config_flags%symmetric_xs .or. & |
---|
| 781 | (its > ids+1) ) degrade_xs = .false. |
---|
| 782 | IF( config_flags%periodic_x .or. & |
---|
| 783 | config_flags%symmetric_xe .or. & |
---|
| 784 | (ite < ide-1) ) degrade_xe = .false. |
---|
| 785 | IF( config_flags%periodic_y .or. & |
---|
| 786 | config_flags%symmetric_ys .or. & |
---|
| 787 | (jts > jds+1) ) degrade_ys = .false. |
---|
| 788 | IF( config_flags%periodic_y .or. & |
---|
| 789 | config_flags%symmetric_ye .or. & |
---|
| 790 | (jte < jde-2) ) degrade_ye = .false. |
---|
| 791 | |
---|
| 792 | !--------------- x - advection first |
---|
| 793 | |
---|
| 794 | i_start = its |
---|
| 795 | i_end = ite |
---|
| 796 | j_start = jts |
---|
| 797 | j_end = MIN(jte,jde-1) |
---|
| 798 | |
---|
| 799 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
| 800 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 801 | |
---|
| 802 | i_start_f = i_start |
---|
| 803 | i_end_f = i_end+1 |
---|
| 804 | |
---|
| 805 | IF(degrade_xs) then |
---|
| 806 | i_start = ids+1 |
---|
| 807 | i_start_f = i_start+1 |
---|
| 808 | ENDIF |
---|
| 809 | |
---|
| 810 | IF(degrade_xe) then |
---|
| 811 | i_end = ide-1 |
---|
| 812 | i_end_f = ide-1 |
---|
| 813 | ENDIF |
---|
| 814 | |
---|
| 815 | ! compute fluxes |
---|
| 816 | |
---|
| 817 | DO j = j_start, j_end |
---|
| 818 | |
---|
| 819 | DO k=kts,ktf |
---|
| 820 | DO i = i_start_f, i_end_f |
---|
| 821 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
| 822 | fqx( i, k ) = vel*flux4( u(i-2,k,j), u(i-1,k,j), & |
---|
| 823 | u(i ,k,j), u(i+1,k,j), vel ) |
---|
| 824 | ENDDO |
---|
| 825 | ENDDO |
---|
| 826 | |
---|
| 827 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
| 828 | ! specified uses upstream normal wind at boundaries |
---|
| 829 | |
---|
| 830 | IF( degrade_xs ) THEN |
---|
| 831 | i = i_start |
---|
| 832 | DO k=kts,ktf |
---|
| 833 | ub = u(i-1,k,j) |
---|
| 834 | IF (specified .AND. u(i,k,j) .LT. 0.)ub = u(i,k,j) |
---|
| 835 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
| 836 | *(u(i,k,j)+ub) |
---|
| 837 | ENDDO |
---|
| 838 | ENDIF |
---|
| 839 | |
---|
| 840 | IF( degrade_xe ) THEN |
---|
| 841 | i = i_end+1 |
---|
| 842 | DO k=kts,ktf |
---|
| 843 | ub = u(i,k,j) |
---|
| 844 | IF (specified .AND. u(i-1,k,j) .GT. 0.)ub = u(i-1,k,j) |
---|
| 845 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
| 846 | *(u(i-1,k,j)+ub) |
---|
| 847 | ENDDO |
---|
| 848 | ENDIF |
---|
| 849 | |
---|
| 850 | ! x flux-divergence into tendency |
---|
| 851 | |
---|
| 852 | DO k=kts,ktf |
---|
| 853 | DO i = i_start, i_end |
---|
| 854 | mrdx=msfux(i,j)*rdx ! ADT eqn 44, 1st term on RHS |
---|
| 855 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
| 856 | ENDDO |
---|
| 857 | ENDDO |
---|
| 858 | |
---|
| 859 | ENDDO |
---|
| 860 | |
---|
| 861 | ! y flux divergence |
---|
| 862 | |
---|
| 863 | i_start = its |
---|
| 864 | i_end = ite |
---|
| 865 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
| 866 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-1,ite) |
---|
| 867 | IF ( config_flags%periodic_x ) i_start = its |
---|
| 868 | IF ( config_flags%periodic_x ) i_end = ite |
---|
| 869 | |
---|
| 870 | j_start = jts |
---|
| 871 | j_end = MIN(jte,jde-1) |
---|
| 872 | |
---|
| 873 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
| 874 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 875 | |
---|
| 876 | j_start_f = j_start |
---|
| 877 | j_end_f = j_end+1 |
---|
| 878 | |
---|
| 879 | !CJM these may not work with tiling because they define j_start and end in terms of domain dim |
---|
| 880 | IF(degrade_ys) then |
---|
| 881 | j_start = jds+1 |
---|
| 882 | j_start_f = j_start+1 |
---|
| 883 | ENDIF |
---|
| 884 | |
---|
| 885 | IF(degrade_ye) then |
---|
| 886 | j_end = jde-2 |
---|
| 887 | j_end_f = jde-2 |
---|
| 888 | ENDIF |
---|
| 889 | |
---|
| 890 | IF(config_flags%polar) j_end = MIN(jte,jde-1) |
---|
| 891 | |
---|
| 892 | ! j flux loop for v flux of u momentum |
---|
| 893 | |
---|
| 894 | jp1 = 2 |
---|
| 895 | jp0 = 1 |
---|
| 896 | |
---|
| 897 | DO j = j_start, j_end+1 |
---|
| 898 | |
---|
| 899 | IF ( (j < j_start_f) .and. degrade_ys) THEN |
---|
| 900 | DO k = kts, ktf |
---|
| 901 | DO i = i_start, i_end |
---|
| 902 | fqy(i, k, jp1) = 0.25*(rv(i,k,j_start)+rv(i-1,k,j_start)) & |
---|
| 903 | *(u(i,k,j_start)+u(i,k,j_start-1)) |
---|
| 904 | ENDDO |
---|
| 905 | ENDDO |
---|
| 906 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
| 907 | DO k = kts, ktf |
---|
| 908 | DO i = i_start, i_end |
---|
| 909 | ! Assumes j>j_end_f is ONLY j_end+1 ... |
---|
| 910 | ! fqy(i, k, jp1) = 0.25*(rv(i,k,j_end+1)+rv(i-1,k,j_end+1)) & |
---|
| 911 | ! *(u(i,k,j_end+1)+u(i,k,j_end)) |
---|
| 912 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
---|
| 913 | *(u(i,k,j)+u(i,k,j-1)) |
---|
| 914 | ENDDO |
---|
| 915 | ENDDO |
---|
| 916 | ELSE |
---|
| 917 | ! 3rd or 4th order flux |
---|
| 918 | DO k = kts, ktf |
---|
| 919 | DO i = i_start, i_end |
---|
| 920 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
| 921 | fqy( i, k, jp1 ) = vel*flux4( u(i,k,j-2), u(i,k,j-1), & |
---|
| 922 | u(i,k,j ), u(i,k,j+1), & |
---|
| 923 | vel ) |
---|
| 924 | ENDDO |
---|
| 925 | ENDDO |
---|
| 926 | |
---|
| 927 | END IF |
---|
| 928 | |
---|
| 929 | ! y flux-divergence into tendency |
---|
| 930 | |
---|
| 931 | ! (j > j_start) will miss the u(,,jds) tendency |
---|
| 932 | IF ( config_flags%polar .AND. (j == jds+1) ) THEN |
---|
| 933 | DO k=kts,ktf |
---|
| 934 | DO i = i_start, i_end |
---|
| 935 | mrdy=msfux(i,j-1)*rdy ! ADT eqn 44, 2nd term on RHS |
---|
| 936 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*fqy(i,k,jp1) |
---|
| 937 | END DO |
---|
| 938 | END DO |
---|
| 939 | ! This would be seen by (j > j_start) but we need to zero out the NP tendency |
---|
| 940 | ELSE IF( config_flags%polar .AND. (j == jde) ) THEN |
---|
| 941 | DO k=kts,ktf |
---|
| 942 | DO i = i_start, i_end |
---|
| 943 | mrdy=msfux(i,j-1)*rdy ! ADT eqn 44, 2nd term on RHS |
---|
| 944 | tendency(i,k,j-1) = tendency(i,k,j-1) + mrdy*fqy(i,k,jp0) |
---|
| 945 | END DO |
---|
| 946 | END DO |
---|
| 947 | ELSE ! normal code |
---|
| 948 | |
---|
| 949 | IF (j > j_start) THEN |
---|
| 950 | |
---|
| 951 | DO k=kts,ktf |
---|
| 952 | DO i = i_start, i_end |
---|
| 953 | mrdy=msfux(i,j-1)*rdy ! ADT eqn 44, 2nd term on RHS |
---|
| 954 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
| 955 | ENDDO |
---|
| 956 | ENDDO |
---|
| 957 | |
---|
| 958 | END IF |
---|
| 959 | |
---|
| 960 | END IF |
---|
| 961 | |
---|
| 962 | jtmp = jp1 |
---|
| 963 | jp1 = jp0 |
---|
| 964 | jp0 = jtmp |
---|
| 965 | |
---|
| 966 | ENDDO |
---|
| 967 | |
---|
| 968 | ELSE IF ( horz_order == 3 ) THEN |
---|
| 969 | |
---|
| 970 | ! As with the 5th and 6th order flux chioces, the 3rd and 4th order |
---|
| 971 | ! code is EXACTLY the same EXCEPT for the flux operator. |
---|
| 972 | |
---|
| 973 | ! determine boundary mods for flux operators |
---|
| 974 | ! We degrade the flux operators from 3rd/4th order |
---|
| 975 | ! to second order one gridpoint in from the boundaries for |
---|
| 976 | ! all boundary conditions except periodic and symmetry - these |
---|
| 977 | ! conditions have boundary zone data fill for correct application |
---|
| 978 | ! of the higher order flux stencils |
---|
| 979 | |
---|
| 980 | degrade_xs = .true. |
---|
| 981 | degrade_xe = .true. |
---|
| 982 | degrade_ys = .true. |
---|
| 983 | degrade_ye = .true. |
---|
| 984 | |
---|
| 985 | IF( config_flags%periodic_x .or. & |
---|
| 986 | config_flags%symmetric_xs .or. & |
---|
| 987 | (its > ids+1) ) degrade_xs = .false. |
---|
| 988 | IF( config_flags%periodic_x .or. & |
---|
| 989 | config_flags%symmetric_xe .or. & |
---|
| 990 | (ite < ide-1) ) degrade_xe = .false. |
---|
| 991 | IF( config_flags%periodic_y .or. & |
---|
| 992 | config_flags%symmetric_ys .or. & |
---|
| 993 | (jts > jds+1) ) degrade_ys = .false. |
---|
| 994 | IF( config_flags%periodic_y .or. & |
---|
| 995 | config_flags%symmetric_ye .or. & |
---|
| 996 | (jte < jde-2) ) degrade_ye = .false. |
---|
| 997 | |
---|
| 998 | !--------------- x - advection first |
---|
| 999 | |
---|
| 1000 | i_start = its |
---|
| 1001 | i_end = ite |
---|
| 1002 | j_start = jts |
---|
| 1003 | j_end = MIN(jte,jde-1) |
---|
| 1004 | |
---|
| 1005 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
| 1006 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 1007 | |
---|
| 1008 | i_start_f = i_start |
---|
| 1009 | i_end_f = i_end+1 |
---|
| 1010 | |
---|
| 1011 | IF(degrade_xs) then |
---|
| 1012 | i_start = ids+1 |
---|
| 1013 | i_start_f = i_start+1 |
---|
| 1014 | ENDIF |
---|
| 1015 | |
---|
| 1016 | IF(degrade_xe) then |
---|
| 1017 | i_end = ide-1 |
---|
| 1018 | i_end_f = ide-1 |
---|
| 1019 | ENDIF |
---|
| 1020 | |
---|
| 1021 | ! compute fluxes |
---|
| 1022 | |
---|
| 1023 | DO j = j_start, j_end |
---|
| 1024 | |
---|
| 1025 | DO k=kts,ktf |
---|
| 1026 | DO i = i_start_f, i_end_f |
---|
| 1027 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
| 1028 | fqx( i, k ) = vel*flux3( u(i-2,k,j), u(i-1,k,j), & |
---|
| 1029 | u(i ,k,j), u(i+1,k,j), vel ) |
---|
| 1030 | ENDDO |
---|
| 1031 | ENDDO |
---|
| 1032 | |
---|
| 1033 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
| 1034 | ! specified uses upstream normal wind at boundaries |
---|
| 1035 | |
---|
| 1036 | IF( degrade_xs ) THEN |
---|
| 1037 | i = i_start |
---|
| 1038 | DO k=kts,ktf |
---|
| 1039 | ub = u(i-1,k,j) |
---|
| 1040 | IF (specified .AND. u(i,k,j) .LT. 0.)ub = u(i,k,j) |
---|
| 1041 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
| 1042 | *(u(i,k,j)+ub) |
---|
| 1043 | ENDDO |
---|
| 1044 | ENDIF |
---|
| 1045 | |
---|
| 1046 | IF( degrade_xe ) THEN |
---|
| 1047 | i = i_end+1 |
---|
| 1048 | DO k=kts,ktf |
---|
| 1049 | ub = u(i,k,j) |
---|
| 1050 | IF (specified .AND. u(i-1,k,j) .GT. 0.)ub = u(i-1,k,j) |
---|
| 1051 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
| 1052 | *(u(i-1,k,j)+ub) |
---|
| 1053 | ENDDO |
---|
| 1054 | ENDIF |
---|
| 1055 | |
---|
| 1056 | ! x flux-divergence into tendency |
---|
| 1057 | |
---|
| 1058 | DO k=kts,ktf |
---|
| 1059 | DO i = i_start, i_end |
---|
| 1060 | mrdx=msfux(i,j)*rdx ! ADT eqn 44, 1st term on RHS |
---|
| 1061 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
| 1062 | ENDDO |
---|
| 1063 | ENDDO |
---|
| 1064 | ENDDO |
---|
| 1065 | |
---|
| 1066 | ! y flux divergence |
---|
| 1067 | |
---|
| 1068 | i_start = its |
---|
| 1069 | i_end = ite |
---|
| 1070 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
| 1071 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-1,ite) |
---|
| 1072 | IF ( config_flags%periodic_x ) i_start = its |
---|
| 1073 | IF ( config_flags%periodic_x ) i_end = ite |
---|
| 1074 | |
---|
| 1075 | j_start = jts |
---|
| 1076 | j_end = MIN(jte,jde-1) |
---|
| 1077 | |
---|
| 1078 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
| 1079 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 1080 | |
---|
| 1081 | j_start_f = j_start |
---|
| 1082 | j_end_f = j_end+1 |
---|
| 1083 | |
---|
| 1084 | !CJM these may not work with tiling because they define j_start and end in terms of domain dim |
---|
| 1085 | IF(degrade_ys) then |
---|
| 1086 | j_start = jds+1 |
---|
| 1087 | j_start_f = j_start+1 |
---|
| 1088 | ENDIF |
---|
| 1089 | |
---|
| 1090 | IF(degrade_ye) then |
---|
| 1091 | j_end = jde-2 |
---|
| 1092 | j_end_f = jde-2 |
---|
| 1093 | ENDIF |
---|
| 1094 | |
---|
| 1095 | IF(config_flags%polar) j_end = MIN(jte,jde-1) |
---|
| 1096 | |
---|
| 1097 | ! j flux loop for v flux of u momentum |
---|
| 1098 | |
---|
| 1099 | jp1 = 2 |
---|
| 1100 | jp0 = 1 |
---|
| 1101 | |
---|
| 1102 | DO j = j_start, j_end+1 |
---|
| 1103 | |
---|
| 1104 | IF ( (j < j_start_f) .and. degrade_ys) THEN |
---|
| 1105 | DO k = kts, ktf |
---|
| 1106 | DO i = i_start, i_end |
---|
| 1107 | fqy(i, k, jp1) = 0.25*(rv(i,k,j_start)+rv(i-1,k,j_start)) & |
---|
| 1108 | *(u(i,k,j_start)+u(i,k,j_start-1)) |
---|
| 1109 | ENDDO |
---|
| 1110 | ENDDO |
---|
| 1111 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
| 1112 | DO k = kts, ktf |
---|
| 1113 | DO i = i_start, i_end |
---|
| 1114 | ! Assumes j>j_end_f is ONLY j_end+1 ... |
---|
| 1115 | ! fqy(i, k, jp1) = 0.25*(rv(i,k,j_end+1)+rv(i-1,k,j_end+1)) & |
---|
| 1116 | ! *(u(i,k,j_end+1)+u(i,k,j_end)) |
---|
| 1117 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
---|
| 1118 | *(u(i,k,j)+u(i,k,j-1)) |
---|
| 1119 | ENDDO |
---|
| 1120 | ENDDO |
---|
| 1121 | ELSE |
---|
| 1122 | ! 3rd or 4th order flux |
---|
| 1123 | DO k = kts, ktf |
---|
| 1124 | DO i = i_start, i_end |
---|
| 1125 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
| 1126 | fqy( i, k, jp1 ) = vel*flux3( u(i,k,j-2), u(i,k,j-1), & |
---|
| 1127 | u(i,k,j ), u(i,k,j+1), & |
---|
| 1128 | vel ) |
---|
| 1129 | ENDDO |
---|
| 1130 | ENDDO |
---|
| 1131 | |
---|
| 1132 | END IF |
---|
| 1133 | |
---|
| 1134 | ! y flux-divergence into tendency |
---|
| 1135 | |
---|
| 1136 | ! (j > j_start) will miss the u(,,jds) tendency |
---|
| 1137 | IF ( config_flags%polar .AND. (j == jds+1) ) THEN |
---|
| 1138 | DO k=kts,ktf |
---|
| 1139 | DO i = i_start, i_end |
---|
| 1140 | mrdy=msfux(i,j-1)*rdy ! ADT eqn 44, 2nd term on RHS |
---|
| 1141 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*fqy(i,k,jp1) |
---|
| 1142 | END DO |
---|
| 1143 | END DO |
---|
| 1144 | ! This would be seen by (j > j_start) but we need to zero out the NP tendency |
---|
| 1145 | ELSE IF( config_flags%polar .AND. (j == jde) ) THEN |
---|
| 1146 | DO k=kts,ktf |
---|
| 1147 | DO i = i_start, i_end |
---|
| 1148 | mrdy=msfux(i,j-1)*rdy ! ADT eqn 44, 2nd term on RHS |
---|
| 1149 | tendency(i,k,j-1) = tendency(i,k,j-1) + mrdy*fqy(i,k,jp0) |
---|
| 1150 | END DO |
---|
| 1151 | END DO |
---|
| 1152 | ELSE ! normal code |
---|
| 1153 | |
---|
| 1154 | IF (j > j_start) THEN |
---|
| 1155 | |
---|
| 1156 | DO k=kts,ktf |
---|
| 1157 | DO i = i_start, i_end |
---|
| 1158 | mrdy=msfux(i,j-1)*rdy ! ADT eqn 44, 2nd term on RHS |
---|
| 1159 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
| 1160 | ENDDO |
---|
| 1161 | ENDDO |
---|
| 1162 | |
---|
| 1163 | END IF |
---|
| 1164 | |
---|
| 1165 | END IF |
---|
| 1166 | |
---|
| 1167 | jtmp = jp1 |
---|
| 1168 | jp1 = jp0 |
---|
| 1169 | jp0 = jtmp |
---|
| 1170 | |
---|
| 1171 | ENDDO |
---|
| 1172 | |
---|
| 1173 | ELSE IF ( horz_order == 2 ) THEN |
---|
| 1174 | |
---|
| 1175 | i_start = its |
---|
| 1176 | i_end = ite |
---|
| 1177 | j_start = jts |
---|
| 1178 | j_end = MIN(jte,jde-1) |
---|
| 1179 | |
---|
| 1180 | IF ( config_flags%open_xs ) i_start = MAX(ids+1,its) |
---|
| 1181 | IF ( config_flags%open_xe ) i_end = MIN(ide-1,ite) |
---|
| 1182 | IF ( specified ) i_start = MAX(ids+2,its) |
---|
| 1183 | IF ( specified ) i_end = MIN(ide-2,ite) |
---|
| 1184 | IF ( config_flags%periodic_x ) i_start = its |
---|
| 1185 | IF ( config_flags%periodic_x ) i_end = ite |
---|
| 1186 | |
---|
| 1187 | DO j = j_start, j_end |
---|
| 1188 | DO k=kts,ktf |
---|
| 1189 | DO i = i_start, i_end |
---|
| 1190 | mrdx=msfux(i,j)*rdx ! ADT eqn 44, 1st term on RHS |
---|
| 1191 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 & |
---|
| 1192 | *((ru(i+1,k,j)+ru(i,k,j))*(u(i+1,k,j)+u(i,k,j)) & |
---|
| 1193 | -(ru(i,k,j)+ru(i-1,k,j))*(u(i,k,j)+u(i-1,k,j))) |
---|
| 1194 | ENDDO |
---|
| 1195 | ENDDO |
---|
| 1196 | ENDDO |
---|
| 1197 | |
---|
| 1198 | IF ( specified .AND. its .LE. ids+1 .AND. .NOT. config_flags%periodic_x ) THEN |
---|
| 1199 | DO j = j_start, j_end |
---|
| 1200 | DO k=kts,ktf |
---|
| 1201 | i = ids+1 |
---|
| 1202 | mrdx=msfux(i,j)*rdx ! ADT eqn 44, 1st term on RHS |
---|
| 1203 | ub = u(i-1,k,j) |
---|
| 1204 | IF (u(i,k,j) .LT. 0.) ub = u(i,k,j) |
---|
| 1205 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 & |
---|
| 1206 | *((ru(i+1,k,j)+ru(i,k,j))*(u(i+1,k,j)+u(i,k,j)) & |
---|
| 1207 | -(ru(i,k,j)+ru(i-1,k,j))*(u(i,k,j)+ub)) |
---|
| 1208 | ENDDO |
---|
| 1209 | ENDDO |
---|
| 1210 | ENDIF |
---|
| 1211 | IF ( specified .AND. ite .GE. ide-1 .AND. .NOT. config_flags%periodic_x ) THEN |
---|
| 1212 | DO j = j_start, j_end |
---|
| 1213 | DO k=kts,ktf |
---|
| 1214 | i = ide-1 |
---|
| 1215 | mrdx=msfux(i,j)*rdx ! ADT eqn 44, 1st term on RHS |
---|
| 1216 | ub = u(i+1,k,j) |
---|
| 1217 | IF (u(i,k,j) .GT. 0.) ub = u(i,k,j) |
---|
| 1218 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 & |
---|
| 1219 | *((ru(i+1,k,j)+ru(i,k,j))*(ub+u(i,k,j)) & |
---|
| 1220 | -(ru(i,k,j)+ru(i-1,k,j))*(u(i,k,j)+u(i-1,k,j))) |
---|
| 1221 | ENDDO |
---|
| 1222 | ENDDO |
---|
| 1223 | ENDIF |
---|
| 1224 | |
---|
| 1225 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
---|
| 1226 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-2,jte) |
---|
| 1227 | |
---|
| 1228 | DO j = j_start, j_end |
---|
| 1229 | DO k=kts,ktf |
---|
| 1230 | DO i = i_start, i_end |
---|
| 1231 | mrdy=msfux(i,j)*rdy ! ADT eqn 44, 1st term on RHS |
---|
| 1232 | ! Comments for polar boundary condition |
---|
| 1233 | ! Flow is only from one side for points next to poles |
---|
| 1234 | IF ( (config_flags%polar) .AND. (j == jds) ) THEN |
---|
| 1235 | tendency(i,k,j)=tendency(i,k,j)-mrdy*0.25 & |
---|
| 1236 | *(rv(i,k,j+1)+rv(i-1,k,j+1))*(u(i,k,j+1)+u(i,k,j)) |
---|
| 1237 | ELSE IF ( (config_flags%polar) .AND. (j == jde-1) ) THEN |
---|
| 1238 | tendency(i,k,j)=tendency(i,k,j)+mrdy*0.25 & |
---|
| 1239 | *(rv(i,k,j)+rv(i-1,k,j))*(u(i,k,j)+u(i,k,j-1)) |
---|
| 1240 | ELSE ! Normal code |
---|
| 1241 | tendency(i,k,j)=tendency(i,k,j)-mrdy*0.25 & |
---|
| 1242 | *((rv(i,k,j+1)+rv(i-1,k,j+1))*(u(i,k,j+1)+u(i,k,j)) & |
---|
| 1243 | -(rv(i,k,j)+rv(i-1,k,j))*(u(i,k,j)+u(i,k,j-1))) |
---|
| 1244 | ENDIF |
---|
| 1245 | ENDDO |
---|
| 1246 | ENDDO |
---|
| 1247 | ENDDO |
---|
| 1248 | |
---|
| 1249 | ELSE IF ( horz_order == 0 ) THEN |
---|
| 1250 | |
---|
| 1251 | ! Just in case we want to turn horizontal advection off, we can do it |
---|
| 1252 | |
---|
| 1253 | ELSE |
---|
| 1254 | |
---|
| 1255 | WRITE ( wrf_err_message , * ) 'module_advect: advect_u_6a: h_order not known ',horz_order |
---|
| 1256 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
| 1257 | |
---|
| 1258 | ENDIF horizontal_order_test |
---|
| 1259 | |
---|
| 1260 | ! radiative lateral boundary condition in x for normal velocity (u) |
---|
| 1261 | |
---|
| 1262 | IF ( (config_flags%open_xs) .and. its == ids ) THEN |
---|
| 1263 | |
---|
| 1264 | j_start = jts |
---|
| 1265 | j_end = MIN(jte,jde-1) |
---|
| 1266 | |
---|
| 1267 | DO j = j_start, j_end |
---|
| 1268 | DO k = kts, ktf |
---|
| 1269 | ub = MIN(ru(its,k,j)-cb*mut(its,j), 0.) |
---|
| 1270 | tendency(its,k,j) = tendency(its,k,j) & |
---|
| 1271 | - rdx*ub*(u_old(its+1,k,j) - u_old(its,k,j)) |
---|
| 1272 | ENDDO |
---|
| 1273 | ENDDO |
---|
| 1274 | |
---|
| 1275 | ENDIF |
---|
| 1276 | |
---|
| 1277 | IF ( (config_flags%open_xe) .and. ite == ide ) THEN |
---|
| 1278 | |
---|
| 1279 | j_start = jts |
---|
| 1280 | j_end = MIN(jte,jde-1) |
---|
| 1281 | |
---|
| 1282 | DO j = j_start, j_end |
---|
| 1283 | DO k = kts, ktf |
---|
| 1284 | ub = MAX(ru(ite,k,j)+cb*mut(ite-1,j), 0.) |
---|
| 1285 | tendency(ite,k,j) = tendency(ite,k,j) & |
---|
| 1286 | - rdx*ub*(u_old(ite,k,j) - u_old(ite-1,k,j)) |
---|
| 1287 | ENDDO |
---|
| 1288 | ENDDO |
---|
| 1289 | |
---|
| 1290 | ENDIF |
---|
| 1291 | |
---|
| 1292 | ! pick up the rest of the horizontal radiation boundary conditions. |
---|
| 1293 | ! (these are the computations that don't require 'cb') |
---|
| 1294 | ! first, set to index ranges |
---|
| 1295 | |
---|
| 1296 | i_start = its |
---|
| 1297 | i_end = MIN(ite,ide) |
---|
| 1298 | imin = ids |
---|
| 1299 | imax = ide-1 |
---|
| 1300 | |
---|
| 1301 | IF (config_flags%open_xs) THEN |
---|
| 1302 | i_start = MAX(ids+1, its) |
---|
| 1303 | imin = ids |
---|
| 1304 | ENDIF |
---|
| 1305 | IF (config_flags%open_xe) THEN |
---|
| 1306 | i_end = MIN(ite,ide-1) |
---|
| 1307 | imax = ide-1 |
---|
| 1308 | ENDIF |
---|
| 1309 | |
---|
| 1310 | IF( (config_flags%open_ys) .and. (jts == jds)) THEN |
---|
| 1311 | |
---|
| 1312 | DO i = i_start, i_end |
---|
| 1313 | |
---|
| 1314 | mrdy=msfux(i,jts)*rdy ! ADT eqn 44, 2nd term on RHS |
---|
| 1315 | ip = MIN( imax, i ) |
---|
| 1316 | im = MAX( imin, i-1 ) |
---|
| 1317 | |
---|
| 1318 | DO k=kts,ktf |
---|
| 1319 | |
---|
| 1320 | vw = 0.5*(rv(ip,k,jts)+rv(im,k,jts)) |
---|
| 1321 | vb = MIN( vw, 0. ) |
---|
| 1322 | dvm = rv(ip,k,jts+1)-rv(ip,k,jts) |
---|
| 1323 | dvp = rv(im,k,jts+1)-rv(im,k,jts) |
---|
| 1324 | tendency(i,k,jts)=tendency(i,k,jts)-mrdy*( & |
---|
| 1325 | vb*(u_old(i,k,jts+1)-u_old(i,k,jts)) & |
---|
| 1326 | +0.5*u(i,k,jts)*(dvm+dvp)) |
---|
| 1327 | ENDDO |
---|
| 1328 | ENDDO |
---|
| 1329 | |
---|
| 1330 | ENDIF |
---|
| 1331 | |
---|
| 1332 | IF( (config_flags%open_ye) .and. (jte == jde)) THEN |
---|
| 1333 | |
---|
| 1334 | DO i = i_start, i_end |
---|
| 1335 | |
---|
| 1336 | mrdy=msfux(i,jte-1)*rdy ! ADT eqn 44, 2nd term on RHS |
---|
| 1337 | ip = MIN( imax, i ) |
---|
| 1338 | im = MAX( imin, i-1 ) |
---|
| 1339 | |
---|
| 1340 | DO k=kts,ktf |
---|
| 1341 | |
---|
| 1342 | vw = 0.5*(rv(ip,k,jte)+rv(im,k,jte)) |
---|
| 1343 | vb = MAX( vw, 0. ) |
---|
| 1344 | dvm = rv(ip,k,jte)-rv(ip,k,jte-1) |
---|
| 1345 | dvp = rv(im,k,jte)-rv(im,k,jte-1) |
---|
| 1346 | tendency(i,k,jte-1)=tendency(i,k,jte-1)-mrdy*( & |
---|
| 1347 | vb*(u_old(i,k,jte-1)-u_old(i,k,jte-2)) & |
---|
| 1348 | +0.5*u(i,k,jte-1)*(dvm+dvp)) |
---|
| 1349 | ENDDO |
---|
| 1350 | ENDDO |
---|
| 1351 | |
---|
| 1352 | ENDIF |
---|
| 1353 | |
---|
| 1354 | !-------------------- vertical advection |
---|
| 1355 | ! ADT eqn 44 has 3rd term on RHS = -(1/my) partial d/dz (rho u w) |
---|
| 1356 | ! Here we have: - partial d/dz (u*rom) = - partial d/dz (u rho w / my) |
---|
| 1357 | ! Since 'my' (map scale factor in y-direction) isn't a function of z, |
---|
| 1358 | ! this is what we need, so leave unchanged in advect_u |
---|
| 1359 | |
---|
| 1360 | i_start = its |
---|
| 1361 | i_end = ite |
---|
| 1362 | j_start = jts |
---|
| 1363 | j_end = min(jte,jde-1) |
---|
| 1364 | |
---|
| 1365 | ! IF ( config_flags%open_xs ) i_start = MAX(ids+1,its) |
---|
| 1366 | ! IF ( config_flags%open_xe ) i_end = MIN(ide-1,ite) |
---|
| 1367 | |
---|
| 1368 | IF ( config_flags%open_ys .or. specified ) i_start = MAX(ids+1,its) |
---|
| 1369 | IF ( config_flags%open_ye .or. specified ) i_end = MIN(ide-1,ite) |
---|
| 1370 | IF ( config_flags%periodic_x ) i_start = its |
---|
| 1371 | IF ( config_flags%periodic_x ) i_end = ite |
---|
| 1372 | |
---|
| 1373 | DO i = i_start, i_end |
---|
| 1374 | vflux(i,kts)=0. |
---|
| 1375 | vflux(i,kte)=0. |
---|
| 1376 | ENDDO |
---|
| 1377 | |
---|
| 1378 | vert_order_test : IF (vert_order == 6) THEN |
---|
| 1379 | |
---|
| 1380 | DO j = j_start, j_end |
---|
| 1381 | |
---|
| 1382 | DO k=kts+3,ktf-2 |
---|
| 1383 | DO i = i_start, i_end |
---|
| 1384 | vel=0.5*(rom(i-1,k,j)+rom(i,k,j)) |
---|
| 1385 | vflux(i,k) = vel*flux6( & |
---|
| 1386 | u(i,k-3,j), u(i,k-2,j), u(i,k-1,j), & |
---|
| 1387 | u(i,k ,j), u(i,k+1,j), u(i,k+2,j), -vel ) |
---|
| 1388 | ENDDO |
---|
| 1389 | ENDDO |
---|
| 1390 | |
---|
| 1391 | DO i = i_start, i_end |
---|
| 1392 | |
---|
| 1393 | k=kts+1 |
---|
| 1394 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
| 1395 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
| 1396 | k = kts+2 |
---|
| 1397 | vel=0.5*(rom(i,k,j)+rom(i-1,k,j)) |
---|
| 1398 | vflux(i,k) = vel*flux4( & |
---|
| 1399 | u(i,k-2,j), u(i,k-1,j), & |
---|
| 1400 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
| 1401 | k = ktf-1 |
---|
| 1402 | vel=0.5*(rom(i,k,j)+rom(i-1,k,j)) |
---|
| 1403 | vflux(i,k) = vel*flux4( & |
---|
| 1404 | u(i,k-2,j), u(i,k-1,j), & |
---|
| 1405 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
| 1406 | k=ktf |
---|
| 1407 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
| 1408 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
| 1409 | |
---|
| 1410 | ENDDO |
---|
| 1411 | DO k=kts,ktf |
---|
| 1412 | DO i = i_start, i_end |
---|
| 1413 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
| 1414 | ENDDO |
---|
| 1415 | ENDDO |
---|
| 1416 | ENDDO |
---|
| 1417 | |
---|
| 1418 | ELSE IF (vert_order == 5) THEN |
---|
| 1419 | |
---|
| 1420 | DO j = j_start, j_end |
---|
| 1421 | |
---|
| 1422 | DO k=kts+3,ktf-2 |
---|
| 1423 | DO i = i_start, i_end |
---|
| 1424 | vel=0.5*(rom(i-1,k,j)+rom(i,k,j)) |
---|
| 1425 | vflux(i,k) = vel*flux5( & |
---|
| 1426 | u(i,k-3,j), u(i,k-2,j), u(i,k-1,j), & |
---|
| 1427 | u(i,k ,j), u(i,k+1,j), u(i,k+2,j), -vel ) |
---|
| 1428 | ENDDO |
---|
| 1429 | ENDDO |
---|
| 1430 | |
---|
| 1431 | DO i = i_start, i_end |
---|
| 1432 | |
---|
| 1433 | k=kts+1 |
---|
| 1434 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
| 1435 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
| 1436 | k = kts+2 |
---|
| 1437 | vel=0.5*(rom(i,k,j)+rom(i-1,k,j)) |
---|
| 1438 | vflux(i,k) = vel*flux3( & |
---|
| 1439 | u(i,k-2,j), u(i,k-1,j), & |
---|
| 1440 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
| 1441 | k = ktf-1 |
---|
| 1442 | vel=0.5*(rom(i,k,j)+rom(i-1,k,j)) |
---|
| 1443 | vflux(i,k) = vel*flux3( & |
---|
| 1444 | u(i,k-2,j), u(i,k-1,j), & |
---|
| 1445 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
| 1446 | k=ktf |
---|
| 1447 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
| 1448 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
| 1449 | |
---|
| 1450 | ENDDO |
---|
| 1451 | DO k=kts,ktf |
---|
| 1452 | DO i = i_start, i_end |
---|
| 1453 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
| 1454 | ENDDO |
---|
| 1455 | ENDDO |
---|
| 1456 | ENDDO |
---|
| 1457 | |
---|
| 1458 | ELSE IF (vert_order == 4) THEN |
---|
| 1459 | |
---|
| 1460 | DO j = j_start, j_end |
---|
| 1461 | |
---|
| 1462 | DO k=kts+2,ktf-1 |
---|
| 1463 | DO i = i_start, i_end |
---|
| 1464 | vel=0.5*(rom(i-1,k,j)+rom(i,k,j)) |
---|
| 1465 | vflux(i,k) = vel*flux4( & |
---|
| 1466 | u(i,k-2,j), u(i,k-1,j), & |
---|
| 1467 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
| 1468 | ENDDO |
---|
| 1469 | ENDDO |
---|
| 1470 | |
---|
| 1471 | DO i = i_start, i_end |
---|
| 1472 | |
---|
| 1473 | k=kts+1 |
---|
| 1474 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
| 1475 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
| 1476 | k=ktf |
---|
| 1477 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
| 1478 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
| 1479 | |
---|
| 1480 | ENDDO |
---|
| 1481 | DO k=kts,ktf |
---|
| 1482 | DO i = i_start, i_end |
---|
| 1483 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
| 1484 | ENDDO |
---|
| 1485 | ENDDO |
---|
| 1486 | ENDDO |
---|
| 1487 | |
---|
| 1488 | ELSE IF (vert_order == 3) THEN |
---|
| 1489 | |
---|
| 1490 | DO j = j_start, j_end |
---|
| 1491 | |
---|
| 1492 | DO k=kts+2,ktf-1 |
---|
| 1493 | DO i = i_start, i_end |
---|
| 1494 | vel=0.5*(rom(i-1,k,j)+rom(i,k,j)) |
---|
| 1495 | vflux(i,k) = vel*flux3( & |
---|
| 1496 | u(i,k-2,j), u(i,k-1,j), & |
---|
| 1497 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
| 1498 | ENDDO |
---|
| 1499 | ENDDO |
---|
| 1500 | |
---|
| 1501 | DO i = i_start, i_end |
---|
| 1502 | |
---|
| 1503 | k=kts+1 |
---|
| 1504 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
| 1505 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
| 1506 | k=ktf |
---|
| 1507 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
| 1508 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
| 1509 | |
---|
| 1510 | ENDDO |
---|
| 1511 | DO k=kts,ktf |
---|
| 1512 | DO i = i_start, i_end |
---|
| 1513 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
| 1514 | ENDDO |
---|
| 1515 | ENDDO |
---|
| 1516 | ENDDO |
---|
| 1517 | |
---|
| 1518 | ELSE IF (vert_order == 2) THEN |
---|
| 1519 | |
---|
| 1520 | DO j = j_start, j_end |
---|
| 1521 | DO k=kts+1,ktf |
---|
| 1522 | DO i = i_start, i_end |
---|
| 1523 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
| 1524 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
| 1525 | ENDDO |
---|
| 1526 | ENDDO |
---|
| 1527 | |
---|
| 1528 | |
---|
| 1529 | DO k=kts,ktf |
---|
| 1530 | DO i = i_start, i_end |
---|
| 1531 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
| 1532 | ENDDO |
---|
| 1533 | ENDDO |
---|
| 1534 | |
---|
| 1535 | ENDDO |
---|
| 1536 | |
---|
| 1537 | ELSE |
---|
| 1538 | |
---|
| 1539 | WRITE ( wrf_err_message , * ) 'module_advect: advect_u_6a: v_order not known ',vert_order |
---|
| 1540 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
| 1541 | |
---|
| 1542 | ENDIF vert_order_test |
---|
| 1543 | |
---|
| 1544 | END SUBROUTINE advect_u |
---|
| 1545 | |
---|
| 1546 | !------------------------------------------------------------------------------- |
---|
| 1547 | |
---|
| 1548 | SUBROUTINE advect_v ( v, v_old, tendency, & |
---|
| 1549 | ru, rv, rom, & |
---|
| 1550 | mut, time_step, config_flags, & |
---|
| 1551 | msfux, msfuy, msfvx, msfvy, & |
---|
| 1552 | msftx, msfty, & |
---|
| 1553 | fzm, fzp, & |
---|
| 1554 | rdx, rdy, rdzw, & |
---|
| 1555 | ids, ide, jds, jde, kds, kde, & |
---|
| 1556 | ims, ime, jms, jme, kms, kme, & |
---|
| 1557 | its, ite, jts, jte, kts, kte ) |
---|
| 1558 | |
---|
| 1559 | IMPLICIT NONE |
---|
| 1560 | |
---|
| 1561 | ! Input data |
---|
| 1562 | |
---|
| 1563 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
| 1564 | |
---|
| 1565 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
| 1566 | ims, ime, jms, jme, kms, kme, & |
---|
| 1567 | its, ite, jts, jte, kts, kte |
---|
| 1568 | |
---|
| 1569 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: v, & |
---|
| 1570 | v_old, & |
---|
| 1571 | ru, & |
---|
| 1572 | rv, & |
---|
| 1573 | rom |
---|
| 1574 | |
---|
| 1575 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
---|
| 1576 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
| 1577 | |
---|
| 1578 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfux, & |
---|
| 1579 | msfuy, & |
---|
| 1580 | msfvx, & |
---|
| 1581 | msfvy, & |
---|
| 1582 | msftx, & |
---|
| 1583 | msfty |
---|
| 1584 | |
---|
| 1585 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
| 1586 | fzp, & |
---|
| 1587 | rdzw |
---|
| 1588 | |
---|
| 1589 | REAL , INTENT(IN ) :: rdx, & |
---|
| 1590 | rdy |
---|
| 1591 | INTEGER , INTENT(IN ) :: time_step |
---|
| 1592 | |
---|
| 1593 | |
---|
| 1594 | ! Local data |
---|
| 1595 | |
---|
| 1596 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
| 1597 | INTEGER :: i_start, i_end, j_start, j_end |
---|
| 1598 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
---|
| 1599 | INTEGER :: jmin, jmax, jp, jm, imin, imax |
---|
| 1600 | |
---|
| 1601 | REAL :: mrdx, mrdy, ub, vb, uw, vw, dup, dum |
---|
| 1602 | REAL , DIMENSION(its:ite, kts:kte) :: vflux |
---|
| 1603 | |
---|
| 1604 | |
---|
| 1605 | REAL, DIMENSION( its:ite+1, kts:kte ) :: fqx |
---|
| 1606 | REAL, DIMENSION( its:ite, kts:kte, 2 ) :: fqy |
---|
| 1607 | |
---|
| 1608 | INTEGER :: horz_order |
---|
| 1609 | INTEGER :: vert_order |
---|
| 1610 | |
---|
| 1611 | LOGICAL :: degrade_xs, degrade_ys |
---|
| 1612 | LOGICAL :: degrade_xe, degrade_ye |
---|
| 1613 | |
---|
| 1614 | INTEGER :: jp1, jp0, jtmp |
---|
| 1615 | |
---|
| 1616 | |
---|
| 1617 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
---|
| 1618 | |
---|
| 1619 | REAL :: flux3, flux4, flux5, flux6 |
---|
| 1620 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel |
---|
| 1621 | |
---|
| 1622 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
| 1623 | ( 7.*(q_i + q_im1) - (q_ip1 + q_im2) )/12.0 |
---|
| 1624 | |
---|
| 1625 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
| 1626 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
---|
| 1627 | sign(1,time_step)*sign(1.,ua)*((q_ip1 - q_im2)-3.*(q_i-q_im1))/12.0 |
---|
| 1628 | |
---|
| 1629 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
| 1630 | ( 37.*(q_i+q_im1) - 8.*(q_ip1+q_im2) & |
---|
| 1631 | +(q_ip2+q_im3) )/60.0 |
---|
| 1632 | |
---|
| 1633 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
| 1634 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
---|
| 1635 | -sign(1,time_step)*sign(1.,ua)*( & |
---|
| 1636 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) )/60.0 |
---|
| 1637 | |
---|
| 1638 | |
---|
| 1639 | |
---|
| 1640 | LOGICAL :: specified |
---|
| 1641 | |
---|
| 1642 | specified = .false. |
---|
| 1643 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
---|
| 1644 | |
---|
| 1645 | ! set order for the advection schemes |
---|
| 1646 | |
---|
| 1647 | ktf=MIN(kte,kde-1) |
---|
| 1648 | horz_order = config_flags%h_mom_adv_order |
---|
| 1649 | vert_order = config_flags%v_mom_adv_order |
---|
| 1650 | |
---|
| 1651 | |
---|
| 1652 | ! here is the choice of flux operators |
---|
| 1653 | |
---|
| 1654 | |
---|
| 1655 | horizontal_order_test : IF( horz_order == 6 ) THEN |
---|
| 1656 | |
---|
| 1657 | ! determine boundary mods for flux operators |
---|
| 1658 | ! We degrade the flux operators from 3rd/4th order |
---|
| 1659 | ! to second order one gridpoint in from the boundaries for |
---|
| 1660 | ! all boundary conditions except periodic and symmetry - these |
---|
| 1661 | ! conditions have boundary zone data fill for correct application |
---|
| 1662 | ! of the higher order flux stencils |
---|
| 1663 | |
---|
| 1664 | degrade_xs = .true. |
---|
| 1665 | degrade_xe = .true. |
---|
| 1666 | degrade_ys = .true. |
---|
| 1667 | degrade_ye = .true. |
---|
| 1668 | |
---|
| 1669 | IF( config_flags%periodic_x .or. & |
---|
| 1670 | config_flags%symmetric_xs .or. & |
---|
| 1671 | (its > ids+2) ) degrade_xs = .false. |
---|
| 1672 | IF( config_flags%periodic_x .or. & |
---|
| 1673 | config_flags%symmetric_xe .or. & |
---|
| 1674 | (ite < ide-3) ) degrade_xe = .false. |
---|
| 1675 | IF( config_flags%periodic_y .or. & |
---|
| 1676 | config_flags%symmetric_ys .or. & |
---|
| 1677 | (jts > jds+2) ) degrade_ys = .false. |
---|
| 1678 | IF( config_flags%periodic_y .or. & |
---|
| 1679 | config_flags%symmetric_ye .or. & |
---|
| 1680 | (jte < jde-2) ) degrade_ye = .false. |
---|
| 1681 | |
---|
| 1682 | !--------------- y - advection first |
---|
| 1683 | |
---|
| 1684 | ktf=MIN(kte,kde-1) |
---|
| 1685 | |
---|
| 1686 | i_start = its |
---|
| 1687 | i_end = MIN(ite,ide-1) |
---|
| 1688 | j_start = jts |
---|
| 1689 | j_end = jte |
---|
| 1690 | |
---|
| 1691 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
| 1692 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 1693 | |
---|
| 1694 | j_start_f = j_start |
---|
| 1695 | j_end_f = j_end+1 |
---|
| 1696 | |
---|
| 1697 | IF(degrade_ys) then |
---|
| 1698 | j_start = MAX(jts,jds+1) |
---|
| 1699 | j_start_f = jds+3 |
---|
| 1700 | ENDIF |
---|
| 1701 | |
---|
| 1702 | IF(degrade_ye) then |
---|
| 1703 | j_end = MIN(jte,jde-1) |
---|
| 1704 | j_end_f = jde-2 |
---|
| 1705 | ENDIF |
---|
| 1706 | |
---|
| 1707 | ! compute fluxes, 5th or 6th order |
---|
| 1708 | |
---|
| 1709 | jp1 = 2 |
---|
| 1710 | jp0 = 1 |
---|
| 1711 | |
---|
| 1712 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
---|
| 1713 | |
---|
| 1714 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN |
---|
| 1715 | |
---|
| 1716 | DO k=kts,ktf |
---|
| 1717 | DO i = i_start, i_end |
---|
| 1718 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
| 1719 | fqy( i, k, jp1 ) = vel*flux6( & |
---|
| 1720 | v(i,k,j-3), v(i,k,j-2), v(i,k,j-1), & |
---|
| 1721 | v(i,k,j ), v(i,k,j+1), v(i,k,j+2), vel ) |
---|
| 1722 | ENDDO |
---|
| 1723 | ENDDO |
---|
| 1724 | |
---|
| 1725 | ! we must be close to some boundary where we need to reduce the order of the stencil |
---|
| 1726 | ! specified uses upstream normal wind at boundaries |
---|
| 1727 | |
---|
| 1728 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
| 1729 | |
---|
| 1730 | DO k=kts,ktf |
---|
| 1731 | DO i = i_start, i_end |
---|
| 1732 | vb = v(i,k,j-1) |
---|
| 1733 | IF (specified .AND. v(i,k,j) .LT. 0.)vb = v(i,k,j) |
---|
| 1734 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
| 1735 | *(v(i,k,j)+vb) |
---|
| 1736 | ENDDO |
---|
| 1737 | ENDDO |
---|
| 1738 | |
---|
| 1739 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
| 1740 | |
---|
| 1741 | DO k=kts,ktf |
---|
| 1742 | DO i = i_start, i_end |
---|
| 1743 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
| 1744 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
| 1745 | v(i,k,j-2),v(i,k,j-1),v(i,k,j),v(i,k,j+1),vel ) |
---|
| 1746 | ENDDO |
---|
| 1747 | ENDDO |
---|
| 1748 | |
---|
| 1749 | |
---|
| 1750 | ELSE IF ( j == jde ) THEN ! 2nd order flux next to north boundary |
---|
| 1751 | |
---|
| 1752 | DO k=kts,ktf |
---|
| 1753 | DO i = i_start, i_end |
---|
| 1754 | vb = v(i,k,j) |
---|
| 1755 | IF (specified .AND. v(i,k,j-1) .GT. 0.)vb = v(i,k,j-1) |
---|
| 1756 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
| 1757 | *(vb+v(i,k,j-1)) |
---|
| 1758 | ENDDO |
---|
| 1759 | ENDDO |
---|
| 1760 | |
---|
| 1761 | ELSE IF ( j == jde-1 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
| 1762 | |
---|
| 1763 | DO k=kts,ktf |
---|
| 1764 | DO i = i_start, i_end |
---|
| 1765 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
| 1766 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
| 1767 | v(i,k,j-2),v(i,k,j-1),v(i,k,j),v(i,k,j+1),vel ) |
---|
| 1768 | ENDDO |
---|
| 1769 | ENDDO |
---|
| 1770 | |
---|
| 1771 | END IF |
---|
| 1772 | |
---|
| 1773 | ! y flux-divergence into tendency |
---|
| 1774 | |
---|
| 1775 | ! Comments on polar boundary conditions |
---|
| 1776 | ! No advection over the poles means tendencies (held from jds [S. pole] |
---|
| 1777 | ! to jde [N pole], i.e., on v grid) must be zero at poles |
---|
| 1778 | ! [tendency(jds) and tendency(jde)=0] |
---|
| 1779 | IF ( config_flags%polar .AND. (j == jds+1) ) THEN |
---|
| 1780 | DO k=kts,ktf |
---|
| 1781 | DO i = i_start, i_end |
---|
| 1782 | tendency(i,k,j-1) = 0. |
---|
| 1783 | END DO |
---|
| 1784 | END DO |
---|
| 1785 | ! If j_end were set to jde in a special if statement apart from |
---|
| 1786 | ! degrade_ye, then we would hit the next conditional. But since |
---|
| 1787 | ! we want the tendency to be zero anyway, not looping to jde+1 |
---|
| 1788 | ! will produce the same effect. |
---|
| 1789 | ELSE IF( config_flags%polar .AND. (j == jde+1) ) THEN |
---|
| 1790 | DO k=kts,ktf |
---|
| 1791 | DO i = i_start, i_end |
---|
| 1792 | tendency(i,k,j-1) = 0. |
---|
| 1793 | END DO |
---|
| 1794 | END DO |
---|
| 1795 | ELSE ! Normal code |
---|
| 1796 | |
---|
| 1797 | IF(j > j_start) THEN |
---|
| 1798 | |
---|
| 1799 | DO k=kts,ktf |
---|
| 1800 | DO i = i_start, i_end |
---|
| 1801 | mrdy=msfvy(i,j-1)*rdy ! ADT eqn 45, 2nd term on RHS |
---|
| 1802 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
| 1803 | ENDDO |
---|
| 1804 | ENDDO |
---|
| 1805 | |
---|
| 1806 | ENDIF |
---|
| 1807 | |
---|
| 1808 | END IF |
---|
| 1809 | |
---|
| 1810 | jtmp = jp1 |
---|
| 1811 | jp1 = jp0 |
---|
| 1812 | jp0 = jtmp |
---|
| 1813 | |
---|
| 1814 | ENDDO j_loop_y_flux_6 |
---|
| 1815 | |
---|
| 1816 | ! next, x - flux divergence |
---|
| 1817 | |
---|
| 1818 | i_start = its |
---|
| 1819 | i_end = MIN(ite,ide-1) |
---|
| 1820 | |
---|
| 1821 | j_start = jts |
---|
| 1822 | j_end = jte |
---|
| 1823 | ! Polar boundary conditions are like open or specified |
---|
| 1824 | IF ( config_flags%open_ys .or. specified .or. config_flags%polar ) j_start = MAX(jds+1,jts) |
---|
| 1825 | IF ( config_flags%open_ye .or. specified .or. config_flags%polar ) j_end = MIN(jde-1,jte) |
---|
| 1826 | |
---|
| 1827 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
| 1828 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 1829 | |
---|
| 1830 | i_start_f = i_start |
---|
| 1831 | i_end_f = i_end+1 |
---|
| 1832 | |
---|
| 1833 | IF(degrade_xs) then |
---|
| 1834 | i_start = MAX(ids+1,its) |
---|
| 1835 | i_start_f = i_start+2 |
---|
| 1836 | ENDIF |
---|
| 1837 | |
---|
| 1838 | IF(degrade_xe) then |
---|
| 1839 | i_end = MIN(ide-2,ite) |
---|
| 1840 | i_end_f = ide-3 |
---|
| 1841 | ENDIF |
---|
| 1842 | |
---|
| 1843 | ! compute fluxes |
---|
| 1844 | |
---|
| 1845 | DO j = j_start, j_end |
---|
| 1846 | |
---|
| 1847 | ! 5th or 6th order flux |
---|
| 1848 | |
---|
| 1849 | DO k=kts,ktf |
---|
| 1850 | DO i = i_start_f, i_end_f |
---|
| 1851 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
| 1852 | fqx( i, k ) = vel*flux6( v(i-3,k,j), v(i-2,k,j), & |
---|
| 1853 | v(i-1,k,j), v(i ,k,j), & |
---|
| 1854 | v(i+1,k,j), v(i+2,k,j), & |
---|
| 1855 | vel ) |
---|
| 1856 | ENDDO |
---|
| 1857 | ENDDO |
---|
| 1858 | |
---|
| 1859 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
| 1860 | |
---|
| 1861 | IF( degrade_xs ) THEN |
---|
| 1862 | |
---|
| 1863 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
| 1864 | i = ids+1 |
---|
| 1865 | DO k=kts,ktf |
---|
| 1866 | fqx(i,k) = 0.25*(ru(i,k,j)+ru(i,k,j-1)) & |
---|
| 1867 | *(v(i,k,j)+v(i-1,k,j)) |
---|
| 1868 | ENDDO |
---|
| 1869 | ENDIF |
---|
| 1870 | |
---|
| 1871 | i = ids+2 |
---|
| 1872 | DO k=kts,ktf |
---|
| 1873 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
| 1874 | fqx( i,k ) = vel*flux4( v(i-2,k,j), v(i-1,k,j), & |
---|
| 1875 | v(i ,k,j), v(i+1,k,j), & |
---|
| 1876 | vel ) |
---|
| 1877 | ENDDO |
---|
| 1878 | |
---|
| 1879 | ENDIF |
---|
| 1880 | |
---|
| 1881 | IF( degrade_xe ) THEN |
---|
| 1882 | |
---|
| 1883 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
| 1884 | i = ide-1 |
---|
| 1885 | DO k=kts,ktf |
---|
| 1886 | fqx(i,k) = 0.25*(ru(i_end+1,k,j)+ru(i_end+1,k,j-1)) & |
---|
| 1887 | *(v(i_end+1,k,j)+v(i_end,k,j)) |
---|
| 1888 | ENDDO |
---|
| 1889 | ENDIF |
---|
| 1890 | |
---|
| 1891 | i = ide-2 |
---|
| 1892 | DO k=kts,ktf |
---|
| 1893 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
| 1894 | fqx( i,k ) = vel*flux4( v(i-2,k,j), v(i-1,k,j), & |
---|
| 1895 | v(i ,k,j), v(i+1,k,j), & |
---|
| 1896 | vel ) |
---|
| 1897 | ENDDO |
---|
| 1898 | |
---|
| 1899 | ENDIF |
---|
| 1900 | |
---|
| 1901 | ! x flux-divergence into tendency |
---|
| 1902 | |
---|
| 1903 | DO k=kts,ktf |
---|
| 1904 | DO i = i_start, i_end |
---|
| 1905 | mrdx=msfvy(i,j)*rdx ! ADT eqn 45, 1st term on RHS |
---|
| 1906 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
| 1907 | ENDDO |
---|
| 1908 | ENDDO |
---|
| 1909 | |
---|
| 1910 | ENDDO |
---|
| 1911 | |
---|
| 1912 | ELSE IF( horz_order == 5 ) THEN |
---|
| 1913 | |
---|
| 1914 | ! 5th order horizontal flux calculation |
---|
| 1915 | ! This code is EXACTLY the same as the 6th order code |
---|
| 1916 | ! EXCEPT the 5th order and 3rd operators are used in |
---|
| 1917 | ! place of the 6th and 4th order operators |
---|
| 1918 | |
---|
| 1919 | ! determine boundary mods for flux operators |
---|
| 1920 | ! We degrade the flux operators from 3rd/4th order |
---|
| 1921 | ! to second order one gridpoint in from the boundaries for |
---|
| 1922 | ! all boundary conditions except periodic and symmetry - these |
---|
| 1923 | ! conditions have boundary zone data fill for correct application |
---|
| 1924 | ! of the higher order flux stencils |
---|
| 1925 | |
---|
| 1926 | degrade_xs = .true. |
---|
| 1927 | degrade_xe = .true. |
---|
| 1928 | degrade_ys = .true. |
---|
| 1929 | degrade_ye = .true. |
---|
| 1930 | |
---|
| 1931 | IF( config_flags%periodic_x .or. & |
---|
| 1932 | config_flags%symmetric_xs .or. & |
---|
| 1933 | (its > ids+2) ) degrade_xs = .false. |
---|
| 1934 | IF( config_flags%periodic_x .or. & |
---|
| 1935 | config_flags%symmetric_xe .or. & |
---|
| 1936 | (ite < ide-3) ) degrade_xe = .false. |
---|
| 1937 | IF( config_flags%periodic_y .or. & |
---|
| 1938 | config_flags%symmetric_ys .or. & |
---|
| 1939 | (jts > jds+2) ) degrade_ys = .false. |
---|
| 1940 | IF( config_flags%periodic_y .or. & |
---|
| 1941 | config_flags%symmetric_ye .or. & |
---|
| 1942 | (jte < jde-2) ) degrade_ye = .false. |
---|
| 1943 | |
---|
| 1944 | !--------------- y - advection first |
---|
| 1945 | |
---|
| 1946 | i_start = its |
---|
| 1947 | i_end = MIN(ite,ide-1) |
---|
| 1948 | j_start = jts |
---|
| 1949 | j_end = jte |
---|
| 1950 | |
---|
| 1951 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
| 1952 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 1953 | |
---|
| 1954 | j_start_f = j_start |
---|
| 1955 | j_end_f = j_end+1 |
---|
| 1956 | |
---|
| 1957 | IF(degrade_ys) then |
---|
| 1958 | j_start = MAX(jts,jds+1) |
---|
| 1959 | j_start_f = jds+3 |
---|
| 1960 | ENDIF |
---|
| 1961 | |
---|
| 1962 | IF(degrade_ye) then |
---|
| 1963 | j_end = MIN(jte,jde-1) |
---|
| 1964 | j_end_f = jde-2 |
---|
| 1965 | ENDIF |
---|
| 1966 | |
---|
| 1967 | ! compute fluxes, 5th or 6th order |
---|
| 1968 | |
---|
| 1969 | jp1 = 2 |
---|
| 1970 | jp0 = 1 |
---|
| 1971 | |
---|
| 1972 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
---|
| 1973 | |
---|
| 1974 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN |
---|
| 1975 | |
---|
| 1976 | DO k=kts,ktf |
---|
| 1977 | DO i = i_start, i_end |
---|
| 1978 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
| 1979 | fqy( i, k, jp1 ) = vel*flux5( & |
---|
| 1980 | v(i,k,j-3), v(i,k,j-2), v(i,k,j-1), & |
---|
| 1981 | v(i,k,j ), v(i,k,j+1), v(i,k,j+2), vel ) |
---|
| 1982 | ENDDO |
---|
| 1983 | ENDDO |
---|
| 1984 | |
---|
| 1985 | ! we must be close to some boundary where we need to reduce the order of the stencil |
---|
| 1986 | ! specified uses upstream normal wind at boundaries |
---|
| 1987 | |
---|
| 1988 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
| 1989 | |
---|
| 1990 | DO k=kts,ktf |
---|
| 1991 | DO i = i_start, i_end |
---|
| 1992 | vb = v(i,k,j-1) |
---|
| 1993 | IF (specified .AND. v(i,k,j) .LT. 0.)vb = v(i,k,j) |
---|
| 1994 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
| 1995 | *(v(i,k,j)+vb) |
---|
| 1996 | ENDDO |
---|
| 1997 | ENDDO |
---|
| 1998 | |
---|
| 1999 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
| 2000 | |
---|
| 2001 | DO k=kts,ktf |
---|
| 2002 | DO i = i_start, i_end |
---|
| 2003 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
| 2004 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
| 2005 | v(i,k,j-2),v(i,k,j-1),v(i,k,j),v(i,k,j+1),vel ) |
---|
| 2006 | ENDDO |
---|
| 2007 | ENDDO |
---|
| 2008 | |
---|
| 2009 | |
---|
| 2010 | ELSE IF ( j == jde ) THEN ! 2nd order flux next to north boundary |
---|
| 2011 | |
---|
| 2012 | DO k=kts,ktf |
---|
| 2013 | DO i = i_start, i_end |
---|
| 2014 | vb = v(i,k,j) |
---|
| 2015 | IF (specified .AND. v(i,k,j-1) .GT. 0.)vb = v(i,k,j-1) |
---|
| 2016 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
| 2017 | *(vb+v(i,k,j-1)) |
---|
| 2018 | ENDDO |
---|
| 2019 | ENDDO |
---|
| 2020 | |
---|
| 2021 | ELSE IF ( j == jde-1 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
| 2022 | |
---|
| 2023 | DO k=kts,ktf |
---|
| 2024 | DO i = i_start, i_end |
---|
| 2025 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
| 2026 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
| 2027 | v(i,k,j-2),v(i,k,j-1),v(i,k,j),v(i,k,j+1),vel ) |
---|
| 2028 | ENDDO |
---|
| 2029 | ENDDO |
---|
| 2030 | |
---|
| 2031 | END IF |
---|
| 2032 | |
---|
| 2033 | ! y flux-divergence into tendency |
---|
| 2034 | |
---|
| 2035 | ! Comments on polar boundary conditions |
---|
| 2036 | ! No advection over the poles means tendencies (held from jds [S. pole] |
---|
| 2037 | ! to jde [N pole], i.e., on v grid) must be zero at poles |
---|
| 2038 | ! [tendency(jds) and tendency(jde)=0] |
---|
| 2039 | IF ( config_flags%polar .AND. (j == jds+1) ) THEN |
---|
| 2040 | DO k=kts,ktf |
---|
| 2041 | DO i = i_start, i_end |
---|
| 2042 | tendency(i,k,j-1) = 0. |
---|
| 2043 | END DO |
---|
| 2044 | END DO |
---|
| 2045 | ! If j_end were set to jde in a special if statement apart from |
---|
| 2046 | ! degrade_ye, then we would hit the next conditional. But since |
---|
| 2047 | ! we want the tendency to be zero anyway, not looping to jde+1 |
---|
| 2048 | ! will produce the same effect. |
---|
| 2049 | ELSE IF( config_flags%polar .AND. (j == jde+1) ) THEN |
---|
| 2050 | DO k=kts,ktf |
---|
| 2051 | DO i = i_start, i_end |
---|
| 2052 | tendency(i,k,j-1) = 0. |
---|
| 2053 | END DO |
---|
| 2054 | END DO |
---|
| 2055 | ELSE ! Normal code |
---|
| 2056 | |
---|
| 2057 | IF(j > j_start) THEN |
---|
| 2058 | |
---|
| 2059 | DO k=kts,ktf |
---|
| 2060 | DO i = i_start, i_end |
---|
| 2061 | mrdy=msfvy(i,j-1)*rdy ! ADT eqn 45, 2nd term on RHS |
---|
| 2062 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
| 2063 | ENDDO |
---|
| 2064 | ENDDO |
---|
| 2065 | |
---|
| 2066 | ENDIF |
---|
| 2067 | |
---|
| 2068 | END IF |
---|
| 2069 | |
---|
| 2070 | jtmp = jp1 |
---|
| 2071 | jp1 = jp0 |
---|
| 2072 | jp0 = jtmp |
---|
| 2073 | |
---|
| 2074 | ENDDO j_loop_y_flux_5 |
---|
| 2075 | |
---|
| 2076 | ! next, x - flux divergence |
---|
| 2077 | |
---|
| 2078 | i_start = its |
---|
| 2079 | i_end = MIN(ite,ide-1) |
---|
| 2080 | |
---|
| 2081 | j_start = jts |
---|
| 2082 | j_end = jte |
---|
| 2083 | ! Polar boundary conditions are like open or specified |
---|
| 2084 | IF ( config_flags%open_ys .or. specified .or. config_flags%polar ) j_start = MAX(jds+1,jts) |
---|
| 2085 | IF ( config_flags%open_ye .or. specified .or. config_flags%polar ) j_end = MIN(jde-1,jte) |
---|
| 2086 | |
---|
| 2087 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
| 2088 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 2089 | |
---|
| 2090 | i_start_f = i_start |
---|
| 2091 | i_end_f = i_end+1 |
---|
| 2092 | |
---|
| 2093 | IF(degrade_xs) then |
---|
| 2094 | i_start = MAX(ids+1,its) |
---|
| 2095 | i_start_f = i_start+2 |
---|
| 2096 | ENDIF |
---|
| 2097 | |
---|
| 2098 | IF(degrade_xe) then |
---|
| 2099 | i_end = MIN(ide-2,ite) |
---|
| 2100 | i_end_f = ide-3 |
---|
| 2101 | ENDIF |
---|
| 2102 | |
---|
| 2103 | ! compute fluxes |
---|
| 2104 | |
---|
| 2105 | DO j = j_start, j_end |
---|
| 2106 | |
---|
| 2107 | ! 5th or 6th order flux |
---|
| 2108 | |
---|
| 2109 | DO k=kts,ktf |
---|
| 2110 | DO i = i_start_f, i_end_f |
---|
| 2111 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
| 2112 | fqx( i, k ) = vel*flux5( v(i-3,k,j), v(i-2,k,j), & |
---|
| 2113 | v(i-1,k,j), v(i ,k,j), & |
---|
| 2114 | v(i+1,k,j), v(i+2,k,j), & |
---|
| 2115 | vel ) |
---|
| 2116 | ENDDO |
---|
| 2117 | ENDDO |
---|
| 2118 | |
---|
| 2119 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
| 2120 | |
---|
| 2121 | IF( degrade_xs ) THEN |
---|
| 2122 | |
---|
| 2123 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
| 2124 | i = ids+1 |
---|
| 2125 | DO k=kts,ktf |
---|
| 2126 | fqx(i,k) = 0.25*(ru(i,k,j)+ru(i,k,j-1)) & |
---|
| 2127 | *(v(i,k,j)+v(i-1,k,j)) |
---|
| 2128 | ENDDO |
---|
| 2129 | ENDIF |
---|
| 2130 | |
---|
| 2131 | i = ids+2 |
---|
| 2132 | DO k=kts,ktf |
---|
| 2133 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
| 2134 | fqx( i,k ) = vel*flux3( v(i-2,k,j), v(i-1,k,j), & |
---|
| 2135 | v(i ,k,j), v(i+1,k,j), & |
---|
| 2136 | vel ) |
---|
| 2137 | ENDDO |
---|
| 2138 | |
---|
| 2139 | ENDIF |
---|
| 2140 | |
---|
| 2141 | IF( degrade_xe ) THEN |
---|
| 2142 | |
---|
| 2143 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
| 2144 | i = ide-1 |
---|
| 2145 | DO k=kts,ktf |
---|
| 2146 | fqx(i,k) = 0.25*(ru(i_end+1,k,j)+ru(i_end+1,k,j-1)) & |
---|
| 2147 | *(v(i_end+1,k,j)+v(i_end,k,j)) |
---|
| 2148 | ENDDO |
---|
| 2149 | ENDIF |
---|
| 2150 | |
---|
| 2151 | i = ide-2 |
---|
| 2152 | DO k=kts,ktf |
---|
| 2153 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
| 2154 | fqx( i,k ) = vel*flux3( v(i-2,k,j), v(i-1,k,j), & |
---|
| 2155 | v(i ,k,j), v(i+1,k,j), & |
---|
| 2156 | vel ) |
---|
| 2157 | ENDDO |
---|
| 2158 | |
---|
| 2159 | ENDIF |
---|
| 2160 | |
---|
| 2161 | ! x flux-divergence into tendency |
---|
| 2162 | |
---|
| 2163 | DO k=kts,ktf |
---|
| 2164 | DO i = i_start, i_end |
---|
| 2165 | mrdx=msfvy(i,j)*rdx ! ADT eqn 45, 1st term on RHS |
---|
| 2166 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
| 2167 | ENDDO |
---|
| 2168 | ENDDO |
---|
| 2169 | |
---|
| 2170 | ENDDO |
---|
| 2171 | |
---|
| 2172 | ELSE IF( horz_order == 4 ) THEN |
---|
| 2173 | |
---|
| 2174 | ! determine boundary mods for flux operators |
---|
| 2175 | ! We degrade the flux operators from 3rd/4th order |
---|
| 2176 | ! to second order one gridpoint in from the boundaries for |
---|
| 2177 | ! all boundary conditions except periodic and symmetry - these |
---|
| 2178 | ! conditions have boundary zone data fill for correct application |
---|
| 2179 | ! of the higher order flux stencils |
---|
| 2180 | |
---|
| 2181 | degrade_xs = .true. |
---|
| 2182 | degrade_xe = .true. |
---|
| 2183 | degrade_ys = .true. |
---|
| 2184 | degrade_ye = .true. |
---|
| 2185 | |
---|
| 2186 | IF( config_flags%periodic_x .or. & |
---|
| 2187 | config_flags%symmetric_xs .or. & |
---|
| 2188 | (its > ids+1) ) degrade_xs = .false. |
---|
| 2189 | IF( config_flags%periodic_x .or. & |
---|
| 2190 | config_flags%symmetric_xe .or. & |
---|
| 2191 | (ite < ide-2) ) degrade_xe = .false. |
---|
| 2192 | IF( config_flags%periodic_y .or. & |
---|
| 2193 | config_flags%symmetric_ys .or. & |
---|
| 2194 | (jts > jds+1) ) degrade_ys = .false. |
---|
| 2195 | IF( config_flags%periodic_y .or. & |
---|
| 2196 | config_flags%symmetric_ye .or. & |
---|
| 2197 | (jte < jde-1) ) degrade_ye = .false. |
---|
| 2198 | |
---|
| 2199 | !--------------- y - advection first |
---|
| 2200 | |
---|
| 2201 | |
---|
| 2202 | ktf=MIN(kte,kde-1) |
---|
| 2203 | |
---|
| 2204 | i_start = its |
---|
| 2205 | i_end = MIN(ite,ide-1) |
---|
| 2206 | j_start = jts |
---|
| 2207 | j_end = jte |
---|
| 2208 | |
---|
| 2209 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
| 2210 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 2211 | |
---|
| 2212 | j_start_f = j_start |
---|
| 2213 | j_end_f = j_end+1 |
---|
| 2214 | |
---|
| 2215 | !CJM May not work with tiling because defined in terms of domain dims |
---|
| 2216 | IF(degrade_ys) then |
---|
| 2217 | j_start = jds+1 |
---|
| 2218 | j_start_f = j_start+1 |
---|
| 2219 | ENDIF |
---|
| 2220 | |
---|
| 2221 | IF(degrade_ye) then |
---|
| 2222 | j_end = jde-1 |
---|
| 2223 | j_end_f = jde-1 |
---|
| 2224 | ENDIF |
---|
| 2225 | |
---|
| 2226 | ! compute fluxes |
---|
| 2227 | ! specified uses upstream normal wind at boundaries |
---|
| 2228 | |
---|
| 2229 | jp0 = 1 |
---|
| 2230 | jp1 = 2 |
---|
| 2231 | |
---|
| 2232 | DO j = j_start, j_end+1 |
---|
| 2233 | |
---|
| 2234 | IF ((j == j_start) .and. degrade_ys) THEN |
---|
| 2235 | DO k = kts,ktf |
---|
| 2236 | DO i = i_start, i_end |
---|
| 2237 | vb = v(i,k,j-1) |
---|
| 2238 | IF (specified .AND. v(i,k,j) .LT. 0.)vb = v(i,k,j) |
---|
| 2239 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
| 2240 | *(v(i,k,j)+vb) |
---|
| 2241 | ENDDO |
---|
| 2242 | ENDDO |
---|
| 2243 | ELSE IF ((j == j_end+1) .and. degrade_ye) THEN |
---|
| 2244 | DO k = kts, ktf |
---|
| 2245 | DO i = i_start, i_end |
---|
| 2246 | vb = v(i,k,j) |
---|
| 2247 | IF (specified .AND. v(i,k,j-1) .GT. 0.)vb = v(i,k,j-1) |
---|
| 2248 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
| 2249 | *(vb+v(i,k,j-1)) |
---|
| 2250 | ENDDO |
---|
| 2251 | ENDDO |
---|
| 2252 | ELSE |
---|
| 2253 | DO k = kts, ktf |
---|
| 2254 | DO i = i_start, i_end |
---|
| 2255 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
| 2256 | fqy( i,k,jp1 ) = vel*flux4( v(i,k,j-2), v(i,k,j-1), & |
---|
| 2257 | v(i,k,j ), v(i,k,j+1), & |
---|
| 2258 | vel ) |
---|
| 2259 | ENDDO |
---|
| 2260 | ENDDO |
---|
| 2261 | END IF |
---|
| 2262 | |
---|
| 2263 | ! Comments on polar boundary conditions |
---|
| 2264 | ! No advection over the poles means tendencies (held from jds [S. pole] |
---|
| 2265 | ! to jde [N pole], i.e., on v grid) must be zero at poles |
---|
| 2266 | ! [tendency(jds) and tendency(jde)=0] |
---|
| 2267 | IF ( config_flags%polar .AND. (j == jds+1) ) THEN |
---|
| 2268 | DO k=kts,ktf |
---|
| 2269 | DO i = i_start, i_end |
---|
| 2270 | tendency(i,k,j-1) = 0. |
---|
| 2271 | END DO |
---|
| 2272 | END DO |
---|
| 2273 | ! If j_end were set to jde in a special if statement apart from |
---|
| 2274 | ! degrade_ye, then we would hit the next conditional. But since |
---|
| 2275 | ! we want the tendency to be zero anyway, not looping to jde+1 |
---|
| 2276 | ! will produce the same effect. |
---|
| 2277 | ELSE IF( config_flags%polar .AND. (j == jde+1) ) THEN |
---|
| 2278 | DO k=kts,ktf |
---|
| 2279 | DO i = i_start, i_end |
---|
| 2280 | tendency(i,k,j-1) = 0. |
---|
| 2281 | END DO |
---|
| 2282 | END DO |
---|
| 2283 | ELSE ! Normal code |
---|
| 2284 | |
---|
| 2285 | IF( j > j_start) THEN |
---|
| 2286 | DO k = kts, ktf |
---|
| 2287 | DO i = i_start, i_end |
---|
| 2288 | mrdy=msfvy(i,j-1)*rdy ! ADT eqn 45, 2nd term on RHS |
---|
| 2289 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
| 2290 | ENDDO |
---|
| 2291 | ENDDO |
---|
| 2292 | |
---|
| 2293 | END IF |
---|
| 2294 | |
---|
| 2295 | END IF |
---|
| 2296 | |
---|
| 2297 | jtmp = jp1 |
---|
| 2298 | jp1 = jp0 |
---|
| 2299 | jp0 = jtmp |
---|
| 2300 | |
---|
| 2301 | ENDDO |
---|
| 2302 | |
---|
| 2303 | ! next, x - flux divergence |
---|
| 2304 | |
---|
| 2305 | |
---|
| 2306 | i_start = its |
---|
| 2307 | i_end = MIN(ite,ide-1) |
---|
| 2308 | |
---|
| 2309 | j_start = jts |
---|
| 2310 | j_end = jte |
---|
| 2311 | ! Polar boundary conditions are like open or specified |
---|
| 2312 | IF ( config_flags%open_ys .or. specified .or. config_flags%polar ) j_start = MAX(jds+1,jts) |
---|
| 2313 | IF ( config_flags%open_ye .or. specified .or. config_flags%polar ) j_end = MIN(jde-1,jte) |
---|
| 2314 | |
---|
| 2315 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
| 2316 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 2317 | |
---|
| 2318 | i_start_f = i_start |
---|
| 2319 | i_end_f = i_end+1 |
---|
| 2320 | |
---|
| 2321 | IF(degrade_xs) then |
---|
| 2322 | i_start = ids+1 |
---|
| 2323 | i_start_f = i_start+1 |
---|
| 2324 | ENDIF |
---|
| 2325 | |
---|
| 2326 | IF(degrade_xe) then |
---|
| 2327 | i_end = ide-2 |
---|
| 2328 | i_end_f = ide-2 |
---|
| 2329 | ENDIF |
---|
| 2330 | |
---|
| 2331 | ! compute fluxes |
---|
| 2332 | |
---|
| 2333 | DO j = j_start, j_end |
---|
| 2334 | |
---|
| 2335 | ! 3rd or 4th order flux |
---|
| 2336 | |
---|
| 2337 | DO k=kts,ktf |
---|
| 2338 | DO i = i_start_f, i_end_f |
---|
| 2339 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
| 2340 | fqx( i, k ) = vel*flux4( v(i-2,k,j), v(i-1,k,j), & |
---|
| 2341 | v(i ,k,j), v(i+1,k,j), & |
---|
| 2342 | vel ) |
---|
| 2343 | ENDDO |
---|
| 2344 | ENDDO |
---|
| 2345 | |
---|
| 2346 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
| 2347 | |
---|
| 2348 | IF( degrade_xs ) THEN |
---|
| 2349 | DO k=kts,ktf |
---|
| 2350 | fqx(i_start,k) = 0.25*(ru(i_start,k,j)+ru(i_start,k,j-1)) & |
---|
| 2351 | *(v(i_start,k,j)+v(i_start-1,k,j)) |
---|
| 2352 | ENDDO |
---|
| 2353 | ENDIF |
---|
| 2354 | |
---|
| 2355 | IF( degrade_xe ) THEN |
---|
| 2356 | DO k=kts,ktf |
---|
| 2357 | fqx(i_end+1,k) = 0.25*(ru(i_end+1,k,j)+ru(i_end+1,k,j-1)) & |
---|
| 2358 | *(v(i_end+1,k,j)+v(i_end,k,j)) |
---|
| 2359 | ENDDO |
---|
| 2360 | ENDIF |
---|
| 2361 | |
---|
| 2362 | ! x flux-divergence into tendency |
---|
| 2363 | |
---|
| 2364 | DO k=kts,ktf |
---|
| 2365 | DO i = i_start, i_end |
---|
| 2366 | mrdx=msfvy(i,j)*rdx ! ADT eqn 45, 1st term on RHS |
---|
| 2367 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
| 2368 | ENDDO |
---|
| 2369 | ENDDO |
---|
| 2370 | |
---|
| 2371 | ENDDO |
---|
| 2372 | |
---|
| 2373 | ELSE IF( horz_order == 3 ) THEN |
---|
| 2374 | |
---|
| 2375 | ! determine boundary mods for flux operators |
---|
| 2376 | ! We degrade the flux operators from 3rd/4th order |
---|
| 2377 | ! to second order one gridpoint in from the boundaries for |
---|
| 2378 | ! all boundary conditions except periodic and symmetry - these |
---|
| 2379 | ! conditions have boundary zone data fill for correct application |
---|
| 2380 | ! of the higher order flux stencils |
---|
| 2381 | |
---|
| 2382 | degrade_xs = .true. |
---|
| 2383 | degrade_xe = .true. |
---|
| 2384 | degrade_ys = .true. |
---|
| 2385 | degrade_ye = .true. |
---|
| 2386 | |
---|
| 2387 | IF( config_flags%periodic_x .or. & |
---|
| 2388 | config_flags%symmetric_xs .or. & |
---|
| 2389 | (its > ids+1) ) degrade_xs = .false. |
---|
| 2390 | IF( config_flags%periodic_x .or. & |
---|
| 2391 | config_flags%symmetric_xe .or. & |
---|
| 2392 | (ite < ide-2) ) degrade_xe = .false. |
---|
| 2393 | IF( config_flags%periodic_y .or. & |
---|
| 2394 | config_flags%symmetric_ys .or. & |
---|
| 2395 | (jts > jds+1) ) degrade_ys = .false. |
---|
| 2396 | IF( config_flags%periodic_y .or. & |
---|
| 2397 | config_flags%symmetric_ye .or. & |
---|
| 2398 | (jte < jde-1) ) degrade_ye = .false. |
---|
| 2399 | |
---|
| 2400 | !--------------- y - advection first |
---|
| 2401 | |
---|
| 2402 | |
---|
| 2403 | ktf=MIN(kte,kde-1) |
---|
| 2404 | |
---|
| 2405 | i_start = its |
---|
| 2406 | i_end = MIN(ite,ide-1) |
---|
| 2407 | j_start = jts |
---|
| 2408 | j_end = jte |
---|
| 2409 | |
---|
| 2410 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
| 2411 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 2412 | |
---|
| 2413 | j_start_f = j_start |
---|
| 2414 | j_end_f = j_end+1 |
---|
| 2415 | |
---|
| 2416 | !CJM May not work with tiling because defined in terms of domain dims |
---|
| 2417 | IF(degrade_ys) then |
---|
| 2418 | j_start = jds+1 |
---|
| 2419 | j_start_f = j_start+1 |
---|
| 2420 | ENDIF |
---|
| 2421 | |
---|
| 2422 | IF(degrade_ye) then |
---|
| 2423 | j_end = jde-1 |
---|
| 2424 | j_end_f = jde-1 |
---|
| 2425 | ENDIF |
---|
| 2426 | |
---|
| 2427 | ! compute fluxes |
---|
| 2428 | ! specified uses upstream normal wind at boundaries |
---|
| 2429 | |
---|
| 2430 | jp0 = 1 |
---|
| 2431 | jp1 = 2 |
---|
| 2432 | |
---|
| 2433 | DO j = j_start, j_end+1 |
---|
| 2434 | |
---|
| 2435 | IF ((j == j_start) .and. degrade_ys) THEN |
---|
| 2436 | DO k = kts,ktf |
---|
| 2437 | DO i = i_start, i_end |
---|
| 2438 | vb = v(i,k,j-1) |
---|
| 2439 | IF (specified .AND. v(i,k,j) .LT. 0.)vb = v(i,k,j) |
---|
| 2440 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
| 2441 | *(v(i,k,j)+vb) |
---|
| 2442 | ENDDO |
---|
| 2443 | ENDDO |
---|
| 2444 | ELSE IF ((j == j_end+1) .and. degrade_ye) THEN |
---|
| 2445 | DO k = kts, ktf |
---|
| 2446 | DO i = i_start, i_end |
---|
| 2447 | vb = v(i,k,j) |
---|
| 2448 | IF (specified .AND. v(i,k,j-1) .GT. 0.)vb = v(i,k,j-1) |
---|
| 2449 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
| 2450 | *(vb+v(i,k,j-1)) |
---|
| 2451 | ENDDO |
---|
| 2452 | ENDDO |
---|
| 2453 | ELSE |
---|
| 2454 | DO k = kts, ktf |
---|
| 2455 | DO i = i_start, i_end |
---|
| 2456 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
| 2457 | fqy( i,k,jp1 ) = vel*flux3( v(i,k,j-2), v(i,k,j-1), & |
---|
| 2458 | v(i,k,j ), v(i,k,j+1), & |
---|
| 2459 | vel ) |
---|
| 2460 | ENDDO |
---|
| 2461 | ENDDO |
---|
| 2462 | END IF |
---|
| 2463 | |
---|
| 2464 | ! Comments on polar boundary conditions |
---|
| 2465 | ! No advection over the poles means tendencies (held from jds [S. pole] |
---|
| 2466 | ! to jde [N pole], i.e., on v grid) must be zero at poles |
---|
| 2467 | ! [tendency(jds) and tendency(jde)=0] |
---|
| 2468 | IF ( config_flags%polar .AND. (j == jds+1) ) THEN |
---|
| 2469 | DO k=kts,ktf |
---|
| 2470 | DO i = i_start, i_end |
---|
| 2471 | tendency(i,k,j-1) = 0. |
---|
| 2472 | END DO |
---|
| 2473 | END DO |
---|
| 2474 | ! If j_end were set to jde in a special if statement apart from |
---|
| 2475 | ! degrade_ye, then we would hit the next conditional. But since |
---|
| 2476 | ! we want the tendency to be zero anyway, not looping to jde+1 |
---|
| 2477 | ! will produce the same effect. |
---|
| 2478 | ELSE IF( config_flags%polar .AND. (j == jde+1) ) THEN |
---|
| 2479 | DO k=kts,ktf |
---|
| 2480 | DO i = i_start, i_end |
---|
| 2481 | tendency(i,k,j-1) = 0. |
---|
| 2482 | END DO |
---|
| 2483 | END DO |
---|
| 2484 | ELSE ! Normal code |
---|
| 2485 | |
---|
| 2486 | IF( j > j_start) THEN |
---|
| 2487 | DO k = kts, ktf |
---|
| 2488 | DO i = i_start, i_end |
---|
| 2489 | mrdy=msfvy(i,j-1)*rdy ! ADT eqn 45, 2nd term on RHS |
---|
| 2490 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
| 2491 | ENDDO |
---|
| 2492 | ENDDO |
---|
| 2493 | |
---|
| 2494 | END IF |
---|
| 2495 | |
---|
| 2496 | END IF |
---|
| 2497 | |
---|
| 2498 | jtmp = jp1 |
---|
| 2499 | jp1 = jp0 |
---|
| 2500 | jp0 = jtmp |
---|
| 2501 | |
---|
| 2502 | ENDDO |
---|
| 2503 | |
---|
| 2504 | ! next, x - flux divergence |
---|
| 2505 | |
---|
| 2506 | |
---|
| 2507 | i_start = its |
---|
| 2508 | i_end = MIN(ite,ide-1) |
---|
| 2509 | |
---|
| 2510 | j_start = jts |
---|
| 2511 | j_end = jte |
---|
| 2512 | ! Polar boundary conditions are like open or specified |
---|
| 2513 | IF ( config_flags%open_ys .or. specified .or. config_flags%polar ) j_start = MAX(jds+1,jts) |
---|
| 2514 | IF ( config_flags%open_ye .or. specified .or. config_flags%polar ) j_end = MIN(jde-1,jte) |
---|
| 2515 | |
---|
| 2516 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
| 2517 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 2518 | |
---|
| 2519 | i_start_f = i_start |
---|
| 2520 | i_end_f = i_end+1 |
---|
| 2521 | |
---|
| 2522 | IF(degrade_xs) then |
---|
| 2523 | i_start = ids+1 |
---|
| 2524 | i_start_f = i_start+1 |
---|
| 2525 | ENDIF |
---|
| 2526 | |
---|
| 2527 | IF(degrade_xe) then |
---|
| 2528 | i_end = ide-2 |
---|
| 2529 | i_end_f = ide-2 |
---|
| 2530 | ENDIF |
---|
| 2531 | |
---|
| 2532 | ! compute fluxes |
---|
| 2533 | |
---|
| 2534 | DO j = j_start, j_end |
---|
| 2535 | |
---|
| 2536 | ! 3rd or 4th order flux |
---|
| 2537 | |
---|
| 2538 | DO k=kts,ktf |
---|
| 2539 | DO i = i_start_f, i_end_f |
---|
| 2540 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
| 2541 | fqx( i, k ) = vel*flux3( v(i-2,k,j), v(i-1,k,j), & |
---|
| 2542 | v(i ,k,j), v(i+1,k,j), & |
---|
| 2543 | vel ) |
---|
| 2544 | ENDDO |
---|
| 2545 | ENDDO |
---|
| 2546 | |
---|
| 2547 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
| 2548 | |
---|
| 2549 | IF( degrade_xs ) THEN |
---|
| 2550 | DO k=kts,ktf |
---|
| 2551 | fqx(i_start,k) = 0.25*(ru(i_start,k,j)+ru(i_start,k,j-1)) & |
---|
| 2552 | *(v(i_start,k,j)+v(i_start-1,k,j)) |
---|
| 2553 | ENDDO |
---|
| 2554 | ENDIF |
---|
| 2555 | |
---|
| 2556 | IF( degrade_xe ) THEN |
---|
| 2557 | DO k=kts,ktf |
---|
| 2558 | fqx(i_end+1,k) = 0.25*(ru(i_end+1,k,j)+ru(i_end+1,k,j-1)) & |
---|
| 2559 | *(v(i_end+1,k,j)+v(i_end,k,j)) |
---|
| 2560 | ENDDO |
---|
| 2561 | ENDIF |
---|
| 2562 | |
---|
| 2563 | ! x flux-divergence into tendency |
---|
| 2564 | |
---|
| 2565 | DO k=kts,ktf |
---|
| 2566 | DO i = i_start, i_end |
---|
| 2567 | mrdx=msfvy(i,j)*rdx ! ADT eqn 45, 1st term on RHS |
---|
| 2568 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
| 2569 | ENDDO |
---|
| 2570 | ENDDO |
---|
| 2571 | |
---|
| 2572 | ENDDO |
---|
| 2573 | |
---|
| 2574 | ELSE IF( horz_order == 2 ) THEN |
---|
| 2575 | |
---|
| 2576 | |
---|
| 2577 | i_start = its |
---|
| 2578 | i_end = MIN(ite,ide-1) |
---|
| 2579 | j_start = jts |
---|
| 2580 | j_end = jte |
---|
| 2581 | |
---|
| 2582 | IF ( config_flags%open_ys ) j_start = MAX(jds+1,jts) |
---|
| 2583 | IF ( config_flags%open_ye ) j_end = MIN(jde-1,jte) |
---|
| 2584 | IF ( specified ) j_start = MAX(jds+2,jts) |
---|
| 2585 | IF ( specified ) j_end = MIN(jde-2,jte) |
---|
| 2586 | IF ( config_flags%polar ) j_start = MAX(jds+1,jts) |
---|
| 2587 | IF ( config_flags%polar ) j_end = MIN(jde-1,jte) |
---|
| 2588 | |
---|
| 2589 | DO j = j_start, j_end |
---|
| 2590 | DO k=kts,ktf |
---|
| 2591 | DO i = i_start, i_end |
---|
| 2592 | |
---|
| 2593 | mrdy=msfvy(i,j)*rdy ! ADT eqn 45, 2nd term on RHS |
---|
| 2594 | |
---|
| 2595 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.25 & |
---|
| 2596 | *((rv(i,k,j+1)+rv(i,k,j ))*(v(i,k,j+1)+v(i,k,j )) & |
---|
| 2597 | -(rv(i,k,j )+rv(i,k,j-1))*(v(i,k,j )+v(i,k,j-1))) |
---|
| 2598 | |
---|
| 2599 | ENDDO |
---|
| 2600 | ENDDO |
---|
| 2601 | ENDDO |
---|
| 2602 | |
---|
| 2603 | ! Comments on polar boundary conditions |
---|
| 2604 | ! tendencies = 0 at poles, and polar points do not contribute at points |
---|
| 2605 | ! next to poles |
---|
| 2606 | IF (config_flags%polar) THEN |
---|
| 2607 | IF (jts == jds) THEN |
---|
| 2608 | DO k=kts,ktf |
---|
| 2609 | DO i = i_start, i_end |
---|
| 2610 | tendency(i,k,jds) = 0. |
---|
| 2611 | END DO |
---|
| 2612 | END DO |
---|
| 2613 | END IF |
---|
| 2614 | IF (jte == jde) THEN |
---|
| 2615 | DO k=kts,ktf |
---|
| 2616 | DO i = i_start, i_end |
---|
| 2617 | tendency(i,k,jde) = 0. |
---|
| 2618 | END DO |
---|
| 2619 | END DO |
---|
| 2620 | END IF |
---|
| 2621 | END IF |
---|
| 2622 | |
---|
| 2623 | ! specified uses upstream normal wind at boundaries |
---|
| 2624 | |
---|
| 2625 | IF ( specified .AND. jts .LE. jds+1 ) THEN |
---|
| 2626 | j = jds+1 |
---|
| 2627 | DO k=kts,ktf |
---|
| 2628 | DO i = i_start, i_end |
---|
| 2629 | mrdy=msfvy(i,j)*rdy ! ADT eqn 45, 2nd term on RHS |
---|
| 2630 | vb = v(i,k,j-1) |
---|
| 2631 | IF (v(i,k,j) .LT. 0.) vb = v(i,k,j) |
---|
| 2632 | |
---|
| 2633 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.25 & |
---|
| 2634 | *((rv(i,k,j+1)+rv(i,k,j ))*(v(i,k,j+1)+v(i,k,j )) & |
---|
| 2635 | -(rv(i,k,j )+rv(i,k,j-1))*(v(i,k,j )+vb)) |
---|
| 2636 | |
---|
| 2637 | ENDDO |
---|
| 2638 | ENDDO |
---|
| 2639 | ENDIF |
---|
| 2640 | |
---|
| 2641 | IF ( specified .AND. jte .GE. jde-1 ) THEN |
---|
| 2642 | j = jde-1 |
---|
| 2643 | DO k=kts,ktf |
---|
| 2644 | DO i = i_start, i_end |
---|
| 2645 | |
---|
| 2646 | mrdy=msfvy(i,j)*rdy ! ADT eqn 45, 2nd term on RHS |
---|
| 2647 | vb = v(i,k,j+1) |
---|
| 2648 | IF (v(i,k,j) .GT. 0.) vb = v(i,k,j) |
---|
| 2649 | |
---|
| 2650 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.25 & |
---|
| 2651 | *((rv(i,k,j+1)+rv(i,k,j ))*(vb+v(i,k,j )) & |
---|
| 2652 | -(rv(i,k,j )+rv(i,k,j-1))*(v(i,k,j )+v(i,k,j-1))) |
---|
| 2653 | |
---|
| 2654 | ENDDO |
---|
| 2655 | ENDDO |
---|
| 2656 | ENDIF |
---|
| 2657 | |
---|
| 2658 | IF ( .NOT. config_flags%periodic_x ) THEN |
---|
| 2659 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
| 2660 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-2,ite) |
---|
| 2661 | ENDIF |
---|
| 2662 | IF ( config_flags%polar ) j_start = MAX(jds+1,jts) |
---|
| 2663 | IF ( config_flags%polar ) j_end = MIN(jde-1,jte) |
---|
| 2664 | |
---|
| 2665 | DO j = j_start, j_end |
---|
| 2666 | DO k=kts,ktf |
---|
| 2667 | DO i = i_start, i_end |
---|
| 2668 | |
---|
| 2669 | mrdx=msfvy(i,j)*rdx ! ADT eqn 45, 1st term on RHS |
---|
| 2670 | |
---|
| 2671 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 & |
---|
| 2672 | *((ru(i+1,k,j)+ru(i+1,k,j-1))*(v(i+1,k,j)+v(i ,k,j)) & |
---|
| 2673 | -(ru(i ,k,j)+ru(i ,k,j-1))*(v(i ,k,j)+v(i-1,k,j))) |
---|
| 2674 | |
---|
| 2675 | ENDDO |
---|
| 2676 | ENDDO |
---|
| 2677 | ENDDO |
---|
| 2678 | |
---|
| 2679 | ELSE IF ( horz_order == 0 ) THEN |
---|
| 2680 | |
---|
| 2681 | ! Just in case we want to turn horizontal advection off, we can do it |
---|
| 2682 | |
---|
| 2683 | ELSE |
---|
| 2684 | |
---|
| 2685 | |
---|
| 2686 | WRITE ( wrf_err_message , * ) 'module_advect: advect_v_6a: h_order not known ',horz_order |
---|
| 2687 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
| 2688 | |
---|
| 2689 | ENDIF horizontal_order_test |
---|
| 2690 | |
---|
| 2691 | ! Comments on polar boundary condition |
---|
| 2692 | ! Force tendency=0 at NP and SP |
---|
| 2693 | ! We keep setting this everywhere, but it can't hurt... |
---|
| 2694 | IF ( config_flags%polar .AND. (jts == jds) ) THEN |
---|
| 2695 | DO i=its,ite |
---|
| 2696 | DO k=kts,ktf |
---|
| 2697 | tendency(i,k,jts)=0. |
---|
| 2698 | END DO |
---|
| 2699 | END DO |
---|
| 2700 | END IF |
---|
| 2701 | IF ( config_flags%polar .AND. (jte == jde) ) THEN |
---|
| 2702 | DO i=its,ite |
---|
| 2703 | DO k=kts,ktf |
---|
| 2704 | tendency(i,k,jte)=0. |
---|
| 2705 | END DO |
---|
| 2706 | END DO |
---|
| 2707 | END IF |
---|
| 2708 | |
---|
| 2709 | ! radiative lateral boundary condition in y for normal velocity (v) |
---|
| 2710 | |
---|
| 2711 | IF ( (config_flags%open_ys) .and. jts == jds ) THEN |
---|
| 2712 | |
---|
| 2713 | i_start = its |
---|
| 2714 | i_end = MIN(ite,ide-1) |
---|
| 2715 | |
---|
| 2716 | DO i = i_start, i_end |
---|
| 2717 | DO k = kts, ktf |
---|
| 2718 | vb = MIN(rv(i,k,jts)-cb*mut(i,jts), 0.) |
---|
| 2719 | tendency(i,k,jts) = tendency(i,k,jts) & |
---|
| 2720 | - rdy*vb*(v_old(i,k,jts+1) - v_old(i,k,jts)) |
---|
| 2721 | ENDDO |
---|
| 2722 | ENDDO |
---|
| 2723 | |
---|
| 2724 | ENDIF |
---|
| 2725 | |
---|
| 2726 | IF ( (config_flags%open_ye) .and. jte == jde ) THEN |
---|
| 2727 | |
---|
| 2728 | i_start = its |
---|
| 2729 | i_end = MIN(ite,ide-1) |
---|
| 2730 | |
---|
| 2731 | DO i = i_start, i_end |
---|
| 2732 | DO k = kts, ktf |
---|
| 2733 | vb = MAX(rv(i,k,jte)+cb*mut(i,jte-1), 0.) |
---|
| 2734 | tendency(i,k,jte) = tendency(i,k,jte) & |
---|
| 2735 | - rdy*vb*(v_old(i,k,jte) - v_old(i,k,jte-1)) |
---|
| 2736 | ENDDO |
---|
| 2737 | ENDDO |
---|
| 2738 | |
---|
| 2739 | ENDIF |
---|
| 2740 | |
---|
| 2741 | ! pick up the rest of the horizontal radiation boundary conditions. |
---|
| 2742 | ! (these are the computations that don't require 'cb'. |
---|
| 2743 | ! first, set to index ranges |
---|
| 2744 | |
---|
| 2745 | j_start = jts |
---|
| 2746 | j_end = MIN(jte,jde) |
---|
| 2747 | |
---|
| 2748 | jmin = jds |
---|
| 2749 | jmax = jde-1 |
---|
| 2750 | |
---|
| 2751 | IF (config_flags%open_ys) THEN |
---|
| 2752 | j_start = MAX(jds+1, jts) |
---|
| 2753 | jmin = jds |
---|
| 2754 | ENDIF |
---|
| 2755 | IF (config_flags%open_ye) THEN |
---|
| 2756 | j_end = MIN(jte,jde-1) |
---|
| 2757 | jmax = jde-1 |
---|
| 2758 | ENDIF |
---|
| 2759 | |
---|
| 2760 | ! compute x (u) conditions for v, w, or scalar |
---|
| 2761 | |
---|
| 2762 | IF( (config_flags%open_xs) .and. (its == ids)) THEN |
---|
| 2763 | |
---|
| 2764 | DO j = j_start, j_end |
---|
| 2765 | |
---|
| 2766 | mrdx=msfvy(its,j)*rdx ! ADT eqn 45, 1st term on RHS |
---|
| 2767 | jp = MIN( jmax, j ) |
---|
| 2768 | jm = MAX( jmin, j-1 ) |
---|
| 2769 | |
---|
| 2770 | DO k=kts,ktf |
---|
| 2771 | |
---|
| 2772 | uw = 0.5*(ru(its,k,jp)+ru(its,k,jm)) |
---|
| 2773 | ub = MIN( uw, 0. ) |
---|
| 2774 | dup = ru(its+1,k,jp)-ru(its,k,jp) |
---|
| 2775 | dum = ru(its+1,k,jm)-ru(its,k,jm) |
---|
| 2776 | tendency(its,k,j)=tendency(its,k,j)-mrdx*( & |
---|
| 2777 | ub*(v_old(its+1,k,j)-v_old(its,k,j)) & |
---|
| 2778 | +0.5*v(its,k,j)*(dup+dum)) |
---|
| 2779 | ENDDO |
---|
| 2780 | ENDDO |
---|
| 2781 | |
---|
| 2782 | ENDIF |
---|
| 2783 | |
---|
| 2784 | IF( (config_flags%open_xe) .and. (ite == ide) ) THEN |
---|
| 2785 | DO j = j_start, j_end |
---|
| 2786 | |
---|
| 2787 | mrdx=msfvy(ite-1,j)*rdx ! ADT eqn 45, 1st term on RHS |
---|
| 2788 | jp = MIN( jmax, j ) |
---|
| 2789 | jm = MAX( jmin, j-1 ) |
---|
| 2790 | |
---|
| 2791 | DO k=kts,ktf |
---|
| 2792 | |
---|
| 2793 | uw = 0.5*(ru(ite,k,jp)+ru(ite,k,jm)) |
---|
| 2794 | ub = MAX( uw, 0. ) |
---|
| 2795 | dup = ru(ite,k,jp)-ru(ite-1,k,jp) |
---|
| 2796 | dum = ru(ite,k,jm)-ru(ite-1,k,jm) |
---|
| 2797 | |
---|
| 2798 | ! tendency(ite-1,k,j)=tendency(ite-1,k,j)-mrdx*( & |
---|
| 2799 | ! ub*(v_old(ite-1,k,j)-v_old(ite-2,k,j)) & |
---|
| 2800 | ! +0.5*v(ite-1,k,j)* & |
---|
| 2801 | ! ( ru(ite,k,jp)-ru(ite-1,k,jp) & |
---|
| 2802 | ! +ru(ite,k,jm)-ru(ite-1,k,jm)) ) |
---|
| 2803 | tendency(ite-1,k,j)=tendency(ite-1,k,j)-mrdx*( & |
---|
| 2804 | ub*(v_old(ite-1,k,j)-v_old(ite-2,k,j)) & |
---|
| 2805 | +0.5*v(ite-1,k,j)*(dup+dum)) |
---|
| 2806 | |
---|
| 2807 | ENDDO |
---|
| 2808 | ENDDO |
---|
| 2809 | |
---|
| 2810 | ENDIF |
---|
| 2811 | |
---|
| 2812 | !-------------------- vertical advection |
---|
| 2813 | ! ADT eqn 45 has 3rd term on RHS = -(1/mx) partial d/dz (rho v w) |
---|
| 2814 | ! Here we have: - partial d/dz (v*rom) = - partial d/dz (v rho w / my) |
---|
| 2815 | ! We therefore need to make a correction for advect_v |
---|
| 2816 | ! since 'my' (map scale factor in y direction) isn't a function of z, |
---|
| 2817 | ! we can do this using *(my/mx) (see eqn. 45 for example) |
---|
| 2818 | |
---|
| 2819 | |
---|
| 2820 | i_start = its |
---|
| 2821 | i_end = MIN(ite,ide-1) |
---|
| 2822 | j_start = jts |
---|
| 2823 | j_end = jte |
---|
| 2824 | |
---|
| 2825 | DO i = i_start, i_end |
---|
| 2826 | vflux(i,kts)=0. |
---|
| 2827 | vflux(i,kte)=0. |
---|
| 2828 | ENDDO |
---|
| 2829 | |
---|
| 2830 | ! Polar boundary conditions are like open or specified |
---|
| 2831 | ! We don't want to calculate vertical v tendencies at the N or S pole |
---|
| 2832 | IF ( config_flags%open_ys .or. specified .or. config_flags%polar ) j_start = MAX(jds+1,jts) |
---|
| 2833 | IF ( config_flags%open_ye .or. specified .or. config_flags%polar ) j_end = MIN(jde-1,jte) |
---|
| 2834 | |
---|
| 2835 | vert_order_test : IF (vert_order == 6) THEN |
---|
| 2836 | |
---|
| 2837 | DO j = j_start, j_end |
---|
| 2838 | |
---|
| 2839 | |
---|
| 2840 | DO k=kts+3,ktf-2 |
---|
| 2841 | DO i = i_start, i_end |
---|
| 2842 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
| 2843 | vflux(i,k) = vel*flux6( & |
---|
| 2844 | v(i,k-3,j), v(i,k-2,j), v(i,k-1,j), & |
---|
| 2845 | v(i,k ,j), v(i,k+1,j), v(i,k+2,j), -vel ) |
---|
| 2846 | ENDDO |
---|
| 2847 | ENDDO |
---|
| 2848 | |
---|
| 2849 | DO i = i_start, i_end |
---|
| 2850 | k=kts+1 |
---|
| 2851 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
| 2852 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
| 2853 | k = kts+2 |
---|
| 2854 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
| 2855 | vflux(i,k) = vel*flux4( & |
---|
| 2856 | v(i,k-2,j), v(i,k-1,j), & |
---|
| 2857 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
| 2858 | k = ktf-1 |
---|
| 2859 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
| 2860 | vflux(i,k) = vel*flux4( & |
---|
| 2861 | v(i,k-2,j), v(i,k-1,j), & |
---|
| 2862 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
| 2863 | k=ktf |
---|
| 2864 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
| 2865 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
| 2866 | |
---|
| 2867 | ENDDO |
---|
| 2868 | |
---|
| 2869 | |
---|
| 2870 | DO k=kts,ktf |
---|
| 2871 | DO i = i_start, i_end |
---|
| 2872 | ! We are calculating vertical fluxes on v points, |
---|
| 2873 | ! so we must mean msf_v_x/y variables |
---|
| 2874 | tendency(i,k,j)=tendency(i,k,j)-(msfvy(i,j)/msfvx(i,j))*rdzw(k)*(vflux(i,k+1)-vflux(i,k)) ! ADT eqn 45, 3rd term on RHS |
---|
| 2875 | ENDDO |
---|
| 2876 | ENDDO |
---|
| 2877 | |
---|
| 2878 | ENDDO |
---|
| 2879 | |
---|
| 2880 | ELSE IF (vert_order == 5) THEN |
---|
| 2881 | |
---|
| 2882 | DO j = j_start, j_end |
---|
| 2883 | |
---|
| 2884 | |
---|
| 2885 | DO k=kts+3,ktf-2 |
---|
| 2886 | DO i = i_start, i_end |
---|
| 2887 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
| 2888 | vflux(i,k) = vel*flux5( & |
---|
| 2889 | v(i,k-3,j), v(i,k-2,j), v(i,k-1,j), & |
---|
| 2890 | v(i,k ,j), v(i,k+1,j), v(i,k+2,j), -vel ) |
---|
| 2891 | ENDDO |
---|
| 2892 | ENDDO |
---|
| 2893 | |
---|
| 2894 | DO i = i_start, i_end |
---|
| 2895 | k=kts+1 |
---|
| 2896 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
| 2897 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
| 2898 | k = kts+2 |
---|
| 2899 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
| 2900 | vflux(i,k) = vel*flux3( & |
---|
| 2901 | v(i,k-2,j), v(i,k-1,j), & |
---|
| 2902 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
| 2903 | k = ktf-1 |
---|
| 2904 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
| 2905 | vflux(i,k) = vel*flux3( & |
---|
| 2906 | v(i,k-2,j), v(i,k-1,j), & |
---|
| 2907 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
| 2908 | k=ktf |
---|
| 2909 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
| 2910 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
| 2911 | |
---|
| 2912 | ENDDO |
---|
| 2913 | |
---|
| 2914 | |
---|
| 2915 | DO k=kts,ktf |
---|
| 2916 | DO i = i_start, i_end |
---|
| 2917 | ! We are calculating vertical fluxes on v points, |
---|
| 2918 | ! so we must mean msf_v_x/y variables |
---|
| 2919 | tendency(i,k,j)=tendency(i,k,j)-(msfvy(i,j)/msfvx(i,j))*rdzw(k)*(vflux(i,k+1)-vflux(i,k)) ! ADT eqn 45, 3rd term on RHS |
---|
| 2920 | ENDDO |
---|
| 2921 | ENDDO |
---|
| 2922 | |
---|
| 2923 | ENDDO |
---|
| 2924 | |
---|
| 2925 | ELSE IF (vert_order == 4) THEN |
---|
| 2926 | |
---|
| 2927 | DO j = j_start, j_end |
---|
| 2928 | |
---|
| 2929 | |
---|
| 2930 | DO k=kts+2,ktf-1 |
---|
| 2931 | DO i = i_start, i_end |
---|
| 2932 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
| 2933 | vflux(i,k) = vel*flux4( & |
---|
| 2934 | v(i,k-2,j), v(i,k-1,j), & |
---|
| 2935 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
| 2936 | ENDDO |
---|
| 2937 | ENDDO |
---|
| 2938 | |
---|
| 2939 | DO i = i_start, i_end |
---|
| 2940 | k=kts+1 |
---|
| 2941 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
| 2942 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
| 2943 | k=ktf |
---|
| 2944 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
| 2945 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
| 2946 | |
---|
| 2947 | ENDDO |
---|
| 2948 | |
---|
| 2949 | |
---|
| 2950 | DO k=kts,ktf |
---|
| 2951 | DO i = i_start, i_end |
---|
| 2952 | ! We are calculating vertical fluxes on v points, |
---|
| 2953 | ! so we must mean msf_v_x/y variables |
---|
| 2954 | tendency(i,k,j)=tendency(i,k,j)-(msfvy(i,j)/msfvx(i,j))*rdzw(k)*(vflux(i,k+1)-vflux(i,k)) ! ADT eqn 45, 3rd term on RHS |
---|
| 2955 | ENDDO |
---|
| 2956 | ENDDO |
---|
| 2957 | |
---|
| 2958 | ENDDO |
---|
| 2959 | |
---|
| 2960 | ELSE IF (vert_order == 3) THEN |
---|
| 2961 | |
---|
| 2962 | DO j = j_start, j_end |
---|
| 2963 | |
---|
| 2964 | |
---|
| 2965 | DO k=kts+2,ktf-1 |
---|
| 2966 | DO i = i_start, i_end |
---|
| 2967 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
| 2968 | vflux(i,k) = vel*flux3( & |
---|
| 2969 | v(i,k-2,j), v(i,k-1,j), & |
---|
| 2970 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
| 2971 | ENDDO |
---|
| 2972 | ENDDO |
---|
| 2973 | |
---|
| 2974 | DO i = i_start, i_end |
---|
| 2975 | k=kts+1 |
---|
| 2976 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
| 2977 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
| 2978 | k=ktf |
---|
| 2979 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
| 2980 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
| 2981 | |
---|
| 2982 | ENDDO |
---|
| 2983 | |
---|
| 2984 | |
---|
| 2985 | DO k=kts,ktf |
---|
| 2986 | DO i = i_start, i_end |
---|
| 2987 | ! We are calculating vertical fluxes on v points, |
---|
| 2988 | ! so we must mean msf_v_x/y variables |
---|
| 2989 | tendency(i,k,j)=tendency(i,k,j)-(msfvy(i,j)/msfvx(i,j))*rdzw(k)*(vflux(i,k+1)-vflux(i,k)) ! ADT eqn 45, 3rd term on RHS |
---|
| 2990 | ENDDO |
---|
| 2991 | ENDDO |
---|
| 2992 | |
---|
| 2993 | ENDDO |
---|
| 2994 | |
---|
| 2995 | |
---|
| 2996 | ELSE IF (vert_order == 2) THEN |
---|
| 2997 | |
---|
| 2998 | DO j = j_start, j_end |
---|
| 2999 | DO k=kts+1,ktf |
---|
| 3000 | DO i = i_start, i_end |
---|
| 3001 | |
---|
| 3002 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
| 3003 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
| 3004 | ENDDO |
---|
| 3005 | ENDDO |
---|
| 3006 | |
---|
| 3007 | DO k=kts,ktf |
---|
| 3008 | DO i = i_start, i_end |
---|
| 3009 | ! We are calculating vertical fluxes on v points, |
---|
| 3010 | ! so we must mean msf_v_x/y variables |
---|
| 3011 | tendency(i,k,j)=tendency(i,k,j)-(msfvy(i,j)/msfvx(i,j))*rdzw(k)*(vflux(i,k+1)-vflux(i,k)) ! ADT eqn 45, 3rd term on RHS |
---|
| 3012 | ENDDO |
---|
| 3013 | ENDDO |
---|
| 3014 | ENDDO |
---|
| 3015 | |
---|
| 3016 | ELSE |
---|
| 3017 | |
---|
| 3018 | WRITE ( wrf_err_message , * ) 'module_advect: advect_v_6a: v_order not known ',vert_order |
---|
| 3019 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
| 3020 | |
---|
| 3021 | ENDIF vert_order_test |
---|
| 3022 | |
---|
| 3023 | END SUBROUTINE advect_v |
---|
| 3024 | |
---|
| 3025 | !------------------------------------------------------------------- |
---|
| 3026 | |
---|
| 3027 | SUBROUTINE advect_scalar ( field, field_old, tendency, & |
---|
| 3028 | ru, rv, rom, & |
---|
| 3029 | mut, time_step, config_flags, & |
---|
| 3030 | msfux, msfuy, msfvx, msfvy, & |
---|
| 3031 | msftx, msfty, & |
---|
| 3032 | fzm, fzp, & |
---|
| 3033 | rdx, rdy, rdzw, & |
---|
| 3034 | ids, ide, jds, jde, kds, kde, & |
---|
| 3035 | ims, ime, jms, jme, kms, kme, & |
---|
| 3036 | its, ite, jts, jte, kts, kte ) |
---|
| 3037 | |
---|
| 3038 | IMPLICIT NONE |
---|
| 3039 | |
---|
| 3040 | ! Input data |
---|
| 3041 | |
---|
| 3042 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
| 3043 | |
---|
| 3044 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
| 3045 | ims, ime, jms, jme, kms, kme, & |
---|
| 3046 | its, ite, jts, jte, kts, kte |
---|
| 3047 | |
---|
| 3048 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: field, & |
---|
| 3049 | field_old, & |
---|
| 3050 | ru, & |
---|
| 3051 | rv, & |
---|
| 3052 | rom |
---|
| 3053 | |
---|
| 3054 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
---|
| 3055 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
| 3056 | |
---|
| 3057 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfux, & |
---|
| 3058 | msfuy, & |
---|
| 3059 | msfvx, & |
---|
| 3060 | msfvy, & |
---|
| 3061 | msftx, & |
---|
| 3062 | msfty |
---|
| 3063 | |
---|
| 3064 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
| 3065 | fzp, & |
---|
| 3066 | rdzw |
---|
| 3067 | |
---|
| 3068 | REAL , INTENT(IN ) :: rdx, & |
---|
| 3069 | rdy |
---|
| 3070 | INTEGER , INTENT(IN ) :: time_step |
---|
| 3071 | |
---|
| 3072 | |
---|
| 3073 | ! Local data |
---|
| 3074 | |
---|
| 3075 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
| 3076 | INTEGER :: i_start, i_end, j_start, j_end |
---|
| 3077 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
---|
| 3078 | INTEGER :: jmin, jmax, jp, jm, imin, imax |
---|
| 3079 | |
---|
| 3080 | REAL :: mrdx, mrdy, ub, vb, uw, vw |
---|
| 3081 | REAL , DIMENSION(its:ite, kts:kte) :: vflux |
---|
| 3082 | |
---|
| 3083 | |
---|
| 3084 | REAL, DIMENSION( its:ite+1, kts:kte ) :: fqx |
---|
| 3085 | REAL, DIMENSION( its:ite, kts:kte, 2 ) :: fqy |
---|
| 3086 | |
---|
| 3087 | INTEGER :: horz_order, vert_order |
---|
| 3088 | |
---|
| 3089 | LOGICAL :: degrade_xs, degrade_ys |
---|
| 3090 | LOGICAL :: degrade_xe, degrade_ye |
---|
| 3091 | |
---|
| 3092 | INTEGER :: jp1, jp0, jtmp |
---|
| 3093 | |
---|
| 3094 | |
---|
| 3095 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
---|
| 3096 | |
---|
| 3097 | REAL :: flux3, flux4, flux5, flux6 |
---|
| 3098 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel |
---|
| 3099 | |
---|
| 3100 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
| 3101 | ( 7.*(q_i + q_im1) - (q_ip1 + q_im2) )/12.0 |
---|
| 3102 | |
---|
| 3103 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
| 3104 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
---|
| 3105 | sign(1,time_step)*sign(1.,ua)*((q_ip1 - q_im2)-3.*(q_i-q_im1))/12.0 |
---|
| 3106 | |
---|
| 3107 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
| 3108 | ( 37.*(q_i+q_im1) - 8.*(q_ip1+q_im2) & |
---|
| 3109 | +(q_ip2+q_im3) )/60.0 |
---|
| 3110 | |
---|
| 3111 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
| 3112 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
---|
| 3113 | -sign(1,time_step)*sign(1.,ua)*( & |
---|
| 3114 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) )/60.0 |
---|
| 3115 | |
---|
| 3116 | |
---|
| 3117 | LOGICAL :: specified |
---|
| 3118 | |
---|
| 3119 | specified = .false. |
---|
| 3120 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
---|
| 3121 | |
---|
| 3122 | ! set order for the advection schemes |
---|
| 3123 | |
---|
| 3124 | ktf=MIN(kte,kde-1) |
---|
| 3125 | horz_order = config_flags%h_sca_adv_order |
---|
| 3126 | vert_order = config_flags%v_sca_adv_order |
---|
| 3127 | |
---|
| 3128 | ! begin with horizontal flux divergence |
---|
| 3129 | ! here is the choice of flux operators |
---|
| 3130 | |
---|
| 3131 | |
---|
| 3132 | horizontal_order_test : IF( horz_order == 6 ) THEN |
---|
| 3133 | |
---|
| 3134 | ! determine boundary mods for flux operators |
---|
| 3135 | ! We degrade the flux operators from 3rd/4th order |
---|
| 3136 | ! to second order one gridpoint in from the boundaries for |
---|
| 3137 | ! all boundary conditions except periodic and symmetry - these |
---|
| 3138 | ! conditions have boundary zone data fill for correct application |
---|
| 3139 | ! of the higher order flux stencils |
---|
| 3140 | |
---|
| 3141 | degrade_xs = .true. |
---|
| 3142 | degrade_xe = .true. |
---|
| 3143 | degrade_ys = .true. |
---|
| 3144 | degrade_ye = .true. |
---|
| 3145 | |
---|
| 3146 | IF( config_flags%periodic_x .or. & |
---|
| 3147 | config_flags%symmetric_xs .or. & |
---|
| 3148 | (its > ids+2) ) degrade_xs = .false. |
---|
| 3149 | IF( config_flags%periodic_x .or. & |
---|
| 3150 | config_flags%symmetric_xe .or. & |
---|
| 3151 | (ite < ide-3) ) degrade_xe = .false. |
---|
| 3152 | IF( config_flags%periodic_y .or. & |
---|
| 3153 | config_flags%symmetric_ys .or. & |
---|
| 3154 | (jts > jds+2) ) degrade_ys = .false. |
---|
| 3155 | IF( config_flags%periodic_y .or. & |
---|
| 3156 | config_flags%symmetric_ye .or. & |
---|
| 3157 | (jte < jde-3) ) degrade_ye = .false. |
---|
| 3158 | |
---|
| 3159 | !--------------- y - advection first |
---|
| 3160 | |
---|
| 3161 | ktf=MIN(kte,kde-1) |
---|
| 3162 | i_start = its |
---|
| 3163 | i_end = MIN(ite,ide-1) |
---|
| 3164 | j_start = jts |
---|
| 3165 | j_end = MIN(jte,jde-1) |
---|
| 3166 | |
---|
| 3167 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
| 3168 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 3169 | |
---|
| 3170 | j_start_f = j_start |
---|
| 3171 | j_end_f = j_end+1 |
---|
| 3172 | |
---|
| 3173 | IF(degrade_ys) then |
---|
| 3174 | j_start = MAX(jts,jds+1) |
---|
| 3175 | j_start_f = jds+3 |
---|
| 3176 | ENDIF |
---|
| 3177 | |
---|
| 3178 | IF(degrade_ye) then |
---|
| 3179 | j_end = MIN(jte,jde-2) |
---|
| 3180 | j_end_f = jde-3 |
---|
| 3181 | ENDIF |
---|
| 3182 | |
---|
| 3183 | IF(config_flags%polar) j_end = MIN(jte,jde-1) |
---|
| 3184 | |
---|
| 3185 | ! compute fluxes, 5th or 6th order |
---|
| 3186 | |
---|
| 3187 | jp1 = 2 |
---|
| 3188 | jp0 = 1 |
---|
| 3189 | |
---|
| 3190 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
---|
| 3191 | |
---|
| 3192 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
| 3193 | |
---|
| 3194 | DO k=kts,ktf |
---|
| 3195 | DO i = i_start, i_end |
---|
| 3196 | vel = rv(i,k,j) |
---|
| 3197 | fqy( i, k, jp1 ) = vel*flux6( & |
---|
| 3198 | field(i,k,j-3), field(i,k,j-2), field(i,k,j-1), & |
---|
| 3199 | field(i,k,j ), field(i,k,j+1), field(i,k,j+2), vel ) |
---|
| 3200 | ENDDO |
---|
| 3201 | ENDDO |
---|
| 3202 | |
---|
| 3203 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
| 3204 | |
---|
| 3205 | DO k=kts,ktf |
---|
| 3206 | DO i = i_start, i_end |
---|
| 3207 | fqy(i,k, jp1) = 0.5*rv(i,k,j)* & |
---|
| 3208 | (field(i,k,j)+field(i,k,j-1)) |
---|
| 3209 | |
---|
| 3210 | ENDDO |
---|
| 3211 | ENDDO |
---|
| 3212 | |
---|
| 3213 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
| 3214 | |
---|
| 3215 | DO k=kts,ktf |
---|
| 3216 | DO i = i_start, i_end |
---|
| 3217 | vel = rv(i,k,j) |
---|
| 3218 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
| 3219 | field(i,k,j-2),field(i,k,j-1),field(i,k,j),field(i,k,j+1),vel ) |
---|
| 3220 | ENDDO |
---|
| 3221 | ENDDO |
---|
| 3222 | |
---|
| 3223 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
| 3224 | |
---|
| 3225 | DO k=kts,ktf |
---|
| 3226 | DO i = i_start, i_end |
---|
| 3227 | fqy(i, k, jp1) = 0.5*rv(i,k,j)* & |
---|
| 3228 | (field(i,k,j)+field(i,k,j-1)) |
---|
| 3229 | ENDDO |
---|
| 3230 | ENDDO |
---|
| 3231 | |
---|
| 3232 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
| 3233 | |
---|
| 3234 | DO k=kts,ktf |
---|
| 3235 | DO i = i_start, i_end |
---|
| 3236 | vel = rv(i,k,j) |
---|
| 3237 | fqy( i, k, jp1) = vel*flux4( & |
---|
| 3238 | field(i,k,j-2),field(i,k,j-1), & |
---|
| 3239 | field(i,k,j),field(i,k,j+1),vel ) |
---|
| 3240 | ENDDO |
---|
| 3241 | ENDDO |
---|
| 3242 | |
---|
| 3243 | ENDIF |
---|
| 3244 | |
---|
| 3245 | ! y flux-divergence into tendency |
---|
| 3246 | |
---|
| 3247 | ! Comments on polar boundary conditions |
---|
| 3248 | ! Same process as for advect_u - tendencies run from jds to jde-1 |
---|
| 3249 | ! (latitudes are as for u grid, longitudes are displaced) |
---|
| 3250 | ! Therefore: flow is only from one side for points next to poles |
---|
| 3251 | IF ( config_flags%polar .AND. (j == jds+1) ) THEN |
---|
| 3252 | DO k=kts,ktf |
---|
| 3253 | DO i = i_start, i_end |
---|
| 3254 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 48 [rho->rho*q] dividing by my, 2nd term RHS |
---|
| 3255 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*fqy(i,k,jp1) |
---|
| 3256 | END DO |
---|
| 3257 | END DO |
---|
| 3258 | ELSE IF( config_flags%polar .AND. (j == jde) ) THEN |
---|
| 3259 | DO k=kts,ktf |
---|
| 3260 | DO i = i_start, i_end |
---|
| 3261 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 48 [rho->rho*q] dividing by my, 2nd term RHS |
---|
| 3262 | tendency(i,k,j-1) = tendency(i,k,j-1) + mrdy*fqy(i,k,jp0) |
---|
| 3263 | END DO |
---|
| 3264 | END DO |
---|
| 3265 | ELSE ! normal code |
---|
| 3266 | |
---|
| 3267 | IF(j > j_start) THEN |
---|
| 3268 | |
---|
| 3269 | DO k=kts,ktf |
---|
| 3270 | DO i = i_start, i_end |
---|
| 3271 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 48 [rho->rho*q] dividing by my, 2nd term RHS |
---|
| 3272 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
| 3273 | ENDDO |
---|
| 3274 | ENDDO |
---|
| 3275 | |
---|
| 3276 | ENDIF |
---|
| 3277 | |
---|
| 3278 | END IF |
---|
| 3279 | |
---|
| 3280 | jtmp = jp1 |
---|
| 3281 | jp1 = jp0 |
---|
| 3282 | jp0 = jtmp |
---|
| 3283 | |
---|
| 3284 | ENDDO j_loop_y_flux_6 |
---|
| 3285 | |
---|
| 3286 | ! next, x - flux divergence |
---|
| 3287 | |
---|
| 3288 | i_start = its |
---|
| 3289 | i_end = MIN(ite,ide-1) |
---|
| 3290 | |
---|
| 3291 | j_start = jts |
---|
| 3292 | j_end = MIN(jte,jde-1) |
---|
| 3293 | |
---|
| 3294 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
| 3295 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 3296 | |
---|
| 3297 | i_start_f = i_start |
---|
| 3298 | i_end_f = i_end+1 |
---|
| 3299 | |
---|
| 3300 | IF(degrade_xs) then |
---|
| 3301 | i_start = MAX(ids+1,its) |
---|
| 3302 | i_start_f = i_start+2 |
---|
| 3303 | ENDIF |
---|
| 3304 | |
---|
| 3305 | IF(degrade_xe) then |
---|
| 3306 | i_end = MIN(ide-2,ite) |
---|
| 3307 | i_end_f = ide-3 |
---|
| 3308 | ENDIF |
---|
| 3309 | |
---|
| 3310 | ! compute fluxes |
---|
| 3311 | |
---|
| 3312 | DO j = j_start, j_end |
---|
| 3313 | |
---|
| 3314 | ! 5th or 6th order flux |
---|
| 3315 | |
---|
| 3316 | DO k=kts,ktf |
---|
| 3317 | DO i = i_start_f, i_end_f |
---|
| 3318 | vel = ru(i,k,j) |
---|
| 3319 | fqx( i,k ) = vel*flux6( field(i-3,k,j), field(i-2,k,j), & |
---|
| 3320 | field(i-1,k,j), field(i ,k,j), & |
---|
| 3321 | field(i+1,k,j), field(i+2,k,j), & |
---|
| 3322 | vel ) |
---|
| 3323 | ENDDO |
---|
| 3324 | ENDDO |
---|
| 3325 | |
---|
| 3326 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
| 3327 | |
---|
| 3328 | IF( degrade_xs ) THEN |
---|
| 3329 | |
---|
| 3330 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
| 3331 | i = ids+1 |
---|
| 3332 | DO k=kts,ktf |
---|
| 3333 | fqx(i,k) = 0.5*(ru(i,k,j)) & |
---|
| 3334 | *(field(i,k,j)+field(i-1,k,j)) |
---|
| 3335 | |
---|
| 3336 | ENDDO |
---|
| 3337 | ENDIF |
---|
| 3338 | |
---|
| 3339 | i = ids+2 |
---|
| 3340 | DO k=kts,ktf |
---|
| 3341 | vel = ru(i,k,j) |
---|
| 3342 | fqx( i,k ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
| 3343 | field(i ,k,j), field(i+1,k,j), & |
---|
| 3344 | vel ) |
---|
| 3345 | ENDDO |
---|
| 3346 | |
---|
| 3347 | ENDIF |
---|
| 3348 | |
---|
| 3349 | IF( degrade_xe ) THEN |
---|
| 3350 | |
---|
| 3351 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
| 3352 | i = ide-1 |
---|
| 3353 | DO k=kts,ktf |
---|
| 3354 | fqx(i,k) = 0.5*(ru(i,k,j)) & |
---|
| 3355 | *(field(i,k,j)+field(i-1,k,j)) |
---|
| 3356 | ENDDO |
---|
| 3357 | ENDIF |
---|
| 3358 | |
---|
| 3359 | i = ide-2 |
---|
| 3360 | DO k=kts,ktf |
---|
| 3361 | vel = ru(i,k,j) |
---|
| 3362 | fqx( i,k ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
| 3363 | field(i ,k,j), field(i+1,k,j), & |
---|
| 3364 | vel ) |
---|
| 3365 | ENDDO |
---|
| 3366 | |
---|
| 3367 | ENDIF |
---|
| 3368 | |
---|
| 3369 | ! x flux-divergence into tendency |
---|
| 3370 | |
---|
| 3371 | DO k=kts,ktf |
---|
| 3372 | DO i = i_start, i_end |
---|
| 3373 | mrdx=msftx(i,j)*rdx ! see ADT eqn 48 [rho->rho*q] dividing by my, 1st term RHS |
---|
| 3374 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
| 3375 | ENDDO |
---|
| 3376 | ENDDO |
---|
| 3377 | |
---|
| 3378 | ENDDO |
---|
| 3379 | |
---|
| 3380 | ELSE IF( horz_order == 5 ) THEN |
---|
| 3381 | |
---|
| 3382 | ! determine boundary mods for flux operators |
---|
| 3383 | ! We degrade the flux operators from 3rd/4th order |
---|
| 3384 | ! to second order one gridpoint in from the boundaries for |
---|
| 3385 | ! all boundary conditions except periodic and symmetry - these |
---|
| 3386 | ! conditions have boundary zone data fill for correct application |
---|
| 3387 | ! of the higher order flux stencils |
---|
| 3388 | |
---|
| 3389 | degrade_xs = .true. |
---|
| 3390 | degrade_xe = .true. |
---|
| 3391 | degrade_ys = .true. |
---|
| 3392 | degrade_ye = .true. |
---|
| 3393 | |
---|
| 3394 | IF( config_flags%periodic_x .or. & |
---|
| 3395 | config_flags%symmetric_xs .or. & |
---|
| 3396 | (its > ids+2) ) degrade_xs = .false. |
---|
| 3397 | IF( config_flags%periodic_x .or. & |
---|
| 3398 | config_flags%symmetric_xe .or. & |
---|
| 3399 | (ite < ide-3) ) degrade_xe = .false. |
---|
| 3400 | IF( config_flags%periodic_y .or. & |
---|
| 3401 | config_flags%symmetric_ys .or. & |
---|
| 3402 | (jts > jds+2) ) degrade_ys = .false. |
---|
| 3403 | IF( config_flags%periodic_y .or. & |
---|
| 3404 | config_flags%symmetric_ye .or. & |
---|
| 3405 | (jte < jde-3) ) degrade_ye = .false. |
---|
| 3406 | |
---|
| 3407 | !--------------- y - advection first |
---|
| 3408 | |
---|
| 3409 | ktf=MIN(kte,kde-1) |
---|
| 3410 | i_start = its |
---|
| 3411 | i_end = MIN(ite,ide-1) |
---|
| 3412 | j_start = jts |
---|
| 3413 | j_end = MIN(jte,jde-1) |
---|
| 3414 | |
---|
| 3415 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
| 3416 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 3417 | |
---|
| 3418 | j_start_f = j_start |
---|
| 3419 | j_end_f = j_end+1 |
---|
| 3420 | |
---|
| 3421 | IF(degrade_ys) then |
---|
| 3422 | j_start = MAX(jts,jds+1) |
---|
| 3423 | j_start_f = jds+3 |
---|
| 3424 | ENDIF |
---|
| 3425 | |
---|
| 3426 | IF(degrade_ye) then |
---|
| 3427 | j_end = MIN(jte,jde-2) |
---|
| 3428 | j_end_f = jde-3 |
---|
| 3429 | ENDIF |
---|
| 3430 | |
---|
| 3431 | IF(config_flags%polar) j_end = MIN(jte,jde-1) |
---|
| 3432 | |
---|
| 3433 | ! compute fluxes, 5th or 6th order |
---|
| 3434 | |
---|
| 3435 | jp1 = 2 |
---|
| 3436 | jp0 = 1 |
---|
| 3437 | |
---|
| 3438 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
---|
| 3439 | |
---|
| 3440 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
| 3441 | |
---|
| 3442 | DO k=kts,ktf |
---|
| 3443 | DO i = i_start, i_end |
---|
| 3444 | vel = rv(i,k,j) |
---|
| 3445 | fqy( i, k, jp1 ) = vel*flux5( & |
---|
| 3446 | field(i,k,j-3), field(i,k,j-2), field(i,k,j-1), & |
---|
| 3447 | field(i,k,j ), field(i,k,j+1), field(i,k,j+2), vel ) |
---|
| 3448 | ENDDO |
---|
| 3449 | ENDDO |
---|
| 3450 | |
---|
| 3451 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
| 3452 | |
---|
| 3453 | DO k=kts,ktf |
---|
| 3454 | DO i = i_start, i_end |
---|
| 3455 | fqy(i,k, jp1) = 0.5*rv(i,k,j)* & |
---|
| 3456 | (field(i,k,j)+field(i,k,j-1)) |
---|
| 3457 | |
---|
| 3458 | ENDDO |
---|
| 3459 | ENDDO |
---|
| 3460 | |
---|
| 3461 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
| 3462 | |
---|
| 3463 | DO k=kts,ktf |
---|
| 3464 | DO i = i_start, i_end |
---|
| 3465 | vel = rv(i,k,j) |
---|
| 3466 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
| 3467 | field(i,k,j-2),field(i,k,j-1),field(i,k,j),field(i,k,j+1),vel ) |
---|
| 3468 | ENDDO |
---|
| 3469 | ENDDO |
---|
| 3470 | |
---|
| 3471 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
| 3472 | |
---|
| 3473 | DO k=kts,ktf |
---|
| 3474 | DO i = i_start, i_end |
---|
| 3475 | fqy(i, k, jp1) = 0.5*rv(i,k,j)* & |
---|
| 3476 | (field(i,k,j)+field(i,k,j-1)) |
---|
| 3477 | ENDDO |
---|
| 3478 | ENDDO |
---|
| 3479 | |
---|
| 3480 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
| 3481 | |
---|
| 3482 | DO k=kts,ktf |
---|
| 3483 | DO i = i_start, i_end |
---|
| 3484 | vel = rv(i,k,j) |
---|
| 3485 | fqy( i, k, jp1) = vel*flux3( & |
---|
| 3486 | field(i,k,j-2),field(i,k,j-1), & |
---|
| 3487 | field(i,k,j),field(i,k,j+1),vel ) |
---|
| 3488 | ENDDO |
---|
| 3489 | ENDDO |
---|
| 3490 | |
---|
| 3491 | ENDIF |
---|
| 3492 | |
---|
| 3493 | ! y flux-divergence into tendency |
---|
| 3494 | |
---|
| 3495 | ! Comments on polar boundary conditions |
---|
| 3496 | ! Same process as for advect_u - tendencies run from jds to jde-1 |
---|
| 3497 | ! (latitudes are as for u grid, longitudes are displaced) |
---|
| 3498 | ! Therefore: flow is only from one side for points next to poles |
---|
| 3499 | IF ( config_flags%polar .AND. (j == jds+1) ) THEN |
---|
| 3500 | DO k=kts,ktf |
---|
| 3501 | DO i = i_start, i_end |
---|
| 3502 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 48 [rho->rho*q] dividing by my, 2nd term RHS |
---|
| 3503 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*fqy(i,k,jp1) |
---|
| 3504 | END DO |
---|
| 3505 | END DO |
---|
| 3506 | ELSE IF( config_flags%polar .AND. (j == jde) ) THEN |
---|
| 3507 | DO k=kts,ktf |
---|
| 3508 | DO i = i_start, i_end |
---|
| 3509 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 48 [rho->rho*q] dividing by my, 2nd term RHS |
---|
| 3510 | tendency(i,k,j-1) = tendency(i,k,j-1) + mrdy*fqy(i,k,jp0) |
---|
| 3511 | END DO |
---|
| 3512 | END DO |
---|
| 3513 | ELSE ! normal code |
---|
| 3514 | |
---|
| 3515 | IF(j > j_start) THEN |
---|
| 3516 | |
---|
| 3517 | DO k=kts,ktf |
---|
| 3518 | DO i = i_start, i_end |
---|
| 3519 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 48 [rho->rho*q] dividing by my, 2nd term RHS |
---|
| 3520 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
| 3521 | ENDDO |
---|
| 3522 | ENDDO |
---|
| 3523 | |
---|
| 3524 | ENDIF |
---|
| 3525 | |
---|
| 3526 | END IF |
---|
| 3527 | |
---|
| 3528 | jtmp = jp1 |
---|
| 3529 | jp1 = jp0 |
---|
| 3530 | jp0 = jtmp |
---|
| 3531 | |
---|
| 3532 | ENDDO j_loop_y_flux_5 |
---|
| 3533 | |
---|
| 3534 | ! next, x - flux divergence |
---|
| 3535 | |
---|
| 3536 | i_start = its |
---|
| 3537 | i_end = MIN(ite,ide-1) |
---|
| 3538 | |
---|
| 3539 | j_start = jts |
---|
| 3540 | j_end = MIN(jte,jde-1) |
---|
| 3541 | |
---|
| 3542 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
| 3543 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 3544 | |
---|
| 3545 | i_start_f = i_start |
---|
| 3546 | i_end_f = i_end+1 |
---|
| 3547 | |
---|
| 3548 | IF(degrade_xs) then |
---|
| 3549 | i_start = MAX(ids+1,its) |
---|
| 3550 | i_start_f = i_start+2 |
---|
| 3551 | ENDIF |
---|
| 3552 | |
---|
| 3553 | IF(degrade_xe) then |
---|
| 3554 | i_end = MIN(ide-2,ite) |
---|
| 3555 | i_end_f = ide-3 |
---|
| 3556 | ENDIF |
---|
| 3557 | |
---|
| 3558 | ! compute fluxes |
---|
| 3559 | |
---|
| 3560 | DO j = j_start, j_end |
---|
| 3561 | |
---|
| 3562 | ! 5th or 6th order flux |
---|
| 3563 | |
---|
| 3564 | DO k=kts,ktf |
---|
| 3565 | DO i = i_start_f, i_end_f |
---|
| 3566 | vel = ru(i,k,j) |
---|
| 3567 | fqx( i,k ) = vel*flux5( field(i-3,k,j), field(i-2,k,j), & |
---|
| 3568 | field(i-1,k,j), field(i ,k,j), & |
---|
| 3569 | field(i+1,k,j), field(i+2,k,j), & |
---|
| 3570 | vel ) |
---|
| 3571 | ENDDO |
---|
| 3572 | ENDDO |
---|
| 3573 | |
---|
| 3574 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
| 3575 | |
---|
| 3576 | IF( degrade_xs ) THEN |
---|
| 3577 | |
---|
| 3578 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
| 3579 | i = ids+1 |
---|
| 3580 | DO k=kts,ktf |
---|
| 3581 | fqx(i,k) = 0.5*(ru(i,k,j)) & |
---|
| 3582 | *(field(i,k,j)+field(i-1,k,j)) |
---|
| 3583 | |
---|
| 3584 | ENDDO |
---|
| 3585 | ENDIF |
---|
| 3586 | |
---|
| 3587 | i = ids+2 |
---|
| 3588 | DO k=kts,ktf |
---|
| 3589 | vel = ru(i,k,j) |
---|
| 3590 | fqx( i,k ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
| 3591 | field(i ,k,j), field(i+1,k,j), & |
---|
| 3592 | vel ) |
---|
| 3593 | ENDDO |
---|
| 3594 | |
---|
| 3595 | ENDIF |
---|
| 3596 | |
---|
| 3597 | IF( degrade_xe ) THEN |
---|
| 3598 | |
---|
| 3599 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
| 3600 | i = ide-1 |
---|
| 3601 | DO k=kts,ktf |
---|
| 3602 | fqx(i,k) = 0.5*(ru(i,k,j)) & |
---|
| 3603 | *(field(i,k,j)+field(i-1,k,j)) |
---|
| 3604 | ENDDO |
---|
| 3605 | ENDIF |
---|
| 3606 | |
---|
| 3607 | i = ide-2 |
---|
| 3608 | DO k=kts,ktf |
---|
| 3609 | vel = ru(i,k,j) |
---|
| 3610 | fqx( i,k ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
| 3611 | field(i ,k,j), field(i+1,k,j), & |
---|
| 3612 | vel ) |
---|
| 3613 | ENDDO |
---|
| 3614 | |
---|
| 3615 | ENDIF |
---|
| 3616 | |
---|
| 3617 | ! x flux-divergence into tendency |
---|
| 3618 | |
---|
| 3619 | DO k=kts,ktf |
---|
| 3620 | DO i = i_start, i_end |
---|
| 3621 | mrdx=msftx(i,j)*rdx ! see ADT eqn 48 [rho->rho*q] dividing by my, 1st term RHS |
---|
| 3622 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
| 3623 | ENDDO |
---|
| 3624 | ENDDO |
---|
| 3625 | |
---|
| 3626 | ENDDO |
---|
| 3627 | |
---|
| 3628 | |
---|
| 3629 | ELSE IF( horz_order == 4 ) THEN |
---|
| 3630 | |
---|
| 3631 | degrade_xs = .true. |
---|
| 3632 | degrade_xe = .true. |
---|
| 3633 | degrade_ys = .true. |
---|
| 3634 | degrade_ye = .true. |
---|
| 3635 | |
---|
| 3636 | IF( config_flags%periodic_x .or. & |
---|
| 3637 | config_flags%symmetric_xs .or. & |
---|
| 3638 | (its > ids+1) ) degrade_xs = .false. |
---|
| 3639 | IF( config_flags%periodic_x .or. & |
---|
| 3640 | config_flags%symmetric_xe .or. & |
---|
| 3641 | (ite < ide-2) ) degrade_xe = .false. |
---|
| 3642 | IF( config_flags%periodic_y .or. & |
---|
| 3643 | config_flags%symmetric_ys .or. & |
---|
| 3644 | (jts > jds+1) ) degrade_ys = .false. |
---|
| 3645 | IF( config_flags%periodic_y .or. & |
---|
| 3646 | config_flags%symmetric_ye .or. & |
---|
| 3647 | (jte < jde-2) ) degrade_ye = .false. |
---|
| 3648 | |
---|
| 3649 | ! begin flux computations |
---|
| 3650 | ! start with x flux divergence |
---|
| 3651 | |
---|
| 3652 | ktf=MIN(kte,kde-1) |
---|
| 3653 | |
---|
| 3654 | i_start = its |
---|
| 3655 | i_end = MIN(ite,ide-1) |
---|
| 3656 | j_start = jts |
---|
| 3657 | j_end = MIN(jte,jde-1) |
---|
| 3658 | |
---|
| 3659 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
| 3660 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 3661 | |
---|
| 3662 | i_start_f = i_start |
---|
| 3663 | i_end_f = i_end+1 |
---|
| 3664 | |
---|
| 3665 | IF(degrade_xs) then |
---|
| 3666 | i_start = ids+1 |
---|
| 3667 | i_start_f = i_start+1 |
---|
| 3668 | ENDIF |
---|
| 3669 | |
---|
| 3670 | IF(degrade_xe) then |
---|
| 3671 | i_end = ide-2 |
---|
| 3672 | i_end_f = ide-2 |
---|
| 3673 | ENDIF |
---|
| 3674 | |
---|
| 3675 | ! compute fluxes |
---|
| 3676 | |
---|
| 3677 | DO j = j_start, j_end |
---|
| 3678 | |
---|
| 3679 | ! 3rd or 4th order flux |
---|
| 3680 | |
---|
| 3681 | DO k=kts,ktf |
---|
| 3682 | DO i = i_start_f, i_end_f |
---|
| 3683 | |
---|
| 3684 | fqx( i, k) = ru(i,k,j)*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
| 3685 | field(i ,k,j), field(i+1,k,j), & |
---|
| 3686 | ru(i,k,j) ) |
---|
| 3687 | ENDDO |
---|
| 3688 | ENDDO |
---|
| 3689 | |
---|
| 3690 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
| 3691 | |
---|
| 3692 | IF( degrade_xs ) THEN |
---|
| 3693 | DO k=kts,ktf |
---|
| 3694 | fqx(i_start, k) = 0.5*ru(i_start,k,j) & |
---|
| 3695 | *(field(i_start,k,j)+field(i_start-1,k,j)) |
---|
| 3696 | ENDDO |
---|
| 3697 | ENDIF |
---|
| 3698 | |
---|
| 3699 | IF( degrade_xe ) THEN |
---|
| 3700 | DO k=kts,ktf |
---|
| 3701 | fqx(i_end+1,k ) = 0.5*ru(i_end+1,k,j) & |
---|
| 3702 | *(field(i_end+1,k,j)+field(i_end,k,j)) |
---|
| 3703 | ENDDO |
---|
| 3704 | ENDIF |
---|
| 3705 | |
---|
| 3706 | ! x flux-divergence into tendency |
---|
| 3707 | |
---|
| 3708 | DO k=kts,ktf |
---|
| 3709 | DO i = i_start, i_end |
---|
| 3710 | mrdx=msftx(i,j)*rdx ! see ADT eqn 48 [rho->rho*q] dividing by my, 1st term RHS |
---|
| 3711 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
| 3712 | ENDDO |
---|
| 3713 | ENDDO |
---|
| 3714 | |
---|
| 3715 | ENDDO |
---|
| 3716 | |
---|
| 3717 | |
---|
| 3718 | ! next -> y flux divergence calculation |
---|
| 3719 | |
---|
| 3720 | i_start = its |
---|
| 3721 | i_end = MIN(ite,ide-1) |
---|
| 3722 | j_start = jts |
---|
| 3723 | j_end = MIN(jte,jde-1) |
---|
| 3724 | |
---|
| 3725 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
| 3726 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 3727 | |
---|
| 3728 | j_start_f = j_start |
---|
| 3729 | j_end_f = j_end+1 |
---|
| 3730 | |
---|
| 3731 | IF(degrade_ys) then |
---|
| 3732 | j_start = jds+1 |
---|
| 3733 | j_start_f = j_start+1 |
---|
| 3734 | ENDIF |
---|
| 3735 | |
---|
| 3736 | IF(degrade_ye) then |
---|
| 3737 | j_end = jde-2 |
---|
| 3738 | j_end_f = jde-2 |
---|
| 3739 | ENDIF |
---|
| 3740 | |
---|
| 3741 | IF(config_flags%polar) j_end = MIN(jte,jde-1) |
---|
| 3742 | |
---|
| 3743 | jp1 = 2 |
---|
| 3744 | jp0 = 1 |
---|
| 3745 | |
---|
| 3746 | DO j = j_start, j_end+1 |
---|
| 3747 | |
---|
| 3748 | IF ((j < j_start_f) .and. degrade_ys) THEN |
---|
| 3749 | DO k = kts, ktf |
---|
| 3750 | DO i = i_start, i_end |
---|
| 3751 | fqy(i,k,jp1) = 0.5*rv(i,k,j_start) & |
---|
| 3752 | *(field(i,k,j_start)+field(i,k,j_start-1)) |
---|
| 3753 | ENDDO |
---|
| 3754 | ENDDO |
---|
| 3755 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
| 3756 | DO k = kts, ktf |
---|
| 3757 | DO i = i_start, i_end |
---|
| 3758 | ! Assumes j>j_end_f is ONLY j_end+1 ... |
---|
| 3759 | ! fqy(i,k,jp1) = 0.5*rv(i,k,j_end+1) & |
---|
| 3760 | ! *(field(i,k,j_end+1)+field(i,k,j_end)) |
---|
| 3761 | fqy(i,k,jp1) = 0.5*rv(i,k,j) & |
---|
| 3762 | *(field(i,k,j)+field(i,k,j-1)) |
---|
| 3763 | ENDDO |
---|
| 3764 | ENDDO |
---|
| 3765 | ELSE |
---|
| 3766 | ! 3rd or 4th order flux |
---|
| 3767 | DO k = kts, ktf |
---|
| 3768 | DO i = i_start, i_end |
---|
| 3769 | fqy( i, k, jp1 ) = rv(i,k,j)*flux4( field(i,k,j-2), field(i,k,j-1), & |
---|
| 3770 | field(i,k,j ), field(i,k,j+1), & |
---|
| 3771 | rv(i,k,j) ) |
---|
| 3772 | ENDDO |
---|
| 3773 | ENDDO |
---|
| 3774 | END IF |
---|
| 3775 | |
---|
| 3776 | ! y flux-divergence into tendency |
---|
| 3777 | |
---|
| 3778 | ! Comments on polar boundary conditions |
---|
| 3779 | ! Same process as for advect_u - tendencies run from jds to jde-1 |
---|
| 3780 | ! (latitudes are as for u grid, longitudes are displaced) |
---|
| 3781 | ! Therefore: flow is only from one side for points next to poles |
---|
| 3782 | IF ( config_flags%polar .AND. (j == jds+1) ) THEN |
---|
| 3783 | DO k=kts,ktf |
---|
| 3784 | DO i = i_start, i_end |
---|
| 3785 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 48 [rho->rho*q] dividing by my, 2nd term RHS |
---|
| 3786 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*fqy(i,k,jp1) |
---|
| 3787 | END DO |
---|
| 3788 | END DO |
---|
| 3789 | ELSE IF( config_flags%polar .AND. (j == jde) ) THEN |
---|
| 3790 | DO k=kts,ktf |
---|
| 3791 | DO i = i_start, i_end |
---|
| 3792 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 48 [rho->rho*q] dividing by my, 2nd term RHS |
---|
| 3793 | tendency(i,k,j-1) = tendency(i,k,j-1) + mrdy*fqy(i,k,jp0) |
---|
| 3794 | END DO |
---|
| 3795 | END DO |
---|
| 3796 | ELSE ! normal code |
---|
| 3797 | |
---|
| 3798 | IF ( j > j_start ) THEN |
---|
| 3799 | |
---|
| 3800 | DO k=kts,ktf |
---|
| 3801 | DO i = i_start, i_end |
---|
| 3802 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 48 [rho->rho*q] dividing by my, 2nd term RHS |
---|
| 3803 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
| 3804 | ENDDO |
---|
| 3805 | ENDDO |
---|
| 3806 | |
---|
| 3807 | END IF |
---|
| 3808 | |
---|
| 3809 | END IF |
---|
| 3810 | |
---|
| 3811 | jtmp = jp1 |
---|
| 3812 | jp1 = jp0 |
---|
| 3813 | jp0 = jtmp |
---|
| 3814 | |
---|
| 3815 | ENDDO |
---|
| 3816 | |
---|
| 3817 | |
---|
| 3818 | ELSE IF( horz_order == 3 ) THEN |
---|
| 3819 | |
---|
| 3820 | degrade_xs = .true. |
---|
| 3821 | degrade_xe = .true. |
---|
| 3822 | degrade_ys = .true. |
---|
| 3823 | degrade_ye = .true. |
---|
| 3824 | |
---|
| 3825 | IF( config_flags%periodic_x .or. & |
---|
| 3826 | config_flags%symmetric_xs .or. & |
---|
| 3827 | (its > ids+1) ) degrade_xs = .false. |
---|
| 3828 | IF( config_flags%periodic_x .or. & |
---|
| 3829 | config_flags%symmetric_xe .or. & |
---|
| 3830 | (ite < ide-2) ) degrade_xe = .false. |
---|
| 3831 | IF( config_flags%periodic_y .or. & |
---|
| 3832 | config_flags%symmetric_ys .or. & |
---|
| 3833 | (jts > jds+1) ) degrade_ys = .false. |
---|
| 3834 | IF( config_flags%periodic_y .or. & |
---|
| 3835 | config_flags%symmetric_ye .or. & |
---|
| 3836 | (jte < jde-2) ) degrade_ye = .false. |
---|
| 3837 | |
---|
| 3838 | ! begin flux computations |
---|
| 3839 | ! start with x flux divergence |
---|
| 3840 | |
---|
| 3841 | ktf=MIN(kte,kde-1) |
---|
| 3842 | |
---|
| 3843 | i_start = its |
---|
| 3844 | i_end = MIN(ite,ide-1) |
---|
| 3845 | j_start = jts |
---|
| 3846 | j_end = MIN(jte,jde-1) |
---|
| 3847 | |
---|
| 3848 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
| 3849 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 3850 | |
---|
| 3851 | i_start_f = i_start |
---|
| 3852 | i_end_f = i_end+1 |
---|
| 3853 | |
---|
| 3854 | IF(degrade_xs) then |
---|
| 3855 | i_start = ids+1 |
---|
| 3856 | i_start_f = i_start+1 |
---|
| 3857 | ENDIF |
---|
| 3858 | |
---|
| 3859 | IF(degrade_xe) then |
---|
| 3860 | i_end = ide-2 |
---|
| 3861 | i_end_f = ide-2 |
---|
| 3862 | ENDIF |
---|
| 3863 | |
---|
| 3864 | ! compute fluxes |
---|
| 3865 | |
---|
| 3866 | DO j = j_start, j_end |
---|
| 3867 | |
---|
| 3868 | ! 3rd or 4th order flux |
---|
| 3869 | |
---|
| 3870 | DO k=kts,ktf |
---|
| 3871 | DO i = i_start_f, i_end_f |
---|
| 3872 | |
---|
| 3873 | fqx( i, k) = ru(i,k,j)*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
| 3874 | field(i ,k,j), field(i+1,k,j), & |
---|
| 3875 | ru(i,k,j) ) |
---|
| 3876 | ENDDO |
---|
| 3877 | ENDDO |
---|
| 3878 | |
---|
| 3879 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
| 3880 | |
---|
| 3881 | IF( degrade_xs ) THEN |
---|
| 3882 | DO k=kts,ktf |
---|
| 3883 | fqx(i_start, k) = 0.5*ru(i_start,k,j) & |
---|
| 3884 | *(field(i_start,k,j)+field(i_start-1,k,j)) |
---|
| 3885 | ENDDO |
---|
| 3886 | ENDIF |
---|
| 3887 | |
---|
| 3888 | IF( degrade_xe ) THEN |
---|
| 3889 | DO k=kts,ktf |
---|
| 3890 | fqx(i_end+1,k ) = 0.5*ru(i_end+1,k,j) & |
---|
| 3891 | *(field(i_end+1,k,j)+field(i_end,k,j)) |
---|
| 3892 | ENDDO |
---|
| 3893 | ENDIF |
---|
| 3894 | |
---|
| 3895 | ! x flux-divergence into tendency |
---|
| 3896 | |
---|
| 3897 | DO k=kts,ktf |
---|
| 3898 | DO i = i_start, i_end |
---|
| 3899 | mrdx=msftx(i,j)*rdx ! see ADT eqn 48 [rho->rho*q] dividing by my, 1st term RHS |
---|
| 3900 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
| 3901 | ENDDO |
---|
| 3902 | ENDDO |
---|
| 3903 | |
---|
| 3904 | ENDDO |
---|
| 3905 | |
---|
| 3906 | |
---|
| 3907 | ! next -> y flux divergence calculation |
---|
| 3908 | |
---|
| 3909 | i_start = its |
---|
| 3910 | i_end = MIN(ite,ide-1) |
---|
| 3911 | j_start = jts |
---|
| 3912 | j_end = MIN(jte,jde-1) |
---|
| 3913 | |
---|
| 3914 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
| 3915 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 3916 | |
---|
| 3917 | j_start_f = j_start |
---|
| 3918 | j_end_f = j_end+1 |
---|
| 3919 | |
---|
| 3920 | IF(degrade_ys) then |
---|
| 3921 | j_start = jds+1 |
---|
| 3922 | j_start_f = j_start+1 |
---|
| 3923 | ENDIF |
---|
| 3924 | |
---|
| 3925 | IF(degrade_ye) then |
---|
| 3926 | j_end = jde-2 |
---|
| 3927 | j_end_f = jde-2 |
---|
| 3928 | ENDIF |
---|
| 3929 | |
---|
| 3930 | IF(config_flags%polar) j_end = MIN(jte,jde-1) |
---|
| 3931 | |
---|
| 3932 | jp1 = 2 |
---|
| 3933 | jp0 = 1 |
---|
| 3934 | |
---|
| 3935 | DO j = j_start, j_end+1 |
---|
| 3936 | |
---|
| 3937 | IF ((j < j_start_f) .and. degrade_ys) THEN |
---|
| 3938 | DO k = kts, ktf |
---|
| 3939 | DO i = i_start, i_end |
---|
| 3940 | fqy(i,k,jp1) = 0.5*rv(i,k,j_start) & |
---|
| 3941 | *(field(i,k,j_start)+field(i,k,j_start-1)) |
---|
| 3942 | ENDDO |
---|
| 3943 | ENDDO |
---|
| 3944 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
| 3945 | DO k = kts, ktf |
---|
| 3946 | DO i = i_start, i_end |
---|
| 3947 | ! Assumes j>j_end_f is ONLY j_end+1 ... |
---|
| 3948 | ! fqy(i,k,jp1) = 0.5*rv(i,k,j_end+1) & |
---|
| 3949 | ! *(field(i,k,j_end+1)+field(i,k,j_end)) |
---|
| 3950 | fqy(i,k,jp1) = 0.5*rv(i,k,j) & |
---|
| 3951 | *(field(i,k,j)+field(i,k,j-1)) |
---|
| 3952 | ENDDO |
---|
| 3953 | ENDDO |
---|
| 3954 | ELSE |
---|
| 3955 | ! 3rd or 4th order flux |
---|
| 3956 | DO k = kts, ktf |
---|
| 3957 | DO i = i_start, i_end |
---|
| 3958 | fqy( i, k, jp1 ) = rv(i,k,j)*flux3( field(i,k,j-2), field(i,k,j-1), & |
---|
| 3959 | field(i,k,j ), field(i,k,j+1), & |
---|
| 3960 | rv(i,k,j) ) |
---|
| 3961 | ENDDO |
---|
| 3962 | ENDDO |
---|
| 3963 | END IF |
---|
| 3964 | |
---|
| 3965 | ! y flux-divergence into tendency |
---|
| 3966 | |
---|
| 3967 | ! Comments on polar boundary conditions |
---|
| 3968 | ! Same process as for advect_u - tendencies run from jds to jde-1 |
---|
| 3969 | ! (latitudes are as for u grid, longitudes are displaced) |
---|
| 3970 | ! Therefore: flow is only from one side for points next to poles |
---|
| 3971 | IF ( config_flags%polar .AND. (j == jds+1) ) THEN |
---|
| 3972 | DO k=kts,ktf |
---|
| 3973 | DO i = i_start, i_end |
---|
| 3974 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 48 [rho->rho*q] dividing by my, 2nd term RHS |
---|
| 3975 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*fqy(i,k,jp1) |
---|
| 3976 | END DO |
---|
| 3977 | END DO |
---|
| 3978 | ELSE IF( config_flags%polar .AND. (j == jde) ) THEN |
---|
| 3979 | DO k=kts,ktf |
---|
| 3980 | DO i = i_start, i_end |
---|
| 3981 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 48 [rho->rho*q] dividing by my, 2nd term RHS |
---|
| 3982 | tendency(i,k,j-1) = tendency(i,k,j-1) + mrdy*fqy(i,k,jp0) |
---|
| 3983 | END DO |
---|
| 3984 | END DO |
---|
| 3985 | ELSE ! normal code |
---|
| 3986 | |
---|
| 3987 | IF ( j > j_start ) THEN |
---|
| 3988 | |
---|
| 3989 | DO k=kts,ktf |
---|
| 3990 | DO i = i_start, i_end |
---|
| 3991 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 48 [rho->rho*q] dividing by my, 2nd term RHS |
---|
| 3992 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
| 3993 | ENDDO |
---|
| 3994 | ENDDO |
---|
| 3995 | |
---|
| 3996 | END IF |
---|
| 3997 | |
---|
| 3998 | END IF |
---|
| 3999 | |
---|
| 4000 | jtmp = jp1 |
---|
| 4001 | jp1 = jp0 |
---|
| 4002 | jp0 = jtmp |
---|
| 4003 | |
---|
| 4004 | ENDDO |
---|
| 4005 | |
---|
| 4006 | ELSE IF( horz_order == 2 ) THEN |
---|
| 4007 | |
---|
| 4008 | i_start = its |
---|
| 4009 | i_end = MIN(ite,ide-1) |
---|
| 4010 | j_start = jts |
---|
| 4011 | j_end = MIN(jte,jde-1) |
---|
| 4012 | |
---|
| 4013 | IF ( .NOT. config_flags%periodic_x ) THEN |
---|
| 4014 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
| 4015 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-2,ite) |
---|
| 4016 | ENDIF |
---|
| 4017 | |
---|
| 4018 | DO j = j_start, j_end |
---|
| 4019 | DO k = kts, ktf |
---|
| 4020 | DO i = i_start, i_end |
---|
| 4021 | mrdx=msftx(i,j)*rdx ! see ADT eqn 48 [rho->rho*q] dividing by my, 1st term RHS |
---|
| 4022 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.5 & |
---|
| 4023 | *(ru(i+1,k,j)*(field(i+1,k,j)+field(i ,k,j)) & |
---|
| 4024 | -ru(i ,k,j)*(field(i ,k,j)+field(i-1,k,j))) |
---|
| 4025 | ENDDO |
---|
| 4026 | ENDDO |
---|
| 4027 | ENDDO |
---|
| 4028 | |
---|
| 4029 | i_start = its |
---|
| 4030 | i_end = MIN(ite,ide-1) |
---|
| 4031 | |
---|
| 4032 | ! Polar boundary conditions are like open or specified |
---|
| 4033 | IF ( config_flags%open_ys .or. specified .or. config_flags%polar ) j_start = MAX(jds+1,jts) |
---|
| 4034 | IF ( config_flags%open_ye .or. specified .or. config_flags%polar ) j_end = MIN(jde-2,jte) |
---|
| 4035 | |
---|
| 4036 | DO j = j_start, j_end |
---|
| 4037 | DO k = kts, ktf |
---|
| 4038 | DO i = i_start, i_end |
---|
| 4039 | mrdy=msftx(i,j)*rdy ! see ADT eqn 48 [rho->rho*q] dividing by my, 2nd term RHS |
---|
| 4040 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.5 & |
---|
| 4041 | *(rv(i,k,j+1)*(field(i,k,j+1)+field(i,k,j )) & |
---|
| 4042 | -rv(i,k,j )*(field(i,k,j )+field(i,k,j-1))) |
---|
| 4043 | ENDDO |
---|
| 4044 | ENDDO |
---|
| 4045 | ENDDO |
---|
| 4046 | |
---|
| 4047 | ! Polar boundary condtions |
---|
| 4048 | ! These won't be covered in the loop above... |
---|
| 4049 | IF (config_flags%polar) THEN |
---|
| 4050 | IF (jts == jds) THEN |
---|
| 4051 | DO k=kts,ktf |
---|
| 4052 | DO i = i_start, i_end |
---|
| 4053 | mrdy=msftx(i,jds)*rdy ! see ADT eqn 48 [rho->rho*q] dividing by my, 2nd term RHS |
---|
| 4054 | tendency(i,k,jds)=tendency(i,k,jds) -mrdy*0.5 & |
---|
| 4055 | *rv(i,k,jds+1)*(field(i,k,jds+1)+field(i,k,jds)) |
---|
| 4056 | END DO |
---|
| 4057 | END DO |
---|
| 4058 | END IF |
---|
| 4059 | IF (jte == jde) THEN |
---|
| 4060 | DO k=kts,ktf |
---|
| 4061 | DO i = i_start, i_end |
---|
| 4062 | mrdy=msftx(i,jde-1)*rdy ! see ADT eqn 48 [rho->rho*q] dividing by my, 2nd term RHS |
---|
| 4063 | tendency(i,k,jde-1)=tendency(i,k,jde-1) +mrdy*0.5 & |
---|
| 4064 | *rv(i,k,jde-1)*(field(i,k,jde-1)+field(i,k,jde-2)) |
---|
| 4065 | END DO |
---|
| 4066 | END DO |
---|
| 4067 | END IF |
---|
| 4068 | END IF |
---|
| 4069 | |
---|
| 4070 | ELSE IF ( horz_order == 0 ) THEN |
---|
| 4071 | |
---|
| 4072 | ! Just in case we want to turn horizontal advection off, we can do it |
---|
| 4073 | |
---|
| 4074 | ELSE |
---|
| 4075 | |
---|
| 4076 | WRITE ( wrf_err_message , * ) 'module_advect: advect_scalar_6a, h_order not known ',horz_order |
---|
| 4077 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
| 4078 | |
---|
| 4079 | ENDIF horizontal_order_test |
---|
| 4080 | |
---|
| 4081 | ! pick up the rest of the horizontal radiation boundary conditions. |
---|
| 4082 | ! (these are the computations that don't require 'cb'. |
---|
| 4083 | ! first, set to index ranges |
---|
| 4084 | |
---|
| 4085 | i_start = its |
---|
| 4086 | i_end = MIN(ite,ide-1) |
---|
| 4087 | j_start = jts |
---|
| 4088 | j_end = MIN(jte,jde-1) |
---|
| 4089 | |
---|
| 4090 | ! compute x (u) conditions for v, w, or scalar |
---|
| 4091 | |
---|
| 4092 | IF( (config_flags%open_xs) .and. (its == ids) ) THEN |
---|
| 4093 | |
---|
| 4094 | DO j = j_start, j_end |
---|
| 4095 | DO k = kts, ktf |
---|
| 4096 | ub = MIN( 0.5*(ru(its,k,j)+ru(its+1,k,j)), 0. ) |
---|
| 4097 | tendency(its,k,j) = tendency(its,k,j) & |
---|
| 4098 | - rdx*( & |
---|
| 4099 | ub*( field_old(its+1,k,j) & |
---|
| 4100 | - field_old(its ,k,j) ) + & |
---|
| 4101 | field(its,k,j)*(ru(its+1,k,j)-ru(its,k,j)) & |
---|
| 4102 | ) |
---|
| 4103 | ENDDO |
---|
| 4104 | ENDDO |
---|
| 4105 | |
---|
| 4106 | ENDIF |
---|
| 4107 | |
---|
| 4108 | IF( (config_flags%open_xe) .and. (ite == ide) ) THEN |
---|
| 4109 | |
---|
| 4110 | DO j = j_start, j_end |
---|
| 4111 | DO k = kts, ktf |
---|
| 4112 | ub = MAX( 0.5*(ru(ite-1,k,j)+ru(ite,k,j)), 0. ) |
---|
| 4113 | tendency(i_end,k,j) = tendency(i_end,k,j) & |
---|
| 4114 | - rdx*( & |
---|
| 4115 | ub*( field_old(i_end ,k,j) & |
---|
| 4116 | - field_old(i_end-1,k,j) ) + & |
---|
| 4117 | field(i_end,k,j)*(ru(ite,k,j)-ru(ite-1,k,j)) & |
---|
| 4118 | ) |
---|
| 4119 | ENDDO |
---|
| 4120 | ENDDO |
---|
| 4121 | |
---|
| 4122 | ENDIF |
---|
| 4123 | |
---|
| 4124 | IF( (config_flags%open_ys) .and. (jts == jds) ) THEN |
---|
| 4125 | |
---|
| 4126 | DO i = i_start, i_end |
---|
| 4127 | DO k = kts, ktf |
---|
| 4128 | vb = MIN( 0.5*(rv(i,k,jts)+rv(i,k,jts+1)), 0. ) |
---|
| 4129 | tendency(i,k,jts) = tendency(i,k,jts) & |
---|
| 4130 | - rdy*( & |
---|
| 4131 | vb*( field_old(i,k,jts+1) & |
---|
| 4132 | - field_old(i,k,jts ) ) + & |
---|
| 4133 | field(i,k,jts)*(rv(i,k,jts+1)-rv(i,k,jts)) & |
---|
| 4134 | ) |
---|
| 4135 | ENDDO |
---|
| 4136 | ENDDO |
---|
| 4137 | |
---|
| 4138 | ENDIF |
---|
| 4139 | |
---|
| 4140 | IF( (config_flags%open_ye) .and. (jte == jde)) THEN |
---|
| 4141 | |
---|
| 4142 | DO i = i_start, i_end |
---|
| 4143 | DO k = kts, ktf |
---|
| 4144 | vb = MAX( 0.5*(rv(i,k,jte-1)+rv(i,k,jte)), 0. ) |
---|
| 4145 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
---|
| 4146 | - rdy*( & |
---|
| 4147 | vb*( field_old(i,k,j_end ) & |
---|
| 4148 | - field_old(i,k,j_end-1) ) + & |
---|
| 4149 | field(i,k,j_end)*(rv(i,k,jte)-rv(i,k,jte-1)) & |
---|
| 4150 | ) |
---|
| 4151 | ENDDO |
---|
| 4152 | ENDDO |
---|
| 4153 | |
---|
| 4154 | ENDIF |
---|
| 4155 | |
---|
| 4156 | |
---|
| 4157 | !-------------------- vertical advection |
---|
| 4158 | ! Scalar equation has 3rd term on RHS = - partial d/dz (q rho w /my) |
---|
| 4159 | ! Here we have: - partial d/dz (q*rom) = - partial d/dz (q rho w / my) |
---|
| 4160 | ! So we don't need to make a correction for advect_scalar |
---|
| 4161 | |
---|
| 4162 | i_start = its |
---|
| 4163 | i_end = MIN(ite,ide-1) |
---|
| 4164 | j_start = jts |
---|
| 4165 | j_end = MIN(jte,jde-1) |
---|
| 4166 | |
---|
| 4167 | DO i = i_start, i_end |
---|
| 4168 | vflux(i,kts)=0. |
---|
| 4169 | vflux(i,kte)=0. |
---|
| 4170 | ENDDO |
---|
| 4171 | |
---|
| 4172 | vert_order_test : IF (vert_order == 6) THEN |
---|
| 4173 | |
---|
| 4174 | DO j = j_start, j_end |
---|
| 4175 | |
---|
| 4176 | DO k=kts+3,ktf-2 |
---|
| 4177 | DO i = i_start, i_end |
---|
| 4178 | vel=rom(i,k,j) |
---|
| 4179 | vflux(i,k) = vel*flux6( & |
---|
| 4180 | field(i,k-3,j), field(i,k-2,j), field(i,k-1,j), & |
---|
| 4181 | field(i,k ,j), field(i,k+1,j), field(i,k+2,j), -vel ) |
---|
| 4182 | ENDDO |
---|
| 4183 | ENDDO |
---|
| 4184 | |
---|
| 4185 | DO i = i_start, i_end |
---|
| 4186 | |
---|
| 4187 | k=kts+1 |
---|
| 4188 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 4189 | |
---|
| 4190 | k = kts+2 |
---|
| 4191 | vel=rom(i,k,j) |
---|
| 4192 | vflux(i,k) = vel*flux4( & |
---|
| 4193 | field(i,k-2,j), field(i,k-1,j), & |
---|
| 4194 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
| 4195 | k = ktf-1 |
---|
| 4196 | vel=rom(i,k,j) |
---|
| 4197 | vflux(i,k) = vel*flux4( & |
---|
| 4198 | field(i,k-2,j), field(i,k-1,j), & |
---|
| 4199 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
| 4200 | |
---|
| 4201 | k=ktf |
---|
| 4202 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 4203 | ENDDO |
---|
| 4204 | |
---|
| 4205 | DO k=kts,ktf |
---|
| 4206 | DO i = i_start, i_end |
---|
| 4207 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
| 4208 | ENDDO |
---|
| 4209 | ENDDO |
---|
| 4210 | |
---|
| 4211 | ENDDO |
---|
| 4212 | |
---|
| 4213 | ELSE IF (vert_order == 5) THEN |
---|
| 4214 | |
---|
| 4215 | DO j = j_start, j_end |
---|
| 4216 | |
---|
| 4217 | DO k=kts+3,ktf-2 |
---|
| 4218 | DO i = i_start, i_end |
---|
| 4219 | vel=rom(i,k,j) |
---|
| 4220 | vflux(i,k) = vel*flux5( & |
---|
| 4221 | field(i,k-3,j), field(i,k-2,j), field(i,k-1,j), & |
---|
| 4222 | field(i,k ,j), field(i,k+1,j), field(i,k+2,j), -vel ) |
---|
| 4223 | ENDDO |
---|
| 4224 | ENDDO |
---|
| 4225 | |
---|
| 4226 | DO i = i_start, i_end |
---|
| 4227 | |
---|
| 4228 | k=kts+1 |
---|
| 4229 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 4230 | |
---|
| 4231 | k = kts+2 |
---|
| 4232 | vel=rom(i,k,j) |
---|
| 4233 | vflux(i,k) = vel*flux3( & |
---|
| 4234 | field(i,k-2,j), field(i,k-1,j), & |
---|
| 4235 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
| 4236 | k = ktf-1 |
---|
| 4237 | vel=rom(i,k,j) |
---|
| 4238 | vflux(i,k) = vel*flux3( & |
---|
| 4239 | field(i,k-2,j), field(i,k-1,j), & |
---|
| 4240 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
| 4241 | |
---|
| 4242 | k=ktf |
---|
| 4243 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 4244 | ENDDO |
---|
| 4245 | |
---|
| 4246 | DO k=kts,ktf |
---|
| 4247 | DO i = i_start, i_end |
---|
| 4248 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
| 4249 | ENDDO |
---|
| 4250 | ENDDO |
---|
| 4251 | |
---|
| 4252 | ENDDO |
---|
| 4253 | |
---|
| 4254 | ELSE IF (vert_order == 4) THEN |
---|
| 4255 | |
---|
| 4256 | DO j = j_start, j_end |
---|
| 4257 | |
---|
| 4258 | DO k=kts+2,ktf-1 |
---|
| 4259 | DO i = i_start, i_end |
---|
| 4260 | vel=rom(i,k,j) |
---|
| 4261 | vflux(i,k) = vel*flux4( & |
---|
| 4262 | field(i,k-2,j), field(i,k-1,j), & |
---|
| 4263 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
| 4264 | ENDDO |
---|
| 4265 | ENDDO |
---|
| 4266 | |
---|
| 4267 | DO i = i_start, i_end |
---|
| 4268 | |
---|
| 4269 | k=kts+1 |
---|
| 4270 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 4271 | k=ktf |
---|
| 4272 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 4273 | ENDDO |
---|
| 4274 | |
---|
| 4275 | DO k=kts,ktf |
---|
| 4276 | DO i = i_start, i_end |
---|
| 4277 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
| 4278 | ENDDO |
---|
| 4279 | ENDDO |
---|
| 4280 | |
---|
| 4281 | ENDDO |
---|
| 4282 | |
---|
| 4283 | ELSE IF (vert_order == 3) THEN |
---|
| 4284 | |
---|
| 4285 | DO j = j_start, j_end |
---|
| 4286 | |
---|
| 4287 | DO k=kts+2,ktf-1 |
---|
| 4288 | DO i = i_start, i_end |
---|
| 4289 | vel=rom(i,k,j) |
---|
| 4290 | vflux(i,k) = vel*flux3( & |
---|
| 4291 | field(i,k-2,j), field(i,k-1,j), & |
---|
| 4292 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
| 4293 | ENDDO |
---|
| 4294 | ENDDO |
---|
| 4295 | |
---|
| 4296 | DO i = i_start, i_end |
---|
| 4297 | |
---|
| 4298 | k=kts+1 |
---|
| 4299 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 4300 | k=ktf |
---|
| 4301 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 4302 | ENDDO |
---|
| 4303 | |
---|
| 4304 | DO k=kts,ktf |
---|
| 4305 | DO i = i_start, i_end |
---|
| 4306 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
| 4307 | ENDDO |
---|
| 4308 | ENDDO |
---|
| 4309 | |
---|
| 4310 | ENDDO |
---|
| 4311 | |
---|
| 4312 | |
---|
| 4313 | ELSE IF (vert_order == 2) THEN |
---|
| 4314 | |
---|
| 4315 | DO j = j_start, j_end |
---|
| 4316 | DO k = kts+1, ktf |
---|
| 4317 | DO i = i_start, i_end |
---|
| 4318 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 4319 | ENDDO |
---|
| 4320 | ENDDO |
---|
| 4321 | |
---|
| 4322 | DO k = kts, ktf |
---|
| 4323 | DO i = i_start, i_end |
---|
| 4324 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
| 4325 | ENDDO |
---|
| 4326 | ENDDO |
---|
| 4327 | |
---|
| 4328 | ENDDO |
---|
| 4329 | |
---|
| 4330 | ELSE |
---|
| 4331 | |
---|
| 4332 | WRITE (wrf_err_message,*) ' advect_scalar_6a, v_order not known ',vert_order |
---|
| 4333 | CALL wrf_error_fatal ( wrf_err_message ) |
---|
| 4334 | |
---|
| 4335 | ENDIF vert_order_test |
---|
| 4336 | |
---|
| 4337 | END SUBROUTINE advect_scalar |
---|
| 4338 | |
---|
| 4339 | !--------------------------------------------------------------------------------- |
---|
| 4340 | |
---|
| 4341 | SUBROUTINE advect_w ( w, w_old, tendency, & |
---|
| 4342 | ru, rv, rom, & |
---|
| 4343 | mut, time_step, config_flags, & |
---|
| 4344 | msfux, msfuy, msfvx, msfvy, & |
---|
| 4345 | msftx, msfty, & |
---|
| 4346 | fzm, fzp, & |
---|
| 4347 | rdx, rdy, rdzu, & |
---|
| 4348 | ids, ide, jds, jde, kds, kde, & |
---|
| 4349 | ims, ime, jms, jme, kms, kme, & |
---|
| 4350 | its, ite, jts, jte, kts, kte ) |
---|
| 4351 | |
---|
| 4352 | IMPLICIT NONE |
---|
| 4353 | |
---|
| 4354 | ! Input data |
---|
| 4355 | |
---|
| 4356 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
| 4357 | |
---|
| 4358 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
| 4359 | ims, ime, jms, jme, kms, kme, & |
---|
| 4360 | its, ite, jts, jte, kts, kte |
---|
| 4361 | |
---|
| 4362 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: w, & |
---|
| 4363 | w_old, & |
---|
| 4364 | ru, & |
---|
| 4365 | rv, & |
---|
| 4366 | rom |
---|
| 4367 | |
---|
| 4368 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
---|
| 4369 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
| 4370 | |
---|
| 4371 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfux, & |
---|
| 4372 | msfuy, & |
---|
| 4373 | msfvx, & |
---|
| 4374 | msfvy, & |
---|
| 4375 | msftx, & |
---|
| 4376 | msfty |
---|
| 4377 | |
---|
| 4378 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
| 4379 | fzp, & |
---|
| 4380 | rdzu |
---|
| 4381 | |
---|
| 4382 | REAL , INTENT(IN ) :: rdx, & |
---|
| 4383 | rdy |
---|
| 4384 | INTEGER , INTENT(IN ) :: time_step |
---|
| 4385 | |
---|
| 4386 | |
---|
| 4387 | ! Local data |
---|
| 4388 | |
---|
| 4389 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
| 4390 | INTEGER :: i_start, i_end, j_start, j_end |
---|
| 4391 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
---|
| 4392 | INTEGER :: jmin, jmax, jp, jm, imin, imax |
---|
| 4393 | |
---|
| 4394 | REAL :: mrdx, mrdy, ub, vb, uw, vw |
---|
| 4395 | REAL , DIMENSION(its:ite, kts:kte) :: vflux |
---|
| 4396 | |
---|
| 4397 | INTEGER :: horz_order, vert_order |
---|
| 4398 | |
---|
| 4399 | REAL, DIMENSION( its:ite+1, kts:kte ) :: fqx |
---|
| 4400 | REAL, DIMENSION( its:ite, kts:kte, 2 ) :: fqy |
---|
| 4401 | |
---|
| 4402 | LOGICAL :: degrade_xs, degrade_ys |
---|
| 4403 | LOGICAL :: degrade_xe, degrade_ye |
---|
| 4404 | |
---|
| 4405 | INTEGER :: jp1, jp0, jtmp |
---|
| 4406 | |
---|
| 4407 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
---|
| 4408 | |
---|
| 4409 | REAL :: flux3, flux4, flux5, flux6 |
---|
| 4410 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel |
---|
| 4411 | |
---|
| 4412 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
| 4413 | ( 7.*(q_i + q_im1) - (q_ip1 + q_im2) )/12.0 |
---|
| 4414 | |
---|
| 4415 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
| 4416 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
---|
| 4417 | sign(1,time_step)*sign(1.,ua)*((q_ip1 - q_im2)-3.*(q_i-q_im1))/12.0 |
---|
| 4418 | |
---|
| 4419 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
| 4420 | ( 37.*(q_i+q_im1) - 8.*(q_ip1+q_im2) & |
---|
| 4421 | +(q_ip2+q_im3) )/60.0 |
---|
| 4422 | |
---|
| 4423 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
| 4424 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
---|
| 4425 | -sign(1,time_step)*sign(1.,ua)*( & |
---|
| 4426 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) )/60.0 |
---|
| 4427 | |
---|
| 4428 | |
---|
| 4429 | LOGICAL :: specified |
---|
| 4430 | |
---|
| 4431 | specified = .false. |
---|
| 4432 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
---|
| 4433 | |
---|
| 4434 | ! set order for the advection scheme |
---|
| 4435 | |
---|
| 4436 | ktf=MIN(kte,kde-1) |
---|
| 4437 | horz_order = config_flags%h_sca_adv_order |
---|
| 4438 | vert_order = config_flags%v_sca_adv_order |
---|
| 4439 | |
---|
| 4440 | ! here is the choice of flux operators |
---|
| 4441 | |
---|
| 4442 | ! begin with horizontal flux divergence |
---|
| 4443 | |
---|
| 4444 | horizontal_order_test : IF( horz_order == 6 ) THEN |
---|
| 4445 | |
---|
| 4446 | ! determine boundary mods for flux operators |
---|
| 4447 | ! We degrade the flux operators from 3rd/4th order |
---|
| 4448 | ! to second order one gridpoint in from the boundaries for |
---|
| 4449 | ! all boundary conditions except periodic and symmetry - these |
---|
| 4450 | ! conditions have boundary zone data fill for correct application |
---|
| 4451 | ! of the higher order flux stencils |
---|
| 4452 | |
---|
| 4453 | degrade_xs = .true. |
---|
| 4454 | degrade_xe = .true. |
---|
| 4455 | degrade_ys = .true. |
---|
| 4456 | degrade_ye = .true. |
---|
| 4457 | |
---|
| 4458 | IF( config_flags%periodic_x .or. & |
---|
| 4459 | config_flags%symmetric_xs .or. & |
---|
| 4460 | (its > ids+2) ) degrade_xs = .false. |
---|
| 4461 | IF( config_flags%periodic_x .or. & |
---|
| 4462 | config_flags%symmetric_xe .or. & |
---|
| 4463 | (ite < ide-3) ) degrade_xe = .false. |
---|
| 4464 | IF( config_flags%periodic_y .or. & |
---|
| 4465 | config_flags%symmetric_ys .or. & |
---|
| 4466 | (jts > jds+2) ) degrade_ys = .false. |
---|
| 4467 | IF( config_flags%periodic_y .or. & |
---|
| 4468 | config_flags%symmetric_ye .or. & |
---|
| 4469 | (jte < jde-3) ) degrade_ye = .false. |
---|
| 4470 | |
---|
| 4471 | !--------------- y - advection first |
---|
| 4472 | |
---|
| 4473 | i_start = its |
---|
| 4474 | i_end = MIN(ite,ide-1) |
---|
| 4475 | j_start = jts |
---|
| 4476 | j_end = MIN(jte,jde-1) |
---|
| 4477 | |
---|
| 4478 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
| 4479 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 4480 | |
---|
| 4481 | j_start_f = j_start |
---|
| 4482 | j_end_f = j_end+1 |
---|
| 4483 | |
---|
| 4484 | IF(degrade_ys) then |
---|
| 4485 | j_start = MAX(jts,jds+1) |
---|
| 4486 | j_start_f = jds+3 |
---|
| 4487 | ENDIF |
---|
| 4488 | |
---|
| 4489 | IF(degrade_ye) then |
---|
| 4490 | j_end = MIN(jte,jde-2) |
---|
| 4491 | j_end_f = jde-3 |
---|
| 4492 | ENDIF |
---|
| 4493 | |
---|
| 4494 | IF(config_flags%polar) j_end = MIN(jte,jde-1) |
---|
| 4495 | |
---|
| 4496 | ! compute fluxes, 5th or 6th order |
---|
| 4497 | |
---|
| 4498 | jp1 = 2 |
---|
| 4499 | jp0 = 1 |
---|
| 4500 | |
---|
| 4501 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
---|
| 4502 | |
---|
| 4503 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN |
---|
| 4504 | |
---|
| 4505 | DO k=kts+1,ktf |
---|
| 4506 | DO i = i_start, i_end |
---|
| 4507 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
| 4508 | fqy( i, k, jp1 ) = vel*flux6( & |
---|
| 4509 | w(i,k,j-3), w(i,k,j-2), w(i,k,j-1), & |
---|
| 4510 | w(i,k,j ), w(i,k,j+1), w(i,k,j+2), vel ) |
---|
| 4511 | ENDDO |
---|
| 4512 | ENDDO |
---|
| 4513 | |
---|
| 4514 | k = ktf+1 |
---|
| 4515 | DO i = i_start, i_end |
---|
| 4516 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
| 4517 | fqy( i, k, jp1 ) = vel*flux6( & |
---|
| 4518 | w(i,k,j-3), w(i,k,j-2), w(i,k,j-1), & |
---|
| 4519 | w(i,k,j ), w(i,k,j+1), w(i,k,j+2), vel ) |
---|
| 4520 | ENDDO |
---|
| 4521 | |
---|
| 4522 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
| 4523 | |
---|
| 4524 | DO k=kts+1,ktf |
---|
| 4525 | DO i = i_start, i_end |
---|
| 4526 | fqy(i, k, jp1) = 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j))* & |
---|
| 4527 | (w(i,k,j)+w(i,k,j-1)) |
---|
| 4528 | ENDDO |
---|
| 4529 | ENDDO |
---|
| 4530 | |
---|
| 4531 | k = ktf+1 |
---|
| 4532 | DO i = i_start, i_end |
---|
| 4533 | fqy(i, k, jp1) = 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j))* & |
---|
| 4534 | (w(i,k,j)+w(i,k,j-1)) |
---|
| 4535 | ENDDO |
---|
| 4536 | |
---|
| 4537 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
| 4538 | |
---|
| 4539 | DO k=kts+1,ktf |
---|
| 4540 | DO i = i_start, i_end |
---|
| 4541 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
| 4542 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
| 4543 | w(i,k,j-2),w(i,k,j-1),w(i,k,j),w(i,k,j+1),vel ) |
---|
| 4544 | ENDDO |
---|
| 4545 | ENDDO |
---|
| 4546 | |
---|
| 4547 | k = ktf+1 |
---|
| 4548 | DO i = i_start, i_end |
---|
| 4549 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
| 4550 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
| 4551 | w(i,k,j-2),w(i,k,j-1),w(i,k,j),w(i,k,j+1),vel ) |
---|
| 4552 | ENDDO |
---|
| 4553 | |
---|
| 4554 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
| 4555 | |
---|
| 4556 | DO k=kts+1,ktf |
---|
| 4557 | DO i = i_start, i_end |
---|
| 4558 | fqy(i, k, jp1) = 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j))* & |
---|
| 4559 | (w(i,k,j)+w(i,k,j-1)) |
---|
| 4560 | ENDDO |
---|
| 4561 | ENDDO |
---|
| 4562 | |
---|
| 4563 | k = ktf+1 |
---|
| 4564 | DO i = i_start, i_end |
---|
| 4565 | fqy(i, k, jp1) = 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j))* & |
---|
| 4566 | (w(i,k,j)+w(i,k,j-1)) |
---|
| 4567 | ENDDO |
---|
| 4568 | |
---|
| 4569 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
| 4570 | |
---|
| 4571 | DO k=kts+1,ktf |
---|
| 4572 | DO i = i_start, i_end |
---|
| 4573 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
| 4574 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
| 4575 | w(i,k,j-2),w(i,k,j-1), & |
---|
| 4576 | w(i,k,j),w(i,k,j+1),vel ) |
---|
| 4577 | ENDDO |
---|
| 4578 | ENDDO |
---|
| 4579 | |
---|
| 4580 | k = ktf+1 |
---|
| 4581 | DO i = i_start, i_end |
---|
| 4582 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
| 4583 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
| 4584 | w(i,k,j-2),w(i,k,j-1), & |
---|
| 4585 | w(i,k,j),w(i,k,j+1),vel ) |
---|
| 4586 | ENDDO |
---|
| 4587 | |
---|
| 4588 | ENDIF |
---|
| 4589 | |
---|
| 4590 | ! y flux-divergence into tendency |
---|
| 4591 | |
---|
| 4592 | ! Comments for polar boundary conditions |
---|
| 4593 | ! Same process as for advect_u - tendencies run from jds to jde-1 |
---|
| 4594 | ! (latitudes are as for u grid, longitudes are displaced) |
---|
| 4595 | ! Therefore: flow is only from one side for points next to poles |
---|
| 4596 | IF ( config_flags%polar .AND. (j == jds+1) ) THEN |
---|
| 4597 | DO k=kts,ktf |
---|
| 4598 | DO i = i_start, i_end |
---|
| 4599 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 4600 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*fqy(i,k,jp1) |
---|
| 4601 | ENDDO |
---|
| 4602 | ENDDO |
---|
| 4603 | ELSE IF( config_flags%polar .AND. (j == jde) ) THEN |
---|
| 4604 | DO k=kts,ktf |
---|
| 4605 | DO i = i_start, i_end |
---|
| 4606 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 4607 | tendency(i,k,j-1) = tendency(i,k,j-1) + mrdy*fqy(i,k,jp0) |
---|
| 4608 | END DO |
---|
| 4609 | END DO |
---|
| 4610 | ELSE ! normal code |
---|
| 4611 | |
---|
| 4612 | IF(j > j_start) THEN |
---|
| 4613 | |
---|
| 4614 | DO k=kts+1,ktf+1 |
---|
| 4615 | DO i = i_start, i_end |
---|
| 4616 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 4617 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
| 4618 | ENDDO |
---|
| 4619 | ENDDO |
---|
| 4620 | |
---|
| 4621 | ENDIF |
---|
| 4622 | |
---|
| 4623 | ENDIF |
---|
| 4624 | |
---|
| 4625 | jtmp = jp1 |
---|
| 4626 | jp1 = jp0 |
---|
| 4627 | jp0 = jtmp |
---|
| 4628 | |
---|
| 4629 | ENDDO j_loop_y_flux_6 |
---|
| 4630 | |
---|
| 4631 | ! next, x - flux divergence |
---|
| 4632 | |
---|
| 4633 | i_start = its |
---|
| 4634 | i_end = MIN(ite,ide-1) |
---|
| 4635 | |
---|
| 4636 | j_start = jts |
---|
| 4637 | j_end = MIN(jte,jde-1) |
---|
| 4638 | |
---|
| 4639 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
| 4640 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 4641 | |
---|
| 4642 | i_start_f = i_start |
---|
| 4643 | i_end_f = i_end+1 |
---|
| 4644 | |
---|
| 4645 | IF(degrade_xs) then |
---|
| 4646 | i_start = MAX(ids+1,its) |
---|
| 4647 | i_start_f = i_start+2 |
---|
| 4648 | ENDIF |
---|
| 4649 | |
---|
| 4650 | IF(degrade_xe) then |
---|
| 4651 | i_end = MIN(ide-2,ite) |
---|
| 4652 | i_end_f = ide-3 |
---|
| 4653 | ENDIF |
---|
| 4654 | |
---|
| 4655 | ! compute fluxes |
---|
| 4656 | |
---|
| 4657 | DO j = j_start, j_end |
---|
| 4658 | |
---|
| 4659 | ! 5th or 6th order flux |
---|
| 4660 | |
---|
| 4661 | DO k=kts+1,ktf |
---|
| 4662 | DO i = i_start_f, i_end_f |
---|
| 4663 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
| 4664 | fqx( i,k ) = vel*flux6( w(i-3,k,j), w(i-2,k,j), & |
---|
| 4665 | w(i-1,k,j), w(i ,k,j), & |
---|
| 4666 | w(i+1,k,j), w(i+2,k,j), & |
---|
| 4667 | vel ) |
---|
| 4668 | ENDDO |
---|
| 4669 | ENDDO |
---|
| 4670 | |
---|
| 4671 | k = ktf+1 |
---|
| 4672 | DO i = i_start_f, i_end_f |
---|
| 4673 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
| 4674 | fqx( i,k ) = vel*flux6( w(i-3,k,j), w(i-2,k,j), & |
---|
| 4675 | w(i-1,k,j), w(i ,k,j), & |
---|
| 4676 | w(i+1,k,j), w(i+2,k,j), & |
---|
| 4677 | vel ) |
---|
| 4678 | ENDDO |
---|
| 4679 | |
---|
| 4680 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
| 4681 | |
---|
| 4682 | IF( degrade_xs ) THEN |
---|
| 4683 | |
---|
| 4684 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
| 4685 | i = ids+1 |
---|
| 4686 | DO k=kts+1,ktf |
---|
| 4687 | fqx(i,k) = 0.5*(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
---|
| 4688 | *(w(i,k,j)+w(i-1,k,j)) |
---|
| 4689 | ENDDO |
---|
| 4690 | k = ktf+1 |
---|
| 4691 | fqx(i,k) = 0.5*((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
---|
| 4692 | *(w(i,k,j)+w(i-1,k,j)) |
---|
| 4693 | ENDIF |
---|
| 4694 | |
---|
| 4695 | DO k=kts+1,ktf |
---|
| 4696 | i = i_start+1 |
---|
| 4697 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
| 4698 | fqx( i,k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
| 4699 | w(i ,k,j), w(i+1,k,j), & |
---|
| 4700 | vel ) |
---|
| 4701 | ENDDO |
---|
| 4702 | |
---|
| 4703 | k = ktf+1 |
---|
| 4704 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
| 4705 | fqx( i,k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
| 4706 | w(i ,k,j), w(i+1,k,j), & |
---|
| 4707 | vel ) |
---|
| 4708 | ENDIF |
---|
| 4709 | |
---|
| 4710 | IF( degrade_xe ) THEN |
---|
| 4711 | |
---|
| 4712 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
| 4713 | i = ide-1 |
---|
| 4714 | DO k=kts+1,ktf |
---|
| 4715 | fqx(i,k) = 0.5*(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
---|
| 4716 | *(w(i,k,j)+w(i-1,k,j)) |
---|
| 4717 | ENDDO |
---|
| 4718 | k = ktf+1 |
---|
| 4719 | fqx(i,k) = 0.5*((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
---|
| 4720 | *(w(i,k,j)+w(i-1,k,j)) |
---|
| 4721 | ENDIF |
---|
| 4722 | |
---|
| 4723 | i = ide-2 |
---|
| 4724 | DO k=kts+1,ktf |
---|
| 4725 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
| 4726 | fqx( i,k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
| 4727 | w(i ,k,j), w(i+1,k,j), & |
---|
| 4728 | vel ) |
---|
| 4729 | ENDDO |
---|
| 4730 | |
---|
| 4731 | k = ktf+1 |
---|
| 4732 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
| 4733 | fqx( i,k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
| 4734 | w(i ,k,j), w(i+1,k,j), & |
---|
| 4735 | vel ) |
---|
| 4736 | ENDIF |
---|
| 4737 | |
---|
| 4738 | ! x flux-divergence into tendency |
---|
| 4739 | |
---|
| 4740 | DO k=kts+1,ktf+1 |
---|
| 4741 | DO i = i_start, i_end |
---|
| 4742 | mrdx=msftx(i,j)*rdx ! see ADT eqn 46 dividing by my, 1st term RHS |
---|
| 4743 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
| 4744 | ENDDO |
---|
| 4745 | ENDDO |
---|
| 4746 | |
---|
| 4747 | ENDDO |
---|
| 4748 | |
---|
| 4749 | |
---|
| 4750 | ELSE IF (horz_order == 5 ) THEN |
---|
| 4751 | |
---|
| 4752 | ! determine boundary mods for flux operators |
---|
| 4753 | ! We degrade the flux operators from 3rd/4th order |
---|
| 4754 | ! to second order one gridpoint in from the boundaries for |
---|
| 4755 | ! all boundary conditions except periodic and symmetry - these |
---|
| 4756 | ! conditions have boundary zone data fill for correct application |
---|
| 4757 | ! of the higher order flux stencils |
---|
| 4758 | |
---|
| 4759 | degrade_xs = .true. |
---|
| 4760 | degrade_xe = .true. |
---|
| 4761 | degrade_ys = .true. |
---|
| 4762 | degrade_ye = .true. |
---|
| 4763 | |
---|
| 4764 | IF( config_flags%periodic_x .or. & |
---|
| 4765 | config_flags%symmetric_xs .or. & |
---|
| 4766 | (its > ids+2) ) degrade_xs = .false. |
---|
| 4767 | IF( config_flags%periodic_x .or. & |
---|
| 4768 | config_flags%symmetric_xe .or. & |
---|
| 4769 | (ite < ide-3) ) degrade_xe = .false. |
---|
| 4770 | IF( config_flags%periodic_y .or. & |
---|
| 4771 | config_flags%symmetric_ys .or. & |
---|
| 4772 | (jts > jds+2) ) degrade_ys = .false. |
---|
| 4773 | IF( config_flags%periodic_y .or. & |
---|
| 4774 | config_flags%symmetric_ye .or. & |
---|
| 4775 | (jte < jde-3) ) degrade_ye = .false. |
---|
| 4776 | |
---|
| 4777 | !--------------- y - advection first |
---|
| 4778 | |
---|
| 4779 | i_start = its |
---|
| 4780 | i_end = MIN(ite,ide-1) |
---|
| 4781 | j_start = jts |
---|
| 4782 | j_end = MIN(jte,jde-1) |
---|
| 4783 | |
---|
| 4784 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
| 4785 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 4786 | |
---|
| 4787 | j_start_f = j_start |
---|
| 4788 | j_end_f = j_end+1 |
---|
| 4789 | |
---|
| 4790 | IF(degrade_ys) then |
---|
| 4791 | j_start = MAX(jts,jds+1) |
---|
| 4792 | j_start_f = jds+3 |
---|
| 4793 | ENDIF |
---|
| 4794 | |
---|
| 4795 | IF(degrade_ye) then |
---|
| 4796 | j_end = MIN(jte,jde-2) |
---|
| 4797 | j_end_f = jde-3 |
---|
| 4798 | ENDIF |
---|
| 4799 | |
---|
| 4800 | IF(config_flags%polar) j_end = MIN(jte,jde-1) |
---|
| 4801 | |
---|
| 4802 | ! compute fluxes, 5th or 6th order |
---|
| 4803 | |
---|
| 4804 | jp1 = 2 |
---|
| 4805 | jp0 = 1 |
---|
| 4806 | |
---|
| 4807 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
---|
| 4808 | |
---|
| 4809 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN |
---|
| 4810 | |
---|
| 4811 | DO k=kts+1,ktf |
---|
| 4812 | DO i = i_start, i_end |
---|
| 4813 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
| 4814 | fqy( i, k, jp1 ) = vel*flux5( & |
---|
| 4815 | w(i,k,j-3), w(i,k,j-2), w(i,k,j-1), & |
---|
| 4816 | w(i,k,j ), w(i,k,j+1), w(i,k,j+2), vel ) |
---|
| 4817 | ENDDO |
---|
| 4818 | ENDDO |
---|
| 4819 | |
---|
| 4820 | k = ktf+1 |
---|
| 4821 | DO i = i_start, i_end |
---|
| 4822 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
| 4823 | fqy( i, k, jp1 ) = vel*flux5( & |
---|
| 4824 | w(i,k,j-3), w(i,k,j-2), w(i,k,j-1), & |
---|
| 4825 | w(i,k,j ), w(i,k,j+1), w(i,k,j+2), vel ) |
---|
| 4826 | ENDDO |
---|
| 4827 | |
---|
| 4828 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
| 4829 | |
---|
| 4830 | DO k=kts+1,ktf |
---|
| 4831 | DO i = i_start, i_end |
---|
| 4832 | fqy(i, k, jp1) = 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j))* & |
---|
| 4833 | (w(i,k,j)+w(i,k,j-1)) |
---|
| 4834 | ENDDO |
---|
| 4835 | ENDDO |
---|
| 4836 | |
---|
| 4837 | k = ktf+1 |
---|
| 4838 | DO i = i_start, i_end |
---|
| 4839 | fqy(i, k, jp1) = 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j))* & |
---|
| 4840 | (w(i,k,j)+w(i,k,j-1)) |
---|
| 4841 | ENDDO |
---|
| 4842 | |
---|
| 4843 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
| 4844 | |
---|
| 4845 | DO k=kts+1,ktf |
---|
| 4846 | DO i = i_start, i_end |
---|
| 4847 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
| 4848 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
| 4849 | w(i,k,j-2),w(i,k,j-1),w(i,k,j),w(i,k,j+1),vel ) |
---|
| 4850 | ENDDO |
---|
| 4851 | ENDDO |
---|
| 4852 | |
---|
| 4853 | k = ktf+1 |
---|
| 4854 | DO i = i_start, i_end |
---|
| 4855 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
| 4856 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
| 4857 | w(i,k,j-2),w(i,k,j-1),w(i,k,j),w(i,k,j+1),vel ) |
---|
| 4858 | ENDDO |
---|
| 4859 | |
---|
| 4860 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
| 4861 | |
---|
| 4862 | DO k=kts+1,ktf |
---|
| 4863 | DO i = i_start, i_end |
---|
| 4864 | fqy(i, k, jp1) = 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j))* & |
---|
| 4865 | (w(i,k,j)+w(i,k,j-1)) |
---|
| 4866 | ENDDO |
---|
| 4867 | ENDDO |
---|
| 4868 | |
---|
| 4869 | k = ktf+1 |
---|
| 4870 | DO i = i_start, i_end |
---|
| 4871 | fqy(i, k, jp1) = 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j))* & |
---|
| 4872 | (w(i,k,j)+w(i,k,j-1)) |
---|
| 4873 | ENDDO |
---|
| 4874 | |
---|
| 4875 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
| 4876 | |
---|
| 4877 | DO k=kts+1,ktf |
---|
| 4878 | DO i = i_start, i_end |
---|
| 4879 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
| 4880 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
| 4881 | w(i,k,j-2),w(i,k,j-1), & |
---|
| 4882 | w(i,k,j),w(i,k,j+1),vel ) |
---|
| 4883 | ENDDO |
---|
| 4884 | ENDDO |
---|
| 4885 | |
---|
| 4886 | k = ktf+1 |
---|
| 4887 | DO i = i_start, i_end |
---|
| 4888 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
| 4889 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
| 4890 | w(i,k,j-2),w(i,k,j-1), & |
---|
| 4891 | w(i,k,j),w(i,k,j+1),vel ) |
---|
| 4892 | ENDDO |
---|
| 4893 | |
---|
| 4894 | ENDIF |
---|
| 4895 | |
---|
| 4896 | ! y flux-divergence into tendency |
---|
| 4897 | |
---|
| 4898 | ! Comments for polar boundary conditions |
---|
| 4899 | ! Same process as for advect_u - tendencies run from jds to jde-1 |
---|
| 4900 | ! (latitudes are as for u grid, longitudes are displaced) |
---|
| 4901 | ! Therefore: flow is only from one side for points next to poles |
---|
| 4902 | IF ( config_flags%polar .AND. (j == jds+1) ) THEN |
---|
| 4903 | DO k=kts,ktf |
---|
| 4904 | DO i = i_start, i_end |
---|
| 4905 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 4906 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*fqy(i,k,jp1) |
---|
| 4907 | END DO |
---|
| 4908 | END DO |
---|
| 4909 | ELSE IF( config_flags%polar .AND. (j == jde) ) THEN |
---|
| 4910 | DO k=kts,ktf |
---|
| 4911 | DO i = i_start, i_end |
---|
| 4912 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 4913 | tendency(i,k,j-1) = tendency(i,k,j-1) + mrdy*fqy(i,k,jp0) |
---|
| 4914 | END DO |
---|
| 4915 | END DO |
---|
| 4916 | ELSE ! normal code |
---|
| 4917 | |
---|
| 4918 | IF(j > j_start) THEN |
---|
| 4919 | |
---|
| 4920 | DO k=kts+1,ktf+1 |
---|
| 4921 | DO i = i_start, i_end |
---|
| 4922 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 4923 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
| 4924 | ENDDO |
---|
| 4925 | ENDDO |
---|
| 4926 | |
---|
| 4927 | ENDIF |
---|
| 4928 | |
---|
| 4929 | END IF |
---|
| 4930 | |
---|
| 4931 | jtmp = jp1 |
---|
| 4932 | jp1 = jp0 |
---|
| 4933 | jp0 = jtmp |
---|
| 4934 | |
---|
| 4935 | ENDDO j_loop_y_flux_5 |
---|
| 4936 | |
---|
| 4937 | ! next, x - flux divergence |
---|
| 4938 | |
---|
| 4939 | i_start = its |
---|
| 4940 | i_end = MIN(ite,ide-1) |
---|
| 4941 | |
---|
| 4942 | j_start = jts |
---|
| 4943 | j_end = MIN(jte,jde-1) |
---|
| 4944 | |
---|
| 4945 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
| 4946 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 4947 | |
---|
| 4948 | i_start_f = i_start |
---|
| 4949 | i_end_f = i_end+1 |
---|
| 4950 | |
---|
| 4951 | IF(degrade_xs) then |
---|
| 4952 | i_start = MAX(ids+1,its) |
---|
| 4953 | i_start_f = i_start+2 |
---|
| 4954 | ENDIF |
---|
| 4955 | |
---|
| 4956 | IF(degrade_xe) then |
---|
| 4957 | i_end = MIN(ide-2,ite) |
---|
| 4958 | i_end_f = ide-3 |
---|
| 4959 | ENDIF |
---|
| 4960 | |
---|
| 4961 | ! compute fluxes |
---|
| 4962 | |
---|
| 4963 | DO j = j_start, j_end |
---|
| 4964 | |
---|
| 4965 | ! 5th or 6th order flux |
---|
| 4966 | |
---|
| 4967 | DO k=kts+1,ktf |
---|
| 4968 | DO i = i_start_f, i_end_f |
---|
| 4969 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
| 4970 | fqx( i,k ) = vel*flux5( w(i-3,k,j), w(i-2,k,j), & |
---|
| 4971 | w(i-1,k,j), w(i ,k,j), & |
---|
| 4972 | w(i+1,k,j), w(i+2,k,j), & |
---|
| 4973 | vel ) |
---|
| 4974 | ENDDO |
---|
| 4975 | ENDDO |
---|
| 4976 | |
---|
| 4977 | k = ktf+1 |
---|
| 4978 | DO i = i_start_f, i_end_f |
---|
| 4979 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
| 4980 | fqx( i,k ) = vel*flux5( w(i-3,k,j), w(i-2,k,j), & |
---|
| 4981 | w(i-1,k,j), w(i ,k,j), & |
---|
| 4982 | w(i+1,k,j), w(i+2,k,j), & |
---|
| 4983 | vel ) |
---|
| 4984 | ENDDO |
---|
| 4985 | |
---|
| 4986 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
| 4987 | |
---|
| 4988 | IF( degrade_xs ) THEN |
---|
| 4989 | |
---|
| 4990 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
| 4991 | i = ids+1 |
---|
| 4992 | DO k=kts+1,ktf |
---|
| 4993 | fqx(i,k) = 0.5*(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
---|
| 4994 | *(w(i,k,j)+w(i-1,k,j)) |
---|
| 4995 | ENDDO |
---|
| 4996 | k = ktf+1 |
---|
| 4997 | fqx(i,k) = 0.5*((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
---|
| 4998 | *(w(i,k,j)+w(i-1,k,j)) |
---|
| 4999 | ENDIF |
---|
| 5000 | |
---|
| 5001 | i = i_start+1 |
---|
| 5002 | DO k=kts+1,ktf |
---|
| 5003 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
| 5004 | fqx( i,k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
| 5005 | w(i ,k,j), w(i+1,k,j), & |
---|
| 5006 | vel ) |
---|
| 5007 | ENDDO |
---|
| 5008 | k = ktf+1 |
---|
| 5009 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
| 5010 | fqx( i,k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
| 5011 | w(i ,k,j), w(i+1,k,j), & |
---|
| 5012 | vel ) |
---|
| 5013 | |
---|
| 5014 | ENDIF |
---|
| 5015 | |
---|
| 5016 | IF( degrade_xe ) THEN |
---|
| 5017 | |
---|
| 5018 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
| 5019 | i = ide-1 |
---|
| 5020 | DO k=kts+1,ktf |
---|
| 5021 | fqx(i,k) = 0.5*(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
---|
| 5022 | *(w(i,k,j)+w(i-1,k,j)) |
---|
| 5023 | ENDDO |
---|
| 5024 | k = ktf+1 |
---|
| 5025 | fqx(i,k) = 0.5*((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
---|
| 5026 | *(w(i,k,j)+w(i-1,k,j)) |
---|
| 5027 | ENDIF |
---|
| 5028 | |
---|
| 5029 | i = ide-2 |
---|
| 5030 | DO k=kts+1,ktf |
---|
| 5031 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
| 5032 | fqx( i,k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
| 5033 | w(i ,k,j), w(i+1,k,j), & |
---|
| 5034 | vel ) |
---|
| 5035 | ENDDO |
---|
| 5036 | k = ktf+1 |
---|
| 5037 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
| 5038 | fqx( i,k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
| 5039 | w(i ,k,j), w(i+1,k,j), & |
---|
| 5040 | vel ) |
---|
| 5041 | ENDIF |
---|
| 5042 | |
---|
| 5043 | ! x flux-divergence into tendency |
---|
| 5044 | |
---|
| 5045 | DO k=kts+1,ktf+1 |
---|
| 5046 | DO i = i_start, i_end |
---|
| 5047 | mrdx=msftx(i,j)*rdx ! see ADT eqn 46 dividing by my, 1st term RHS |
---|
| 5048 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
| 5049 | ENDDO |
---|
| 5050 | ENDDO |
---|
| 5051 | |
---|
| 5052 | ENDDO |
---|
| 5053 | |
---|
| 5054 | ELSE IF ( horz_order == 4 ) THEN |
---|
| 5055 | |
---|
| 5056 | degrade_xs = .true. |
---|
| 5057 | degrade_xe = .true. |
---|
| 5058 | degrade_ys = .true. |
---|
| 5059 | degrade_ye = .true. |
---|
| 5060 | |
---|
| 5061 | IF( config_flags%periodic_x .or. & |
---|
| 5062 | config_flags%symmetric_xs .or. & |
---|
| 5063 | (its > ids+1) ) degrade_xs = .false. |
---|
| 5064 | IF( config_flags%periodic_x .or. & |
---|
| 5065 | config_flags%symmetric_xe .or. & |
---|
| 5066 | (ite < ide-2) ) degrade_xe = .false. |
---|
| 5067 | IF( config_flags%periodic_y .or. & |
---|
| 5068 | config_flags%symmetric_ys .or. & |
---|
| 5069 | (jts > jds+1) ) degrade_ys = .false. |
---|
| 5070 | IF( config_flags%periodic_y .or. & |
---|
| 5071 | config_flags%symmetric_ye .or. & |
---|
| 5072 | (jte < jde-2) ) degrade_ye = .false. |
---|
| 5073 | |
---|
| 5074 | ! begin flux computations |
---|
| 5075 | ! start with x flux divergence |
---|
| 5076 | |
---|
| 5077 | !--------------- |
---|
| 5078 | |
---|
| 5079 | ktf=MIN(kte,kde-1) |
---|
| 5080 | |
---|
| 5081 | i_start = its |
---|
| 5082 | i_end = MIN(ite,ide-1) |
---|
| 5083 | j_start = jts |
---|
| 5084 | j_end = MIN(jte,jde-1) |
---|
| 5085 | |
---|
| 5086 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
| 5087 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 5088 | |
---|
| 5089 | i_start_f = i_start |
---|
| 5090 | i_end_f = i_end+1 |
---|
| 5091 | |
---|
| 5092 | IF(degrade_xs) then |
---|
| 5093 | i_start = ids+1 |
---|
| 5094 | i_start_f = i_start+1 |
---|
| 5095 | ENDIF |
---|
| 5096 | |
---|
| 5097 | IF(degrade_xe) then |
---|
| 5098 | i_end = ide-2 |
---|
| 5099 | i_end_f = ide-2 |
---|
| 5100 | ENDIF |
---|
| 5101 | |
---|
| 5102 | ! compute fluxes |
---|
| 5103 | |
---|
| 5104 | DO j = j_start, j_end |
---|
| 5105 | |
---|
| 5106 | DO k=kts+1,ktf |
---|
| 5107 | DO i = i_start_f, i_end_f |
---|
| 5108 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
| 5109 | fqx( i, k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
| 5110 | w(i ,k,j), w(i+1,k,j), & |
---|
| 5111 | vel ) |
---|
| 5112 | ENDDO |
---|
| 5113 | ENDDO |
---|
| 5114 | |
---|
| 5115 | k = ktf+1 |
---|
| 5116 | DO i = i_start_f, i_end_f |
---|
| 5117 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
| 5118 | fqx( i, k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
| 5119 | w(i ,k,j), w(i+1,k,j), & |
---|
| 5120 | vel ) |
---|
| 5121 | ENDDO |
---|
| 5122 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
| 5123 | |
---|
| 5124 | IF( degrade_xs ) THEN |
---|
| 5125 | DO k=kts+1,ktf |
---|
| 5126 | fqx(i_start, k) = & |
---|
| 5127 | 0.5*(fzm(k)*ru(i_start,k,j)+fzp(k)*ru(i_start,k-1,j)) & |
---|
| 5128 | *(w(i_start,k,j)+w(i_start-1,k,j)) |
---|
| 5129 | ENDDO |
---|
| 5130 | k = ktf+1 |
---|
| 5131 | fqx(i_start, k) = & |
---|
| 5132 | 0.5*((2.-fzm(k-1))*ru(i_start,k-1,j)-fzp(k-1)*ru(i_start,k-2,j)) & |
---|
| 5133 | *(w(i_start,k,j)+w(i_start-1,k,j)) |
---|
| 5134 | ENDIF |
---|
| 5135 | |
---|
| 5136 | IF( degrade_xe ) THEN |
---|
| 5137 | DO k=kts+1,ktf |
---|
| 5138 | fqx(i_end+1, k) = & |
---|
| 5139 | 0.5*(fzm(k)*ru(i_end+1,k,j)+fzp(k)*ru(i_end+1,k-1,j)) & |
---|
| 5140 | *(w(i_end+1,k,j)+w(i_end,k,j)) |
---|
| 5141 | ENDDO |
---|
| 5142 | k = ktf+1 |
---|
| 5143 | fqx(i_end+1, k) = & |
---|
| 5144 | 0.5*((2.-fzm(k-1))*ru(i_end+1,k-1,j)-fzp(k-1)*ru(i_end+1,k-2,j)) & |
---|
| 5145 | *(w(i_end+1,k,j)+w(i_end,k,j)) |
---|
| 5146 | ENDIF |
---|
| 5147 | |
---|
| 5148 | ! x flux-divergence into tendency |
---|
| 5149 | |
---|
| 5150 | DO k=kts+1,ktf+1 |
---|
| 5151 | DO i = i_start, i_end |
---|
| 5152 | mrdx=msftx(i,j)*rdx ! see ADT eqn 46 dividing by my, 1st term RHS |
---|
| 5153 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
| 5154 | ENDDO |
---|
| 5155 | ENDDO |
---|
| 5156 | |
---|
| 5157 | ENDDO |
---|
| 5158 | |
---|
| 5159 | ! next -> y flux divergence calculation |
---|
| 5160 | |
---|
| 5161 | i_start = its |
---|
| 5162 | i_end = MIN(ite,ide-1) |
---|
| 5163 | j_start = jts |
---|
| 5164 | j_end = MIN(jte,jde-1) |
---|
| 5165 | |
---|
| 5166 | |
---|
| 5167 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
| 5168 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 5169 | |
---|
| 5170 | j_start_f = j_start |
---|
| 5171 | j_end_f = j_end+1 |
---|
| 5172 | |
---|
| 5173 | IF(degrade_ys) then |
---|
| 5174 | j_start = jds+1 |
---|
| 5175 | j_start_f = j_start+1 |
---|
| 5176 | ENDIF |
---|
| 5177 | |
---|
| 5178 | IF(degrade_ye) then |
---|
| 5179 | j_end = jde-2 |
---|
| 5180 | j_end_f = jde-2 |
---|
| 5181 | ENDIF |
---|
| 5182 | |
---|
| 5183 | IF(config_flags%polar) j_end = MIN(jte,jde-1) |
---|
| 5184 | |
---|
| 5185 | jp1 = 2 |
---|
| 5186 | jp0 = 1 |
---|
| 5187 | |
---|
| 5188 | DO j = j_start, j_end+1 |
---|
| 5189 | |
---|
| 5190 | IF ((j < j_start_f) .and. degrade_ys) THEN |
---|
| 5191 | DO k = kts+1, ktf |
---|
| 5192 | DO i = i_start, i_end |
---|
| 5193 | fqy(i, k, jp1) = & |
---|
| 5194 | 0.5*(fzm(k)*rv(i,k,j_start)+fzp(k)*rv(i,k-1,j_start)) & |
---|
| 5195 | *(w(i,k,j_start)+w(i,k,j_start-1)) |
---|
| 5196 | ENDDO |
---|
| 5197 | ENDDO |
---|
| 5198 | k = ktf+1 |
---|
| 5199 | DO i = i_start, i_end |
---|
| 5200 | fqy(i, k, jp1) = & |
---|
| 5201 | 0.5*((2.-fzm(k-1))*rv(i,k-1,j_start)-fzp(k-1)*rv(i,k-2,j_start)) & |
---|
| 5202 | *(w(i,k,j_start)+w(i,k,j_start-1)) |
---|
| 5203 | ENDDO |
---|
| 5204 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
| 5205 | DO k = kts+1, ktf |
---|
| 5206 | DO i = i_start, i_end |
---|
| 5207 | ! Assumes j>j_end_f is ONLY j_end+1 ... |
---|
| 5208 | ! fqy(i, k, jp1) = & |
---|
| 5209 | ! 0.5*(fzm(k)*rv(i,k,j_end+1)+fzp(k)*rv(i,k-1,j_end+1)) & |
---|
| 5210 | ! *(w(i,k,j_end+1)+w(i,k,j_end)) |
---|
| 5211 | fqy(i, k, jp1) = & |
---|
| 5212 | 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j)) & |
---|
| 5213 | *(w(i,k,j)+w(i,k,j-1)) |
---|
| 5214 | ENDDO |
---|
| 5215 | ENDDO |
---|
| 5216 | k = ktf+1 |
---|
| 5217 | DO i = i_start, i_end |
---|
| 5218 | ! Assumes j>j_end_f is ONLY j_end+1 ... |
---|
| 5219 | ! fqy(i, k, jp1) = & |
---|
| 5220 | ! 0.5*((2.-fzm(k-1))*rv(i,k-1,j_end+1)-fzp(k-1)*rv(i,k-2,j_end+1)) & |
---|
| 5221 | ! *(w(i,k,j_end+1)+w(i,k,j_end)) |
---|
| 5222 | fqy(i, k, jp1) = & |
---|
| 5223 | 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j)) & |
---|
| 5224 | *(w(i,k,j)+w(i,k,j-1)) |
---|
| 5225 | ENDDO |
---|
| 5226 | ELSE |
---|
| 5227 | ! 3rd or 4th order flux |
---|
| 5228 | DO k = kts+1, ktf |
---|
| 5229 | DO i = i_start, i_end |
---|
| 5230 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
| 5231 | fqy( i, k, jp1 ) = vel*flux4( w(i,k,j-2), w(i,k,j-1), & |
---|
| 5232 | w(i,k,j ), w(i,k,j+1), & |
---|
| 5233 | vel ) |
---|
| 5234 | ENDDO |
---|
| 5235 | ENDDO |
---|
| 5236 | k = ktf+1 |
---|
| 5237 | DO i = i_start, i_end |
---|
| 5238 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
| 5239 | fqy( i, k, jp1 ) = vel*flux4( w(i,k,j-2), w(i,k,j-1), & |
---|
| 5240 | w(i,k,j ), w(i,k,j+1), & |
---|
| 5241 | vel ) |
---|
| 5242 | ENDDO |
---|
| 5243 | END IF |
---|
| 5244 | |
---|
| 5245 | ! y flux-divergence into tendency |
---|
| 5246 | |
---|
| 5247 | ! Comments for polar boundary conditions |
---|
| 5248 | ! Same process as for advect_u - tendencies run from jds to jde-1 |
---|
| 5249 | ! (latitudes are as for u grid, longitudes are displaced) |
---|
| 5250 | ! Therefore: flow is only from one side for points next to poles |
---|
| 5251 | IF ( config_flags%polar .AND. (j == jds+1) ) THEN |
---|
| 5252 | DO k=kts,ktf |
---|
| 5253 | DO i = i_start, i_end |
---|
| 5254 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 5255 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*fqy(i,k,jp1) |
---|
| 5256 | END DO |
---|
| 5257 | END DO |
---|
| 5258 | ELSE IF( config_flags%polar .AND. (j == jde) ) THEN |
---|
| 5259 | DO k=kts,ktf |
---|
| 5260 | DO i = i_start, i_end |
---|
| 5261 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 5262 | tendency(i,k,j-1) = tendency(i,k,j-1) + mrdy*fqy(i,k,jp0) |
---|
| 5263 | END DO |
---|
| 5264 | END DO |
---|
| 5265 | ELSE ! normal code |
---|
| 5266 | |
---|
| 5267 | IF( j > j_start ) THEN |
---|
| 5268 | |
---|
| 5269 | DO k = kts+1, ktf+1 |
---|
| 5270 | DO i = i_start, i_end |
---|
| 5271 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 5272 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
| 5273 | ENDDO |
---|
| 5274 | ENDDO |
---|
| 5275 | |
---|
| 5276 | END IF |
---|
| 5277 | |
---|
| 5278 | END IF |
---|
| 5279 | |
---|
| 5280 | jtmp = jp1 |
---|
| 5281 | jp1 = jp0 |
---|
| 5282 | jp0 = jtmp |
---|
| 5283 | |
---|
| 5284 | ENDDO |
---|
| 5285 | |
---|
| 5286 | ELSE IF ( horz_order == 3 ) THEN |
---|
| 5287 | |
---|
| 5288 | degrade_xs = .true. |
---|
| 5289 | degrade_xe = .true. |
---|
| 5290 | degrade_ys = .true. |
---|
| 5291 | degrade_ye = .true. |
---|
| 5292 | |
---|
| 5293 | IF( config_flags%periodic_x .or. & |
---|
| 5294 | config_flags%symmetric_xs .or. & |
---|
| 5295 | (its > ids+1) ) degrade_xs = .false. |
---|
| 5296 | IF( config_flags%periodic_x .or. & |
---|
| 5297 | config_flags%symmetric_xe .or. & |
---|
| 5298 | (ite < ide-2) ) degrade_xe = .false. |
---|
| 5299 | IF( config_flags%periodic_y .or. & |
---|
| 5300 | config_flags%symmetric_ys .or. & |
---|
| 5301 | (jts > jds+1) ) degrade_ys = .false. |
---|
| 5302 | IF( config_flags%periodic_y .or. & |
---|
| 5303 | config_flags%symmetric_ye .or. & |
---|
| 5304 | (jte < jde-2) ) degrade_ye = .false. |
---|
| 5305 | |
---|
| 5306 | ! begin flux computations |
---|
| 5307 | ! start with x flux divergence |
---|
| 5308 | |
---|
| 5309 | !--------------- |
---|
| 5310 | |
---|
| 5311 | ktf=MIN(kte,kde-1) |
---|
| 5312 | |
---|
| 5313 | i_start = its |
---|
| 5314 | i_end = MIN(ite,ide-1) |
---|
| 5315 | j_start = jts |
---|
| 5316 | j_end = MIN(jte,jde-1) |
---|
| 5317 | |
---|
| 5318 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
| 5319 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 5320 | |
---|
| 5321 | i_start_f = i_start |
---|
| 5322 | i_end_f = i_end+1 |
---|
| 5323 | |
---|
| 5324 | IF(degrade_xs) then |
---|
| 5325 | i_start = ids+1 |
---|
| 5326 | i_start_f = i_start+1 |
---|
| 5327 | ENDIF |
---|
| 5328 | |
---|
| 5329 | IF(degrade_xe) then |
---|
| 5330 | i_end = ide-2 |
---|
| 5331 | i_end_f = ide-2 |
---|
| 5332 | ENDIF |
---|
| 5333 | |
---|
| 5334 | ! compute fluxes |
---|
| 5335 | |
---|
| 5336 | DO j = j_start, j_end |
---|
| 5337 | |
---|
| 5338 | DO k=kts+1,ktf |
---|
| 5339 | DO i = i_start_f, i_end_f |
---|
| 5340 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
| 5341 | fqx( i, k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
| 5342 | w(i ,k,j), w(i+1,k,j), & |
---|
| 5343 | vel ) |
---|
| 5344 | ENDDO |
---|
| 5345 | ENDDO |
---|
| 5346 | k = ktf+1 |
---|
| 5347 | DO i = i_start_f, i_end_f |
---|
| 5348 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
| 5349 | fqx( i, k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
| 5350 | w(i ,k,j), w(i+1,k,j), & |
---|
| 5351 | vel ) |
---|
| 5352 | ENDDO |
---|
| 5353 | |
---|
| 5354 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
| 5355 | |
---|
| 5356 | IF( degrade_xs ) THEN |
---|
| 5357 | DO k=kts+1,ktf |
---|
| 5358 | fqx(i_start, k) = & |
---|
| 5359 | 0.5*(fzm(k)*ru(i_start,k,j)+fzp(k)*ru(i_start,k-1,j)) & |
---|
| 5360 | *(w(i_start,k,j)+w(i_start-1,k,j)) |
---|
| 5361 | ENDDO |
---|
| 5362 | k = ktf+1 |
---|
| 5363 | fqx(i_start, k) = & |
---|
| 5364 | 0.5*((2.-fzm(k-1))*ru(i_start,k-1,j)-fzp(k-1)*ru(i_start,k-2,j)) & |
---|
| 5365 | *(w(i_start,k,j)+w(i_start-1,k,j)) |
---|
| 5366 | ENDIF |
---|
| 5367 | |
---|
| 5368 | IF( degrade_xe ) THEN |
---|
| 5369 | DO k=kts+1,ktf |
---|
| 5370 | fqx(i_end+1, k) = & |
---|
| 5371 | 0.5*(fzm(k)*ru(i_end+1,k,j)+fzp(k)*ru(i_end+1,k-1,j)) & |
---|
| 5372 | *(w(i_end+1,k,j)+w(i_end,k,j)) |
---|
| 5373 | ENDDO |
---|
| 5374 | k = ktf+1 |
---|
| 5375 | fqx(i_end+1, k) = & |
---|
| 5376 | 0.5*((2.-fzm(k-1))*ru(i_end+1,k-1,j)-fzp(k-1)*ru(i_end+1,k-2,j)) & |
---|
| 5377 | *(w(i_end+1,k,j)+w(i_end,k,j)) |
---|
| 5378 | ENDIF |
---|
| 5379 | |
---|
| 5380 | ! x flux-divergence into tendency |
---|
| 5381 | |
---|
| 5382 | DO k=kts+1,ktf+1 |
---|
| 5383 | DO i = i_start, i_end |
---|
| 5384 | mrdx=msftx(i,j)*rdx ! see ADT eqn 46 dividing by my, 1st term RHS |
---|
| 5385 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
| 5386 | ENDDO |
---|
| 5387 | ENDDO |
---|
| 5388 | |
---|
| 5389 | ENDDO |
---|
| 5390 | |
---|
| 5391 | ! next -> y flux divergence calculation |
---|
| 5392 | |
---|
| 5393 | i_start = its |
---|
| 5394 | i_end = MIN(ite,ide-1) |
---|
| 5395 | j_start = jts |
---|
| 5396 | j_end = MIN(jte,jde-1) |
---|
| 5397 | |
---|
| 5398 | |
---|
| 5399 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
| 5400 | ! bounds so we can switch to second order flux close to the boundary |
---|
| 5401 | |
---|
| 5402 | j_start_f = j_start |
---|
| 5403 | j_end_f = j_end+1 |
---|
| 5404 | |
---|
| 5405 | IF(degrade_ys) then |
---|
| 5406 | j_start = jds+1 |
---|
| 5407 | j_start_f = j_start+1 |
---|
| 5408 | ENDIF |
---|
| 5409 | |
---|
| 5410 | IF(degrade_ye) then |
---|
| 5411 | j_end = jde-2 |
---|
| 5412 | j_end_f = jde-2 |
---|
| 5413 | ENDIF |
---|
| 5414 | |
---|
| 5415 | IF(config_flags%polar) j_end = MIN(jte,jde-1) |
---|
| 5416 | |
---|
| 5417 | jp1 = 2 |
---|
| 5418 | jp0 = 1 |
---|
| 5419 | |
---|
| 5420 | DO j = j_start, j_end+1 |
---|
| 5421 | |
---|
| 5422 | IF ((j < j_start_f) .and. degrade_ys) THEN |
---|
| 5423 | DO k = kts+1, ktf |
---|
| 5424 | DO i = i_start, i_end |
---|
| 5425 | fqy(i, k, jp1) = & |
---|
| 5426 | 0.5*(fzm(k)*rv(i,k,j_start)+fzp(k)*rv(i,k-1,j_start)) & |
---|
| 5427 | *(w(i,k,j_start)+w(i,k,j_start-1)) |
---|
| 5428 | ENDDO |
---|
| 5429 | ENDDO |
---|
| 5430 | k = ktf+1 |
---|
| 5431 | DO i = i_start, i_end |
---|
| 5432 | fqy(i, k, jp1) = & |
---|
| 5433 | 0.5*((2.-fzm(k-1))*rv(i,k-1,j_start)-fzp(k-1)*rv(i,k-2,j_start)) & |
---|
| 5434 | *(w(i,k,j_start)+w(i,k,j_start-1)) |
---|
| 5435 | ENDDO |
---|
| 5436 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
| 5437 | DO k = kts+1, ktf |
---|
| 5438 | DO i = i_start, i_end |
---|
| 5439 | ! Assumes j>j_end_f is ONLY j_end+1 ... |
---|
| 5440 | ! fqy(i, k, jp1) = & |
---|
| 5441 | ! 0.5*(fzm(k)*rv(i,k,j_end+1)+fzp(k)*rv(i,k-1,j_end+1)) & |
---|
| 5442 | ! *(w(i,k,j_end+1)+w(i,k,j_end)) |
---|
| 5443 | fqy(i, k, jp1) = & |
---|
| 5444 | 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j)) & |
---|
| 5445 | *(w(i,k,j)+w(i,k,j-1)) |
---|
| 5446 | ENDDO |
---|
| 5447 | ENDDO |
---|
| 5448 | k = ktf+1 |
---|
| 5449 | DO i = i_start, i_end |
---|
| 5450 | ! Assumes j>j_end_f is ONLY j_end+1 ... |
---|
| 5451 | ! fqy(i, k, jp1) = & |
---|
| 5452 | ! 0.5*((2.-fzm(k-1))*rv(i,k-1,j_end+1)-fzp(k-1)*rv(i,k-2,j_end+1)) & |
---|
| 5453 | ! *(w(i,k,j_end+1)+w(i,k,j_end)) |
---|
| 5454 | fqy(i, k, jp1) = & |
---|
| 5455 | 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j)) & |
---|
| 5456 | *(w(i,k,j)+w(i,k,j-1)) |
---|
| 5457 | ENDDO |
---|
| 5458 | ELSE |
---|
| 5459 | ! 3rd or 4th order flux |
---|
| 5460 | DO k = kts+1, ktf |
---|
| 5461 | DO i = i_start, i_end |
---|
| 5462 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
| 5463 | fqy( i, k, jp1 ) = vel*flux3( w(i,k,j-2), w(i,k,j-1), & |
---|
| 5464 | w(i,k,j ), w(i,k,j+1), & |
---|
| 5465 | vel ) |
---|
| 5466 | ENDDO |
---|
| 5467 | ENDDO |
---|
| 5468 | k = ktf+1 |
---|
| 5469 | DO i = i_start, i_end |
---|
| 5470 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
| 5471 | fqy( i, k, jp1 ) = vel*flux3( w(i,k,j-2), w(i,k,j-1), & |
---|
| 5472 | w(i,k,j ), w(i,k,j+1), & |
---|
| 5473 | vel ) |
---|
| 5474 | ENDDO |
---|
| 5475 | END IF |
---|
| 5476 | |
---|
| 5477 | ! y flux-divergence into tendency |
---|
| 5478 | |
---|
| 5479 | ! Comments for polar boundary conditions |
---|
| 5480 | ! Same process as for advect_u - tendencies run from jds to jde-1 |
---|
| 5481 | ! (latitudes are as for u grid, longitudes are displaced) |
---|
| 5482 | ! Therefore: flow is only from one side for points next to poles |
---|
| 5483 | IF ( config_flags%polar .AND. (j == jds+1) ) THEN |
---|
| 5484 | DO k=kts,ktf |
---|
| 5485 | DO i = i_start, i_end |
---|
| 5486 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 5487 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*fqy(i,k,jp1) |
---|
| 5488 | END DO |
---|
| 5489 | END DO |
---|
| 5490 | ELSE IF( config_flags%polar .AND. (j == jde) ) THEN |
---|
| 5491 | DO k=kts,ktf |
---|
| 5492 | DO i = i_start, i_end |
---|
| 5493 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 5494 | tendency(i,k,j-1) = tendency(i,k,j-1) + mrdy*fqy(i,k,jp0) |
---|
| 5495 | END DO |
---|
| 5496 | END DO |
---|
| 5497 | ELSE ! normal code |
---|
| 5498 | |
---|
| 5499 | IF( j > j_start ) THEN |
---|
| 5500 | |
---|
| 5501 | DO k = kts+1, ktf+1 |
---|
| 5502 | DO i = i_start, i_end |
---|
| 5503 | mrdy=msftx(i,j-1)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 5504 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
| 5505 | ENDDO |
---|
| 5506 | ENDDO |
---|
| 5507 | |
---|
| 5508 | END IF |
---|
| 5509 | |
---|
| 5510 | END IF |
---|
| 5511 | |
---|
| 5512 | jtmp = jp1 |
---|
| 5513 | jp1 = jp0 |
---|
| 5514 | jp0 = jtmp |
---|
| 5515 | |
---|
| 5516 | ENDDO |
---|
| 5517 | |
---|
| 5518 | ELSE IF (horz_order == 2 ) THEN |
---|
| 5519 | |
---|
| 5520 | i_start = its |
---|
| 5521 | i_end = MIN(ite,ide-1) |
---|
| 5522 | j_start = jts |
---|
| 5523 | j_end = MIN(jte,jde-1) |
---|
| 5524 | |
---|
| 5525 | IF ( .NOT. config_flags%periodic_x ) THEN |
---|
| 5526 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
| 5527 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-2,ite) |
---|
| 5528 | ENDIF |
---|
| 5529 | |
---|
| 5530 | DO j = j_start, j_end |
---|
| 5531 | DO k=kts+1,ktf |
---|
| 5532 | DO i = i_start, i_end |
---|
| 5533 | |
---|
| 5534 | mrdx=msftx(i,j)*rdx ! see ADT eqn 46 dividing by my, 1st term RHS |
---|
| 5535 | |
---|
| 5536 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.5 & |
---|
| 5537 | *((fzm(k)*ru(i+1,k,j)+fzp(k)*ru(i+1,k-1,j)) & |
---|
| 5538 | *(w(i+1,k,j)+w(i,k,j)) & |
---|
| 5539 | -(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
---|
| 5540 | *(w(i,k,j)+w(i-1,k,j))) |
---|
| 5541 | |
---|
| 5542 | ENDDO |
---|
| 5543 | ENDDO |
---|
| 5544 | |
---|
| 5545 | k = ktf+1 |
---|
| 5546 | DO i = i_start, i_end |
---|
| 5547 | |
---|
| 5548 | mrdx=msftx(i,j)*rdx ! see ADT eqn 46 dividing by my, 1st term RHS |
---|
| 5549 | |
---|
| 5550 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.5 & |
---|
| 5551 | *(((2.-fzm(k-1))*ru(i+1,k-1,j)-fzp(k-1)*ru(i+1,k-2,j)) & |
---|
| 5552 | *(w(i+1,k,j)+w(i,k,j)) & |
---|
| 5553 | -((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
---|
| 5554 | *(w(i,k,j)+w(i-1,k,j))) |
---|
| 5555 | |
---|
| 5556 | ENDDO |
---|
| 5557 | |
---|
| 5558 | ENDDO |
---|
| 5559 | |
---|
| 5560 | i_start = its |
---|
| 5561 | i_end = MIN(ite,ide-1) |
---|
| 5562 | ! Polar boundary conditions are like open or specified |
---|
| 5563 | IF ( config_flags%open_ys .or. specified .or. config_flags%polar ) j_start = MAX(jds+1,jts) |
---|
| 5564 | IF ( config_flags%open_ye .or. specified .or. config_flags%polar ) j_end = MIN(jde-2,jte) |
---|
| 5565 | |
---|
| 5566 | DO j = j_start, j_end |
---|
| 5567 | DO k=kts+1,ktf |
---|
| 5568 | DO i = i_start, i_end |
---|
| 5569 | |
---|
| 5570 | mrdy=msftx(i,j)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 5571 | |
---|
| 5572 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.5 & |
---|
| 5573 | *((fzm(k)*rv(i,k,j+1)+fzp(k)*rv(i,k-1,j+1))* & |
---|
| 5574 | (w(i,k,j+1)+w(i,k,j)) & |
---|
| 5575 | -(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j)) & |
---|
| 5576 | *(w(i,k,j)+w(i,k,j-1))) |
---|
| 5577 | |
---|
| 5578 | ENDDO |
---|
| 5579 | ENDDO |
---|
| 5580 | |
---|
| 5581 | k = ktf+1 |
---|
| 5582 | DO i = i_start, i_end |
---|
| 5583 | |
---|
| 5584 | mrdy=msftx(i,j)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 5585 | |
---|
| 5586 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.5 & |
---|
| 5587 | *(((2.-fzm(k-1))*rv(i,k-1,j+1)-fzp(k-1)*rv(i,k-2,j+1))* & |
---|
| 5588 | (w(i,k,j+1)+w(i,k,j)) & |
---|
| 5589 | -((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j)) & |
---|
| 5590 | *(w(i,k,j)+w(i,k,j-1))) |
---|
| 5591 | |
---|
| 5592 | ENDDO |
---|
| 5593 | |
---|
| 5594 | ENDDO |
---|
| 5595 | |
---|
| 5596 | ! Polar boundary condition ... not covered in above j-loop |
---|
| 5597 | IF (config_flags%polar) THEN |
---|
| 5598 | IF (jts == jds) THEN |
---|
| 5599 | DO k=kts+1,ktf |
---|
| 5600 | DO i = i_start, i_end |
---|
| 5601 | mrdy=msftx(i,jds)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 5602 | tendency(i,k,jds)=tendency(i,k,jds) -mrdy*0.5 & |
---|
| 5603 | *((fzm(k)*rv(i,k,jds+1)+fzp(k)*rv(i,k-1,jds+1))* & |
---|
| 5604 | (w(i,k,jds+1)+w(i,k,jds))) |
---|
| 5605 | END DO |
---|
| 5606 | END DO |
---|
| 5607 | k = ktf+1 |
---|
| 5608 | DO i = i_start, i_end |
---|
| 5609 | mrdy=msftx(i,jds)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 5610 | tendency(i,k,jds)=tendency(i,k,jds) -mrdy*0.5 & |
---|
| 5611 | *((2.-fzm(k-1))*rv(i,k-1,jds+1)-fzp(k-1)*rv(i,k-2,jds+1))* & |
---|
| 5612 | (w(i,k,jds+1)+w(i,k,jds)) |
---|
| 5613 | ENDDO |
---|
| 5614 | END IF |
---|
| 5615 | IF (jte == jde) THEN |
---|
| 5616 | DO k=kts+1,ktf |
---|
| 5617 | DO i = i_start, i_end |
---|
| 5618 | mrdy=msftx(i,jde-1)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 5619 | tendency(i,k,jde-1)=tendency(i,k,jde-1) +mrdy*0.5 & |
---|
| 5620 | *((fzm(k)*rv(i,k,jde-1)+fzp(k)*rv(i,k-1,jde-1))* & |
---|
| 5621 | (w(i,k,jde-1)+w(i,k,jde-2))) |
---|
| 5622 | END DO |
---|
| 5623 | END DO |
---|
| 5624 | k = ktf+1 |
---|
| 5625 | DO i = i_start, i_end |
---|
| 5626 | mrdy=msftx(i,jde-1)*rdy ! see ADT eqn 46 dividing by my, 2nd term RHS |
---|
| 5627 | tendency(i,k,jde-1)=tendency(i,k,jde-1) +mrdy*0.5 & |
---|
| 5628 | *((2.-fzm(k-1))*rv(i,k-1,jde-1)-fzp(k-1)*rv(i,k-2,jde-1)) & |
---|
| 5629 | *(w(i,k,jde-1)+w(i,k,jde-2)) |
---|
| 5630 | ENDDO |
---|
| 5631 | END IF |
---|
| 5632 | END IF |
---|
| 5633 | |
---|
| 5634 | ELSE IF ( horz_order == 0 ) THEN |
---|
| 5635 | |
---|
| 5636 | ! Just in case we want to turn horizontal advection off, we can do it |
---|
| 5637 | |
---|
| 5638 | ELSE |
---|
| 5639 | |
---|
| 5640 | WRITE ( wrf_err_message ,*) ' advect_w_6a, h_order not known ',horz_order |
---|
| 5641 | CALL wrf_error_fatal ( wrf_err_message ) |
---|
| 5642 | |
---|
| 5643 | ENDIF horizontal_order_test |
---|
| 5644 | |
---|
| 5645 | |
---|
| 5646 | ! pick up the the horizontal radiation boundary conditions. |
---|
| 5647 | ! (these are the computations that don't require 'cb'. |
---|
| 5648 | ! first, set to index ranges |
---|
| 5649 | |
---|
| 5650 | |
---|
| 5651 | i_start = its |
---|
| 5652 | i_end = MIN(ite,ide-1) |
---|
| 5653 | j_start = jts |
---|
| 5654 | j_end = MIN(jte,jde-1) |
---|
| 5655 | |
---|
| 5656 | IF( (config_flags%open_xs) .and. (its == ids)) THEN |
---|
| 5657 | |
---|
| 5658 | DO j = j_start, j_end |
---|
| 5659 | DO k = kts+1, ktf |
---|
| 5660 | |
---|
| 5661 | uw = 0.5*(fzm(k)*(ru(its,k ,j)+ru(its+1,k ,j)) + & |
---|
| 5662 | fzp(k)*(ru(its,k-1,j)+ru(its+1,k-1,j)) ) |
---|
| 5663 | ub = MIN( uw, 0. ) |
---|
| 5664 | |
---|
| 5665 | tendency(its,k,j) = tendency(its,k,j) & |
---|
| 5666 | - rdx*( & |
---|
| 5667 | ub*(w_old(its+1,k,j) - w_old(its,k,j)) + & |
---|
| 5668 | w(its,k,j)*( & |
---|
| 5669 | fzm(k)*(ru(its+1,k ,j)-ru(its,k ,j))+ & |
---|
| 5670 | fzp(k)*(ru(its+1,k-1,j)-ru(its,k-1,j))) & |
---|
| 5671 | ) |
---|
| 5672 | ENDDO |
---|
| 5673 | ENDDO |
---|
| 5674 | |
---|
| 5675 | k = ktf+1 |
---|
| 5676 | DO j = j_start, j_end |
---|
| 5677 | |
---|
| 5678 | uw = 0.5*( (2.-fzm(k-1))*(ru(its,k-1,j)+ru(its+1,k-1,j)) & |
---|
| 5679 | -fzp(k-1)*(ru(its,k-2,j)+ru(its+1,k-2,j)) ) |
---|
| 5680 | ub = MIN( uw, 0. ) |
---|
| 5681 | |
---|
| 5682 | tendency(its,k,j) = tendency(its,k,j) & |
---|
| 5683 | - rdx*( & |
---|
| 5684 | ub*(w_old(its+1,k,j) - w_old(its,k,j)) + & |
---|
| 5685 | w(its,k,j)*( & |
---|
| 5686 | (2.-fzm(k-1))*(ru(its+1,k-1,j)-ru(its,k-1,j))- & |
---|
| 5687 | fzp(k-1)*(ru(its+1,k-2,j)-ru(its,k-2,j))) & |
---|
| 5688 | ) |
---|
| 5689 | ENDDO |
---|
| 5690 | |
---|
| 5691 | ENDIF |
---|
| 5692 | |
---|
| 5693 | IF( (config_flags%open_xe) .and. (ite == ide)) THEN |
---|
| 5694 | |
---|
| 5695 | DO j = j_start, j_end |
---|
| 5696 | DO k = kts+1, ktf |
---|
| 5697 | |
---|
| 5698 | uw = 0.5*(fzm(k)*(ru(ite-1,k ,j)+ru(ite,k ,j)) + & |
---|
| 5699 | fzp(k)*(ru(ite-1,k-1,j)+ru(ite,k-1,j)) ) |
---|
| 5700 | ub = MAX( uw, 0. ) |
---|
| 5701 | |
---|
| 5702 | tendency(i_end,k,j) = tendency(i_end,k,j) & |
---|
| 5703 | - rdx*( & |
---|
| 5704 | ub*(w_old(i_end,k,j) - w_old(i_end-1,k,j)) + & |
---|
| 5705 | w(i_end,k,j)*( & |
---|
| 5706 | fzm(k)*(ru(ite,k ,j)-ru(ite-1,k ,j)) + & |
---|
| 5707 | fzp(k)*(ru(ite,k-1,j)-ru(ite-1,k-1,j))) & |
---|
| 5708 | ) |
---|
| 5709 | ENDDO |
---|
| 5710 | ENDDO |
---|
| 5711 | |
---|
| 5712 | k = ktf+1 |
---|
| 5713 | DO j = j_start, j_end |
---|
| 5714 | |
---|
| 5715 | uw = 0.5*( (2.-fzm(k-1))*(ru(ite-1,k-1,j)+ru(ite,k-1,j)) & |
---|
| 5716 | -fzp(k-1)*(ru(ite-1,k-2,j)+ru(ite,k-2,j)) ) |
---|
| 5717 | ub = MAX( uw, 0. ) |
---|
| 5718 | |
---|
| 5719 | tendency(i_end,k,j) = tendency(i_end,k,j) & |
---|
| 5720 | - rdx*( & |
---|
| 5721 | ub*(w_old(i_end,k,j) - w_old(i_end-1,k,j)) + & |
---|
| 5722 | w(i_end,k,j)*( & |
---|
| 5723 | (2.-fzm(k-1))*(ru(ite,k-1,j)-ru(ite-1,k-1,j)) - & |
---|
| 5724 | fzp(k-1)*(ru(ite,k-2,j)-ru(ite-1,k-2,j))) & |
---|
| 5725 | ) |
---|
| 5726 | ENDDO |
---|
| 5727 | |
---|
| 5728 | ENDIF |
---|
| 5729 | |
---|
| 5730 | |
---|
| 5731 | IF( (config_flags%open_ys) .and. (jts == jds)) THEN |
---|
| 5732 | |
---|
| 5733 | DO i = i_start, i_end |
---|
| 5734 | DO k = kts+1, ktf |
---|
| 5735 | |
---|
| 5736 | vw = 0.5*( fzm(k)*(rv(i,k ,jts)+rv(i,k ,jts+1)) + & |
---|
| 5737 | fzp(k)*(rv(i,k-1,jts)+rv(i,k-1,jts+1)) ) |
---|
| 5738 | vb = MIN( vw, 0. ) |
---|
| 5739 | |
---|
| 5740 | tendency(i,k,jts) = tendency(i,k,jts) & |
---|
| 5741 | - rdy*( & |
---|
| 5742 | vb*(w_old(i,k,jts+1) - w_old(i,k,jts)) + & |
---|
| 5743 | w(i,k,jts)*( & |
---|
| 5744 | fzm(k)*(rv(i,k ,jts+1)-rv(i,k ,jts))+ & |
---|
| 5745 | fzp(k)*(rv(i,k-1,jts+1)-rv(i,k-1,jts))) & |
---|
| 5746 | ) |
---|
| 5747 | ENDDO |
---|
| 5748 | ENDDO |
---|
| 5749 | |
---|
| 5750 | k = ktf+1 |
---|
| 5751 | DO i = i_start, i_end |
---|
| 5752 | vw = 0.5*( (2.-fzm(k-1))*(rv(i,k-1,jts)+rv(i,k-1,jts+1)) & |
---|
| 5753 | -fzp(k-1)*(rv(i,k-2,jts)+rv(i,k-2,jts+1)) ) |
---|
| 5754 | vb = MIN( vw, 0. ) |
---|
| 5755 | |
---|
| 5756 | tendency(i,k,jts) = tendency(i,k,jts) & |
---|
| 5757 | - rdy*( & |
---|
| 5758 | vb*(w_old(i,k,jts+1) - w_old(i,k,jts)) + & |
---|
| 5759 | w(i,k,jts)*( & |
---|
| 5760 | (2.-fzm(k-1))*(rv(i,k-1,jts+1)-rv(i,k-1,jts))- & |
---|
| 5761 | fzp(k-1)*(rv(i,k-2,jts+1)-rv(i,k-2,jts))) & |
---|
| 5762 | ) |
---|
| 5763 | ENDDO |
---|
| 5764 | |
---|
| 5765 | ENDIF |
---|
| 5766 | |
---|
| 5767 | IF( (config_flags%open_ye) .and. (jte == jde) ) THEN |
---|
| 5768 | |
---|
| 5769 | DO i = i_start, i_end |
---|
| 5770 | DO k = kts+1, ktf |
---|
| 5771 | |
---|
| 5772 | vw = 0.5*( fzm(k)*(rv(i,k ,jte-1)+rv(i,k ,jte)) + & |
---|
| 5773 | fzp(k)*(rv(i,k-1,jte-1)+rv(i,k-1,jte)) ) |
---|
| 5774 | vb = MAX( vw, 0. ) |
---|
| 5775 | |
---|
| 5776 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
---|
| 5777 | - rdy*( & |
---|
| 5778 | vb*(w_old(i,k,j_end) - w_old(i,k,j_end-1)) + & |
---|
| 5779 | w(i,k,j_end)*( & |
---|
| 5780 | fzm(k)*(rv(i,k ,jte)-rv(i,k ,jte-1))+ & |
---|
| 5781 | fzp(k)*(rv(i,k-1,jte)-rv(i,k-1,jte-1))) & |
---|
| 5782 | ) |
---|
| 5783 | ENDDO |
---|
| 5784 | ENDDO |
---|
| 5785 | |
---|
| 5786 | k = ktf+1 |
---|
| 5787 | DO i = i_start, i_end |
---|
| 5788 | |
---|
| 5789 | vw = 0.5*( (2.-fzm(k-1))*(rv(i,k-1,jte-1)+rv(i,k-1,jte)) & |
---|
| 5790 | -fzp(k-1)*(rv(i,k-2,jte-1)+rv(i,k-2,jte)) ) |
---|
| 5791 | vb = MAX( vw, 0. ) |
---|
| 5792 | |
---|
| 5793 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
---|
| 5794 | - rdy*( & |
---|
| 5795 | vb*(w_old(i,k,j_end) - w_old(i,k,j_end-1)) + & |
---|
| 5796 | w(i,k,j_end)*( & |
---|
| 5797 | (2.-fzm(k-1))*(rv(i,k-1,jte)-rv(i,k-1,jte-1))- & |
---|
| 5798 | fzp(k-1)*(rv(i,k-2,jte)-rv(i,k-2,jte-1))) & |
---|
| 5799 | ) |
---|
| 5800 | ENDDO |
---|
| 5801 | |
---|
| 5802 | ENDIF |
---|
| 5803 | |
---|
| 5804 | !-------------------- vertical advection |
---|
| 5805 | ! ADT eqn 46 has 3rd term on RHS (dividing through by my) = - partial d/dz (w rho w /my) |
---|
| 5806 | ! Here we have: - partial d/dz (w*rom) = - partial d/dz (w rho w / my) |
---|
| 5807 | ! Therefore we don't need to make a correction for advect_w |
---|
| 5808 | |
---|
| 5809 | i_start = its |
---|
| 5810 | i_end = MIN(ite,ide-1) |
---|
| 5811 | j_start = jts |
---|
| 5812 | j_end = MIN(jte,jde-1) |
---|
| 5813 | |
---|
| 5814 | DO i = i_start, i_end |
---|
| 5815 | vflux(i,kts)=0. |
---|
| 5816 | vflux(i,kte)=0. |
---|
| 5817 | ENDDO |
---|
| 5818 | |
---|
| 5819 | vert_order_test : IF (vert_order == 6) THEN |
---|
| 5820 | |
---|
| 5821 | DO j = j_start, j_end |
---|
| 5822 | |
---|
| 5823 | DO k=kts+3,ktf-1 |
---|
| 5824 | DO i = i_start, i_end |
---|
| 5825 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
| 5826 | vflux(i,k) = vel*flux6( & |
---|
| 5827 | w(i,k-3,j), w(i,k-2,j), w(i,k-1,j), & |
---|
| 5828 | w(i,k ,j), w(i,k+1,j), w(i,k+2,j), -vel ) |
---|
| 5829 | ENDDO |
---|
| 5830 | ENDDO |
---|
| 5831 | |
---|
| 5832 | DO i = i_start, i_end |
---|
| 5833 | |
---|
| 5834 | k=kts+1 |
---|
| 5835 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
| 5836 | |
---|
| 5837 | k = kts+2 |
---|
| 5838 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
| 5839 | vflux(i,k) = vel*flux4( & |
---|
| 5840 | w(i,k-2,j), w(i,k-1,j), & |
---|
| 5841 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
| 5842 | |
---|
| 5843 | k = ktf |
---|
| 5844 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
| 5845 | vflux(i,k) = vel*flux4( & |
---|
| 5846 | w(i,k-2,j), w(i,k-1,j), & |
---|
| 5847 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
| 5848 | |
---|
| 5849 | k=ktf+1 |
---|
| 5850 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
| 5851 | |
---|
| 5852 | ENDDO |
---|
| 5853 | |
---|
| 5854 | DO k=kts+1,ktf |
---|
| 5855 | DO i = i_start, i_end |
---|
| 5856 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
| 5857 | ENDDO |
---|
| 5858 | ENDDO |
---|
| 5859 | |
---|
| 5860 | ! pick up flux contribution for w at the lid. wcs, 13 march 2004 |
---|
| 5861 | k = ktf+1 |
---|
| 5862 | DO i = i_start, i_end |
---|
| 5863 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
---|
| 5864 | ENDDO |
---|
| 5865 | |
---|
| 5866 | ENDDO |
---|
| 5867 | |
---|
| 5868 | ELSE IF (vert_order == 5) THEN |
---|
| 5869 | |
---|
| 5870 | DO j = j_start, j_end |
---|
| 5871 | |
---|
| 5872 | DO k=kts+3,ktf-1 |
---|
| 5873 | DO i = i_start, i_end |
---|
| 5874 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
| 5875 | vflux(i,k) = vel*flux5( & |
---|
| 5876 | w(i,k-3,j), w(i,k-2,j), w(i,k-1,j), & |
---|
| 5877 | w(i,k ,j), w(i,k+1,j), w(i,k+2,j), -vel ) |
---|
| 5878 | ENDDO |
---|
| 5879 | ENDDO |
---|
| 5880 | |
---|
| 5881 | DO i = i_start, i_end |
---|
| 5882 | |
---|
| 5883 | k=kts+1 |
---|
| 5884 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
| 5885 | |
---|
| 5886 | k = kts+2 |
---|
| 5887 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
| 5888 | vflux(i,k) = vel*flux3( & |
---|
| 5889 | w(i,k-2,j), w(i,k-1,j), & |
---|
| 5890 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
| 5891 | k = ktf |
---|
| 5892 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
| 5893 | vflux(i,k) = vel*flux3( & |
---|
| 5894 | w(i,k-2,j), w(i,k-1,j), & |
---|
| 5895 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
| 5896 | |
---|
| 5897 | k=ktf+1 |
---|
| 5898 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
| 5899 | |
---|
| 5900 | ENDDO |
---|
| 5901 | |
---|
| 5902 | DO k=kts+1,ktf |
---|
| 5903 | DO i = i_start, i_end |
---|
| 5904 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
| 5905 | ENDDO |
---|
| 5906 | ENDDO |
---|
| 5907 | |
---|
| 5908 | ! pick up flux contribution for w at the lid, wcs. 13 march 2004 |
---|
| 5909 | k = ktf+1 |
---|
| 5910 | DO i = i_start, i_end |
---|
| 5911 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
---|
| 5912 | ENDDO |
---|
| 5913 | |
---|
| 5914 | ENDDO |
---|
| 5915 | |
---|
| 5916 | ELSE IF (vert_order == 4) THEN |
---|
| 5917 | |
---|
| 5918 | DO j = j_start, j_end |
---|
| 5919 | |
---|
| 5920 | DO k=kts+2,ktf |
---|
| 5921 | DO i = i_start, i_end |
---|
| 5922 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
| 5923 | vflux(i,k) = vel*flux4( & |
---|
| 5924 | w(i,k-2,j), w(i,k-1,j), & |
---|
| 5925 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
| 5926 | ENDDO |
---|
| 5927 | ENDDO |
---|
| 5928 | |
---|
| 5929 | DO i = i_start, i_end |
---|
| 5930 | |
---|
| 5931 | k=kts+1 |
---|
| 5932 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
| 5933 | k=ktf+1 |
---|
| 5934 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
| 5935 | |
---|
| 5936 | ENDDO |
---|
| 5937 | |
---|
| 5938 | DO k=kts+1,ktf |
---|
| 5939 | DO i = i_start, i_end |
---|
| 5940 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
| 5941 | ENDDO |
---|
| 5942 | ENDDO |
---|
| 5943 | |
---|
| 5944 | ! pick up flux contribution for w at the lid, wcs. 13 march 2004 |
---|
| 5945 | k = ktf+1 |
---|
| 5946 | DO i = i_start, i_end |
---|
| 5947 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
---|
| 5948 | ENDDO |
---|
| 5949 | |
---|
| 5950 | ENDDO |
---|
| 5951 | |
---|
| 5952 | ELSE IF (vert_order == 3) THEN |
---|
| 5953 | |
---|
| 5954 | DO j = j_start, j_end |
---|
| 5955 | |
---|
| 5956 | DO k=kts+2,ktf |
---|
| 5957 | DO i = i_start, i_end |
---|
| 5958 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
| 5959 | vflux(i,k) = vel*flux3( & |
---|
| 5960 | w(i,k-2,j), w(i,k-1,j), & |
---|
| 5961 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
| 5962 | ENDDO |
---|
| 5963 | ENDDO |
---|
| 5964 | |
---|
| 5965 | DO i = i_start, i_end |
---|
| 5966 | |
---|
| 5967 | k=kts+1 |
---|
| 5968 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
| 5969 | k=ktf+1 |
---|
| 5970 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
| 5971 | |
---|
| 5972 | ENDDO |
---|
| 5973 | |
---|
| 5974 | DO k=kts+1,ktf |
---|
| 5975 | DO i = i_start, i_end |
---|
| 5976 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
| 5977 | ENDDO |
---|
| 5978 | ENDDO |
---|
| 5979 | |
---|
| 5980 | ! pick up flux contribution for w at the lid, wcs. 13 march 2004 |
---|
| 5981 | k = ktf+1 |
---|
| 5982 | DO i = i_start, i_end |
---|
| 5983 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
---|
| 5984 | ENDDO |
---|
| 5985 | |
---|
| 5986 | ENDDO |
---|
| 5987 | |
---|
| 5988 | ELSE IF (vert_order == 2) THEN |
---|
| 5989 | |
---|
| 5990 | DO j = j_start, j_end |
---|
| 5991 | DO k=kts+1,ktf+1 |
---|
| 5992 | DO i = i_start, i_end |
---|
| 5993 | |
---|
| 5994 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
| 5995 | ENDDO |
---|
| 5996 | ENDDO |
---|
| 5997 | DO k=kts+1,ktf |
---|
| 5998 | DO i = i_start, i_end |
---|
| 5999 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
| 6000 | |
---|
| 6001 | ENDDO |
---|
| 6002 | ENDDO |
---|
| 6003 | |
---|
| 6004 | ! pick up flux contribution for w at the lid, wcs. 13 march 2004 |
---|
| 6005 | k = ktf+1 |
---|
| 6006 | DO i = i_start, i_end |
---|
| 6007 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
---|
| 6008 | ENDDO |
---|
| 6009 | |
---|
| 6010 | ENDDO |
---|
| 6011 | |
---|
| 6012 | ELSE |
---|
| 6013 | |
---|
| 6014 | WRITE (wrf_err_message ,*) ' advect_w, v_order not known ',vert_order |
---|
| 6015 | CALL wrf_error_fatal ( wrf_err_message ) |
---|
| 6016 | |
---|
| 6017 | ENDIF vert_order_test |
---|
| 6018 | |
---|
| 6019 | END SUBROUTINE advect_w |
---|
| 6020 | |
---|
| 6021 | !---------------------------------------------------------------- |
---|
| 6022 | |
---|
| 6023 | SUBROUTINE advect_scalar_pd ( field, field_old, tendency, & |
---|
| 6024 | ru, rv, rom, & |
---|
| 6025 | mut, mub, mu_old, & |
---|
| 6026 | config_flags, & |
---|
| 6027 | msfux, msfuy, msfvx, msfvy, & |
---|
| 6028 | msftx, msfty, & |
---|
| 6029 | fzm, fzp, & |
---|
| 6030 | rdx, rdy, rdzw, dt, & |
---|
| 6031 | ids, ide, jds, jde, kds, kde, & |
---|
| 6032 | ims, ime, jms, jme, kms, kme, & |
---|
| 6033 | its, ite, jts, jte, kts, kte ) |
---|
| 6034 | |
---|
| 6035 | ! this is a first cut at a positive definite advection option |
---|
| 6036 | ! for scalars in WRF. This version is memory intensive -> |
---|
| 6037 | ! we save 3d arrays of x, y and z both high and low order fluxes |
---|
| 6038 | ! (six in all). Alternatively, we could sweep in a direction |
---|
| 6039 | ! and lower the cost considerably. |
---|
| 6040 | |
---|
| 6041 | ! uses the Smolarkiewicz MWR 1989 approach, with addition of first-order |
---|
| 6042 | ! fluxes initially |
---|
| 6043 | |
---|
| 6044 | ! WCS, 3 December 2002, 24 February 2003 |
---|
| 6045 | |
---|
| 6046 | IMPLICIT NONE |
---|
| 6047 | |
---|
| 6048 | ! Input data |
---|
| 6049 | |
---|
| 6050 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
| 6051 | |
---|
| 6052 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
| 6053 | ims, ime, jms, jme, kms, kme, & |
---|
| 6054 | its, ite, jts, jte, kts, kte |
---|
| 6055 | |
---|
| 6056 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: field, & |
---|
| 6057 | field_old, & |
---|
| 6058 | ru, & |
---|
| 6059 | rv, & |
---|
| 6060 | rom |
---|
| 6061 | |
---|
| 6062 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut, mub, mu_old |
---|
| 6063 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
| 6064 | |
---|
| 6065 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfux, & |
---|
| 6066 | msfuy, & |
---|
| 6067 | msfvx, & |
---|
| 6068 | msfvy, & |
---|
| 6069 | msftx, & |
---|
| 6070 | msfty |
---|
| 6071 | |
---|
| 6072 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
| 6073 | fzp, & |
---|
| 6074 | rdzw |
---|
| 6075 | |
---|
| 6076 | REAL , INTENT(IN ) :: rdx, & |
---|
| 6077 | rdy, & |
---|
| 6078 | dt |
---|
| 6079 | |
---|
| 6080 | ! Local data |
---|
| 6081 | |
---|
| 6082 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
| 6083 | INTEGER :: i_start, i_end, j_start, j_end |
---|
| 6084 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
---|
| 6085 | INTEGER :: jmin, jmax, jp, jm, imin, imax |
---|
| 6086 | |
---|
| 6087 | REAL :: mrdx, mrdy, ub, vb, uw, vw, mu |
---|
| 6088 | |
---|
| 6089 | ! storage for high and low order fluxes |
---|
| 6090 | |
---|
| 6091 | REAL, DIMENSION( its-1:ite+2, kts:kte, jts-1:jte+2 ) :: fqx, fqy, fqz |
---|
| 6092 | REAL, DIMENSION( its-1:ite+2, kts:kte, jts-1:jte+2 ) :: fqxl, fqyl, fqzl |
---|
| 6093 | |
---|
| 6094 | INTEGER :: horz_order, vert_order |
---|
| 6095 | |
---|
| 6096 | LOGICAL :: degrade_xs, degrade_ys |
---|
| 6097 | LOGICAL :: degrade_xe, degrade_ye |
---|
| 6098 | |
---|
| 6099 | INTEGER :: jp1, jp0, jtmp |
---|
| 6100 | |
---|
| 6101 | REAL :: flux_out, ph_low, scale |
---|
| 6102 | REAL, PARAMETER :: eps=1.e-20 |
---|
| 6103 | |
---|
| 6104 | |
---|
| 6105 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
---|
| 6106 | |
---|
| 6107 | REAL :: flux3, flux4, flux5, flux6, flux_upwind |
---|
| 6108 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel, cr |
---|
| 6109 | |
---|
| 6110 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
| 6111 | (7./12.)*(q_i + q_im1) - (1./12.)*(q_ip1 + q_im2) |
---|
| 6112 | |
---|
| 6113 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
| 6114 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
---|
| 6115 | sign(1.,ua)*(1./12.)*((q_ip1 - q_im2)-3.*(q_i-q_im1)) |
---|
| 6116 | |
---|
| 6117 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
| 6118 | (37./60.)*(q_i+q_im1) - (2./15.)*(q_ip1+q_im2) & |
---|
| 6119 | +(1./60.)*(q_ip2+q_im3) |
---|
| 6120 | |
---|
| 6121 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
| 6122 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
---|
| 6123 | -sign(1.,ua)*(1./60.)*( & |
---|
| 6124 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) ) |
---|
| 6125 | |
---|
| 6126 | flux_upwind(q_im1, q_i, cr ) = 0.5*min( 1.0,(cr+abs(cr)))*q_im1 & |
---|
| 6127 | +0.5*max(-1.0,(cr-abs(cr)))*q_i |
---|
| 6128 | ! flux_upwind(q_im1, q_i, cr ) = 0. |
---|
| 6129 | |
---|
| 6130 | REAL :: dx,dy,dz |
---|
| 6131 | |
---|
| 6132 | LOGICAL, PARAMETER :: pd_limit = .true. |
---|
| 6133 | |
---|
| 6134 | ! set order for the advection schemes |
---|
| 6135 | |
---|
| 6136 | ! write(6,*) ' in pd advection routine ' |
---|
| 6137 | |
---|
| 6138 | ! Empty arrays just in case: |
---|
| 6139 | IF (config_flags%polar) THEN |
---|
| 6140 | fqx(:,:,:) = 0. |
---|
| 6141 | fqy(:,:,:) = 0. |
---|
| 6142 | fqz(:,:,:) = 0. |
---|
| 6143 | fqxl(:,:,:) = 0. |
---|
| 6144 | fqyl(:,:,:) = 0. |
---|
| 6145 | fqzl(:,:,:) = 0. |
---|
| 6146 | END IF |
---|
| 6147 | |
---|
| 6148 | ktf=MIN(kte,kde-1) |
---|
| 6149 | horz_order = config_flags%h_sca_adv_order |
---|
| 6150 | vert_order = config_flags%v_sca_adv_order |
---|
| 6151 | |
---|
| 6152 | ! determine boundary mods for flux operators |
---|
| 6153 | ! We degrade the flux operators from 3rd/4th order |
---|
| 6154 | ! to second order one gridpoint in from the boundaries for |
---|
| 6155 | ! all boundary conditions except periodic and symmetry - these |
---|
| 6156 | ! conditions have boundary zone data fill for correct application |
---|
| 6157 | ! of the higher order flux stencils |
---|
| 6158 | |
---|
| 6159 | degrade_xs = .true. |
---|
| 6160 | degrade_xe = .true. |
---|
| 6161 | degrade_ys = .true. |
---|
| 6162 | degrade_ye = .true. |
---|
| 6163 | |
---|
| 6164 | ! begin with horizontal flux divergence |
---|
| 6165 | ! here is the choice of flux operators |
---|
| 6166 | |
---|
| 6167 | |
---|
| 6168 | horizontal_order_test : IF( horz_order == 6 ) THEN |
---|
| 6169 | |
---|
| 6170 | IF( config_flags%periodic_x .or. & |
---|
| 6171 | config_flags%symmetric_xs .or. & |
---|
| 6172 | (its > ids+2) ) degrade_xs = .false. |
---|
| 6173 | IF( config_flags%periodic_x .or. & |
---|
| 6174 | config_flags%symmetric_xe .or. & |
---|
| 6175 | (ite < ide-3) ) degrade_xe = .false. |
---|
| 6176 | IF( config_flags%periodic_y .or. & |
---|
| 6177 | config_flags%symmetric_ys .or. & |
---|
| 6178 | (jts > jds+2) ) degrade_ys = .false. |
---|
| 6179 | IF( config_flags%periodic_y .or. & |
---|
| 6180 | config_flags%symmetric_ye .or. & |
---|
| 6181 | (jte < jde-3) ) degrade_ye = .false. |
---|
| 6182 | |
---|
| 6183 | !--------------- y - advection first |
---|
| 6184 | |
---|
| 6185 | !-- y flux compute; these bounds are for periodic and sym b.c. |
---|
| 6186 | |
---|
| 6187 | ktf=MIN(kte,kde-1) |
---|
| 6188 | i_start = its-1 |
---|
| 6189 | i_end = MIN(ite,ide-1)+1 |
---|
| 6190 | j_start = jts-1 |
---|
| 6191 | j_end = MIN(jte,jde-1)+1 |
---|
| 6192 | j_start_f = j_start |
---|
| 6193 | j_end_f = j_end+1 |
---|
| 6194 | |
---|
| 6195 | !-- modify loop bounds if open or specified |
---|
| 6196 | |
---|
| 6197 | IF(degrade_xs) i_start = its |
---|
| 6198 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
| 6199 | |
---|
| 6200 | IF(degrade_ys) then |
---|
| 6201 | j_start = MAX(jts,jds+1) |
---|
| 6202 | j_start_f = jds+3 |
---|
| 6203 | ENDIF |
---|
| 6204 | |
---|
| 6205 | IF(degrade_ye) then |
---|
| 6206 | j_end = MIN(jte,jde-2) |
---|
| 6207 | j_end_f = jde-3 |
---|
| 6208 | ENDIF |
---|
| 6209 | |
---|
| 6210 | ! compute fluxes, 6th order |
---|
| 6211 | |
---|
| 6212 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
---|
| 6213 | |
---|
| 6214 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
| 6215 | |
---|
| 6216 | DO k=kts,ktf |
---|
| 6217 | DO i = i_start, i_end |
---|
| 6218 | |
---|
| 6219 | dy = 2./(msftx(i,j)+msftx(i,j-1))/rdy ! ADT eqn 48 d/dy |
---|
| 6220 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
| 6221 | vel = rv(i,k,j) |
---|
| 6222 | cr = vel*dt/dy/mu |
---|
| 6223 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
| 6224 | |
---|
| 6225 | fqy( i, k, j ) = vel*flux6( & |
---|
| 6226 | field(i,k,j-3), field(i,k,j-2), field(i,k,j-1), & |
---|
| 6227 | field(i,k,j ), field(i,k,j+1), field(i,k,j+2), vel ) |
---|
| 6228 | |
---|
| 6229 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
| 6230 | |
---|
| 6231 | ENDDO |
---|
| 6232 | ENDDO |
---|
| 6233 | |
---|
| 6234 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
| 6235 | |
---|
| 6236 | DO k=kts,ktf |
---|
| 6237 | DO i = i_start, i_end |
---|
| 6238 | |
---|
| 6239 | dy = 2./(msftx(i,j)+msftx(i,j-1))/rdy ! ADT eqn 48 d/dy |
---|
| 6240 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
| 6241 | vel = rv(i,k,j) |
---|
| 6242 | cr = vel*dt/dy/mu |
---|
| 6243 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
| 6244 | |
---|
| 6245 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
---|
| 6246 | (field(i,k,j)+field(i,k,j-1)) |
---|
| 6247 | |
---|
| 6248 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
| 6249 | |
---|
| 6250 | ENDDO |
---|
| 6251 | ENDDO |
---|
| 6252 | |
---|
| 6253 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
| 6254 | |
---|
| 6255 | DO k=kts,ktf |
---|
| 6256 | DO i = i_start, i_end |
---|
| 6257 | |
---|
| 6258 | dy = 2./(msftx(i,j)+msftx(i,j-1))/rdy ! ADT eqn 48 d/dy |
---|
| 6259 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
| 6260 | vel = rv(i,k,j) |
---|
| 6261 | cr = vel*dt/dy/mu |
---|
| 6262 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
| 6263 | |
---|
| 6264 | fqy( i, k, j ) = vel*flux4( & |
---|
| 6265 | field(i,k,j-2),field(i,k,j-1),field(i,k,j),field(i,k,j+1),vel ) |
---|
| 6266 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
| 6267 | |
---|
| 6268 | ENDDO |
---|
| 6269 | ENDDO |
---|
| 6270 | |
---|
| 6271 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
| 6272 | |
---|
| 6273 | DO k=kts,ktf |
---|
| 6274 | DO i = i_start, i_end |
---|
| 6275 | |
---|
| 6276 | dy = 2./(msftx(i,j)+msftx(i,j-1))/rdy ! ADT eqn 48 d/dy |
---|
| 6277 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
| 6278 | vel = rv(i,k,j) |
---|
| 6279 | cr = vel*dt/dy/mu |
---|
| 6280 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
| 6281 | |
---|
| 6282 | fqy(i, k, j ) = 0.5*rv(i,k,j)* & |
---|
| 6283 | (field(i,k,j)+field(i,k,j-1)) |
---|
| 6284 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
| 6285 | |
---|
| 6286 | ENDDO |
---|
| 6287 | ENDDO |
---|
| 6288 | |
---|
| 6289 | ELSE IF ( j == jde-2 ) THEN ! 4th order flux 2 in from north boundary |
---|
| 6290 | |
---|
| 6291 | DO k=kts,ktf |
---|
| 6292 | DO i = i_start, i_end |
---|
| 6293 | |
---|
| 6294 | dy = 2./(msftx(i,j)+msftx(i,j-1))/rdy ! ADT eqn 48 d/dy |
---|
| 6295 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
| 6296 | vel = rv(i,k,j) |
---|
| 6297 | cr = vel*dt/dy/mu |
---|
| 6298 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
| 6299 | |
---|
| 6300 | fqy( i, k, j) = vel*flux4( & |
---|
| 6301 | field(i,k,j-2),field(i,k,j-1), & |
---|
| 6302 | field(i,k,j),field(i,k,j+1),vel ) |
---|
| 6303 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
| 6304 | |
---|
| 6305 | ENDDO |
---|
| 6306 | ENDDO |
---|
| 6307 | |
---|
| 6308 | ENDIF |
---|
| 6309 | |
---|
| 6310 | ENDDO j_loop_y_flux_6 |
---|
| 6311 | |
---|
| 6312 | ! next, x flux |
---|
| 6313 | |
---|
| 6314 | !-- these bounds are for periodic and sym conditions |
---|
| 6315 | |
---|
| 6316 | i_start = its-1 |
---|
| 6317 | i_end = MIN(ite,ide-1)+1 |
---|
| 6318 | i_start_f = i_start |
---|
| 6319 | i_end_f = i_end+1 |
---|
| 6320 | |
---|
| 6321 | j_start = jts-1 |
---|
| 6322 | j_end = MIN(jte,jde-1)+1 |
---|
| 6323 | |
---|
| 6324 | !-- modify loop bounds for open and specified b.c |
---|
| 6325 | |
---|
| 6326 | IF(degrade_ys) j_start = jts |
---|
| 6327 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
---|
| 6328 | |
---|
| 6329 | IF(degrade_xs) then |
---|
| 6330 | i_start = MAX(ids+1,its) |
---|
| 6331 | i_start_f = i_start+2 |
---|
| 6332 | ENDIF |
---|
| 6333 | |
---|
| 6334 | IF(degrade_xe) then |
---|
| 6335 | i_end = MIN(ide-2,ite) |
---|
| 6336 | i_end_f = ide-3 |
---|
| 6337 | ENDIF |
---|
| 6338 | |
---|
| 6339 | ! compute fluxes |
---|
| 6340 | |
---|
| 6341 | DO j = j_start, j_end |
---|
| 6342 | |
---|
| 6343 | ! 6th order flux |
---|
| 6344 | |
---|
| 6345 | DO k=kts,ktf |
---|
| 6346 | DO i = i_start_f, i_end_f |
---|
| 6347 | |
---|
| 6348 | dx = 2./(msfty(i,j)+msfty(i-1,j))/rdx ! ADT eqn 48 d/dx |
---|
| 6349 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
| 6350 | vel = ru(i,k,j) |
---|
| 6351 | cr = vel*dt/dx/mu |
---|
| 6352 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
| 6353 | |
---|
| 6354 | fqx( i,k,j ) = vel*flux6( field(i-3,k,j), field(i-2,k,j), & |
---|
| 6355 | field(i-1,k,j), field(i ,k,j), & |
---|
| 6356 | field(i+1,k,j), field(i+2,k,j), & |
---|
| 6357 | vel ) |
---|
| 6358 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
| 6359 | |
---|
| 6360 | ENDDO |
---|
| 6361 | ENDDO |
---|
| 6362 | |
---|
| 6363 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
| 6364 | |
---|
| 6365 | IF( degrade_xs ) THEN |
---|
| 6366 | |
---|
| 6367 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
| 6368 | i = ids+1 |
---|
| 6369 | DO k=kts,ktf |
---|
| 6370 | |
---|
| 6371 | dx = 2./(msfty(i,j)+msfty(i-1,j))/rdx ! ADT eqn 48 d/dx |
---|
| 6372 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
| 6373 | vel = ru(i,k,j)/mu |
---|
| 6374 | cr = vel*dt/dx |
---|
| 6375 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
| 6376 | |
---|
| 6377 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
| 6378 | *(field(i,k,j)+field(i-1,k,j)) |
---|
| 6379 | |
---|
| 6380 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
| 6381 | |
---|
| 6382 | ENDDO |
---|
| 6383 | ENDIF |
---|
| 6384 | |
---|
| 6385 | i = ids+2 |
---|
| 6386 | DO k=kts,ktf |
---|
| 6387 | dx = 2./(msfty(i,j)+msfty(i-1,j))/rdx ! ADT eqn 48 d/dx |
---|
| 6388 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
| 6389 | vel = ru(i,k,j) |
---|
| 6390 | cr = vel*dt/dx/mu |
---|
| 6391 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
| 6392 | fqx( i,k,j ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
| 6393 | field(i ,k,j), field(i+1,k,j), & |
---|
| 6394 | vel ) |
---|
| 6395 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
| 6396 | |
---|
| 6397 | ENDDO |
---|
| 6398 | |
---|
| 6399 | ENDIF |
---|
| 6400 | |
---|
| 6401 | IF( degrade_xe ) THEN |
---|
| 6402 | |
---|
| 6403 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
| 6404 | i = ide-1 |
---|
| 6405 | DO k=kts,ktf |
---|
| 6406 | dx = 2./(msfty(i,j)+msfty(i-1,j))/rdx ! ADT eqn 48 d/dx |
---|
| 6407 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
| 6408 | vel = ru(i,k,j) |
---|
| 6409 | cr = vel*dt/dx/mu |
---|
| 6410 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
| 6411 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
| 6412 | *(field(i,k,j)+field(i-1,k,j)) |
---|
| 6413 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
| 6414 | |
---|
| 6415 | ENDDO |
---|
| 6416 | ENDIF |
---|
| 6417 | |
---|
| 6418 | i = ide-2 |
---|
| 6419 | DO k=kts,ktf |
---|
| 6420 | |
---|
| 6421 | dx = 2./(msfty(i,j)+msfty(i-1,j))/rdx ! ADT eqn 48 d/dx |
---|
| 6422 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
| 6423 | vel = ru(i,k,j) |
---|
| 6424 | cr = vel*dt/dx/mu |
---|
| 6425 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
| 6426 | fqx( i,k,j ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
| 6427 | field(i ,k,j), field(i+1,k,j), & |
---|
| 6428 | vel ) |
---|
| 6429 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
| 6430 | |
---|
| 6431 | ENDDO |
---|
| 6432 | |
---|
| 6433 | ENDIF |
---|
| 6434 | |
---|
| 6435 | ENDDO ! enddo for outer J loop |
---|
| 6436 | |
---|
| 6437 | !--- end of 6th order horizontal flux calculation |
---|
| 6438 | |
---|
| 6439 | ELSE IF( horz_order == 5 ) THEN |
---|
| 6440 | |
---|
| 6441 | IF( config_flags%periodic_x .or. & |
---|
| 6442 | config_flags%symmetric_xs .or. & |
---|
| 6443 | (its > ids+2) ) degrade_xs = .false. |
---|
| 6444 | IF( config_flags%periodic_x .or. & |
---|
| 6445 | config_flags%symmetric_xe .or. & |
---|
| 6446 | (ite < ide-3) ) degrade_xe = .false. |
---|
| 6447 | IF( config_flags%periodic_y .or. & |
---|
| 6448 | config_flags%symmetric_ys .or. & |
---|
| 6449 | (jts > jds+2) ) degrade_ys = .false. |
---|
| 6450 | IF( config_flags%periodic_y .or. & |
---|
| 6451 | config_flags%symmetric_ye .or. & |
---|
| 6452 | (jte < jde-3) ) degrade_ye = .false. |
---|
| 6453 | |
---|
| 6454 | !--------------- y - advection first |
---|
| 6455 | |
---|
| 6456 | !-- y flux compute; these bounds are for periodic and sym b.c. |
---|
| 6457 | |
---|
| 6458 | ktf=MIN(kte,kde-1) |
---|
| 6459 | i_start = its-1 |
---|
| 6460 | i_end = MIN(ite,ide-1)+1 |
---|
| 6461 | j_start = jts-1 |
---|
| 6462 | j_end = MIN(jte,jde-1)+1 |
---|
| 6463 | j_start_f = j_start |
---|
| 6464 | j_end_f = j_end+1 |
---|
| 6465 | |
---|
| 6466 | !-- modify loop bounds if open or specified |
---|
| 6467 | |
---|
| 6468 | IF(degrade_xs) i_start = its |
---|
| 6469 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
| 6470 | |
---|
| 6471 | IF(degrade_ys) then |
---|
| 6472 | j_start = MAX(jts,jds+1) |
---|
| 6473 | j_start_f = jds+3 |
---|
| 6474 | ENDIF |
---|
| 6475 | |
---|
| 6476 | IF(degrade_ye) then |
---|
| 6477 | j_end = MIN(jte,jde-2) |
---|
| 6478 | j_end_f = jde-3 |
---|
| 6479 | ENDIF |
---|
| 6480 | |
---|
| 6481 | ! compute fluxes, 5th order |
---|
| 6482 | |
---|
| 6483 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
---|
| 6484 | |
---|
| 6485 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
| 6486 | |
---|
| 6487 | DO k=kts,ktf |
---|
| 6488 | DO i = i_start, i_end |
---|
| 6489 | |
---|
| 6490 | dy = 2./(msftx(i,j)+msftx(i,j-1))/rdy ! ADT eqn 48 d/dy |
---|
| 6491 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
| 6492 | vel = rv(i,k,j) |
---|
| 6493 | cr = vel*dt/dy/mu |
---|
| 6494 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
| 6495 | |
---|
| 6496 | fqy( i, k, j ) = vel*flux5( & |
---|
| 6497 | field(i,k,j-3), field(i,k,j-2), field(i,k,j-1), & |
---|
| 6498 | field(i,k,j ), field(i,k,j+1), field(i,k,j+2), vel ) |
---|
| 6499 | |
---|
| 6500 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
| 6501 | |
---|
| 6502 | ENDDO |
---|
| 6503 | ENDDO |
---|
| 6504 | |
---|
| 6505 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
| 6506 | |
---|
| 6507 | DO k=kts,ktf |
---|
| 6508 | DO i = i_start, i_end |
---|
| 6509 | |
---|
| 6510 | dy = 2./(msftx(i,j)+msftx(i,j-1))/rdy ! ADT eqn 48 d/dy |
---|
| 6511 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
| 6512 | vel = rv(i,k,j) |
---|
| 6513 | cr = vel*dt/dy/mu |
---|
| 6514 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
| 6515 | |
---|
| 6516 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
---|
| 6517 | (field(i,k,j)+field(i,k,j-1)) |
---|
| 6518 | |
---|
| 6519 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
| 6520 | |
---|
| 6521 | ENDDO |
---|
| 6522 | ENDDO |
---|
| 6523 | |
---|
| 6524 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
| 6525 | |
---|
| 6526 | DO k=kts,ktf |
---|
| 6527 | DO i = i_start, i_end |
---|
| 6528 | |
---|
| 6529 | dy = 2./(msftx(i,j)+msftx(i,j-1))/rdy ! ADT eqn 48 d/dy |
---|
| 6530 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
| 6531 | vel = rv(i,k,j) |
---|
| 6532 | cr = vel*dt/dy/mu |
---|
| 6533 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
| 6534 | |
---|
| 6535 | fqy( i, k, j ) = vel*flux3( & |
---|
| 6536 | field(i,k,j-2),field(i,k,j-1),field(i,k,j),field(i,k,j+1),vel ) |
---|
| 6537 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
| 6538 | |
---|
| 6539 | ENDDO |
---|
| 6540 | ENDDO |
---|
| 6541 | |
---|
| 6542 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
| 6543 | |
---|
| 6544 | DO k=kts,ktf |
---|
| 6545 | DO i = i_start, i_end |
---|
| 6546 | |
---|
| 6547 | dy = 2./(msftx(i,j)+msftx(i,j-1))/rdy ! ADT eqn 48 d/dy |
---|
| 6548 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
| 6549 | vel = rv(i,k,j) |
---|
| 6550 | cr = vel*dt/dy/mu |
---|
| 6551 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
| 6552 | |
---|
| 6553 | fqy(i, k, j ) = 0.5*rv(i,k,j)* & |
---|
| 6554 | (field(i,k,j)+field(i,k,j-1)) |
---|
| 6555 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
| 6556 | |
---|
| 6557 | ENDDO |
---|
| 6558 | ENDDO |
---|
| 6559 | |
---|
| 6560 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
| 6561 | |
---|
| 6562 | DO k=kts,ktf |
---|
| 6563 | DO i = i_start, i_end |
---|
| 6564 | |
---|
| 6565 | dy = 2./(msftx(i,j)+msftx(i,j-1))/rdy ! ADT eqn 48 d/dy |
---|
| 6566 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
| 6567 | vel = rv(i,k,j) |
---|
| 6568 | cr = vel*dt/dy/mu |
---|
| 6569 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
| 6570 | |
---|
| 6571 | fqy( i, k, j) = vel*flux3( & |
---|
| 6572 | field(i,k,j-2),field(i,k,j-1), & |
---|
| 6573 | field(i,k,j),field(i,k,j+1),vel ) |
---|
| 6574 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
| 6575 | |
---|
| 6576 | ENDDO |
---|
| 6577 | ENDDO |
---|
| 6578 | |
---|
| 6579 | ENDIF |
---|
| 6580 | |
---|
| 6581 | ENDDO j_loop_y_flux_5 |
---|
| 6582 | |
---|
| 6583 | ! next, x flux |
---|
| 6584 | |
---|
| 6585 | !-- these bounds are for periodic and sym conditions |
---|
| 6586 | |
---|
| 6587 | i_start = its-1 |
---|
| 6588 | i_end = MIN(ite,ide-1)+1 |
---|
| 6589 | i_start_f = i_start |
---|
| 6590 | i_end_f = i_end+1 |
---|
| 6591 | |
---|
| 6592 | j_start = jts-1 |
---|
| 6593 | j_end = MIN(jte,jde-1)+1 |
---|
| 6594 | |
---|
| 6595 | !-- modify loop bounds for open and specified b.c |
---|
| 6596 | |
---|
| 6597 | IF(degrade_ys) j_start = jts |
---|
| 6598 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
---|
| 6599 | |
---|
| 6600 | IF(degrade_xs) then |
---|
| 6601 | i_start = MAX(ids+1,its) |
---|
| 6602 | i_start_f = i_start+2 |
---|
| 6603 | ENDIF |
---|
| 6604 | |
---|
| 6605 | IF(degrade_xe) then |
---|
| 6606 | i_end = MIN(ide-2,ite) |
---|
| 6607 | i_end_f = ide-3 |
---|
| 6608 | ENDIF |
---|
| 6609 | |
---|
| 6610 | ! compute fluxes |
---|
| 6611 | |
---|
| 6612 | DO j = j_start, j_end |
---|
| 6613 | |
---|
| 6614 | ! 5th order flux |
---|
| 6615 | |
---|
| 6616 | DO k=kts,ktf |
---|
| 6617 | DO i = i_start_f, i_end_f |
---|
| 6618 | |
---|
| 6619 | dx = 2./(msfty(i,j)+msfty(i-1,j))/rdx ! ADT eqn 48 d/dx |
---|
| 6620 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
| 6621 | vel = ru(i,k,j) |
---|
| 6622 | cr = vel*dt/dx/mu |
---|
| 6623 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
| 6624 | |
---|
| 6625 | fqx( i,k,j ) = vel*flux5( field(i-3,k,j), field(i-2,k,j), & |
---|
| 6626 | field(i-1,k,j), field(i ,k,j), & |
---|
| 6627 | field(i+1,k,j), field(i+2,k,j), & |
---|
| 6628 | vel ) |
---|
| 6629 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
| 6630 | |
---|
| 6631 | ENDDO |
---|
| 6632 | ENDDO |
---|
| 6633 | |
---|
| 6634 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
| 6635 | |
---|
| 6636 | IF( degrade_xs ) THEN |
---|
| 6637 | |
---|
| 6638 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
| 6639 | i = ids+1 |
---|
| 6640 | DO k=kts,ktf |
---|
| 6641 | |
---|
| 6642 | dx = 2./(msfty(i,j)+msfty(i-1,j))/rdx ! ADT eqn 48 d/dx |
---|
| 6643 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
| 6644 | vel = ru(i,k,j)/mu |
---|
| 6645 | cr = vel*dt/dx |
---|
| 6646 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
| 6647 | |
---|
| 6648 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
| 6649 | *(field(i,k,j)+field(i-1,k,j)) |
---|
| 6650 | |
---|
| 6651 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
| 6652 | |
---|
| 6653 | ENDDO |
---|
| 6654 | ENDIF |
---|
| 6655 | |
---|
| 6656 | i = ids+2 |
---|
| 6657 | DO k=kts,ktf |
---|
| 6658 | dx = 2./(msfty(i,j)+msfty(i-1,j))/rdx ! ADT eqn 48 d/dx |
---|
| 6659 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
| 6660 | vel = ru(i,k,j) |
---|
| 6661 | cr = vel*dt/dx/mu |
---|
| 6662 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
| 6663 | fqx( i,k,j ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
| 6664 | field(i ,k,j), field(i+1,k,j), & |
---|
| 6665 | vel ) |
---|
| 6666 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
| 6667 | |
---|
| 6668 | ENDDO |
---|
| 6669 | |
---|
| 6670 | ENDIF |
---|
| 6671 | |
---|
| 6672 | IF( degrade_xe ) THEN |
---|
| 6673 | |
---|
| 6674 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
| 6675 | i = ide-1 |
---|
| 6676 | DO k=kts,ktf |
---|
| 6677 | dx = 2./(msfty(i,j)+msfty(i-1,j))/rdx ! ADT eqn 48 d/dx |
---|
| 6678 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
| 6679 | vel = ru(i,k,j) |
---|
| 6680 | cr = vel*dt/dx/mu |
---|
| 6681 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
| 6682 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
| 6683 | *(field(i,k,j)+field(i-1,k,j)) |
---|
| 6684 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
| 6685 | |
---|
| 6686 | ENDDO |
---|
| 6687 | ENDIF |
---|
| 6688 | |
---|
| 6689 | i = ide-2 |
---|
| 6690 | DO k=kts,ktf |
---|
| 6691 | |
---|
| 6692 | dx = 2./(msfty(i,j)+msfty(i-1,j))/rdx ! ADT eqn 48 d/dx |
---|
| 6693 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
| 6694 | vel = ru(i,k,j) |
---|
| 6695 | cr = vel*dt/dx/mu |
---|
| 6696 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
| 6697 | fqx( i,k,j ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
| 6698 | field(i ,k,j), field(i+1,k,j), & |
---|
| 6699 | vel ) |
---|
| 6700 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
| 6701 | |
---|
| 6702 | ENDDO |
---|
| 6703 | |
---|
| 6704 | ENDIF |
---|
| 6705 | |
---|
| 6706 | ENDDO ! enddo for outer J loop |
---|
| 6707 | |
---|
| 6708 | !--- end of 5th order horizontal flux calculation |
---|
| 6709 | |
---|
| 6710 | ELSE IF( horz_order == 4 ) THEN |
---|
| 6711 | |
---|
| 6712 | IF( config_flags%periodic_x .or. & |
---|
| 6713 | config_flags%symmetric_xs .or. & |
---|
| 6714 | (its > ids+1) ) degrade_xs = .false. |
---|
| 6715 | IF( config_flags%periodic_x .or. & |
---|
| 6716 | config_flags%symmetric_xe .or. & |
---|
| 6717 | (ite < ide-2) ) degrade_xe = .false. |
---|
| 6718 | IF( config_flags%periodic_y .or. & |
---|
| 6719 | config_flags%symmetric_ys .or. & |
---|
| 6720 | (jts > jds+1) ) degrade_ys = .false. |
---|
| 6721 | IF( config_flags%periodic_y .or. & |
---|
| 6722 | config_flags%symmetric_ye .or. & |
---|
| 6723 | (jte < jde-2) ) degrade_ye = .false. |
---|
| 6724 | |
---|
| 6725 | !--------------- y - advection first |
---|
| 6726 | |
---|
| 6727 | !-- y flux compute; these bounds are for periodic and sym b.c. |
---|
| 6728 | |
---|
| 6729 | ktf=MIN(kte,kde-1) |
---|
| 6730 | i_start = its-1 |
---|
| 6731 | i_end = MIN(ite,ide-1)+1 |
---|
| 6732 | j_start = jts-1 |
---|
| 6733 | j_end = MIN(jte,jde-1)+1 |
---|
| 6734 | j_start_f = j_start |
---|
| 6735 | j_end_f = j_end+1 |
---|
| 6736 | |
---|
| 6737 | !-- modify loop bounds if open or specified |
---|
| 6738 | |
---|
| 6739 | IF(degrade_xs) i_start = its |
---|
| 6740 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
| 6741 | |
---|
| 6742 | IF(degrade_ys) then |
---|
| 6743 | j_start = MAX(jts,jds+1) |
---|
| 6744 | j_start_f = jds+2 |
---|
| 6745 | ENDIF |
---|
| 6746 | |
---|
| 6747 | IF(degrade_ye) then |
---|
| 6748 | j_end = MIN(jte,jde-2) |
---|
| 6749 | j_end_f = jde-2 |
---|
| 6750 | ENDIF |
---|
| 6751 | |
---|
| 6752 | ! compute fluxes, 4th order |
---|
| 6753 | |
---|
| 6754 | j_loop_y_flux_4 : DO j = j_start, j_end+1 |
---|
| 6755 | |
---|
| 6756 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
| 6757 | |
---|
| 6758 | DO k=kts,ktf |
---|
| 6759 | DO i = i_start, i_end |
---|
| 6760 | |
---|
| 6761 | dy = 2./(msftx(i,j)+msftx(i,j-1))/rdy ! ADT eqn 48 d/dy |
---|
| 6762 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
| 6763 | vel = rv(i,k,j) |
---|
| 6764 | cr = vel*dt/dy/mu |
---|
| 6765 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
| 6766 | |
---|
| 6767 | fqy( i, k, j ) = vel*flux4( field(i,k,j-2), field(i,k,j-1), & |
---|
| 6768 | field(i,k,j ), field(i,k,j+1), vel ) |
---|
| 6769 | |
---|
| 6770 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
| 6771 | |
---|
| 6772 | ENDDO |
---|
| 6773 | ENDDO |
---|
| 6774 | |
---|
| 6775 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
| 6776 | |
---|
| 6777 | DO k=kts,ktf |
---|
| 6778 | DO i = i_start, i_end |
---|
| 6779 | |
---|
| 6780 | dy = 2./(msftx(i,j)+msftx(i,j-1))/rdy ! ADT eqn 48 d/dy |
---|
| 6781 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
| 6782 | vel = rv(i,k,j) |
---|
| 6783 | cr = vel*dt/dy/mu |
---|
| 6784 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
| 6785 | |
---|
| 6786 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
---|
| 6787 | (field(i,k,j)+field(i,k,j-1)) |
---|
| 6788 | |
---|
| 6789 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
| 6790 | |
---|
| 6791 | ENDDO |
---|
| 6792 | ENDDO |
---|
| 6793 | |
---|
| 6794 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
| 6795 | |
---|
| 6796 | DO k=kts,ktf |
---|
| 6797 | DO i = i_start, i_end |
---|
| 6798 | |
---|
| 6799 | dy = 2./(msftx(i,j)+msftx(i,j-1))/rdy ! ADT eqn 48 d/dy |
---|
| 6800 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
| 6801 | vel = rv(i,k,j) |
---|
| 6802 | cr = vel*dt/dy/mu |
---|
| 6803 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
| 6804 | |
---|
| 6805 | fqy(i, k, j ) = 0.5*rv(i,k,j)* & |
---|
| 6806 | (field(i,k,j)+field(i,k,j-1)) |
---|
| 6807 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
| 6808 | |
---|
| 6809 | ENDDO |
---|
| 6810 | ENDDO |
---|
| 6811 | |
---|
| 6812 | ENDIF |
---|
| 6813 | |
---|
| 6814 | ENDDO j_loop_y_flux_4 |
---|
| 6815 | |
---|
| 6816 | ! next, x flux |
---|
| 6817 | |
---|
| 6818 | !-- these bounds are for periodic and sym conditions |
---|
| 6819 | |
---|
| 6820 | i_start = its-1 |
---|
| 6821 | i_end = MIN(ite,ide-1)+1 |
---|
| 6822 | i_start_f = i_start |
---|
| 6823 | i_end_f = i_end+1 |
---|
| 6824 | |
---|
| 6825 | j_start = jts-1 |
---|
| 6826 | j_end = MIN(jte,jde-1)+1 |
---|
| 6827 | |
---|
| 6828 | !-- modify loop bounds for open and specified b.c |
---|
| 6829 | |
---|
| 6830 | IF(degrade_ys) j_start = jts |
---|
| 6831 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
---|
| 6832 | |
---|
| 6833 | IF(degrade_xs) then |
---|
| 6834 | i_start = MAX(ids+1,its) |
---|
| 6835 | i_start_f = i_start+1 |
---|
| 6836 | ENDIF |
---|
| 6837 | |
---|
| 6838 | IF(degrade_xe) then |
---|
| 6839 | i_end = MIN(ide-2,ite) |
---|
| 6840 | i_end_f = ide-2 |
---|
| 6841 | ENDIF |
---|
| 6842 | |
---|
| 6843 | ! compute fluxes |
---|
| 6844 | |
---|
| 6845 | DO j = j_start, j_end |
---|
| 6846 | |
---|
| 6847 | ! 4th order flux |
---|
| 6848 | |
---|
| 6849 | DO k=kts,ktf |
---|
| 6850 | DO i = i_start_f, i_end_f |
---|
| 6851 | |
---|
| 6852 | dx = 2./(msfty(i,j)+msfty(i-1,j))/rdx ! ADT eqn 48 d/dx |
---|
| 6853 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
| 6854 | vel = ru(i,k,j) |
---|
| 6855 | cr = vel*dt/dx/mu |
---|
| 6856 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
| 6857 | |
---|
| 6858 | fqx( i,k,j ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
| 6859 | field(i ,k,j), field(i+1,k,j), vel ) |
---|
| 6860 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
| 6861 | |
---|
| 6862 | ENDDO |
---|
| 6863 | ENDDO |
---|
| 6864 | |
---|
| 6865 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
| 6866 | |
---|
| 6867 | IF( degrade_xs ) THEN |
---|
| 6868 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
| 6869 | i = ids+1 |
---|
| 6870 | DO k=kts,ktf |
---|
| 6871 | |
---|
| 6872 | dx = 2./(msfty(i,j)+msfty(i-1,j))/rdx ! ADT eqn 48 d/dx |
---|
| 6873 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
| 6874 | vel = ru(i,k,j)/mu |
---|
| 6875 | cr = vel*dt/dx |
---|
| 6876 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
| 6877 | |
---|
| 6878 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
| 6879 | *(field(i,k,j)+field(i-1,k,j)) |
---|
| 6880 | |
---|
| 6881 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
| 6882 | |
---|
| 6883 | ENDDO |
---|
| 6884 | ENDIF |
---|
| 6885 | ENDIF |
---|
| 6886 | |
---|
| 6887 | IF( degrade_xe ) THEN |
---|
| 6888 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
| 6889 | i = ide-1 |
---|
| 6890 | DO k=kts,ktf |
---|
| 6891 | dx = 2./(msfty(i,j)+msfty(i-1,j))/rdx ! ADT eqn 48 d/dx |
---|
| 6892 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
| 6893 | vel = ru(i,k,j) |
---|
| 6894 | cr = vel*dt/dx/mu |
---|
| 6895 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
| 6896 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
| 6897 | *(field(i,k,j)+field(i-1,k,j)) |
---|
| 6898 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
| 6899 | |
---|
| 6900 | ENDDO |
---|
| 6901 | ENDIF |
---|
| 6902 | ENDIF |
---|
| 6903 | |
---|
| 6904 | ENDDO ! enddo for outer J loop |
---|
| 6905 | |
---|
| 6906 | !--- end of 4th order horizontal flux calculation |
---|
| 6907 | |
---|
| 6908 | ELSE IF( horz_order == 3 ) THEN |
---|
| 6909 | |
---|
| 6910 | IF( config_flags%periodic_x .or. & |
---|
| 6911 | config_flags%symmetric_xs .or. & |
---|
| 6912 | (its > ids+1) ) degrade_xs = .false. |
---|
| 6913 | IF( config_flags%periodic_x .or. & |
---|
| 6914 | config_flags%symmetric_xe .or. & |
---|
| 6915 | (ite < ide-2) ) degrade_xe = .false. |
---|
| 6916 | IF( config_flags%periodic_y .or. & |
---|
| 6917 | config_flags%symmetric_ys .or. & |
---|
| 6918 | (jts > jds+1) ) degrade_ys = .false. |
---|
| 6919 | IF( config_flags%periodic_y .or. & |
---|
| 6920 | config_flags%symmetric_ye .or. & |
---|
| 6921 | (jte < jde-2) ) degrade_ye = .false. |
---|
| 6922 | |
---|
| 6923 | !--------------- y - advection first |
---|
| 6924 | |
---|
| 6925 | !-- y flux compute; these bounds are for periodic and sym b.c. |
---|
| 6926 | |
---|
| 6927 | ktf=MIN(kte,kde-1) |
---|
| 6928 | i_start = its-1 |
---|
| 6929 | i_end = MIN(ite,ide-1)+1 |
---|
| 6930 | j_start = jts-1 |
---|
| 6931 | j_end = MIN(jte,jde-1)+1 |
---|
| 6932 | j_start_f = j_start |
---|
| 6933 | j_end_f = j_end+1 |
---|
| 6934 | |
---|
| 6935 | !-- modify loop bounds if open or specified |
---|
| 6936 | |
---|
| 6937 | IF(degrade_xs) i_start = its |
---|
| 6938 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
| 6939 | |
---|
| 6940 | IF(degrade_ys) then |
---|
| 6941 | j_start = MAX(jts,jds+1) |
---|
| 6942 | j_start_f = jds+2 |
---|
| 6943 | ENDIF |
---|
| 6944 | |
---|
| 6945 | IF(degrade_ye) then |
---|
| 6946 | j_end = MIN(jte,jde-2) |
---|
| 6947 | j_end_f = jde-2 |
---|
| 6948 | ENDIF |
---|
| 6949 | |
---|
| 6950 | ! compute fluxes, 3rd order |
---|
| 6951 | |
---|
| 6952 | j_loop_y_flux_3 : DO j = j_start, j_end+1 |
---|
| 6953 | |
---|
| 6954 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
| 6955 | |
---|
| 6956 | DO k=kts,ktf |
---|
| 6957 | DO i = i_start, i_end |
---|
| 6958 | |
---|
| 6959 | dy = 2./(msftx(i,j)+msftx(i,j-1))/rdy ! ADT eqn 48 d/dy |
---|
| 6960 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
| 6961 | vel = rv(i,k,j) |
---|
| 6962 | cr = vel*dt/dy/mu |
---|
| 6963 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
| 6964 | |
---|
| 6965 | fqy( i, k, j ) = vel*flux3( field(i,k,j-2), field(i,k,j-1), & |
---|
| 6966 | field(i,k,j ), field(i,k,j+1), vel ) |
---|
| 6967 | |
---|
| 6968 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
| 6969 | |
---|
| 6970 | ENDDO |
---|
| 6971 | ENDDO |
---|
| 6972 | |
---|
| 6973 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
| 6974 | |
---|
| 6975 | DO k=kts,ktf |
---|
| 6976 | DO i = i_start, i_end |
---|
| 6977 | |
---|
| 6978 | dy = 2./(msftx(i,j)+msftx(i,j-1))/rdy ! ADT eqn 48 d/dy |
---|
| 6979 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
| 6980 | vel = rv(i,k,j) |
---|
| 6981 | cr = vel*dt/dy/mu |
---|
| 6982 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
| 6983 | |
---|
| 6984 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
---|
| 6985 | (field(i,k,j)+field(i,k,j-1)) |
---|
| 6986 | |
---|
| 6987 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
| 6988 | |
---|
| 6989 | ENDDO |
---|
| 6990 | ENDDO |
---|
| 6991 | |
---|
| 6992 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
| 6993 | |
---|
| 6994 | DO k=kts,ktf |
---|
| 6995 | DO i = i_start, i_end |
---|
| 6996 | |
---|
| 6997 | dy = 2./(msftx(i,j)+msftx(i,j-1))/rdy ! ADT eqn 48 d/dy |
---|
| 6998 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
| 6999 | vel = rv(i,k,j) |
---|
| 7000 | cr = vel*dt/dy/mu |
---|
| 7001 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
| 7002 | |
---|
| 7003 | fqy(i, k, j ) = 0.5*rv(i,k,j)* & |
---|
| 7004 | (field(i,k,j)+field(i,k,j-1)) |
---|
| 7005 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
| 7006 | |
---|
| 7007 | ENDDO |
---|
| 7008 | ENDDO |
---|
| 7009 | |
---|
| 7010 | ENDIF |
---|
| 7011 | |
---|
| 7012 | ENDDO j_loop_y_flux_3 |
---|
| 7013 | |
---|
| 7014 | ! next, x flux |
---|
| 7015 | |
---|
| 7016 | !-- these bounds are for periodic and sym conditions |
---|
| 7017 | |
---|
| 7018 | i_start = its-1 |
---|
| 7019 | i_end = MIN(ite,ide-1)+1 |
---|
| 7020 | i_start_f = i_start |
---|
| 7021 | i_end_f = i_end+1 |
---|
| 7022 | |
---|
| 7023 | j_start = jts-1 |
---|
| 7024 | j_end = MIN(jte,jde-1)+1 |
---|
| 7025 | |
---|
| 7026 | !-- modify loop bounds for open and specified b.c |
---|
| 7027 | |
---|
| 7028 | IF(degrade_ys) j_start = jts |
---|
| 7029 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
---|
| 7030 | |
---|
| 7031 | IF(degrade_xs) then |
---|
| 7032 | i_start = MAX(ids+1,its) |
---|
| 7033 | i_start_f = i_start+1 |
---|
| 7034 | ENDIF |
---|
| 7035 | |
---|
| 7036 | IF(degrade_xe) then |
---|
| 7037 | i_end = MIN(ide-2,ite) |
---|
| 7038 | i_end_f = ide-2 |
---|
| 7039 | ENDIF |
---|
| 7040 | |
---|
| 7041 | ! compute fluxes |
---|
| 7042 | |
---|
| 7043 | DO j = j_start, j_end |
---|
| 7044 | |
---|
| 7045 | ! 4th order flux |
---|
| 7046 | |
---|
| 7047 | DO k=kts,ktf |
---|
| 7048 | DO i = i_start_f, i_end_f |
---|
| 7049 | |
---|
| 7050 | dx = 2./(msfty(i,j)+msfty(i-1,j))/rdx ! ADT eqn 48 d/dx |
---|
| 7051 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
| 7052 | vel = ru(i,k,j) |
---|
| 7053 | cr = vel*dt/dx/mu |
---|
| 7054 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
| 7055 | |
---|
| 7056 | fqx( i,k,j ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
| 7057 | field(i ,k,j), field(i+1,k,j), vel ) |
---|
| 7058 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
| 7059 | |
---|
| 7060 | ENDDO |
---|
| 7061 | ENDDO |
---|
| 7062 | |
---|
| 7063 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
| 7064 | |
---|
| 7065 | IF( degrade_xs ) THEN |
---|
| 7066 | |
---|
| 7067 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
| 7068 | i = ids+1 |
---|
| 7069 | DO k=kts,ktf |
---|
| 7070 | |
---|
| 7071 | dx = 2./(msfty(i,j)+msfty(i-1,j))/rdx ! ADT eqn 48 d/dx |
---|
| 7072 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
| 7073 | vel = ru(i,k,j)/mu |
---|
| 7074 | cr = vel*dt/dx |
---|
| 7075 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
| 7076 | |
---|
| 7077 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
| 7078 | *(field(i,k,j)+field(i-1,k,j)) |
---|
| 7079 | |
---|
| 7080 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
| 7081 | |
---|
| 7082 | ENDDO |
---|
| 7083 | ENDIF |
---|
| 7084 | ENDIF |
---|
| 7085 | |
---|
| 7086 | IF( degrade_xe ) THEN |
---|
| 7087 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
| 7088 | i = ide-1 |
---|
| 7089 | DO k=kts,ktf |
---|
| 7090 | dx = 2./(msfty(i,j)+msfty(i-1,j))/rdx ! ADT eqn 48 d/dx |
---|
| 7091 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
| 7092 | vel = ru(i,k,j) |
---|
| 7093 | cr = vel*dt/dx/mu |
---|
| 7094 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
| 7095 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
| 7096 | *(field(i,k,j)+field(i-1,k,j)) |
---|
| 7097 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
| 7098 | |
---|
| 7099 | ENDDO |
---|
| 7100 | ENDIF |
---|
| 7101 | ENDIF |
---|
| 7102 | |
---|
| 7103 | ENDDO ! enddo for outer J loop |
---|
| 7104 | |
---|
| 7105 | !--- end of 3rd order horizontal flux calculation |
---|
| 7106 | |
---|
| 7107 | |
---|
| 7108 | ELSE IF( horz_order == 2 ) THEN |
---|
| 7109 | |
---|
| 7110 | IF( config_flags%periodic_x .or. & |
---|
| 7111 | config_flags%symmetric_xs .or. & |
---|
| 7112 | (its > ids) ) degrade_xs = .false. |
---|
| 7113 | IF( config_flags%periodic_x .or. & |
---|
| 7114 | config_flags%symmetric_xe .or. & |
---|
| 7115 | (ite < ide-1) ) degrade_xe = .false. |
---|
| 7116 | IF( config_flags%periodic_y .or. & |
---|
| 7117 | config_flags%symmetric_ys .or. & |
---|
| 7118 | (jts > jds) ) degrade_ys = .false. |
---|
| 7119 | IF( config_flags%periodic_y .or. & |
---|
| 7120 | config_flags%symmetric_ye .or. & |
---|
| 7121 | (jte < jde-1) ) degrade_ye = .false. |
---|
| 7122 | |
---|
| 7123 | !-- y flux compute; these bounds are for periodic and sym b.c. |
---|
| 7124 | |
---|
| 7125 | ktf=MIN(kte,kde-1) |
---|
| 7126 | i_start = its-1 |
---|
| 7127 | i_end = MIN(ite,ide-1)+1 |
---|
| 7128 | j_start = jts-1 |
---|
| 7129 | j_end = MIN(jte,jde-1)+1 |
---|
| 7130 | |
---|
| 7131 | !-- modify loop bounds if open or specified |
---|
| 7132 | |
---|
| 7133 | IF(degrade_xs) i_start = its |
---|
| 7134 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
| 7135 | IF(degrade_ys) j_start = MAX(jts,jds+1) |
---|
| 7136 | IF(degrade_ye) j_end = MIN(jte,jde-2) |
---|
| 7137 | |
---|
| 7138 | ! compute fluxes, 2nd order, y flux |
---|
| 7139 | |
---|
| 7140 | DO j = j_start, j_end+1 |
---|
| 7141 | DO k=kts,ktf |
---|
| 7142 | DO i = i_start, i_end |
---|
| 7143 | dy = 2./(msftx(i,j)+msftx(i,j-1))/rdy ! ADT eqn 48 d/dy |
---|
| 7144 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
| 7145 | vel = rv(i,k,j) |
---|
| 7146 | cr = vel*dt/dy/mu |
---|
| 7147 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
| 7148 | |
---|
| 7149 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
---|
| 7150 | (field(i,k,j)+field(i,k,j-1)) |
---|
| 7151 | |
---|
| 7152 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
| 7153 | ENDDO |
---|
| 7154 | ENDDO |
---|
| 7155 | ENDDO |
---|
| 7156 | |
---|
| 7157 | ! next, x flux |
---|
| 7158 | |
---|
| 7159 | DO j = j_start, j_end |
---|
| 7160 | DO k=kts,ktf |
---|
| 7161 | DO i = i_start, i_end+1 |
---|
| 7162 | dx = 2./(msfty(i,j)+msfty(i-1,j))/rdx ! ADT eqn 48 d/dx |
---|
| 7163 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
| 7164 | vel = ru(i,k,j) |
---|
| 7165 | cr = vel*dt/dx/mu |
---|
| 7166 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
| 7167 | fqx( i,k,j ) = 0.5*ru(i,k,j)* & |
---|
| 7168 | (field(i,k,j)+field(i-1,k,j)) |
---|
| 7169 | |
---|
| 7170 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
| 7171 | ENDDO |
---|
| 7172 | ENDDO |
---|
| 7173 | ENDDO |
---|
| 7174 | |
---|
| 7175 | !--- end of 2nd order horizontal flux calculation |
---|
| 7176 | |
---|
| 7177 | ELSE |
---|
| 7178 | |
---|
| 7179 | WRITE ( wrf_err_message , * ) 'module_advect: advect_scalar_pd, h_order not known ',horz_order |
---|
| 7180 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
| 7181 | |
---|
| 7182 | ENDIF horizontal_order_test |
---|
| 7183 | |
---|
| 7184 | ! pick up the rest of the horizontal radiation boundary conditions. |
---|
| 7185 | ! (these are the computations that don't require 'cb'. |
---|
| 7186 | ! first, set to index ranges |
---|
| 7187 | |
---|
| 7188 | i_start = its |
---|
| 7189 | i_end = MIN(ite,ide-1) |
---|
| 7190 | j_start = jts |
---|
| 7191 | j_end = MIN(jte,jde-1) |
---|
| 7192 | |
---|
| 7193 | ! compute x (u) conditions for v, w, or scalar |
---|
| 7194 | |
---|
| 7195 | IF( (config_flags%open_xs) .and. (its == ids) ) THEN |
---|
| 7196 | |
---|
| 7197 | DO j = j_start, j_end |
---|
| 7198 | DO k = kts, ktf |
---|
| 7199 | ub = MIN( 0.5*(ru(its,k,j)+ru(its+1,k,j)), 0. ) |
---|
| 7200 | tendency(its,k,j) = tendency(its,k,j) & |
---|
| 7201 | - rdx*( & |
---|
| 7202 | ub*( field_old(its+1,k,j) & |
---|
| 7203 | - field_old(its ,k,j) ) + & |
---|
| 7204 | field(its,k,j)*(ru(its+1,k,j)-ru(its,k,j)) & |
---|
| 7205 | ) |
---|
| 7206 | ENDDO |
---|
| 7207 | ENDDO |
---|
| 7208 | |
---|
| 7209 | ENDIF |
---|
| 7210 | |
---|
| 7211 | IF( (config_flags%open_xe) .and. (ite == ide) ) THEN |
---|
| 7212 | |
---|
| 7213 | DO j = j_start, j_end |
---|
| 7214 | DO k = kts, ktf |
---|
| 7215 | ub = MAX( 0.5*(ru(ite-1,k,j)+ru(ite,k,j)), 0. ) |
---|
| 7216 | tendency(i_end,k,j) = tendency(i_end,k,j) & |
---|
| 7217 | - rdx*( & |
---|
| 7218 | ub*( field_old(i_end ,k,j) & |
---|
| 7219 | - field_old(i_end-1,k,j) ) + & |
---|
| 7220 | field(i_end,k,j)*(ru(ite,k,j)-ru(ite-1,k,j)) & |
---|
| 7221 | ) |
---|
| 7222 | ENDDO |
---|
| 7223 | ENDDO |
---|
| 7224 | |
---|
| 7225 | ENDIF |
---|
| 7226 | |
---|
| 7227 | IF( (config_flags%open_ys) .and. (jts == jds) ) THEN |
---|
| 7228 | |
---|
| 7229 | DO i = i_start, i_end |
---|
| 7230 | DO k = kts, ktf |
---|
| 7231 | vb = MIN( 0.5*(rv(i,k,jts)+rv(i,k,jts+1)), 0. ) |
---|
| 7232 | tendency(i,k,jts) = tendency(i,k,jts) & |
---|
| 7233 | - rdy*( & |
---|
| 7234 | vb*( field_old(i,k,jts+1) & |
---|
| 7235 | - field_old(i,k,jts ) ) + & |
---|
| 7236 | field(i,k,jts)*(rv(i,k,jts+1)-rv(i,k,jts)) & |
---|
| 7237 | ) |
---|
| 7238 | ENDDO |
---|
| 7239 | ENDDO |
---|
| 7240 | |
---|
| 7241 | ENDIF |
---|
| 7242 | |
---|
| 7243 | IF( (config_flags%open_ye) .and. (jte == jde)) THEN |
---|
| 7244 | |
---|
| 7245 | DO i = i_start, i_end |
---|
| 7246 | DO k = kts, ktf |
---|
| 7247 | vb = MAX( 0.5*(rv(i,k,jte-1)+rv(i,k,jte)), 0. ) |
---|
| 7248 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
---|
| 7249 | - rdy*( & |
---|
| 7250 | vb*( field_old(i,k,j_end ) & |
---|
| 7251 | - field_old(i,k,j_end-1) ) + & |
---|
| 7252 | field(i,k,j_end)*(rv(i,k,jte)-rv(i,k,jte-1)) & |
---|
| 7253 | ) |
---|
| 7254 | ENDDO |
---|
| 7255 | ENDDO |
---|
| 7256 | |
---|
| 7257 | ENDIF |
---|
| 7258 | |
---|
| 7259 | IF( (config_flags%polar) .and. (jts == jds) ) THEN |
---|
| 7260 | |
---|
| 7261 | ! Assuming rv(i,k,jds) = 0. |
---|
| 7262 | DO i = i_start, i_end |
---|
| 7263 | DO k = kts, ktf |
---|
| 7264 | vb = MIN( 0.5*rv(i,k,jts+1), 0. ) |
---|
| 7265 | tendency(i,k,jts) = tendency(i,k,jts) & |
---|
| 7266 | - rdy*( & |
---|
| 7267 | vb*( field_old(i,k,jts+1) & |
---|
| 7268 | - field_old(i,k,jts ) ) + & |
---|
| 7269 | field(i,k,jts)*rv(i,k,jts+1) & |
---|
| 7270 | ) |
---|
| 7271 | ENDDO |
---|
| 7272 | ENDDO |
---|
| 7273 | |
---|
| 7274 | ENDIF |
---|
| 7275 | |
---|
| 7276 | IF( (config_flags%polar) .and. (jte == jde)) THEN |
---|
| 7277 | |
---|
| 7278 | ! Assuming rv(i,k,jde) = 0. |
---|
| 7279 | DO i = i_start, i_end |
---|
| 7280 | DO k = kts, ktf |
---|
| 7281 | vb = MAX( 0.5*rv(i,k,jte-1), 0. ) |
---|
| 7282 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
---|
| 7283 | - rdy*( & |
---|
| 7284 | vb*( field_old(i,k,j_end ) & |
---|
| 7285 | - field_old(i,k,j_end-1) ) + & |
---|
| 7286 | field(i,k,j_end)*(-rv(i,k,jte-1)) & |
---|
| 7287 | ) |
---|
| 7288 | ENDDO |
---|
| 7289 | ENDDO |
---|
| 7290 | |
---|
| 7291 | ENDIF |
---|
| 7292 | |
---|
| 7293 | !-------------------- vertical advection |
---|
| 7294 | |
---|
| 7295 | !-- loop bounds for periodic or sym conditions |
---|
| 7296 | |
---|
| 7297 | i_start = its-1 |
---|
| 7298 | i_end = MIN(ite,ide-1)+1 |
---|
| 7299 | j_start = jts-1 |
---|
| 7300 | j_end = MIN(jte,jde-1)+1 |
---|
| 7301 | |
---|
| 7302 | !-- loop bounds for open or specified conditions |
---|
| 7303 | |
---|
| 7304 | IF(degrade_xs) i_start = its |
---|
| 7305 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
| 7306 | IF(degrade_ys) j_start = jts |
---|
| 7307 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
---|
| 7308 | |
---|
| 7309 | vert_order_test : IF (vert_order == 6) THEN |
---|
| 7310 | |
---|
| 7311 | DO j = j_start, j_end |
---|
| 7312 | |
---|
| 7313 | DO i = i_start, i_end |
---|
| 7314 | fqz(i,1,j) = 0. |
---|
| 7315 | fqzl(i,1,j) = 0. |
---|
| 7316 | fqz(i,kde,j) = 0. |
---|
| 7317 | fqzl(i,kde,j) = 0. |
---|
| 7318 | ENDDO |
---|
| 7319 | |
---|
| 7320 | DO k=kts+3,ktf-2 |
---|
| 7321 | DO i = i_start, i_end |
---|
| 7322 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
| 7323 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
| 7324 | vel = rom(i,k,j) |
---|
| 7325 | cr = vel*dt/dz/mu |
---|
| 7326 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
| 7327 | |
---|
| 7328 | fqz(i,k,j) = vel*flux6( field(i,k-3,j), field(i,k-2,j), field(i,k-1,j), & |
---|
| 7329 | field(i,k ,j), field(i,k+1,j), field(i,k+2,j), -vel ) |
---|
| 7330 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
| 7331 | ENDDO |
---|
| 7332 | ENDDO |
---|
| 7333 | |
---|
| 7334 | DO i = i_start, i_end |
---|
| 7335 | |
---|
| 7336 | k=kts+1 |
---|
| 7337 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
| 7338 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
| 7339 | vel = rom(i,k,j) |
---|
| 7340 | cr = vel*dt/dz/mu |
---|
| 7341 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
| 7342 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 7343 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
| 7344 | |
---|
| 7345 | k=kts+2 |
---|
| 7346 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
| 7347 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
| 7348 | vel = rom(i,k,j) |
---|
| 7349 | cr = vel*dt/dz/mu |
---|
| 7350 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
| 7351 | |
---|
| 7352 | fqz(i,k,j) = vel*flux4( & |
---|
| 7353 | field(i,k-2,j), field(i,k-1,j), & |
---|
| 7354 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
| 7355 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
| 7356 | |
---|
| 7357 | k=ktf-1 |
---|
| 7358 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
| 7359 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
| 7360 | vel = rom(i,k,j) |
---|
| 7361 | cr = vel*dt/dz/mu |
---|
| 7362 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
| 7363 | |
---|
| 7364 | fqz(i,k,j) = vel*flux4( & |
---|
| 7365 | field(i,k-2,j), field(i,k-1,j), & |
---|
| 7366 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
| 7367 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
| 7368 | |
---|
| 7369 | k=ktf |
---|
| 7370 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
| 7371 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
| 7372 | vel = rom(i,k,j) |
---|
| 7373 | cr = vel*dt/dz/mu |
---|
| 7374 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
| 7375 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 7376 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
| 7377 | |
---|
| 7378 | ENDDO |
---|
| 7379 | |
---|
| 7380 | ENDDO |
---|
| 7381 | |
---|
| 7382 | ELSE IF (vert_order == 5) THEN |
---|
| 7383 | |
---|
| 7384 | DO j = j_start, j_end |
---|
| 7385 | |
---|
| 7386 | DO i = i_start, i_end |
---|
| 7387 | fqz(i,1,j) = 0. |
---|
| 7388 | fqzl(i,1,j) = 0. |
---|
| 7389 | fqz(i,kde,j) = 0. |
---|
| 7390 | fqzl(i,kde,j) = 0. |
---|
| 7391 | ENDDO |
---|
| 7392 | |
---|
| 7393 | DO k=kts+3,ktf-2 |
---|
| 7394 | DO i = i_start, i_end |
---|
| 7395 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
| 7396 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
| 7397 | vel = rom(i,k,j) |
---|
| 7398 | cr = vel*dt/dz/mu |
---|
| 7399 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
| 7400 | |
---|
| 7401 | fqz(i,k,j) = vel*flux5( field(i,k-3,j), field(i,k-2,j), field(i,k-1,j), & |
---|
| 7402 | field(i,k ,j), field(i,k+1,j), field(i,k+2,j), -vel ) |
---|
| 7403 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
| 7404 | ENDDO |
---|
| 7405 | ENDDO |
---|
| 7406 | |
---|
| 7407 | DO i = i_start, i_end |
---|
| 7408 | |
---|
| 7409 | k=kts+1 |
---|
| 7410 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
| 7411 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
| 7412 | vel = rom(i,k,j) |
---|
| 7413 | cr = vel*dt/dz/mu |
---|
| 7414 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
| 7415 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 7416 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
| 7417 | |
---|
| 7418 | k=kts+2 |
---|
| 7419 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
| 7420 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
| 7421 | vel = rom(i,k,j) |
---|
| 7422 | cr = vel*dt/dz/mu |
---|
| 7423 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
| 7424 | |
---|
| 7425 | fqz(i,k,j) = vel*flux3( & |
---|
| 7426 | field(i,k-2,j), field(i,k-1,j), & |
---|
| 7427 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
| 7428 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
| 7429 | |
---|
| 7430 | k=ktf-1 |
---|
| 7431 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
| 7432 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
| 7433 | vel = rom(i,k,j) |
---|
| 7434 | cr = vel*dt/dz/mu |
---|
| 7435 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
| 7436 | |
---|
| 7437 | fqz(i,k,j) = vel*flux3( & |
---|
| 7438 | field(i,k-2,j), field(i,k-1,j), & |
---|
| 7439 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
| 7440 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
| 7441 | |
---|
| 7442 | k=ktf |
---|
| 7443 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
| 7444 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
| 7445 | vel = rom(i,k,j) |
---|
| 7446 | cr = vel*dt/dz/mu |
---|
| 7447 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
| 7448 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 7449 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
| 7450 | |
---|
| 7451 | ENDDO |
---|
| 7452 | |
---|
| 7453 | ENDDO |
---|
| 7454 | |
---|
| 7455 | ELSE IF (vert_order == 4) THEN |
---|
| 7456 | |
---|
| 7457 | DO j = j_start, j_end |
---|
| 7458 | |
---|
| 7459 | DO i = i_start, i_end |
---|
| 7460 | fqz(i,1,j) = 0. |
---|
| 7461 | fqzl(i,1,j) = 0. |
---|
| 7462 | fqz(i,kde,j) = 0. |
---|
| 7463 | fqzl(i,kde,j) = 0. |
---|
| 7464 | ENDDO |
---|
| 7465 | |
---|
| 7466 | DO k=kts+2,ktf-1 |
---|
| 7467 | DO i = i_start, i_end |
---|
| 7468 | |
---|
| 7469 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
| 7470 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
| 7471 | vel = rom(i,k,j) |
---|
| 7472 | cr = vel*dt/dz/mu |
---|
| 7473 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
| 7474 | |
---|
| 7475 | fqz(i,k,j) = vel*flux4( & |
---|
| 7476 | field(i,k-2,j), field(i,k-1,j), & |
---|
| 7477 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
| 7478 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
| 7479 | ENDDO |
---|
| 7480 | ENDDO |
---|
| 7481 | |
---|
| 7482 | DO i = i_start, i_end |
---|
| 7483 | |
---|
| 7484 | k=kts+1 |
---|
| 7485 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
| 7486 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
| 7487 | vel = rom(i,k,j) |
---|
| 7488 | cr = vel*dt/dz/mu |
---|
| 7489 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
| 7490 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 7491 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
| 7492 | |
---|
| 7493 | k=ktf |
---|
| 7494 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
| 7495 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
| 7496 | vel = rom(i,k,j) |
---|
| 7497 | cr = vel*dt/dz/mu |
---|
| 7498 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
| 7499 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 7500 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
| 7501 | |
---|
| 7502 | ENDDO |
---|
| 7503 | |
---|
| 7504 | ENDDO |
---|
| 7505 | |
---|
| 7506 | ELSE IF (vert_order == 3) THEN |
---|
| 7507 | |
---|
| 7508 | DO j = j_start, j_end |
---|
| 7509 | |
---|
| 7510 | DO i = i_start, i_end |
---|
| 7511 | fqz(i,1,j) = 0. |
---|
| 7512 | fqzl(i,1,j) = 0. |
---|
| 7513 | fqz(i,kde,j) = 0. |
---|
| 7514 | fqzl(i,kde,j) = 0. |
---|
| 7515 | ENDDO |
---|
| 7516 | |
---|
| 7517 | DO k=kts+2,ktf-1 |
---|
| 7518 | DO i = i_start, i_end |
---|
| 7519 | |
---|
| 7520 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
| 7521 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
| 7522 | vel = rom(i,k,j) |
---|
| 7523 | cr = vel*dt/dz/mu |
---|
| 7524 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
| 7525 | |
---|
| 7526 | fqz(i,k,j) = vel*flux3( & |
---|
| 7527 | field(i,k-2,j), field(i,k-1,j), & |
---|
| 7528 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
| 7529 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
| 7530 | ENDDO |
---|
| 7531 | ENDDO |
---|
| 7532 | |
---|
| 7533 | DO i = i_start, i_end |
---|
| 7534 | |
---|
| 7535 | k=kts+1 |
---|
| 7536 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
| 7537 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
| 7538 | vel = rom(i,k,j) |
---|
| 7539 | cr = vel*dt/dz/mu |
---|
| 7540 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
| 7541 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 7542 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
| 7543 | |
---|
| 7544 | k=ktf |
---|
| 7545 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
| 7546 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
| 7547 | vel = rom(i,k,j) |
---|
| 7548 | cr = vel*dt/dz/mu |
---|
| 7549 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
| 7550 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 7551 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
| 7552 | |
---|
| 7553 | ENDDO |
---|
| 7554 | |
---|
| 7555 | ENDDO |
---|
| 7556 | |
---|
| 7557 | ELSE IF (vert_order == 2) THEN |
---|
| 7558 | |
---|
| 7559 | DO j = j_start, j_end |
---|
| 7560 | |
---|
| 7561 | DO i = i_start, i_end |
---|
| 7562 | fqz(i,1,j) = 0. |
---|
| 7563 | fqzl(i,1,j) = 0. |
---|
| 7564 | fqz(i,kde,j) = 0. |
---|
| 7565 | fqzl(i,kde,j) = 0. |
---|
| 7566 | ENDDO |
---|
| 7567 | |
---|
| 7568 | DO k=kts+1,ktf |
---|
| 7569 | DO i = i_start, i_end |
---|
| 7570 | |
---|
| 7571 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
| 7572 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
| 7573 | vel = rom(i,k,j) |
---|
| 7574 | cr = vel*dt/dz/mu |
---|
| 7575 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
| 7576 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
| 7577 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
| 7578 | |
---|
| 7579 | ENDDO |
---|
| 7580 | ENDDO |
---|
| 7581 | |
---|
| 7582 | ENDDO |
---|
| 7583 | |
---|
| 7584 | ELSE |
---|
| 7585 | |
---|
| 7586 | WRITE (wrf_err_message,*) ' advect_scalar_pd, v_order not known ',vert_order |
---|
| 7587 | CALL wrf_error_fatal ( wrf_err_message ) |
---|
| 7588 | |
---|
| 7589 | ENDIF vert_order_test |
---|
| 7590 | |
---|
| 7591 | IF (pd_limit) THEN |
---|
| 7592 | |
---|
| 7593 | ! positive definite filter |
---|
| 7594 | |
---|
| 7595 | i_start = its-1 |
---|
| 7596 | i_end = MIN(ite,ide-1)+1 |
---|
| 7597 | j_start = jts-1 |
---|
| 7598 | j_end = MIN(jte,jde-1)+1 |
---|
| 7599 | |
---|
| 7600 | !-- loop bounds for open or specified conditions |
---|
| 7601 | |
---|
| 7602 | IF(degrade_xs) i_start = its |
---|
| 7603 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
| 7604 | IF(degrade_ys) j_start = jts |
---|
| 7605 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
---|
| 7606 | |
---|
| 7607 | IF(config_flags%specified .or. config_flags%nested) THEN |
---|
| 7608 | IF (degrade_xs) i_start = MAX(its,ids+1) |
---|
| 7609 | IF (degrade_xe) i_end = MIN(ite,ide-2) |
---|
| 7610 | IF (degrade_ys) j_start = MAX(jts,jds+1) |
---|
| 7611 | IF (degrade_ye) j_end = MIN(jte,jde-2) |
---|
| 7612 | END IF |
---|
| 7613 | |
---|
| 7614 | IF(config_flags%open_xs) THEN |
---|
| 7615 | IF (degrade_xs) i_start = MAX(its,ids+1) |
---|
| 7616 | END IF |
---|
| 7617 | IF(config_flags%open_xe) THEN |
---|
| 7618 | IF (degrade_xe) i_end = MIN(ite,ide-2) |
---|
| 7619 | END IF |
---|
| 7620 | IF(config_flags%open_ys) THEN |
---|
| 7621 | IF (degrade_ys) j_start = MAX(jts,jds+1) |
---|
| 7622 | END IF |
---|
| 7623 | IF(config_flags%open_ye) THEN |
---|
| 7624 | IF (degrade_ye) j_end = MIN(jte,jde-2) |
---|
| 7625 | END IF |
---|
| 7626 | ! ADT note: |
---|
| 7627 | ! We don't want to change j_start and j_end |
---|
| 7628 | ! for polar BC's since we want to calculate |
---|
| 7629 | ! fluxes for directions other than y at the |
---|
| 7630 | ! edge |
---|
| 7631 | |
---|
| 7632 | !-- here is the limiter... |
---|
| 7633 | |
---|
| 7634 | DO j=j_start, j_end |
---|
| 7635 | DO k=kts, ktf |
---|
| 7636 | DO i=i_start, i_end |
---|
| 7637 | |
---|
| 7638 | ph_low = (mub(i,j)+mu_old(i,j))*field_old(i,k,j) & |
---|
| 7639 | - dt*( msftx(i,j)*msfty(i,j)*( & |
---|
| 7640 | rdx*(fqxl(i+1,k,j)-fqxl(i,k,j)) + & |
---|
| 7641 | rdy*(fqyl(i,k,j+1)-fqyl(i,k,j)) ) & |
---|
| 7642 | +msfty(i,j)*rdzw(k)*(fqzl(i,k+1,j)-fqzl(i,k,j)) ) |
---|
| 7643 | |
---|
| 7644 | flux_out = dt*( (msftx(i,j)*msfty(i,j))*( & |
---|
| 7645 | rdx*( max(0.,fqx (i+1,k,j)) & |
---|
| 7646 | -min(0.,fqx (i ,k,j)) ) & |
---|
| 7647 | +rdy*( max(0.,fqy (i,k,j+1)) & |
---|
| 7648 | -min(0.,fqy (i,k,j )) ) ) & |
---|
| 7649 | +msfty(i,j)*rdzw(k)*( min(0.,fqz (i,k+1,j)) & |
---|
| 7650 | -max(0.,fqz (i,k ,j)) ) ) |
---|
| 7651 | |
---|
| 7652 | IF( flux_out .gt. ph_low ) THEN |
---|
| 7653 | |
---|
| 7654 | scale = max(0.,ph_low/(flux_out+eps)) |
---|
| 7655 | IF( fqx (i+1,k,j) .gt. 0.) fqx(i+1,k,j) = scale*fqx(i+1,k,j) |
---|
| 7656 | IF( fqx (i ,k,j) .lt. 0.) fqx(i ,k,j) = scale*fqx(i ,k,j) |
---|
| 7657 | IF( fqy (i,k,j+1) .gt. 0.) fqy(i,k,j+1) = scale*fqy(i,k,j+1) |
---|
| 7658 | IF( fqy (i,k,j ) .lt. 0.) fqy(i,k,j ) = scale*fqy(i,k,j ) |
---|
| 7659 | ! note: z flux is opposite sign in mass coordinate because |
---|
| 7660 | ! vertical coordinate decreases with increasing k |
---|
| 7661 | IF( fqz (i,k+1,j) .lt. 0.) fqz(i,k+1,j) = scale*fqz(i,k+1,j) |
---|
| 7662 | IF( fqz (i,k ,j) .gt. 0.) fqz(i,k ,j) = scale*fqz(i,k ,j) |
---|
| 7663 | |
---|
| 7664 | END IF |
---|
| 7665 | |
---|
| 7666 | ENDDO |
---|
| 7667 | ENDDO |
---|
| 7668 | ENDDO |
---|
| 7669 | |
---|
| 7670 | END IF |
---|
| 7671 | |
---|
| 7672 | ! add in the pd-limited flux divergence |
---|
| 7673 | |
---|
| 7674 | i_start = its |
---|
| 7675 | i_end = MIN(ite,ide-1) |
---|
| 7676 | j_start = jts |
---|
| 7677 | j_end = MIN(jte,jde-1) |
---|
| 7678 | |
---|
| 7679 | DO j = j_start, j_end |
---|
| 7680 | DO k = kts, ktf |
---|
| 7681 | DO i = i_start, i_end |
---|
| 7682 | |
---|
| 7683 | tendency (i,k,j) = tendency(i,k,j) & |
---|
| 7684 | -rdzw(k)*( fqz (i,k+1,j)-fqz (i,k,j) & |
---|
| 7685 | +fqzl(i,k+1,j)-fqzl(i,k,j)) |
---|
| 7686 | |
---|
| 7687 | ENDDO |
---|
| 7688 | ENDDO |
---|
| 7689 | ENDDO |
---|
| 7690 | |
---|
| 7691 | ! x flux divergence |
---|
| 7692 | ! |
---|
| 7693 | IF(degrade_xs) i_start = i_start + 1 |
---|
| 7694 | IF(degrade_xe) i_end = i_end - 1 |
---|
| 7695 | |
---|
| 7696 | DO j = j_start, j_end |
---|
| 7697 | DO k = kts, ktf |
---|
| 7698 | DO i = i_start, i_end |
---|
| 7699 | |
---|
| 7700 | ! Un-"canceled" map scale factor, ADT Eq. 48 |
---|
| 7701 | tendency (i,k,j) = tendency(i,k,j) & |
---|
| 7702 | - msftx(i,j)*( rdx*( fqx (i+1,k,j)-fqx (i,k,j) & |
---|
| 7703 | +fqxl(i+1,k,j)-fqxl(i,k,j)) ) |
---|
| 7704 | |
---|
| 7705 | ENDDO |
---|
| 7706 | ENDDO |
---|
| 7707 | ENDDO |
---|
| 7708 | |
---|
| 7709 | ! y flux divergence |
---|
| 7710 | ! |
---|
| 7711 | i_start = its |
---|
| 7712 | i_end = MIN(ite,ide-1) |
---|
| 7713 | IF(degrade_ys) j_start = j_start + 1 |
---|
| 7714 | IF(degrade_ye) j_end = j_end - 1 |
---|
| 7715 | |
---|
| 7716 | DO j = j_start, j_end |
---|
| 7717 | DO k = kts, ktf |
---|
| 7718 | DO i = i_start, i_end |
---|
| 7719 | |
---|
| 7720 | ! Un-"canceled" map scale factor, ADT Eq. 48 |
---|
| 7721 | ! It is correct to use msftx (and not msfty), per W. Skamarock, 20080606 |
---|
| 7722 | tendency (i,k,j) = tendency(i,k,j) & |
---|
| 7723 | - msftx(i,j)*( rdy*( fqy (i,k,j+1)-fqy (i,k,j) & |
---|
| 7724 | +fqyl(i,k,j+1)-fqyl(i,k,j)) ) |
---|
| 7725 | |
---|
| 7726 | ENDDO |
---|
| 7727 | ENDDO |
---|
| 7728 | ENDDO |
---|
| 7729 | |
---|
| 7730 | END SUBROUTINE advect_scalar_pd |
---|
| 7731 | |
---|
| 7732 | !---------------------------------------------------------------- |
---|
| 7733 | |
---|
| 7734 | END MODULE module_advect_em |
---|
| 7735 | |
---|