| 1 | #if ( RWORDSIZE == 4 ) |
|---|
| 2 | # define VREC vsrec |
|---|
| 3 | # define VSQRT vssqrt |
|---|
| 4 | #else |
|---|
| 5 | # define VREC vrec |
|---|
| 6 | # define VSQRT vsqrt |
|---|
| 7 | #endif |
|---|
| 8 | |
|---|
| 9 | !Including inline expansion statistical function |
|---|
| 10 | MODULE module_mp_wsm5 |
|---|
| 11 | ! |
|---|
| 12 | ! |
|---|
| 13 | REAL, PARAMETER, PRIVATE :: dtcldcr = 120. |
|---|
| 14 | REAL, PARAMETER, PRIVATE :: n0r = 8.e6 |
|---|
| 15 | REAL, PARAMETER, PRIVATE :: avtr = 841.9 |
|---|
| 16 | REAL, PARAMETER, PRIVATE :: bvtr = 0.8 |
|---|
| 17 | REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m |
|---|
| 18 | REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency |
|---|
| 19 | REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80 |
|---|
| 20 | REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1 |
|---|
| 21 | REAL, PARAMETER, PRIVATE :: avts = 11.72 |
|---|
| 22 | REAL, PARAMETER, PRIVATE :: bvts = .41 |
|---|
| 23 | REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! t=-90C unlimited |
|---|
| 24 | REAL, PARAMETER, PRIVATE :: lamdarmax = 8.e4 |
|---|
| 25 | REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 |
|---|
| 26 | REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 |
|---|
| 27 | REAL, PARAMETER, PRIVATE :: betai = .6 |
|---|
| 28 | REAL, PARAMETER, PRIVATE :: xn0 = 1.e-2 |
|---|
| 29 | REAL, PARAMETER, PRIVATE :: dicon = 11.9 |
|---|
| 30 | REAL, PARAMETER, PRIVATE :: di0 = 12.9e-6 |
|---|
| 31 | REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 |
|---|
| 32 | REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent n0s |
|---|
| 33 | REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s |
|---|
| 34 | REAL, PARAMETER, PRIVATE :: pfrz1 = 100. |
|---|
| 35 | REAL, PARAMETER, PRIVATE :: pfrz2 = 0.66 |
|---|
| 36 | REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 |
|---|
| 37 | REAL, PARAMETER, PRIVATE :: t40c = 233.16 |
|---|
| 38 | REAL, PARAMETER, PRIVATE :: eacrc = 1.0 |
|---|
| 39 | REAL, SAVE :: & |
|---|
| 40 | qc0, qck1,bvtr1,bvtr2,bvtr3,bvtr4,g1pbr,& |
|---|
| 41 | g3pbr,g4pbr,g5pbro2,pvtr,eacrr,pacrr, & |
|---|
| 42 | precr1,precr2,xm0,xmmax,roqimax,bvts1, & |
|---|
| 43 | bvts2,bvts3,bvts4,g1pbs,g3pbs,g4pbs, & |
|---|
| 44 | g5pbso2,pvts,pacrs,precs1,precs2,pidn0r,& |
|---|
| 45 | pidn0s,xlv1,pacrc, & |
|---|
| 46 | rslopermax,rslopesmax,rslopegmax, & |
|---|
| 47 | rsloperbmax,rslopesbmax,rslopegbmax, & |
|---|
| 48 | rsloper2max,rslopes2max,rslopeg2max, & |
|---|
| 49 | rsloper3max,rslopes3max,rslopeg3max |
|---|
| 50 | ! |
|---|
| 51 | ! Specifies code-inlining of fpvs function in WSM52D below. JM 20040507 |
|---|
| 52 | ! |
|---|
| 53 | CONTAINS |
|---|
| 54 | !=================================================================== |
|---|
| 55 | ! |
|---|
| 56 | SUBROUTINE wsm5(th, q, qc, qr, qi, qs & |
|---|
| 57 | ,den, pii, p, delz & |
|---|
| 58 | ,delt,g, cpd, cpv, rd, rv, t0c & |
|---|
| 59 | ,ep1, ep2, qmin & |
|---|
| 60 | ,XLS, XLV0, XLF0, den0, denr & |
|---|
| 61 | ,cliq,cice,psat & |
|---|
| 62 | ,rain, rainncv & |
|---|
| 63 | ,snow, snowncv & |
|---|
| 64 | ,sr & |
|---|
| 65 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 66 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 67 | ,its,ite, jts,jte, kts,kte & |
|---|
| 68 | ) |
|---|
| 69 | !------------------------------------------------------------------- |
|---|
| 70 | IMPLICIT NONE |
|---|
| 71 | !------------------------------------------------------------------- |
|---|
| 72 | ! |
|---|
| 73 | ! This code is a 5-class mixed ice microphyiscs scheme (WSM5) of the WRF |
|---|
| 74 | ! Single-Moment MicroPhyiscs (WSMMP). The WSMMP assumes that ice nuclei |
|---|
| 75 | ! number concentration is a function of temperature, and seperate assumption |
|---|
| 76 | ! is developed, in which ice crystal number concentration is a function |
|---|
| 77 | ! of ice amount. A theoretical background of the ice-microphysics and related |
|---|
| 78 | ! processes in the WSMMPs are described in Hong et al. (2004). |
|---|
| 79 | ! Production terms in the WSM6 scheme are described in Hong and Lim (2006). |
|---|
| 80 | ! All units are in m.k.s. and source/sink terms in kgkg-1s-1. |
|---|
| 81 | ! |
|---|
| 82 | ! WSM5 cloud scheme |
|---|
| 83 | ! |
|---|
| 84 | ! Coded by Song-You Hong (Yonsei Univ.) |
|---|
| 85 | ! Jimy Dudhia (NCAR) and Shu-Hua Chen (UC Davis) |
|---|
| 86 | ! Summer 2002 |
|---|
| 87 | ! |
|---|
| 88 | ! Implemented by Song-You Hong (Yonsei Univ.) and Jimy Dudhia (NCAR) |
|---|
| 89 | ! Summer 2003 |
|---|
| 90 | ! |
|---|
| 91 | ! Reference) Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev. |
|---|
| 92 | ! Rutledge, Hobbs (RH83, 1983) J. Atmos. Sci. |
|---|
| 93 | ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc. |
|---|
| 94 | ! |
|---|
| 95 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
|---|
| 96 | ims,ime, jms,jme, kms,kme , & |
|---|
| 97 | its,ite, jts,jte, kts,kte |
|---|
| 98 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 99 | INTENT(INOUT) :: & |
|---|
| 100 | th, & |
|---|
| 101 | q, & |
|---|
| 102 | qc, & |
|---|
| 103 | qi, & |
|---|
| 104 | qr, & |
|---|
| 105 | qs |
|---|
| 106 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 107 | INTENT(IN ) :: & |
|---|
| 108 | den, & |
|---|
| 109 | pii, & |
|---|
| 110 | p, & |
|---|
| 111 | delz |
|---|
| 112 | REAL, INTENT(IN ) :: delt, & |
|---|
| 113 | g, & |
|---|
| 114 | rd, & |
|---|
| 115 | rv, & |
|---|
| 116 | t0c, & |
|---|
| 117 | den0, & |
|---|
| 118 | cpd, & |
|---|
| 119 | cpv, & |
|---|
| 120 | ep1, & |
|---|
| 121 | ep2, & |
|---|
| 122 | qmin, & |
|---|
| 123 | XLS, & |
|---|
| 124 | XLV0, & |
|---|
| 125 | XLF0, & |
|---|
| 126 | cliq, & |
|---|
| 127 | cice, & |
|---|
| 128 | psat, & |
|---|
| 129 | denr |
|---|
| 130 | REAL, DIMENSION( ims:ime , jms:jme ), & |
|---|
| 131 | INTENT(INOUT) :: rain, & |
|---|
| 132 | rainncv, & |
|---|
| 133 | sr |
|---|
| 134 | |
|---|
| 135 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
|---|
| 136 | INTENT(INOUT) :: snow, & |
|---|
| 137 | snowncv |
|---|
| 138 | |
|---|
| 139 | ! LOCAL VAR |
|---|
| 140 | REAL, DIMENSION( its:ite , kts:kte ) :: t |
|---|
| 141 | REAL, DIMENSION( its:ite , kts:kte, 2 ) :: qci, qrs |
|---|
| 142 | INTEGER :: i,j,k |
|---|
| 143 | !------------------------------------------------------------------- |
|---|
| 144 | DO j=jts,jte |
|---|
| 145 | DO k=kts,kte |
|---|
| 146 | DO i=its,ite |
|---|
| 147 | t(i,k)=th(i,k,j)*pii(i,k,j) |
|---|
| 148 | qci(i,k,1) = qc(i,k,j) |
|---|
| 149 | qci(i,k,2) = qi(i,k,j) |
|---|
| 150 | qrs(i,k,1) = qr(i,k,j) |
|---|
| 151 | qrs(i,k,2) = qs(i,k,j) |
|---|
| 152 | ENDDO |
|---|
| 153 | ENDDO |
|---|
| 154 | CALL wsm52D(t, q(ims,kms,j), qci, qrs & |
|---|
| 155 | ,den(ims,kms,j) & |
|---|
| 156 | ,p(ims,kms,j), delz(ims,kms,j) & |
|---|
| 157 | ,delt,g, cpd, cpv, rd, rv, t0c & |
|---|
| 158 | ,ep1, ep2, qmin & |
|---|
| 159 | ,XLS, XLV0, XLF0, den0, denr & |
|---|
| 160 | ,cliq,cice,psat & |
|---|
| 161 | ,j & |
|---|
| 162 | ,rain(ims,j),rainncv(ims,j) & |
|---|
| 163 | ,sr(ims,j) & |
|---|
| 164 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 165 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 166 | ,its,ite, jts,jte, kts,kte & |
|---|
| 167 | ,snow(ims,j),snowncv(ims,j) & |
|---|
| 168 | ) |
|---|
| 169 | DO K=kts,kte |
|---|
| 170 | DO I=its,ite |
|---|
| 171 | th(i,k,j)=t(i,k)/pii(i,k,j) |
|---|
| 172 | qc(i,k,j) = qci(i,k,1) |
|---|
| 173 | qi(i,k,j) = qci(i,k,2) |
|---|
| 174 | qr(i,k,j) = qrs(i,k,1) |
|---|
| 175 | qs(i,k,j) = qrs(i,k,2) |
|---|
| 176 | ENDDO |
|---|
| 177 | ENDDO |
|---|
| 178 | ENDDO |
|---|
| 179 | END SUBROUTINE wsm5 |
|---|
| 180 | !=================================================================== |
|---|
| 181 | ! |
|---|
| 182 | SUBROUTINE wsm52D(t, q, qci, qrs, den, p, delz & |
|---|
| 183 | ,delt,g, cpd, cpv, rd, rv, t0c & |
|---|
| 184 | ,ep1, ep2, qmin & |
|---|
| 185 | ,XLS, XLV0, XLF0, den0, denr & |
|---|
| 186 | ,cliq,cice,psat & |
|---|
| 187 | ,lat & |
|---|
| 188 | ,rain,rainncv & |
|---|
| 189 | ,sr & |
|---|
| 190 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 191 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 192 | ,its,ite, jts,jte, kts,kte & |
|---|
| 193 | ,snow,snowncv & |
|---|
| 194 | ) |
|---|
| 195 | !------------------------------------------------------------------- |
|---|
| 196 | IMPLICIT NONE |
|---|
| 197 | !------------------------------------------------------------------- |
|---|
| 198 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
|---|
| 199 | ims,ime, jms,jme, kms,kme , & |
|---|
| 200 | its,ite, jts,jte, kts,kte, & |
|---|
| 201 | lat |
|---|
| 202 | REAL, DIMENSION( its:ite , kts:kte ), & |
|---|
| 203 | INTENT(INOUT) :: & |
|---|
| 204 | t |
|---|
| 205 | REAL, DIMENSION( its:ite , kts:kte, 2 ), & |
|---|
| 206 | INTENT(INOUT) :: & |
|---|
| 207 | qci, & |
|---|
| 208 | qrs |
|---|
| 209 | REAL, DIMENSION( ims:ime , kms:kme ), & |
|---|
| 210 | INTENT(INOUT) :: & |
|---|
| 211 | q |
|---|
| 212 | REAL, DIMENSION( ims:ime , kms:kme ), & |
|---|
| 213 | INTENT(IN ) :: & |
|---|
| 214 | den, & |
|---|
| 215 | p, & |
|---|
| 216 | delz |
|---|
| 217 | REAL, INTENT(IN ) :: delt, & |
|---|
| 218 | g, & |
|---|
| 219 | cpd, & |
|---|
| 220 | cpv, & |
|---|
| 221 | t0c, & |
|---|
| 222 | den0, & |
|---|
| 223 | rd, & |
|---|
| 224 | rv, & |
|---|
| 225 | ep1, & |
|---|
| 226 | ep2, & |
|---|
| 227 | qmin, & |
|---|
| 228 | XLS, & |
|---|
| 229 | XLV0, & |
|---|
| 230 | XLF0, & |
|---|
| 231 | cliq, & |
|---|
| 232 | cice, & |
|---|
| 233 | psat, & |
|---|
| 234 | denr |
|---|
| 235 | REAL, DIMENSION( ims:ime ), & |
|---|
| 236 | INTENT(INOUT) :: rain, & |
|---|
| 237 | rainncv, & |
|---|
| 238 | sr |
|---|
| 239 | |
|---|
| 240 | REAL, DIMENSION( ims:ime ), OPTIONAL, & |
|---|
| 241 | INTENT(INOUT) :: snow, & |
|---|
| 242 | snowncv |
|---|
| 243 | |
|---|
| 244 | ! LOCAL VAR |
|---|
| 245 | REAL, DIMENSION( its:ite , kts:kte , 2) :: & |
|---|
| 246 | rh, qs, rslope, rslope2, rslope3, rslopeb, & |
|---|
| 247 | falk, fall, work1 |
|---|
| 248 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 249 | falkc, work1c, work2c, fallc |
|---|
| 250 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 251 | praut, psaut, prevp, psdep, pracw, psaci, psacw, & |
|---|
| 252 | pigen, pidep, pcond, xl, cpm, work2, psmlt, psevp, denfac, xni,& |
|---|
| 253 | n0sfac |
|---|
| 254 | ! variables for optimization |
|---|
| 255 | REAL, DIMENSION( its:ite ) :: tvec1 |
|---|
| 256 | INTEGER, DIMENSION( its:ite ) :: mstep, numdt |
|---|
| 257 | REAL, DIMENSION(its:ite) :: rmstep |
|---|
| 258 | REAL dtcldden, rdelz, rdtcld |
|---|
| 259 | LOGICAL, DIMENSION( its:ite ) :: flgcld |
|---|
| 260 | REAL :: pi, & |
|---|
| 261 | cpmcal, xlcal, lamdar, lamdas, diffus, & |
|---|
| 262 | viscos, xka, venfac, conden, diffac, & |
|---|
| 263 | x, y, z, a, b, c, d, e, & |
|---|
| 264 | qdt, holdrr, holdrs, supcol, pvt, & |
|---|
| 265 | coeres, supsat, dtcld, xmi, eacrs, satdt, & |
|---|
| 266 | vt2i,vt2s,acrfac, & |
|---|
| 267 | qimax, diameter, xni0, roqi0, & |
|---|
| 268 | fallsum, fallsum_qsi, xlwork2, factor, source, & |
|---|
| 269 | value, xlf, pfrzdtc, pfrzdtr, supice |
|---|
| 270 | REAL :: temp |
|---|
| 271 | REAL :: holdc, holdci |
|---|
| 272 | INTEGER :: i, j, k, mstepmax, & |
|---|
| 273 | iprt, latd, lond, loop, loops, ifsat, n |
|---|
| 274 | ! Temporaries used for inlining fpvs function |
|---|
| 275 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
|---|
| 276 | ! |
|---|
| 277 | !================================================================= |
|---|
| 278 | ! compute internal functions |
|---|
| 279 | ! |
|---|
| 280 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
|---|
| 281 | xlcal(x) = xlv0-xlv1*(x-t0c) |
|---|
| 282 | !---------------------------------------------------------------- |
|---|
| 283 | ! size distributions: (x=mixing ratio, y=air density): |
|---|
| 284 | ! valid for mixing ratio > 1.e-9 kg/kg. |
|---|
| 285 | ! |
|---|
| 286 | ! Optimizatin : A**B => exp(log(A)*(B)) |
|---|
| 287 | lamdar(x,y)= sqrt(sqrt(pidn0r/(x*y))) ! (pidn0r/(x*y))**.25 |
|---|
| 288 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
|---|
| 289 | ! |
|---|
| 290 | !---------------------------------------------------------------- |
|---|
| 291 | ! diffus: diffusion coefficient of the water vapor |
|---|
| 292 | ! viscos: kinematic viscosity(m2s-1) |
|---|
| 293 | ! diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y |
|---|
| 294 | ! viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y |
|---|
| 295 | ! xka(x,y) = 1.414e3*viscos(x,y)*y |
|---|
| 296 | ! diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
|---|
| 297 | ! venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & |
|---|
| 298 | ! /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) |
|---|
| 299 | ! conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
|---|
| 300 | ! |
|---|
| 301 | ! |
|---|
| 302 | pi = 4. * atan(1.) |
|---|
| 303 | ! |
|---|
| 304 | !---------------------------------------------------------------- |
|---|
| 305 | ! paddint 0 for negative values generated by dynamics |
|---|
| 306 | ! |
|---|
| 307 | do k = kts, kte |
|---|
| 308 | do i = its, ite |
|---|
| 309 | qci(i,k,1) = max(qci(i,k,1),0.0) |
|---|
| 310 | qrs(i,k,1) = max(qrs(i,k,1),0.0) |
|---|
| 311 | qci(i,k,2) = max(qci(i,k,2),0.0) |
|---|
| 312 | qrs(i,k,2) = max(qrs(i,k,2),0.0) |
|---|
| 313 | enddo |
|---|
| 314 | enddo |
|---|
| 315 | ! |
|---|
| 316 | !---------------------------------------------------------------- |
|---|
| 317 | ! latent heat for phase changes and heat capacity. neglect the |
|---|
| 318 | ! changes during microphysical process calculation |
|---|
| 319 | ! emanuel(1994) |
|---|
| 320 | ! |
|---|
| 321 | do k = kts, kte |
|---|
| 322 | do i = its, ite |
|---|
| 323 | cpm(i,k) = cpmcal(q(i,k)) |
|---|
| 324 | xl(i,k) = xlcal(t(i,k)) |
|---|
| 325 | enddo |
|---|
| 326 | enddo |
|---|
| 327 | ! |
|---|
| 328 | !---------------------------------------------------------------- |
|---|
| 329 | ! compute the minor time steps. |
|---|
| 330 | ! |
|---|
| 331 | loops = max(nint(delt/dtcldcr),1) |
|---|
| 332 | dtcld = delt/loops |
|---|
| 333 | if(delt.le.dtcldcr) dtcld = delt |
|---|
| 334 | ! |
|---|
| 335 | do loop = 1,loops |
|---|
| 336 | ! |
|---|
| 337 | !---------------------------------------------------------------- |
|---|
| 338 | ! initialize the large scale variables |
|---|
| 339 | ! |
|---|
| 340 | do i = its, ite |
|---|
| 341 | mstep(i) = 1 |
|---|
| 342 | flgcld(i) = .true. |
|---|
| 343 | enddo |
|---|
| 344 | ! |
|---|
| 345 | ! do k = kts, kte |
|---|
| 346 | ! do i = its, ite |
|---|
| 347 | ! denfac(i,k) = sqrt(den0/den(i,k)) |
|---|
| 348 | ! enddo |
|---|
| 349 | ! enddo |
|---|
| 350 | do k = kts, kte |
|---|
| 351 | CALL VREC( tvec1(its), den(its,k), ite-its+1) |
|---|
| 352 | do i = its, ite |
|---|
| 353 | tvec1(i) = tvec1(i)*den0 |
|---|
| 354 | enddo |
|---|
| 355 | CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
|---|
| 356 | enddo |
|---|
| 357 | ! |
|---|
| 358 | ! Inline expansion for fpvs |
|---|
| 359 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 360 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 361 | hsub = xls |
|---|
| 362 | hvap = xlv0 |
|---|
| 363 | cvap = cpv |
|---|
| 364 | ttp=t0c+0.01 |
|---|
| 365 | dldt=cvap-cliq |
|---|
| 366 | xa=-dldt/rv |
|---|
| 367 | xb=xa+hvap/(rv*ttp) |
|---|
| 368 | dldti=cvap-cice |
|---|
| 369 | xai=-dldti/rv |
|---|
| 370 | xbi=xai+hsub/(rv*ttp) |
|---|
| 371 | do k = kts, kte |
|---|
| 372 | do i = its, ite |
|---|
| 373 | tr=ttp/t(i,k) |
|---|
| 374 | qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
|---|
| 375 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
|---|
| 376 | qs(i,k,1) = max(qs(i,k,1),qmin) |
|---|
| 377 | rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin) |
|---|
| 378 | tr=ttp/t(i,k) |
|---|
| 379 | if(t(i,k).lt.ttp) then |
|---|
| 380 | qs(i,k,2)=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) |
|---|
| 381 | else |
|---|
| 382 | qs(i,k,2)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
|---|
| 383 | endif |
|---|
| 384 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
|---|
| 385 | qs(i,k,2) = max(qs(i,k,2),qmin) |
|---|
| 386 | rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin) |
|---|
| 387 | enddo |
|---|
| 388 | enddo |
|---|
| 389 | ! |
|---|
| 390 | !---------------------------------------------------------------- |
|---|
| 391 | ! initialize the variables for microphysical physics |
|---|
| 392 | ! |
|---|
| 393 | ! |
|---|
| 394 | do k = kts, kte |
|---|
| 395 | do i = its, ite |
|---|
| 396 | prevp(i,k) = 0. |
|---|
| 397 | psdep(i,k) = 0. |
|---|
| 398 | praut(i,k) = 0. |
|---|
| 399 | psaut(i,k) = 0. |
|---|
| 400 | pracw(i,k) = 0. |
|---|
| 401 | psaci(i,k) = 0. |
|---|
| 402 | psacw(i,k) = 0. |
|---|
| 403 | pigen(i,k) = 0. |
|---|
| 404 | pidep(i,k) = 0. |
|---|
| 405 | pcond(i,k) = 0. |
|---|
| 406 | psmlt(i,k) = 0. |
|---|
| 407 | psevp(i,k) = 0. |
|---|
| 408 | falk(i,k,1) = 0. |
|---|
| 409 | falk(i,k,2) = 0. |
|---|
| 410 | fall(i,k,1) = 0. |
|---|
| 411 | fall(i,k,2) = 0. |
|---|
| 412 | fallc(i,k) = 0. |
|---|
| 413 | falkc(i,k) = 0. |
|---|
| 414 | xni(i,k) = 1.e3 |
|---|
| 415 | enddo |
|---|
| 416 | enddo |
|---|
| 417 | ! |
|---|
| 418 | !---------------------------------------------------------------- |
|---|
| 419 | ! compute the fallout term: |
|---|
| 420 | ! first, vertical terminal velosity for minor loops |
|---|
| 421 | ! |
|---|
| 422 | do k = kts, kte |
|---|
| 423 | do i = its, ite |
|---|
| 424 | supcol = t0c-t(i,k) |
|---|
| 425 | !--------------------------------------------------------------- |
|---|
| 426 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
|---|
| 427 | !--------------------------------------------------------------- |
|---|
| 428 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
|---|
| 429 | if(qrs(i,k,1).le.qcrmin)then |
|---|
| 430 | rslope(i,k,1) = rslopermax |
|---|
| 431 | rslopeb(i,k,1) = rsloperbmax |
|---|
| 432 | rslope2(i,k,1) = rsloper2max |
|---|
| 433 | rslope3(i,k,1) = rsloper3max |
|---|
| 434 | else |
|---|
| 435 | rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k)) |
|---|
| 436 | rslopeb(i,k,1) = exp(log(rslope(i,k,1))*(bvtr)) |
|---|
| 437 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
|---|
| 438 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
|---|
| 439 | endif |
|---|
| 440 | if(qrs(i,k,2).le.qcrmin)then |
|---|
| 441 | rslope(i,k,2) = rslopesmax |
|---|
| 442 | rslopeb(i,k,2) = rslopesbmax |
|---|
| 443 | rslope2(i,k,2) = rslopes2max |
|---|
| 444 | rslope3(i,k,2) = rslopes3max |
|---|
| 445 | else |
|---|
| 446 | rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k)) |
|---|
| 447 | rslopeb(i,k,2) = exp(log(rslope(i,k,2))*(bvts)) |
|---|
| 448 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
|---|
| 449 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
|---|
| 450 | endif |
|---|
| 451 | !------------------------------------------------------------- |
|---|
| 452 | ! Ni: ice crystal number concentraiton [HDC 5c] |
|---|
| 453 | !------------------------------------------------------------- |
|---|
| 454 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
|---|
| 455 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
|---|
| 456 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
|---|
| 457 | temp = sqrt(sqrt(temp*temp*temp)) |
|---|
| 458 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
|---|
| 459 | enddo |
|---|
| 460 | enddo |
|---|
| 461 | ! |
|---|
| 462 | mstepmax = 1 |
|---|
| 463 | numdt = 1 |
|---|
| 464 | do k = kte, kts, -1 |
|---|
| 465 | do i = its, ite |
|---|
| 466 | work1(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k)/delz(i,k) |
|---|
| 467 | work1(i,k,2) = pvts*rslopeb(i,k,2)*denfac(i,k)/delz(i,k) |
|---|
| 468 | numdt(i) = max(nint(max(work1(i,k,1),work1(i,k,2))*dtcld+.5),1) |
|---|
| 469 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
|---|
| 470 | enddo |
|---|
| 471 | enddo |
|---|
| 472 | do i = its, ite |
|---|
| 473 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
|---|
| 474 | rmstep(i) = 1./mstep(i) |
|---|
| 475 | enddo |
|---|
| 476 | ! |
|---|
| 477 | do n = 1, mstepmax |
|---|
| 478 | k = kte |
|---|
| 479 | do i = its, ite |
|---|
| 480 | if(n.le.mstep(i)) then |
|---|
| 481 | ! falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
|---|
| 482 | ! falk(i,k,2) = den(i,k)*qrs(i,k,2)*work1(i,k,2)/mstep(i) |
|---|
| 483 | falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)*rmstep(i) |
|---|
| 484 | falk(i,k,2) = den(i,k)*qrs(i,k,2)*work1(i,k,2)*rmstep(i) |
|---|
| 485 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
|---|
| 486 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
|---|
| 487 | ! qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcld/den(i,k),0.) |
|---|
| 488 | ! qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcld/den(i,k),0.) |
|---|
| 489 | dtcldden = dtcld/den(i,k) |
|---|
| 490 | qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcldden,0.) |
|---|
| 491 | qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcldden,0.) |
|---|
| 492 | endif |
|---|
| 493 | enddo |
|---|
| 494 | do k = kte-1, kts, -1 |
|---|
| 495 | do i = its, ite |
|---|
| 496 | if(n.le.mstep(i)) then |
|---|
| 497 | ! falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
|---|
| 498 | ! falk(i,k,2) = den(i,k)*qrs(i,k,2)*work1(i,k,2)/mstep(i) |
|---|
| 499 | falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)*rmstep(i) |
|---|
| 500 | falk(i,k,2) = den(i,k)*qrs(i,k,2)*work1(i,k,2)*rmstep(i) |
|---|
| 501 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
|---|
| 502 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
|---|
| 503 | ! qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) & |
|---|
| 504 | ! *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
|---|
| 505 | ! qrs(i,k,2) = max(qrs(i,k,2)-(falk(i,k,2)-falk(i,k+1,2) & |
|---|
| 506 | ! *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
|---|
| 507 | dtcldden = dtcld/den(i,k) |
|---|
| 508 | rdelz = 1./delz(i,k) |
|---|
| 509 | qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) & |
|---|
| 510 | *delz(i,k+1)*rdelz)*dtcldden,0.) |
|---|
| 511 | qrs(i,k,2) = max(qrs(i,k,2)-(falk(i,k,2)-falk(i,k+1,2) & |
|---|
| 512 | *delz(i,k+1)*rdelz)*dtcldden,0.) |
|---|
| 513 | endif |
|---|
| 514 | enddo |
|---|
| 515 | enddo |
|---|
| 516 | do k = kte, kts, -1 |
|---|
| 517 | do i = its, ite |
|---|
| 518 | if(n.le.mstep(i)) then |
|---|
| 519 | if(t(i,k).gt.t0c.and.qrs(i,k,2).gt.0.) then |
|---|
| 520 | !---------------------------------------------------------------- |
|---|
| 521 | ! psmlt: melting of snow [HL A33] [RH83 A25] |
|---|
| 522 | ! (T>T0: S->R) |
|---|
| 523 | !---------------------------------------------------------------- |
|---|
| 524 | xlf = xlf0 |
|---|
| 525 | ! work2(i,k)= venfac(p(i,k),t(i,k),den(i,k)) |
|---|
| 526 | work2(i,k)= (exp(log(((1.496e-6*((t(i,k))*sqrt(t(i,k))) & |
|---|
| 527 | /((t(i,k))+120.)/(den(i,k)))/(8.794e-5 & |
|---|
| 528 | *exp(log(t(i,k))*(1.81))/p(i,k)))) & |
|---|
| 529 | *((.3333333)))/sqrt((1.496e-6*((t(i,k)) & |
|---|
| 530 | *sqrt(t(i,k)))/((t(i,k))+120.)/(den(i,k)))) & |
|---|
| 531 | *sqrt(sqrt(den0/(den(i,k))))) |
|---|
| 532 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
|---|
| 533 | ! psmlt(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*pi/2. & |
|---|
| 534 | ! *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 & |
|---|
| 535 | ! *work2(i,k)*coeres) |
|---|
| 536 | psmlt(i,k) = & |
|---|
| 537 | (1.414e3*(1.496e-6 * ((t(i,k))*sqrt(t(i,k))) /((t(i,k))+120.)/(den(i,k)) )*(den(i,k)))& |
|---|
| 538 | /xlf*(t0c-t(i,k))*pi/2. & |
|---|
| 539 | *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 & |
|---|
| 540 | *work2(i,k)*coeres) |
|---|
| 541 | psmlt(i,k) = min(max(psmlt(i,k)*dtcld/mstep(i), & |
|---|
| 542 | -qrs(i,k,2)/mstep(i)),0.) |
|---|
| 543 | qrs(i,k,2) = qrs(i,k,2) + psmlt(i,k) |
|---|
| 544 | qrs(i,k,1) = qrs(i,k,1) - psmlt(i,k) |
|---|
| 545 | t(i,k) = t(i,k) + xlf/cpm(i,k)*psmlt(i,k) |
|---|
| 546 | endif |
|---|
| 547 | endif |
|---|
| 548 | enddo |
|---|
| 549 | enddo |
|---|
| 550 | enddo |
|---|
| 551 | !--------------------------------------------------------------- |
|---|
| 552 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
|---|
| 553 | !--------------------------------------------------------------- |
|---|
| 554 | mstepmax = 1 |
|---|
| 555 | mstep = 1 |
|---|
| 556 | numdt = 1 |
|---|
| 557 | do k = kte, kts, -1 |
|---|
| 558 | do i = its, ite |
|---|
| 559 | if(qci(i,k,2).le.0.) then |
|---|
| 560 | work2c(i,k) = 0. |
|---|
| 561 | else |
|---|
| 562 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
|---|
| 563 | ! diameter = min(dicon * sqrt(xmi),dimax) |
|---|
| 564 | diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25) |
|---|
| 565 | work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) |
|---|
| 566 | work2c(i,k) = work1c(i,k)/delz(i,k) |
|---|
| 567 | endif |
|---|
| 568 | numdt(i) = max(nint(work2c(i,k)*dtcld+.5),1) |
|---|
| 569 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
|---|
| 570 | enddo |
|---|
| 571 | enddo |
|---|
| 572 | do i = its, ite |
|---|
| 573 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
|---|
| 574 | enddo |
|---|
| 575 | ! |
|---|
| 576 | do n = 1, mstepmax |
|---|
| 577 | k = kte |
|---|
| 578 | do i = its, ite |
|---|
| 579 | if(n.le.mstep(i)) then |
|---|
| 580 | falkc(i,k) = den(i,k)*qci(i,k,2)*work2c(i,k)/mstep(i) |
|---|
| 581 | holdc = falkc(i,k) |
|---|
| 582 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
|---|
| 583 | holdci = qci(i,k,2) |
|---|
| 584 | qci(i,k,2) = max(qci(i,k,2)-falkc(i,k)*dtcld/den(i,k),0.) |
|---|
| 585 | endif |
|---|
| 586 | enddo |
|---|
| 587 | do k = kte-1, kts, -1 |
|---|
| 588 | do i = its, ite |
|---|
| 589 | if(n.le.mstep(i)) then |
|---|
| 590 | falkc(i,k) = den(i,k)*qci(i,k,2)*work2c(i,k)/mstep(i) |
|---|
| 591 | holdc = falkc(i,k) |
|---|
| 592 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
|---|
| 593 | holdci = qci(i,k,2) |
|---|
| 594 | qci(i,k,2) = max(qci(i,k,2)-(falkc(i,k)-falkc(i,k+1) & |
|---|
| 595 | *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
|---|
| 596 | endif |
|---|
| 597 | enddo |
|---|
| 598 | enddo |
|---|
| 599 | enddo |
|---|
| 600 | ! |
|---|
| 601 | ! |
|---|
| 602 | !---------------------------------------------------------------- |
|---|
| 603 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
|---|
| 604 | ! |
|---|
| 605 | do i = its, ite |
|---|
| 606 | fallsum = fall(i,1,1)+fall(i,1,2)+fallc(i,1) |
|---|
| 607 | fallsum_qsi = fall(i,1,2)+fallc(i,1) |
|---|
| 608 | rainncv(i) = 0. |
|---|
| 609 | if(fallsum.gt.0.) then |
|---|
| 610 | rainncv(i) = fallsum*delz(i,1)/denr*dtcld*1000. |
|---|
| 611 | rain(i) = fallsum*delz(i,1)/denr*dtcld*1000. + rain(i) |
|---|
| 612 | endif |
|---|
| 613 | IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN |
|---|
| 614 | snowncv(i) = 0. |
|---|
| 615 | if(fallsum_qsi.gt.0.) then |
|---|
| 616 | snowncv(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. |
|---|
| 617 | snow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snow(i) |
|---|
| 618 | endif |
|---|
| 619 | ENDIF |
|---|
| 620 | sr(i) = 0. |
|---|
| 621 | if(fallsum.gt.0.)sr(i)=fallsum_qsi*delz(i,kts)/denr*dtcld*1000./(rainncv(i)+1.e-12) |
|---|
| 622 | enddo |
|---|
| 623 | ! |
|---|
| 624 | !--------------------------------------------------------------- |
|---|
| 625 | ! pimlt: instantaneous melting of cloud ice [HL A47] [RH83 A28] |
|---|
| 626 | ! (T>T0: I->C) |
|---|
| 627 | !--------------------------------------------------------------- |
|---|
| 628 | do k = kts, kte |
|---|
| 629 | do i = its, ite |
|---|
| 630 | supcol = t0c-t(i,k) |
|---|
| 631 | xlf = xls-xl(i,k) |
|---|
| 632 | if(supcol.lt.0.) xlf = xlf0 |
|---|
| 633 | if(supcol.lt.0.and.qci(i,k,2).gt.0.) then |
|---|
| 634 | qci(i,k,1) = qci(i,k,1) + qci(i,k,2) |
|---|
| 635 | t(i,k) = t(i,k) - xlf/cpm(i,k)*qci(i,k,2) |
|---|
| 636 | qci(i,k,2) = 0. |
|---|
| 637 | endif |
|---|
| 638 | !--------------------------------------------------------------- |
|---|
| 639 | ! pihmf: homogeneous freezing of cloud water below -40c [HL A45] |
|---|
| 640 | ! (T<-40C: C->I) |
|---|
| 641 | !--------------------------------------------------------------- |
|---|
| 642 | if(supcol.gt.40..and.qci(i,k,1).gt.0.) then |
|---|
| 643 | qci(i,k,2) = qci(i,k,2) + qci(i,k,1) |
|---|
| 644 | t(i,k) = t(i,k) + xlf/cpm(i,k)*qci(i,k,1) |
|---|
| 645 | qci(i,k,1) = 0. |
|---|
| 646 | endif |
|---|
| 647 | !--------------------------------------------------------------- |
|---|
| 648 | ! pihtf: heterogeneous freezing of cloud water [HL A44] |
|---|
| 649 | ! (T0>T>-40C: C->I) |
|---|
| 650 | !--------------------------------------------------------------- |
|---|
| 651 | if(supcol.gt.0..and.qci(i,k,1).gt.0.) then |
|---|
| 652 | ! pfrzdtc = min(pfrz1*(exp(pfrz2*supcol)-1.) & |
|---|
| 653 | ! *den(i,k)/denr/xncr*qci(i,k,1)**2*dtcld,qci(i,k,1)) |
|---|
| 654 | pfrzdtc = min(pfrz1*(exp(pfrz2*supcol)-1.) & |
|---|
| 655 | *den(i,k)/denr/xncr*qci(i,k,1)*qci(i,k,1)*dtcld,qci(i,k,1)) |
|---|
| 656 | qci(i,k,2) = qci(i,k,2) + pfrzdtc |
|---|
| 657 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtc |
|---|
| 658 | qci(i,k,1) = qci(i,k,1)-pfrzdtc |
|---|
| 659 | endif |
|---|
| 660 | !--------------------------------------------------------------- |
|---|
| 661 | ! psfrz: freezing of rain water [HL A20] [LFO 45] |
|---|
| 662 | ! (T<T0, R->S) |
|---|
| 663 | !--------------------------------------------------------------- |
|---|
| 664 | if(supcol.gt.0..and.qrs(i,k,1).gt.0.) then |
|---|
| 665 | ! pfrzdtr = min(20.*pi**2*pfrz1*n0r*denr/den(i,k) & |
|---|
| 666 | ! *(exp(pfrz2*supcol)-1.)*rslope(i,k,1)**7*dtcld, & |
|---|
| 667 | ! qrs(i,k,1)) |
|---|
| 668 | temp = rslope(i,k,1) |
|---|
| 669 | temp = temp*temp*temp*temp*temp*temp*temp |
|---|
| 670 | pfrzdtr = min(20.*(pi*pi)*pfrz1*n0r*denr/den(i,k) & |
|---|
| 671 | *(exp(pfrz2*supcol)-1.)*temp*dtcld, & |
|---|
| 672 | qrs(i,k,1)) |
|---|
| 673 | qrs(i,k,2) = qrs(i,k,2) + pfrzdtr |
|---|
| 674 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtr |
|---|
| 675 | qrs(i,k,1) = qrs(i,k,1)-pfrzdtr |
|---|
| 676 | endif |
|---|
| 677 | enddo |
|---|
| 678 | enddo |
|---|
| 679 | ! |
|---|
| 680 | !---------------------------------------------------------------- |
|---|
| 681 | ! rsloper: reverse of the slope parameter of the rain(m) |
|---|
| 682 | ! xka: thermal conductivity of air(jm-1s-1k-1) |
|---|
| 683 | ! work1: the thermodynamic term in the denominator associated with |
|---|
| 684 | ! heat conduction and vapor diffusion |
|---|
| 685 | ! (ry88, y93, h85) |
|---|
| 686 | ! work2: parameter associated with the ventilation effects(y93) |
|---|
| 687 | ! |
|---|
| 688 | do k = kts, kte |
|---|
| 689 | do i = its, ite |
|---|
| 690 | if(qrs(i,k,1).le.qcrmin)then |
|---|
| 691 | rslope(i,k,1) = rslopermax |
|---|
| 692 | rslopeb(i,k,1) = rsloperbmax |
|---|
| 693 | rslope2(i,k,1) = rsloper2max |
|---|
| 694 | rslope3(i,k,1) = rsloper3max |
|---|
| 695 | else |
|---|
| 696 | ! rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k)) |
|---|
| 697 | rslope(i,k,1) = 1./(sqrt(sqrt(pidn0r/((qrs(i,k,1))*(den(i,k)))))) |
|---|
| 698 | rslopeb(i,k,1) = exp(log(rslope(i,k,1))*(bvtr)) |
|---|
| 699 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
|---|
| 700 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
|---|
| 701 | endif |
|---|
| 702 | if(qrs(i,k,2).le.qcrmin)then |
|---|
| 703 | rslope(i,k,2) = rslopesmax |
|---|
| 704 | rslopeb(i,k,2) = rslopesbmax |
|---|
| 705 | rslope2(i,k,2) = rslopes2max |
|---|
| 706 | rslope3(i,k,2) = rslopes3max |
|---|
| 707 | else |
|---|
| 708 | ! rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k)) |
|---|
| 709 | rslope(i,k,2) = 1./(sqrt(sqrt(pidn0s*(n0sfac(i,k))/((qrs(i,k,2))*(den(i,k)))))) |
|---|
| 710 | rslopeb(i,k,2) = exp(log(rslope(i,k,2))*(bvts)) |
|---|
| 711 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
|---|
| 712 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
|---|
| 713 | endif |
|---|
| 714 | enddo |
|---|
| 715 | enddo |
|---|
| 716 | ! |
|---|
| 717 | do k = kts, kte |
|---|
| 718 | do i = its, ite |
|---|
| 719 | ! work1(i,k,1) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k,1)) |
|---|
| 720 | work1(i,k,1) = & |
|---|
| 721 | ((((den(i,k))*(xl(i,k))*(xl(i,k))) * ((t(i,k))+120.) * (den(i,k))) & |
|---|
| 722 | / & |
|---|
| 723 | ( 1.414e3 * (1.496e-6 * ((t(i,k))*sqrt(t(i,k)))) * (den(i,k)) * & |
|---|
| 724 | (rv*(t(i,k))*(t(i,k))))) & |
|---|
| 725 | + & |
|---|
| 726 | p(i,k) / ( (qs(i,k,1)) * ( 8.794e-5 * exp(log(t(i,k))*(1.81)) ) ) |
|---|
| 727 | ! work1(i,k,2) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k,2)) |
|---|
| 728 | work1(i,k,2) = & |
|---|
| 729 | ( & |
|---|
| 730 | (((den(i,k))*(xls)*(xls))*((t(i,k))+120.)*(den(i,k))) & |
|---|
| 731 | / & |
|---|
| 732 | ( & |
|---|
| 733 | 1.414e3 * (1.496e-6 * ((t(i,k))*sqrt(t(i,k)))) * (den(i,k)) * & |
|---|
| 734 | (rv*(t(i,k))*(t(i,k))) & |
|---|
| 735 | ) & |
|---|
| 736 | + & |
|---|
| 737 | p(i,k) & |
|---|
| 738 | / & |
|---|
| 739 | ( qs(i,k,2) * (8.794e-5 * exp(log(t(i,k))*(1.81)))) & |
|---|
| 740 | ) |
|---|
| 741 | ! work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
|---|
| 742 | work2(i,k) = & |
|---|
| 743 | ( & |
|---|
| 744 | exp(.3333333*log( & |
|---|
| 745 | ((1.496e-6 * ((t(i,k))*sqrt(t(i,k))))*p(i,k)) & |
|---|
| 746 | / & |
|---|
| 747 | (((t(i,k))+120.)*den(i,k)*(8.794e-5 * exp(log(t(i,k))*(1.81)))) & |
|---|
| 748 | )) & |
|---|
| 749 | * & |
|---|
| 750 | sqrt(sqrt(den0/(den(i,k)))) & |
|---|
| 751 | ) & |
|---|
| 752 | / & |
|---|
| 753 | sqrt( & |
|---|
| 754 | (1.496e-6 * ((t(i,k))*sqrt(t(i,k)))) & |
|---|
| 755 | / & |
|---|
| 756 | ( & |
|---|
| 757 | ((t(i,k))+120.) * den(i,k) & |
|---|
| 758 | ) & |
|---|
| 759 | ) |
|---|
| 760 | ENDDO |
|---|
| 761 | ENDDO |
|---|
| 762 | ! |
|---|
| 763 | !=============================================================== |
|---|
| 764 | ! |
|---|
| 765 | ! warm rain processes |
|---|
| 766 | ! |
|---|
| 767 | ! - follows the processes in RH83 and LFO except for autoconcersion |
|---|
| 768 | ! |
|---|
| 769 | !=============================================================== |
|---|
| 770 | ! |
|---|
| 771 | do k = kts, kte |
|---|
| 772 | do i = its, ite |
|---|
| 773 | supsat = max(q(i,k),qmin)-qs(i,k,1) |
|---|
| 774 | satdt = supsat/dtcld |
|---|
| 775 | !--------------------------------------------------------------- |
|---|
| 776 | ! praut: auto conversion rate from cloud to rain [HDC 16] |
|---|
| 777 | ! (C->R) |
|---|
| 778 | !--------------------------------------------------------------- |
|---|
| 779 | if(qci(i,k,1).gt.qc0) then |
|---|
| 780 | praut(i,k) = qck1*exp(log(qci(i,k,1))*((7./3.))) |
|---|
| 781 | praut(i,k) = min(praut(i,k),qci(i,k,1)/dtcld) |
|---|
| 782 | endif |
|---|
| 783 | !--------------------------------------------------------------- |
|---|
| 784 | ! pracw: accretion of cloud water by rain [HL A40] [LFO 51] |
|---|
| 785 | ! (C->R) |
|---|
| 786 | !--------------------------------------------------------------- |
|---|
| 787 | if(qrs(i,k,1).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
|---|
| 788 | pracw(i,k) = min(pacrr*rslope3(i,k,1)*rslopeb(i,k,1) & |
|---|
| 789 | *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld) |
|---|
| 790 | endif |
|---|
| 791 | !--------------------------------------------------------------- |
|---|
| 792 | ! prevp: evaporation/condensation rate of rain [HDC 14] |
|---|
| 793 | ! (V->R or R->V) |
|---|
| 794 | !--------------------------------------------------------------- |
|---|
| 795 | if(qrs(i,k,1).gt.0.) then |
|---|
| 796 | coeres = rslope2(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1)) |
|---|
| 797 | prevp(i,k) = (rh(i,k,1)-1.)*(precr1*rslope2(i,k,1) & |
|---|
| 798 | +precr2*work2(i,k)*coeres)/work1(i,k,1) |
|---|
| 799 | if(prevp(i,k).lt.0.) then |
|---|
| 800 | prevp(i,k) = max(prevp(i,k),-qrs(i,k,1)/dtcld) |
|---|
| 801 | prevp(i,k) = max(prevp(i,k),satdt/2) |
|---|
| 802 | else |
|---|
| 803 | prevp(i,k) = min(prevp(i,k),satdt/2) |
|---|
| 804 | endif |
|---|
| 805 | endif |
|---|
| 806 | enddo |
|---|
| 807 | enddo |
|---|
| 808 | ! |
|---|
| 809 | !=============================================================== |
|---|
| 810 | ! |
|---|
| 811 | ! cold rain processes |
|---|
| 812 | ! |
|---|
| 813 | ! - follows the revised ice microphysics processes in HDC |
|---|
| 814 | ! - the processes same as in RH83 and RH84 and LFO behave |
|---|
| 815 | ! following ice crystal hapits defined in HDC, inclduing |
|---|
| 816 | ! intercept parameter for snow (n0s), ice crystal number |
|---|
| 817 | ! concentration (ni), ice nuclei number concentration |
|---|
| 818 | ! (n0i), ice diameter (d) |
|---|
| 819 | ! |
|---|
| 820 | !=============================================================== |
|---|
| 821 | ! |
|---|
| 822 | rdtcld = 1./dtcld |
|---|
| 823 | do k = kts, kte |
|---|
| 824 | do i = its, ite |
|---|
| 825 | supcol = t0c-t(i,k) |
|---|
| 826 | supsat = max(q(i,k),qmin)-qs(i,k,2) |
|---|
| 827 | satdt = supsat/dtcld |
|---|
| 828 | ifsat = 0 |
|---|
| 829 | !------------------------------------------------------------- |
|---|
| 830 | ! Ni: ice crystal number concentraiton [HDC 5c] |
|---|
| 831 | !------------------------------------------------------------- |
|---|
| 832 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
|---|
| 833 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
|---|
| 834 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
|---|
| 835 | temp = sqrt(sqrt(temp*temp*temp)) |
|---|
| 836 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
|---|
| 837 | eacrs = exp(0.07*(-supcol)) |
|---|
| 838 | ! |
|---|
| 839 | if(supcol.gt.0) then |
|---|
| 840 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,2).gt.qmin) then |
|---|
| 841 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
|---|
| 842 | diameter = min(dicon * sqrt(xmi),dimax) |
|---|
| 843 | vt2i = 1.49e4*diameter**1.31 |
|---|
| 844 | vt2s = pvts*rslopeb(i,k,2)*denfac(i,k) |
|---|
| 845 | !------------------------------------------------------------- |
|---|
| 846 | ! psaci: Accretion of cloud ice by rain [HDC 10] |
|---|
| 847 | ! (T<T0: I->S) |
|---|
| 848 | !------------------------------------------------------------- |
|---|
| 849 | acrfac = 2.*rslope3(i,k,2)+2.*diameter*rslope2(i,k,2) & |
|---|
| 850 | +diameter**2*rslope(i,k,2) |
|---|
| 851 | psaci(i,k) = pi*qci(i,k,2)*eacrs*n0s*n0sfac(i,k) & |
|---|
| 852 | *abs(vt2s-vt2i)*acrfac/4. |
|---|
| 853 | endif |
|---|
| 854 | !------------------------------------------------------------- |
|---|
| 855 | ! psacw: Accretion of cloud water by snow [HL A7] [LFO 24] |
|---|
| 856 | ! (T<T0: C->S, and T>=T0: C->R) |
|---|
| 857 | !------------------------------------------------------------- |
|---|
| 858 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
|---|
| 859 | psacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2) & |
|---|
| 860 | *rslopeb(i,k,2)*qci(i,k,1)*denfac(i,k) & |
|---|
| 861 | ! ,qci(i,k,1)/dtcld) |
|---|
| 862 | ,qci(i,k,1)*rdtcld) |
|---|
| 863 | endif |
|---|
| 864 | !------------------------------------------------------------- |
|---|
| 865 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
|---|
| 866 | ! (T<T0: V->I or I->V) |
|---|
| 867 | !------------------------------------------------------------- |
|---|
| 868 | if(qci(i,k,2).gt.0.and.ifsat.ne.1) then |
|---|
| 869 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
|---|
| 870 | diameter = dicon * sqrt(xmi) |
|---|
| 871 | pidep(i,k) = 4.*diameter*xni(i,k)*(rh(i,k,2)-1.)/work1(i,k,2) |
|---|
| 872 | supice = satdt-prevp(i,k) |
|---|
| 873 | if(pidep(i,k).lt.0.) then |
|---|
| 874 | ! pidep(i,k) = max(max(pidep(i,k),satdt/2),supice) |
|---|
| 875 | ! pidep(i,k) = max(pidep(i,k),-qci(i,k,2)/dtcld) |
|---|
| 876 | pidep(i,k) = max(max(pidep(i,k),satdt*.5),supice) |
|---|
| 877 | pidep(i,k) = max(pidep(i,k),-qci(i,k,2)*rdtcld) |
|---|
| 878 | else |
|---|
| 879 | ! pidep(i,k) = min(min(pidep(i,k),satdt/2),supice) |
|---|
| 880 | pidep(i,k) = min(min(pidep(i,k),satdt*.5),supice) |
|---|
| 881 | endif |
|---|
| 882 | if(abs(prevp(i,k)+pidep(i,k)).ge.abs(satdt)) ifsat = 1 |
|---|
| 883 | endif |
|---|
| 884 | endif |
|---|
| 885 | !------------------------------------------------------------- |
|---|
| 886 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
|---|
| 887 | ! (V->S or S->V) |
|---|
| 888 | !------------------------------------------------------------- |
|---|
| 889 | if(qrs(i,k,2).gt.0..and.ifsat.ne.1) then |
|---|
| 890 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
|---|
| 891 | psdep(i,k) = (rh(i,k,2)-1.)*n0sfac(i,k) & |
|---|
| 892 | *(precs1*rslope2(i,k,2)+precs2 & |
|---|
| 893 | *work2(i,k)*coeres)/work1(i,k,2) |
|---|
| 894 | supice = satdt-prevp(i,k)-pidep(i,k) |
|---|
| 895 | if(psdep(i,k).lt.0.) then |
|---|
| 896 | ! psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)/dtcld) |
|---|
| 897 | ! psdep(i,k) = max(max(psdep(i,k),satdt/2),supice) |
|---|
| 898 | psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)*rdtcld) |
|---|
| 899 | psdep(i,k) = max(max(psdep(i,k),satdt*.5),supice) |
|---|
| 900 | else |
|---|
| 901 | ! psdep(i,k) = min(min(psdep(i,k),satdt/2),supice) |
|---|
| 902 | psdep(i,k) = min(min(psdep(i,k),satdt*.5),supice) |
|---|
| 903 | endif |
|---|
| 904 | if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)).ge.abs(satdt)) & |
|---|
| 905 | ifsat = 1 |
|---|
| 906 | endif |
|---|
| 907 | !------------------------------------------------------------- |
|---|
| 908 | ! pigen: generation(nucleation) of ice from vapor [HL A50] [HDC 7-8] |
|---|
| 909 | ! (T<T0: V->I) |
|---|
| 910 | !------------------------------------------------------------- |
|---|
| 911 | if(supcol.gt.0) then |
|---|
| 912 | if(supsat.gt.0.and.ifsat.ne.1) then |
|---|
| 913 | supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k) |
|---|
| 914 | xni0 = 1.e3*exp(0.1*supcol) |
|---|
| 915 | roqi0 = 4.92e-11*exp(log(xni0)*(1.33)) |
|---|
| 916 | pigen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k,2),0.)) & |
|---|
| 917 | ! /dtcld) |
|---|
| 918 | *rdtcld) |
|---|
| 919 | pigen(i,k) = min(min(pigen(i,k),satdt),supice) |
|---|
| 920 | endif |
|---|
| 921 | ! |
|---|
| 922 | !------------------------------------------------------------- |
|---|
| 923 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
|---|
| 924 | ! (T<T0: I->S) |
|---|
| 925 | !------------------------------------------------------------- |
|---|
| 926 | if(qci(i,k,2).gt.0.) then |
|---|
| 927 | qimax = roqimax/den(i,k) |
|---|
| 928 | ! psaut(i,k) = max(0.,(qci(i,k,2)-qimax)/dtcld) |
|---|
| 929 | psaut(i,k) = max(0.,(qci(i,k,2)-qimax)*rdtcld) |
|---|
| 930 | endif |
|---|
| 931 | endif |
|---|
| 932 | !------------------------------------------------------------- |
|---|
| 933 | ! psevp: Evaporation of melting snow [HL A35] [RH83 A27] |
|---|
| 934 | ! (T>T0: S->V) |
|---|
| 935 | !------------------------------------------------------------- |
|---|
| 936 | if(supcol.lt.0.) then |
|---|
| 937 | if(qrs(i,k,2).gt.0..and.rh(i,k,1).lt.1.) & |
|---|
| 938 | psevp(i,k) = psdep(i,k)*work1(i,k,2)/work1(i,k,1) |
|---|
| 939 | ! psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)/dtcld),0.) |
|---|
| 940 | psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)*rdtcld),0.) |
|---|
| 941 | endif |
|---|
| 942 | enddo |
|---|
| 943 | enddo |
|---|
| 944 | ! |
|---|
| 945 | ! |
|---|
| 946 | !---------------------------------------------------------------- |
|---|
| 947 | ! check mass conservation of generation terms and feedback to the |
|---|
| 948 | ! large scale |
|---|
| 949 | ! |
|---|
| 950 | do k = kts, kte |
|---|
| 951 | do i = its, ite |
|---|
| 952 | if(t(i,k).le.t0c) then |
|---|
| 953 | ! |
|---|
| 954 | ! cloud water |
|---|
| 955 | ! |
|---|
| 956 | value = max(qmin,qci(i,k,1)) |
|---|
| 957 | source = (praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
|---|
| 958 | if (source.gt.value) then |
|---|
| 959 | factor = value/source |
|---|
| 960 | praut(i,k) = praut(i,k)*factor |
|---|
| 961 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 962 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 963 | endif |
|---|
| 964 | ! |
|---|
| 965 | ! cloud ice |
|---|
| 966 | ! |
|---|
| 967 | value = max(qmin,qci(i,k,2)) |
|---|
| 968 | source = (psaut(i,k)+psaci(i,k)-pigen(i,k)-pidep(i,k))*dtcld |
|---|
| 969 | if (source.gt.value) then |
|---|
| 970 | factor = value/source |
|---|
| 971 | psaut(i,k) = psaut(i,k)*factor |
|---|
| 972 | psaci(i,k) = psaci(i,k)*factor |
|---|
| 973 | pigen(i,k) = pigen(i,k)*factor |
|---|
| 974 | pidep(i,k) = pidep(i,k)*factor |
|---|
| 975 | endif |
|---|
| 976 | ! |
|---|
| 977 | work2(i,k)=-(prevp(i,k)+psdep(i,k)+pigen(i,k)+pidep(i,k)) |
|---|
| 978 | ! update |
|---|
| 979 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
|---|
| 980 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
|---|
| 981 | +psacw(i,k))*dtcld,0.) |
|---|
| 982 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
|---|
| 983 | +prevp(i,k))*dtcld,0.) |
|---|
| 984 | qci(i,k,2) = max(qci(i,k,2)-(psaut(i,k)+psaci(i,k) & |
|---|
| 985 | -pigen(i,k)-pidep(i,k))*dtcld,0.) |
|---|
| 986 | qrs(i,k,2) = max(qrs(i,k,2)+(psdep(i,k)+psaut(i,k) & |
|---|
| 987 | +psaci(i,k)+psacw(i,k))*dtcld,0.) |
|---|
| 988 | xlf = xls-xl(i,k) |
|---|
| 989 | xlwork2 = -xls*(psdep(i,k)+pidep(i,k)+pigen(i,k)) & |
|---|
| 990 | -xl(i,k)*prevp(i,k)-xlf*psacw(i,k) |
|---|
| 991 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
|---|
| 992 | else |
|---|
| 993 | ! |
|---|
| 994 | ! cloud water |
|---|
| 995 | ! |
|---|
| 996 | value = max(qmin,qci(i,k,1)) |
|---|
| 997 | source=(praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
|---|
| 998 | if (source.gt.value) then |
|---|
| 999 | factor = value/source |
|---|
| 1000 | praut(i,k) = praut(i,k)*factor |
|---|
| 1001 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 1002 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 1003 | endif |
|---|
| 1004 | ! |
|---|
| 1005 | ! snow |
|---|
| 1006 | ! |
|---|
| 1007 | value = max(qcrmin,qrs(i,k,2)) |
|---|
| 1008 | source=(-psevp(i,k))*dtcld |
|---|
| 1009 | if (source.gt.value) then |
|---|
| 1010 | factor = value/source |
|---|
| 1011 | psevp(i,k) = psevp(i,k)*factor |
|---|
| 1012 | endif |
|---|
| 1013 | work2(i,k)=-(prevp(i,k)+psevp(i,k)) |
|---|
| 1014 | ! update |
|---|
| 1015 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
|---|
| 1016 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
|---|
| 1017 | +psacw(i,k))*dtcld,0.) |
|---|
| 1018 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
|---|
| 1019 | +prevp(i,k) +psacw(i,k))*dtcld,0.) |
|---|
| 1020 | qrs(i,k,2) = max(qrs(i,k,2)+psevp(i,k)*dtcld,0.) |
|---|
| 1021 | xlf = xls-xl(i,k) |
|---|
| 1022 | xlwork2 = -xl(i,k)*(prevp(i,k)+psevp(i,k)) |
|---|
| 1023 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
|---|
| 1024 | endif |
|---|
| 1025 | enddo |
|---|
| 1026 | enddo |
|---|
| 1027 | ! |
|---|
| 1028 | ! Inline expansion for fpvs |
|---|
| 1029 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 1030 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 1031 | hsub = xls |
|---|
| 1032 | hvap = xlv0 |
|---|
| 1033 | cvap = cpv |
|---|
| 1034 | ttp=t0c+0.01 |
|---|
| 1035 | dldt=cvap-cliq |
|---|
| 1036 | xa=-dldt/rv |
|---|
| 1037 | xb=xa+hvap/(rv*ttp) |
|---|
| 1038 | dldti=cvap-cice |
|---|
| 1039 | xai=-dldti/rv |
|---|
| 1040 | xbi=xai+hsub/(rv*ttp) |
|---|
| 1041 | do k = kts, kte |
|---|
| 1042 | do i = its, ite |
|---|
| 1043 | tr=ttp/t(i,k) |
|---|
| 1044 | qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
|---|
| 1045 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
|---|
| 1046 | qs(i,k,1) = max(qs(i,k,1),qmin) |
|---|
| 1047 | tr=ttp/t(i,k) |
|---|
| 1048 | if(t(i,k).lt.ttp) then |
|---|
| 1049 | qs(i,k,2)=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) |
|---|
| 1050 | else |
|---|
| 1051 | qs(i,k,2)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
|---|
| 1052 | endif |
|---|
| 1053 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
|---|
| 1054 | qs(i,k,2) = max(qs(i,k,2),qmin) |
|---|
| 1055 | enddo |
|---|
| 1056 | enddo |
|---|
| 1057 | ! |
|---|
| 1058 | !---------------------------------------------------------------- |
|---|
| 1059 | ! pcond: condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
|---|
| 1060 | ! if there exists additional water vapor condensated/if |
|---|
| 1061 | ! evaporation of cloud water is not enough to remove subsaturation |
|---|
| 1062 | ! |
|---|
| 1063 | do k = kts, kte |
|---|
| 1064 | do i = its, ite |
|---|
| 1065 | ! work1(i,k,1) = conden(t(i,k),q(i,k),qs(i,k,1),xl(i,k),cpm(i,k)) |
|---|
| 1066 | work1(i,k,1) = ((max(q(i,k),qmin)-(qs(i,k,1)))/ & |
|---|
| 1067 | (1.+(xl(i,k))*(xl(i,k))/(rv*(cpm(i,k)))*(qs(i,k,1))/((t(i,k))*(t(i,k))))) |
|---|
| 1068 | work2(i,k) = qci(i,k,1)+work1(i,k,1) |
|---|
| 1069 | pcond(i,k) = min(max(work1(i,k,1)/dtcld,0.),max(q(i,k),0.)/dtcld) |
|---|
| 1070 | if(qci(i,k,1).gt.0..and.work1(i,k,1).lt.0.) & |
|---|
| 1071 | pcond(i,k) = max(work1(i,k,1),-qci(i,k,1))/dtcld |
|---|
| 1072 | q(i,k) = q(i,k)-pcond(i,k)*dtcld |
|---|
| 1073 | qci(i,k,1) = max(qci(i,k,1)+pcond(i,k)*dtcld,0.) |
|---|
| 1074 | t(i,k) = t(i,k)+pcond(i,k)*xl(i,k)/cpm(i,k)*dtcld |
|---|
| 1075 | enddo |
|---|
| 1076 | enddo |
|---|
| 1077 | ! |
|---|
| 1078 | ! |
|---|
| 1079 | !---------------------------------------------------------------- |
|---|
| 1080 | ! padding for small values |
|---|
| 1081 | ! |
|---|
| 1082 | do k = kts, kte |
|---|
| 1083 | do i = its, ite |
|---|
| 1084 | if(qci(i,k,1).le.qmin) qci(i,k,1) = 0.0 |
|---|
| 1085 | if(qci(i,k,2).le.qmin) qci(i,k,2) = 0.0 |
|---|
| 1086 | enddo |
|---|
| 1087 | enddo |
|---|
| 1088 | enddo ! big loops |
|---|
| 1089 | END SUBROUTINE wsm52d |
|---|
| 1090 | ! ................................................................... |
|---|
| 1091 | REAL FUNCTION rgmma(x) |
|---|
| 1092 | !------------------------------------------------------------------- |
|---|
| 1093 | IMPLICIT NONE |
|---|
| 1094 | !------------------------------------------------------------------- |
|---|
| 1095 | ! rgmma function: use infinite product form |
|---|
| 1096 | REAL :: euler |
|---|
| 1097 | PARAMETER (euler=0.577215664901532) |
|---|
| 1098 | REAL :: x, y |
|---|
| 1099 | INTEGER :: i |
|---|
| 1100 | if(x.eq.1.)then |
|---|
| 1101 | rgmma=0. |
|---|
| 1102 | else |
|---|
| 1103 | rgmma=x*exp(euler*x) |
|---|
| 1104 | do i=1,10000 |
|---|
| 1105 | y=float(i) |
|---|
| 1106 | rgmma=rgmma*(1.000+x/y)*exp(-x/y) |
|---|
| 1107 | enddo |
|---|
| 1108 | rgmma=1./rgmma |
|---|
| 1109 | endif |
|---|
| 1110 | END FUNCTION rgmma |
|---|
| 1111 | ! |
|---|
| 1112 | !-------------------------------------------------------------------------- |
|---|
| 1113 | REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) |
|---|
| 1114 | !-------------------------------------------------------------------------- |
|---|
| 1115 | IMPLICIT NONE |
|---|
| 1116 | !-------------------------------------------------------------------------- |
|---|
| 1117 | REAL t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & |
|---|
| 1118 | xai,xbi,ttp,tr |
|---|
| 1119 | INTEGER ice |
|---|
| 1120 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
|---|
| 1121 | ttp=t0c+0.01 |
|---|
| 1122 | dldt=cvap-cliq |
|---|
| 1123 | xa=-dldt/rv |
|---|
| 1124 | xb=xa+hvap/(rv*ttp) |
|---|
| 1125 | dldti=cvap-cice |
|---|
| 1126 | xai=-dldti/rv |
|---|
| 1127 | xbi=xai+hsub/(rv*ttp) |
|---|
| 1128 | tr=ttp/t |
|---|
| 1129 | if(t.lt.ttp.and.ice.eq.1) then |
|---|
| 1130 | fpvs=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) |
|---|
| 1131 | else |
|---|
| 1132 | fpvs=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
|---|
| 1133 | endif |
|---|
| 1134 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
|---|
| 1135 | END FUNCTION fpvs |
|---|
| 1136 | !------------------------------------------------------------------- |
|---|
| 1137 | SUBROUTINE wsm5init(den0,denr,dens,cl,cpv,allowed_to_read) |
|---|
| 1138 | !------------------------------------------------------------------- |
|---|
| 1139 | IMPLICIT NONE |
|---|
| 1140 | !------------------------------------------------------------------- |
|---|
| 1141 | !.... constants which may not be tunable |
|---|
| 1142 | REAL, INTENT(IN) :: den0,denr,dens,cl,cpv |
|---|
| 1143 | LOGICAL, INTENT(IN) :: allowed_to_read |
|---|
| 1144 | REAL :: pi |
|---|
| 1145 | ! |
|---|
| 1146 | pi = 4.*atan(1.) |
|---|
| 1147 | xlv1 = cl-cpv |
|---|
| 1148 | ! |
|---|
| 1149 | qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3 |
|---|
| 1150 | qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03 |
|---|
| 1151 | ! |
|---|
| 1152 | bvtr1 = 1.+bvtr |
|---|
| 1153 | bvtr2 = 2.5+.5*bvtr |
|---|
| 1154 | bvtr3 = 3.+bvtr |
|---|
| 1155 | bvtr4 = 4.+bvtr |
|---|
| 1156 | g1pbr = rgmma(bvtr1) |
|---|
| 1157 | g3pbr = rgmma(bvtr3) |
|---|
| 1158 | g4pbr = rgmma(bvtr4) ! 17.837825 |
|---|
| 1159 | g5pbro2 = rgmma(bvtr2) ! 1.8273 |
|---|
| 1160 | pvtr = avtr*g4pbr/6. |
|---|
| 1161 | eacrr = 1.0 |
|---|
| 1162 | pacrr = pi*n0r*avtr*g3pbr*.25*eacrr |
|---|
| 1163 | precr1 = 2.*pi*n0r*.78 |
|---|
| 1164 | precr2 = 2.*pi*n0r*.31*avtr**.5*g5pbro2 |
|---|
| 1165 | xm0 = (di0/dicon)**2 |
|---|
| 1166 | xmmax = (dimax/dicon)**2 |
|---|
| 1167 | roqimax = 2.08e22*dimax**8 |
|---|
| 1168 | ! |
|---|
| 1169 | bvts1 = 1.+bvts |
|---|
| 1170 | bvts2 = 2.5+.5*bvts |
|---|
| 1171 | bvts3 = 3.+bvts |
|---|
| 1172 | bvts4 = 4.+bvts |
|---|
| 1173 | g1pbs = rgmma(bvts1) !.8875 |
|---|
| 1174 | g3pbs = rgmma(bvts3) |
|---|
| 1175 | g4pbs = rgmma(bvts4) ! 12.0786 |
|---|
| 1176 | g5pbso2 = rgmma(bvts2) |
|---|
| 1177 | pvts = avts*g4pbs/6. |
|---|
| 1178 | pacrs = pi*n0s*avts*g3pbs*.25 |
|---|
| 1179 | precs1 = 4.*n0s*.65 |
|---|
| 1180 | precs2 = 4.*n0s*.44*avts**.5*g5pbso2 |
|---|
| 1181 | pidn0r = pi*denr*n0r |
|---|
| 1182 | pidn0s = pi*dens*n0s |
|---|
| 1183 | pacrc = pi*n0s*avts*g3pbs*.25*eacrc |
|---|
| 1184 | ! |
|---|
| 1185 | rslopermax = 1./lamdarmax |
|---|
| 1186 | rslopesmax = 1./lamdasmax |
|---|
| 1187 | rsloperbmax = rslopermax ** bvtr |
|---|
| 1188 | rslopesbmax = rslopesmax ** bvts |
|---|
| 1189 | rsloper2max = rslopermax * rslopermax |
|---|
| 1190 | rslopes2max = rslopesmax * rslopesmax |
|---|
| 1191 | rsloper3max = rsloper2max * rslopermax |
|---|
| 1192 | rslopes3max = rslopes2max * rslopesmax |
|---|
| 1193 | ! |
|---|
| 1194 | END SUBROUTINE wsm5init |
|---|
| 1195 | END MODULE module_mp_wsm5 |
|---|