1 | #if ( RWORDSIZE == 4 ) |
---|
2 | # define VREC vsrec |
---|
3 | # define VSQRT vssqrt |
---|
4 | #else |
---|
5 | # define VREC vrec |
---|
6 | # define VSQRT vsqrt |
---|
7 | #endif |
---|
8 | |
---|
9 | !Including inline expansion statistical function |
---|
10 | MODULE module_mp_wsm5 |
---|
11 | ! |
---|
12 | ! |
---|
13 | REAL, PARAMETER, PRIVATE :: dtcldcr = 120. |
---|
14 | REAL, PARAMETER, PRIVATE :: n0r = 8.e6 |
---|
15 | REAL, PARAMETER, PRIVATE :: avtr = 841.9 |
---|
16 | REAL, PARAMETER, PRIVATE :: bvtr = 0.8 |
---|
17 | REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m |
---|
18 | REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency |
---|
19 | REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80 |
---|
20 | REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1 |
---|
21 | REAL, PARAMETER, PRIVATE :: avts = 11.72 |
---|
22 | REAL, PARAMETER, PRIVATE :: bvts = .41 |
---|
23 | REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! t=-90C unlimited |
---|
24 | REAL, PARAMETER, PRIVATE :: lamdarmax = 8.e4 |
---|
25 | REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 |
---|
26 | REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 |
---|
27 | REAL, PARAMETER, PRIVATE :: betai = .6 |
---|
28 | REAL, PARAMETER, PRIVATE :: xn0 = 1.e-2 |
---|
29 | REAL, PARAMETER, PRIVATE :: dicon = 11.9 |
---|
30 | REAL, PARAMETER, PRIVATE :: di0 = 12.9e-6 |
---|
31 | REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 |
---|
32 | REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent n0s |
---|
33 | REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s |
---|
34 | REAL, PARAMETER, PRIVATE :: pfrz1 = 100. |
---|
35 | REAL, PARAMETER, PRIVATE :: pfrz2 = 0.66 |
---|
36 | REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 |
---|
37 | REAL, PARAMETER, PRIVATE :: t40c = 233.16 |
---|
38 | REAL, PARAMETER, PRIVATE :: eacrc = 1.0 |
---|
39 | REAL, SAVE :: & |
---|
40 | qc0, qck1,bvtr1,bvtr2,bvtr3,bvtr4,g1pbr,& |
---|
41 | g3pbr,g4pbr,g5pbro2,pvtr,eacrr,pacrr, & |
---|
42 | precr1,precr2,xm0,xmmax,roqimax,bvts1, & |
---|
43 | bvts2,bvts3,bvts4,g1pbs,g3pbs,g4pbs, & |
---|
44 | g5pbso2,pvts,pacrs,precs1,precs2,pidn0r,& |
---|
45 | pidn0s,xlv1,pacrc, & |
---|
46 | rslopermax,rslopesmax,rslopegmax, & |
---|
47 | rsloperbmax,rslopesbmax,rslopegbmax, & |
---|
48 | rsloper2max,rslopes2max,rslopeg2max, & |
---|
49 | rsloper3max,rslopes3max,rslopeg3max |
---|
50 | ! |
---|
51 | ! Specifies code-inlining of fpvs function in WSM52D below. JM 20040507 |
---|
52 | ! |
---|
53 | CONTAINS |
---|
54 | !=================================================================== |
---|
55 | ! |
---|
56 | SUBROUTINE wsm5(th, q, qc, qr, qi, qs & |
---|
57 | ,den, pii, p, delz & |
---|
58 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
59 | ,ep1, ep2, qmin & |
---|
60 | ,XLS, XLV0, XLF0, den0, denr & |
---|
61 | ,cliq,cice,psat & |
---|
62 | ,rain, rainncv & |
---|
63 | ,snow, snowncv & |
---|
64 | ,sr & |
---|
65 | ,ids,ide, jds,jde, kds,kde & |
---|
66 | ,ims,ime, jms,jme, kms,kme & |
---|
67 | ,its,ite, jts,jte, kts,kte & |
---|
68 | ) |
---|
69 | !------------------------------------------------------------------- |
---|
70 | IMPLICIT NONE |
---|
71 | !------------------------------------------------------------------- |
---|
72 | ! |
---|
73 | ! This code is a 5-class mixed ice microphyiscs scheme (WSM5) of the WRF |
---|
74 | ! Single-Moment MicroPhyiscs (WSMMP). The WSMMP assumes that ice nuclei |
---|
75 | ! number concentration is a function of temperature, and seperate assumption |
---|
76 | ! is developed, in which ice crystal number concentration is a function |
---|
77 | ! of ice amount. A theoretical background of the ice-microphysics and related |
---|
78 | ! processes in the WSMMPs are described in Hong et al. (2004). |
---|
79 | ! Production terms in the WSM6 scheme are described in Hong and Lim (2006). |
---|
80 | ! All units are in m.k.s. and source/sink terms in kgkg-1s-1. |
---|
81 | ! |
---|
82 | ! WSM5 cloud scheme |
---|
83 | ! |
---|
84 | ! Coded by Song-You Hong (Yonsei Univ.) |
---|
85 | ! Jimy Dudhia (NCAR) and Shu-Hua Chen (UC Davis) |
---|
86 | ! Summer 2002 |
---|
87 | ! |
---|
88 | ! Implemented by Song-You Hong (Yonsei Univ.) and Jimy Dudhia (NCAR) |
---|
89 | ! Summer 2003 |
---|
90 | ! |
---|
91 | ! Reference) Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev. |
---|
92 | ! Rutledge, Hobbs (RH83, 1983) J. Atmos. Sci. |
---|
93 | ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc. |
---|
94 | ! |
---|
95 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
96 | ims,ime, jms,jme, kms,kme , & |
---|
97 | its,ite, jts,jte, kts,kte |
---|
98 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
99 | INTENT(INOUT) :: & |
---|
100 | th, & |
---|
101 | q, & |
---|
102 | qc, & |
---|
103 | qi, & |
---|
104 | qr, & |
---|
105 | qs |
---|
106 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
107 | INTENT(IN ) :: & |
---|
108 | den, & |
---|
109 | pii, & |
---|
110 | p, & |
---|
111 | delz |
---|
112 | REAL, INTENT(IN ) :: delt, & |
---|
113 | g, & |
---|
114 | rd, & |
---|
115 | rv, & |
---|
116 | t0c, & |
---|
117 | den0, & |
---|
118 | cpd, & |
---|
119 | cpv, & |
---|
120 | ep1, & |
---|
121 | ep2, & |
---|
122 | qmin, & |
---|
123 | XLS, & |
---|
124 | XLV0, & |
---|
125 | XLF0, & |
---|
126 | cliq, & |
---|
127 | cice, & |
---|
128 | psat, & |
---|
129 | denr |
---|
130 | REAL, DIMENSION( ims:ime , jms:jme ), & |
---|
131 | INTENT(INOUT) :: rain, & |
---|
132 | rainncv, & |
---|
133 | sr |
---|
134 | |
---|
135 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
---|
136 | INTENT(INOUT) :: snow, & |
---|
137 | snowncv |
---|
138 | |
---|
139 | ! LOCAL VAR |
---|
140 | REAL, DIMENSION( its:ite , kts:kte ) :: t |
---|
141 | REAL, DIMENSION( its:ite , kts:kte, 2 ) :: qci, qrs |
---|
142 | INTEGER :: i,j,k |
---|
143 | !------------------------------------------------------------------- |
---|
144 | DO j=jts,jte |
---|
145 | DO k=kts,kte |
---|
146 | DO i=its,ite |
---|
147 | t(i,k)=th(i,k,j)*pii(i,k,j) |
---|
148 | qci(i,k,1) = qc(i,k,j) |
---|
149 | qci(i,k,2) = qi(i,k,j) |
---|
150 | qrs(i,k,1) = qr(i,k,j) |
---|
151 | qrs(i,k,2) = qs(i,k,j) |
---|
152 | ENDDO |
---|
153 | ENDDO |
---|
154 | CALL wsm52D(t, q(ims,kms,j), qci, qrs & |
---|
155 | ,den(ims,kms,j) & |
---|
156 | ,p(ims,kms,j), delz(ims,kms,j) & |
---|
157 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
158 | ,ep1, ep2, qmin & |
---|
159 | ,XLS, XLV0, XLF0, den0, denr & |
---|
160 | ,cliq,cice,psat & |
---|
161 | ,j & |
---|
162 | ,rain(ims,j),rainncv(ims,j) & |
---|
163 | ,sr(ims,j) & |
---|
164 | ,ids,ide, jds,jde, kds,kde & |
---|
165 | ,ims,ime, jms,jme, kms,kme & |
---|
166 | ,its,ite, jts,jte, kts,kte & |
---|
167 | ,snow(ims,j),snowncv(ims,j) & |
---|
168 | ) |
---|
169 | DO K=kts,kte |
---|
170 | DO I=its,ite |
---|
171 | th(i,k,j)=t(i,k)/pii(i,k,j) |
---|
172 | qc(i,k,j) = qci(i,k,1) |
---|
173 | qi(i,k,j) = qci(i,k,2) |
---|
174 | qr(i,k,j) = qrs(i,k,1) |
---|
175 | qs(i,k,j) = qrs(i,k,2) |
---|
176 | ENDDO |
---|
177 | ENDDO |
---|
178 | ENDDO |
---|
179 | END SUBROUTINE wsm5 |
---|
180 | !=================================================================== |
---|
181 | ! |
---|
182 | SUBROUTINE wsm52D(t, q, qci, qrs, den, p, delz & |
---|
183 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
184 | ,ep1, ep2, qmin & |
---|
185 | ,XLS, XLV0, XLF0, den0, denr & |
---|
186 | ,cliq,cice,psat & |
---|
187 | ,lat & |
---|
188 | ,rain,rainncv & |
---|
189 | ,sr & |
---|
190 | ,ids,ide, jds,jde, kds,kde & |
---|
191 | ,ims,ime, jms,jme, kms,kme & |
---|
192 | ,its,ite, jts,jte, kts,kte & |
---|
193 | ,snow,snowncv & |
---|
194 | ) |
---|
195 | !------------------------------------------------------------------- |
---|
196 | IMPLICIT NONE |
---|
197 | !------------------------------------------------------------------- |
---|
198 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
199 | ims,ime, jms,jme, kms,kme , & |
---|
200 | its,ite, jts,jte, kts,kte, & |
---|
201 | lat |
---|
202 | REAL, DIMENSION( its:ite , kts:kte ), & |
---|
203 | INTENT(INOUT) :: & |
---|
204 | t |
---|
205 | REAL, DIMENSION( its:ite , kts:kte, 2 ), & |
---|
206 | INTENT(INOUT) :: & |
---|
207 | qci, & |
---|
208 | qrs |
---|
209 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
210 | INTENT(INOUT) :: & |
---|
211 | q |
---|
212 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
213 | INTENT(IN ) :: & |
---|
214 | den, & |
---|
215 | p, & |
---|
216 | delz |
---|
217 | REAL, INTENT(IN ) :: delt, & |
---|
218 | g, & |
---|
219 | cpd, & |
---|
220 | cpv, & |
---|
221 | t0c, & |
---|
222 | den0, & |
---|
223 | rd, & |
---|
224 | rv, & |
---|
225 | ep1, & |
---|
226 | ep2, & |
---|
227 | qmin, & |
---|
228 | XLS, & |
---|
229 | XLV0, & |
---|
230 | XLF0, & |
---|
231 | cliq, & |
---|
232 | cice, & |
---|
233 | psat, & |
---|
234 | denr |
---|
235 | REAL, DIMENSION( ims:ime ), & |
---|
236 | INTENT(INOUT) :: rain, & |
---|
237 | rainncv, & |
---|
238 | sr |
---|
239 | |
---|
240 | REAL, DIMENSION( ims:ime ), OPTIONAL, & |
---|
241 | INTENT(INOUT) :: snow, & |
---|
242 | snowncv |
---|
243 | |
---|
244 | ! LOCAL VAR |
---|
245 | REAL, DIMENSION( its:ite , kts:kte , 2) :: & |
---|
246 | rh, qs, rslope, rslope2, rslope3, rslopeb, & |
---|
247 | falk, fall, work1 |
---|
248 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
249 | falkc, work1c, work2c, fallc |
---|
250 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
251 | praut, psaut, prevp, psdep, pracw, psaci, psacw, & |
---|
252 | pigen, pidep, pcond, xl, cpm, work2, psmlt, psevp, denfac, xni,& |
---|
253 | n0sfac |
---|
254 | ! variables for optimization |
---|
255 | REAL, DIMENSION( its:ite ) :: tvec1 |
---|
256 | INTEGER, DIMENSION( its:ite ) :: mstep, numdt |
---|
257 | REAL, DIMENSION(its:ite) :: rmstep |
---|
258 | REAL dtcldden, rdelz, rdtcld |
---|
259 | LOGICAL, DIMENSION( its:ite ) :: flgcld |
---|
260 | REAL :: pi, & |
---|
261 | cpmcal, xlcal, lamdar, lamdas, diffus, & |
---|
262 | viscos, xka, venfac, conden, diffac, & |
---|
263 | x, y, z, a, b, c, d, e, & |
---|
264 | qdt, holdrr, holdrs, supcol, pvt, & |
---|
265 | coeres, supsat, dtcld, xmi, eacrs, satdt, & |
---|
266 | vt2i,vt2s,acrfac, & |
---|
267 | qimax, diameter, xni0, roqi0, & |
---|
268 | fallsum, fallsum_qsi, xlwork2, factor, source, & |
---|
269 | value, xlf, pfrzdtc, pfrzdtr, supice |
---|
270 | REAL :: temp |
---|
271 | REAL :: holdc, holdci |
---|
272 | INTEGER :: i, j, k, mstepmax, & |
---|
273 | iprt, latd, lond, loop, loops, ifsat, n |
---|
274 | ! Temporaries used for inlining fpvs function |
---|
275 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
---|
276 | ! |
---|
277 | !================================================================= |
---|
278 | ! compute internal functions |
---|
279 | ! |
---|
280 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
---|
281 | xlcal(x) = xlv0-xlv1*(x-t0c) |
---|
282 | !---------------------------------------------------------------- |
---|
283 | ! size distributions: (x=mixing ratio, y=air density): |
---|
284 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
285 | ! |
---|
286 | ! Optimizatin : A**B => exp(log(A)*(B)) |
---|
287 | lamdar(x,y)= sqrt(sqrt(pidn0r/(x*y))) ! (pidn0r/(x*y))**.25 |
---|
288 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
---|
289 | ! |
---|
290 | !---------------------------------------------------------------- |
---|
291 | ! diffus: diffusion coefficient of the water vapor |
---|
292 | ! viscos: kinematic viscosity(m2s-1) |
---|
293 | ! diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y |
---|
294 | ! viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y |
---|
295 | ! xka(x,y) = 1.414e3*viscos(x,y)*y |
---|
296 | ! diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
---|
297 | ! venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & |
---|
298 | ! /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) |
---|
299 | ! conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
---|
300 | ! |
---|
301 | ! |
---|
302 | pi = 4. * atan(1.) |
---|
303 | ! |
---|
304 | !---------------------------------------------------------------- |
---|
305 | ! paddint 0 for negative values generated by dynamics |
---|
306 | ! |
---|
307 | do k = kts, kte |
---|
308 | do i = its, ite |
---|
309 | qci(i,k,1) = max(qci(i,k,1),0.0) |
---|
310 | qrs(i,k,1) = max(qrs(i,k,1),0.0) |
---|
311 | qci(i,k,2) = max(qci(i,k,2),0.0) |
---|
312 | qrs(i,k,2) = max(qrs(i,k,2),0.0) |
---|
313 | enddo |
---|
314 | enddo |
---|
315 | ! |
---|
316 | !---------------------------------------------------------------- |
---|
317 | ! latent heat for phase changes and heat capacity. neglect the |
---|
318 | ! changes during microphysical process calculation |
---|
319 | ! emanuel(1994) |
---|
320 | ! |
---|
321 | do k = kts, kte |
---|
322 | do i = its, ite |
---|
323 | cpm(i,k) = cpmcal(q(i,k)) |
---|
324 | xl(i,k) = xlcal(t(i,k)) |
---|
325 | enddo |
---|
326 | enddo |
---|
327 | ! |
---|
328 | !---------------------------------------------------------------- |
---|
329 | ! compute the minor time steps. |
---|
330 | ! |
---|
331 | loops = max(nint(delt/dtcldcr),1) |
---|
332 | dtcld = delt/loops |
---|
333 | if(delt.le.dtcldcr) dtcld = delt |
---|
334 | ! |
---|
335 | do loop = 1,loops |
---|
336 | ! |
---|
337 | !---------------------------------------------------------------- |
---|
338 | ! initialize the large scale variables |
---|
339 | ! |
---|
340 | do i = its, ite |
---|
341 | mstep(i) = 1 |
---|
342 | flgcld(i) = .true. |
---|
343 | enddo |
---|
344 | ! |
---|
345 | ! do k = kts, kte |
---|
346 | ! do i = its, ite |
---|
347 | ! denfac(i,k) = sqrt(den0/den(i,k)) |
---|
348 | ! enddo |
---|
349 | ! enddo |
---|
350 | do k = kts, kte |
---|
351 | CALL VREC( tvec1(its), den(its,k), ite-its+1) |
---|
352 | do i = its, ite |
---|
353 | tvec1(i) = tvec1(i)*den0 |
---|
354 | enddo |
---|
355 | CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
---|
356 | enddo |
---|
357 | ! |
---|
358 | ! Inline expansion for fpvs |
---|
359 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
360 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
361 | hsub = xls |
---|
362 | hvap = xlv0 |
---|
363 | cvap = cpv |
---|
364 | ttp=t0c+0.01 |
---|
365 | dldt=cvap-cliq |
---|
366 | xa=-dldt/rv |
---|
367 | xb=xa+hvap/(rv*ttp) |
---|
368 | dldti=cvap-cice |
---|
369 | xai=-dldti/rv |
---|
370 | xbi=xai+hsub/(rv*ttp) |
---|
371 | do k = kts, kte |
---|
372 | do i = its, ite |
---|
373 | tr=ttp/t(i,k) |
---|
374 | qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
375 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
---|
376 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
377 | rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin) |
---|
378 | tr=ttp/t(i,k) |
---|
379 | if(t(i,k).lt.ttp) then |
---|
380 | qs(i,k,2)=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) |
---|
381 | else |
---|
382 | qs(i,k,2)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
383 | endif |
---|
384 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
---|
385 | qs(i,k,2) = max(qs(i,k,2),qmin) |
---|
386 | rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin) |
---|
387 | enddo |
---|
388 | enddo |
---|
389 | ! |
---|
390 | !---------------------------------------------------------------- |
---|
391 | ! initialize the variables for microphysical physics |
---|
392 | ! |
---|
393 | ! |
---|
394 | do k = kts, kte |
---|
395 | do i = its, ite |
---|
396 | prevp(i,k) = 0. |
---|
397 | psdep(i,k) = 0. |
---|
398 | praut(i,k) = 0. |
---|
399 | psaut(i,k) = 0. |
---|
400 | pracw(i,k) = 0. |
---|
401 | psaci(i,k) = 0. |
---|
402 | psacw(i,k) = 0. |
---|
403 | pigen(i,k) = 0. |
---|
404 | pidep(i,k) = 0. |
---|
405 | pcond(i,k) = 0. |
---|
406 | psmlt(i,k) = 0. |
---|
407 | psevp(i,k) = 0. |
---|
408 | falk(i,k,1) = 0. |
---|
409 | falk(i,k,2) = 0. |
---|
410 | fall(i,k,1) = 0. |
---|
411 | fall(i,k,2) = 0. |
---|
412 | fallc(i,k) = 0. |
---|
413 | falkc(i,k) = 0. |
---|
414 | xni(i,k) = 1.e3 |
---|
415 | enddo |
---|
416 | enddo |
---|
417 | ! |
---|
418 | !---------------------------------------------------------------- |
---|
419 | ! compute the fallout term: |
---|
420 | ! first, vertical terminal velosity for minor loops |
---|
421 | ! |
---|
422 | do k = kts, kte |
---|
423 | do i = its, ite |
---|
424 | supcol = t0c-t(i,k) |
---|
425 | !--------------------------------------------------------------- |
---|
426 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
---|
427 | !--------------------------------------------------------------- |
---|
428 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
429 | if(qrs(i,k,1).le.qcrmin)then |
---|
430 | rslope(i,k,1) = rslopermax |
---|
431 | rslopeb(i,k,1) = rsloperbmax |
---|
432 | rslope2(i,k,1) = rsloper2max |
---|
433 | rslope3(i,k,1) = rsloper3max |
---|
434 | else |
---|
435 | rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k)) |
---|
436 | rslopeb(i,k,1) = exp(log(rslope(i,k,1))*(bvtr)) |
---|
437 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
---|
438 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
---|
439 | endif |
---|
440 | if(qrs(i,k,2).le.qcrmin)then |
---|
441 | rslope(i,k,2) = rslopesmax |
---|
442 | rslopeb(i,k,2) = rslopesbmax |
---|
443 | rslope2(i,k,2) = rslopes2max |
---|
444 | rslope3(i,k,2) = rslopes3max |
---|
445 | else |
---|
446 | rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k)) |
---|
447 | rslopeb(i,k,2) = exp(log(rslope(i,k,2))*(bvts)) |
---|
448 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
---|
449 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
---|
450 | endif |
---|
451 | !------------------------------------------------------------- |
---|
452 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
453 | !------------------------------------------------------------- |
---|
454 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
---|
455 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
---|
456 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
---|
457 | temp = sqrt(sqrt(temp*temp*temp)) |
---|
458 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
---|
459 | enddo |
---|
460 | enddo |
---|
461 | ! |
---|
462 | mstepmax = 1 |
---|
463 | numdt = 1 |
---|
464 | do k = kte, kts, -1 |
---|
465 | do i = its, ite |
---|
466 | work1(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k)/delz(i,k) |
---|
467 | work1(i,k,2) = pvts*rslopeb(i,k,2)*denfac(i,k)/delz(i,k) |
---|
468 | numdt(i) = max(nint(max(work1(i,k,1),work1(i,k,2))*dtcld+.5),1) |
---|
469 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
---|
470 | enddo |
---|
471 | enddo |
---|
472 | do i = its, ite |
---|
473 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
---|
474 | rmstep(i) = 1./mstep(i) |
---|
475 | enddo |
---|
476 | ! |
---|
477 | do n = 1, mstepmax |
---|
478 | k = kte |
---|
479 | do i = its, ite |
---|
480 | if(n.le.mstep(i)) then |
---|
481 | ! falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
---|
482 | ! falk(i,k,2) = den(i,k)*qrs(i,k,2)*work1(i,k,2)/mstep(i) |
---|
483 | falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)*rmstep(i) |
---|
484 | falk(i,k,2) = den(i,k)*qrs(i,k,2)*work1(i,k,2)*rmstep(i) |
---|
485 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
---|
486 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
---|
487 | ! qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcld/den(i,k),0.) |
---|
488 | ! qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcld/den(i,k),0.) |
---|
489 | dtcldden = dtcld/den(i,k) |
---|
490 | qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcldden,0.) |
---|
491 | qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcldden,0.) |
---|
492 | endif |
---|
493 | enddo |
---|
494 | do k = kte-1, kts, -1 |
---|
495 | do i = its, ite |
---|
496 | if(n.le.mstep(i)) then |
---|
497 | ! falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
---|
498 | ! falk(i,k,2) = den(i,k)*qrs(i,k,2)*work1(i,k,2)/mstep(i) |
---|
499 | falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)*rmstep(i) |
---|
500 | falk(i,k,2) = den(i,k)*qrs(i,k,2)*work1(i,k,2)*rmstep(i) |
---|
501 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
---|
502 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
---|
503 | ! qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) & |
---|
504 | ! *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
---|
505 | ! qrs(i,k,2) = max(qrs(i,k,2)-(falk(i,k,2)-falk(i,k+1,2) & |
---|
506 | ! *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
---|
507 | dtcldden = dtcld/den(i,k) |
---|
508 | rdelz = 1./delz(i,k) |
---|
509 | qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) & |
---|
510 | *delz(i,k+1)*rdelz)*dtcldden,0.) |
---|
511 | qrs(i,k,2) = max(qrs(i,k,2)-(falk(i,k,2)-falk(i,k+1,2) & |
---|
512 | *delz(i,k+1)*rdelz)*dtcldden,0.) |
---|
513 | endif |
---|
514 | enddo |
---|
515 | enddo |
---|
516 | do k = kte, kts, -1 |
---|
517 | do i = its, ite |
---|
518 | if(n.le.mstep(i)) then |
---|
519 | if(t(i,k).gt.t0c.and.qrs(i,k,2).gt.0.) then |
---|
520 | !---------------------------------------------------------------- |
---|
521 | ! psmlt: melting of snow [HL A33] [RH83 A25] |
---|
522 | ! (T>T0: S->R) |
---|
523 | !---------------------------------------------------------------- |
---|
524 | xlf = xlf0 |
---|
525 | ! work2(i,k)= venfac(p(i,k),t(i,k),den(i,k)) |
---|
526 | work2(i,k)= (exp(log(((1.496e-6*((t(i,k))*sqrt(t(i,k))) & |
---|
527 | /((t(i,k))+120.)/(den(i,k)))/(8.794e-5 & |
---|
528 | *exp(log(t(i,k))*(1.81))/p(i,k)))) & |
---|
529 | *((.3333333)))/sqrt((1.496e-6*((t(i,k)) & |
---|
530 | *sqrt(t(i,k)))/((t(i,k))+120.)/(den(i,k)))) & |
---|
531 | *sqrt(sqrt(den0/(den(i,k))))) |
---|
532 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
---|
533 | ! psmlt(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*pi/2. & |
---|
534 | ! *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 & |
---|
535 | ! *work2(i,k)*coeres) |
---|
536 | psmlt(i,k) = & |
---|
537 | (1.414e3*(1.496e-6 * ((t(i,k))*sqrt(t(i,k))) /((t(i,k))+120.)/(den(i,k)) )*(den(i,k)))& |
---|
538 | /xlf*(t0c-t(i,k))*pi/2. & |
---|
539 | *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 & |
---|
540 | *work2(i,k)*coeres) |
---|
541 | psmlt(i,k) = min(max(psmlt(i,k)*dtcld/mstep(i), & |
---|
542 | -qrs(i,k,2)/mstep(i)),0.) |
---|
543 | qrs(i,k,2) = qrs(i,k,2) + psmlt(i,k) |
---|
544 | qrs(i,k,1) = qrs(i,k,1) - psmlt(i,k) |
---|
545 | t(i,k) = t(i,k) + xlf/cpm(i,k)*psmlt(i,k) |
---|
546 | endif |
---|
547 | endif |
---|
548 | enddo |
---|
549 | enddo |
---|
550 | enddo |
---|
551 | !--------------------------------------------------------------- |
---|
552 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
---|
553 | !--------------------------------------------------------------- |
---|
554 | mstepmax = 1 |
---|
555 | mstep = 1 |
---|
556 | numdt = 1 |
---|
557 | do k = kte, kts, -1 |
---|
558 | do i = its, ite |
---|
559 | if(qci(i,k,2).le.0.) then |
---|
560 | work2c(i,k) = 0. |
---|
561 | else |
---|
562 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
---|
563 | ! diameter = min(dicon * sqrt(xmi),dimax) |
---|
564 | diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25) |
---|
565 | work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) |
---|
566 | work2c(i,k) = work1c(i,k)/delz(i,k) |
---|
567 | endif |
---|
568 | numdt(i) = max(nint(work2c(i,k)*dtcld+.5),1) |
---|
569 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
---|
570 | enddo |
---|
571 | enddo |
---|
572 | do i = its, ite |
---|
573 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
---|
574 | enddo |
---|
575 | ! |
---|
576 | do n = 1, mstepmax |
---|
577 | k = kte |
---|
578 | do i = its, ite |
---|
579 | if(n.le.mstep(i)) then |
---|
580 | falkc(i,k) = den(i,k)*qci(i,k,2)*work2c(i,k)/mstep(i) |
---|
581 | holdc = falkc(i,k) |
---|
582 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
583 | holdci = qci(i,k,2) |
---|
584 | qci(i,k,2) = max(qci(i,k,2)-falkc(i,k)*dtcld/den(i,k),0.) |
---|
585 | endif |
---|
586 | enddo |
---|
587 | do k = kte-1, kts, -1 |
---|
588 | do i = its, ite |
---|
589 | if(n.le.mstep(i)) then |
---|
590 | falkc(i,k) = den(i,k)*qci(i,k,2)*work2c(i,k)/mstep(i) |
---|
591 | holdc = falkc(i,k) |
---|
592 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
593 | holdci = qci(i,k,2) |
---|
594 | qci(i,k,2) = max(qci(i,k,2)-(falkc(i,k)-falkc(i,k+1) & |
---|
595 | *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
---|
596 | endif |
---|
597 | enddo |
---|
598 | enddo |
---|
599 | enddo |
---|
600 | ! |
---|
601 | ! |
---|
602 | !---------------------------------------------------------------- |
---|
603 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
---|
604 | ! |
---|
605 | do i = its, ite |
---|
606 | fallsum = fall(i,1,1)+fall(i,1,2)+fallc(i,1) |
---|
607 | fallsum_qsi = fall(i,1,2)+fallc(i,1) |
---|
608 | rainncv(i) = 0. |
---|
609 | if(fallsum.gt.0.) then |
---|
610 | rainncv(i) = fallsum*delz(i,1)/denr*dtcld*1000. |
---|
611 | rain(i) = fallsum*delz(i,1)/denr*dtcld*1000. + rain(i) |
---|
612 | endif |
---|
613 | IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN |
---|
614 | snowncv(i) = 0. |
---|
615 | if(fallsum_qsi.gt.0.) then |
---|
616 | snowncv(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. |
---|
617 | snow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snow(i) |
---|
618 | endif |
---|
619 | ENDIF |
---|
620 | sr(i) = 0. |
---|
621 | if(fallsum.gt.0.)sr(i)=fallsum_qsi*delz(i,kts)/denr*dtcld*1000./(rainncv(i)+1.e-12) |
---|
622 | enddo |
---|
623 | ! |
---|
624 | !--------------------------------------------------------------- |
---|
625 | ! pimlt: instantaneous melting of cloud ice [HL A47] [RH83 A28] |
---|
626 | ! (T>T0: I->C) |
---|
627 | !--------------------------------------------------------------- |
---|
628 | do k = kts, kte |
---|
629 | do i = its, ite |
---|
630 | supcol = t0c-t(i,k) |
---|
631 | xlf = xls-xl(i,k) |
---|
632 | if(supcol.lt.0.) xlf = xlf0 |
---|
633 | if(supcol.lt.0.and.qci(i,k,2).gt.0.) then |
---|
634 | qci(i,k,1) = qci(i,k,1) + qci(i,k,2) |
---|
635 | t(i,k) = t(i,k) - xlf/cpm(i,k)*qci(i,k,2) |
---|
636 | qci(i,k,2) = 0. |
---|
637 | endif |
---|
638 | !--------------------------------------------------------------- |
---|
639 | ! pihmf: homogeneous freezing of cloud water below -40c [HL A45] |
---|
640 | ! (T<-40C: C->I) |
---|
641 | !--------------------------------------------------------------- |
---|
642 | if(supcol.gt.40..and.qci(i,k,1).gt.0.) then |
---|
643 | qci(i,k,2) = qci(i,k,2) + qci(i,k,1) |
---|
644 | t(i,k) = t(i,k) + xlf/cpm(i,k)*qci(i,k,1) |
---|
645 | qci(i,k,1) = 0. |
---|
646 | endif |
---|
647 | !--------------------------------------------------------------- |
---|
648 | ! pihtf: heterogeneous freezing of cloud water [HL A44] |
---|
649 | ! (T0>T>-40C: C->I) |
---|
650 | !--------------------------------------------------------------- |
---|
651 | if(supcol.gt.0..and.qci(i,k,1).gt.0.) then |
---|
652 | ! pfrzdtc = min(pfrz1*(exp(pfrz2*supcol)-1.) & |
---|
653 | ! *den(i,k)/denr/xncr*qci(i,k,1)**2*dtcld,qci(i,k,1)) |
---|
654 | pfrzdtc = min(pfrz1*(exp(pfrz2*supcol)-1.) & |
---|
655 | *den(i,k)/denr/xncr*qci(i,k,1)*qci(i,k,1)*dtcld,qci(i,k,1)) |
---|
656 | qci(i,k,2) = qci(i,k,2) + pfrzdtc |
---|
657 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtc |
---|
658 | qci(i,k,1) = qci(i,k,1)-pfrzdtc |
---|
659 | endif |
---|
660 | !--------------------------------------------------------------- |
---|
661 | ! psfrz: freezing of rain water [HL A20] [LFO 45] |
---|
662 | ! (T<T0, R->S) |
---|
663 | !--------------------------------------------------------------- |
---|
664 | if(supcol.gt.0..and.qrs(i,k,1).gt.0.) then |
---|
665 | ! pfrzdtr = min(20.*pi**2*pfrz1*n0r*denr/den(i,k) & |
---|
666 | ! *(exp(pfrz2*supcol)-1.)*rslope(i,k,1)**7*dtcld, & |
---|
667 | ! qrs(i,k,1)) |
---|
668 | temp = rslope(i,k,1) |
---|
669 | temp = temp*temp*temp*temp*temp*temp*temp |
---|
670 | pfrzdtr = min(20.*(pi*pi)*pfrz1*n0r*denr/den(i,k) & |
---|
671 | *(exp(pfrz2*supcol)-1.)*temp*dtcld, & |
---|
672 | qrs(i,k,1)) |
---|
673 | qrs(i,k,2) = qrs(i,k,2) + pfrzdtr |
---|
674 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtr |
---|
675 | qrs(i,k,1) = qrs(i,k,1)-pfrzdtr |
---|
676 | endif |
---|
677 | enddo |
---|
678 | enddo |
---|
679 | ! |
---|
680 | !---------------------------------------------------------------- |
---|
681 | ! rsloper: reverse of the slope parameter of the rain(m) |
---|
682 | ! xka: thermal conductivity of air(jm-1s-1k-1) |
---|
683 | ! work1: the thermodynamic term in the denominator associated with |
---|
684 | ! heat conduction and vapor diffusion |
---|
685 | ! (ry88, y93, h85) |
---|
686 | ! work2: parameter associated with the ventilation effects(y93) |
---|
687 | ! |
---|
688 | do k = kts, kte |
---|
689 | do i = its, ite |
---|
690 | if(qrs(i,k,1).le.qcrmin)then |
---|
691 | rslope(i,k,1) = rslopermax |
---|
692 | rslopeb(i,k,1) = rsloperbmax |
---|
693 | rslope2(i,k,1) = rsloper2max |
---|
694 | rslope3(i,k,1) = rsloper3max |
---|
695 | else |
---|
696 | ! rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k)) |
---|
697 | rslope(i,k,1) = 1./(sqrt(sqrt(pidn0r/((qrs(i,k,1))*(den(i,k)))))) |
---|
698 | rslopeb(i,k,1) = exp(log(rslope(i,k,1))*(bvtr)) |
---|
699 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
---|
700 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
---|
701 | endif |
---|
702 | if(qrs(i,k,2).le.qcrmin)then |
---|
703 | rslope(i,k,2) = rslopesmax |
---|
704 | rslopeb(i,k,2) = rslopesbmax |
---|
705 | rslope2(i,k,2) = rslopes2max |
---|
706 | rslope3(i,k,2) = rslopes3max |
---|
707 | else |
---|
708 | ! rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k)) |
---|
709 | rslope(i,k,2) = 1./(sqrt(sqrt(pidn0s*(n0sfac(i,k))/((qrs(i,k,2))*(den(i,k)))))) |
---|
710 | rslopeb(i,k,2) = exp(log(rslope(i,k,2))*(bvts)) |
---|
711 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
---|
712 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
---|
713 | endif |
---|
714 | enddo |
---|
715 | enddo |
---|
716 | ! |
---|
717 | do k = kts, kte |
---|
718 | do i = its, ite |
---|
719 | ! work1(i,k,1) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k,1)) |
---|
720 | work1(i,k,1) = & |
---|
721 | ((((den(i,k))*(xl(i,k))*(xl(i,k))) * ((t(i,k))+120.) * (den(i,k))) & |
---|
722 | / & |
---|
723 | ( 1.414e3 * (1.496e-6 * ((t(i,k))*sqrt(t(i,k)))) * (den(i,k)) * & |
---|
724 | (rv*(t(i,k))*(t(i,k))))) & |
---|
725 | + & |
---|
726 | p(i,k) / ( (qs(i,k,1)) * ( 8.794e-5 * exp(log(t(i,k))*(1.81)) ) ) |
---|
727 | ! work1(i,k,2) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k,2)) |
---|
728 | work1(i,k,2) = & |
---|
729 | ( & |
---|
730 | (((den(i,k))*(xls)*(xls))*((t(i,k))+120.)*(den(i,k))) & |
---|
731 | / & |
---|
732 | ( & |
---|
733 | 1.414e3 * (1.496e-6 * ((t(i,k))*sqrt(t(i,k)))) * (den(i,k)) * & |
---|
734 | (rv*(t(i,k))*(t(i,k))) & |
---|
735 | ) & |
---|
736 | + & |
---|
737 | p(i,k) & |
---|
738 | / & |
---|
739 | ( qs(i,k,2) * (8.794e-5 * exp(log(t(i,k))*(1.81)))) & |
---|
740 | ) |
---|
741 | ! work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
---|
742 | work2(i,k) = & |
---|
743 | ( & |
---|
744 | exp(.3333333*log( & |
---|
745 | ((1.496e-6 * ((t(i,k))*sqrt(t(i,k))))*p(i,k)) & |
---|
746 | / & |
---|
747 | (((t(i,k))+120.)*den(i,k)*(8.794e-5 * exp(log(t(i,k))*(1.81)))) & |
---|
748 | )) & |
---|
749 | * & |
---|
750 | sqrt(sqrt(den0/(den(i,k)))) & |
---|
751 | ) & |
---|
752 | / & |
---|
753 | sqrt( & |
---|
754 | (1.496e-6 * ((t(i,k))*sqrt(t(i,k)))) & |
---|
755 | / & |
---|
756 | ( & |
---|
757 | ((t(i,k))+120.) * den(i,k) & |
---|
758 | ) & |
---|
759 | ) |
---|
760 | ENDDO |
---|
761 | ENDDO |
---|
762 | ! |
---|
763 | !=============================================================== |
---|
764 | ! |
---|
765 | ! warm rain processes |
---|
766 | ! |
---|
767 | ! - follows the processes in RH83 and LFO except for autoconcersion |
---|
768 | ! |
---|
769 | !=============================================================== |
---|
770 | ! |
---|
771 | do k = kts, kte |
---|
772 | do i = its, ite |
---|
773 | supsat = max(q(i,k),qmin)-qs(i,k,1) |
---|
774 | satdt = supsat/dtcld |
---|
775 | !--------------------------------------------------------------- |
---|
776 | ! praut: auto conversion rate from cloud to rain [HDC 16] |
---|
777 | ! (C->R) |
---|
778 | !--------------------------------------------------------------- |
---|
779 | if(qci(i,k,1).gt.qc0) then |
---|
780 | praut(i,k) = qck1*exp(log(qci(i,k,1))*((7./3.))) |
---|
781 | praut(i,k) = min(praut(i,k),qci(i,k,1)/dtcld) |
---|
782 | endif |
---|
783 | !--------------------------------------------------------------- |
---|
784 | ! pracw: accretion of cloud water by rain [HL A40] [LFO 51] |
---|
785 | ! (C->R) |
---|
786 | !--------------------------------------------------------------- |
---|
787 | if(qrs(i,k,1).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
---|
788 | pracw(i,k) = min(pacrr*rslope3(i,k,1)*rslopeb(i,k,1) & |
---|
789 | *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld) |
---|
790 | endif |
---|
791 | !--------------------------------------------------------------- |
---|
792 | ! prevp: evaporation/condensation rate of rain [HDC 14] |
---|
793 | ! (V->R or R->V) |
---|
794 | !--------------------------------------------------------------- |
---|
795 | if(qrs(i,k,1).gt.0.) then |
---|
796 | coeres = rslope2(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1)) |
---|
797 | prevp(i,k) = (rh(i,k,1)-1.)*(precr1*rslope2(i,k,1) & |
---|
798 | +precr2*work2(i,k)*coeres)/work1(i,k,1) |
---|
799 | if(prevp(i,k).lt.0.) then |
---|
800 | prevp(i,k) = max(prevp(i,k),-qrs(i,k,1)/dtcld) |
---|
801 | prevp(i,k) = max(prevp(i,k),satdt/2) |
---|
802 | else |
---|
803 | prevp(i,k) = min(prevp(i,k),satdt/2) |
---|
804 | endif |
---|
805 | endif |
---|
806 | enddo |
---|
807 | enddo |
---|
808 | ! |
---|
809 | !=============================================================== |
---|
810 | ! |
---|
811 | ! cold rain processes |
---|
812 | ! |
---|
813 | ! - follows the revised ice microphysics processes in HDC |
---|
814 | ! - the processes same as in RH83 and RH84 and LFO behave |
---|
815 | ! following ice crystal hapits defined in HDC, inclduing |
---|
816 | ! intercept parameter for snow (n0s), ice crystal number |
---|
817 | ! concentration (ni), ice nuclei number concentration |
---|
818 | ! (n0i), ice diameter (d) |
---|
819 | ! |
---|
820 | !=============================================================== |
---|
821 | ! |
---|
822 | rdtcld = 1./dtcld |
---|
823 | do k = kts, kte |
---|
824 | do i = its, ite |
---|
825 | supcol = t0c-t(i,k) |
---|
826 | supsat = max(q(i,k),qmin)-qs(i,k,2) |
---|
827 | satdt = supsat/dtcld |
---|
828 | ifsat = 0 |
---|
829 | !------------------------------------------------------------- |
---|
830 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
831 | !------------------------------------------------------------- |
---|
832 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
---|
833 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
---|
834 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
---|
835 | temp = sqrt(sqrt(temp*temp*temp)) |
---|
836 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
---|
837 | eacrs = exp(0.07*(-supcol)) |
---|
838 | ! |
---|
839 | if(supcol.gt.0) then |
---|
840 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,2).gt.qmin) then |
---|
841 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
---|
842 | diameter = min(dicon * sqrt(xmi),dimax) |
---|
843 | vt2i = 1.49e4*diameter**1.31 |
---|
844 | vt2s = pvts*rslopeb(i,k,2)*denfac(i,k) |
---|
845 | !------------------------------------------------------------- |
---|
846 | ! psaci: Accretion of cloud ice by rain [HDC 10] |
---|
847 | ! (T<T0: I->S) |
---|
848 | !------------------------------------------------------------- |
---|
849 | acrfac = 2.*rslope3(i,k,2)+2.*diameter*rslope2(i,k,2) & |
---|
850 | +diameter**2*rslope(i,k,2) |
---|
851 | psaci(i,k) = pi*qci(i,k,2)*eacrs*n0s*n0sfac(i,k) & |
---|
852 | *abs(vt2s-vt2i)*acrfac/4. |
---|
853 | endif |
---|
854 | !------------------------------------------------------------- |
---|
855 | ! psacw: Accretion of cloud water by snow [HL A7] [LFO 24] |
---|
856 | ! (T<T0: C->S, and T>=T0: C->R) |
---|
857 | !------------------------------------------------------------- |
---|
858 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
---|
859 | psacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2) & |
---|
860 | *rslopeb(i,k,2)*qci(i,k,1)*denfac(i,k) & |
---|
861 | ! ,qci(i,k,1)/dtcld) |
---|
862 | ,qci(i,k,1)*rdtcld) |
---|
863 | endif |
---|
864 | !------------------------------------------------------------- |
---|
865 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
---|
866 | ! (T<T0: V->I or I->V) |
---|
867 | !------------------------------------------------------------- |
---|
868 | if(qci(i,k,2).gt.0.and.ifsat.ne.1) then |
---|
869 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
---|
870 | diameter = dicon * sqrt(xmi) |
---|
871 | pidep(i,k) = 4.*diameter*xni(i,k)*(rh(i,k,2)-1.)/work1(i,k,2) |
---|
872 | supice = satdt-prevp(i,k) |
---|
873 | if(pidep(i,k).lt.0.) then |
---|
874 | ! pidep(i,k) = max(max(pidep(i,k),satdt/2),supice) |
---|
875 | ! pidep(i,k) = max(pidep(i,k),-qci(i,k,2)/dtcld) |
---|
876 | pidep(i,k) = max(max(pidep(i,k),satdt*.5),supice) |
---|
877 | pidep(i,k) = max(pidep(i,k),-qci(i,k,2)*rdtcld) |
---|
878 | else |
---|
879 | ! pidep(i,k) = min(min(pidep(i,k),satdt/2),supice) |
---|
880 | pidep(i,k) = min(min(pidep(i,k),satdt*.5),supice) |
---|
881 | endif |
---|
882 | if(abs(prevp(i,k)+pidep(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
883 | endif |
---|
884 | endif |
---|
885 | !------------------------------------------------------------- |
---|
886 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
---|
887 | ! (V->S or S->V) |
---|
888 | !------------------------------------------------------------- |
---|
889 | if(qrs(i,k,2).gt.0..and.ifsat.ne.1) then |
---|
890 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
---|
891 | psdep(i,k) = (rh(i,k,2)-1.)*n0sfac(i,k) & |
---|
892 | *(precs1*rslope2(i,k,2)+precs2 & |
---|
893 | *work2(i,k)*coeres)/work1(i,k,2) |
---|
894 | supice = satdt-prevp(i,k)-pidep(i,k) |
---|
895 | if(psdep(i,k).lt.0.) then |
---|
896 | ! psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)/dtcld) |
---|
897 | ! psdep(i,k) = max(max(psdep(i,k),satdt/2),supice) |
---|
898 | psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)*rdtcld) |
---|
899 | psdep(i,k) = max(max(psdep(i,k),satdt*.5),supice) |
---|
900 | else |
---|
901 | ! psdep(i,k) = min(min(psdep(i,k),satdt/2),supice) |
---|
902 | psdep(i,k) = min(min(psdep(i,k),satdt*.5),supice) |
---|
903 | endif |
---|
904 | if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)).ge.abs(satdt)) & |
---|
905 | ifsat = 1 |
---|
906 | endif |
---|
907 | !------------------------------------------------------------- |
---|
908 | ! pigen: generation(nucleation) of ice from vapor [HL A50] [HDC 7-8] |
---|
909 | ! (T<T0: V->I) |
---|
910 | !------------------------------------------------------------- |
---|
911 | if(supcol.gt.0) then |
---|
912 | if(supsat.gt.0.and.ifsat.ne.1) then |
---|
913 | supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k) |
---|
914 | xni0 = 1.e3*exp(0.1*supcol) |
---|
915 | roqi0 = 4.92e-11*exp(log(xni0)*(1.33)) |
---|
916 | pigen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k,2),0.)) & |
---|
917 | ! /dtcld) |
---|
918 | *rdtcld) |
---|
919 | pigen(i,k) = min(min(pigen(i,k),satdt),supice) |
---|
920 | endif |
---|
921 | ! |
---|
922 | !------------------------------------------------------------- |
---|
923 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
---|
924 | ! (T<T0: I->S) |
---|
925 | !------------------------------------------------------------- |
---|
926 | if(qci(i,k,2).gt.0.) then |
---|
927 | qimax = roqimax/den(i,k) |
---|
928 | ! psaut(i,k) = max(0.,(qci(i,k,2)-qimax)/dtcld) |
---|
929 | psaut(i,k) = max(0.,(qci(i,k,2)-qimax)*rdtcld) |
---|
930 | endif |
---|
931 | endif |
---|
932 | !------------------------------------------------------------- |
---|
933 | ! psevp: Evaporation of melting snow [HL A35] [RH83 A27] |
---|
934 | ! (T>T0: S->V) |
---|
935 | !------------------------------------------------------------- |
---|
936 | if(supcol.lt.0.) then |
---|
937 | if(qrs(i,k,2).gt.0..and.rh(i,k,1).lt.1.) & |
---|
938 | psevp(i,k) = psdep(i,k)*work1(i,k,2)/work1(i,k,1) |
---|
939 | ! psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)/dtcld),0.) |
---|
940 | psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)*rdtcld),0.) |
---|
941 | endif |
---|
942 | enddo |
---|
943 | enddo |
---|
944 | ! |
---|
945 | ! |
---|
946 | !---------------------------------------------------------------- |
---|
947 | ! check mass conservation of generation terms and feedback to the |
---|
948 | ! large scale |
---|
949 | ! |
---|
950 | do k = kts, kte |
---|
951 | do i = its, ite |
---|
952 | if(t(i,k).le.t0c) then |
---|
953 | ! |
---|
954 | ! cloud water |
---|
955 | ! |
---|
956 | value = max(qmin,qci(i,k,1)) |
---|
957 | source = (praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
---|
958 | if (source.gt.value) then |
---|
959 | factor = value/source |
---|
960 | praut(i,k) = praut(i,k)*factor |
---|
961 | pracw(i,k) = pracw(i,k)*factor |
---|
962 | psacw(i,k) = psacw(i,k)*factor |
---|
963 | endif |
---|
964 | ! |
---|
965 | ! cloud ice |
---|
966 | ! |
---|
967 | value = max(qmin,qci(i,k,2)) |
---|
968 | source = (psaut(i,k)+psaci(i,k)-pigen(i,k)-pidep(i,k))*dtcld |
---|
969 | if (source.gt.value) then |
---|
970 | factor = value/source |
---|
971 | psaut(i,k) = psaut(i,k)*factor |
---|
972 | psaci(i,k) = psaci(i,k)*factor |
---|
973 | pigen(i,k) = pigen(i,k)*factor |
---|
974 | pidep(i,k) = pidep(i,k)*factor |
---|
975 | endif |
---|
976 | ! |
---|
977 | work2(i,k)=-(prevp(i,k)+psdep(i,k)+pigen(i,k)+pidep(i,k)) |
---|
978 | ! update |
---|
979 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
---|
980 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
---|
981 | +psacw(i,k))*dtcld,0.) |
---|
982 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
---|
983 | +prevp(i,k))*dtcld,0.) |
---|
984 | qci(i,k,2) = max(qci(i,k,2)-(psaut(i,k)+psaci(i,k) & |
---|
985 | -pigen(i,k)-pidep(i,k))*dtcld,0.) |
---|
986 | qrs(i,k,2) = max(qrs(i,k,2)+(psdep(i,k)+psaut(i,k) & |
---|
987 | +psaci(i,k)+psacw(i,k))*dtcld,0.) |
---|
988 | xlf = xls-xl(i,k) |
---|
989 | xlwork2 = -xls*(psdep(i,k)+pidep(i,k)+pigen(i,k)) & |
---|
990 | -xl(i,k)*prevp(i,k)-xlf*psacw(i,k) |
---|
991 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
---|
992 | else |
---|
993 | ! |
---|
994 | ! cloud water |
---|
995 | ! |
---|
996 | value = max(qmin,qci(i,k,1)) |
---|
997 | source=(praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
---|
998 | if (source.gt.value) then |
---|
999 | factor = value/source |
---|
1000 | praut(i,k) = praut(i,k)*factor |
---|
1001 | pracw(i,k) = pracw(i,k)*factor |
---|
1002 | psacw(i,k) = psacw(i,k)*factor |
---|
1003 | endif |
---|
1004 | ! |
---|
1005 | ! snow |
---|
1006 | ! |
---|
1007 | value = max(qcrmin,qrs(i,k,2)) |
---|
1008 | source=(-psevp(i,k))*dtcld |
---|
1009 | if (source.gt.value) then |
---|
1010 | factor = value/source |
---|
1011 | psevp(i,k) = psevp(i,k)*factor |
---|
1012 | endif |
---|
1013 | work2(i,k)=-(prevp(i,k)+psevp(i,k)) |
---|
1014 | ! update |
---|
1015 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
---|
1016 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
---|
1017 | +psacw(i,k))*dtcld,0.) |
---|
1018 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
---|
1019 | +prevp(i,k) +psacw(i,k))*dtcld,0.) |
---|
1020 | qrs(i,k,2) = max(qrs(i,k,2)+psevp(i,k)*dtcld,0.) |
---|
1021 | xlf = xls-xl(i,k) |
---|
1022 | xlwork2 = -xl(i,k)*(prevp(i,k)+psevp(i,k)) |
---|
1023 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
---|
1024 | endif |
---|
1025 | enddo |
---|
1026 | enddo |
---|
1027 | ! |
---|
1028 | ! Inline expansion for fpvs |
---|
1029 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
1030 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
1031 | hsub = xls |
---|
1032 | hvap = xlv0 |
---|
1033 | cvap = cpv |
---|
1034 | ttp=t0c+0.01 |
---|
1035 | dldt=cvap-cliq |
---|
1036 | xa=-dldt/rv |
---|
1037 | xb=xa+hvap/(rv*ttp) |
---|
1038 | dldti=cvap-cice |
---|
1039 | xai=-dldti/rv |
---|
1040 | xbi=xai+hsub/(rv*ttp) |
---|
1041 | do k = kts, kte |
---|
1042 | do i = its, ite |
---|
1043 | tr=ttp/t(i,k) |
---|
1044 | qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
1045 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
---|
1046 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
1047 | tr=ttp/t(i,k) |
---|
1048 | if(t(i,k).lt.ttp) then |
---|
1049 | qs(i,k,2)=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) |
---|
1050 | else |
---|
1051 | qs(i,k,2)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
1052 | endif |
---|
1053 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
---|
1054 | qs(i,k,2) = max(qs(i,k,2),qmin) |
---|
1055 | enddo |
---|
1056 | enddo |
---|
1057 | ! |
---|
1058 | !---------------------------------------------------------------- |
---|
1059 | ! pcond: condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
---|
1060 | ! if there exists additional water vapor condensated/if |
---|
1061 | ! evaporation of cloud water is not enough to remove subsaturation |
---|
1062 | ! |
---|
1063 | do k = kts, kte |
---|
1064 | do i = its, ite |
---|
1065 | ! work1(i,k,1) = conden(t(i,k),q(i,k),qs(i,k,1),xl(i,k),cpm(i,k)) |
---|
1066 | work1(i,k,1) = ((max(q(i,k),qmin)-(qs(i,k,1)))/ & |
---|
1067 | (1.+(xl(i,k))*(xl(i,k))/(rv*(cpm(i,k)))*(qs(i,k,1))/((t(i,k))*(t(i,k))))) |
---|
1068 | work2(i,k) = qci(i,k,1)+work1(i,k,1) |
---|
1069 | pcond(i,k) = min(max(work1(i,k,1)/dtcld,0.),max(q(i,k),0.)/dtcld) |
---|
1070 | if(qci(i,k,1).gt.0..and.work1(i,k,1).lt.0.) & |
---|
1071 | pcond(i,k) = max(work1(i,k,1),-qci(i,k,1))/dtcld |
---|
1072 | q(i,k) = q(i,k)-pcond(i,k)*dtcld |
---|
1073 | qci(i,k,1) = max(qci(i,k,1)+pcond(i,k)*dtcld,0.) |
---|
1074 | t(i,k) = t(i,k)+pcond(i,k)*xl(i,k)/cpm(i,k)*dtcld |
---|
1075 | enddo |
---|
1076 | enddo |
---|
1077 | ! |
---|
1078 | ! |
---|
1079 | !---------------------------------------------------------------- |
---|
1080 | ! padding for small values |
---|
1081 | ! |
---|
1082 | do k = kts, kte |
---|
1083 | do i = its, ite |
---|
1084 | if(qci(i,k,1).le.qmin) qci(i,k,1) = 0.0 |
---|
1085 | if(qci(i,k,2).le.qmin) qci(i,k,2) = 0.0 |
---|
1086 | enddo |
---|
1087 | enddo |
---|
1088 | enddo ! big loops |
---|
1089 | END SUBROUTINE wsm52d |
---|
1090 | ! ................................................................... |
---|
1091 | REAL FUNCTION rgmma(x) |
---|
1092 | !------------------------------------------------------------------- |
---|
1093 | IMPLICIT NONE |
---|
1094 | !------------------------------------------------------------------- |
---|
1095 | ! rgmma function: use infinite product form |
---|
1096 | REAL :: euler |
---|
1097 | PARAMETER (euler=0.577215664901532) |
---|
1098 | REAL :: x, y |
---|
1099 | INTEGER :: i |
---|
1100 | if(x.eq.1.)then |
---|
1101 | rgmma=0. |
---|
1102 | else |
---|
1103 | rgmma=x*exp(euler*x) |
---|
1104 | do i=1,10000 |
---|
1105 | y=float(i) |
---|
1106 | rgmma=rgmma*(1.000+x/y)*exp(-x/y) |
---|
1107 | enddo |
---|
1108 | rgmma=1./rgmma |
---|
1109 | endif |
---|
1110 | END FUNCTION rgmma |
---|
1111 | ! |
---|
1112 | !-------------------------------------------------------------------------- |
---|
1113 | REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) |
---|
1114 | !-------------------------------------------------------------------------- |
---|
1115 | IMPLICIT NONE |
---|
1116 | !-------------------------------------------------------------------------- |
---|
1117 | REAL t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & |
---|
1118 | xai,xbi,ttp,tr |
---|
1119 | INTEGER ice |
---|
1120 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
1121 | ttp=t0c+0.01 |
---|
1122 | dldt=cvap-cliq |
---|
1123 | xa=-dldt/rv |
---|
1124 | xb=xa+hvap/(rv*ttp) |
---|
1125 | dldti=cvap-cice |
---|
1126 | xai=-dldti/rv |
---|
1127 | xbi=xai+hsub/(rv*ttp) |
---|
1128 | tr=ttp/t |
---|
1129 | if(t.lt.ttp.and.ice.eq.1) then |
---|
1130 | fpvs=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) |
---|
1131 | else |
---|
1132 | fpvs=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
1133 | endif |
---|
1134 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
1135 | END FUNCTION fpvs |
---|
1136 | !------------------------------------------------------------------- |
---|
1137 | SUBROUTINE wsm5init(den0,denr,dens,cl,cpv,allowed_to_read) |
---|
1138 | !------------------------------------------------------------------- |
---|
1139 | IMPLICIT NONE |
---|
1140 | !------------------------------------------------------------------- |
---|
1141 | !.... constants which may not be tunable |
---|
1142 | REAL, INTENT(IN) :: den0,denr,dens,cl,cpv |
---|
1143 | LOGICAL, INTENT(IN) :: allowed_to_read |
---|
1144 | REAL :: pi |
---|
1145 | ! |
---|
1146 | pi = 4.*atan(1.) |
---|
1147 | xlv1 = cl-cpv |
---|
1148 | ! |
---|
1149 | qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3 |
---|
1150 | qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03 |
---|
1151 | ! |
---|
1152 | bvtr1 = 1.+bvtr |
---|
1153 | bvtr2 = 2.5+.5*bvtr |
---|
1154 | bvtr3 = 3.+bvtr |
---|
1155 | bvtr4 = 4.+bvtr |
---|
1156 | g1pbr = rgmma(bvtr1) |
---|
1157 | g3pbr = rgmma(bvtr3) |
---|
1158 | g4pbr = rgmma(bvtr4) ! 17.837825 |
---|
1159 | g5pbro2 = rgmma(bvtr2) ! 1.8273 |
---|
1160 | pvtr = avtr*g4pbr/6. |
---|
1161 | eacrr = 1.0 |
---|
1162 | pacrr = pi*n0r*avtr*g3pbr*.25*eacrr |
---|
1163 | precr1 = 2.*pi*n0r*.78 |
---|
1164 | precr2 = 2.*pi*n0r*.31*avtr**.5*g5pbro2 |
---|
1165 | xm0 = (di0/dicon)**2 |
---|
1166 | xmmax = (dimax/dicon)**2 |
---|
1167 | roqimax = 2.08e22*dimax**8 |
---|
1168 | ! |
---|
1169 | bvts1 = 1.+bvts |
---|
1170 | bvts2 = 2.5+.5*bvts |
---|
1171 | bvts3 = 3.+bvts |
---|
1172 | bvts4 = 4.+bvts |
---|
1173 | g1pbs = rgmma(bvts1) !.8875 |
---|
1174 | g3pbs = rgmma(bvts3) |
---|
1175 | g4pbs = rgmma(bvts4) ! 12.0786 |
---|
1176 | g5pbso2 = rgmma(bvts2) |
---|
1177 | pvts = avts*g4pbs/6. |
---|
1178 | pacrs = pi*n0s*avts*g3pbs*.25 |
---|
1179 | precs1 = 4.*n0s*.65 |
---|
1180 | precs2 = 4.*n0s*.44*avts**.5*g5pbso2 |
---|
1181 | pidn0r = pi*denr*n0r |
---|
1182 | pidn0s = pi*dens*n0s |
---|
1183 | pacrc = pi*n0s*avts*g3pbs*.25*eacrc |
---|
1184 | ! |
---|
1185 | rslopermax = 1./lamdarmax |
---|
1186 | rslopesmax = 1./lamdasmax |
---|
1187 | rsloperbmax = rslopermax ** bvtr |
---|
1188 | rslopesbmax = rslopesmax ** bvts |
---|
1189 | rsloper2max = rslopermax * rslopermax |
---|
1190 | rslopes2max = rslopesmax * rslopesmax |
---|
1191 | rsloper3max = rsloper2max * rslopermax |
---|
1192 | rslopes3max = rslopes2max * rslopesmax |
---|
1193 | ! |
---|
1194 | END SUBROUTINE wsm5init |
---|
1195 | END MODULE module_mp_wsm5 |
---|