1 | SUBROUTINE callradite(icount,ngrid,nlayer, |
---|
2 | $ aerosol,albedo, |
---|
3 | $ emis,mu0,pplev,pplay,pt,tsurf,fract,dist_sol,igout, |
---|
4 | $ dtlw,dtsw,fluxsurf_lw,fluxsurf_sw,fluxtop_lw,fluxtop_sw) |
---|
5 | |
---|
6 | |
---|
7 | IMPLICIT NONE |
---|
8 | c======================================================================= |
---|
9 | c subject: |
---|
10 | c -------- |
---|
11 | c Subroutine designed to call the main canonic |
---|
12 | c radiative transfer subroutine "lwmain" et "swmain" |
---|
13 | c to compute radiative heating and cooling rate and |
---|
14 | c radiative fluxes to the surface. |
---|
15 | c |
---|
16 | c These calculations are only valid on the part of the atmosphere |
---|
17 | c where Local Thermal Equilibrium (NLTE) is verified. In practice |
---|
18 | c The calculations are only performed for the first "nlaylte" |
---|
19 | c parameters (nlaylte is calculated by subroutine "nlthermeq" |
---|
20 | c and stored in common "yomlw.h" |
---|
21 | c |
---|
22 | c |
---|
23 | c |
---|
24 | c The purpose of this subroutine is |
---|
25 | c 1) Make some initial calculation at first call |
---|
26 | c 2) Split the calculation in several sub-grid |
---|
27 | c ("sub-domain") to save memory and |
---|
28 | c be able run on a workstation at high resolution |
---|
29 | c The sub-grid size is defined in dimradmars.h |
---|
30 | c 3) call "lwmain" and "swmain" |
---|
31 | c |
---|
32 | c |
---|
33 | c author: |
---|
34 | c ------ |
---|
35 | c Francois Forget / Christophe Hourdin |
---|
36 | c |
---|
37 | c This version modified to only calculate radiative tendencies over |
---|
38 | c layers 1..NFLEV (set in dimradmars.h). Returns zero for higher |
---|
39 | c layers, if any. |
---|
40 | c In other routines, nlayermx -> nflev. |
---|
41 | c Routines affected: lwflux, lwi, lwmain, lwxb, lwxd, lwxn. |
---|
42 | c SRL 7/2000 |
---|
43 | c |
---|
44 | c definition: |
---|
45 | c ---------- |
---|
46 | c Here, solar band#1 is spectral interval between "long1vis" and "long2vis" |
---|
47 | c set in dimradmars.h |
---|
48 | c Here, solar band#2 is spectral interval between "long2vis" and "long3vis" |
---|
49 | c set in dimradmars.h |
---|
50 | c |
---|
51 | c input: |
---|
52 | c ----- |
---|
53 | c icount counter of call to subroutine physic by gcm |
---|
54 | c ngrid number of gridpoint of horizontal grid |
---|
55 | c nlayer Number of layer |
---|
56 | c |
---|
57 | c aerosol(ngrid,nlayer,naerkind) aerosol extinction optical depth |
---|
58 | c at reference wavelength "longrefvis" set |
---|
59 | c in dimradmars.h , in each layer, for one of |
---|
60 | c the "naerkind" kind of aerosol optical properties. |
---|
61 | c |
---|
62 | c albedo (ngrid,2) hemispheric surface albedo |
---|
63 | c albedo (i,1) : mean albedo for solar band#1 |
---|
64 | c (see below) |
---|
65 | c albedo (i,2) : mean albedo for solar band#2 |
---|
66 | c (see below) |
---|
67 | c mu0(ngridmx) cos of solar zenith angle (=1 when sun at zenith) |
---|
68 | c pplay(ngrid,nlayer) pressure (Pa) in the middle of each layer |
---|
69 | c pplev(ngrid,nlayer+1) pressure (Pa) at boundaries of each layer |
---|
70 | c pt(ngrid,nlayer) atmospheric temperature in each layer (K) |
---|
71 | c tsurf(ngrid) surface temperature (K) |
---|
72 | c fract(ngridmx) day fraction of the time interval |
---|
73 | c =1 during the full day ; =0 during the night |
---|
74 | c declin latitude of subsolar point |
---|
75 | c dist_sol sun-Mars distance (AU) |
---|
76 | c igout coordinate of analysed point for debugging |
---|
77 | c |
---|
78 | c output: |
---|
79 | c ------- |
---|
80 | c dtlw (ngrid,nlayer) longwave (IR) heating rate (K/s) |
---|
81 | c dtsw(ngrid,nlayer) shortwave (Solar) heating rate (K/s) |
---|
82 | c fluxsurf_lw(ngrid) surface downward flux tota LW (thermal IR) (W.m-2) |
---|
83 | c fluxsurf_sw(ngrid,1) surface downward flux SW for solar band#1 (W.m-2) |
---|
84 | c fluxsurf_sw(ngrid,2) surface downward flux SW for solar band#2 (W.m-2) |
---|
85 | c |
---|
86 | c fluxtop_lw(ngrid) outgoing upward flux tota LW (thermal IR) (W.m-2) |
---|
87 | c fluxtop_sw(ngrid,1) outgoing upward flux SW for solar band#1 (W.m-2) |
---|
88 | c fluxtop_sw(ngrid,2) outgoing upward flux SW for solar band#2 (W.m-2) |
---|
89 | |
---|
90 | c======================================================================= |
---|
91 | c |
---|
92 | c Declarations : |
---|
93 | c ------------- |
---|
94 | c |
---|
95 | #include "dimensions.h" |
---|
96 | #include "dimphys.h" |
---|
97 | #include "dimradmars.h" |
---|
98 | #include "comcstfi.h" |
---|
99 | #include "callkeys.h" |
---|
100 | #include "yomlw.h" |
---|
101 | |
---|
102 | |
---|
103 | c----------------------------------------------------------------------- |
---|
104 | c Input/Output |
---|
105 | c ------------ |
---|
106 | INTEGER Icount |
---|
107 | INTEGER ngrid,nlayer |
---|
108 | INTEGER igout |
---|
109 | |
---|
110 | REAL aerosol(ngrid,nlayer,naerkind) |
---|
111 | REAL albedo(ngrid,2),emis(ngrid) |
---|
112 | |
---|
113 | REAL pplev(ngrid,nlayer+1),pplay(ngrid,nlayer) |
---|
114 | REAL pt(ngrid,nlayer) |
---|
115 | REAL tsurf(ngrid) |
---|
116 | REAL dist_sol,mu0(ngrid),fract(ngrid) |
---|
117 | REAL dtlw(ngridmx,nlayermx),dtsw(ngridmx,nlayermx) |
---|
118 | REAL fluxsurf_lw(ngridmx), fluxtop_lw(ngridmx) |
---|
119 | REAL fluxsurf_sw(ngridmx,2), fluxtop_sw(ngridmx,2) |
---|
120 | REAL flux(ngridmx,6) |
---|
121 | |
---|
122 | |
---|
123 | c |
---|
124 | c Local variables : |
---|
125 | c ----------------- |
---|
126 | |
---|
127 | INTEGER l,ig, n |
---|
128 | INTEGER jd,j,ig0,nd |
---|
129 | |
---|
130 | real cste_mars ! solar constant on Mars (Wm-2) |
---|
131 | REAL ptlev(ngridmx,nlayermx+1) |
---|
132 | |
---|
133 | |
---|
134 | INTEGER ndomain |
---|
135 | parameter (ndomain = (ngridmx-1) / ndomainsz + 1) |
---|
136 | |
---|
137 | c Thermal IR net radiative budget (W m-2) |
---|
138 | real znetrad(ndomainsz,nflev) |
---|
139 | |
---|
140 | real zfluxd_sw(ndomainsz,nflev+1,2) |
---|
141 | real zfluxu_sw(ndomainsz,nflev+1,2) |
---|
142 | |
---|
143 | |
---|
144 | REAL zplev(ndomainsz,nflev+1) |
---|
145 | REAL zztlev(ndomainsz,nflev+1) |
---|
146 | REAL zplay(ndomainsz,nflev) |
---|
147 | REAL zt(ndomainsz,nflev) |
---|
148 | REAL zaerosol(ndomainsz,nflev,naerkind) |
---|
149 | REAL zalbedo(ndomainsz,2) |
---|
150 | REAL zdp(ndomainsz,nflev) |
---|
151 | REAL zdt0(ndomainsz) |
---|
152 | |
---|
153 | REAL zzdtlw(ndomainsz,nflev) |
---|
154 | REAL zzdtsw(ndomainsz,nflev) |
---|
155 | REAL zzflux(ndomainsz,6) |
---|
156 | real zrmuz |
---|
157 | |
---|
158 | |
---|
159 | c local saved variables |
---|
160 | c --------------------- |
---|
161 | |
---|
162 | real pview(ngridmx) |
---|
163 | save pview |
---|
164 | |
---|
165 | real zco2 ! volume fraction of CO2 in Mars atmosphere |
---|
166 | DATA zco2/0.95/ |
---|
167 | SAVE zco2 |
---|
168 | |
---|
169 | LOGICAL firstcall |
---|
170 | DATA firstcall/.true./ |
---|
171 | SAVE firstcall |
---|
172 | |
---|
173 | c---------------------------------------------------------------------- |
---|
174 | |
---|
175 | c Initialisation |
---|
176 | c -------------- |
---|
177 | |
---|
178 | IF (firstcall) THEN |
---|
179 | DO ig=1,ngrid |
---|
180 | pview(ig)=1.66 ! cosecant of viewing angle |
---|
181 | ENDDO |
---|
182 | gcp = g/cpp |
---|
183 | CALL SUAER |
---|
184 | CALL SULW |
---|
185 | |
---|
186 | write(*,*) 'Splitting radiative calculations: ', |
---|
187 | $ ' ngridmx,ngrid,ndomainsz,ndomain', |
---|
188 | $ ngridmx,ngrid,ndomainsz,ndomain |
---|
189 | if (ngridmx .EQ. 1) then |
---|
190 | if (ndomainsz .NE. 1) then |
---|
191 | print* |
---|
192 | print*,'ATTENTION !!!' |
---|
193 | print*,'pour tourner en 1D, ' |
---|
194 | print*,'fixer ndomainsz=1 dans phymars/dimradmars.h' |
---|
195 | print* |
---|
196 | call exit(1) |
---|
197 | endif |
---|
198 | endif |
---|
199 | firstcall=.false. |
---|
200 | END IF |
---|
201 | |
---|
202 | c Starting loop on sub-domain |
---|
203 | c ---------------------------- |
---|
204 | |
---|
205 | DO jd=1,ndomain |
---|
206 | ig0=(jd-1)*ndomainsz |
---|
207 | if (jd.eq.ndomain) then |
---|
208 | nd=ngridmx-ig0 |
---|
209 | else |
---|
210 | nd=ndomainsz |
---|
211 | endif |
---|
212 | |
---|
213 | |
---|
214 | c Spliting input variable in sub-domain input variables |
---|
215 | c --------------------------------------------------- |
---|
216 | do l=1,nlaylte+1 |
---|
217 | do ig = 1,nd |
---|
218 | zplev(ig,l) = pplev(ig0+ig,l) |
---|
219 | enddo |
---|
220 | enddo |
---|
221 | |
---|
222 | do l=1,nlaylte |
---|
223 | do ig = 1,nd |
---|
224 | zplay(ig,l) = pplay(ig0+ig,l) |
---|
225 | zt(ig,l) = pt(ig0+ig,l) |
---|
226 | |
---|
227 | c Thickness of each layer (Pa) : |
---|
228 | zdp(ig,l)= pplev(ig0+ig,l) - pplev(ig0+ig,l+1) |
---|
229 | enddo |
---|
230 | enddo |
---|
231 | |
---|
232 | do n=1,naerkind |
---|
233 | do l=1,nlaylte |
---|
234 | do ig=1,nd |
---|
235 | zaerosol(ig,l,n) = aerosol(ig0+ig,l,n) |
---|
236 | enddo |
---|
237 | enddo |
---|
238 | enddo |
---|
239 | |
---|
240 | do j=1,2 |
---|
241 | do ig = 1,nd |
---|
242 | zalbedo(ig,j) = albedo(ig0+ig,j) |
---|
243 | enddo |
---|
244 | enddo |
---|
245 | |
---|
246 | c Intermediate levels: (computing tlev) |
---|
247 | c --------------------------------------- |
---|
248 | c Extrapolation for the air temperature above the surface |
---|
249 | DO ig=1,nd |
---|
250 | zztlev(ig,1)=zt(ig,1)+ |
---|
251 | s (zplev(ig,1)-zplay(ig,1))* |
---|
252 | s (zt(ig,1)-zt(ig,2))/(zplay(ig,1)-zplay(ig,2)) |
---|
253 | |
---|
254 | zdt0(ig) = tsurf(ig0+ig) - zztlev(ig,1) |
---|
255 | ENDDO |
---|
256 | |
---|
257 | DO l=2,nlaylte |
---|
258 | DO ig=1,nd |
---|
259 | zztlev(ig,l)=0.5*(zt(ig,l-1)+zt(ig,l)) |
---|
260 | ENDDO |
---|
261 | ENDDO |
---|
262 | |
---|
263 | DO ig=1,nd |
---|
264 | zztlev(ig,nlaylte+1)=zt(ig,nlaylte) |
---|
265 | ENDDO |
---|
266 | |
---|
267 | |
---|
268 | c Longwave ("lw") radiative transfer (= thermal infrared) |
---|
269 | c ------------------------------------------------------- |
---|
270 | |
---|
271 | !PRINT*,'ig0',ig0 |
---|
272 | !PRINT*,'icount',icount |
---|
273 | !PRINT*,'nd',nd |
---|
274 | !PRINT*,'nflev',nflev |
---|
275 | !PRINT*,'zdp',zdp |
---|
276 | !PRINT*,'zdt0',zdt0 |
---|
277 | !PRINT*,'emis',emis(ig0+1) |
---|
278 | !PRINT*,'zplev',zplev |
---|
279 | !PRINT*,'zztlev',zztlev |
---|
280 | !PRINT*,'zt',zt |
---|
281 | !PRINT*,'zaerosol',zaerosol |
---|
282 | !PRINT*,'zzdtlw',zzdtlw |
---|
283 | !PRINT*,'fluxsurf_lw',fluxsurf_lw(ig0+1) |
---|
284 | !PRINT*,'fluxtop_lw',fluxtop_lw(ig0+1) |
---|
285 | !PRINT*,'znetrad',znetrad |
---|
286 | |
---|
287 | call lwmain (ig0,icount,nd,nflev |
---|
288 | . ,zdp,zdt0,emis(ig0+1),zplev,zztlev,zt |
---|
289 | . ,zaerosol,zzdtlw |
---|
290 | . ,fluxsurf_lw(ig0+1),fluxtop_lw(ig0+1) |
---|
291 | . ,znetrad) |
---|
292 | |
---|
293 | c Shortwave ("sw") radiative transfer (= solar radiation) |
---|
294 | c ------------------------------------------------------- |
---|
295 | c Mars solar constant (W m-2) |
---|
296 | c 1370 W.m-2 is the solar constant at 1 AU. |
---|
297 | cste_mars=1370./(dist_sol*dist_sol) |
---|
298 | |
---|
299 | call swmain ( nd, nflev, |
---|
300 | S cste_mars, zalbedo, |
---|
301 | S mu0(ig0+1), zdp, zplev, zaerosol, fract(ig0+1), |
---|
302 | S zzdtsw, zfluxd_sw, zfluxu_sw) |
---|
303 | |
---|
304 | c Un-spliting output variable from sub-domain input variables |
---|
305 | c ------------------------------------------------------------ |
---|
306 | |
---|
307 | do l=1,nlaylte |
---|
308 | do ig = 1,nd |
---|
309 | dtlw(ig0+ig,l) = zzdtlw(ig,l) |
---|
310 | dtsw(ig0+ig,l) = zzdtsw(ig,l) |
---|
311 | enddo |
---|
312 | enddo |
---|
313 | |
---|
314 | do l=1,nlaylte+1 |
---|
315 | do ig = 1,nd |
---|
316 | ptlev(ig0+ig,l) = zztlev(ig,l) |
---|
317 | enddo |
---|
318 | enddo |
---|
319 | |
---|
320 | do ig = 1,nd |
---|
321 | fluxsurf_sw(ig0+ig,1) = zfluxd_sw(ig,1,1) |
---|
322 | fluxsurf_sw(ig0+ig,2) = zfluxd_sw(ig,1,2) |
---|
323 | fluxtop_sw(ig0+ig,1) = zfluxu_sw(ig,nlaylte+1,1) |
---|
324 | fluxtop_sw(ig0+ig,2) = zfluxu_sw(ig,nlaylte+1,2) |
---|
325 | enddo |
---|
326 | |
---|
327 | |
---|
328 | ENDDO ! (boucle jd=1, ndomain) |
---|
329 | |
---|
330 | |
---|
331 | c Zero tendencies for any remaining layers between nlaylte and nlayer |
---|
332 | if (nlayer.gt.nlaylte) then |
---|
333 | do l = nlaylte+1, nlayer |
---|
334 | do ig = 1, ngrid |
---|
335 | dtlw(ig, l) = 0. |
---|
336 | dtsw(ig, l) = 0. |
---|
337 | enddo |
---|
338 | enddo |
---|
339 | endif |
---|
340 | |
---|
341 | |
---|
342 | c Output for debugging if lwrite=T |
---|
343 | c -------------------------------- |
---|
344 | c Write all nlayer layers, even though only nlaylte layers may have |
---|
345 | c non-zero tendencies. |
---|
346 | |
---|
347 | IF(lwrite) THEN |
---|
348 | PRINT*,'Diagnotique for the radiation' |
---|
349 | PRINT*,'albedo, emissiv, mu0,fract,fluxsurf_lw,fluxsurf_sw' |
---|
350 | PRINT*,albedo(igout,1),emis(igout),mu0(igout), |
---|
351 | s fract(igout), fluxsurf_lw(igout), |
---|
352 | $ fluxsurf_sw(igout,1)+fluxsurf_sw(igout,2) |
---|
353 | PRINT*,'Tlay Tlev Play Plev dT/dt SW dT/dt LW (K/s)' |
---|
354 | PRINT*,'daysec',daysec |
---|
355 | DO l=1,nlayer |
---|
356 | PRINT*,pt(igout,l),ptlev(igout,l), |
---|
357 | s pplay(igout,l),pplev(igout,l), |
---|
358 | s dtsw(igout,l),dtlw(igout,l) |
---|
359 | ENDDO |
---|
360 | ENDIF |
---|
361 | |
---|
362 | |
---|
363 | return |
---|
364 | end |
---|
365 | |
---|