1 | !WRF:MODEL_LAYER:PHYSICS |
---|
2 | ! |
---|
3 | MODULE module_fddaobs_rtfdda |
---|
4 | |
---|
5 | ! This obs-nudging FDDA module (RTFDDA) is developed by the |
---|
6 | ! NCAR/RAL/NSAP (National Security Application Programs), under the |
---|
7 | ! sponsorship of ATEC (Army Test and Evaluation Commands). ATEC is |
---|
8 | ! acknowledged for releasing this capability for WRF community |
---|
9 | ! research applications. |
---|
10 | ! |
---|
11 | ! The NCAR/RAL RTFDDA module was adapted, and significantly modified |
---|
12 | ! from the obs-nudging module in the standard MM5V3.1 which was originally |
---|
13 | ! developed by PSU (Stauffer and Seaman, 1994). |
---|
14 | ! |
---|
15 | ! Yubao Liu (NCAR/RAL): lead developer of the RTFDDA module |
---|
16 | ! Al Bourgeois (NCAR/RAL): lead engineer implementing RTFDDA into WRF-ARW |
---|
17 | ! Nov. 2006 |
---|
18 | ! |
---|
19 | ! References: |
---|
20 | ! |
---|
21 | ! Liu, Y., A. Bourgeois, T. Warner, S. Swerdlin and J. Hacker, 2005: An |
---|
22 | ! implementation of obs-nudging-based FDDA into WRF for supporting |
---|
23 | ! ATEC test operations. 2005 WRF user workshop. Paper 10.7. |
---|
24 | ! |
---|
25 | ! Liu, Y., A. Bourgeois, T. Warner, S. Swerdlin and W. Yu, 2006: An update |
---|
26 | ! on "obs-nudging"-based FDDA for WRF-ARW: Verification using OSSE |
---|
27 | ! and performance of real-time forecasts. 2006 WRF user workshop. Paper 4.7. |
---|
28 | |
---|
29 | ! |
---|
30 | ! Stauffer, D.R., and N.L. Seaman, 1994: Multi-scale four-dimensional data |
---|
31 | ! assimilation. J. Appl. Meteor., 33, 416-434. |
---|
32 | ! |
---|
33 | ! http://www.rap.ucar.edu/projects/armyrange/references.html |
---|
34 | ! |
---|
35 | |
---|
36 | CONTAINS |
---|
37 | |
---|
38 | !------------------------------------------------------------------------------ |
---|
39 | SUBROUTINE fddaobs_init(obs_nudge_opt, maxdom, inest, parid, & |
---|
40 | dx_coarse, restart, obs_twindo, itimestep, & |
---|
41 | e_sn, s_sn_cg, e_sn_cg, s_we_cg, e_we_cg, & |
---|
42 | #if ( EM_CORE == 1 ) |
---|
43 | fdob, & |
---|
44 | #endif |
---|
45 | ids,ide, jds,jde, kds,kde, & |
---|
46 | ims,ime, jms,jme, kms,kme, & |
---|
47 | its,ite, jts,jte, kts,kte) |
---|
48 | !----------------------------------------------------------------------- |
---|
49 | ! This routine does initialization for real time fdda obs-nudging. |
---|
50 | ! |
---|
51 | !----------------------------------------------------------------------- |
---|
52 | USE module_domain |
---|
53 | !----------------------------------------------------------------------- |
---|
54 | IMPLICIT NONE |
---|
55 | !----------------------------------------------------------------------- |
---|
56 | |
---|
57 | !======================================================================= |
---|
58 | ! Definitions |
---|
59 | !----------- |
---|
60 | INTEGER, intent(in) :: maxdom |
---|
61 | INTEGER, intent(in) :: obs_nudge_opt(maxdom) |
---|
62 | INTEGER, intent(in) :: ids,ide, jds,jde, kds,kde, & |
---|
63 | ims,ime, jms,jme, kms,kme, & |
---|
64 | its,ite, jts,jte, kts,kte |
---|
65 | INTEGER, intent(in) :: inest |
---|
66 | INTEGER, intent(in) :: parid(maxdom) |
---|
67 | REAL ,intent(in) :: dx_coarse ! coarse-domain grid cell-size (km) |
---|
68 | LOGICAL, intent(in) :: restart |
---|
69 | REAL, intent(inout) :: obs_twindo |
---|
70 | INTEGER, intent(in) :: itimestep |
---|
71 | INTEGER, intent(in) :: e_sn ! ending south-north grid index |
---|
72 | INTEGER, intent(in) :: s_sn_cg ! starting south-north coarse-grid index |
---|
73 | INTEGER, intent(in) :: e_sn_cg ! ending south-north coarse-grid index |
---|
74 | INTEGER, intent(in) :: s_we_cg ! starting west-east coarse-grid index |
---|
75 | INTEGER, intent(in) :: e_we_cg ! ending west-east coarse-grid index |
---|
76 | #if ( EM_CORE == 1 ) |
---|
77 | TYPE(fdob_type), intent(inout) :: fdob |
---|
78 | #endif |
---|
79 | |
---|
80 | ! Local variables |
---|
81 | logical :: nudge_flag ! nudging flag for this nest |
---|
82 | integer :: ktau ! current timestep |
---|
83 | integer :: nest ! loop counter |
---|
84 | integer :: idom ! domain id |
---|
85 | integer :: parent ! parent domain |
---|
86 | |
---|
87 | #if ( EM_CORE == 1 ) |
---|
88 | ! This routine should only be called once. This is a check to make |
---|
89 | ! certain that initialization only happens once. |
---|
90 | if (fdob%domain_init .ne. 1) then |
---|
91 | ! Obs-nudging will be initialized on this call |
---|
92 | fdob%domain_init = 1 |
---|
93 | else |
---|
94 | ! Obs-nudging has already been initialized, so return |
---|
95 | return |
---|
96 | endif |
---|
97 | |
---|
98 | ! Set flag for nudging on pressure (not sigma) surfaces |
---|
99 | fdob%iwtsig = 0 |
---|
100 | |
---|
101 | ! Set ending nudging date (used with dynamic ramp-down) to zero. |
---|
102 | fdob%datend = 0. |
---|
103 | |
---|
104 | ! Convert twindo from minutes to hours. |
---|
105 | obs_twindo = obs_twindo / 60. |
---|
106 | |
---|
107 | ! Initialize flags. |
---|
108 | |
---|
109 | fdob%domain_tot=0 |
---|
110 | do nest=1,maxdom |
---|
111 | fdob%domain_tot = fdob%domain_tot + obs_nudge_opt(nest) |
---|
112 | end do |
---|
113 | |
---|
114 | ! Set parameters. |
---|
115 | |
---|
116 | fdob%pfree = 50.0 |
---|
117 | fdob%rinfmn = 1.0 |
---|
118 | fdob%rinfmx = 2.0 |
---|
119 | fdob%dpsmx = 7.5 |
---|
120 | fdob%dcon = 1.0/fdob%dpsmx |
---|
121 | fdob%xn = 0.7155668 ! cone factor |
---|
122 | |
---|
123 | fdob%ds_cg = dx_coarse / 1000. ! coarse gridsize (km) |
---|
124 | fdob%sn_maxcg = e_sn_cg - s_sn_cg + 1 ! coarse domain grid dimension in N-S |
---|
125 | fdob%we_maxcg = e_we_cg - s_we_cg + 1 ! coarse domain grid dimension in W-E |
---|
126 | fdob%sn_end = e_sn - 1 ! ending S-N grid coordinate |
---|
127 | |
---|
128 | ! Calculate the nest levels, levidn. Note that each nest |
---|
129 | ! must know the nest levels levidn(maxdom) of each domain. |
---|
130 | do nest=1,maxdom |
---|
131 | |
---|
132 | ! Initialize nest level for each domain. |
---|
133 | if (nest .eq. 1) then |
---|
134 | fdob%levidn(nest) = 0 ! Mother domain has nest level 0 |
---|
135 | else |
---|
136 | fdob%levidn(nest) = 1 ! All other domains start with 1 |
---|
137 | endif |
---|
138 | idom = nest |
---|
139 | 100 parent = parid(idom) ! Go up the parent tree |
---|
140 | if (parent .gt. 1) then ! If not up to mother domain |
---|
141 | fdob%levidn(nest) = fdob%levidn(nest) + 1 |
---|
142 | idom = parid(parent) |
---|
143 | goto 100 |
---|
144 | endif |
---|
145 | enddo |
---|
146 | |
---|
147 | ! Check to see if the nudging flag has been set. If not, |
---|
148 | ! simply RETURN. |
---|
149 | nudge_flag = (obs_nudge_opt(inest) .eq. 1) |
---|
150 | if (.not. nudge_flag) return |
---|
151 | |
---|
152 | ktau = itimestep |
---|
153 | if(restart) then |
---|
154 | fdob%ktaur = ktau |
---|
155 | else |
---|
156 | fdob%ktaur = 0 |
---|
157 | endif |
---|
158 | |
---|
159 | RETURN |
---|
160 | #endif |
---|
161 | END SUBROUTINE fddaobs_init |
---|
162 | |
---|
163 | #if ( EM_CORE == 1 ) |
---|
164 | !----------------------------------------------------------------------- |
---|
165 | SUBROUTINE errob(inest, ub, vb, tb, t0, qvb, pbase, pp, rovcp, & |
---|
166 | uratx, vratx, tratx, nndgv, & |
---|
167 | nerrf, niobf, maxdom, levidn, parid, nstat, & |
---|
168 | iswind, & |
---|
169 | istemp, ismois, ispstr, rio, rjo, rko, varobs, & |
---|
170 | errf, i_parent_start, j_parent_start, & |
---|
171 | ktau, iratio, npfi, iprt, & |
---|
172 | ids,ide, jds,jde, kds,kde, & |
---|
173 | ims,ime, jms,jme, kms,kme, & |
---|
174 | its,ite, jts,jte, kts,kte ) |
---|
175 | |
---|
176 | !----------------------------------------------------------------------- |
---|
177 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
178 | USE module_dm, ONLY : get_full_obs_vector |
---|
179 | #endif |
---|
180 | |
---|
181 | !----------------------------------------------------------------------- |
---|
182 | IMPLICIT NONE |
---|
183 | !----------------------------------------------------------------------- |
---|
184 | ! |
---|
185 | ! PURPOSE: THIS SUBROUTINE CALCULATES THE DIFFERENCE BETWEEN THE |
---|
186 | ! OBSERVED VALUES AND THE FORECAST VALUES AT THE OBSERVATION |
---|
187 | ! POINTS. THE OBSERVED VALUES CLOSEST TO THE CURRENT |
---|
188 | ! FORECAST TIME (XTIME) WERE DETERMINED IN SUBROUTINE |
---|
189 | ! IN4DOB AND STORED IN ARRAY VAROBS. THE DIFFERENCES |
---|
190 | ! CALCULATED BY SUBROUTINE ERROB WILL BE STORED IN ARRAY |
---|
191 | ! ERRF FOR THE NSTA OBSERVATION LOCATIONS. MISSING |
---|
192 | ! OBSERVATIONS ARE DENOTED BY THE DUMMY VALUE 99999. |
---|
193 | ! |
---|
194 | ! HISTORY: Original author: MM5 version??? |
---|
195 | ! 02/04/2004 - Creation of WRF version. Al Bourgeois |
---|
196 | ! 08/28/2006 - Conversion from F77 to F90 Al Bourgeois |
---|
197 | !------------------------------------------------------------------------------ |
---|
198 | |
---|
199 | ! THE STORAGE ORDER IN VAROBS AND ERRF IS AS FOLLOWS: |
---|
200 | ! IVAR VARIABLE TYPE(TAU-1) |
---|
201 | ! ---- -------------------- |
---|
202 | ! 1 U error |
---|
203 | ! 2 V error |
---|
204 | ! 3 T error |
---|
205 | ! 4 Q error |
---|
206 | ! 5 Surface press error at T points (not used) |
---|
207 | ! 6 Model surface press at T-points |
---|
208 | ! 7 Model surface press at U-points |
---|
209 | ! 8 Model surface press at V-points |
---|
210 | ! 9 RKO at U-points |
---|
211 | |
---|
212 | !----------------------------------------------------------------------- |
---|
213 | ! |
---|
214 | ! Description of input arguments. |
---|
215 | ! |
---|
216 | !----------------------------------------------------------------------- |
---|
217 | |
---|
218 | INTEGER, INTENT(IN) :: inest ! Domain index. |
---|
219 | INTEGER, INTENT(IN) :: nndgv ! Number of nudge variables. |
---|
220 | INTEGER, INTENT(IN) :: nerrf ! Number of error fields. |
---|
221 | INTEGER, INTENT(IN) :: niobf ! Number of observations. |
---|
222 | INTEGER, INTENT(IN) :: maxdom ! Maximum number of domains. |
---|
223 | INTEGER, INTENT(IN) :: levidn(maxdom) ! Level of nest. |
---|
224 | INTEGER, INTENT(IN) :: parid(maxdom) ! Id of parent grid. |
---|
225 | INTEGER, INTENT(IN) :: i_parent_start(maxdom) ! Start i index in parent domain. |
---|
226 | INTEGER, INTENT(IN) :: j_parent_start(maxdom) ! Start j index in parent domain. |
---|
227 | INTEGER, INTENT(IN) :: ktau |
---|
228 | INTEGER, INTENT(IN) :: iratio ! Nest to parent gridsize ratio. |
---|
229 | INTEGER, INTENT(IN) :: npfi ! Coarse-grid diagnostics freq. |
---|
230 | LOGICAL, INTENT(IN) :: iprt ! Print flag |
---|
231 | INTEGER, INTENT(IN) :: nstat |
---|
232 | INTEGER, intent(in) :: iswind |
---|
233 | INTEGER, intent(in) :: istemp |
---|
234 | INTEGER, intent(in) :: ismois |
---|
235 | INTEGER, intent(in) :: ispstr |
---|
236 | INTEGER, INTENT(IN) :: ids,ide, jds,jde, kds,kde ! domain dims. |
---|
237 | INTEGER, INTENT(IN) :: ims,ime, jms,jme, kms,kme ! memory dims. |
---|
238 | INTEGER, INTENT(IN) :: its,ite, jts,jte, kts,kte ! tile dims. |
---|
239 | |
---|
240 | REAL, INTENT(IN) :: ub( ims:ime, kms:kme, jms:jme ) |
---|
241 | REAL, INTENT(IN) :: vb( ims:ime, kms:kme, jms:jme ) |
---|
242 | REAL, INTENT(IN) :: tb( ims:ime, kms:kme, jms:jme ) |
---|
243 | REAL, INTENT(IN) :: t0 |
---|
244 | REAL, INTENT(IN) :: qvb( ims:ime, kms:kme, jms:jme ) |
---|
245 | REAL, INTENT(IN) :: pbase( ims:ime, kms:kme, jms:jme ) |
---|
246 | REAL, INTENT(IN) :: pp( ims:ime, kms:kme, jms:jme ) ! Press. perturbation (Pa) |
---|
247 | REAL, INTENT(IN) :: rovcp |
---|
248 | REAL, INTENT(IN) :: uratx( ims:ime, jms:jme ) ! U to U10 ratio on mass points. |
---|
249 | REAL, INTENT(IN) :: vratx( ims:ime, jms:jme ) ! V to V10 ratio on mass points. |
---|
250 | REAL, INTENT(IN) :: tratx( ims:ime, jms:jme ) ! T to TH2 ratio on mass points. |
---|
251 | REAL, INTENT(IN) :: rio(niobf) ! West-east coordinate. |
---|
252 | REAL, INTENT(IN) :: rjo(niobf) ! South-north coordinate. |
---|
253 | REAL, INTENT(INOUT) :: rko(niobf) |
---|
254 | REAL, INTENT(INOUT) :: varobs(nndgv, niobf) |
---|
255 | REAL, INTENT(INOUT) :: errf(nerrf, niobf) |
---|
256 | |
---|
257 | ! Local variables |
---|
258 | INTEGER :: iobmg(niobf) ! Obs i-coord on mass grid |
---|
259 | INTEGER :: jobmg(niobf) ! Obs j-coord on mass grid |
---|
260 | INTEGER :: ia(niobf) |
---|
261 | INTEGER :: ib(niobf) |
---|
262 | INTEGER :: ic(niobf) |
---|
263 | REAL :: pbbo(kds:kde) ! column base pressure (cb) at obs loc. |
---|
264 | REAL :: ppbo(kds:kde) ! column pressure perturbation (cb) at obs loc. |
---|
265 | |
---|
266 | REAL :: ra(niobf) |
---|
267 | REAL :: rb(niobf) |
---|
268 | REAL :: rc(niobf) |
---|
269 | REAL :: dxobmg(niobf) ! Interp. fraction (x dir) referenced to mass-grid |
---|
270 | REAL :: dyobmg(niobf) ! Interp. fraction (y dir) referenced to mass-grid |
---|
271 | INTEGER MM(MAXDOM) |
---|
272 | INTEGER NNL |
---|
273 | real :: uratio( ims:ime, jms:jme ) ! U to U10 ratio on momentum points. |
---|
274 | real :: vratio( ims:ime, jms:jme ) ! V to V10 ratio on momentum points. |
---|
275 | real :: pug1,pug2,pvg1,pvg2 |
---|
276 | |
---|
277 | ! Define staggers for U, V, and T grids, referenced from non-staggered grid. |
---|
278 | real, parameter :: gridx_t = 0.5 ! Mass-point x stagger |
---|
279 | real, parameter :: gridy_t = 0.5 ! Mass-point y stagger |
---|
280 | real, parameter :: gridx_u = 0.0 ! U-point x stagger |
---|
281 | real, parameter :: gridy_u = 0.5 ! U-point y stagger |
---|
282 | real, parameter :: gridx_v = 0.5 ! V-point x stagger |
---|
283 | real, parameter :: gridy_v = 0.0 ! V-point y stagger |
---|
284 | |
---|
285 | real :: dummy = 99999. |
---|
286 | |
---|
287 | real :: pbhi, pphi |
---|
288 | real :: press,ttemp !ajb scratch variables |
---|
289 | ! real model_temp,pot_temp !ajb scratch variables |
---|
290 | |
---|
291 | !*** DECLARATIONS FOR IMPLICIT NONE |
---|
292 | integer nsta,ivar,n,ityp |
---|
293 | integer iob,job,kob,iob_ms,job_ms |
---|
294 | integer k,kbot,nml,nlb,nle |
---|
295 | integer iobm,jobm,iobp,jobp,kobp,inpf,i,j |
---|
296 | integer i_start,i_end,j_start,j_end ! loop ranges for uratio,vratio calc. |
---|
297 | integer k_start,k_end |
---|
298 | |
---|
299 | real gridx,gridy,dxob,dyob,dzob,dxob_ms,dyob_ms |
---|
300 | real pob |
---|
301 | real grfacx,grfacy,uratiob,vratiob,tratiob,tratxob,fnpf |
---|
302 | real stagx ! For x correction to mass-point stagger |
---|
303 | real stagy ! For y correction to mass-point stagger |
---|
304 | |
---|
305 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
306 | LOGICAL MP_LOCAL_DUMMASK(NIOBF) ! Mask for work to be done on this processor |
---|
307 | LOGICAL MP_LOCAL_UOBMASK(NIOBF) ! Dot-point mask |
---|
308 | LOGICAL MP_LOCAL_VOBMASK(NIOBF) ! Dot-point mask |
---|
309 | LOGICAL MP_LOCAL_COBMASK(NIOBF) ! Cross-point mask |
---|
310 | #endif |
---|
311 | ! LOGICAL, EXTERNAL :: TILE_MASK |
---|
312 | |
---|
313 | NSTA=NSTAT |
---|
314 | |
---|
315 | ! FIRST, DETERMINE THE GRID TYPE CORRECTION FOR U-momentum, V-momentum, |
---|
316 | ! AND MASS POINTS, AND WHEN INEST=2, CONVERT THE STORED COARSE MESH INDICES |
---|
317 | ! TO THE FINE MESH INDEX EQUIVALENTS |
---|
318 | |
---|
319 | ! ITYP=1 FOR U-POINTS, ITYP=2 for V-POINTS, and ITYP=3 FOR MASS POINTS |
---|
320 | |
---|
321 | if (iprt) then |
---|
322 | write(6,'(a,i5,a,i2,a,i5,a)') '++++++CALL ERROB AT KTAU = ', & |
---|
323 | KTAU,' AND INEST = ',INEST,': NSTA = ',NSTA,' ++++++' |
---|
324 | endif |
---|
325 | |
---|
326 | ERRF = 0.0 ! Zero out errf array |
---|
327 | |
---|
328 | ! Set up loop bounds for this grid's boundary conditions |
---|
329 | i_start = max( its-1,ids ) |
---|
330 | i_end = min( ite+1,ide-1 ) |
---|
331 | j_start = max( jts-1,jds ) |
---|
332 | j_end = min( jte+1,jde-1 ) |
---|
333 | k_start = kts |
---|
334 | k_end = min( kte, kde-1 ) |
---|
335 | |
---|
336 | DO ITYP=1,3 ! Big loop: ityp=1 for U, ityp=2 for V, ityp=3 for T,Q,SP |
---|
337 | |
---|
338 | ! Set grid stagger |
---|
339 | IF(ITYP.EQ.1) THEN ! U-POINT CASE |
---|
340 | GRIDX = gridx_u |
---|
341 | GRIDY = gridy_u |
---|
342 | ELSE IF(ITYP.EQ.2) THEN ! V-POINT CASE |
---|
343 | GRIDX = gridx_v |
---|
344 | GRIDY = gridy_v |
---|
345 | ELSE ! MASS-POINT CASE |
---|
346 | GRIDX = gridx_t |
---|
347 | GRIDY = gridy_t |
---|
348 | ENDIF |
---|
349 | |
---|
350 | ! Compute URATIO and VRATIO fields on momentum (u,v) points. |
---|
351 | IF(ityp.eq.1)THEN |
---|
352 | call upoint(i_start,i_end, j_start,j_end, ids,ide, ims,ime, jms,jme, uratx, uratio) |
---|
353 | ELSE IF (ityp.eq.2) THEN |
---|
354 | call vpoint(i_start,i_end, j_start,j_end, jds,jde, ims,ime, jms,jme, vratx, vratio) |
---|
355 | ENDIF |
---|
356 | |
---|
357 | IF(INEST.EQ.1) THEN ! COARSE MESH CASE... |
---|
358 | DO N=1,NSTA |
---|
359 | RA(N)=RIO(N)-GRIDX |
---|
360 | RB(N)=RJO(N)-GRIDY |
---|
361 | IA(N)=RA(N) |
---|
362 | IB(N)=RB(N) |
---|
363 | IOB=MAX0(1,IA(N)) |
---|
364 | IOB=MIN0(IOB,ide-1) |
---|
365 | JOB=MAX0(1,IB(N)) |
---|
366 | JOB=MIN0(JOB,jde-1) |
---|
367 | DXOB=RA(N)-FLOAT(IA(N)) |
---|
368 | DYOB=RB(N)-FLOAT(IB(N)) |
---|
369 | |
---|
370 | ! Save mass-point arrays for computing rko for all var types |
---|
371 | if(ityp.eq.1) then |
---|
372 | iobmg(n) = MIN0(MAX0(1,int(RIO(n)-gridx_t)),ide-1) |
---|
373 | jobmg(n) = MIN0(MAX0(1,int(RJO(n)-gridy_t)),jde-1) |
---|
374 | dxobmg(n) = RIO(N)-gridx_t-FLOAT(int(RIO(N)-gridx_t)) |
---|
375 | dyobmg(n) = RJO(N)-gridy_t-FLOAT(int(RJO(N)-gridy_t)) |
---|
376 | endif |
---|
377 | iob_ms = iobmg(n) |
---|
378 | job_ms = jobmg(n) |
---|
379 | dxob_ms = dxobmg(n) |
---|
380 | dyob_ms = dyobmg(n) |
---|
381 | |
---|
382 | |
---|
383 | !if(n.eq.1 .and. iprt) then |
---|
384 | ! write(6,*) 'ERROB - COARSE MESH:' |
---|
385 | ! write(6,'(a,i1,a,i1,4(a,f5.2),2(a,i3),2(a,f6.3))') 'OBS= ',n, & |
---|
386 | ! ' ityp= ',ityp, & |
---|
387 | ! ' ra= ',ra(n),' rb= ',rb(n), & |
---|
388 | ! ' rio= ',rio(n),' rjo= ',rjo(n), & |
---|
389 | ! ' iob= ',iob,' job= ',job, & |
---|
390 | ! ' dxob= ',dxob,' dyob= ',dyob |
---|
391 | ! write(6,'(a,i3,a,i3,a,f5.2,a,f5.2)') & |
---|
392 | ! ' iob_ms= ',iob_ms,' job_ms= ',job_ms, & |
---|
393 | ! ' dxob_ms= ',dxob_ms,' dyob_ms= ',dyob_ms |
---|
394 | !endif |
---|
395 | |
---|
396 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
397 | ! Set mask for obs to be handled by this processor |
---|
398 | MP_LOCAL_DUMMASK(N) = TILE_MASK(IOB, JOB, its, ite, jts, jte) |
---|
399 | |
---|
400 | IF ( MP_LOCAL_DUMMASK(N) ) THEN |
---|
401 | #endif |
---|
402 | |
---|
403 | ! Interpolate pressure to obs location column and convert from Pa to cb. |
---|
404 | |
---|
405 | do k = kds, kde |
---|
406 | pbbo(k) = .001*( & |
---|
407 | (1.-DYOB_MS)*( (1.-DXOB_MS)*pbase(IOB_MS,K,JOB_MS) + & |
---|
408 | DXOB_MS *pbase(IOB_MS+1,K,JOB_MS) ) + & |
---|
409 | DYOB_MS* ( (1.-DXOB_MS)*pbase(IOB_MS,K,JOB_MS+1) + & |
---|
410 | DXOB_MS *pbase(IOB_MS+1,K,JOB_MS+1) ) ) |
---|
411 | ppbo(k) = .001*( & |
---|
412 | (1.-DYOB_MS)*( (1.-DXOB_MS)*pp(IOB_MS,K,JOB_MS) + & |
---|
413 | DXOB_MS *pp(IOB_MS+1,K,JOB_MS) ) + & |
---|
414 | DYOB_MS* ( (1.-DXOB_MS)*pp(IOB_MS,K,JOB_MS+1) + & |
---|
415 | DXOB_MS *pp(IOB_MS+1,K,JOB_MS+1) ) ) |
---|
416 | |
---|
417 | ! write(6,'(a,i2,2(a,f9.3)') ' k= ',k,' pbbo= ',pbbo(k),' ppbo= ',ppbo(k) |
---|
418 | enddo |
---|
419 | |
---|
420 | !ajb 20040119: Note based on bugfix for dot/cross points split across processors, |
---|
421 | !ajb which was actually a serial code fix: The ityp=2 (v-points) and |
---|
422 | !ajb itype=3 (mass-points) cases should not use the ityp=1 (u-points) |
---|
423 | !ajb case rko! This is necessary for bit-for-bit reproducability |
---|
424 | !ajb with the parallel run. (coarse mesh) |
---|
425 | |
---|
426 | |
---|
427 | if(abs(rko(n)+99).lt.1.)then |
---|
428 | pob = varobs(5,n) |
---|
429 | |
---|
430 | if(pob .gt.-800000.)then |
---|
431 | do k=k_end-1,1,-1 |
---|
432 | kbot = k |
---|
433 | if(pob .le. pbbo(k)+ppbo(k)) then |
---|
434 | goto 199 |
---|
435 | endif |
---|
436 | enddo |
---|
437 | 199 continue |
---|
438 | |
---|
439 | pphi = ppbo(kbot+1) |
---|
440 | pbhi = pbbo(kbot+1) |
---|
441 | |
---|
442 | rko(n) = real(kbot+1)- & |
---|
443 | ( (pob-pbhi-pphi) / (pbbo(kbot)+ppbo(kbot)-pbhi-pphi) ) |
---|
444 | |
---|
445 | rko(n)=max(rko(n),1.0) |
---|
446 | endif |
---|
447 | endif |
---|
448 | |
---|
449 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
450 | ENDIF !end IF( MP_LOCAL_DUMMASK(N) ) !ajb |
---|
451 | #endif |
---|
452 | |
---|
453 | RC(N)=RKO(N) |
---|
454 | |
---|
455 | ENDDO ! END COARSE MESH LOOP OVER NSTA |
---|
456 | |
---|
457 | ELSE ! FINE MESH CASE |
---|
458 | |
---|
459 | ! CONVERT (I,J,K) OF OBSERVATIONS TO THE EQUIVALENT FINE MESH VALUES. |
---|
460 | DO N=1,NSTA |
---|
461 | |
---|
462 | ! COMPUTE THE OBS LOCATION WITH RESPECT TO THIS MESH (INEST)... |
---|
463 | NML=INEST |
---|
464 | MM(LEVIDN(INEST)+1)=INEST |
---|
465 | ! WORKING TOWARD COARSER MESHES, DETERMINE THE HIERARCHY OF MOTHER |
---|
466 | ! MESHES WITH RESPECT TO EACH MOTHER MESH STARTING AT MESH "IN"... |
---|
467 | ! THAT IS, DETERMINE ITS MOTHER, GRANDMOTHER, GREAT-GRANDMOTHER, ETC. |
---|
468 | ! OUT TO THE COARSE GRID MESH (INEST=1). |
---|
469 | ! LEVIDN HOLDS THE NEST LEVEL AND PARID HOLDS THE MOTHER MESH FOR EACH |
---|
470 | ! GRID (E.G., FOR 3 MESHES AND 2 NEST LEVELS, IN=1 IS THE COARSE GRID |
---|
471 | ! MESH, IN=2 HAS LEVIDN(2)=1 AND PARID(2)=1, AND IN=3 HAS LEVIDN(3)=2 |
---|
472 | ! AND PARID(3)=2...) |
---|
473 | DO NNL=LEVIDN(INEST),1,-1 |
---|
474 | MM(NNL)=PARID(NML) |
---|
475 | NML=MM(NNL) |
---|
476 | ENDDO |
---|
477 | |
---|
478 | ! NOTE: MM(1) MUST BE THE COARSE GRID MESH (INEST=0) |
---|
479 | IF(MM(1).NE.1) then |
---|
480 | if(iprt) write(6,*) 'stopping in errob: inest = ',inest |
---|
481 | STOP 21 |
---|
482 | ENDIF |
---|
483 | |
---|
484 | RA(N)=RIO(N) |
---|
485 | RB(N)=RJO(N) |
---|
486 | DO NNL=1,LEVIDN(INEST) |
---|
487 | GRFACX=0. |
---|
488 | GRFACY=0. |
---|
489 | ! COMPUTE THE OBS LOCATION WITH RESPECT TO THE INNER GRID IN NON- |
---|
490 | ! STAGGERED SPACE (GRID=0.). WHEN WE REACH MESH INEST, THEN |
---|
491 | ! APPLY THE APPRPRIATE STAGGER, DEPENDING ON THE VARIABLE... |
---|
492 | IF(NNL.EQ.LEVIDN(INEST)) THEN |
---|
493 | GRFACX=GRIDX |
---|
494 | GRFACY=GRIDY |
---|
495 | ENDIF |
---|
496 | |
---|
497 | RA(N)=(RA(N)-FLOAT(i_parent_start(MM(NNL+1))))* & |
---|
498 | FLOAT(IRATIO)+1.-GRFACX |
---|
499 | RB(N)=(RB(N)-FLOAT(j_parent_start(MM(NNL+1))))* & |
---|
500 | FLOAT(IRATIO)+1.-GRFACY |
---|
501 | |
---|
502 | IA(N)=RA(N) |
---|
503 | IB(N)=RB(N) |
---|
504 | IOB=MAX0(1,IA(N)) |
---|
505 | IOB=MIN0(IOB,ide-1) |
---|
506 | JOB=MAX0(1,IB(N)) |
---|
507 | JOB=MIN0(JOB,jde-1) |
---|
508 | DXOB=RA(N)-FLOAT(IA(N)) |
---|
509 | DYOB=RB(N)-FLOAT(IB(N)) |
---|
510 | |
---|
511 | ! Save mass-point arrays for computing rko for all var types |
---|
512 | if(ityp.eq.1) then |
---|
513 | stagx = grfacx - gridx_t !Correct x stagger to mass-point |
---|
514 | stagy = grfacy - gridy_t !Correct y stagger to mass-point |
---|
515 | iobmg(n) = MIN0(MAX0(1,int(RA(n)+stagx)),ide-1) |
---|
516 | jobmg(n) = MIN0(MAX0(1,int(RB(n)+stagy)),jde-1) |
---|
517 | dxobmg(n) = RA(N)+stagx-FLOAT(int(RA(N)+stagx)) |
---|
518 | dyobmg(n) = RB(N)+stagy-FLOAT(int(RB(N)+stagy)) |
---|
519 | endif |
---|
520 | iob_ms = iobmg(n) |
---|
521 | job_ms = jobmg(n) |
---|
522 | dxob_ms = dxobmg(n) |
---|
523 | dyob_ms = dyobmg(n) |
---|
524 | |
---|
525 | !if(n.eq.1) then |
---|
526 | ! write(6,*) 'ERROB - FINE MESH:' |
---|
527 | ! write(6,*) 'RA = ',ra(n),' RB = ',rb(n) |
---|
528 | ! write(6,'(a,i1,a,i1,4(a,f5.2),2(a,i3),2(a,f6.3))') 'OBS= ',n, & |
---|
529 | ! ' ityp= ',ityp, & |
---|
530 | ! ' ra= ',ra(n),' rb= ',rb(n), & |
---|
531 | ! ' rio= ',rio(n),' rjo= ',rjo(n), & |
---|
532 | ! ' iob= ',iob,' job= ',job, & |
---|
533 | ! ' dxob= ',dxob,' dyob= ',dyob |
---|
534 | ! write(6,'(a,i3,a,i3,a,f5.2,a,f5.2)') & |
---|
535 | ! ' iob_ms= ',iob_ms,' job_ms= ',job_ms, & |
---|
536 | ! ' dxob_ms= ',dxob_ms,' dyob_ms= ',dyob_ms |
---|
537 | !endif |
---|
538 | |
---|
539 | ENDDO ! end do nnl=1,levidn(inest) |
---|
540 | |
---|
541 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
542 | ! Set mask for obs to be handled by this processor |
---|
543 | MP_LOCAL_DUMMASK(N) = TILE_MASK(IOB, JOB, its, ite, jts, jte) |
---|
544 | |
---|
545 | IF ( MP_LOCAL_DUMMASK(N) ) THEN |
---|
546 | #endif |
---|
547 | |
---|
548 | ! Interpolate pressure to obs location column and convert from Pa to cb. |
---|
549 | |
---|
550 | do k = kds, kde |
---|
551 | pbbo(k) = .001*( & |
---|
552 | (1.-DYOB_MS)*( (1.-DXOB_MS)*pbase(IOB_MS,K,JOB_MS) + & |
---|
553 | DXOB_MS *pbase(IOB_MS+1,K,JOB_MS) ) + & |
---|
554 | DYOB_MS* ( (1.-DXOB_MS)*pbase(IOB_MS,K,JOB_MS+1) + & |
---|
555 | DXOB_MS *pbase(IOB_MS+1,K,JOB_MS+1) ) ) |
---|
556 | ppbo(k) = .001*( & |
---|
557 | (1.-DYOB_MS)*( (1.-DXOB_MS)*pp(IOB_MS,K,JOB_MS) + & |
---|
558 | DXOB_MS *pp(IOB_MS+1,K,JOB_MS) ) + & |
---|
559 | DYOB_MS* ( (1.-DXOB_MS)*pp(IOB_MS,K,JOB_MS+1) + & |
---|
560 | DXOB_MS *pp(IOB_MS+1,K,JOB_MS+1) ) ) |
---|
561 | |
---|
562 | ! write(6,'(a,i2,2(a,f9.3)') ' k= ',k,' pbbo= ',pbbo(k),' ppbo= ',ppbo(k) |
---|
563 | enddo |
---|
564 | |
---|
565 | !ajb 20040119: Note based on bugfix for dot/cross points split across processors, |
---|
566 | !ajb which was actually a serial code fix: The ityp=2 (v-points) and |
---|
567 | !ajb itype=3 (mass-points) cases should not use the ityp=1 (u-points) |
---|
568 | !ajb case) rko! This is necessary for bit-for-bit reproducability |
---|
569 | !ajb with parallel run. (fine mesh) |
---|
570 | |
---|
571 | if(abs(rko(n)+99).lt.1.)then |
---|
572 | pob = varobs(5,n) |
---|
573 | |
---|
574 | if(pob .gt.-800000.)then |
---|
575 | do k=k_end-1,1,-1 |
---|
576 | kbot = k |
---|
577 | if(pob .le. pbbo(k)+ppbo(k)) then |
---|
578 | goto 198 |
---|
579 | endif |
---|
580 | enddo |
---|
581 | 198 continue |
---|
582 | |
---|
583 | pphi = ppbo(kbot+1) |
---|
584 | pbhi = pbbo(kbot+1) |
---|
585 | |
---|
586 | rko(n) = real(kbot+1)- & |
---|
587 | ( (pob-pbhi-pphi) / (pbbo(kbot)+ppbo(kbot)-pbhi-pphi) ) |
---|
588 | rko(n)=max(rko(n),1.0) |
---|
589 | endif |
---|
590 | endif |
---|
591 | |
---|
592 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
593 | ENDIF !end IF( MP_LOCAL_DUMMASK(N) ) !ajb |
---|
594 | #endif |
---|
595 | |
---|
596 | RC(N)=RKO(N) |
---|
597 | |
---|
598 | ENDDO ! END FINE MESH LOOP OVER NSTA |
---|
599 | |
---|
600 | ENDIF ! end if(inest.eq.1) |
---|
601 | |
---|
602 | ! INITIALIZE THE ARRAY OF DIFFERENCES BETWEEN THE OBSERVATIONS |
---|
603 | ! AND THE LOCAL FORECAST VALUES TO ZERO. FOR THE FINE MESH |
---|
604 | ! ONLY, SET THE DIFFERENCE TO A LARGE DUMMY VALUE IF THE |
---|
605 | ! OBSERVATION IS OUTSIDE THE FINE MESH DOMAIN. |
---|
606 | |
---|
607 | ! SET DIFFERENCE VALUE TO A DUMMY VALUE FOR OBS POINTS OUTSIDE |
---|
608 | ! CURRENT DOMAIN |
---|
609 | IF(ITYP.EQ.1) THEN |
---|
610 | NLB=1 |
---|
611 | NLE=1 |
---|
612 | ELSE IF(ITYP.EQ.2) THEN |
---|
613 | NLB=2 |
---|
614 | NLE=2 |
---|
615 | ELSE |
---|
616 | NLB=3 |
---|
617 | NLE=5 |
---|
618 | ENDIF |
---|
619 | DO IVAR=NLB,NLE |
---|
620 | DO N=1,NSTA |
---|
621 | IF((RA(N)-1.).LT.0)THEN |
---|
622 | ERRF(IVAR,N)=ERRF(IVAR,N)+DUMMY |
---|
623 | ENDIF |
---|
624 | IF((RB(N)-1.).LT.0)THEN |
---|
625 | ERRF(IVAR,N)=ERRF(IVAR,N)+DUMMY |
---|
626 | ENDIF |
---|
627 | IF((FLOAT(ide)-2.0*GRIDX-RA(N)-1.E-10).LT.0)THEN |
---|
628 | ERRF(IVAR,N)=ERRF(IVAR,N)+DUMMY |
---|
629 | ENDIF |
---|
630 | IF((FLOAT(jde)-2.0*GRIDY-RB(N)-1.E-10).LT.0)THEN |
---|
631 | ERRF(IVAR,N)=ERRF(IVAR,N)+DUMMY |
---|
632 | ENDIF |
---|
633 | if(rc(n).lt.1.)errf(ivar,n)=errf(ivar,n)+dummy |
---|
634 | ENDDO |
---|
635 | ENDDO |
---|
636 | |
---|
637 | ! NOW FIND THE EXACT OFFSET OF EACH OBSERVATION FROM THE |
---|
638 | ! GRID POINT TOWARD THE LOWER LEFT |
---|
639 | DO N=1,NSTA |
---|
640 | IA(N)=RA(N) |
---|
641 | IB(N)=RB(N) |
---|
642 | IC(N)=RC(N) |
---|
643 | ENDDO |
---|
644 | DO N=1,NSTA |
---|
645 | RA(N)=RA(N)-FLOAT(IA(N)) |
---|
646 | RB(N)=RB(N)-FLOAT(IB(N)) |
---|
647 | RC(N)=RC(N)-FLOAT(IC(N)) |
---|
648 | ENDDO |
---|
649 | ! PERFORM A TRILINEAR EIGHT-POINT (3-D) INTERPOLATION |
---|
650 | ! TO FIND THE FORECAST VALUE AT THE EXACT OBSERVATION |
---|
651 | ! POINTS FOR U, V, T, AND Q. |
---|
652 | |
---|
653 | ! Compute local masks for dot and cross points. |
---|
654 | if(ityp.eq.1) then |
---|
655 | DO N=1,NSTA |
---|
656 | IOB=MAX0(1,IA(N)) |
---|
657 | IOB=MIN0(IOB,ide-1) |
---|
658 | JOB=MAX0(1,IB(N)) |
---|
659 | JOB=MIN0(JOB,jde-1) |
---|
660 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
661 | ! Set mask for U-momemtum points to be handled by this processor |
---|
662 | MP_LOCAL_UOBMASK(N) = TILE_MASK(IOB, JOB, its, ite, jts, jte) |
---|
663 | #endif |
---|
664 | ENDDO |
---|
665 | endif |
---|
666 | if(ityp.eq.2) then |
---|
667 | DO N=1,NSTA |
---|
668 | IOB=MAX0(1,IA(N)) |
---|
669 | IOB=MIN0(IOB,ide-1) |
---|
670 | JOB=MAX0(1,IB(N)) |
---|
671 | JOB=MIN0(JOB,jde-1) |
---|
672 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
673 | ! Set mask for V-momentum points to be handled by this processor |
---|
674 | MP_LOCAL_VOBMASK(N) = TILE_MASK(IOB, JOB, its, ite, jts, jte) |
---|
675 | #endif |
---|
676 | ENDDO |
---|
677 | endif |
---|
678 | if(ityp.eq.3) then |
---|
679 | DO N=1,NSTA |
---|
680 | IOB=MAX0(1,IA(N)) |
---|
681 | IOB=MIN0(IOB,ide-1) |
---|
682 | JOB=MAX0(1,IB(N)) |
---|
683 | JOB=MIN0(JOB,jde-1) |
---|
684 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
685 | ! Set mask for cross (mass) points to be handled by this processor |
---|
686 | MP_LOCAL_COBMASK(N) = TILE_MASK(IOB, JOB, its, ite, jts, jte) |
---|
687 | #endif |
---|
688 | ENDDO |
---|
689 | endif |
---|
690 | |
---|
691 | !********************************************************** |
---|
692 | ! PROCESS U VARIABLE (IVAR=1) |
---|
693 | !********************************************************** |
---|
694 | IF(ITYP.EQ.1) THEN |
---|
695 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
696 | DO N=1,NSTA |
---|
697 | IF(MP_LOCAL_UOBMASK(N)) THEN |
---|
698 | ERRF(9,N)=rko(n) !RKO is needed by neighboring processors !ajb |
---|
699 | ENDIF |
---|
700 | ENDDO |
---|
701 | #endif |
---|
702 | IF(ISWIND.EQ.1) THEN |
---|
703 | DO N=1,NSTA |
---|
704 | IOB=MAX0(2,IA(N)) |
---|
705 | IOB=MIN0(IOB,ide-1) |
---|
706 | IOBM=MAX0(1,IOB-1) |
---|
707 | IOBP=MIN0(ide-1,IOB+1) |
---|
708 | JOB=MAX0(2,IB(N)) |
---|
709 | JOB=MIN0(JOB,jde-1) |
---|
710 | JOBM=MAX0(1,JOB-1) |
---|
711 | JOBP=MIN0(jde-1,JOB+1) |
---|
712 | KOB=MIN0(K_END,IC(N)) |
---|
713 | |
---|
714 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
715 | IF(MP_LOCAL_UOBMASK(N))THEN ! Do if obs on this processor |
---|
716 | #endif |
---|
717 | KOBP=MIN0(KOB+1,k_end) |
---|
718 | DXOB=RA(N) |
---|
719 | DYOB=RB(N) |
---|
720 | DZOB=RC(N) |
---|
721 | |
---|
722 | ! Compute surface pressure values at surrounding U and V points |
---|
723 | PUG1 = .5*( pbase(IOBM,1,JOB) + pbase(IOB,1,JOB) ) |
---|
724 | PUG2 = .5*( pbase(IOB,1,JOB) + pbase(IOBP,1,JOB) ) |
---|
725 | |
---|
726 | ! This is to correct obs to model sigma level using reverse similarity theory |
---|
727 | if(rko(n).eq.1.0)then |
---|
728 | uratiob=((1.-DXOB)*((1.-DYOB)*uratio(IOB,JOB)+ & |
---|
729 | DYOB*uratio(IOBP,JOB) & |
---|
730 | )+DXOB*((1.-DYOB)*uratio(IOB,JOBP)+ & |
---|
731 | DYOB*uratio(IOBP,JOBP))) |
---|
732 | else |
---|
733 | uratiob=1. |
---|
734 | endif |
---|
735 | !YLIU Some PBL scheme do not define the vratio/uratio |
---|
736 | if(abs(uratiob).lt.1.0e-3) then |
---|
737 | uratiob=1. |
---|
738 | endif |
---|
739 | |
---|
740 | ! INITIAL ERRF(IVAR,N) IS ZERO FOR OBSERVATIONS POINTS |
---|
741 | ! WITHIN THE DOMAIN, AND A LARGE DUMMY VALUE FOR POINTS |
---|
742 | ! OUTSIDE THE CURRENT DOMAIN |
---|
743 | |
---|
744 | ! U COMPONENT WIND ERROR |
---|
745 | ERRF(1,N)=ERRF(1,N)+uratiob*VAROBS(1,N)-((1.-DZOB)* & |
---|
746 | ((1.-DyOB)*((1.- & |
---|
747 | DxOB)*UB(IOB,KOB,JOB)+DxOB*UB(IOB+1,KOB,JOB) & |
---|
748 | )+DyOB*((1.-DxOB)*UB(IOB,KOB,JOB+1)+DxOB* & |
---|
749 | UB(IOB+1,KOB,JOB+1)))+DZOB*((1.-DyOB)*((1.-DxOB) & |
---|
750 | *UB(IOB,KOBP,JOB)+DxOB*UB(IOB+1,KOBP,JOB))+ & |
---|
751 | DyOB*((1.-DxOB)*UB(IOB,KOBP,JOB+1)+DxOB* & |
---|
752 | UB(IOB+1,KOBP,JOB+1)))) |
---|
753 | |
---|
754 | ! if(n.le.10) then |
---|
755 | ! write(6,*) |
---|
756 | ! write(6,'(a,i3,i3,i3,a,i3,a,i2)') 'ERRF1 at ',iob,job,kob, & |
---|
757 | ! ' N = ',n,' inest = ',inest |
---|
758 | ! write(6,*) 'VAROBS(1,N) = ',varobs(1,n) |
---|
759 | ! write(6,*) 'VAROBS(5,N) = ',varobs(5,n) |
---|
760 | ! write(6,*) 'UB(IOB,KOB,JOB) = ',UB(IOB,KOB,JOB) |
---|
761 | ! write(6,*) 'UB(IOB+1,KOB,JOB) = ',UB(IOB+1,KOB,JOB) |
---|
762 | ! write(6,*) 'UB(IOB,KOB,JOB+1) = ',UB(IOB,KOB,JOB+1) |
---|
763 | ! write(6,*) 'UB(IOB+1,KOB,JOB+1) = ',UB(IOB+1,KOB,JOB+1) |
---|
764 | ! write(6,*) 'UB(IOB,KOBP,JOB) = ',UB(IOB,KOBP,JOB) |
---|
765 | ! write(6,*) 'UB(IOB+1,KOBP,JOB) = ',UB(IOB+1,KOBP,JOB) |
---|
766 | ! write(6,*) 'UB(IOB,KOBP,JOB+1) = ',UB(IOB,KOBP,JOB+1) |
---|
767 | ! write(6,*) 'UB(IOB+1,KOBP,JOB+1) = ',UB(IOB+1,KOBP,JOB+1) |
---|
768 | ! write(6,*) 'uratiob = ',uratiob |
---|
769 | ! write(6,*) 'DXOB,DYOB,DZOB = ',DXOB,DYOB,DZOB |
---|
770 | ! write(6,*) 'ERRF(1,N) = ',errf(1,n) |
---|
771 | ! write(6,*) |
---|
772 | ! endif |
---|
773 | |
---|
774 | |
---|
775 | ! Store model surface pressure (not the error!) at U point. |
---|
776 | ERRF(7,N)=.001*( (1.-DXOB)*PUG1 + DXOB*PUG2 ) |
---|
777 | |
---|
778 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
779 | ENDIF ! end IF( MP_LOCAL_UOBMASK(N) ) |
---|
780 | #endif |
---|
781 | ENDDO ! END U-POINT LOOP OVER OBS |
---|
782 | |
---|
783 | ENDIF ! end if(iswind.eq.1) |
---|
784 | |
---|
785 | ENDIF ! ITYP=1: PROCESS U |
---|
786 | |
---|
787 | !********************************************************** |
---|
788 | ! PROCESS V VARIABLE (IVAR=2) |
---|
789 | !********************************************************** |
---|
790 | IF(ITYP.EQ.2) THEN |
---|
791 | |
---|
792 | IF(ISWIND.EQ.1) THEN |
---|
793 | DO N=1,NSTA |
---|
794 | IOB=MAX0(2,IA(N)) |
---|
795 | IOB=MIN0(IOB,ide-1) |
---|
796 | IOBM=MAX0(1,IOB-1) |
---|
797 | IOBP=MIN0(ide-1,IOB+1) |
---|
798 | JOB=MAX0(2,IB(N)) |
---|
799 | JOB=MIN0(JOB,jde-1) |
---|
800 | JOBM=MAX0(1,JOB-1) |
---|
801 | JOBP=MIN0(jde-1,JOB+1) |
---|
802 | KOB=MIN0(K_END,IC(N)) |
---|
803 | |
---|
804 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
805 | IF(MP_LOCAL_VOBMASK(N))THEN ! Do if obs on this processor |
---|
806 | #endif |
---|
807 | KOBP=MIN0(KOB+1,k_end) |
---|
808 | DXOB=RA(N) |
---|
809 | DYOB=RB(N) |
---|
810 | DZOB=RC(N) |
---|
811 | |
---|
812 | ! Compute surface pressure values at surrounding U and V points |
---|
813 | PVG1 = .5*( pbase(IOB,1,JOBM) + pbase(IOB,1,JOB) ) |
---|
814 | PVG2 = .5*( pbase(IOB,1,JOB) + pbase(IOB,1,JOBP) ) |
---|
815 | |
---|
816 | ! This is to correct obs to model sigma level using reverse similarity theory |
---|
817 | if(rko(n).eq.1.0)then |
---|
818 | vratiob=((1.-DXOB)*((1.-DYOB)*vratio(IOB,JOB)+ & |
---|
819 | DYOB*vratio(IOBP,JOB) & |
---|
820 | )+DXOB*((1.-DYOB)*vratio(IOB,JOBP)+ & |
---|
821 | DYOB*vratio(IOBP,JOBP))) |
---|
822 | else |
---|
823 | vratiob=1. |
---|
824 | endif |
---|
825 | !YLIU Some PBL scheme do not define the vratio/uratio |
---|
826 | if(abs(vratiob).lt.1.0e-3) then |
---|
827 | vratiob=1. |
---|
828 | endif |
---|
829 | |
---|
830 | ! INITIAL ERRF(IVAR,N) IS ZERO FOR OBSERVATIONS POINTS |
---|
831 | ! WITHIN THE DOMAIN, AND A LARGE DUMMY VALUE FOR POINTS |
---|
832 | ! OUTSIDE THE CURRENT DOMAIN |
---|
833 | |
---|
834 | ! V COMPONENT WIND ERROR |
---|
835 | ERRF(2,N)=ERRF(2,N)+vratiob*VAROBS(2,N)-((1.-DZOB)* & |
---|
836 | ((1.-DyOB)*((1.- & |
---|
837 | DxOB)*VB(IOB,KOB,JOB)+DxOB*VB(IOB+1,KOB,JOB) & |
---|
838 | )+DyOB*((1.-DxOB)*VB(IOB,KOB,JOB+1)+DxOB* & |
---|
839 | VB(IOB+1,KOB,JOB+1)))+DZOB*((1.-DyOB)*((1.-DxOB) & |
---|
840 | *VB(IOB,KOBP,JOB)+DxOB*VB(IOB+1,KOBP,JOB))+ & |
---|
841 | DyOB*((1.-DxOB)*VB(IOB,KOBP,JOB+1)+DxOB* & |
---|
842 | VB(IOB+1,KOBP,JOB+1)))) |
---|
843 | |
---|
844 | ! Store model surface pressure (not the error!) at V point. |
---|
845 | ERRF(8,N)=.001*( (1.-DYOB)*PVG1 + DYOB*PVG2 ) |
---|
846 | |
---|
847 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
848 | ENDIF ! end IF( MP_LOCAL_VOBMASK(N) ) |
---|
849 | #endif |
---|
850 | ENDDO ! END V-POINT LOOP OVER OBS |
---|
851 | |
---|
852 | ENDIF ! end if(iswind.eq.1) |
---|
853 | |
---|
854 | ENDIF ! ITYP=1: PROCESS V |
---|
855 | |
---|
856 | !********************************************************** |
---|
857 | ! PROCESS MASS-POINT VARIABLES IVAR=3 (T) AND IVAR=4 (QV) |
---|
858 | !********************************************************** |
---|
859 | IF(ITYP.EQ.3) THEN |
---|
860 | |
---|
861 | IF(ISTEMP.EQ.1 .OR. ISMOIS.EQ.1) THEN |
---|
862 | DO N=1,NSTA |
---|
863 | IOB=MAX0(1,IA(N)) |
---|
864 | IOB=MIN0(IOB,ide-1) |
---|
865 | JOB=MAX0(1,IB(N)) |
---|
866 | JOB=MIN0(JOB,jde-1) |
---|
867 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
868 | IF(MP_LOCAL_COBMASK(N)) THEN ! Do if obs on this processor |
---|
869 | #endif |
---|
870 | KOB=MIN0(k_end,IC(N)) |
---|
871 | KOBP=MIN0(KOB+1,K_END) |
---|
872 | DXOB=RA(N) |
---|
873 | DYOB=RB(N) |
---|
874 | DZOB=RC(N) |
---|
875 | |
---|
876 | ! This is to correct obs to model sigma level using reverse similarity theory |
---|
877 | if(rko(n).eq.1.0)then |
---|
878 | tratxob=((1.-DXOB)*((1.-DYOB)*tratx(IOB,JOB)+ & |
---|
879 | DYOB*tratx(IOB+1,JOB) & |
---|
880 | )+DXOB*((1.-DYOB)*tratx(IOB,JOB+1)+ & |
---|
881 | DYOB*tratx(IOB+1,JOB+1))) |
---|
882 | else |
---|
883 | tratxob=1. |
---|
884 | endif |
---|
885 | |
---|
886 | !yliu |
---|
887 | if(abs(tratxob) .lt. 1.0E-3) tratxob=1. |
---|
888 | |
---|
889 | !ajb testing only |
---|
890 | if(iprt .and. n.eq.81) then |
---|
891 | write(6,*) 'POTENTIAL TEMP FOR N=81:' |
---|
892 | write(6,*) |
---|
893 | write(6,*) ' K THETA TEMPERATURE', & |
---|
894 | ' PBASE' |
---|
895 | write(6,*) |
---|
896 | do k=k_end,1,-1 |
---|
897 | press = pbase(iob,k,job)+pp(iob,k,job) |
---|
898 | ttemp = exp ( alog(300.+TB(IOB,k,JOB)) - & |
---|
899 | .2857143*alog(100000./press) ) |
---|
900 | write(6,*) k,300.+TB(IOB,k,JOB),ttemp,pbase(iob,k,job) |
---|
901 | enddo |
---|
902 | endif |
---|
903 | !ajb end testing only |
---|
904 | |
---|
905 | ! TEMPERATURE ERROR |
---|
906 | ! if(n.le.10) then |
---|
907 | ! write(6,*) 'before: errf(3,n) = ',errf(3,n) |
---|
908 | ! endif |
---|
909 | ERRF(3,N)=ERRF(3,N)+tratxob*VAROBS(3,N)-((1.-DZOB)* & |
---|
910 | ((1.-DyOB)*((1.- & |
---|
911 | DxOB)*(TB(IOB,KOB,JOB))+DxOB* & |
---|
912 | (TB(IOB+1,KOB,JOB)))+DyOB*((1.-DxOB)* & |
---|
913 | (TB(IOB,KOB,JOB+1))+DxOB* & |
---|
914 | (TB(IOB+1,KOB,JOB+1))))+DZOB*((1.- & |
---|
915 | DyOB)*((1.-DxOB)*(TB(IOB,KOBP,JOB))+DxOB* & |
---|
916 | (TB(IOB+1,KOBP,JOB)))+DyOB*((1.-DxOB)* & |
---|
917 | (TB(IOB,KOBP,JOB+1))+DxOB* & |
---|
918 | (TB(IOB+1,KOBP,JOB+1))))) |
---|
919 | |
---|
920 | ! if(n.le.10) then |
---|
921 | ! write(6,*) |
---|
922 | ! write(6,'(a,i3,i3,i3,a,i3,a,i2)') 'ERRF3 at ',iob,job,kob, & |
---|
923 | ! ' N = ',n,' inest = ',inest |
---|
924 | ! write(6,*) 'VAROBS(3,N) = ',varobs(3,n) |
---|
925 | ! write(6,*) 'VAROBS(5,N) = ',varobs(5,n) |
---|
926 | ! write(6,*) 'TB(IOB,KOB,JOB) = ',TB(IOB,KOB,JOB) |
---|
927 | ! write(6,*) 'TB(IOB+1,KOB,JOB) = ',TB(IOB+1,KOB,JOB) |
---|
928 | ! write(6,*) 'TB(IOB,KOB,JOB+1) = ',TB(IOB,KOB,JOB+1) |
---|
929 | ! write(6,*) 'TB(IOB+1,KOB,JOB+1) = ',TB(IOB+1,KOB,JOB+1) |
---|
930 | ! write(6,*) 'TB(IOB,KOBP,JOB) = ',TB(IOB,KOBP,JOB) |
---|
931 | ! write(6,*) 'TB(IOB+1,KOBP,JOB) = ',TB(IOB+1,KOBP,JOB) |
---|
932 | ! write(6,*) 'TB(IOB,KOBP,JOB+1) = ',TB(IOB,KOBP,JOB+1) |
---|
933 | ! write(6,*) 'TB(IOB+1,KOBP,JOB+1) = ',TB(IOB+1,KOBP,JOB+1) |
---|
934 | ! write(6,*) 'tratxob = ',tratxob |
---|
935 | ! write(6,*) 'DXOB,DYOB,DZOB = ',DXOB,DYOB,DZOB |
---|
936 | ! write(6,*) 'ERRF(3,N) = ',errf(3,n) |
---|
937 | ! write(6,*) |
---|
938 | ! endif |
---|
939 | |
---|
940 | |
---|
941 | ! MOISTURE ERROR |
---|
942 | ERRF(4,N)=ERRF(4,N)+VAROBS(4,N)-((1.-DZOB)*((1.-DyOB)*((1.- & |
---|
943 | DxOB)*QVB(IOB,KOB,JOB)+DxOB* & |
---|
944 | QVB(IOB+1,KOB,JOB))+DyOB*((1.-DxOB)* & |
---|
945 | QVB(IOB,KOB,JOB+1)+DxOB* & |
---|
946 | QVB(IOB+1,KOB,JOB+1)))+DZOB*((1.- & |
---|
947 | DyOB)*((1.-DxOB)*QVB(IOB,KOBP,JOB)+DxOB & |
---|
948 | *QVB(IOB+1,KOBP,JOB))+DyOB*((1.-DxOB & |
---|
949 | )*QVB(IOB,KOBP,JOB+1)+DxOB* & |
---|
950 | QVB(IOB+1,KOBP,JOB+1)))) |
---|
951 | |
---|
952 | ! Store model surface pressure (not the error!) at T-point |
---|
953 | ERRF(6,N)= .001* & |
---|
954 | ((1.-DyOB)*((1.-DxOB)*pbase(IOB,1,JOB)+DxOB* & |
---|
955 | pbase(IOB+1,1,JOB))+DyOB*((1.-DxOB)* & |
---|
956 | pbase(IOB,1,JOB+1)+DxOB*pbase(IOB+1,1,JOB+1) )) |
---|
957 | |
---|
958 | if(iprt .and. n.eq.81) then |
---|
959 | write(6,*) 'ERRF(6,81) calculation:' |
---|
960 | write(6,*) 'iob,job = ',iob,job |
---|
961 | write(6,*) 'pbase(iob,1,job) = ',pbase(iob,1,job) |
---|
962 | write(6,*) 'pbase(iob+1,1,job) = ',pbase(iob+1,1,job) |
---|
963 | write(6,*) 'pbase(iob,1,job+1) = ',pbase(iob,1,job+1) |
---|
964 | write(6,*) 'pbase(iob+1,1,job+1) = ',pbase(iob+1,1,job+1) |
---|
965 | write(6,*) 'ERRF(6,81) = ',errf(6,n) |
---|
966 | ! call flush(6) |
---|
967 | endif |
---|
968 | |
---|
969 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
970 | ENDIF ! end IF( MP_LOCAL_COBMASK(N) ) |
---|
971 | #endif |
---|
972 | ENDDO ! END T and QV LOOP OVER OBS |
---|
973 | |
---|
974 | ENDIF !end if(istemp.eq.1 .or. ismois.eq.1) |
---|
975 | |
---|
976 | !********************************************************** |
---|
977 | ! PROCESS SURFACE PRESSURE CROSS-POINT FIELD, IVAR=5, |
---|
978 | ! USING BILINEAR FOUR-POINT 2-D INTERPOLATION |
---|
979 | !********************************************************** |
---|
980 | IF(ISPSTR.EQ.1) THEN |
---|
981 | DO N=1,NSTA |
---|
982 | IOB=MAX0(1,IA(N)) |
---|
983 | IOB=MIN0(IOB,ide-1) |
---|
984 | JOB=MAX0(1,IB(N)) |
---|
985 | JOB=MIN0(JOB,jde-1) |
---|
986 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
987 | IF(MP_LOCAL_COBMASK(N)) THEN ! Do if obs on this processor |
---|
988 | #endif |
---|
989 | DXOB=RA(N) |
---|
990 | DYOB=RB(N) |
---|
991 | !ajb fix this (put in correct pressure calc for IOB,JOB here) |
---|
992 | ERRF(5,N)=ERRF(5,N)+VAROBS(5,N)-((1.-DyOB)*((1.-DxOB)* & |
---|
993 | pbase(IOB,1,JOB)+DxOB*pbase(IOB+1,1,JOB))+DyOB* & |
---|
994 | ((1.-DxOB)*pbase(IOB,1,JOB+1)+DxOB* & |
---|
995 | pbase(IOB+1,1,JOB+1))) |
---|
996 | |
---|
997 | if(n.eq.81) then |
---|
998 | write(6,*) 'ERRF(5,81) calculation:' |
---|
999 | write(6,*) 'iob,job = ',iob,job |
---|
1000 | write(6,*) 'pbase(iob,1,job) = ',pbase(iob,1,job) |
---|
1001 | write(6,*) 'pbase(iob+1,1,job) = ',pbase(iob+1,1,job) |
---|
1002 | write(6,*) 'pbase(iob,1,job+1) = ',pbase(iob,1,job+1) |
---|
1003 | write(6,*) 'pbase(iob+1,1,job+1) = ',pbase(iob+1,1,job+1) |
---|
1004 | write(6,*) 'errf(5,81) = ',errf(5,n) |
---|
1005 | ! call flush(6) |
---|
1006 | endif |
---|
1007 | |
---|
1008 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
1009 | ENDIF ! end IF( MP_LOCAL_COBMASK(N) ) |
---|
1010 | #endif |
---|
1011 | |
---|
1012 | ENDDO |
---|
1013 | |
---|
1014 | ENDIF ! end if(ispstr.eq.1) |
---|
1015 | |
---|
1016 | ENDIF ! end if(ityp.eq.3) |
---|
1017 | |
---|
1018 | ENDDO ! END BIG LOOP |
---|
1019 | |
---|
1020 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
1021 | ! Gather the errf values calculated by the processors with the obs. |
---|
1022 | CALL get_full_obs_vector(nsta, nerrf, niobf, mp_local_uobmask, & |
---|
1023 | mp_local_vobmask, mp_local_cobmask, errf) |
---|
1024 | #endif |
---|
1025 | |
---|
1026 | ! DIFFERENCE BETWEEN OBS AND FCST IS COMPLETED |
---|
1027 | IF(INEST.EQ.1)THEN |
---|
1028 | INPF=NPFI |
---|
1029 | ELSE |
---|
1030 | FNPF=IRATIO**LEVIDN(INEST) |
---|
1031 | INPF=FNPF*NPFI |
---|
1032 | ENDIF |
---|
1033 | ! Gross error check for temperature. Set all vars bad. |
---|
1034 | do n=1,nsta |
---|
1035 | if((abs(errf(3,n)).gt.20.).and. & |
---|
1036 | (errf(3,n).gt.-800000.))then |
---|
1037 | |
---|
1038 | errf(1,n)=-888888. |
---|
1039 | errf(2,n)=-888888. |
---|
1040 | errf(3,n)=-888888. |
---|
1041 | errf(4,n)=-888888. |
---|
1042 | varobs(1,n)=-888888. |
---|
1043 | varobs(2,n)=-888888. |
---|
1044 | varobs(3,n)=-888888. |
---|
1045 | varobs(4,n)=-888888. |
---|
1046 | endif |
---|
1047 | enddo |
---|
1048 | |
---|
1049 | ! For printout |
---|
1050 | ! IF(MOD(KTAU,INPF).NE.0) THEN |
---|
1051 | ! RETURN |
---|
1052 | ! ENDIF |
---|
1053 | |
---|
1054 | RETURN |
---|
1055 | END SUBROUTINE errob |
---|
1056 | |
---|
1057 | SUBROUTINE upoint(i_start,i_end, j_start,j_end, ids,ide, ims,ime, jms,jme, & |
---|
1058 | arrin, arrout) |
---|
1059 | !------------------------------------------------------------------------------ |
---|
1060 | ! PURPOSE: This subroutine interpolates a real 2D array defined over mass |
---|
1061 | ! coordinate points, to U (momentum) points. |
---|
1062 | ! |
---|
1063 | !------------------------------------------------------------------------------ |
---|
1064 | IMPLICIT NONE |
---|
1065 | |
---|
1066 | INTEGER, INTENT(IN) :: i_start ! Starting i index for this model tile |
---|
1067 | INTEGER, INTENT(IN) :: i_end ! Ending i index for this model tile |
---|
1068 | INTEGER, INTENT(IN) :: j_start ! Starting j index for this model tile |
---|
1069 | INTEGER, INTENT(IN) :: j_end ! Ending j index for this model tile |
---|
1070 | INTEGER, INTENT(IN) :: ids ! Starting i index for entire model domain |
---|
1071 | INTEGER, INTENT(IN) :: ide ! Ending i index for entire model domain |
---|
1072 | INTEGER, INTENT(IN) :: ims ! Starting i index for model patch |
---|
1073 | INTEGER, INTENT(IN) :: ime ! Ending i index for model patch |
---|
1074 | INTEGER, INTENT(IN) :: jms ! Starting j index for model patch |
---|
1075 | INTEGER, INTENT(IN) :: jme ! Ending j index for model patch |
---|
1076 | REAL, INTENT(IN) :: arrin ( ims:ime, jms:jme ) ! input array on mass points |
---|
1077 | REAL, INTENT(OUT) :: arrout( ims:ime, jms:jme ) ! output array on U points |
---|
1078 | |
---|
1079 | ! Local variables |
---|
1080 | integer :: i, j |
---|
1081 | |
---|
1082 | ! Do domain interior first |
---|
1083 | do j = j_start, j_end |
---|
1084 | do i = max(2,i_start), i_end |
---|
1085 | arrout(i,j) = 0.5*(arrin(i,j)+arrin(i-1,j)) |
---|
1086 | enddo |
---|
1087 | enddo |
---|
1088 | |
---|
1089 | ! Do west-east boundaries |
---|
1090 | if(i_start .eq. ids) then |
---|
1091 | do j = j_start, j_end |
---|
1092 | arrout(i_start,j) = arrin(i_start,j) |
---|
1093 | enddo |
---|
1094 | endif |
---|
1095 | if(i_end .eq. ide-1) then |
---|
1096 | do j = j_start, j_end |
---|
1097 | arrout(i_end+1,j) = arrin(i_end,j) |
---|
1098 | enddo |
---|
1099 | endif |
---|
1100 | |
---|
1101 | RETURN |
---|
1102 | END SUBROUTINE upoint |
---|
1103 | |
---|
1104 | SUBROUTINE vpoint(i_start,i_end, j_start,j_end, jds,jde, ims,ime, jms,jme, & |
---|
1105 | arrin, arrout) |
---|
1106 | !------------------------------------------------------------------------------ |
---|
1107 | ! PURPOSE: This subroutine interpolates a real 2D array defined over mass |
---|
1108 | ! coordinate points, to V (momentum) points. |
---|
1109 | ! |
---|
1110 | !------------------------------------------------------------------------------ |
---|
1111 | IMPLICIT NONE |
---|
1112 | |
---|
1113 | INTEGER, INTENT(IN) :: i_start ! Starting i index for this model tile |
---|
1114 | INTEGER, INTENT(IN) :: i_end ! Ending i index for this model tile |
---|
1115 | INTEGER, INTENT(IN) :: j_start ! Starting j index for this model tile |
---|
1116 | INTEGER, INTENT(IN) :: j_end ! Ending j index for this model tile |
---|
1117 | INTEGER, INTENT(IN) :: jds ! Starting j index for entire model domain |
---|
1118 | INTEGER, INTENT(IN) :: jde ! Ending j index for entire model domain |
---|
1119 | INTEGER, INTENT(IN) :: ims ! Starting i index for model patch |
---|
1120 | INTEGER, INTENT(IN) :: ime ! Ending i index for model patch |
---|
1121 | INTEGER, INTENT(IN) :: jms ! Starting j index for model patch |
---|
1122 | INTEGER, INTENT(IN) :: jme ! Ending j index for model patch |
---|
1123 | REAL, INTENT(IN) :: arrin ( ims:ime, jms:jme ) ! input array on mass points |
---|
1124 | REAL, INTENT(OUT) :: arrout( ims:ime, jms:jme ) ! output array on V points |
---|
1125 | |
---|
1126 | ! Local variables |
---|
1127 | integer :: i, j |
---|
1128 | |
---|
1129 | ! Do domain interior first |
---|
1130 | do j = max(2,j_start), j_end |
---|
1131 | do i = i_start, i_end |
---|
1132 | arrout(i,j) = 0.5*(arrin(i,j)+arrin(i,j-1)) |
---|
1133 | enddo |
---|
1134 | enddo |
---|
1135 | |
---|
1136 | ! Do south-north boundaries |
---|
1137 | if(j_start .eq. jds) then |
---|
1138 | do i = i_start, i_end |
---|
1139 | arrout(i,j_start) = arrin(i,j_start) |
---|
1140 | enddo |
---|
1141 | endif |
---|
1142 | if(j_end .eq. jde-1) then |
---|
1143 | do i = i_start, i_end |
---|
1144 | arrout(i,j_end+1) = arrin(i,j_end) |
---|
1145 | enddo |
---|
1146 | endif |
---|
1147 | |
---|
1148 | RETURN |
---|
1149 | END SUBROUTINE vpoint |
---|
1150 | |
---|
1151 | LOGICAL FUNCTION TILE_MASK(iloc, jloc, its, ite, jts, jte) |
---|
1152 | !------------------------------------------------------------------------------ |
---|
1153 | ! PURPOSE: Check to see if an i, j grid coordinate is in the tile index range. |
---|
1154 | ! |
---|
1155 | ! Returns: TRUE if the grid coordinate (ILOC,JLOC) is in the tile defined by |
---|
1156 | ! tile-range indices (its,jts) and (ite,jte) |
---|
1157 | ! FALSE otherwise. |
---|
1158 | ! |
---|
1159 | !------------------------------------------------------------------------------ |
---|
1160 | IMPLICIT NONE |
---|
1161 | |
---|
1162 | INTEGER, INTENT(IN) :: iloc |
---|
1163 | INTEGER, INTENT(IN) :: jloc |
---|
1164 | INTEGER, INTENT(IN) :: its |
---|
1165 | INTEGER, INTENT(IN) :: ite |
---|
1166 | INTEGER, INTENT(IN) :: jts |
---|
1167 | INTEGER, INTENT(IN) :: jte |
---|
1168 | |
---|
1169 | ! Local variables |
---|
1170 | LOGICAL :: retval |
---|
1171 | |
---|
1172 | TILE_MASK = (iloc .LE. ite .AND. iloc .GE. its .AND. & |
---|
1173 | jloc .LE. jte .AND. jloc .GE. jts ) |
---|
1174 | |
---|
1175 | RETURN |
---|
1176 | END FUNCTION TILE_MASK |
---|
1177 | |
---|
1178 | !----------------------------------------------------------------------- |
---|
1179 | SUBROUTINE nudob(j, ivar, aten, inest, ifrest, ktau, ktaur, & |
---|
1180 | xtime, mu, msf, nndgv, nerrf, niobf, maxdom, & |
---|
1181 | npfi, ionf, rinxy, twindo, levidn, & |
---|
1182 | parid, nstat, i_parent_start, j_parent_start, & |
---|
1183 | fdob, lev_in_ob, plfo, nlevs_ob, & |
---|
1184 | iratio, dx, dtmin, rio, rjo, rko, & |
---|
1185 | timeob, varobs, errf, pbase, ptop, pp, & |
---|
1186 | iswind, istemp, ismois, giv, git, giq, & |
---|
1187 | savwt, kpblt, nscan, & |
---|
1188 | iprt, & |
---|
1189 | ids,ide, jds,jde, kds,kde, & ! domain dims |
---|
1190 | ims,ime, jms,jme, kms,kme, & ! memory dims |
---|
1191 | its,ite, jts,jte, kts,kte ) ! tile dims |
---|
1192 | |
---|
1193 | !----------------------------------------------------------------------- |
---|
1194 | USE module_model_constants |
---|
1195 | USE module_domain |
---|
1196 | !----------------------------------------------------------------------- |
---|
1197 | IMPLICIT NONE |
---|
1198 | !----------------------------------------------------------------------- |
---|
1199 | ! |
---|
1200 | ! PURPOSE: THIS SUBROUTINE GENERATES NUDGING TENDENCIES FOR THE J-TH |
---|
1201 | ! VERTICAL SLICE (I-K PLANE) FOR FOUR-DIMENSIONAL DATA |
---|
1202 | ! ASSIMILATION FROM INDIVIDUAL OBSERVATIONS. THE NUDGING |
---|
1203 | ! TENDENCIES ARE FOUND FROM A ONE-PASS CALCULATION OF |
---|
1204 | ! WEIGHTING FACTORS SIMILAR TO THE BENJAMIN-SEAMAN OBJECTIVE |
---|
1205 | ! ANALYSIS. THIS SUBROUTINE IS DESIGNED FOR RAPID EXECUTION |
---|
1206 | ! AND MINIMAL STORAGE REQUIREMENTS. ALGORITHMS SHOULD BE |
---|
1207 | ! VECTORIZED WHEREVER POSSIBLE. |
---|
1208 | ! |
---|
1209 | ! HISTORY: Original author: MM5 version??? |
---|
1210 | ! 02/04/2004 - Creation of WRF version. Al Bourgeois |
---|
1211 | ! 08/28/2006 - Conversion from F77 to F90 Al Bourgeois |
---|
1212 | !------------------------------------------------------------------------------ |
---|
1213 | ! |
---|
1214 | ! NOTE: This routine was originally designed for MM5, which uses |
---|
1215 | ! a nonstandard (I,J) coordinate system. For WRF, I is the |
---|
1216 | ! east-west running coordinate, and J is the south-north |
---|
1217 | ! running coordinate. So a "J-slab" here is west-east in |
---|
1218 | ! extent, not south-north as for MM5. -ajb 06/10/2004 |
---|
1219 | ! |
---|
1220 | ! NET WEIGHTING (WT) OF THE DIFFERENCE BETWEEN THE OBSERVATIONS |
---|
1221 | ! AND LOCAL FORECAST VALUES IS BASED ON THE MULTIPLE OF THREE |
---|
1222 | ! |
---|
1223 | ! NET WEIGHTING (WT) OF THE DIFFERENCE BETWEEN THE OBSERVATIONS |
---|
1224 | ! AND LOCAL FORECAST VALUES IS BASED ON THE MULTIPLE OF THREE |
---|
1225 | ! TYPES OF FACTORS: |
---|
1226 | ! 1) TIME WEIGHTING - ONLY OBSERVATIONS WITHIN A SELECTED |
---|
1227 | ! TIME WINDOW (TWINDO) CENTERED AT THE CURRENT FORECAST |
---|
1228 | ! TIME (XTIME) ARE USED. OBSERVATIONS CLOSEST TO |
---|
1229 | ! XTIME ARE TIME-WEIGHTED MOST HEAVILY (TIMEWT) |
---|
1230 | ! 2) VERTICAL WEIGHTING - NON-ZERO WEIGHTS (WTSIG) ARE |
---|
1231 | ! CALCULATED WITHIN A VERTICAL REGION OF INFLUENCE |
---|
1232 | ! (RINSIG). |
---|
1233 | ! 3) HORIZONTAL WEIGHTING - NON-ZERO WEIGHTS (WTIJ) ARE |
---|
1234 | ! CALCULATED WITHIN A RADIUS OF INFLUENCE (RINXY). THE |
---|
1235 | ! VALUE OF RIN IS DEFINED IN KILOMETERS, AND CONVERTED |
---|
1236 | ! TO GRID LENGTHS FOR THE APPROPRIATE MESH SIZE. |
---|
1237 | ! |
---|
1238 | ! THE FIVE FORECAST VARIABLES ARE PROCESSED BY CHANGING THE |
---|
1239 | ! VALUE OF IVAR AS FOLLOWS: |
---|
1240 | ! IVAR VARIABLE(TAU-1) |
---|
1241 | ! ---- --------------- |
---|
1242 | ! 1 U |
---|
1243 | ! 2 V |
---|
1244 | ! 3 T |
---|
1245 | ! 4 QV |
---|
1246 | ! 5 PSB(CROSS) REMOVED IN V3 |
---|
1247 | ! (6) PSB(DOT) |
---|
1248 | ! |
---|
1249 | !----------------------------------------------------------------------- |
---|
1250 | ! |
---|
1251 | ! Description of input arguments. |
---|
1252 | ! |
---|
1253 | !----------------------------------------------------------------------- |
---|
1254 | |
---|
1255 | INTEGER, INTENT(IN) :: ids,ide, jds,jde, kds,kde ! domain dims. |
---|
1256 | INTEGER, INTENT(IN) :: ims,ime, jms,jme, kms,kme ! memory dims. |
---|
1257 | INTEGER, INTENT(IN) :: its,ite, jts,jte, kts,kte ! tile dims. |
---|
1258 | INTEGER, INTENT(IN) :: j ! south-north running coordinate. |
---|
1259 | INTEGER, INTENT(IN) :: ivar |
---|
1260 | INTEGER, INTENT(IN) :: inest ! domain index |
---|
1261 | LOGICAL, INTENT(IN) :: ifrest |
---|
1262 | INTEGER, INTENT(IN) :: ktau |
---|
1263 | INTEGER, INTENT(IN) :: ktaur |
---|
1264 | REAL, INTENT(IN) :: xtime ! forecast time in minutes |
---|
1265 | INTEGER, INTENT(IN) :: nndgv ! number of nudge variables |
---|
1266 | INTEGER, INTENT(IN) :: nerrf ! number of error fields |
---|
1267 | INTEGER, INTENT(IN) :: niobf ! number of observations |
---|
1268 | INTEGER, INTENT(IN) :: maxdom ! maximum number of domains |
---|
1269 | INTEGER, INTENT(IN) :: npfi |
---|
1270 | INTEGER, INTENT(IN) :: ionf |
---|
1271 | REAL, INTENT(IN) :: rinxy |
---|
1272 | REAL, INTENT(IN) :: twindo |
---|
1273 | INTEGER, INTENT(IN) :: levidn(maxdom) ! level of nest |
---|
1274 | INTEGER, INTENT(IN) :: parid(maxdom) ! parent domain id |
---|
1275 | INTEGER, INTENT(IN) :: nstat ! number of obs stations |
---|
1276 | INTEGER, INTENT(IN) :: i_parent_start(maxdom) ! Start i index in parent domain. |
---|
1277 | INTEGER, INTENT(IN) :: j_parent_start(maxdom) ! Start j index in parent domain. |
---|
1278 | TYPE(fdob_type), intent(inout) :: fdob |
---|
1279 | REAL, INTENT(IN) :: lev_in_ob(niobf) ! Level in sounding-type obs. |
---|
1280 | REAL, intent(IN) :: plfo(niobf) |
---|
1281 | REAL, INTENT(IN) :: nlevs_ob(niobf) ! Number of levels in sounding. |
---|
1282 | INTEGER, INTENT(IN) :: iratio ! Nest to parent gridsize ratio. |
---|
1283 | REAL, INTENT(IN) :: dx ! This domain grid cell-size (m) |
---|
1284 | REAL, INTENT(IN) :: dtmin |
---|
1285 | REAL, INTENT(IN) :: rio(niobf) |
---|
1286 | REAL, INTENT(IN) :: rjo(niobf) |
---|
1287 | REAL, INTENT(INOUT) :: rko(niobf) |
---|
1288 | REAL, INTENT(IN) :: timeob(niobf) |
---|
1289 | REAL, INTENT(IN) :: varobs(nndgv,niobf) |
---|
1290 | REAL, INTENT(IN) :: errf(nerrf, niobf) |
---|
1291 | REAL, INTENT(IN) :: pbase( ims:ime, kms:kme ) ! Base pressure. |
---|
1292 | REAL, INTENT(IN) :: ptop |
---|
1293 | REAL, INTENT(IN) :: pp( ims:ime, kms:kme ) ! Pressure perturbation (Pa) |
---|
1294 | REAL, INTENT(IN) :: mu(ims:ime) ! Air mass on u, v, or mass-grid |
---|
1295 | REAL, INTENT(IN) :: msf(ims:ime) ! Map scale (only used for vars u & v) |
---|
1296 | INTEGER, intent(in) :: iswind ! Nudge flag for wind |
---|
1297 | INTEGER, intent(in) :: istemp ! Nudge flag for temperature |
---|
1298 | INTEGER, intent(in) :: ismois ! Nudge flag for moisture |
---|
1299 | REAL, intent(in) :: giv ! Coefficient for wind |
---|
1300 | REAL, intent(in) :: git ! Coefficient for temperature |
---|
1301 | REAL, intent(in) :: giq ! Coefficient for moisture |
---|
1302 | REAL, INTENT(INOUT) :: aten( ims:ime, kms:kme) |
---|
1303 | REAL, INTENT(INOUT) :: savwt( nndgv, ims:ime, kms:kme ) |
---|
1304 | INTEGER, INTENT(IN) :: kpblt(its:ite) |
---|
1305 | INTEGER, INTENT(IN) :: nscan ! number of scans |
---|
1306 | LOGICAL, INTENT(IN) :: iprt ! print flag |
---|
1307 | |
---|
1308 | ! Local variables |
---|
1309 | integer :: mm(maxdom) |
---|
1310 | real :: ra(niobf) |
---|
1311 | real :: rb(niobf) |
---|
1312 | real :: psurf(niobf) |
---|
1313 | real :: wtsig(kms:kme),wt(ims:ime,kms:kme),wt2err(ims:ime,kms:kme) |
---|
1314 | real :: rscale(ims:ime) ! For converting to rho-coupled units. |
---|
1315 | ! real :: tscale(ims:ime,kms:kme) ! For converting to potential temp. units. |
---|
1316 | real :: reserf(100) |
---|
1317 | character*40 name |
---|
1318 | character*3 chr_hr |
---|
1319 | |
---|
1320 | !*** DECLARATIONS FOR IMPLICIT NONE |
---|
1321 | integer :: i,k,iplo,icut,ipl,inpf,infr,jjjn |
---|
1322 | integer :: igrid,n,nml,nnl,nsthis,nsmetar,nsspeci,nsship |
---|
1323 | integer :: nssynop,nstemp,nspilot,nssatwnds,nssams,nsprofs |
---|
1324 | integer :: maxi,mini,maxj,minj,nnn,nsndlev,njcsnd,kob |
---|
1325 | integer :: komin,komax,nn,nhi,nlo,nnjc |
---|
1326 | integer :: i_s,i_e |
---|
1327 | integer :: istq |
---|
1328 | real :: gfactor,rfactor,gridx,gridy,rindx,schnes,ris |
---|
1329 | real :: grfacx,grfacy |
---|
1330 | real :: fdtim,tw1,tw2,tconst,timewt,timewt2,ttim,dift,pob |
---|
1331 | real :: ri,rj,rx,ry,rsq,wtij,pdfac,erfivr,dk,slope,rinfac |
---|
1332 | real :: rinprs,pijk,pobhi,poblo,pdiffj,w2eowt,gitq |
---|
1333 | |
---|
1334 | real :: scratch |
---|
1335 | |
---|
1336 | ! print *,'start nudob, nstat,j,ivar=',nstat,j,ivar |
---|
1337 | ! if(ivar.ne.4)return |
---|
1338 | !yliu start -- for multi-scans: NSCAN=0: original |
---|
1339 | ! NSCAN=1: added a scan with a larger Ri and smaller G |
---|
1340 | ! if(NSCAN.ne.0 .and. NSCAN.ne.1) stop |
---|
1341 | ! ajb note: Will need to increase memory for SAVWT if NSCAN=1: |
---|
1342 | if(NSCAN.ne.0) then |
---|
1343 | IF (iprt) write(6,*) 'SAVWT must be resized for NSCAN=1' |
---|
1344 | stop |
---|
1345 | endif |
---|
1346 | IPLO=0 + NSCAN*4 |
---|
1347 | GFACTOR=1. + NSCAN*(-1. + 0.33333) |
---|
1348 | RFACTOR=1. + NSCAN*(-1. + 3.0) |
---|
1349 | !yliu end |
---|
1350 | ! jc |
---|
1351 | |
---|
1352 | ! return if too close to j boundary |
---|
1353 | if(inest.eq.1.and.ivar.lt.3.and.(j.le.2.or.j.ge.jde-1)) then |
---|
1354 | ! write(6,*) '1 RETURN: IVAR = ',ivar,' J = ',j, |
---|
1355 | ! $ ' too close to boundary.' |
---|
1356 | return |
---|
1357 | endif |
---|
1358 | if(inest.eq.1.and.ivar.ge.3.and.(j.le.2.or.j.ge.jde-2)) then |
---|
1359 | ! write(6,*) '2 RETURN: IVAR = ',ivar,' J = ',j, |
---|
1360 | ! $ ' too close to boundary.' |
---|
1361 | return |
---|
1362 | endif |
---|
1363 | |
---|
1364 | ! COMPUTE IPL WHICH REPRESENTS IVAR FOR EACH MESH IN SAVWT MODS |
---|
1365 | ICUT=0 |
---|
1366 | IF(INEST.GT.1)ICUT=1 |
---|
1367 | i_s = max0(2+icut,its) |
---|
1368 | i_e = min0(ide-1-icut,ite) |
---|
1369 | |
---|
1370 | IPL=IVAR + IPLO !yliu +IPLO |
---|
1371 | |
---|
1372 | ! DEFINE GRID-TYPE OFFSET FACTORS, IGRID AND GRID |
---|
1373 | |
---|
1374 | IF(INEST.EQ.1)THEN |
---|
1375 | INPF=NPFI |
---|
1376 | INFR=IONF |
---|
1377 | ELSE |
---|
1378 | IF(IRATIO.NE.3) THEN |
---|
1379 | IF (iprt) THEN |
---|
1380 | write(6,*) 'iratio = ',iratio |
---|
1381 | write(6,*) 'stop 1 in nudob: iratio = ',iratio |
---|
1382 | ENDIF |
---|
1383 | STOP 1 |
---|
1384 | ENDIF |
---|
1385 | INPF=(3**LEVIDN(INEST))*NPFI |
---|
1386 | INFR=(3**LEVIDN(INEST))*IONF |
---|
1387 | ENDIF |
---|
1388 | GRIDX=0.0 |
---|
1389 | GRIDY=0.0 |
---|
1390 | IGRID=0 |
---|
1391 | IF(IVAR.GE.3)THEN |
---|
1392 | GRIDX=0.5 |
---|
1393 | GRIDY=0.5 |
---|
1394 | IGRID=1 |
---|
1395 | ELSEIF(IVAR.eq.1) THEN |
---|
1396 | GRIDY=0.5 |
---|
1397 | IGRID=1 |
---|
1398 | ELSEIF(IVAR.eq.2) THEN |
---|
1399 | GRIDX=0.5 |
---|
1400 | IGRID=1 |
---|
1401 | ENDIF |
---|
1402 | |
---|
1403 | ! TRANSFORM THE HORIZONTAL RADIUS OF INFLUENCE, RINXY, FROM |
---|
1404 | ! KILOMETERS TO GRID LENGTHS, RINDX |
---|
1405 | |
---|
1406 | RINDX=RINXY*1000./DX * RFACTOR !yliu *RFACTOR |
---|
1407 | |
---|
1408 | ! jc |
---|
1409 | ! make horizontal radius vary per nest |
---|
1410 | ! rindx=rindx/float(inest) |
---|
1411 | ! yliu test1 -- En 3, 4 |
---|
1412 | ! rindx=rindx/float(3**(in-1)) !YLIU |
---|
1413 | ! jc |
---|
1414 | ! make horizontal radius vary per nest |
---|
1415 | ! schnes=1/float(inest) !JC |
---|
1416 | ! yliu test1 -- En 3, 4 !YLIU |
---|
1417 | schnes=1/float(3**(inest-1)) !JC |
---|
1418 | ! reduce the Rinf in the nested grid proportionally |
---|
1419 | rindx=rindx*schnes |
---|
1420 | ! rinfmn =1., rinfmx=2., pfree=50 in param.F |
---|
1421 | ! yliu test: for upper-air data, use larger influence radii |
---|
1422 | ! Essentially increase the slope -- the same radii |
---|
1423 | ! at 500mb and above as the coarse mesh and the |
---|
1424 | ! same small radii at sfc as that for sfc obs |
---|
1425 | fdob%rinfmx=2. *1.0 /schnes !YLIU |
---|
1426 | ! rinfmx=1.2*1.0 /schnes !YLIU |
---|
1427 | ! jc |
---|
1428 | RIS=RINDX*RINDX |
---|
1429 | IF(IFREST.AND.KTAU.EQ.KTAUR)GOTO 5 |
---|
1430 | IF(MOD(KTAU,INFR).NE.0)GOTO 126 |
---|
1431 | 5 CONTINUE |
---|
1432 | IF (iprt) THEN |
---|
1433 | IF(J.EQ.10) write(6,6) INEST,J,KTAU,XTIME,IVAR,IPL,rindx |
---|
1434 | ENDIF |
---|
1435 | 6 FORMAT(1X,'OBS NUDGING FOR IN,J,KTAU,XTIME,', & |
---|
1436 | 'IVAR,IPL: ',I2,1X,I2,1X,I5,1X,F8.2,1X,I2,1X,I2, & |
---|
1437 | ' rindx=',f4.1) |
---|
1438 | |
---|
1439 | ! SET RA AND RB |
---|
1440 | IF(INEST.EQ.1) THEN |
---|
1441 | |
---|
1442 | ! SET RA AND RB FOR THE COARSE MESH... |
---|
1443 | DO N=1,NSTAT |
---|
1444 | RA(N)=RIO(N)-GRIDX |
---|
1445 | RB(N)=RJO(N)-GRIDY |
---|
1446 | ENDDO |
---|
1447 | |
---|
1448 | ELSE |
---|
1449 | |
---|
1450 | ! SET RA AND RB FOR THE FINE MESH CASE... |
---|
1451 | DO N=1,NSTAT |
---|
1452 | |
---|
1453 | ! COMPUTE THE OBS LOCATION WITH RESPECT TO THIS MESH (INEST)... |
---|
1454 | NML=INEST |
---|
1455 | MM(LEVIDN(INEST)+1)=INEST |
---|
1456 | ! WORKING TOWARD COARSER MESHES, DETERMINE THE HIERARCHY OF MOTHER |
---|
1457 | ! MESHES WITH RESPECT TO EACH MOTHER MESH STARTING AT MESH "INEST"... |
---|
1458 | ! THAT IS, DETERMINE ITS MOTHER, GRANDMOTHER, GREAT-GRANDMOTHER, ETC. |
---|
1459 | ! OUT TO THE COARSE GRID MESH (INEST=1). |
---|
1460 | ! LEVIDN HOLDS THE NEST LEVEL AND PARID HOLDS THE MOTHER MESH FOR EACH |
---|
1461 | ! GRID (E.G., FOR 3 MESHES AND 2 NEST LEVELS, INEST=1 IS THE COARSE GRID |
---|
1462 | ! MESH, INEST=2 HAS LEVIDN(2)=1 AND PARID(2)=1, AND INEST=3 HAS LEVIDN(3)=2 |
---|
1463 | ! AND PARID(3)=2...) |
---|
1464 | DO NNL=LEVIDN(INEST),1,-1 |
---|
1465 | MM(NNL)=PARID(NML) |
---|
1466 | NML=MM(NNL) |
---|
1467 | ENDDO |
---|
1468 | |
---|
1469 | ! MM(1) MUST BE THE COARSE GRID MESH (INEST=0) |
---|
1470 | |
---|
1471 | IF(MM(1).NE.1) then |
---|
1472 | IF (iprt) write(6,*) 'stop 21 in nudob: inest = ',inest |
---|
1473 | STOP 21 |
---|
1474 | ENDIF |
---|
1475 | RA(N)=RIO(N) |
---|
1476 | RB(N)=RJO(N) |
---|
1477 | DO NNL=1,LEVIDN(INEST) |
---|
1478 | GRFACX=0. |
---|
1479 | GRFACY=0. |
---|
1480 | ! COMPUTE THE OBS LOCATION WITH RESPECT TO THE INNER GRID IN DOT-POINT |
---|
1481 | ! SPACE (GRID=0.). WHEN WE REACH MESH IN, THEN USE "GRID" TO GO TO |
---|
1482 | ! CROSS OR DOT DEPENDING ON THE VARIABLE... |
---|
1483 | IF(NNL.EQ.LEVIDN(INEST)) THEN |
---|
1484 | GRFACX=GRIDX |
---|
1485 | GRFACY=GRIDY |
---|
1486 | ENDIF |
---|
1487 | |
---|
1488 | RA(N)=(RA(N)-FLOAT(i_parent_start(MM(NNL+1))))* & |
---|
1489 | FLOAT(IRATIO)+1.-GRFACX |
---|
1490 | RB(N)=(RB(N)-FLOAT(j_parent_start(MM(NNL+1))))* & |
---|
1491 | FLOAT(IRATIO)+1.-GRFACY |
---|
1492 | |
---|
1493 | ENDDO |
---|
1494 | |
---|
1495 | ENDDO ! END LOOP OVER OBS STATIONS FOR FINE MESH CASE |
---|
1496 | |
---|
1497 | ENDIF ! END SECTION FOR SETTING RA AND RB |
---|
1498 | |
---|
1499 | |
---|
1500 | ! OUTPUT OBS PER GRID EVERY HOUR |
---|
1501 | if ( mod(xtime,60.).gt.56. .and. ivar.eq.3 .and. j.eq.10) then |
---|
1502 | IF (iprt) print *,'outputting obs number on grid ', & |
---|
1503 | inest,' at time=',xtime |
---|
1504 | write(chr_hr(1:3),'(i3)')nint(xtime/60.) |
---|
1505 | if(chr_hr(1:1).eq.' ')chr_hr(1:1)='0' |
---|
1506 | if(chr_hr(2:2).eq.' ')chr_hr(2:2)='0' |
---|
1507 | IF (iprt) print *,'chr_hr=',chr_hr(1:3),nint(xtime/60.) |
---|
1508 | open(91,file= & |
---|
1509 | 'obs_g'//char(inest+ichar('0'))//'_'//chr_hr(1:3), & |
---|
1510 | form='FORMATted',status='unknown') |
---|
1511 | write(91,911)nstat |
---|
1512 | write(6,911)nstat |
---|
1513 | 911 FORMAT('total obs=',i8) |
---|
1514 | nsthis=0 |
---|
1515 | nsmetar=0 |
---|
1516 | nsspeci=0 |
---|
1517 | nsship=0 |
---|
1518 | nssynop=0 |
---|
1519 | nstemp=0 |
---|
1520 | nspilot=0 |
---|
1521 | nssatwnds=0 |
---|
1522 | nssams=0 |
---|
1523 | nsprofs=0 |
---|
1524 | ! print *,'ide,jde=',ide,jde |
---|
1525 | do jjjn=1,nstat |
---|
1526 | ! DETERMINE THE TIME-WEIGHT FACTOR FOR N |
---|
1527 | FDTIM=XTIME-DTMIN |
---|
1528 | ! CONVERT TWINDO AND TIMEOB FROM HOURS TO MINUTES: |
---|
1529 | TW1=TWINDO/2.*60. |
---|
1530 | TW2=TWINDO*60. |
---|
1531 | TCONST=1./TW1 |
---|
1532 | TIMEWT2=0.0 |
---|
1533 | TTIM=TIMEOB(jjjn)*60. |
---|
1534 | !***********TTIM=TARGET TIME IN MINUTES |
---|
1535 | DIFT=ABS(FDTIM-TTIM) |
---|
1536 | IF(DIFT.LE.TW1)TIMEWT2=1.0 |
---|
1537 | |
---|
1538 | IF(DIFT.GT.TW1.AND.DIFT.LE.TW2) THEN |
---|
1539 | IF(FDTIM.LT.TTIM)TIMEWT2=(FDTIM-(TTIM-TW2))*TCONST |
---|
1540 | IF(FDTIM.GT.TTIM)TIMEWT2=((TTIM+TW2)-FDTIM)*TCONST |
---|
1541 | ENDIF |
---|
1542 | |
---|
1543 | ! print *,'timewt2=',timewt2,ttim,fdtim |
---|
1544 | if (ra(jjjn).ge.1. .and. rb(jjjn).ge.1. & |
---|
1545 | .and.ra(jjjn).le.real(ide) .and. rb(jjjn).le.real(jde) & |
---|
1546 | .and.timewt2.gt.0.) then |
---|
1547 | if(lev_in_ob(jjjn).eq.1.)nsthis=nsthis+1 |
---|
1548 | if(plfo(jjjn).eq.1.)nsmetar=nsmetar+1 |
---|
1549 | if(plfo(jjjn).eq.2.)nsspeci=nsspeci+1 |
---|
1550 | if(plfo(jjjn).eq.3.)nsship=nsship+1 |
---|
1551 | if(plfo(jjjn).eq.4.)nssynop=nssynop+1 |
---|
1552 | if(plfo(jjjn).eq.5..and.lev_in_ob(jjjn).eq.1.) nstemp=nstemp+1 |
---|
1553 | if(plfo(jjjn).eq.6..and.lev_in_ob(jjjn).eq.1.) nspilot=nspilot+1 |
---|
1554 | if(plfo(jjjn).eq.7.)nssatwnds=nssatwnds+1 |
---|
1555 | if(plfo(jjjn).eq.8.)nssams=nssams+1 |
---|
1556 | if(plfo(jjjn).eq.9..and.lev_in_ob(jjjn).eq.1.) nsprofs=nsprofs+1 |
---|
1557 | endif |
---|
1558 | enddo |
---|
1559 | write(91,912)nsthis |
---|
1560 | write(6,912)nsthis |
---|
1561 | 912 FORMAT('total obs on this grid=',i8) |
---|
1562 | write(91,921)nsmetar |
---|
1563 | write(6,921)nsmetar |
---|
1564 | 921 FORMAT('total metar obs on this grid=',i8) |
---|
1565 | write(91,922)nsspeci |
---|
1566 | write(6,922)nsspeci |
---|
1567 | 922 FORMAT('total special obs on this grid=',i8) |
---|
1568 | write(91,923)nsship |
---|
1569 | write(6,923)nsship |
---|
1570 | 923 FORMAT('total ship obs on this grid=',i8) |
---|
1571 | write(91,924)nssynop |
---|
1572 | write(6,924)nssynop |
---|
1573 | 924 FORMAT('total synop obs on this grid=',i8) |
---|
1574 | write(91,925)nstemp |
---|
1575 | write(6,925)nstemp |
---|
1576 | 925 FORMAT('total temp obs on this grid=',i8) |
---|
1577 | write(91,926)nspilot |
---|
1578 | write(6,926)nspilot |
---|
1579 | 926 FORMAT('total pilot obs on this grid=',i8) |
---|
1580 | write(91,927)nssatwnds |
---|
1581 | write(6,927)nssatwnds |
---|
1582 | 927 FORMAT('total sat-wind obs on this grid=',i8) |
---|
1583 | write(91,928)nssams |
---|
1584 | write(6,928)nssams |
---|
1585 | 928 FORMAT('total sams obs on this grid=',i8) |
---|
1586 | write(91,929)nsprofs |
---|
1587 | write(6,929)nsprofs |
---|
1588 | 929 FORMAT('total profiler obs on this grid=',i8) |
---|
1589 | close(91) |
---|
1590 | endif ! END OUTPUT OBS PER GRID EVERY HOUR |
---|
1591 | |
---|
1592 | |
---|
1593 | ! INITIALIZE WEIGHTING ARRAYS TO ZERO |
---|
1594 | DO I=its,ite |
---|
1595 | DO K=1,kte |
---|
1596 | WT(I,K)=0.0 |
---|
1597 | WT2ERR(I,K)=0.0 |
---|
1598 | ENDDO |
---|
1599 | ENDDO |
---|
1600 | |
---|
1601 | ! DO P* COMPUTATIONS ON DOT POINTS FOR IVAR.LT.3 (U AND V) |
---|
1602 | ! AND CROSS POINTS FOR IVAR.GE.3 (T,Q,P*). |
---|
1603 | ! |
---|
1604 | ! COMPUTE P* AT OBS LOCATION (RA,RB). DO THIS AS SEPARATE VECTOR LOOP H |
---|
1605 | ! SO IT IS ALREADY AVAILABLE IN NSTAT LOOP 120 BELOW |
---|
1606 | |
---|
1607 | ! PSURF IS NOT AVAILABLE GLOBALLY, THEREFORE, THE BILINEAR INTERPOLATION |
---|
1608 | ! AROUND THE OBS POINT IS DONE IN ERROB() AND STORED IN ERRF([678],N) FOR |
---|
1609 | ! THE POINT (6=PRESS, 7=U-MOM, 8=V-MOM). |
---|
1610 | DO N=1,NSTAT |
---|
1611 | IF(IVAR.GE.3)THEN |
---|
1612 | PSURF(N)=ERRF(6,N) |
---|
1613 | ELSE |
---|
1614 | IF(IVAR.EQ.1)THEN |
---|
1615 | PSURF(N)=ERRF(7,N) ! U-points |
---|
1616 | ELSE |
---|
1617 | PSURF(N)=ERRF(8,N) ! V-points |
---|
1618 | ENDIF |
---|
1619 | ENDIF |
---|
1620 | ENDDO |
---|
1621 | |
---|
1622 | ! DETERMINE THE LIMITS OF THE SEARCH REGION FOR THE CURRENT |
---|
1623 | ! J-STRIP |
---|
1624 | |
---|
1625 | MAXJ=J+IFIX(RINDX*fdob%RINFMX+0.99) !ajb |
---|
1626 | MINJ=J-IFIX(RINDX*fdob%RINFMX+0.99) !ajb |
---|
1627 | |
---|
1628 | ! jc comment out this? want to use obs beyond the domain? |
---|
1629 | ! MAXJ=MIN0(JL-IGRID,MAXJ) !yliu |
---|
1630 | ! MINJ=MAX0(1,MINJ) !yliu |
---|
1631 | |
---|
1632 | n=1 |
---|
1633 | |
---|
1634 | !*********************************************************************** |
---|
1635 | DO nnn=1,NSTAT ! BEGIN OUTER LOOP FOR THE NSTAT OBSERVATIONS |
---|
1636 | !*********************************************************************** |
---|
1637 | ! Soundings are consecutive obs, but they need to be treated as a single |
---|
1638 | ! entity. Thus change the looping to nnn, with n defined separately. |
---|
1639 | |
---|
1640 | |
---|
1641 | !yliu |
---|
1642 | ! note for sfc data: nsndlev=1 and njcsnd=1 |
---|
1643 | nsndlev=int(nlevs_ob(n)-lev_in_ob(n))+1 |
---|
1644 | |
---|
1645 | ! yliu start -- set together with the other parts |
---|
1646 | ! test: do the sounding levels as individual obs |
---|
1647 | ! nsndlev=1 |
---|
1648 | ! yliu end |
---|
1649 | njcsnd=nsndlev |
---|
1650 | ! set pob here, to be used later |
---|
1651 | pob=varobs(5,n) |
---|
1652 | ! print *, "s-- n=,nsndlev",n,njcsnd,J, ipl |
---|
1653 | ! print *, "s--",ivar,(errf(ivar,i),i=n,n+njcsnd) |
---|
1654 | ! CHECK TO SEE OF STATION N HAS DATA FOR VARIABLE IVAR |
---|
1655 | ! AND IF IT IS SUFFICIENTLY CLOSE TO THE J STRIP. THIS |
---|
1656 | ! SHOULD ELIMINATE MOST STATIONS FROM FURTHER CONSIDER- |
---|
1657 | ! ATION. |
---|
1658 | |
---|
1659 | !yliu: Skip bad obs if it is sfc or single level sounding. |
---|
1660 | !yliu: Before this (020918), a snd will be skipped if its first |
---|
1661 | !yliu level has bad data- often true due to elevation |
---|
1662 | |
---|
1663 | IF( ABS(ERRF(IVAR,N)).GT.9.E4 .and. njcsnd.eq.1 ) THEN |
---|
1664 | ! print *, " bad obs skipped" |
---|
1665 | |
---|
1666 | ELSEIF( RB(N).LT.FLOAT(MINJ) .OR. RB(N).GT.FLOAT(MAXJ) ) THEN |
---|
1667 | ! print *, " skipped obs far away from this J-slice" |
---|
1668 | |
---|
1669 | !---------------------------------------------------------------------- |
---|
1670 | ELSE ! BEGIN SECTION FOR PROCESSING THE OBSERVATION |
---|
1671 | !---------------------------------------------------------------------- |
---|
1672 | |
---|
1673 | ! DETERMINE THE TIME-WEIGHT FACTOR FOR N |
---|
1674 | FDTIM=XTIME-DTMIN |
---|
1675 | ! TWINDO IS IN MINUTES: |
---|
1676 | TW1=TWINDO/2.*60. |
---|
1677 | TW2=TWINDO*60. |
---|
1678 | TCONST=1./TW1 |
---|
1679 | TIMEWT=0.0 |
---|
1680 | TTIM=TIMEOB(N)*60. |
---|
1681 | !***********TTIM=TARGET TIME IN MINUTES |
---|
1682 | DIFT=ABS(FDTIM-TTIM) |
---|
1683 | IF(DIFT.LE.TW1)TIMEWT=1.0 |
---|
1684 | IF(DIFT.GT.TW1.AND.DIFT.LE.TW2) THEN |
---|
1685 | IF(FDTIM.LT.TTIM)TIMEWT=(FDTIM-(TTIM-TW2))*TCONST |
---|
1686 | IF(FDTIM.GT.TTIM)TIMEWT=((TTIM+TW2)-FDTIM)*TCONST |
---|
1687 | ENDIF |
---|
1688 | |
---|
1689 | ! DETERMINE THE LIMITS OF APPLICATION OF THE OBS IN THE VERTICAL |
---|
1690 | ! FOR THE VERTICAL WEIGHTING, WTSIG |
---|
1691 | |
---|
1692 | ! ASSIMILATE OBSERVATIONS ON PRESSURE LEVELS, EXCEPT FOR SURFACE |
---|
1693 | !ajb 20021210: (Bugfix) RKO is not available globally. It is computed in |
---|
1694 | !ajb ERROB() by the processor handling the obs point, and stored in ERRF(9,N). |
---|
1695 | |
---|
1696 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
---|
1697 | rko(n) = errf(9,n) !ajb 20021210 |
---|
1698 | #endif |
---|
1699 | KOB=nint(RKO(N)) |
---|
1700 | KOB=MIN0(kte,KOB) |
---|
1701 | KOB=MAX0(1,KOB) |
---|
1702 | |
---|
1703 | ! ASSIMILATE SURFACE LAYER DATA ON SIGMA |
---|
1704 | IF(KOB.EQ.1.AND.IVAR.LE.4.and.nlevs_ob(n).lt.1.5) THEN |
---|
1705 | DO K=1,kte |
---|
1706 | WTSIG(K)=0.0 |
---|
1707 | ENDDO |
---|
1708 | ! DEFINE WTSIG: (FOR SRP: SPREAD SURFACE DATA THROUGH LOWEST 200 M) |
---|
1709 | ! WTSIG(1)=1.0 |
---|
1710 | ! WTSIG(2)=0.67 |
---|
1711 | ! WTSIG(3)=0.33 |
---|
1712 | ! KOMIN=3 |
---|
1713 | ! KOMAX=1 |
---|
1714 | ! DEFINE THE MAX AND MIN I VALUES FOR POSSIBLE NONZERO |
---|
1715 | ! WEIGHTS, BASED ON THE RADIUS OF INFLUENCE, RINDX (IN GRID LENGTHS). |
---|
1716 | ! fix this because kpblt at 1 and il is 0 |
---|
1717 | MAXI=IFIX(RA(N)+0.99+RINDX) |
---|
1718 | MAXI=MIN0(ide-1,MAXI) |
---|
1719 | MINI=IFIX(RA(N)-RINDX-0.99) |
---|
1720 | MINI=MAX0(2,MINI) |
---|
1721 | !yliu start |
---|
1722 | ! use also obs outside of this domain -- surface obs |
---|
1723 | ! if(RA(N).LT.0.-RINDX .or. RA(N).GT.float(IL+RINDX) .or. |
---|
1724 | ! & RB(N).LT.0.-RINDX .or. RB(N).GT.float(JL+RINDX)) then |
---|
1725 | ! print *, " skipped obs far away from this domain" |
---|
1726 | ! currently can use obs within this domain or ones very close to (1/3 |
---|
1727 | ! influence of radius in the coarse domain) this |
---|
1728 | ! domain. In later case, use BC column value to approximate the model value |
---|
1729 | ! at obs point -- ERRF need model field in errob.F !! |
---|
1730 | if ( RA(N).GE.(0.-RINDX/3) & |
---|
1731 | .and. RA(N).LE.float(ide)+RINDX/3 & |
---|
1732 | .and. RB(N).GE.(0.-RINDX/3) & |
---|
1733 | .and. RB(N).LE.float(jde)+RINDX/3) then |
---|
1734 | |
---|
1735 | ! or use obs within this domain only |
---|
1736 | ! if(RA(N).LT.1 .or. RA(N).GT.float(IL) .or. |
---|
1737 | ! & RB(N).LT.1 .or. RB(N).GT.float(JL)) then |
---|
1738 | ! print *, " skipped obs far outside of this domain" |
---|
1739 | ! if(j.eq.3 .and. ivar.eq.3) then |
---|
1740 | ! write(6,*) 'N = ',n,' exit 120 3' |
---|
1741 | ! endif |
---|
1742 | !yliu end |
---|
1743 | ! |
---|
1744 | ! LOOP THROUGH THE NECESSARY GRID POINTS SURROUNDING |
---|
1745 | ! OBSERVATION N. COMPUTE THE HORIZONTAL DISTANCE TO |
---|
1746 | ! THE OBS AND FIND THE WEIGHTING SUM OVER ALL OBS |
---|
1747 | RJ=FLOAT(J) |
---|
1748 | RX=RJ-RB(N) |
---|
1749 | ! WEIGHTS FOR THE 3-D VARIABLES |
---|
1750 | ERFIVR=ERRF(IVAR,N) |
---|
1751 | ! |
---|
1752 | !JM I will be local, because it indexes into PDOC, WT, and others |
---|
1753 | |
---|
1754 | ! if((ivar.eq.1 .or. ivar.eq.3) .and. n.le.200) then |
---|
1755 | ! write(6,'(a,i3,a,i3)')'SURF OBS NEAR: N = ',n,' nest = ',inest |
---|
1756 | ! write(6,'(a,f10.3,a,f10.3,a,i3,a,i3,a,i3,a,i2)') |
---|
1757 | ! $ ' RA =',RA(N),' RB =',RB(N),' J =',j, |
---|
1758 | ! $ ' MINI =',MINI,' MAXI =',MAXI,' NEST =',inest |
---|
1759 | ! endif |
---|
1760 | |
---|
1761 | DO I=max0(its,MINI),min0(ite,MAXI) |
---|
1762 | |
---|
1763 | RI=FLOAT(I) |
---|
1764 | RY=RI-RA(N) |
---|
1765 | RIS=RINDX*RINDX |
---|
1766 | RSQ=RX*RX+RY*RY |
---|
1767 | ! DPRIM=SQRT(RSQ) |
---|
1768 | ! THIS FUNCTION DECREASES WTIJ AS PSFC CHANGES WITHIN SEARCH RADIUS |
---|
1769 | ! D=DPRIM+RINDX*DCON*ABS(PSBO(N)-PDOC(I,J)) |
---|
1770 | ! DSQ=D*D |
---|
1771 | ! WTIJ=(RIS-DSQ)/(RIS+DSQ) |
---|
1772 | wtij=(ris-rsq)/(ris+rsq) |
---|
1773 | scratch = (abs(psurf(n)-.001*pbase(i,1))*fdob%DCON) |
---|
1774 | pdfac=1.-AMIN1(1.0,scratch) |
---|
1775 | wtij=wtij*pdfac |
---|
1776 | WTIJ=AMAX1(0.0,WTIJ) |
---|
1777 | |
---|
1778 | ! try making sfc obs weighting go thru pbl |
---|
1779 | ! jc kpbl is at dot or cross only - need to interpolate? |
---|
1780 | ! wtsig(1)=1. |
---|
1781 | komax=max0(3,kpblt(i)) |
---|
1782 | |
---|
1783 | ! jc arbitrary check here |
---|
1784 | IF (iprt) THEN |
---|
1785 | if (kpblt(i).gt.25 .and. ktau.ne.0) & |
---|
1786 | write(6,552)inest,i,j,kpblt(i) |
---|
1787 | 552 FORMAT('kpblt is gt 25, inest,i,j,kpblt=',4i4) |
---|
1788 | ENDIF |
---|
1789 | |
---|
1790 | if(kpblt(i).gt.25) komax=3 |
---|
1791 | komin=1 |
---|
1792 | dk=float(komax) |
---|
1793 | |
---|
1794 | do k=komin,komax |
---|
1795 | |
---|
1796 | wtsig(k)=float(komax-k+1)/dk |
---|
1797 | WT(I,K)=WT(I,K)+TIMEWT*WTSIG(K)*WTIJ |
---|
1798 | |
---|
1799 | WT2ERR(I,K)=WT2ERR(I,K)+TIMEWT*TIMEWT*WTIJ*WTIJ*WTSIG(K) & |
---|
1800 | *WTSIG(K)*ERFIVR |
---|
1801 | |
---|
1802 | ! if(ivar.eq.1 .and. i.eq.38 .and. j.eq.78) then |
---|
1803 | ! |
---|
1804 | ! write(6,'(a,i2,a,f8.3,a,f8.3,a,f8.3,a,f8.3,a,f8.3)') |
---|
1805 | ! 'Surface obs, after: k = ',k, & |
---|
1806 | ! ' WT2ERR = ',wt2err(i,k), & |
---|
1807 | ! ' TIMEWT = ',timewt, & |
---|
1808 | ! ' WTIJ = ',wtij, & |
---|
1809 | ! ' WSIG = ',wtsig(k), & |
---|
1810 | ! ' ERFIVR = ',erfivr |
---|
1811 | ! endif |
---|
1812 | |
---|
1813 | enddo |
---|
1814 | |
---|
1815 | ENDDO |
---|
1816 | |
---|
1817 | ! print *, " Surface " |
---|
1818 | |
---|
1819 | endif ! end check for obs in domain |
---|
1820 | ! END SURFACE-LAYER U OR V OBS NUDGING |
---|
1821 | |
---|
1822 | ELSE |
---|
1823 | ! BEGIN CALCULATIONS TO SPREAD OBS INFLUENCE ALONG PRESSURE LEVELS |
---|
1824 | ! |
---|
1825 | ! print *,'in upper air section' |
---|
1826 | ! DEFINE THE MAX AND MIN I VALUES FOR POSSIBLE NONZERO |
---|
1827 | ! WEIGHTS, BASED ON THE RADIUS OF INFLUENCE, RINDX, AND RINFAC. |
---|
1828 | ! RINFAC VARIES AS A LINEAR FUNCTION FROM FROM RINFMN AT P*+PTOP |
---|
1829 | ! TO RINFMX AT PFREE AND "ABOVE" (LOWER PRESSURE). |
---|
1830 | !ajb SLOPE=(RINFMN-RINFMX)/(PSBO(N)+PTOP-PFREE) |
---|
1831 | |
---|
1832 | slope = (fdob%RINFMN-fdob%RINFMX)/(psurf(n)-fdob%PFREE) |
---|
1833 | |
---|
1834 | RINFAC=SLOPE*POB+fdob%RINFMX-SLOPE*fdob%pfree |
---|
1835 | RINFAC=AMAX1(RINFAC,fdob%RINFMN) |
---|
1836 | RINFAC=AMIN1(RINFAC,fdob%RINFMX) |
---|
1837 | !yliu: for multilevel upper-air data, take the maximum |
---|
1838 | ! for the I loop. |
---|
1839 | if(nsndlev.gt.1) RINFAC = fdob%RINFMX |
---|
1840 | !yliu end |
---|
1841 | |
---|
1842 | MAXI=IFIX(RA(N)+0.99+RINDX*RINFAC) |
---|
1843 | MAXI=MIN0(ide-IGRID,MAXI) |
---|
1844 | MINI=IFIX(RA(N)-RINDX*RINFAC-0.99) |
---|
1845 | MINI=MAX0(1,MINI) |
---|
1846 | |
---|
1847 | ! yliu start |
---|
1848 | ! use also obs outside of but close to this domain -- upr data |
---|
1849 | ! if( RA(N).LT.(0.-RINFAC*RINDX) |
---|
1850 | ! & .or. RA(N).GT.float(IL)+RINFAC*RINDX |
---|
1851 | ! & .or. RB(N).LT.(0.-RINFAC*RINDX) |
---|
1852 | ! & .or. RB(N).GT.float(JL)+RINFAC*RINDX)then |
---|
1853 | ! print *, " skipped obs far away from this I-range" |
---|
1854 | ! currently can use obs within this domain or ones very close to (1/3 |
---|
1855 | ! influence of radius in the coarse domain) this |
---|
1856 | ! domain. In later case, use BC column value to approximate the model value |
---|
1857 | ! at obs point -- ERRF need model field in errob.F !! |
---|
1858 | |
---|
1859 | !cc if (i.eq.39 .and. j.eq.34) then |
---|
1860 | !cc write(6,*) 'RA(N) = ',ra(n) |
---|
1861 | !cc write(6,*) 'rinfac = ',rinfac,' rindx = ',rindx |
---|
1862 | !cc endif |
---|
1863 | if( RA(N).GE.(0.-RINFAC*RINDX/3) & |
---|
1864 | .and. RA(N).LE.float(ide)+RINFAC*RINDX/3 & |
---|
1865 | .and. RB(N).GE.(0.-RINFAC*RINDX/3) & |
---|
1866 | .and. RB(N).LE.float(jde)+RINFAC*RINDX/3) then |
---|
1867 | ! or use obs within this domain only |
---|
1868 | ! if(RA(N).LT.1 .or. RA(N).GT.float(IL) .or. |
---|
1869 | ! & RB(N).LT.1 .or. RB(N).GT.float(JL)) then |
---|
1870 | ! print *, " skipped obs far outside of this domain" |
---|
1871 | |
---|
1872 | ! yliu end |
---|
1873 | ! is this 2 needed here - kpbl not used? |
---|
1874 | ! MINI=MAX0(2,MINI) |
---|
1875 | |
---|
1876 | ! LOOP THROUGH THE NECESSARY GRID POINTS SURROUNDING |
---|
1877 | ! OBSERVATION N. COMPUTE THE HORIZONTAL DISTANCE TO |
---|
1878 | ! THE OBS AND FIND THE WEIGHTING SUM OVER ALL OBS |
---|
1879 | RJ=FLOAT(J) |
---|
1880 | RX=RJ-RB(N) |
---|
1881 | ! WEIGHTS FOR THE 3-D VARIABLES |
---|
1882 | ! |
---|
1883 | ERFIVR=ERRF(IVAR,N) |
---|
1884 | ! jc |
---|
1885 | nsndlev=int(nlevs_ob(n)-lev_in_ob(n))+1 |
---|
1886 | ! yliu start |
---|
1887 | ! test: do the sounding levels as individual obs |
---|
1888 | ! nsndlev=1 |
---|
1889 | ! yliu end |
---|
1890 | njcsnd=nsndlev |
---|
1891 | ! |
---|
1892 | DO I=max0(its,MINI),min0(ite,MAXI) |
---|
1893 | ! jc |
---|
1894 | RI=FLOAT(I) |
---|
1895 | RY=RI-RA(N) |
---|
1896 | RIS=RINDX*RINFAC*RINDX*RINFAC |
---|
1897 | RSQ=RX*RX+RY*RY |
---|
1898 | ! yliu test: for upper-air data, keep D1 influence radii |
---|
1899 | ! RIS=RIS /schnes /schnes |
---|
1900 | WTIJ=(RIS-RSQ)/(RIS+RSQ) |
---|
1901 | WTIJ=AMAX1(0.0,WTIJ) |
---|
1902 | ! weight ob in vertical with +- 50 mb |
---|
1903 | ! yliu: 75 hba for single upper-air, 30hba for multi-level soundings |
---|
1904 | if(nsndlev.eq.1) then |
---|
1905 | rinprs=7.5 |
---|
1906 | else |
---|
1907 | rinprs=3.0 |
---|
1908 | endif |
---|
1909 | ! yliu end |
---|
1910 | ! |
---|
1911 | !$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ |
---|
1912 | ! --- HANDLE 1-LEVEL and MULTI-LEVEL OBSERVATIONS SEPARATELY --- |
---|
1913 | !$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ |
---|
1914 | |
---|
1915 | if(nsndlev.eq.1)then |
---|
1916 | !---------------------------------------------------------------------- |
---|
1917 | ! --- HANDLE 1-LEVEL OBSERVATIONS --- |
---|
1918 | !---------------------------------------------------------------------- |
---|
1919 | |
---|
1920 | ! if(I.eq.MINI) print *, " Single snd " |
---|
1921 | ! ERFIVR is the residual (difference) between the ob and the model |
---|
1922 | ! at that point. We can analyze that residual up and down. |
---|
1923 | ! First find komin for ob. |
---|
1924 | !yliu start -- in the old code, komax and komin were reversed! |
---|
1925 | do k=kte,1,-1 |
---|
1926 | pijk = .001*(pbase(i,k)+pp(i,k)) |
---|
1927 | ! print *,'k,pijk,pob,rinprs=',k,pijk,pob,rinprs |
---|
1928 | if(pijk.ge.(pob+rinprs)) then |
---|
1929 | komin=k |
---|
1930 | go to 325 |
---|
1931 | endif |
---|
1932 | enddo |
---|
1933 | komin=1 |
---|
1934 | 325 continue |
---|
1935 | ! now find komax for ob |
---|
1936 | do k=3,kte |
---|
1937 | pijk = .001*(pbase(i,k)+pp(i,k)) |
---|
1938 | if(pijk.le.(pob-rinprs)) then |
---|
1939 | komax=k |
---|
1940 | go to 326 |
---|
1941 | endif |
---|
1942 | enddo |
---|
1943 | komax=kte ! yliu 20050706 |
---|
1944 | 326 continue |
---|
1945 | |
---|
1946 | ! yliu: single-level upper-air data will act either above or below the PBL top |
---|
1947 | ! komax=min0(kpblt(i), komax) |
---|
1948 | if(komax.gt.kpblt(i)) komin=max0(kpblt(i), komin) |
---|
1949 | if(komin.lt.kpblt(i)) komax=min0(kpblt(i), komax) |
---|
1950 | ! yliu end |
---|
1951 | ! |
---|
1952 | ! print *,'1 level, komin,komax=',komin,komax |
---|
1953 | ! if(i.eq.MINI) then |
---|
1954 | ! print *, "yyyyyyyyyyS IPL erfivr=", IPL, ERFIVR,J,pob |
---|
1955 | ! ERFIVR=0 |
---|
1956 | ! endif |
---|
1957 | do k=1,kte |
---|
1958 | reserf(k)=0.0 |
---|
1959 | wtsig(k)=0.0 |
---|
1960 | enddo |
---|
1961 | !yliu end |
---|
1962 | |
---|
1963 | !cc if (i.eq.39 .and. j.eq.34) then |
---|
1964 | !cc write(6,*) ' komin = ', komin,' komax = ',komax |
---|
1965 | !cc endif |
---|
1966 | |
---|
1967 | do k=komin,komax |
---|
1968 | pijk = .001*(pbase(i,k)+pp(i,k)) |
---|
1969 | reserf(k)=erfivr |
---|
1970 | wtsig(k)=1.-abs(pijk-pob)/rinprs |
---|
1971 | wtsig(k)=amax1(wtsig(k),0.0) |
---|
1972 | ! print *,'k,pijk,pob,rinprs,wtsig=',k,pijk,pob,rinprs,wtsig(k) |
---|
1973 | ! Now calculate WT and WT2ERR for each i,j,k point cajb |
---|
1974 | WT(I,K)=WT(I,K)+TIMEWT*WTIJ*wtsig(k) |
---|
1975 | |
---|
1976 | WT2ERR(I,K)=WT2ERR(I,K)+TIMEWT*TIMEWT*WTIJ*WTIJ* & |
---|
1977 | reserf(k)*wtsig(k)*wtsig(k) |
---|
1978 | enddo |
---|
1979 | |
---|
1980 | else |
---|
1981 | !---------------------------------------------------------------------- |
---|
1982 | ! --- HANDLE MULTI-LEVEL OBSERVATIONS --- |
---|
1983 | !---------------------------------------------------------------------- |
---|
1984 | !yliu start |
---|
1985 | ! if(I.eq.MINI) print *, " Multi-level snd " |
---|
1986 | ! print *, " n=,nsndlev",n,nsndlev,nlevs_ob(n),lev_in_ob(n) & |
---|
1987 | ! ,nlevs_ob(n+nsndlev-1),lev_in_ob(n+nsndlev-1) |
---|
1988 | if(nlevs_ob(n+nsndlev-1).ne.lev_in_ob(n+nsndlev-1)) then |
---|
1989 | IF (iprt) THEN |
---|
1990 | print *, "n = ",n,"nsndlev = ",nsndlev |
---|
1991 | print *, "nlevs_ob,lev_in_ob", & |
---|
1992 | nlevs_ob(n+nsndlev-1),lev_in_ob(n+nsndlev-1) |
---|
1993 | print *, "in nudobs.F: sounding level messed up, stopping" |
---|
1994 | ENDIF |
---|
1995 | stop |
---|
1996 | endif |
---|
1997 | !yliu end |
---|
1998 | ! This is for a multi-level observation |
---|
1999 | ! The trick here is that the sounding is "one ob". You don't |
---|
2000 | ! want multiple levels to each be treated like separate |
---|
2001 | ! and independent observations. |
---|
2002 | ! At each i,j want to interpolate sounding to the model levels at that |
---|
2003 | ! particular point. |
---|
2004 | komin=1 |
---|
2005 | komax=kte-2 |
---|
2006 | ! this loop goes to 1501 |
---|
2007 | ! do from kte-2 to 1 so don't adjust top of model. Arbitrary. |
---|
2008 | !yliu start |
---|
2009 | do k=1,kte |
---|
2010 | reserf(k)=0.0 |
---|
2011 | wtsig(k)=0.0 |
---|
2012 | enddo |
---|
2013 | !yliu end |
---|
2014 | |
---|
2015 | do k=komax,komin,-1 |
---|
2016 | |
---|
2017 | pijk = .001*(pbase(i,k)+pp(i,k)) |
---|
2018 | |
---|
2019 | ! if sigma level pressure is .gt. than the lowest ob level, don't interpolate |
---|
2020 | if(pijk.gt.varobs(5,n)) then |
---|
2021 | go to 1501 |
---|
2022 | endif |
---|
2023 | |
---|
2024 | ! if sigma level pressure is .lt. than the highest ob level, don't interpolate |
---|
2025 | if(pijk.le.varobs(5,n+nsndlev-1)) then |
---|
2026 | go to 1501 |
---|
2027 | endif |
---|
2028 | |
---|
2029 | ! now interpolate sounding to this k |
---|
2030 | ! yliu start-- recalculate WTij for each k-level |
---|
2031 | !ajb SLOPE = (fdob%RINFMN-fdob%RINFMX)/(pdoc(i,j)+PTOP-fdob%PFREE) |
---|
2032 | slope = (fdob%RINFMN-fdob%RINFMX)/ (.001*pbase(i,1)-fdob%PFREE) |
---|
2033 | RINFAC=SLOPE*pijk+fdob%RINFMX-SLOPE*fdob%PFREE |
---|
2034 | RINFAC=AMAX1(RINFAC,fdob%RINFMN) |
---|
2035 | RINFAC=AMIN1(RINFAC,fdob%RINFMX) |
---|
2036 | RIS=RINDX*RINFAC*RINDX*RINFAC |
---|
2037 | RSQ=RX*RX+RY*RY |
---|
2038 | |
---|
2039 | ! for upper-air data, keep D1 influence radii |
---|
2040 | ! RIS=RIS /schnes /schnes |
---|
2041 | WTIJ=(RIS-RSQ)/(RIS+RSQ) |
---|
2042 | WTIJ=AMAX1(0.0,WTIJ) |
---|
2043 | ! yliu end |
---|
2044 | |
---|
2045 | ! this loop goes to 1503 |
---|
2046 | do nn=2,nsndlev |
---|
2047 | ! only set pobhi if varobs(ivar) is ok |
---|
2048 | pobhi=-888888. |
---|
2049 | |
---|
2050 | if(varobs(ivar,n+nn-1).gt.-800000. & |
---|
2051 | .and. varobs(5,n+nn-1).gt.-800000.) then |
---|
2052 | pobhi=varobs(5,n+nn-1) |
---|
2053 | nhi=n+nn-1 |
---|
2054 | if(pobhi.lt.pijk .and. abs(pobhi-pijk).lt.20.) then |
---|
2055 | go to 1502 ! within 200mb of obs height |
---|
2056 | endif |
---|
2057 | endif |
---|
2058 | |
---|
2059 | enddo |
---|
2060 | |
---|
2061 | ! did not find any ob above within 100 mb, so jump out |
---|
2062 | go to 1501 |
---|
2063 | 1502 continue |
---|
2064 | |
---|
2065 | nlo=nhi-1 |
---|
2066 | do nnjc=nhi-1,n,-1 |
---|
2067 | if(varobs(ivar,nnjc).gt.-800000. & |
---|
2068 | .and. varobs(5,nnjc).gt.-800000.) then |
---|
2069 | poblo=varobs(5,nnjc) |
---|
2070 | nlo=nnjc |
---|
2071 | if(poblo.gt.pijk .and. abs(poblo-pijk).lt.20.) then |
---|
2072 | go to 1505 ! within 200mb of obs height |
---|
2073 | endif |
---|
2074 | endif |
---|
2075 | enddo |
---|
2076 | !yliu end -- |
---|
2077 | |
---|
2078 | ! did not find any ob below within 200 mb, so jump out |
---|
2079 | go to 1501 |
---|
2080 | 1505 continue |
---|
2081 | |
---|
2082 | ! interpolate to model level |
---|
2083 | pdiffj=alog(pijk/poblo)/alog(pobhi/poblo) |
---|
2084 | reserf(k)=errf(ivar,nlo)+ & |
---|
2085 | (errf(ivar,nhi)-errf(ivar,nlo))*pdiffj |
---|
2086 | wtsig(k)=1. |
---|
2087 | |
---|
2088 | 1501 continue |
---|
2089 | |
---|
2090 | ! now calculate WT and WT2ERR for each i,j,k point cajb |
---|
2091 | WT(I,K)=WT(I,K)+TIMEWT*WTIJ*wtsig(k) |
---|
2092 | |
---|
2093 | WT2ERR(I,K)=WT2ERR(I,K)+TIMEWT*TIMEWT*WTIJ*WTIJ* & |
---|
2094 | reserf(k)*wtsig(k)*wtsig(k) |
---|
2095 | |
---|
2096 | ! if(ivar.eq.1 .and. i.eq.38 .and. j.eq.78) then |
---|
2097 | ! |
---|
2098 | ! if(wt(i,k) .ne. 0.0) then |
---|
2099 | ! scratch = WT2ERR(I,K)/WT(I,K) |
---|
2100 | ! else |
---|
2101 | ! scratch = 999. |
---|
2102 | ! endif |
---|
2103 | ! |
---|
2104 | ! write(6,'(a,i2,a,f8.3,a,f4.2,a,f7.4,a,f4.2,a,f5.3,a,f7.4)') |
---|
2105 | ! $ 'Multi-level obs: k = ',k, |
---|
2106 | ! $ ' WT2ERR = ',wt2err(i,k), |
---|
2107 | ! $ ' WTIJ = ',wtij, |
---|
2108 | ! $ ' RSF = ',reserf(k), |
---|
2109 | ! $ ' WSIG = ',wtsig(k), |
---|
2110 | ! $ ' WT = ',wt(i,k), |
---|
2111 | ! $ ' W2EOWT = ',scratch |
---|
2112 | ! endif |
---|
2113 | |
---|
2114 | |
---|
2115 | ! end do k |
---|
2116 | enddo ! enddo k levels |
---|
2117 | ! end multi-levels |
---|
2118 | endif ! end if(nsndlev.eq.1) |
---|
2119 | !$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ |
---|
2120 | ! END 1-LEVEL AND MULTI-LEVEL OBSERVATIONS |
---|
2121 | !$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ |
---|
2122 | ! |
---|
2123 | ENDDO ! END DO MINI,MAXI LOOP |
---|
2124 | |
---|
2125 | endif ! check for obs in domain |
---|
2126 | |
---|
2127 | ! END OF NUDGING TO OBS ON PRESSURE LEVELS |
---|
2128 | |
---|
2129 | ENDIF !end IF(KOB.EQ.1.AND.IVAR.LE.4.and.nlevs_ob(n).lt.1.5) |
---|
2130 | |
---|
2131 | !---------------------------------------------------------------------- |
---|
2132 | ENDIF ! END SECTION FOR PROCESSING OF OBSERVATION |
---|
2133 | !---------------------------------------------------------------------- |
---|
2134 | |
---|
2135 | ! n=n+1 |
---|
2136 | n=n+njcsnd |
---|
2137 | |
---|
2138 | !yliu 1202 continue |
---|
2139 | if(n.gt.nstat)then |
---|
2140 | ! print *,'n,nstat=',n,nstat,ivar,j |
---|
2141 | go to 1203 |
---|
2142 | endif |
---|
2143 | ! print *, "e-- n=,nsndlev",n,njcsnd,nlevs_ob(n),lev_in_ob(n) |
---|
2144 | |
---|
2145 | !*********************************************************************** |
---|
2146 | ENDDO ! END OUTER LOOP FOR THE NSTAT OBSERVATIONS |
---|
2147 | !*********************************************************************** |
---|
2148 | |
---|
2149 | 1203 continue |
---|
2150 | |
---|
2151 | ! WEIGHTS AND WEIGHTED DIFFERENCES HAVE BEEN SUMMED. NOW |
---|
2152 | ! APPLY THE NUDGING FACTOR AND THE RESULTANT TENDENCY TO |
---|
2153 | ! THE ATEN ARRAY |
---|
2154 | ! ASSURE THAT WT(I,K) AND WTP(I,K) ARE NONZERO SINCE |
---|
2155 | ! THEY ARE USED BELOW IN THE DENOMINATOR. |
---|
2156 | DO K=kts,kte |
---|
2157 | DO I=its,ite |
---|
2158 | IF(WT(I,K).EQ.0)THEN |
---|
2159 | WT2ERR(I,K)=0.0 |
---|
2160 | ENDIF |
---|
2161 | IF(WT(I,K).EQ.0)THEN |
---|
2162 | WT(I,K)=1.0 |
---|
2163 | ENDIF |
---|
2164 | ENDDO |
---|
2165 | ENDDO |
---|
2166 | |
---|
2167 | 126 CONTINUE |
---|
2168 | |
---|
2169 | IF(IVAR.GE.3)GOTO 170 |
---|
2170 | ! this is for u,v |
---|
2171 | ! 3-D DOT POINT TENDENCIES |
---|
2172 | |
---|
2173 | ! Calculate scales for converting nudge factor from u (v) |
---|
2174 | ! to rho_u (or rho_v) units. |
---|
2175 | |
---|
2176 | call calc_rcouple_scales(mu,msf,rscale,ims,ime,its,ite) |
---|
2177 | |
---|
2178 | DO K=1,kte |
---|
2179 | |
---|
2180 | DO I=i_s,i_e |
---|
2181 | |
---|
2182 | IF(MOD(KTAU,INFR).EQ.0.OR.(IFREST.AND.KTAU.EQ.KTAUR))THEN |
---|
2183 | W2EOWT=WT2ERR(I,K)/WT(I,K) |
---|
2184 | ELSE |
---|
2185 | W2EOWT=SAVWT(IPL,I,K) |
---|
2186 | ENDIF |
---|
2187 | |
---|
2188 | ! if(ivar .eq. 1 .and. i.eq.38 .and. j.eq.78 .and. k.eq.1) then |
---|
2189 | ! scratch = GIV*RSCALE(I)*W2EOWT*fdob%TFACI*ISWIND*GFACTOR |
---|
2190 | ! write(6,*) 'ATEN calc: k = ',k |
---|
2191 | ! write(6,*) 'U before: aten = ',aten(i,k),' scr = ',scratch |
---|
2192 | ! write(6,*) 'GIV = ',giv,' rscale = ',rscale(i), |
---|
2193 | ! $ ' W2EOWT = ',w2eowt |
---|
2194 | ! write(6,*) 'TFACI = ',fdob%tfaci,' ISWIND = ',iswind, |
---|
2195 | ! $ ' GFACTOR = ',gfactor |
---|
2196 | ! endif |
---|
2197 | ! |
---|
2198 | ! if(ivar .eq. 2 .and. i.eq.39 .and. j.eq.29) then |
---|
2199 | ! scratch = GIV*RSCALE(I)*W2EOWT*fdob%TFACI*ISWIND*GFACTOR |
---|
2200 | ! write(6,*) 'ATEN calc: k = ',k |
---|
2201 | ! write(6,*) 'V before: aten = ',aten(i,k),' scr = ',scratch |
---|
2202 | ! write(6,*) 'GIV = ',giv,' rscale = ',rscale(i), |
---|
2203 | ! $ ' W2EOWT = ',w2eowt |
---|
2204 | ! write(6,*) 'TFACI = ',fdob%tfaci,' ISWIND = ',iswind, |
---|
2205 | ! $ ' GFACTOR = ',gfactor |
---|
2206 | ! endif |
---|
2207 | |
---|
2208 | ATEN(i,k)=ATEN(i,k)+GIV*RSCALE(I) & |
---|
2209 | *W2EOWT*fdob%TFACI & |
---|
2210 | *ISWIND *GFACTOR !yliu *GFACTOR |
---|
2211 | |
---|
2212 | ! if(ivar .eq. 1 .and. i.eq.38 .and. j.eq.78 .and. k.eq.1) then |
---|
2213 | ! write(6,*) 'U after: aten = ',aten(i,k),' scr = ',scratch |
---|
2214 | ! endif |
---|
2215 | ! if(ivar .eq. 2 .and. i.eq.39 .and. j.eq.29) then |
---|
2216 | ! write(6,*) 'V after: aten = ',aten(i,k),' scr = ',scratch |
---|
2217 | ! endif |
---|
2218 | |
---|
2219 | ENDDO |
---|
2220 | ENDDO |
---|
2221 | |
---|
2222 | IF(MOD(KTAU,INFR).EQ.0.OR.(IFREST.AND.KTAU.EQ.KTAUR))THEN |
---|
2223 | DO K=1,kte |
---|
2224 | DO I=its,ite |
---|
2225 | SAVWT(IPL,I,K)=WT2ERR(I,K)/WT(I,K) |
---|
2226 | ENDDO |
---|
2227 | ENDDO |
---|
2228 | ENDIF |
---|
2229 | |
---|
2230 | RETURN |
---|
2231 | |
---|
2232 | 170 CONTINUE |
---|
2233 | |
---|
2234 | ! 3-D CROSS-POINT TENDENCIES |
---|
2235 | ! this is for t (ivar=3) and q (ivsr=4) |
---|
2236 | IF(3-IVAR.LT.0)THEN |
---|
2237 | GITQ=GIQ |
---|
2238 | ELSE |
---|
2239 | GITQ=GIT |
---|
2240 | ENDIF |
---|
2241 | IF(3-IVAR.LT.0)THEN |
---|
2242 | ISTQ=ISMOIS |
---|
2243 | ELSE |
---|
2244 | ISTQ=ISTEMP |
---|
2245 | ENDIF |
---|
2246 | |
---|
2247 | DO K=1,kte |
---|
2248 | DO I=i_s,i_e |
---|
2249 | IF(MOD(KTAU,INFR).EQ.0.OR.(IFREST.AND.KTAU.EQ.KTAUR))THEN |
---|
2250 | W2EOWT=WT2ERR(I,K)/WT(I,K) |
---|
2251 | ELSE |
---|
2252 | W2EOWT=SAVWT(IPL,I,K) |
---|
2253 | ENDIF |
---|
2254 | |
---|
2255 | ! if(ivar .eq. 3 .and. i.eq.39 .and. j.eq.29) then |
---|
2256 | ! scratch = GITQ*MU(I)*W2EOWT*fdob%TFACI*ISTQ*GFACTOR |
---|
2257 | ! write(6,*) 'ATEN calc: k = ',k |
---|
2258 | ! write(6,*) 'T before: aten = ',aten(i,k),' scr = ',scratch |
---|
2259 | ! write(6,*) 'GITQ = ',gitq,' MU = ',mu(i), |
---|
2260 | ! $ ' W2EOWT = ',w2eowt |
---|
2261 | ! write(6,*) ' TFACI = ',fdob%tfaci,' ISTQ = ',istq, |
---|
2262 | ! $ ' GFACTOR = ',gfactor |
---|
2263 | ! endif |
---|
2264 | ! |
---|
2265 | ! if(ivar .eq. 4 .and. i.eq.39 .and. j.eq.29) then |
---|
2266 | ! scratch = GITQ*MU(I)*W2EOWT*fdob%TFACI*ISTQ*GFACTOR |
---|
2267 | ! write(6,*) 'ATEN calc: k = ',k |
---|
2268 | ! write(6,*) 'Q before: aten = ',aten(i,k),' scr = ',scratch |
---|
2269 | ! write(6,*) 'GITQ = ',gitq,' MU = ',mu(i), |
---|
2270 | ! $ ' W2EOWT = ',w2eowt |
---|
2271 | ! write(6,*) ' TFACI = ',fdob%tfaci,' ISTQ = ',istq, |
---|
2272 | ! $ ' GFACTOR = ',gfactor |
---|
2273 | ! endif |
---|
2274 | |
---|
2275 | ATEN(i,k)=ATEN(i,k)+GITQ*MU(I) & |
---|
2276 | *W2EOWT*fdob%TFACI*ISTQ *GFACTOR !yliu *GFACTOR |
---|
2277 | |
---|
2278 | ! if(ivar .eq. 3 .and. i.eq.39 .and. j.eq.29) then |
---|
2279 | ! write(6,*) 'T after: aten = ',aten(i,k),' scr = ',scratch |
---|
2280 | ! endif |
---|
2281 | ! if(ivar .eq. 4 .and. i.eq.39 .and. j.eq.29) then |
---|
2282 | ! write(6,*) 'Q after: aten = ',aten(i,k),' scr = ',scratch |
---|
2283 | ! endif |
---|
2284 | |
---|
2285 | ENDDO |
---|
2286 | ENDDO |
---|
2287 | |
---|
2288 | IF(MOD(KTAU,INFR).EQ.0.OR.(IFREST.AND.KTAU.EQ.KTAUR)) THEN |
---|
2289 | DO K=1,kte |
---|
2290 | DO I=its,ite |
---|
2291 | SAVWT(IPL,I,K)=WT2ERR(I,K)/WT(I,K) |
---|
2292 | ENDDO |
---|
2293 | ENDDO |
---|
2294 | ENDIF |
---|
2295 | |
---|
2296 | RETURN |
---|
2297 | END SUBROUTINE nudob |
---|
2298 | |
---|
2299 | SUBROUTINE calc_rcouple_scales(a, msf, rscale, ims,ime, its,ite) |
---|
2300 | !----------------------------------------------------------------------- |
---|
2301 | IMPLICIT NONE |
---|
2302 | !----------------------------------------------------------------------- |
---|
2303 | |
---|
2304 | INTEGER, INTENT(IN) :: ims,ime ! Memory dimensions |
---|
2305 | INTEGER, INTENT(IN) :: its,ite ! Tile dimensions |
---|
2306 | REAL, INTENT(IN) :: a( ims:ime ) ! Air mass array |
---|
2307 | REAL, INTENT(IN) :: msf( ims:ime ) ! Map scale factor array |
---|
2308 | REAL, INTENT(OUT) :: rscale( ims:ime ) ! Scales for rho-coupling |
---|
2309 | |
---|
2310 | ! Local variables |
---|
2311 | integer :: i |
---|
2312 | |
---|
2313 | ! Calculate scales to be used for producing rho-coupled nudging factors. |
---|
2314 | do i = its,ite |
---|
2315 | rscale(i) = a(i)/msf(i) |
---|
2316 | enddo |
---|
2317 | |
---|
2318 | RETURN |
---|
2319 | END SUBROUTINE calc_rcouple_scales |
---|
2320 | |
---|
2321 | !ajb: Not used |
---|
2322 | SUBROUTINE set_real_array(rscale, value, ims,ime, its,ite) |
---|
2323 | !----------------------------------------------------------------------- |
---|
2324 | IMPLICIT NONE |
---|
2325 | !----------------------------------------------------------------------- |
---|
2326 | |
---|
2327 | INTEGER, INTENT(IN) :: ims,ime ! Memory dimensions |
---|
2328 | INTEGER, INTENT(IN) :: its,ite ! Tile dimensions |
---|
2329 | REAL, INTENT(IN) :: value ! Constant array value |
---|
2330 | REAL, INTENT(OUT) :: rscale( ims:ime ) ! Output array |
---|
2331 | |
---|
2332 | ! Local variables |
---|
2333 | integer :: i |
---|
2334 | |
---|
2335 | ! Set array to constant value |
---|
2336 | do i = its,ite |
---|
2337 | rscale(i) = value |
---|
2338 | enddo |
---|
2339 | |
---|
2340 | RETURN |
---|
2341 | END SUBROUTINE set_real_array |
---|
2342 | |
---|
2343 | !ajb: Not used |
---|
2344 | SUBROUTINE calc_pottemp_scales(ivar, rcp, pb, p, tscale, & |
---|
2345 | ims,ime, its,ite, & |
---|
2346 | kms,kme, kts,kte) |
---|
2347 | !----------------------------------------------------------------------- |
---|
2348 | IMPLICIT NONE |
---|
2349 | !----------------------------------------------------------------------- |
---|
2350 | |
---|
2351 | INTEGER, INTENT(IN) :: ims,ime, kms,kme ! Memory dimensions |
---|
2352 | INTEGER, INTENT(IN) :: its,ite, kts,kte ! Tile dimensions |
---|
2353 | INTEGER, INTENT(IN) :: ivar ! Variable identifier |
---|
2354 | REAL, INTENT(IN) :: rcp ! Constant (2./7.) |
---|
2355 | REAL, INTENT(IN) :: pb(ims:ime, kms:kme) ! Base pressure (Pa) array |
---|
2356 | REAL, INTENT(IN) :: p(ims:ime, kms:kme) ! Pressure pert. (Pa) array |
---|
2357 | REAL, INTENT(OUT) :: tscale(ims:ime, kms:kme) ! Scales for pot. temp. |
---|
2358 | ! Local variables |
---|
2359 | integer :: i,k |
---|
2360 | |
---|
2361 | if(ivar.eq.3) then |
---|
2362 | |
---|
2363 | ! Calculate scales to be used for producing potential temperature nudging factors. |
---|
2364 | do k = kts,kte |
---|
2365 | do i = its,ite |
---|
2366 | tscale(i,k) = ( 1000000. / ( pb(i,k)+p(i,k)) )**rcp |
---|
2367 | enddo |
---|
2368 | enddo |
---|
2369 | else |
---|
2370 | ! Set to 1. for moisture scaling. |
---|
2371 | do k = kts,kte |
---|
2372 | do i = its,ite |
---|
2373 | tscale(i,k) = 1.0 |
---|
2374 | enddo |
---|
2375 | enddo |
---|
2376 | endif |
---|
2377 | |
---|
2378 | RETURN |
---|
2379 | END SUBROUTINE calc_pottemp_scales |
---|
2380 | #endif |
---|
2381 | |
---|
2382 | END MODULE module_fddaobs_rtfdda |
---|
2383 | |
---|