| 1 | !WRF:MODEL_LAYER:PHYSICS |
|---|
| 2 | ! |
|---|
| 3 | MODULE module_sf_sfclay |
|---|
| 4 | |
|---|
| 5 | REAL , PARAMETER :: VCONVC=1. |
|---|
| 6 | REAL , PARAMETER :: CZO=0.0185 |
|---|
| 7 | REAL , PARAMETER :: OZO=1.59E-5 |
|---|
| 8 | |
|---|
| 9 | REAL, DIMENSION(0:1000 ),SAVE :: PSIMTB,PSIHTB |
|---|
| 10 | |
|---|
| 11 | CONTAINS |
|---|
| 12 | |
|---|
| 13 | !------------------------------------------------------------------- |
|---|
| 14 | SUBROUTINE SFCLAY(U3D,V3D,T3D,QV3D,P3D,dz8w, & |
|---|
| 15 | CP,G,ROVCP,R,XLV,PSFC,CHS,CHS2,CQS2,CPM, & |
|---|
| 16 | ZNT,UST,PBLH,MAVAIL,ZOL,MOL,REGIME,PSIM,PSIH, & |
|---|
| 17 | XLAND,HFX,QFX,LH,TSK,FLHC,FLQC,QGH,QSFC,RMOL, & |
|---|
| 18 | uratx,vratx,tratx, & |
|---|
| 19 | U10,V10,TH2,T2,Q2, & |
|---|
| 20 | GZ1OZ0,WSPD,BR,ISFFLX,DX, & |
|---|
| 21 | SVP1,SVP2,SVP3,SVPT0,EP1,EP2, & |
|---|
| 22 | KARMAN,EOMEG,STBOLT, & |
|---|
| 23 | ids,ide, jds,jde, kds,kde, & |
|---|
| 24 | ims,ime, jms,jme, kms,kme, & |
|---|
| 25 | its,ite, jts,jte, kts,kte ) |
|---|
| 26 | !------------------------------------------------------------------- |
|---|
| 27 | IMPLICIT NONE |
|---|
| 28 | !------------------------------------------------------------------- |
|---|
| 29 | !-- U3D 3D u-velocity interpolated to theta points (m/s) |
|---|
| 30 | !-- V3D 3D v-velocity interpolated to theta points (m/s) |
|---|
| 31 | !-- T3D temperature (K) |
|---|
| 32 | !-- QV3D 3D water vapor mixing ratio (Kg/Kg) |
|---|
| 33 | !-- P3D 3D pressure (Pa) |
|---|
| 34 | !-- dz8w dz between full levels (m) |
|---|
| 35 | !-- CP heat capacity at constant pressure for dry air (J/kg/K) |
|---|
| 36 | !-- G acceleration due to gravity (m/s^2) |
|---|
| 37 | !-- ROVCP R/CP |
|---|
| 38 | !-- R gas constant for dry air (J/kg/K) |
|---|
| 39 | !-- XLV latent heat of vaporization for water (J/kg) |
|---|
| 40 | !-- PSFC surface pressure (Pa) |
|---|
| 41 | !-- ZNT roughness length (m) |
|---|
| 42 | !-- UST u* in similarity theory (m/s) |
|---|
| 43 | !-- PBLH PBL height from previous time (m) |
|---|
| 44 | !-- MAVAIL surface moisture availability (between 0 and 1) |
|---|
| 45 | !-- ZOL z/L height over Monin-Obukhov length |
|---|
| 46 | !-- MOL T* (similarity theory) (K) |
|---|
| 47 | !-- REGIME flag indicating PBL regime (stable, unstable, etc.) |
|---|
| 48 | !-- PSIM similarity stability function for momentum |
|---|
| 49 | !-- PSIH similarity stability function for heat |
|---|
| 50 | !-- XLAND land mask (1 for land, 2 for water) |
|---|
| 51 | !-- HFX upward heat flux at the surface (W/m^2) |
|---|
| 52 | !-- QFX upward moisture flux at the surface (kg/m^2/s) |
|---|
| 53 | !-- LH net upward latent heat flux at surface (W/m^2) |
|---|
| 54 | !-- TSK surface temperature (K) |
|---|
| 55 | !-- FLHC exchange coefficient for heat (m/s) |
|---|
| 56 | !-- FLQC exchange coefficient for moisture (m/s) |
|---|
| 57 | !-- QGH lowest-level saturated mixing ratio |
|---|
| 58 | !-- uratx ratio of surface U to U10 |
|---|
| 59 | !-- vratx ratio of surface V to V10 |
|---|
| 60 | !-- tratx ratio of surface T to TH2 |
|---|
| 61 | !-- U10 diagnostic 10m u wind |
|---|
| 62 | !-- V10 diagnostic 10m v wind |
|---|
| 63 | !-- TH2 diagnostic 2m theta (K) |
|---|
| 64 | !-- T2 diagnostic 2m temperature (K) |
|---|
| 65 | !-- Q2 diagnostic 2m mixing ratio (kg/kg) |
|---|
| 66 | !-- GZ1OZ0 log(z/z0) where z0 is roughness length |
|---|
| 67 | !-- WSPD wind speed at lowest model level (m/s) |
|---|
| 68 | !-- BR bulk Richardson number in surface layer |
|---|
| 69 | !-- ISFFLX isfflx=1 for surface heat and moisture fluxes |
|---|
| 70 | !-- DX horizontal grid size (m) |
|---|
| 71 | !-- SVP1 constant for saturation vapor pressure (kPa) |
|---|
| 72 | !-- SVP2 constant for saturation vapor pressure (dimensionless) |
|---|
| 73 | !-- SVP3 constant for saturation vapor pressure (K) |
|---|
| 74 | !-- SVPT0 constant for saturation vapor pressure (K) |
|---|
| 75 | !-- EP1 constant for virtual temperature (R_v/R_d - 1) (dimensionless) |
|---|
| 76 | !-- EP2 constant for specific humidity calculation |
|---|
| 77 | ! (R_d/R_v) (dimensionless) |
|---|
| 78 | !-- KARMAN Von Karman constant |
|---|
| 79 | !-- EOMEG angular velocity of earth's rotation (rad/s) |
|---|
| 80 | !-- STBOLT Stefan-Boltzmann constant (W/m^2/K^4) |
|---|
| 81 | !-- ids start index for i in domain |
|---|
| 82 | !-- ide end index for i in domain |
|---|
| 83 | !-- jds start index for j in domain |
|---|
| 84 | !-- jde end index for j in domain |
|---|
| 85 | !-- kds start index for k in domain |
|---|
| 86 | !-- kde end index for k in domain |
|---|
| 87 | !-- ims start index for i in memory |
|---|
| 88 | !-- ime end index for i in memory |
|---|
| 89 | !-- jms start index for j in memory |
|---|
| 90 | !-- jme end index for j in memory |
|---|
| 91 | !-- kms start index for k in memory |
|---|
| 92 | !-- kme end index for k in memory |
|---|
| 93 | !-- its start index for i in tile |
|---|
| 94 | !-- ite end index for i in tile |
|---|
| 95 | !-- jts start index for j in tile |
|---|
| 96 | !-- jte end index for j in tile |
|---|
| 97 | !-- kts start index for k in tile |
|---|
| 98 | !-- kte end index for k in tile |
|---|
| 99 | !------------------------------------------------------------------- |
|---|
| 100 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & |
|---|
| 101 | ims,ime, jms,jme, kms,kme, & |
|---|
| 102 | its,ite, jts,jte, kts,kte |
|---|
| 103 | ! |
|---|
| 104 | INTEGER, INTENT(IN ) :: ISFFLX |
|---|
| 105 | REAL, INTENT(IN ) :: SVP1,SVP2,SVP3,SVPT0 |
|---|
| 106 | REAL, INTENT(IN ) :: EP1,EP2,KARMAN,EOMEG,STBOLT |
|---|
| 107 | ! |
|---|
| 108 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & |
|---|
| 109 | INTENT(IN ) :: dz8w |
|---|
| 110 | |
|---|
| 111 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & |
|---|
| 112 | INTENT(IN ) :: QV3D, & |
|---|
| 113 | P3D, & |
|---|
| 114 | T3D |
|---|
| 115 | |
|---|
| 116 | REAL, DIMENSION( ims:ime, jms:jme ) , & |
|---|
| 117 | INTENT(IN ) :: MAVAIL, & |
|---|
| 118 | PBLH, & |
|---|
| 119 | XLAND, & |
|---|
| 120 | TSK |
|---|
| 121 | REAL, DIMENSION( ims:ime, jms:jme ) , & |
|---|
| 122 | INTENT(OUT ) :: U10, & |
|---|
| 123 | V10, & |
|---|
| 124 | TH2, & |
|---|
| 125 | T2, & |
|---|
| 126 | Q2, & |
|---|
| 127 | QSFC |
|---|
| 128 | |
|---|
| 129 | REAL, DIMENSION( ims:ime, jms:jme ) , & |
|---|
| 130 | INTENT(OUT) :: uratx,vratx,tratx |
|---|
| 131 | ! |
|---|
| 132 | REAL, DIMENSION( ims:ime, jms:jme ) , & |
|---|
| 133 | INTENT(INOUT) :: REGIME, & |
|---|
| 134 | HFX, & |
|---|
| 135 | QFX, & |
|---|
| 136 | LH, & |
|---|
| 137 | MOL,RMOL |
|---|
| 138 | !m the following 5 are change to memory size |
|---|
| 139 | ! |
|---|
| 140 | REAL, DIMENSION( ims:ime, jms:jme ) , & |
|---|
| 141 | INTENT(INOUT) :: GZ1OZ0,WSPD,BR, & |
|---|
| 142 | PSIM,PSIH |
|---|
| 143 | |
|---|
| 144 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & |
|---|
| 145 | INTENT(IN ) :: U3D, & |
|---|
| 146 | V3D |
|---|
| 147 | |
|---|
| 148 | REAL, DIMENSION( ims:ime, jms:jme ) , & |
|---|
| 149 | INTENT(IN ) :: PSFC |
|---|
| 150 | |
|---|
| 151 | REAL, DIMENSION( ims:ime, jms:jme ) , & |
|---|
| 152 | INTENT(INOUT) :: ZNT, & |
|---|
| 153 | ZOL, & |
|---|
| 154 | UST, & |
|---|
| 155 | CPM, & |
|---|
| 156 | CHS2, & |
|---|
| 157 | CQS2, & |
|---|
| 158 | CHS |
|---|
| 159 | |
|---|
| 160 | REAL, DIMENSION( ims:ime, jms:jme ) , & |
|---|
| 161 | INTENT(INOUT) :: FLHC,FLQC |
|---|
| 162 | |
|---|
| 163 | REAL, DIMENSION( ims:ime, jms:jme ) , & |
|---|
| 164 | INTENT(INOUT) :: & |
|---|
| 165 | QGH |
|---|
| 166 | |
|---|
| 167 | |
|---|
| 168 | |
|---|
| 169 | REAL, INTENT(IN ) :: CP,G,ROVCP,R,XLV,DX |
|---|
| 170 | |
|---|
| 171 | ! LOCAL VARS |
|---|
| 172 | |
|---|
| 173 | REAL, DIMENSION( its:ite ) :: U1D, & |
|---|
| 174 | V1D, & |
|---|
| 175 | QV1D, & |
|---|
| 176 | P1D, & |
|---|
| 177 | T1D |
|---|
| 178 | |
|---|
| 179 | REAL, DIMENSION( its:ite ) :: dz8w1d |
|---|
| 180 | |
|---|
| 181 | INTEGER :: I,J |
|---|
| 182 | |
|---|
| 183 | DO J=jts,jte |
|---|
| 184 | DO i=its,ite |
|---|
| 185 | dz8w1d(I) = dz8w(i,1,j) |
|---|
| 186 | ENDDO |
|---|
| 187 | |
|---|
| 188 | DO i=its,ite |
|---|
| 189 | U1D(i) =U3D(i,1,j) |
|---|
| 190 | V1D(i) =V3D(i,1,j) |
|---|
| 191 | QV1D(i)=QV3D(i,1,j) |
|---|
| 192 | P1D(i) =P3D(i,1,j) |
|---|
| 193 | T1D(i) =T3D(i,1,j) |
|---|
| 194 | ENDDO |
|---|
| 195 | |
|---|
| 196 | CALL SFCLAY1D(J,U1D,V1D,T1D,QV1D,P1D,dz8w1d, & |
|---|
| 197 | CP,G,ROVCP,R,XLV,PSFC(ims,j),CHS(ims,j),CHS2(ims,j),& |
|---|
| 198 | CQS2(ims,j),CPM(ims,j),PBLH(ims,j), RMOL(ims,j), & |
|---|
| 199 | ZNT(ims,j),UST(ims,j),MAVAIL(ims,j),ZOL(ims,j), & |
|---|
| 200 | MOL(ims,j),REGIME(ims,j),PSIM(ims,j),PSIH(ims,j), & |
|---|
| 201 | XLAND(ims,j),HFX(ims,j),QFX(ims,j),TSK(ims,j), & |
|---|
| 202 | uratx(ims,j),vratx(ims,j),tratx(ims,j), & |
|---|
| 203 | U10(ims,j),V10(ims,j),TH2(ims,j),T2(ims,j), & |
|---|
| 204 | Q2(ims,j),FLHC(ims,j),FLQC(ims,j),QGH(ims,j), & |
|---|
| 205 | QSFC(ims,j),LH(ims,j), & |
|---|
| 206 | GZ1OZ0(ims,j),WSPD(ims,j),BR(ims,j),ISFFLX,DX, & |
|---|
| 207 | SVP1,SVP2,SVP3,SVPT0,EP1,EP2,KARMAN,EOMEG,STBOLT, & |
|---|
| 208 | ids,ide, jds,jde, kds,kde, & |
|---|
| 209 | ims,ime, jms,jme, kms,kme, & |
|---|
| 210 | its,ite, jts,jte, kts,kte ) |
|---|
| 211 | ENDDO |
|---|
| 212 | |
|---|
| 213 | |
|---|
| 214 | END SUBROUTINE SFCLAY |
|---|
| 215 | |
|---|
| 216 | |
|---|
| 217 | !------------------------------------------------------------------- |
|---|
| 218 | SUBROUTINE SFCLAY1D(J,UX,VX,T1D,QV1D,P1D,dz8w1d, & |
|---|
| 219 | CP,G,ROVCP,R,XLV,PSFCPA,CHS,CHS2,CQS2,CPM,PBLH,RMOL, & |
|---|
| 220 | ZNT,UST,MAVAIL,ZOL,MOL,REGIME,PSIM,PSIH, & |
|---|
| 221 | XLAND,HFX,QFX,TSK, & |
|---|
| 222 | uratx,vratx,tratx, & |
|---|
| 223 | U10,V10,TH2,T2,Q2,FLHC,FLQC,QGH, & |
|---|
| 224 | QSFC,LH,GZ1OZ0,WSPD,BR,ISFFLX,DX, & |
|---|
| 225 | SVP1,SVP2,SVP3,SVPT0,EP1,EP2, & |
|---|
| 226 | KARMAN,EOMEG,STBOLT, & |
|---|
| 227 | ids,ide, jds,jde, kds,kde, & |
|---|
| 228 | ims,ime, jms,jme, kms,kme, & |
|---|
| 229 | its,ite, jts,jte, kts,kte ) |
|---|
| 230 | !------------------------------------------------------------------- |
|---|
| 231 | IMPLICIT NONE |
|---|
| 232 | !------------------------------------------------------------------- |
|---|
| 233 | REAL, PARAMETER :: XKA=2.4E-5 |
|---|
| 234 | REAL, PARAMETER :: PRT=1. |
|---|
| 235 | |
|---|
| 236 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & |
|---|
| 237 | ims,ime, jms,jme, kms,kme, & |
|---|
| 238 | its,ite, jts,jte, kts,kte, & |
|---|
| 239 | J |
|---|
| 240 | ! |
|---|
| 241 | INTEGER, INTENT(IN ) :: ISFFLX |
|---|
| 242 | REAL, INTENT(IN ) :: SVP1,SVP2,SVP3,SVPT0 |
|---|
| 243 | REAL, INTENT(IN ) :: EP1,EP2,KARMAN,EOMEG,STBOLT |
|---|
| 244 | |
|---|
| 245 | ! |
|---|
| 246 | REAL, DIMENSION( ims:ime ) , & |
|---|
| 247 | INTENT(IN ) :: MAVAIL, & |
|---|
| 248 | PBLH, & |
|---|
| 249 | XLAND, & |
|---|
| 250 | TSK |
|---|
| 251 | ! |
|---|
| 252 | REAL, DIMENSION( ims:ime ) , & |
|---|
| 253 | INTENT(IN ) :: PSFCPA |
|---|
| 254 | |
|---|
| 255 | REAL, DIMENSION( ims:ime ) , & |
|---|
| 256 | INTENT(INOUT) :: REGIME, & |
|---|
| 257 | HFX, & |
|---|
| 258 | QFX, & |
|---|
| 259 | MOL,RMOL |
|---|
| 260 | !m the following 5 are changed to memory size--- |
|---|
| 261 | ! |
|---|
| 262 | REAL, DIMENSION( ims:ime ) , & |
|---|
| 263 | INTENT(INOUT) :: GZ1OZ0,WSPD,BR, & |
|---|
| 264 | PSIM,PSIH |
|---|
| 265 | |
|---|
| 266 | REAL, DIMENSION( ims:ime ) , & |
|---|
| 267 | INTENT(INOUT) :: ZNT, & |
|---|
| 268 | ZOL, & |
|---|
| 269 | UST, & |
|---|
| 270 | CPM, & |
|---|
| 271 | CHS2, & |
|---|
| 272 | CQS2, & |
|---|
| 273 | CHS |
|---|
| 274 | |
|---|
| 275 | REAL, DIMENSION( ims:ime ) , & |
|---|
| 276 | INTENT(INOUT) :: FLHC,FLQC |
|---|
| 277 | |
|---|
| 278 | REAL, DIMENSION( ims:ime ) , & |
|---|
| 279 | INTENT(INOUT) :: & |
|---|
| 280 | QGH |
|---|
| 281 | |
|---|
| 282 | REAL, DIMENSION( ims:ime ) , & |
|---|
| 283 | INTENT(OUT) :: U10,V10, & |
|---|
| 284 | TH2,T2,Q2,QSFC,LH |
|---|
| 285 | |
|---|
| 286 | REAL, DIMENSION( ims:ime ) , & |
|---|
| 287 | INTENT(OUT) :: uratx,vratx,tratx |
|---|
| 288 | |
|---|
| 289 | REAL, INTENT(IN ) :: CP,G,ROVCP,R,XLV,DX |
|---|
| 290 | |
|---|
| 291 | ! MODULE-LOCAL VARIABLES, DEFINED IN SUBROUTINE SFCLAY |
|---|
| 292 | REAL, DIMENSION( its:ite ), INTENT(IN ) :: dz8w1d |
|---|
| 293 | |
|---|
| 294 | REAL, DIMENSION( its:ite ), INTENT(IN ) :: UX, & |
|---|
| 295 | VX, & |
|---|
| 296 | QV1D, & |
|---|
| 297 | P1D, & |
|---|
| 298 | T1D |
|---|
| 299 | |
|---|
| 300 | ! LOCAL VARS |
|---|
| 301 | |
|---|
| 302 | REAL, DIMENSION( its:ite ) :: ZA, & |
|---|
| 303 | THVX,ZQKL, & |
|---|
| 304 | ZQKLP1, & |
|---|
| 305 | THX,QX, & |
|---|
| 306 | PSIH2, & |
|---|
| 307 | PSIM2, & |
|---|
| 308 | PSIH10, & |
|---|
| 309 | PSIM10, & |
|---|
| 310 | GZ2OZ0, & |
|---|
| 311 | GZ10OZ0 |
|---|
| 312 | ! |
|---|
| 313 | REAL, DIMENSION( its:ite ) :: & |
|---|
| 314 | RHOX,GOVRTH, & |
|---|
| 315 | TGDSA |
|---|
| 316 | ! |
|---|
| 317 | REAL, DIMENSION( its:ite) :: SCR3,SCR4 |
|---|
| 318 | REAL, DIMENSION( its:ite ) :: THGB, PSFC |
|---|
| 319 | ! |
|---|
| 320 | INTEGER :: KL |
|---|
| 321 | |
|---|
| 322 | INTEGER :: N,I,K,KK,L,NZOL,NK,NZOL2,NZOL10 |
|---|
| 323 | |
|---|
| 324 | REAL :: PL,THCON,TVCON,E1 |
|---|
| 325 | REAL :: ZL,TSKV,DTHVDZ,DTHVM,VCONV,RZOL,RZOL2,RZOL10,ZOL2,ZOL10 |
|---|
| 326 | REAL :: DTG,PSIX,USTM,DTTHX,PSIX10,PSIT,PSIT2,PSIQ,PSIQ2 |
|---|
| 327 | REAL :: FLUXC,VSGD |
|---|
| 328 | !------------------------------------------------------------------- |
|---|
| 329 | KL=kte |
|---|
| 330 | |
|---|
| 331 | DO i=its,ite |
|---|
| 332 | ! PSFC cmb |
|---|
| 333 | PSFC(I)=PSFCPA(I)/1000. |
|---|
| 334 | ENDDO |
|---|
| 335 | ! |
|---|
| 336 | !----CONVERT GROUND TEMPERATURE TO POTENTIAL TEMPERATURE: |
|---|
| 337 | ! |
|---|
| 338 | DO 5 I=its,ite |
|---|
| 339 | TGDSA(I)=TSK(I) |
|---|
| 340 | ! PSFC cmb |
|---|
| 341 | THGB(I)=TSK(I)*(100./PSFC(I))**ROVCP |
|---|
| 342 | 5 CONTINUE |
|---|
| 343 | ! |
|---|
| 344 | !-----DECOUPLE FLUX-FORM VARIABLES TO GIVE U,V,T,THETA,THETA-VIR., |
|---|
| 345 | ! T-VIR., QV, AND QC AT CROSS POINTS AND AT KTAU-1. |
|---|
| 346 | ! |
|---|
| 347 | ! *** NOTE *** |
|---|
| 348 | ! THE BOUNDARY WINDS MAY NOT BE ADEQUATELY AFFECTED BY FRICTION, |
|---|
| 349 | ! SO USE ONLY INTERIOR VALUES OF UX AND VX TO CALCULATE |
|---|
| 350 | ! TENDENCIES. |
|---|
| 351 | ! |
|---|
| 352 | 10 CONTINUE |
|---|
| 353 | |
|---|
| 354 | ! DO 24 I=its,ite |
|---|
| 355 | ! UX(I)=U1D(I) |
|---|
| 356 | ! VX(I)=V1D(I) |
|---|
| 357 | ! 24 CONTINUE |
|---|
| 358 | |
|---|
| 359 | 26 CONTINUE |
|---|
| 360 | |
|---|
| 361 | !.....SCR3(I,K) STORE TEMPERATURE, |
|---|
| 362 | ! SCR4(I,K) STORE VIRTUAL TEMPERATURE. |
|---|
| 363 | |
|---|
| 364 | DO 30 I=its,ite |
|---|
| 365 | ! PL cmb |
|---|
| 366 | PL=P1D(I)/1000. |
|---|
| 367 | SCR3(I)=T1D(I) |
|---|
| 368 | THCON=(100./PL)**ROVCP |
|---|
| 369 | THX(I)=SCR3(I)*THCON |
|---|
| 370 | SCR4(I)=SCR3(I) |
|---|
| 371 | THVX(I)=THX(I) |
|---|
| 372 | QX(I)=0. |
|---|
| 373 | 30 CONTINUE |
|---|
| 374 | ! |
|---|
| 375 | DO I=its,ite |
|---|
| 376 | QGH(I)=0. |
|---|
| 377 | FLHC(I)=0. |
|---|
| 378 | FLQC(I)=0. |
|---|
| 379 | CPM(I)=CP |
|---|
| 380 | ENDDO |
|---|
| 381 | ! |
|---|
| 382 | ! IF(IDRY.EQ.1)GOTO 80 |
|---|
| 383 | DO 50 I=its,ite |
|---|
| 384 | QX(I)=QV1D(I) |
|---|
| 385 | TVCON=(1.+EP1*QX(I)) |
|---|
| 386 | THVX(I)=THX(I)*TVCON |
|---|
| 387 | SCR4(I)=SCR3(I)*TVCON |
|---|
| 388 | 50 CONTINUE |
|---|
| 389 | ! |
|---|
| 390 | DO 60 I=its,ite |
|---|
| 391 | E1=SVP1*EXP(SVP2*(TGDSA(I)-SVPT0)/(TGDSA(I)-SVP3)) |
|---|
| 392 | QSFC(I)=EP2*E1/(PSFC(I)-E1) |
|---|
| 393 | ! QGH CHANGED TO USE LOWEST-LEVEL AIR TEMP CONSISTENT WITH MYJSFC CHANGE |
|---|
| 394 | ! Q2SAT = QGH IN LSM |
|---|
| 395 | E1=SVP1*EXP(SVP2*(T1D(I)-SVPT0)/(T1D(I)-SVP3)) |
|---|
| 396 | QGH(I)=EP2*E1/(PSFC(I)-E1) |
|---|
| 397 | CPM(I)=CP*(1.+0.8*QX(I)) |
|---|
| 398 | 60 CONTINUE |
|---|
| 399 | 80 CONTINUE |
|---|
| 400 | |
|---|
| 401 | !-----COMPUTE THE HEIGHT OF FULL- AND HALF-SIGMA LEVELS ABOVE GROUND |
|---|
| 402 | ! LEVEL, AND THE LAYER THICKNESSES. |
|---|
| 403 | |
|---|
| 404 | DO 90 I=its,ite |
|---|
| 405 | ZQKLP1(I)=0. |
|---|
| 406 | RHOX(I)=PSFC(I)*1000./(R*SCR4(I)) |
|---|
| 407 | 90 CONTINUE |
|---|
| 408 | ! |
|---|
| 409 | DO 110 I=its,ite |
|---|
| 410 | ZQKL(I)=dz8w1d(I)+ZQKLP1(I) |
|---|
| 411 | 110 CONTINUE |
|---|
| 412 | ! |
|---|
| 413 | DO 120 I=its,ite |
|---|
| 414 | ZA(I)=0.5*(ZQKL(I)+ZQKLP1(I)) |
|---|
| 415 | 120 CONTINUE |
|---|
| 416 | ! |
|---|
| 417 | DO 160 I=its,ite |
|---|
| 418 | GOVRTH(I)=G/THX(I) |
|---|
| 419 | 160 CONTINUE |
|---|
| 420 | |
|---|
| 421 | !-----CALCULATE BULK RICHARDSON NO. OF SURFACE LAYER, ACCORDING TO |
|---|
| 422 | ! AKB(1976), EQ(12). |
|---|
| 423 | |
|---|
| 424 | DO 260 I=its,ite |
|---|
| 425 | GZ1OZ0(I)=ALOG(ZA(I)/ZNT(I)) |
|---|
| 426 | GZ2OZ0(I)=ALOG(2./ZNT(I)) |
|---|
| 427 | GZ10OZ0(I)=ALOG(10./ZNT(I)) |
|---|
| 428 | IF((XLAND(I)-1.5).GE.0)THEN |
|---|
| 429 | ZL=ZNT(I) |
|---|
| 430 | ELSE |
|---|
| 431 | ZL=0.01 |
|---|
| 432 | ENDIF |
|---|
| 433 | WSPD(I)=SQRT(UX(I)*UX(I)+VX(I)*VX(I)) |
|---|
| 434 | |
|---|
| 435 | TSKV=THGB(I)*(1.+EP1*QSFC(I)*MAVAIL(I)) |
|---|
| 436 | DTHVDZ=(THVX(I)-TSKV) |
|---|
| 437 | ! Convective velocity scale Vc and subgrid-scale velocity Vsg |
|---|
| 438 | ! following Beljaars (1995, QJRMS) and Mahrt and Sun (1995, MWR) |
|---|
| 439 | ! ... HONG Aug. 2001 |
|---|
| 440 | ! |
|---|
| 441 | ! VCONV = 0.25*sqrt(g/tskv*pblh(i)*dthvm) |
|---|
| 442 | fluxc = max(hfx(i)/rhox(i)/cp & |
|---|
| 443 | + ep1*tskv*qfx(i)/rhox(i),0.) |
|---|
| 444 | VCONV = vconvc*(g/tgdsa(i)*pblh(i)*fluxc)**.33 |
|---|
| 445 | ! IF(-DTHVDZ.GE.0)THEN |
|---|
| 446 | ! DTHVM=-DTHVDZ |
|---|
| 447 | ! ELSE |
|---|
| 448 | ! DTHVM=0. |
|---|
| 449 | ! ENDIF |
|---|
| 450 | ! VCONV = max(vconv,VCONVC*SQRT(DTHVM)) |
|---|
| 451 | ! VCONV comes from Beljaars only |
|---|
| 452 | VSGD = 0.32 * (max(dx/5000.-1.,0.))**.33 |
|---|
| 453 | WSPD(I)=SQRT(WSPD(I)*WSPD(I)+VCONV*VCONV+vsgd*vsgd) |
|---|
| 454 | WSPD(I)=AMAX1(WSPD(I),0.1) |
|---|
| 455 | BR(I)=GOVRTH(I)*ZA(I)*DTHVDZ/(WSPD(I)*WSPD(I)) |
|---|
| 456 | ! IF PREVIOUSLY UNSTABLE, DO NOT LET INTO REGIMES 1 AND 2 |
|---|
| 457 | IF(MOL(I).LT.0.)BR(I)=AMIN1(BR(I),0.0) |
|---|
| 458 | !jdf |
|---|
| 459 | RMOL(I)=-GOVRTH(I)*DTHVDZ*ZA(I)*KARMAN |
|---|
| 460 | !jdf |
|---|
| 461 | |
|---|
| 462 | 260 CONTINUE |
|---|
| 463 | |
|---|
| 464 | ! |
|---|
| 465 | !-----DIAGNOSE BASIC PARAMETERS FOR THE APPROPRIATED STABILITY CLASS: |
|---|
| 466 | ! |
|---|
| 467 | ! |
|---|
| 468 | ! THE STABILITY CLASSES ARE DETERMINED BY BR (BULK RICHARDSON NO.) |
|---|
| 469 | ! AND HOL (HEIGHT OF PBL/MONIN-OBUKHOV LENGTH). |
|---|
| 470 | ! |
|---|
| 471 | ! CRITERIA FOR THE CLASSES ARE AS FOLLOWS: |
|---|
| 472 | ! |
|---|
| 473 | ! 1. BR .GE. 0.2; |
|---|
| 474 | ! REPRESENTS NIGHTTIME STABLE CONDITIONS (REGIME=1), |
|---|
| 475 | ! |
|---|
| 476 | ! 2. BR .LT. 0.2 .AND. BR .GT. 0.0; |
|---|
| 477 | ! REPRESENTS DAMPED MECHANICAL TURBULENT CONDITIONS |
|---|
| 478 | ! (REGIME=2), |
|---|
| 479 | ! |
|---|
| 480 | ! 3. BR .EQ. 0.0 |
|---|
| 481 | ! REPRESENTS FORCED CONVECTION CONDITIONS (REGIME=3), |
|---|
| 482 | ! |
|---|
| 483 | ! 4. BR .LT. 0.0 |
|---|
| 484 | ! REPRESENTS FREE CONVECTION CONDITIONS (REGIME=4). |
|---|
| 485 | ! |
|---|
| 486 | !CCCCC |
|---|
| 487 | |
|---|
| 488 | DO 320 I=its,ite |
|---|
| 489 | !CCCCC |
|---|
| 490 | !CC REMOVE REGIME 3 DEPENDENCE ON PBL HEIGHT |
|---|
| 491 | !CC IF(BR(I).LT.0..AND.HOL(I,J).GT.1.5)GOTO 310 |
|---|
| 492 | IF(BR(I).LT.0.)GOTO 310 |
|---|
| 493 | ! |
|---|
| 494 | !-----CLASS 1; STABLE (NIGHTTIME) CONDITIONS: |
|---|
| 495 | ! |
|---|
| 496 | IF(BR(I).LT.0.2)GOTO 270 |
|---|
| 497 | REGIME(I)=1. |
|---|
| 498 | PSIM(I)=-10.*GZ1OZ0(I) |
|---|
| 499 | ! LOWER LIMIT ON PSI IN STABLE CONDITIONS |
|---|
| 500 | PSIM(I)=AMAX1(PSIM(I),-10.) |
|---|
| 501 | PSIH(I)=PSIM(I) |
|---|
| 502 | PSIM10(I)=10./ZA(I)*PSIM(I) |
|---|
| 503 | PSIM10(I)=AMAX1(PSIM10(I),-10.) |
|---|
| 504 | PSIH10(I)=PSIM10(I) |
|---|
| 505 | PSIM2(I)=2./ZA(I)*PSIM(I) |
|---|
| 506 | PSIM2(I)=AMAX1(PSIM2(I),-10.) |
|---|
| 507 | PSIH2(I)=PSIM2(I) |
|---|
| 508 | |
|---|
| 509 | ! 1.0 over Monin-Obukhov length |
|---|
| 510 | IF(UST(I).LT.0.01)THEN |
|---|
| 511 | RMOL(I)=BR(I)*GZ1OZ0(I) !ZA/L |
|---|
| 512 | ELSE |
|---|
| 513 | RMOL(I)=KARMAN*GOVRTH(I)*ZA(I)*MOL(I)/(UST(I)*UST(I)) !ZA/L |
|---|
| 514 | ENDIF |
|---|
| 515 | RMOL(I)=AMIN1(RMOL(I),9.999) ! ZA/L |
|---|
| 516 | RMOL(I) = RMOL(I)/ZA(I) !1.0/L |
|---|
| 517 | |
|---|
| 518 | GOTO 320 |
|---|
| 519 | ! |
|---|
| 520 | !-----CLASS 2; DAMPED MECHANICAL TURBULENCE: |
|---|
| 521 | ! |
|---|
| 522 | 270 IF(BR(I).EQ.0.0)GOTO 280 |
|---|
| 523 | REGIME(I)=2. |
|---|
| 524 | PSIM(I)=-5.0*BR(I)*GZ1OZ0(I)/(1.1-5.0*BR(I)) |
|---|
| 525 | ! LOWER LIMIT ON PSI IN STABLE CONDITIONS |
|---|
| 526 | PSIM(I)=AMAX1(PSIM(I),-10.) |
|---|
| 527 | !.....AKB(1976), EQ(16). |
|---|
| 528 | PSIH(I)=PSIM(I) |
|---|
| 529 | PSIM10(I)=10./ZA(I)*PSIM(I) |
|---|
| 530 | PSIM10(I)=AMAX1(PSIM10(I),-10.) |
|---|
| 531 | PSIH10(I)=PSIM10(I) |
|---|
| 532 | PSIM2(I)=2./ZA(I)*PSIM(I) |
|---|
| 533 | PSIM2(I)=AMAX1(PSIM2(I),-10.) |
|---|
| 534 | PSIH2(I)=PSIM2(I) |
|---|
| 535 | |
|---|
| 536 | ! Linear form: PSIM = -0.5*ZA/L; e.g, see eqn 16 of |
|---|
| 537 | ! Blackadar, Modeling the nocturnal boundary layer, Preprints, |
|---|
| 538 | ! Third Symposium on Atmospheric Turbulence Diffusion and Air Quality, |
|---|
| 539 | ! Raleigh, NC, 1976 |
|---|
| 540 | ZOL(I) = BR(I)*GZ1OZ0(I)/(1.00001-5.0*BR(I)) |
|---|
| 541 | |
|---|
| 542 | if ( ZOL(I) .GT. 0.5 ) then ! linear form ok |
|---|
| 543 | ! Holtslag and de Bruin, J. App. Meteor 27, 689-704, 1988; |
|---|
| 544 | ! see also, Launiainen, Boundary-Layer Meteor 76,165-179, 1995 |
|---|
| 545 | ! Eqn (8) of Launiainen, 1995 |
|---|
| 546 | ZOL(I) = ( 1.89*GZ1OZ0(I) + 44.2 ) * BR(I)*BR(I) & |
|---|
| 547 | + ( 1.18*GZ1OZ0(I) - 1.37 ) * BR(I) |
|---|
| 548 | ZOL(I)=AMIN1(ZOL(I),9.999) |
|---|
| 549 | end if |
|---|
| 550 | |
|---|
| 551 | ! 1.0 over Monin-Obukhov length |
|---|
| 552 | RMOL(I)= ZOL(I)/ZA(I) |
|---|
| 553 | |
|---|
| 554 | GOTO 320 |
|---|
| 555 | ! |
|---|
| 556 | !-----CLASS 3; FORCED CONVECTION: |
|---|
| 557 | ! |
|---|
| 558 | 280 REGIME(I)=3. |
|---|
| 559 | PSIM(I)=0.0 |
|---|
| 560 | PSIH(I)=PSIM(I) |
|---|
| 561 | PSIM10(I)=0. |
|---|
| 562 | PSIH10(I)=PSIM10(I) |
|---|
| 563 | PSIM2(I)=0. |
|---|
| 564 | PSIH2(I)=PSIM2(I) |
|---|
| 565 | |
|---|
| 566 | |
|---|
| 567 | IF(UST(I).LT.0.01)THEN |
|---|
| 568 | ZOL(I)=BR(I)*GZ1OZ0(I) |
|---|
| 569 | ELSE |
|---|
| 570 | ZOL(I)=KARMAN*GOVRTH(I)*ZA(I)*MOL(I)/(UST(I)*UST(I)) |
|---|
| 571 | ENDIF |
|---|
| 572 | |
|---|
| 573 | RMOL(I) = ZOL(I)/ZA(I) |
|---|
| 574 | |
|---|
| 575 | GOTO 320 |
|---|
| 576 | ! |
|---|
| 577 | !-----CLASS 4; FREE CONVECTION: |
|---|
| 578 | ! |
|---|
| 579 | 310 CONTINUE |
|---|
| 580 | REGIME(I)=4. |
|---|
| 581 | IF(UST(I).LT.0.01)THEN |
|---|
| 582 | ZOL(I)=BR(I)*GZ1OZ0(I) |
|---|
| 583 | ELSE |
|---|
| 584 | ZOL(I)=KARMAN*GOVRTH(I)*ZA(I)*MOL(I)/(UST(I)*UST(I)) |
|---|
| 585 | ENDIF |
|---|
| 586 | ZOL10=10./ZA(I)*ZOL(I) |
|---|
| 587 | ZOL2=2./ZA(I)*ZOL(I) |
|---|
| 588 | ZOL(I)=AMIN1(ZOL(I),0.) |
|---|
| 589 | ZOL(I)=AMAX1(ZOL(I),-9.9999) |
|---|
| 590 | ZOL10=AMIN1(ZOL10,0.) |
|---|
| 591 | ZOL10=AMAX1(ZOL10,-9.9999) |
|---|
| 592 | ZOL2=AMIN1(ZOL2,0.) |
|---|
| 593 | ZOL2=AMAX1(ZOL2,-9.9999) |
|---|
| 594 | NZOL=INT(-ZOL(I)*100.) |
|---|
| 595 | RZOL=-ZOL(I)*100.-NZOL |
|---|
| 596 | NZOL10=INT(-ZOL10*100.) |
|---|
| 597 | RZOL10=-ZOL10*100.-NZOL10 |
|---|
| 598 | NZOL2=INT(-ZOL2*100.) |
|---|
| 599 | RZOL2=-ZOL2*100.-NZOL2 |
|---|
| 600 | PSIM(I)=PSIMTB(NZOL)+RZOL*(PSIMTB(NZOL+1)-PSIMTB(NZOL)) |
|---|
| 601 | PSIH(I)=PSIHTB(NZOL)+RZOL*(PSIHTB(NZOL+1)-PSIHTB(NZOL)) |
|---|
| 602 | PSIM10(I)=PSIMTB(NZOL10)+RZOL10*(PSIMTB(NZOL10+1)-PSIMTB(NZOL10)) |
|---|
| 603 | PSIH10(I)=PSIHTB(NZOL10)+RZOL10*(PSIHTB(NZOL10+1)-PSIHTB(NZOL10)) |
|---|
| 604 | PSIM2(I)=PSIMTB(NZOL2)+RZOL2*(PSIMTB(NZOL2+1)-PSIMTB(NZOL2)) |
|---|
| 605 | PSIH2(I)=PSIHTB(NZOL2)+RZOL2*(PSIHTB(NZOL2+1)-PSIHTB(NZOL2)) |
|---|
| 606 | |
|---|
| 607 | !---LIMIT PSIH AND PSIM IN THE CASE OF THIN LAYERS AND HIGH ROUGHNESS |
|---|
| 608 | !--- THIS PREVENTS DENOMINATOR IN FLUXES FROM GETTING TOO SMALL |
|---|
| 609 | ! PSIH(I)=AMIN1(PSIH(I),0.9*GZ1OZ0(I)) |
|---|
| 610 | ! PSIM(I)=AMIN1(PSIM(I),0.9*GZ1OZ0(I)) |
|---|
| 611 | PSIH(I)=AMIN1(PSIH(I),0.9*GZ1OZ0(I)) |
|---|
| 612 | PSIM(I)=AMIN1(PSIM(I),0.9*GZ1OZ0(I)) |
|---|
| 613 | PSIH2(I)=AMIN1(PSIH2(I),0.9*GZ2OZ0(I)) |
|---|
| 614 | PSIM10(I)=AMIN1(PSIM10(I),0.9*GZ10OZ0(I)) |
|---|
| 615 | |
|---|
| 616 | RMOL(I) = ZOL(I)/ZA(I) |
|---|
| 617 | |
|---|
| 618 | 320 CONTINUE |
|---|
| 619 | ! |
|---|
| 620 | !-----COMPUTE THE FRICTIONAL VELOCITY: |
|---|
| 621 | ! ZA(1982) EQS(2.60),(2.61). |
|---|
| 622 | ! |
|---|
| 623 | DO 330 I=its,ite |
|---|
| 624 | DTG=THX(I)-THGB(I) |
|---|
| 625 | PSIX=GZ1OZ0(I)-PSIM(I) |
|---|
| 626 | PSIX10=GZ10OZ0(I)-PSIM10(I) |
|---|
| 627 | ! LOWER LIMIT ADDED TO PREVENT LARGE FLHC IN SOIL MODEL |
|---|
| 628 | ! ACTIVATES IN UNSTABLE CONDITIONS WITH THIN LAYERS OR HIGH Z0 |
|---|
| 629 | PSIT=AMAX1(GZ1OZ0(I)-PSIH(I),2.) |
|---|
| 630 | |
|---|
| 631 | IF((XLAND(I)-1.5).GE.0)THEN |
|---|
| 632 | ZL=ZNT(I) |
|---|
| 633 | ELSE |
|---|
| 634 | ZL=0.01 |
|---|
| 635 | ENDIF |
|---|
| 636 | PSIQ=ALOG(KARMAN*UST(I)*ZA(I)/XKA+ZA(I)/ZL)-PSIH(I) |
|---|
| 637 | PSIT2=GZ2OZ0(I)-PSIH2(I) |
|---|
| 638 | PSIQ2=ALOG(KARMAN*UST(I)*2./XKA+2./ZL)-PSIH2(I) |
|---|
| 639 | ! TO PREVENT OSCILLATIONS AVERAGE WITH OLD VALUE |
|---|
| 640 | UST(I)=0.5*UST(I)+0.5*KARMAN*WSPD(I)/PSIX |
|---|
| 641 | U10(I)=UX(I)*PSIX10/PSIX |
|---|
| 642 | V10(I)=VX(I)*PSIX10/PSIX |
|---|
| 643 | TH2(I)=THGB(I)+DTG*PSIT2/PSIT |
|---|
| 644 | Q2(I)=QSFC(I)+(QX(I)-QSFC(I))*PSIQ2/PSIQ |
|---|
| 645 | T2(I) = TH2(I)*(PSFC(I)/100.)**ROVCP |
|---|
| 646 | ! LATER Q2 WILL BE OVERWRITTEN FOR LAND POINTS IN SURFCE |
|---|
| 647 | ! QA2(I,J) = Q2(I) |
|---|
| 648 | ! UA10(I,J) = U10(I) |
|---|
| 649 | ! VA10(I,J) = V10(I) |
|---|
| 650 | ! write(*,1002)UST(I),KARMAN*WSPD(I),PSIX,KARMAN*WSPD(I)/PSIX |
|---|
| 651 | ! |
|---|
| 652 | IF(ABS(U10(I)) .GT. 1.E-10) THEN |
|---|
| 653 | uratx(I) = UX(I)/U10(I) |
|---|
| 654 | ELSE |
|---|
| 655 | uratx(I) = 1.2 |
|---|
| 656 | END IF |
|---|
| 657 | IF(ABS(V10(I)) .GT. 1.E-10) THEN |
|---|
| 658 | vratx(I) = VX(I)/V10(I) |
|---|
| 659 | ELSE |
|---|
| 660 | vratx(I) = 1.2 |
|---|
| 661 | END IF |
|---|
| 662 | tratx(I) = THX(I)/TH2(I) |
|---|
| 663 | |
|---|
| 664 | USTM=AMAX1(UST(I),0.1) |
|---|
| 665 | IF((XLAND(I)-1.5).GE.0)THEN |
|---|
| 666 | UST(I)=UST(I) |
|---|
| 667 | ELSE |
|---|
| 668 | UST(I)=USTM |
|---|
| 669 | ENDIF |
|---|
| 670 | ! write(*,1002)UST(I),USTM,I,J |
|---|
| 671 | 1002 format(f15.12,2x,f15.12,2x,f15.12,2x,f15.12,2x,f15.12) |
|---|
| 672 | MOL(I)=KARMAN*DTG/PSIT/PRT |
|---|
| 673 | 330 CONTINUE |
|---|
| 674 | ! |
|---|
| 675 | 335 CONTINUE |
|---|
| 676 | |
|---|
| 677 | !-----COMPUTE THE SURFACE SENSIBLE AND LATENT HEAT FLUXES: |
|---|
| 678 | |
|---|
| 679 | DO i=its,ite |
|---|
| 680 | QFX(i)=0. |
|---|
| 681 | HFX(i)=0. |
|---|
| 682 | ENDDO |
|---|
| 683 | |
|---|
| 684 | IF (ISFFLX.EQ.0) GOTO 410 |
|---|
| 685 | |
|---|
| 686 | !-----OVER WATER, ALTER ROUGHNESS LENGTH (ZNT) ACCORDING TO WIND (UST). |
|---|
| 687 | |
|---|
| 688 | DO 360 I=its,ite |
|---|
| 689 | IF((XLAND(I)-1.5).GE.0)THEN |
|---|
| 690 | ZNT(I)=CZO*UST(I)*UST(I)/G+OZO |
|---|
| 691 | ENDIF |
|---|
| 692 | IF((XLAND(I)-1.5).GE.0)THEN |
|---|
| 693 | ZL=ZNT(I) |
|---|
| 694 | ELSE |
|---|
| 695 | ZL=0.01 |
|---|
| 696 | ENDIF |
|---|
| 697 | FLQC(I)=RHOX(I)*MAVAIL(I)*UST(I)*KARMAN/( & |
|---|
| 698 | ALOG(KARMAN*UST(I)*ZA(I)/XKA+ZA(I)/ZL)-PSIH(I)) |
|---|
| 699 | DTTHX=ABS(THX(I)-THGB(I)) |
|---|
| 700 | IF(DTTHX.GT.1.E-5)THEN |
|---|
| 701 | FLHC(I)=CPM(I)*RHOX(I)*UST(I)*MOL(I)/(THX(I)-THGB(I)) |
|---|
| 702 | ! write(*,1001)FLHC(I),CPM(I),RHOX(I),UST(I),MOL(I),THX(I),THGB(I),I |
|---|
| 703 | 1001 format(f8.5,2x,f12.7,2x,f12.10,2x,f12.10,2x,f13.10,2x,f12.8,f12.8,2x,i3) |
|---|
| 704 | ELSE |
|---|
| 705 | FLHC(I)=0. |
|---|
| 706 | ENDIF |
|---|
| 707 | 360 CONTINUE |
|---|
| 708 | |
|---|
| 709 | ! |
|---|
| 710 | !-----COMPUTE SURFACE MOIST FLUX: |
|---|
| 711 | ! |
|---|
| 712 | ! IF(IDRY.EQ.1)GOTO 390 |
|---|
| 713 | ! |
|---|
| 714 | DO 370 I=its,ite |
|---|
| 715 | QFX(I)=FLQC(I)*(QSFC(I)-QX(I)) |
|---|
| 716 | QFX(I)=AMAX1(QFX(I),0.) |
|---|
| 717 | LH(I)=XLV*QFX(I) |
|---|
| 718 | 370 CONTINUE |
|---|
| 719 | |
|---|
| 720 | !-----COMPUTE SURFACE HEAT FLUX: |
|---|
| 721 | ! |
|---|
| 722 | 390 CONTINUE |
|---|
| 723 | DO 400 I=its,ite |
|---|
| 724 | IF(XLAND(I)-1.5.GT.0.)THEN |
|---|
| 725 | HFX(I)=FLHC(I)*(THGB(I)-THX(I)) |
|---|
| 726 | ELSEIF(XLAND(I)-1.5.LT.0.)THEN |
|---|
| 727 | HFX(I)=FLHC(I)*(THGB(I)-THX(I)) |
|---|
| 728 | HFX(I)=AMAX1(HFX(I),-250.) |
|---|
| 729 | ENDIF |
|---|
| 730 | 400 CONTINUE |
|---|
| 731 | |
|---|
| 732 | DO I=its,ite |
|---|
| 733 | IF((XLAND(I)-1.5).GE.0)THEN |
|---|
| 734 | ZL=ZNT(I) |
|---|
| 735 | ELSE |
|---|
| 736 | ZL=0.01 |
|---|
| 737 | ENDIF |
|---|
| 738 | CHS(I)=UST(I)*KARMAN/(ALOG(KARMAN*UST(I)*ZA(I) & |
|---|
| 739 | /XKA+ZA(I)/ZL)-PSIH(I)) |
|---|
| 740 | ! GZ2OZ0(I)=ALOG(2./ZNT(I)) |
|---|
| 741 | ! PSIM2(I)=-10.*GZ2OZ0(I) |
|---|
| 742 | ! PSIM2(I)=AMAX1(PSIM2(I),-10.) |
|---|
| 743 | ! PSIH2(I)=PSIM2(I) |
|---|
| 744 | CQS2(I)=UST(I)*KARMAN/(ALOG(KARMAN*UST(I)*2.0 & |
|---|
| 745 | /XKA+2.0/ZL)-PSIH2(I)) |
|---|
| 746 | CHS2(I)=UST(I)*KARMAN/(GZ2OZ0(I)-PSIH2(I)) |
|---|
| 747 | ENDDO |
|---|
| 748 | |
|---|
| 749 | 410 CONTINUE |
|---|
| 750 | !jdf |
|---|
| 751 | ! DO I=its,ite |
|---|
| 752 | ! IF(UST(I).GE.0.1) THEN |
|---|
| 753 | ! RMOL(I)=RMOL(I)*(-FLHC(I))/(UST(I)*UST(I)*UST(I)) |
|---|
| 754 | ! ELSE |
|---|
| 755 | ! RMOL(I)=RMOL(I)*(-FLHC(I))/(0.1*0.1*0.1) |
|---|
| 756 | ! ENDIF |
|---|
| 757 | ! ENDDO |
|---|
| 758 | !jdf |
|---|
| 759 | |
|---|
| 760 | ! |
|---|
| 761 | END SUBROUTINE SFCLAY1D |
|---|
| 762 | |
|---|
| 763 | !==================================================================== |
|---|
| 764 | SUBROUTINE sfclayinit( allowed_to_read ) |
|---|
| 765 | |
|---|
| 766 | LOGICAL , INTENT(IN) :: allowed_to_read |
|---|
| 767 | INTEGER :: N |
|---|
| 768 | REAL :: ZOLN,X,Y |
|---|
| 769 | |
|---|
| 770 | DO N=0,1000 |
|---|
| 771 | ZOLN=-FLOAT(N)*0.01 |
|---|
| 772 | X=(1-16.*ZOLN)**0.25 |
|---|
| 773 | PSIMTB(N)=2*ALOG(0.5*(1+X))+ALOG(0.5*(1+X*X))- & |
|---|
| 774 | 2.*ATAN(X)+2.*ATAN(1.) |
|---|
| 775 | Y=(1-16*ZOLN)**0.5 |
|---|
| 776 | PSIHTB(N)=2*ALOG(0.5*(1+Y)) |
|---|
| 777 | ENDDO |
|---|
| 778 | |
|---|
| 779 | END SUBROUTINE sfclayinit |
|---|
| 780 | |
|---|
| 781 | !------------------------------------------------------------------- |
|---|
| 782 | |
|---|
| 783 | END MODULE module_sf_sfclay |
|---|