1 | SUBROUTINE aeropacity(ngrid,nlayer,nq,zday,pplay,pplev,ls,pq, |
---|
2 | & tauref,tau,aerosol,reffrad, |
---|
3 | & QREFvis3d,QREFir3d,omegaREFvis3d,omegaREFir3d) |
---|
4 | |
---|
5 | ! to use 'getin' |
---|
6 | USE ioipsl_getincom |
---|
7 | IMPLICIT NONE |
---|
8 | c======================================================================= |
---|
9 | c subject: |
---|
10 | c -------- |
---|
11 | c Computing aerosol optical depth in each gridbox. |
---|
12 | c |
---|
13 | c author: F.Forget |
---|
14 | c ------ |
---|
15 | c update F. Montmessin (water ice scheme) |
---|
16 | c and S. Lebonnois (12/06/2003) compatibility dust/ice/chemistry |
---|
17 | c update J.-B. Madeleine 2008-2009: |
---|
18 | c - added 3D scattering by aerosols; |
---|
19 | c - dustopacity transferred from physiq.F to callradite.F, |
---|
20 | c and renamed into aeropacity.F; |
---|
21 | c |
---|
22 | c input: |
---|
23 | c ----- |
---|
24 | c ngrid Number of gridpoint of horizontal grid |
---|
25 | c nlayer Number of layer |
---|
26 | c nq Number of tracer |
---|
27 | c zday Date (time since Ls=0, in martian days) |
---|
28 | c ls Solar longitude (Ls) , radian |
---|
29 | c pplay,pplev pressure (Pa) in the middle and boundary of each layer |
---|
30 | c pq Dust mixing ratio (used if tracer =T and active=T). |
---|
31 | c reffrad(ngrid,nlayer,naerkind) Aerosol effective radius |
---|
32 | c QREFvis3d(ngridmx,nlayermx,naerkind) \ 3d extinction coefficients |
---|
33 | c QREFir3d(ngridmx,nlayermx,naerkind) / at reference wavelengths; |
---|
34 | c omegaREFvis3d(ngridmx,nlayermx,naerkind) \ 3d single scat. albedo |
---|
35 | c omegaREFir3d(ngridmx,nlayermx,naerkind) / at reference wavelengths; |
---|
36 | c |
---|
37 | c output: |
---|
38 | c ------- |
---|
39 | c tauref Prescribed mean column optical depth at 700 Pa |
---|
40 | c tau Column total visible dust optical depth at each point |
---|
41 | c aerosol aerosol(ig,l,1) is the dust optical |
---|
42 | c depth in layer l, grid point ig |
---|
43 | |
---|
44 | c |
---|
45 | c======================================================================= |
---|
46 | #include "dimensions.h" |
---|
47 | #include "dimphys.h" |
---|
48 | #include "callkeys.h" |
---|
49 | #include "comcstfi.h" |
---|
50 | #include "comgeomfi.h" |
---|
51 | #include "dimradmars.h" |
---|
52 | #include "yomaer.h" |
---|
53 | #include "tracer.h" |
---|
54 | #include "planete.h" |
---|
55 | |
---|
56 | c----------------------------------------------------------------------- |
---|
57 | c |
---|
58 | c Declarations : |
---|
59 | c -------------- |
---|
60 | c |
---|
61 | c Input/Output |
---|
62 | c ------------ |
---|
63 | INTEGER ngrid,nlayer,nq |
---|
64 | |
---|
65 | REAL ls,zday,expfactor |
---|
66 | REAL pplev(ngrid,nlayer+1),pplay(ngrid,nlayer) |
---|
67 | REAL pq(ngrid,nlayer,nq) |
---|
68 | REAL tauref(ngrid), tau(ngrid,naerkind) |
---|
69 | REAL aerosol(ngrid,nlayer,naerkind) |
---|
70 | REAL reffrad(ngrid,nlayer,naerkind) |
---|
71 | REAL QREFvis3d(ngridmx,nlayermx,naerkind) |
---|
72 | REAL QREFir3d(ngridmx,nlayermx,naerkind) |
---|
73 | REAL omegaREFvis3d(ngridmx,nlayermx,naerkind) |
---|
74 | REAL omegaREFir3d(ngridmx,nlayermx,naerkind) |
---|
75 | c |
---|
76 | c Local variables : |
---|
77 | c ----------------- |
---|
78 | INTEGER l,ig,iq,i,j |
---|
79 | INTEGER iaer ! Aerosol index |
---|
80 | real topdust(ngridmx) |
---|
81 | real zlsconst, zp |
---|
82 | real taueq,tauS,tauN |
---|
83 | real r0,reff,coefsize |
---|
84 | c Mean Qext(vis)/Qext(ir) profile |
---|
85 | real msolsir(nlayermx,naerkind) |
---|
86 | c Mean Qext(ir)/Qabs(ir) profile |
---|
87 | real mqextsqabs(nlayermx,naerkind) |
---|
88 | c Variables used when multiple particle sizes are used |
---|
89 | c for dust or water ice particles in the radiative transfer |
---|
90 | c (see callradite.F for more information). |
---|
91 | REAL taudusttmp(ngridmx)! Temporary dust opacity |
---|
92 | ! used before scaling |
---|
93 | REAL taudustvis(ngridmx) ! Dust opacity after scaling |
---|
94 | REAL taudusttes(ngridmx) ! Dust opacity at IR ref. wav. as |
---|
95 | ! "seen" by the GCM. |
---|
96 | REAL taucloudvis(ngridmx)! Cloud opacity at visible |
---|
97 | ! reference wavelength |
---|
98 | REAL taucloudtes(ngridmx)! Cloud opacity at infrared |
---|
99 | ! reference wavelength using |
---|
100 | ! Qabs instead of Qext |
---|
101 | ! (direct comparison with TES) |
---|
102 | c |
---|
103 | c local saved variables |
---|
104 | c --------------------- |
---|
105 | |
---|
106 | REAL topdust0(ngridmx) |
---|
107 | SAVE topdust0 |
---|
108 | |
---|
109 | LOGICAL firstcall |
---|
110 | DATA firstcall/.true./ |
---|
111 | SAVE firstcall |
---|
112 | |
---|
113 | ! indexes of water ice and dust tracers: |
---|
114 | INTEGER,SAVE :: nqdust(nqmx) ! to store the indexes of dust tracers |
---|
115 | INTEGER,SAVE :: i_ice=0 ! water ice |
---|
116 | CHARACTER(LEN=20) :: tracername ! to temporarly store text |
---|
117 | |
---|
118 | call zerophys(ngrid*naerkind,tau) |
---|
119 | |
---|
120 | ! identify tracers |
---|
121 | |
---|
122 | IF (firstcall) THEN |
---|
123 | ! identify tracers which are dust |
---|
124 | i=0 |
---|
125 | DO iq=1,nq |
---|
126 | tracername=noms(iq) |
---|
127 | IF (tracername(1:4).eq."dust") THEN |
---|
128 | i=i+1 |
---|
129 | nqdust(i)=iq |
---|
130 | ENDIF |
---|
131 | ENDDO |
---|
132 | |
---|
133 | IF (water.AND.activice) THEN |
---|
134 | i_ice=igcm_h2o_ice |
---|
135 | write(*,*) "aeropacity: i_ice=",i_ice |
---|
136 | ENDIF |
---|
137 | |
---|
138 | c altitude of the top of the aerosol layer (km) at Ls=2.76rad: |
---|
139 | c in the Viking year scenario |
---|
140 | DO ig=1,ngrid |
---|
141 | topdust0(ig)=60. -22.*SIN(lati(ig))**2 |
---|
142 | END DO |
---|
143 | |
---|
144 | c typical profile of solsir and (1-w)^(-1): |
---|
145 | call zerophys(nlayer*naerkind,msolsir) |
---|
146 | call zerophys(nlayer*naerkind,mqextsqabs) |
---|
147 | WRITE(*,*) "Typical profiles of solsir and Qext/Qabs(IR):" |
---|
148 | DO iaer = 1, naerkind ! Loop on aerosol kind |
---|
149 | WRITE(*,*) "Aerosol # ",iaer |
---|
150 | DO l=1,nlayer |
---|
151 | DO ig=1,ngridmx |
---|
152 | msolsir(l,iaer)=msolsir(l,iaer)+ |
---|
153 | & QREFvis3d(ig,l,iaer)/ |
---|
154 | & QREFir3d(ig,l,iaer) |
---|
155 | mqextsqabs(l,iaer)=mqextsqabs(l,iaer)+ |
---|
156 | & (1.E0-omegaREFir3d(ig,l,iaer))**(-1) |
---|
157 | ENDDO |
---|
158 | msolsir(l,iaer)=msolsir(l,iaer)/REAL(ngridmx) |
---|
159 | mqextsqabs(l,iaer)=mqextsqabs(l,iaer)/REAL(ngridmx) |
---|
160 | ENDDO |
---|
161 | WRITE(*,*) "solsir: ",msolsir(:,iaer) |
---|
162 | WRITE(*,*) "Qext/Qabs(IR): ",mqextsqabs(:,iaer) |
---|
163 | ENDDO |
---|
164 | |
---|
165 | ! load value of tauvis from callphys.def (if given there, |
---|
166 | ! otherwise default value read from starfi.nc file will be used) |
---|
167 | call getin("tauvis",tauvis) |
---|
168 | |
---|
169 | firstcall=.false. |
---|
170 | |
---|
171 | END IF |
---|
172 | |
---|
173 | DO iaer = 1, naerkind ! Loop on aerosol kind |
---|
174 | c -------------------------------------------- |
---|
175 | aerkind: SELECT CASE (iaer) |
---|
176 | c================================================================== |
---|
177 | CASE(1) aerkind ! Dust (iaer=1) |
---|
178 | c================================================================== |
---|
179 | |
---|
180 | c ------------------------------------------------------------- |
---|
181 | c 1) Prescribed dust (if tracer=F or active=F) |
---|
182 | c ------------------------------------------------------------- |
---|
183 | IF ((.not.tracer) .or. (.not.active)) THEN |
---|
184 | |
---|
185 | c Vertical column optical depth at 700.Pa |
---|
186 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
187 | IF(iaervar.eq.1) THEN |
---|
188 | do ig=1, ngridmx |
---|
189 | tauref(ig)=max(tauvis,1.e-9) ! tauvis=cste (set in callphys.def |
---|
190 | ! or read in starfi |
---|
191 | end do |
---|
192 | ELSE IF (iaervar.eq.2) THEN ! << "Viking" Scenario>> |
---|
193 | |
---|
194 | tauref(1) = 0.7+.3*cos(ls+80.*pi/180.) ! like seen by VL1 |
---|
195 | do ig=2,ngrid |
---|
196 | tauref(ig) = tauref(1) |
---|
197 | end do |
---|
198 | |
---|
199 | ELSE IF (iaervar.eq.3) THEN ! << "MGS" scenario >> |
---|
200 | |
---|
201 | taueq= 0.2 +(0.5-0.2) *(cos(0.5*(ls-4.363)))**14 |
---|
202 | tauS= 0.1 +(0.5-0.1) *(cos(0.5*(ls-4.363)))**14 |
---|
203 | tauN = 0.1 |
---|
204 | c if (peri_day.eq.150) then |
---|
205 | c tauS=0.1 |
---|
206 | c tauN=0.1 +(0.5-0.1) *(cos(0.5*(ls+pi-4.363)))**14 |
---|
207 | c taueq= 0.2 +(0.5-0.2) *(cos(0.5*(ls+pi-4.363)))**14 |
---|
208 | c endif |
---|
209 | do ig=1,ngrid/2 ! Northern hemisphere |
---|
210 | tauref(ig)= tauN + |
---|
211 | & (taueq-tauN)*0.5*(1+tanh((45-lati(ig)*180./pi)*6/60)) |
---|
212 | end do |
---|
213 | do ig=ngrid/2+1, ngridmx ! Southern hemisphere |
---|
214 | tauref(ig)= tauS + |
---|
215 | & (taueq-tauS)*0.5*(1+tanh((45+lati(ig)*180./pi)*6/60)) |
---|
216 | end do |
---|
217 | |
---|
218 | ELSE IF ((iaervar.eq.4).or. |
---|
219 | & ((iaervar.ge.24).and.(iaervar.le.26))) |
---|
220 | & THEN ! << "TES assimilated dust scenarios >> |
---|
221 | call readtesassim(ngrid,nlayer,zday,pplev,tauref) |
---|
222 | |
---|
223 | ELSE IF (iaervar.eq.5) THEN ! << Escalier Scenario>> |
---|
224 | c tauref(1) = 0.2 |
---|
225 | c if ((ls.ge.210.*pi/180.).and.(ls.le.330.*pi/180.)) |
---|
226 | c & tauref(1) = 2.5 |
---|
227 | tauref(1) = 2.5 |
---|
228 | if ((ls.ge.30.*pi/180.).and.(ls.le.150.*pi/180.)) |
---|
229 | & tauref(1) = .2 |
---|
230 | do ig=2,ngrid |
---|
231 | tauref(ig) = tauref(1) |
---|
232 | end do |
---|
233 | |
---|
234 | ELSE IF (iaervar.gt.99) THEN ! << input netcdf file >> |
---|
235 | c*************WRF |
---|
236 | c |
---|
237 | c 2. customized dust opacity field |
---|
238 | c ex: from assimilation |
---|
239 | call meso_readtesassim(ngrid,nlayer,zday,pplev,tauref, |
---|
240 | . iaervar) |
---|
241 | c |
---|
242 | c*************WRF |
---|
243 | |
---|
244 | ELSE |
---|
245 | stop 'problem with iaervar in aeropacity.F' |
---|
246 | ENDIF |
---|
247 | |
---|
248 | c Altitude of the top of the dust layer |
---|
249 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
250 | zlsconst=SIN(ls-2.76) |
---|
251 | if (iddist.eq.1) then |
---|
252 | do ig=1,ngrid |
---|
253 | topdust(ig)=topdustref ! constant dust layer top |
---|
254 | end do |
---|
255 | |
---|
256 | else if (iddist.eq.2) then ! "Viking" scenario |
---|
257 | do ig=1,ngrid |
---|
258 | topdust(ig)=topdust0(ig)+18.*zlsconst |
---|
259 | end do |
---|
260 | |
---|
261 | else if(iddist.eq.3) then !"MGS" scenario |
---|
262 | do ig=1,ngrid |
---|
263 | topdust(ig)=60.+18.*zlsconst |
---|
264 | & -(32+18*zlsconst)*sin(lati(ig))**4 |
---|
265 | & - 8*zlsconst*(sin(lati(ig)))**5 |
---|
266 | end do |
---|
267 | endif |
---|
268 | |
---|
269 | |
---|
270 | c Optical depth in each layer : |
---|
271 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
272 | if(iddist.ge.1) then |
---|
273 | expfactor=0. |
---|
274 | CALL zerophys(ngrid,taudusttmp) |
---|
275 | DO l=1,nlayer |
---|
276 | DO ig=1,ngrid |
---|
277 | c Typical mixing ratio profile |
---|
278 | if(pplay(ig,l).gt.700. |
---|
279 | $ /(988.**(topdust(ig)/70.))) then |
---|
280 | zp=(700./pplay(ig,l))**(70./topdust(ig)) |
---|
281 | expfactor=max(exp(0.007*(1.-max(zp,1.))),1.e-3) |
---|
282 | else |
---|
283 | expfactor=1.e-3 |
---|
284 | endif |
---|
285 | c Vertical scaling function |
---|
286 | aerosol(ig,l,iaer)= (pplev(ig,l)-pplev(ig,l+1)) * |
---|
287 | & expfactor * |
---|
288 | & QREFvis3d(ig,l,iaer) / QREFvis3d(ig,1,iaer) |
---|
289 | c Scaling factor |
---|
290 | taudusttmp(ig)=taudusttmp(ig)+aerosol(ig,l,iaer) |
---|
291 | ENDDO |
---|
292 | ENDDO |
---|
293 | |
---|
294 | c Rescaling each layer to reproduce the choosen (or |
---|
295 | c assimilated) dust extinction opacity at visible |
---|
296 | c reference wavelength, which is originally scaled |
---|
297 | c to an equivalent 700Pa pressure surface. |
---|
298 | DO l=1,nlayer |
---|
299 | DO ig=1,ngrid |
---|
300 | aerosol(ig,l,iaer) = tauref(ig) * |
---|
301 | & pplev(ig,1) / 700.E0 * |
---|
302 | & aerosol(ig,l,iaer) / taudusttmp(ig) |
---|
303 | ENDDO |
---|
304 | ENDDO |
---|
305 | |
---|
306 | CALL zerophys(ngrid,taudustvis) |
---|
307 | CALL zerophys(ngrid,taudusttes) |
---|
308 | DO l=1,nlayer |
---|
309 | DO ig=1,ngrid |
---|
310 | taudustvis(ig) = taudustvis(ig) + aerosol(ig,l,iaer) |
---|
311 | taudusttes(ig) = taudusttes(ig) + aerosol(ig,l,iaer)* |
---|
312 | & QREFir3d(ig,l,iaer) / QREFvis3d(ig,l,iaer)* |
---|
313 | & ( 1.E0 - omegaREFir3d(ig,l,iaer) ) |
---|
314 | ENDDO |
---|
315 | ENDDO |
---|
316 | |
---|
317 | c Outputs |
---|
318 | IF (ngrid.NE.1) THEN |
---|
319 | CALL WRITEDIAGFI(ngridmx,'taudustTES','dust abs IR', |
---|
320 | & ' ',2,taudusttes) |
---|
321 | CALL wstats(ngridmx,'taudustTES','dust abs IR', |
---|
322 | & ' ',2,taudusttes) |
---|
323 | ELSE |
---|
324 | CALL writeg1d(ngrid,1,taudusttes,'taudusttes','NU') |
---|
325 | ENDIF |
---|
326 | |
---|
327 | c changement dans le calcul de la distribution verticale |
---|
328 | c dans le cas des scenarios de poussieres assimiles |
---|
329 | c if (iaervar.eq.4) THEN ! TES |
---|
330 | c call zerophys(ngrid*naerkind,tau) |
---|
331 | c |
---|
332 | c do l=1,nlayer |
---|
333 | c do ig=1,ngrid |
---|
334 | c tau(ig,1)=tau(ig,1)+ aerosol(ig,l,1) |
---|
335 | c end do |
---|
336 | c end do |
---|
337 | c do l=1,nlayer |
---|
338 | c do ig=1,ngrid |
---|
339 | c aerosol(ig,l,1)=aerosol(ig,l,1)*tauref(ig)/tau(ig,1) |
---|
340 | c $ *(pplev(ig,1)/700) |
---|
341 | c end do |
---|
342 | c end do |
---|
343 | c endif |
---|
344 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
345 | else if(iddist.eq.0) then |
---|
346 | c old dust vertical distribution function (pollack90) |
---|
347 | DO l=1,nlayer |
---|
348 | DO ig=1,ngrid |
---|
349 | zp=700./pplay(ig,l) |
---|
350 | aerosol(ig,l,1)= tauref(ig)/700. * |
---|
351 | s (pplev(ig,l)-pplev(ig,l+1)) |
---|
352 | s *max( exp(.03*(1.-max(zp,1.))) , 1.E-3 ) |
---|
353 | ENDDO |
---|
354 | ENDDO |
---|
355 | end if |
---|
356 | |
---|
357 | c --------------------------------------------------------------------- |
---|
358 | c 2) Transported radiatively active dust (if tracer=T and active=T) |
---|
359 | c ---------------------------------------------------------------------- |
---|
360 | ELSE IF ((tracer) .and. (active)) THEN |
---|
361 | c The dust opacity is computed from q |
---|
362 | |
---|
363 | c a) "doubleq" technique (transport of mass and number mixing ratio) |
---|
364 | c ~~~~~~~~~~~~~~~~~~~ |
---|
365 | if(doubleq) then |
---|
366 | |
---|
367 | call zerophys(ngrid*nlayer*naerkind,aerosol) |
---|
368 | |
---|
369 | c Computing effective radius : |
---|
370 | do l=1,nlayer |
---|
371 | do ig=1, ngrid |
---|
372 | r0= |
---|
373 | & (r3n_q*pq(ig,l,1)/max(pq(ig,l,2),0.01))**(1./3.) |
---|
374 | r0=min(max(r0,1.e-10),500.e-6) |
---|
375 | reff= ref_r0 * r0 |
---|
376 | cc If reff is small, the transported dust mean Qext |
---|
377 | c is reduced from the reference dust Qext by a factor "coefsize" |
---|
378 | |
---|
379 | coefsize=min(max(2.52e6*reff-0.043 ,0.) ,1.) |
---|
380 | |
---|
381 | cc It is added 1.e-8 to pq to avoid low |
---|
382 | |
---|
383 | aerosol(ig,l,1)=aerosol(ig,l,1)+ 1.E-8 + |
---|
384 | & ( 0.75*Qext(1)*coefsize/(rho_dust*reff)) |
---|
385 | & * (pq(ig,l,nqdust(1)))* |
---|
386 | c only one dust bin to use with doubleq |
---|
387 | & (pplev(ig,l)-pplev(ig,l+1))/g |
---|
388 | end do |
---|
389 | end do |
---|
390 | call zerophys(ngrid,tauref) |
---|
391 | |
---|
392 | c b) Size bin technique (each aerosol can contribute to opacity)) |
---|
393 | c ~~~~~~~~~~~~~~~~~~ |
---|
394 | else |
---|
395 | c The dust opacity is computed from q |
---|
396 | call zerophys(ngrid*nlayer*naerkind,aerosol) |
---|
397 | do iq=1,dustbin |
---|
398 | do l=1,nlayer |
---|
399 | do ig=1,ngrid |
---|
400 | cc qextrhor(iq) is (3/4)*Qext/(rho*reff) |
---|
401 | cc It is added 1.e-8 to pq to avoid low |
---|
402 | aerosol(ig,l,1)=aerosol(ig,l,1)+ |
---|
403 | & qextrhor(nqdust(iq))*(pq(ig,l,nqdust(iq))+1.e-8)* |
---|
404 | & (pplev(ig,l)-pplev(ig,l+1))/g |
---|
405 | end do |
---|
406 | end do |
---|
407 | end do |
---|
408 | call zerophys(ngrid,tauref) |
---|
409 | end if ! (doubleq) |
---|
410 | END IF ! (dust scenario) |
---|
411 | |
---|
412 | |
---|
413 | c================================================================== |
---|
414 | CASE(2) aerkind ! Water ice crystals (iaer=2) |
---|
415 | c================================================================== |
---|
416 | |
---|
417 | IF (water.AND.activice) THEN |
---|
418 | c 1. Initialization |
---|
419 | CALL zerophys(ngrid*nlayer,aerosol(1,1,iaer)) |
---|
420 | CALL zerophys(ngrid,taucloudvis) |
---|
421 | CALL zerophys(ngrid,taucloudtes) |
---|
422 | c 2. Opacity calculation |
---|
423 | DO ig=1, ngrid |
---|
424 | DO l=1,nlayer |
---|
425 | aerosol(ig,l,iaer) = |
---|
426 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
427 | & ( rho_ice * reffrad(ig,l,iaer) ) ) * |
---|
428 | & ( pq(ig,l,i_ice) + 1.E-8 ) * |
---|
429 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
430 | taucloudvis(ig) = taucloudvis(ig) + aerosol(ig,l,iaer) |
---|
431 | taucloudtes(ig) = taucloudtes(ig) + aerosol(ig,l,iaer)* |
---|
432 | & QREFir3d(ig,l,iaer) / QREFvis3d(ig,l,iaer) * |
---|
433 | & ( 1.E0 - omegaREFir3d(ig,l,iaer) ) |
---|
434 | ENDDO |
---|
435 | ENDDO |
---|
436 | c 3. Outputs |
---|
437 | IF (ngrid.NE.1) THEN |
---|
438 | CALL WRITEDIAGFI(ngridmx,'tauTES','tauabs IR refwvl', |
---|
439 | & ' ',2,taucloudtes) |
---|
440 | CALL wstats(ngridmx,'tauTES','tauabs IR refwvl', |
---|
441 | & ' ',2,taucloudtes) |
---|
442 | ELSE |
---|
443 | CALL writeg1d(ngrid,1,taucloudtes,'tautes','NU') |
---|
444 | ENDIF |
---|
445 | ENDIF |
---|
446 | |
---|
447 | c================================================================== |
---|
448 | END SELECT aerkind |
---|
449 | |
---|
450 | c ----------------------------------------------------------------- |
---|
451 | c Column integrated visible optical depth in each point |
---|
452 | c ----------------------------------------------------------------- |
---|
453 | |
---|
454 | do l=1,nlayer |
---|
455 | do ig=1,ngrid |
---|
456 | tau(ig,iaer) = tau(ig,iaer) + aerosol(ig,l,iaer) |
---|
457 | end do |
---|
458 | end do |
---|
459 | |
---|
460 | c ----------------------------------- |
---|
461 | ENDDO ! iaer (loop on aerosol kind) |
---|
462 | |
---|
463 | return |
---|
464 | end |
---|