| 1 | !REAL:MODEL_LAYER:INITIALIZATION |
|---|
| 2 | |
|---|
| 3 | #ifndef VERT_UNIT |
|---|
| 4 | ! This MODULE holds the routines which are used to perform various initializations |
|---|
| 5 | ! for the individual domains, specifically for the Eulerian, mass-based coordinate. |
|---|
| 6 | |
|---|
| 7 | !----------------------------------------------------------------------- |
|---|
| 8 | |
|---|
| 9 | !****MARS: modified May 2007 |
|---|
| 10 | |
|---|
| 11 | |
|---|
| 12 | MODULE module_initialize |
|---|
| 13 | |
|---|
| 14 | USE module_bc |
|---|
| 15 | USE module_configure |
|---|
| 16 | USE module_domain |
|---|
| 17 | USE module_io_domain |
|---|
| 18 | USE module_model_constants |
|---|
| 19 | USE module_state_description |
|---|
| 20 | USE module_timing |
|---|
| 21 | USE module_soil_pre |
|---|
| 22 | USE module_date_time |
|---|
| 23 | #ifdef DM_PARALLEL |
|---|
| 24 | USE module_dm |
|---|
| 25 | #endif |
|---|
| 26 | |
|---|
| 27 | REAL , SAVE :: p_top_save |
|---|
| 28 | INTEGER :: internal_time_loop |
|---|
| 29 | |
|---|
| 30 | CONTAINS |
|---|
| 31 | |
|---|
| 32 | !------------------------------------------------------------------- |
|---|
| 33 | |
|---|
| 34 | SUBROUTINE init_domain ( grid ) |
|---|
| 35 | |
|---|
| 36 | IMPLICIT NONE |
|---|
| 37 | |
|---|
| 38 | ! Input space and data. No gridded meteorological data has been stored, though. |
|---|
| 39 | |
|---|
| 40 | ! TYPE (domain), POINTER :: grid |
|---|
| 41 | TYPE (domain) :: grid |
|---|
| 42 | |
|---|
| 43 | ! Local data. |
|---|
| 44 | |
|---|
| 45 | INTEGER :: dyn_opt |
|---|
| 46 | INTEGER :: idum1, idum2 |
|---|
| 47 | |
|---|
| 48 | CALL nl_get_dyn_opt ( 1, dyn_opt ) |
|---|
| 49 | |
|---|
| 50 | CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 ) |
|---|
| 51 | |
|---|
| 52 | IF ( dyn_opt .eq. 1 & |
|---|
| 53 | .or. dyn_opt .eq. 2 & |
|---|
| 54 | .or. dyn_opt .eq. 3 & |
|---|
| 55 | ) THEN |
|---|
| 56 | CALL init_domain_rk( grid & |
|---|
| 57 | ! |
|---|
| 58 | #include "em_actual_new_args.inc" |
|---|
| 59 | ! |
|---|
| 60 | ) |
|---|
| 61 | |
|---|
| 62 | ELSE |
|---|
| 63 | WRITE(0,*)' init_domain: unknown or unimplemented dyn_opt = ',dyn_opt |
|---|
| 64 | CALL wrf_error_fatal ( 'ERROR-dyn_opt-wrong-in-namelist' ) |
|---|
| 65 | ENDIF |
|---|
| 66 | |
|---|
| 67 | END SUBROUTINE init_domain |
|---|
| 68 | |
|---|
| 69 | !------------------------------------------------------------------- |
|---|
| 70 | |
|---|
| 71 | SUBROUTINE init_domain_rk ( grid & |
|---|
| 72 | ! |
|---|
| 73 | #include "em_dummy_new_args.inc" |
|---|
| 74 | ! |
|---|
| 75 | ) |
|---|
| 76 | |
|---|
| 77 | USE module_optional_si_input |
|---|
| 78 | IMPLICIT NONE |
|---|
| 79 | |
|---|
| 80 | ! Input space and data. No gridded meteorological data has been stored, though. |
|---|
| 81 | |
|---|
| 82 | ! TYPE (domain), POINTER :: grid |
|---|
| 83 | TYPE (domain) :: grid |
|---|
| 84 | |
|---|
| 85 | #include "em_dummy_new_decl.inc" |
|---|
| 86 | |
|---|
| 87 | TYPE (grid_config_rec_type) :: config_flags |
|---|
| 88 | |
|---|
| 89 | ! Local domain indices and counters. |
|---|
| 90 | |
|---|
| 91 | INTEGER :: num_veg_cat , num_soil_top_cat , num_soil_bot_cat |
|---|
| 92 | INTEGER :: loop , num_seaice_changes |
|---|
| 93 | |
|---|
| 94 | INTEGER :: & |
|---|
| 95 | ids, ide, jds, jde, kds, kde, & |
|---|
| 96 | ims, ime, jms, jme, kms, kme, & |
|---|
| 97 | its, ite, jts, jte, kts, kte, & |
|---|
| 98 | ips, ipe, jps, jpe, kps, kpe, & |
|---|
| 99 | i, j, k |
|---|
| 100 | INTEGER :: ns |
|---|
| 101 | |
|---|
| 102 | ! Local data |
|---|
| 103 | |
|---|
| 104 | INTEGER :: error |
|---|
| 105 | REAL :: p_surf, p_level |
|---|
| 106 | REAL :: cof1, cof2 |
|---|
| 107 | REAL :: qvf , qvf1 , qvf2 , pd_surf |
|---|
| 108 | REAL :: p00 , t00 , a |
|---|
| 109 | REAL :: hold_znw |
|---|
| 110 | LOGICAL :: were_bad |
|---|
| 111 | |
|---|
| 112 | LOGICAL :: stretch_grid, dry_sounding, debug |
|---|
| 113 | INTEGER IICOUNT |
|---|
| 114 | |
|---|
| 115 | REAL :: p_top_requested , temp |
|---|
| 116 | INTEGER :: num_metgrid_levels |
|---|
| 117 | REAL , DIMENSION(max_eta) :: eta_levels |
|---|
| 118 | REAL :: max_dz |
|---|
| 119 | |
|---|
| 120 | ! INTEGER , PARAMETER :: nl_max = 1000 |
|---|
| 121 | ! REAL , DIMENSION(nl_max) :: grid%em_dn |
|---|
| 122 | |
|---|
| 123 | integer::oops1,oops2 |
|---|
| 124 | |
|---|
| 125 | REAL :: zap_close_levels |
|---|
| 126 | INTEGER :: force_sfc_in_vinterp |
|---|
| 127 | INTEGER :: interp_type , lagrange_order |
|---|
| 128 | LOGICAL :: lowest_lev_from_sfc |
|---|
| 129 | LOGICAL :: we_have_tavgsfc |
|---|
| 130 | |
|---|
| 131 | INTEGER :: lev500 , loop_count |
|---|
| 132 | REAL :: zl , zu , pl , pu , z500 , dz500 , tvsfc , dpmu |
|---|
| 133 | |
|---|
| 134 | !-- Carsel and Parrish [1988] |
|---|
| 135 | REAL , DIMENSION(100) :: lqmi |
|---|
| 136 | |
|---|
| 137 | |
|---|
| 138 | !****MARS |
|---|
| 139 | INTEGER :: sizegcm, kold, knew,inew,jnew |
|---|
| 140 | REAL :: pa, indic, p1, p2, pn |
|---|
| 141 | REAL, ALLOCATABLE, DIMENSION (:,:,:) :: sig, ap, bp, box |
|---|
| 142 | REAL :: randnum |
|---|
| 143 | REAL :: tiso |
|---|
| 144 | REAl :: yeah, yeahc, yeah2 |
|---|
| 145 | !****MARS |
|---|
| 146 | INTEGER :: hypsometric_opt = 1 ! classic |
|---|
| 147 | LOGICAL :: interp_theta = .true. ! classic |
|---|
| 148 | !INTEGER :: hypsometric_opt = 2 ! Wee et al. 2012 correction |
|---|
| 149 | !LOGICAL :: interp_theta = .false. ! Wee et al. 2012 correction |
|---|
| 150 | REAL :: pfu, pfd, phm |
|---|
| 151 | REAL :: tpot |
|---|
| 152 | |
|---|
| 153 | #ifdef DM_PARALLEL |
|---|
| 154 | # include "em_data_calls.inc" |
|---|
| 155 | #endif |
|---|
| 156 | |
|---|
| 157 | SELECT CASE ( model_data_order ) |
|---|
| 158 | CASE ( DATA_ORDER_ZXY ) |
|---|
| 159 | kds = grid%sd31 ; kde = grid%ed31 ; |
|---|
| 160 | ids = grid%sd32 ; ide = grid%ed32 ; |
|---|
| 161 | jds = grid%sd33 ; jde = grid%ed33 ; |
|---|
| 162 | |
|---|
| 163 | kms = grid%sm31 ; kme = grid%em31 ; |
|---|
| 164 | ims = grid%sm32 ; ime = grid%em32 ; |
|---|
| 165 | jms = grid%sm33 ; jme = grid%em33 ; |
|---|
| 166 | |
|---|
| 167 | kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch |
|---|
| 168 | its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch |
|---|
| 169 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
|---|
| 170 | |
|---|
| 171 | CASE ( DATA_ORDER_XYZ ) |
|---|
| 172 | ids = grid%sd31 ; ide = grid%ed31 ; |
|---|
| 173 | jds = grid%sd32 ; jde = grid%ed32 ; |
|---|
| 174 | kds = grid%sd33 ; kde = grid%ed33 ; |
|---|
| 175 | |
|---|
| 176 | ims = grid%sm31 ; ime = grid%em31 ; |
|---|
| 177 | jms = grid%sm32 ; jme = grid%em32 ; |
|---|
| 178 | kms = grid%sm33 ; kme = grid%em33 ; |
|---|
| 179 | |
|---|
| 180 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
|---|
| 181 | jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch |
|---|
| 182 | kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch |
|---|
| 183 | |
|---|
| 184 | CASE ( DATA_ORDER_XZY ) |
|---|
| 185 | ids = grid%sd31 ; ide = grid%ed31 ; |
|---|
| 186 | kds = grid%sd32 ; kde = grid%ed32 ; |
|---|
| 187 | jds = grid%sd33 ; jde = grid%ed33 ; |
|---|
| 188 | |
|---|
| 189 | ims = grid%sm31 ; ime = grid%em31 ; |
|---|
| 190 | kms = grid%sm32 ; kme = grid%em32 ; |
|---|
| 191 | jms = grid%sm33 ; jme = grid%em33 ; |
|---|
| 192 | |
|---|
| 193 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
|---|
| 194 | kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch |
|---|
| 195 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
|---|
| 196 | |
|---|
| 197 | END SELECT |
|---|
| 198 | |
|---|
| 199 | CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) |
|---|
| 200 | |
|---|
| 201 | ! Check to see if the boundary conditions are set properly in the namelist file. |
|---|
| 202 | ! This checks for sufficiency and redundancy. |
|---|
| 203 | |
|---|
| 204 | CALL boundary_condition_check( config_flags, bdyzone, error, grid%id ) |
|---|
| 205 | |
|---|
| 206 | ! Some sort of "this is the first time" initialization. Who knows. |
|---|
| 207 | |
|---|
| 208 | grid%step_number = 0 |
|---|
| 209 | grid%itimestep=0 |
|---|
| 210 | |
|---|
| 211 | ! Pull in the info in the namelist to compare it to the input data. |
|---|
| 212 | |
|---|
| 213 | grid%real_data_init_type = model_config_rec%real_data_init_type |
|---|
| 214 | |
|---|
| 215 | ! To define the base state, we call a USER MODIFIED routine to set the three |
|---|
| 216 | ! necessary constants: p00 (sea level pressure, Pa), t00 (sea level temperature, K), |
|---|
| 217 | ! and A (temperature difference, from 1000 mb to 300 mb, K). |
|---|
| 218 | |
|---|
| 219 | CALL const_module_initialize ( p00 , t00 , a , tiso ) |
|---|
| 220 | |
|---|
| 221 | #if 0 |
|---|
| 222 | !KLUDGE, this is for testing only |
|---|
| 223 | if ( flag_metgrid .eq. 1 ) then |
|---|
| 224 | read (20+grid%id) grid%em_ht_gc |
|---|
| 225 | read (20+grid%id) grid%em_xlat_gc |
|---|
| 226 | read (20+grid%id) grid%em_xlong_gc |
|---|
| 227 | read (20+grid%id) msft |
|---|
| 228 | read (20+grid%id) msfu |
|---|
| 229 | read (20+grid%id) msfv |
|---|
| 230 | read (20+grid%id) f |
|---|
| 231 | read (20+grid%id) e |
|---|
| 232 | read (20+grid%id) sina |
|---|
| 233 | read (20+grid%id) cosa |
|---|
| 234 | read (20+grid%id) grid%landmask |
|---|
| 235 | read (20+grid%id) grid%landusef |
|---|
| 236 | read (20+grid%id) grid%soilctop |
|---|
| 237 | read (20+grid%id) grid%soilcbot |
|---|
| 238 | read (20+grid%id) grid%vegcat |
|---|
| 239 | read (20+grid%id) grid%soilcat |
|---|
| 240 | else |
|---|
| 241 | write (20+grid%id) grid%em_ht |
|---|
| 242 | write (20+grid%id) grid%em_xlat |
|---|
| 243 | write (20+grid%id) grid%em_xlong |
|---|
| 244 | write (20+grid%id) msft |
|---|
| 245 | write (20+grid%id) msfu |
|---|
| 246 | write (20+grid%id) msfv |
|---|
| 247 | write (20+grid%id) f |
|---|
| 248 | write (20+grid%id) e |
|---|
| 249 | write (20+grid%id) sina |
|---|
| 250 | write (20+grid%id) cosa |
|---|
| 251 | write (20+grid%id) grid%landmask |
|---|
| 252 | write (20+grid%id) grid%landusef |
|---|
| 253 | write (20+grid%id) grid%soilctop |
|---|
| 254 | write (20+grid%id) grid%soilcbot |
|---|
| 255 | write (20+grid%id) grid%vegcat |
|---|
| 256 | write (20+grid%id) grid%soilcat |
|---|
| 257 | endif |
|---|
| 258 | #endif |
|---|
| 259 | |
|---|
| 260 | |
|---|
| 261 | ! Is there any vertical interpolation to do? The "old" data comes in on the correct |
|---|
| 262 | ! vertical locations already. |
|---|
| 263 | |
|---|
| 264 | IF ( flag_metgrid .EQ. 1 ) THEN ! <----- START OF VERTICAL INTERPOLATION PART ----> |
|---|
| 265 | |
|---|
| 266 | ! Variables that are named differently between SI and WPS. |
|---|
| 267 | |
|---|
| 268 | DO j = jts, MIN(jte,jde-1) |
|---|
| 269 | DO i = its, MIN(ite,ide-1) |
|---|
| 270 | grid%tmn(i,j) = grid%em_tmn_gc(i,j) |
|---|
| 271 | grid%xlat(i,j) = grid%em_xlat_gc(i,j) |
|---|
| 272 | grid%xlong(i,j) = grid%em_xlong_gc(i,j) |
|---|
| 273 | grid%ht(i,j) = grid%em_ht_gc(i,j) |
|---|
| 274 | !!****MARS |
|---|
| 275 | grid%m_tsurf(i,j) = grid%em_tsk_gc(i,j) |
|---|
| 276 | grid%m_albedo(i,j) = grid%em_albedo_gcm_gc(i,j) |
|---|
| 277 | grid%m_ti(i,j) = grid%em_therm_inert_gc(i,j) |
|---|
| 278 | grid%slpx(i,j) = grid%em_slpx_gc(i,j) |
|---|
| 279 | grid%slpy(i,j) = grid%em_slpy_gc(i,j) |
|---|
| 280 | grid%m_emiss(i,j) = grid%st000010(i,j) |
|---|
| 281 | grid%m_co2ice(i,j) = grid%st010040(i,j) |
|---|
| 282 | grid%m_h2oice(i,j) = grid%sm100200(i,j) |
|---|
| 283 | grid%m_q2(i,:,j) = 0. |
|---|
| 284 | !! one more security ... co2ice cannot be negative |
|---|
| 285 | IF (grid%m_co2ice(i,j) .lt. 0.) grid%m_co2ice(i,j)=0. |
|---|
| 286 | IF (grid%m_h2oice(i,j) .lt. 0.) grid%m_h2oice(i,j)=0. |
|---|
| 287 | |
|---|
| 288 | DO k = 1, config_flags%num_soil_layers |
|---|
| 289 | grid%m_tsoil(i,k,j)=grid%em_tsoil_gc(i,k+1,j) !!ici k+1, because em_tsoil_gc dim is num_metgrid_levels !! |
|---|
| 290 | ENDDO |
|---|
| 291 | |
|---|
| 292 | |
|---|
| 293 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 294 | #ifdef NEWPHYS |
|---|
| 295 | |
|---|
| 296 | grid%m_wstar(i,j)=0. |
|---|
| 297 | grid%m_fluxrad(i,j)=0. |
|---|
| 298 | |
|---|
| 299 | grid%m_z0(i,j) = 0. |
|---|
| 300 | grid%m_z0(i,j) = grid%em_z0_gc(i,j)*0.01 !! in cm in surface.nc but in m in physiq.F |
|---|
| 301 | !IF (config_flags%init_Z0 .ne. 0.) THEN |
|---|
| 302 | ! grid%z0 = grid%z0*0. + config_flags%init_Z0 |
|---|
| 303 | !ENDIF |
|---|
| 304 | |
|---|
| 305 | ! here, that bit is necessary for new soil model ! |
|---|
| 306 | IF (config_flags%init_TI .ne. 0.) THEN |
|---|
| 307 | grid%m_ti = grid%m_ti*0. + config_flags%init_TI |
|---|
| 308 | print *, 'constant thermal inertia ', config_flags%init_TI |
|---|
| 309 | ENDIF |
|---|
| 310 | |
|---|
| 311 | DO k = 1, config_flags%num_soil_layers |
|---|
| 312 | grid%m_isoil(i,k,j)=grid%em_isoil_gc(i,k+1,j) |
|---|
| 313 | grid%m_dsoil(i,k,j)=grid%em_dsoil_gc(i,k+1,j) |
|---|
| 314 | ENDDO |
|---|
| 315 | |
|---|
| 316 | DO k = 1, config_flags%num_soil_layers |
|---|
| 317 | !!!!!!!!!!!!!!!!! DONE in soil_setting.F |
|---|
| 318 | IF (grid%m_dsoil(i,k,j) == -999.) THEN !! old soil depths (or) no info in files |
|---|
| 319 | grid%m_dsoil(i,k,j) = sqrt(887.75/3.14)*((2.**(k-0.5))-1.) * grid%m_ti(i,j) / wvolcapa |
|---|
| 320 | !!! ATTENTION il faut interpoler si le nombre de niveaux change |
|---|
| 321 | !!! voir soil_setting.F (olddepthdef=.true. ; interpol=.true.) |
|---|
| 322 | !!! mais: en meso-echelle on a juste a prendre le mm nombre de niveaux que le GCM |
|---|
| 323 | ENDIF |
|---|
| 324 | IF (grid%m_isoil(i,k,j) == -999.) THEN !! old soil model (or) no 3D thermal inertia |
|---|
| 325 | grid%m_isoil(i,k,j) = grid%m_ti(i,j) |
|---|
| 326 | ELSE |
|---|
| 327 | IF (grid%m_dsoil(i,k,j) .le. sqrt(88775./3.14) * grid%m_ti(i,j) / wvolcapa) THEN |
|---|
| 328 | grid%m_isoil(i,k,j) = grid%m_ti(i,j) !! if depth < skin depth, we use hi-res TI |
|---|
| 329 | ELSE !! if depth > skin depth, we use low-res (GCM) TI |
|---|
| 330 | !! except for a transition layer |
|---|
| 331 | !! EM: and, well, it would be wrong to sum up TI values |
|---|
| 332 | !! EM: (cf. last page of soil model technical document) |
|---|
| 333 | IF (grid%m_dsoil(i,k-1,j) .le. sqrt(88775./3.14) * grid%m_ti(i,j) / wvolcapa) THEN |
|---|
| 334 | grid%m_isoil(i,k,j) = & |
|---|
| 335 | sqrt( & |
|---|
| 336 | ( grid%m_dsoil(i,k+1,j) - grid%m_dsoil(i,k-1,j) ) & |
|---|
| 337 | / & |
|---|
| 338 | ( ( (grid%m_dsoil(i,k,j) - grid%m_dsoil(i,k-1,j)) & |
|---|
| 339 | / (grid%m_isoil(i,k-1,j)*grid%m_isoil(i,k-1,j)) ) & |
|---|
| 340 | + & |
|---|
| 341 | ( (grid%m_dsoil(i,k+1,j) - grid%m_dsoil(i,k,j)) & |
|---|
| 342 | / (grid%m_isoil(i,k+1,j)*grid%m_isoil(i,k+1,j)) ) & |
|---|
| 343 | ) & |
|---|
| 344 | ) |
|---|
| 345 | ENDIF !! grid%m_isoil(i,k-1,j) was changed at previous step to value grid%m_ti(i,j) |
|---|
| 346 | !! grid%m_isoil(i,k+1,j) is defined to large-scale value grid%em_isoil_gc |
|---|
| 347 | ENDIF |
|---|
| 348 | ENDIF |
|---|
| 349 | IF (grid%m_tsoil(i,k,j) .lt. 20.) THEN !!! une securite pour les anciens diagfi qui n'ont que 10 niveaux |
|---|
| 350 | IF (k .ne. 1) grid%m_tsoil(i,k,j) = grid%m_tsoil(i,k-1,j) |
|---|
| 351 | ENDIF |
|---|
| 352 | !!!!!!!!!!!!!!!!! DONE in soil_setting.F |
|---|
| 353 | |
|---|
| 354 | ENDDO |
|---|
| 355 | #endif |
|---|
| 356 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 357 | |
|---|
| 358 | grid%m_gw(i,1,j)=grid%st040100(i,j) !!ZMEA |
|---|
| 359 | grid%m_gw(i,2,j)=grid%st100200(i,j) !!ZSTD |
|---|
| 360 | grid%m_gw(i,3,j)=grid%sm000010(i,j) !!ZSIG |
|---|
| 361 | grid%m_gw(i,4,j)=grid%sm010040(i,j) !!ZGAM |
|---|
| 362 | grid%m_gw(i,5,j)=grid%sm040100(i,j) !!ZTHE |
|---|
| 363 | |
|---|
| 364 | END DO |
|---|
| 365 | END DO |
|---|
| 366 | |
|---|
| 367 | |
|---|
| 368 | !!****MARS |
|---|
| 369 | !!****MARS |
|---|
| 370 | !! User-defined constants initialisations |
|---|
| 371 | !! defined by the namelist entries |
|---|
| 372 | !! init_TI : fixed value for thermal inertia |
|---|
| 373 | !! init_AL : fixed value for albedo |
|---|
| 374 | !! init_U : fixed value for zonal wind |
|---|
| 375 | !! init_V : fixed value for meridional wind |
|---|
| 376 | !! init_WX & init_WY : fixed wind profile taken at these coordinates |
|---|
| 377 | !! init_MU : multiply zonal wind by a constant |
|---|
| 378 | !! init_MV : multiply meridional wind by a constant |
|---|
| 379 | !! init_LES : LES mode (LOGICAL) |
|---|
| 380 | |
|---|
| 381 | IF (config_flags%init_TI .ne. 0.) THEN |
|---|
| 382 | |
|---|
| 383 | !DO j = jts, MIN(jte,jde-1) |
|---|
| 384 | !DO i = its, MIN(ite,ide-1) |
|---|
| 385 | ! grid%m_ti(i,j) = config_flags%init_TI |
|---|
| 386 | !ENDDO |
|---|
| 387 | !ENDDO |
|---|
| 388 | grid%m_ti = grid%m_ti*0. + config_flags%init_TI |
|---|
| 389 | print *, 'constant thermal inertia ', config_flags%init_TI |
|---|
| 390 | |
|---|
| 391 | !yeah2=0. |
|---|
| 392 | !yeahc=0. |
|---|
| 393 | !DO j = jts, MIN(jte,jde-1) |
|---|
| 394 | !DO i = its, MIN(ite,ide-1) |
|---|
| 395 | !yeah2 = grid%tsk(i,j) + yeah2 |
|---|
| 396 | !yeahc = yeahc + 1. |
|---|
| 397 | !ENDDO |
|---|
| 398 | !ENDDO |
|---|
| 399 | !print *, 'constant skin temperature ', yeah2 / yeahc |
|---|
| 400 | !DO j = jts, MIN(jte,jde-1) |
|---|
| 401 | !DO i = its, MIN(ite,ide-1) |
|---|
| 402 | !grid%tsk(i,j) = yeah2 / yeahc |
|---|
| 403 | !ENDDO |
|---|
| 404 | !ENDDO |
|---|
| 405 | ! |
|---|
| 406 | ! DO k = 1, config_flags%num_soil_layers |
|---|
| 407 | !yeah=0. |
|---|
| 408 | !yeahc=0. |
|---|
| 409 | !DO j = jts, MIN(jte,jde-1) |
|---|
| 410 | !DO i = its, MIN(ite,ide-1) |
|---|
| 411 | !yeah = grid%m_tsoil(i,k,j) + yeah |
|---|
| 412 | !yeahc = yeahc + 1. |
|---|
| 413 | !ENDDO |
|---|
| 414 | !ENDDO |
|---|
| 415 | !print *, 'constant soil temperature ', k, yeah / yeahc |
|---|
| 416 | !DO j = jts, MIN(jte,jde-1) |
|---|
| 417 | !DO i = its, MIN(ite,ide-1) |
|---|
| 418 | !grid%m_tsoil(i,k,j) = yeah / yeahc |
|---|
| 419 | !ENDDO |
|---|
| 420 | !ENDDO |
|---|
| 421 | ! ENDDO |
|---|
| 422 | |
|---|
| 423 | ENDIF |
|---|
| 424 | |
|---|
| 425 | IF (config_flags%init_AL .ne. 0.) THEN |
|---|
| 426 | |
|---|
| 427 | grid%m_albedo = grid%m_albedo*0. + config_flags%init_AL |
|---|
| 428 | print *, 'constant albedo ', config_flags%init_AL |
|---|
| 429 | |
|---|
| 430 | ENDIF |
|---|
| 431 | |
|---|
| 432 | IF ( (config_flags%init_WX .ne. 0) .and. (config_flags%init_WY .ne. 0) ) THEN |
|---|
| 433 | |
|---|
| 434 | DO j = jts, MIN(jte,jde-1) |
|---|
| 435 | DO i = its, MIN(ite,ide-1) |
|---|
| 436 | grid%em_u_gc(i,:,j)=grid%em_u_gc(config_flags%init_WX,:,config_flags%init_WY) ! zonal wind |
|---|
| 437 | grid%em_v_gc(i,:,j)=grid%em_v_gc(config_flags%init_WX,:,config_flags%init_WY) ! meridional wind |
|---|
| 438 | ENDDO |
|---|
| 439 | ENDDO |
|---|
| 440 | !! FIX for the STAGGERED SPECIFICITY |
|---|
| 441 | grid%em_u_gc(MIN(ite,ide-1)+1,:,:)=grid%em_u_gc(MIN(ite,ide-1),:,:) |
|---|
| 442 | grid%em_v_gc(:,:,MIN(jte,jde-1)+1)=grid%em_v_gc(:,:,MIN(jte,jde-1)) |
|---|
| 443 | |
|---|
| 444 | !! CHECK |
|---|
| 445 | print *, 'wind profile' |
|---|
| 446 | print *, 'took at ...', config_flags%init_WX, config_flags%init_WY |
|---|
| 447 | print *, '--zonal' |
|---|
| 448 | print *, grid%em_u_gc(config_flags%init_WX,:,config_flags%init_WY) |
|---|
| 449 | print *, '--meridional' |
|---|
| 450 | print *, grid%em_v_gc(config_flags%init_WX,:,config_flags%init_WY) |
|---|
| 451 | |
|---|
| 452 | ENDIF |
|---|
| 453 | |
|---|
| 454 | IF (config_flags%init_MU .ne. 0.) THEN |
|---|
| 455 | |
|---|
| 456 | grid%em_u_gc = grid%em_u_gc*config_flags%init_MU |
|---|
| 457 | print *, 'multiply zonal wind ', config_flags%init_MU |
|---|
| 458 | |
|---|
| 459 | ENDIF |
|---|
| 460 | |
|---|
| 461 | IF (config_flags%init_MV .ne. 0.) THEN |
|---|
| 462 | |
|---|
| 463 | grid%em_v_gc = grid%em_v_gc*config_flags%init_MV |
|---|
| 464 | print *, 'multiply meridional wind ', config_flags%init_MV |
|---|
| 465 | |
|---|
| 466 | ENDIF |
|---|
| 467 | |
|---|
| 468 | IF (config_flags%init_LES) THEN |
|---|
| 469 | |
|---|
| 470 | print *, '*** LES MODE ***' |
|---|
| 471 | print *, 'setting uniform values and profiles' |
|---|
| 472 | print *, 'u', grid%em_u_gc(its+1,:,jts+1) |
|---|
| 473 | print *, 'v', grid%em_v_gc(its+1,:,jts+1) |
|---|
| 474 | print *, 't', grid%em_t_gc(its+1,:,jts+1) |
|---|
| 475 | print *, 'p', grid%em_rh_gc(its+1,:,jts+1) |
|---|
| 476 | print *, 'geop', grid%em_ght_gc(its+1,:,jts+1) |
|---|
| 477 | print *, 'albedo', grid%m_albedo(its+1,jts+1) |
|---|
| 478 | print *, 'thermal inertia', grid%m_ti(its+1,jts+1) |
|---|
| 479 | print *, 'topography', grid%ht(its+1,jts+1) |
|---|
| 480 | print *, 'toposoil', grid%toposoil(its+1,jts+1) |
|---|
| 481 | print *, 'surface temperature', grid%m_tsurf(its+1,jts+1) |
|---|
| 482 | print *, 'surface pressure', grid%psfc(its+1,jts+1), grid%em_psfc_gc(its+1,jts+1) |
|---|
| 483 | |
|---|
| 484 | DO j = jts, MIN(jte,jde-1) |
|---|
| 485 | DO i = its, MIN(ite,ide-1) |
|---|
| 486 | grid%em_u_gc(i,:,j)=grid%em_u_gc(its+1,:,jts+1) |
|---|
| 487 | grid%em_v_gc(i,:,j)=grid%em_v_gc(its+1,:,jts+1) |
|---|
| 488 | grid%em_t_gc(i,:,j)=grid%em_t_gc(its+1,:,jts+1) |
|---|
| 489 | grid%em_rh_gc(i,:,j)=grid%em_rh_gc(its+1,:,jts+1) |
|---|
| 490 | grid%em_ght_gc(i,:,j) = grid%em_ght_gc(its+1,:,jts+1) |
|---|
| 491 | grid%m_albedo(i,j) = grid%m_albedo(its+1,jts+1) |
|---|
| 492 | grid%m_ti(i,j) = grid%m_ti(its+1,jts+1) |
|---|
| 493 | grid%ht(i,j) = grid%ht(its+1,jts+1) |
|---|
| 494 | grid%toposoil(i,j) = grid%toposoil(its+1,jts+1) |
|---|
| 495 | grid%m_tsurf(i,j) = grid%m_tsurf(its+1,jts+1) |
|---|
| 496 | grid%psfc(i,j) = grid%psfc(its+1,jts+1) |
|---|
| 497 | grid%em_psfc_gc(i,j) = grid%em_psfc_gc(its+1,jts+1) |
|---|
| 498 | grid%slpx(i,j) = 0. |
|---|
| 499 | grid%slpy(i,j) = 0. |
|---|
| 500 | grid%m_emiss(i,j) = 0.95 |
|---|
| 501 | grid%m_co2ice(i,j) = 0. |
|---|
| 502 | grid%m_h2oice(i,j) = 0. |
|---|
| 503 | grid%m_tsoil(i,:,j)=grid%m_tsoil(its+1,:,jts+1) |
|---|
| 504 | |
|---|
| 505 | !!! |
|---|
| 506 | grid%m_isoil(i,:,j)=grid%m_isoil(its+1,:,jts+1) |
|---|
| 507 | grid%m_dsoil(i,:,j)=grid%m_dsoil(its+1,:,jts+1) |
|---|
| 508 | |
|---|
| 509 | !! T.Michaels trick to break symmetry |
|---|
| 510 | CALL RANDOM_NUMBER(randnum) |
|---|
| 511 | grid%em_t_gc(i,1,j)=grid%em_t_gc(its+1,1,jts+1) + 0.1*2.*(0.5-randnum) |
|---|
| 512 | CALL RANDOM_NUMBER(randnum) |
|---|
| 513 | grid%em_t_gc(i,2,j)=grid%em_t_gc(its+1,2,jts+1) + 0.1*2.*(0.5-randnum) |
|---|
| 514 | !CALL RANDOM_NUMBER(randnum) |
|---|
| 515 | !grid%em_t_gc(i,3,j)=grid%em_t_gc(its+1,3,jts+1) + 0.1*2.*(0.5-randnum) |
|---|
| 516 | !CALL RANDOM_NUMBER(randnum) |
|---|
| 517 | !grid%em_t_gc(i,4,j)=grid%em_t_gc(its+1,4,jts+1) + 0.1*2.*(0.5-randnum) |
|---|
| 518 | !CALL RANDOM_NUMBER(randnum) |
|---|
| 519 | !grid%em_t_gc(i,5,j)=grid%em_t_gc(its+1,5,jts+1) + 0.1*2.*(0.5-randnum) |
|---|
| 520 | |
|---|
| 521 | |
|---|
| 522 | ENDDO |
|---|
| 523 | ENDDO |
|---|
| 524 | |
|---|
| 525 | ENDIF |
|---|
| 526 | |
|---|
| 527 | IF (config_flags%init_U .ne. 0.) THEN |
|---|
| 528 | grid%em_u_gc = grid%em_u_gc*0. + config_flags%init_U |
|---|
| 529 | print *, 'constant zonal wind ', config_flags%init_U |
|---|
| 530 | ENDIF |
|---|
| 531 | IF (config_flags%init_V .ne. 0.) THEN |
|---|
| 532 | grid%em_v_gc = grid%em_v_gc*0. + config_flags%init_V |
|---|
| 533 | print *, 'constant meridional wind ', config_flags%init_V |
|---|
| 534 | ENDIF |
|---|
| 535 | |
|---|
| 536 | |
|---|
| 537 | |
|---|
| 538 | !!!!!!!!!!!!!!!!!!! |
|---|
| 539 | !!! READ PROFILE !! |
|---|
| 540 | !!!!!!!!!!!!!!!!!!! |
|---|
| 541 | ! |
|---|
| 542 | !open(unit=10,file='input_sounding',form='formatted',status='old') |
|---|
| 543 | !rewind(10) |
|---|
| 544 | !read(10,*) grid%em_u_gc(1,:,1) |
|---|
| 545 | !!****MARS |
|---|
| 546 | !! |
|---|
| 547 | !! case with idealized topography |
|---|
| 548 | !! |
|---|
| 549 | !!CALL ideal_topo ( grid%ht , 2000., 6., & |
|---|
| 550 | !CALL ideal_topo ( grid%ht , 2000., 3., & |
|---|
| 551 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 552 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 553 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 554 | !!****MARS |
|---|
| 555 | |
|---|
| 556 | |
|---|
| 557 | |
|---|
| 558 | |
|---|
| 559 | ! If we have any input low-res surface pressure, we store it. |
|---|
| 560 | |
|---|
| 561 | !!****MARS |
|---|
| 562 | !!fix pour être certain d'être avec les bons flag |
|---|
| 563 | print *,flag_psfc |
|---|
| 564 | print *,flag_soilhgt |
|---|
| 565 | print *,flag_metgrid |
|---|
| 566 | |
|---|
| 567 | flag_psfc=1 |
|---|
| 568 | flag_soilhgt=1 |
|---|
| 569 | flag_metgrid=1 |
|---|
| 570 | !!**** TODO: trouver quand même pourquoi donne 0 :) |
|---|
| 571 | pa=999999. |
|---|
| 572 | !!****MARS |
|---|
| 573 | |
|---|
| 574 | IF ( flag_psfc .EQ. 1 ) THEN |
|---|
| 575 | DO j = jts, MIN(jte,jde-1) |
|---|
| 576 | DO i = its, MIN(ite,ide-1) |
|---|
| 577 | grid%em_psfc_gc(i,j) = grid%psfc(i,j) |
|---|
| 578 | !!!****MARS: em_p_gc is only a way to count vertical levels in WPS :) |
|---|
| 579 | !!!****MARS: is filled here with real pressure levels |
|---|
| 580 | grid%em_p_gc(i,:,j) = grid%em_rh_gc(i,:,j) |
|---|
| 581 | !!!****MARS |
|---|
| 582 | grid%em_p_gc(i,1,j) = grid%psfc(i,j) |
|---|
| 583 | !!!****MARS |
|---|
| 584 | IF (pa .gt. grid%em_p_gc(i,1,j)) pa=grid%em_p_gc(i,1,j) |
|---|
| 585 | !!!****MARS |
|---|
| 586 | END DO |
|---|
| 587 | END DO |
|---|
| 588 | END IF |
|---|
| 589 | print *, 'found minimum pressure (Pa) :',pa |
|---|
| 590 | |
|---|
| 591 | |
|---|
| 592 | !!!!****MARS |
|---|
| 593 | !!!!****MARS |
|---|
| 594 | !!!! define new hybrid coordinate levels |
|---|
| 595 | !!!! with transition level between sigma and pressure |
|---|
| 596 | !!!! lower than input data |
|---|
| 597 | ! |
|---|
| 598 | ! |
|---|
| 599 | ! !--get vertical size of the GCM input array |
|---|
| 600 | ! sizegcm=SIZE(grid%em_rh_gc(1,:,1)) |
|---|
| 601 | ! ALLOCATE(sig(MIN(ite,ide-1)-its+1,sizegcm, MIN(jte,jde-1)-jts+1)) |
|---|
| 602 | ! ALLOCATE(ap(MIN(ite,ide-1)-its+1,sizegcm, MIN(jte,jde-1)-jts+1)) |
|---|
| 603 | ! ALLOCATE(bp(MIN(ite,ide-1)-its+1,sizegcm, MIN(jte,jde-1)-jts+1)) |
|---|
| 604 | ! !ALLOCATE(box(MIN(ite,ide-1)-its+1,sizegcm, MIN(jte,jde-1)-jts+1)) |
|---|
| 605 | ! |
|---|
| 606 | ! |
|---|
| 607 | ! |
|---|
| 608 | ! !--define sigma levels, |
|---|
| 609 | ! !--then derive new sigma levels, and new pressure levels |
|---|
| 610 | ! DO j = jts, MIN(jte,jde-1) |
|---|
| 611 | ! DO i = its, MIN(ite,ide-1) |
|---|
| 612 | ! |
|---|
| 613 | ! ! old sigma levels |
|---|
| 614 | ! sig(i,:,j)=grid%em_p_gc(i,:,j)/grid%em_psfc_gc(i,j) |
|---|
| 615 | !! sig(i,:,j)=grid%em_p_gc(20,:,20)/grid%em_psfc_gc(20,20) |
|---|
| 616 | ! ! new pressure levels |
|---|
| 617 | ! ! - pressure_new = ap_new + bp_new * ps_gcm |
|---|
| 618 | ! ! - bp_new is converging more rapidly than bp |
|---|
| 619 | ! ! ... while conserving the same structure near the surface |
|---|
| 620 | ! ! |
|---|
| 621 | ! ! NB: grid%zap_close_levels ne sert pas dans vert_interp_old :) |
|---|
| 622 | ! ! NB: peut donc servir pour préciser une constante reelle |
|---|
| 623 | ! ! NB: qui permet de rehausser la zone de transition |
|---|
| 624 | ! ! |
|---|
| 625 | ! bp(i,:,j)=sqrt(sqrt(exp(1.-1./(sig(i,:,j)**4)))) |
|---|
| 626 | ! ap(i,:,j)=pa*exp(-grid%zap_close_levels/10.)*(sig(i,:,j)-bp(i,:,j)) |
|---|
| 627 | ! grid%em_rh_gc(i,:,j)=ap(i,:,j)+bp(i,:,j)*grid%em_psfc_gc(i,j) |
|---|
| 628 | ! |
|---|
| 629 | ! ! avoid extrapolation at the top |
|---|
| 630 | ! ! -- the last level is thus unsignificant |
|---|
| 631 | ! grid%em_p_gc(i,sizegcm,j)=grid%em_p_gc(i,sizegcm,j)/100. |
|---|
| 632 | !! grid%em_p_gc(i,sizegcm,j)=grid%em_p_gc(i,sizegcm,j)/10000. |
|---|
| 633 | ! |
|---|
| 634 | ! ENDDO |
|---|
| 635 | ! ENDDO |
|---|
| 636 | ! |
|---|
| 637 | ! |
|---|
| 638 | ! |
|---|
| 639 | ! |
|---|
| 640 | ! !-- check that the biggest differences are higher |
|---|
| 641 | ! print *, 'sigma levels' |
|---|
| 642 | ! print *, sig(its+1,:,jts+1) |
|---|
| 643 | ! print *, 'old pressure levels' |
|---|
| 644 | ! print *, grid%em_p_gc(its+1,:,jts+1) |
|---|
| 645 | ! print *, 'new pressure levels' |
|---|
| 646 | ! print *, grid%em_rh_gc(its+1,:,jts+1) |
|---|
| 647 | ! |
|---|
| 648 | !!print *, 't_gc', SIZE(grid%em_t_gc(1,:,1)) |
|---|
| 649 | !!print *, 'p_gc', SIZE(grid%em_p_gc(1,:,1)) |
|---|
| 650 | !!print *, 't_2', SIZE(grid%em_t_2(1,:,1)) |
|---|
| 651 | !!print *, 'rh_gc', SIZE(grid%em_rh_gc(1,:,1)) |
|---|
| 652 | ! |
|---|
| 653 | ! |
|---|
| 654 | !!-------- |
|---|
| 655 | !!-- interpolate on the new pressure levels |
|---|
| 656 | !!-------- |
|---|
| 657 | ! |
|---|
| 658 | ! DO j = jts, MIN(jte,jde-1) |
|---|
| 659 | ! DO i = its, MIN(ite,ide-1) |
|---|
| 660 | ! |
|---|
| 661 | !DO knew = 1,sizegcm ! loop on each level of the new grid |
|---|
| 662 | ! |
|---|
| 663 | ! DO kold = 1,sizegcm-1 ! find the two enclosing levels |
|---|
| 664 | ! |
|---|
| 665 | ! ! indic becomes negative when the two levels are found |
|---|
| 666 | ! indic=(grid%em_p_gc(i,kold,j)-grid%em_rh_gc(i,knew,j))& |
|---|
| 667 | ! *(grid%em_p_gc(i,kold+1,j)-grid%em_rh_gc(i,knew,j)) |
|---|
| 668 | ! |
|---|
| 669 | ! ! 1. the two levels are found - define p1,p2,pn and exit the loop |
|---|
| 670 | ! IF (indic < 0.) THEN |
|---|
| 671 | ! !IF ((i == its) .AND. (j == jts)) THEN !just a check |
|---|
| 672 | ! ! print *, 'new level', grid%em_rh_gc(i,knew,j) |
|---|
| 673 | ! ! print *, 'interp levels', grid%em_p_gc(i,kold,j), & |
|---|
| 674 | ! ! grid%em_p_gc(i,kold+1,j) |
|---|
| 675 | ! !ENDIF |
|---|
| 676 | ! p1 = ALOG(grid%em_p_gc(i,kold,j)) |
|---|
| 677 | ! p2 = ALOG(grid%em_p_gc(i,kold+1,j)) |
|---|
| 678 | ! pn = ALOG(grid%em_rh_gc(i,knew,j)) |
|---|
| 679 | ! EXIT |
|---|
| 680 | ! |
|---|
| 681 | ! ! 2. must handle the case (usually close to the surface) |
|---|
| 682 | ! ! of similar new/old levels - then exit with the right kold value |
|---|
| 683 | ! ELSE IF (1-abs(grid%em_rh_gc(i,knew,j)/grid%em_p_gc(i,kold,j)) .lt. 1e-8) THEN |
|---|
| 684 | ! !print *,grid%em_p_gc(i,kold,j),grid%em_rh_gc(i,knew,j) |
|---|
| 685 | ! EXIT |
|---|
| 686 | ! ELSE IF (1-abs(grid%em_rh_gc(i,knew,j)/grid%em_p_gc(i,kold+1,j)) .lt. 1e-8) THEN |
|---|
| 687 | ! !print *,grid%em_p_gc(i,kold+1,j),grid%em_rh_gc(i,knew,j) |
|---|
| 688 | ! kold=kold+1 |
|---|
| 689 | ! EXIT |
|---|
| 690 | ! |
|---|
| 691 | ! ! 3. continue looping if the two levels are not found .... |
|---|
| 692 | ! ENDIF |
|---|
| 693 | ! ENDDO |
|---|
| 694 | ! |
|---|
| 695 | ! ! this is an initialization, useful for case 2 (and erased just below if case 1) |
|---|
| 696 | ! grid%em_t_2(i,knew,j)= grid%em_t_gc(i,kold,j) |
|---|
| 697 | ! grid%em_u_2(i,knew,j)= grid%em_u_gc(i,kold,j) |
|---|
| 698 | ! grid%em_v_2(i,knew,j)= grid%em_v_gc(i,kold,j) |
|---|
| 699 | ! |
|---|
| 700 | ! ! case 1: OK, in the previous loop, the two levels were found, and stored in p1 and p2 |
|---|
| 701 | ! ! ... thus interpolation can be performed |
|---|
| 702 | ! IF (indic < 0.) THEN |
|---|
| 703 | ! grid%em_t_2(i,knew,j)= ( grid%em_t_gc(i,kold,j) * ( p2 - pn ) + & |
|---|
| 704 | ! grid%em_t_gc(i,kold+1,j) * ( pn - p1 ) ) / & |
|---|
| 705 | ! ( p2 - p1 ) |
|---|
| 706 | ! grid%em_u_2(i,knew,j)= ( grid%em_u_gc(i,kold,j) * ( p2 - pn ) + & |
|---|
| 707 | ! grid%em_u_gc(i,kold+1,j) * ( pn - p1 ) ) / & |
|---|
| 708 | ! ( p2 - p1 ) |
|---|
| 709 | ! grid%em_v_2(i,knew,j)= ( grid%em_v_gc(i,kold,j) * ( p2 - pn ) + & |
|---|
| 710 | ! grid%em_v_gc(i,kold+1,j) * ( pn - p1 ) ) / & |
|---|
| 711 | ! ( p2 - p1 ) |
|---|
| 712 | ! ENDIF |
|---|
| 713 | ! |
|---|
| 714 | ! |
|---|
| 715 | !ENDDO |
|---|
| 716 | ! |
|---|
| 717 | ! ENDDO |
|---|
| 718 | ! ENDDO |
|---|
| 719 | !grid%em_u_2(MIN(ite,ide-1)+1,:,:)=grid%em_u_2(MIN(ite,ide-1),:,:) |
|---|
| 720 | !grid%em_v_2(:,:,MIN(jte,jde-1)+1)=grid%em_v_2(:,:,MIN(jte,jde-1)) |
|---|
| 721 | !!-------- |
|---|
| 722 | !!-- end - interpolate on the new pressure levels |
|---|
| 723 | !!-------- |
|---|
| 724 | |
|---|
| 725 | |
|---|
| 726 | ! !-- interpolate on the new pressure levels |
|---|
| 727 | ! CALL vert_interp_old ( grid%em_t_gc , & ! --- interpolate this field |
|---|
| 728 | ! grid%em_p_gc, & ! --- with coordinates |
|---|
| 729 | ! grid%em_t_2, & ! --- to obtain the new field |
|---|
| 730 | ! grid%em_rh_gc, & ! --- on coordinates |
|---|
| 731 | ! sizegcm, & |
|---|
| 732 | ! 'T', & ! --- no staggering (will be done later) |
|---|
| 733 | ! 2, & ! --- log p interpolation |
|---|
| 734 | ! 1, & ! --- (0) lagrange_order |
|---|
| 735 | ! .false., & ! --- (0) lowest_lev_from_sfc |
|---|
| 736 | ! 0., & ! --- (0) zap_close_levels |
|---|
| 737 | ! 0, & ! --- (0) force_sfc_in_vinterp |
|---|
| 738 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 739 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 740 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 741 | ! CALL vert_interp_old ( grid%em_u_gc , & ! --- interpolate this field |
|---|
| 742 | ! grid%em_p_gc, & ! --- with coordinates |
|---|
| 743 | ! grid%em_u_2 , & ! --- to obtain the new field |
|---|
| 744 | ! grid%em_rh_gc, & ! --- on coordinates |
|---|
| 745 | ! sizegcm, & |
|---|
| 746 | ! 'U', & ! --- no staggering (will be done later) |
|---|
| 747 | ! 2, & ! --- log p interpolation |
|---|
| 748 | ! 1, & ! --- (0) lagrange_order |
|---|
| 749 | ! .false., & ! --- (0) lowest_lev_from_sfc |
|---|
| 750 | ! 0., & ! --- (0) zap_close_levels |
|---|
| 751 | ! 0, & ! --- (0) force_sfc_in_vinterp |
|---|
| 752 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 753 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 754 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 755 | ! CALL vert_interp_old ( grid%em_v_gc , & ! --- interpolate this field |
|---|
| 756 | ! grid%em_p_gc, & ! --- with coordinates |
|---|
| 757 | ! grid%em_v_2 , & ! --- to obtain the new field |
|---|
| 758 | ! grid%em_rh_gc, & ! --- on coordinates |
|---|
| 759 | ! sizegcm, & |
|---|
| 760 | ! 'V', & ! --- no staggering (will be done later) |
|---|
| 761 | ! 2, & ! --- log p interpolation |
|---|
| 762 | ! 1, & ! --- (0) lagrange_order |
|---|
| 763 | ! .false., & ! --- (0) lowest_lev_from_sfc |
|---|
| 764 | ! 0., & ! --- (0) zap_close_levels |
|---|
| 765 | ! 0, & ! --- (0) force_sfc_in_vinterp |
|---|
| 766 | ! !ids , ide , jds , jde , kds , sizegcm , & |
|---|
| 767 | ! !ims , ime , jms , jme , kms , sizegcm , & |
|---|
| 768 | ! !its , ite , jts , jte , kts , sizegcm ) |
|---|
| 769 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 770 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 771 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 772 | ! |
|---|
| 773 | ! |
|---|
| 774 | ! !-- save the new field and the new pressure coordinates |
|---|
| 775 | ! !-- these will be regarded now as the inputs from the GCM |
|---|
| 776 | ! grid%em_t_gc=grid%em_t_2 |
|---|
| 777 | ! grid%em_t_2(:,:,:)=0. |
|---|
| 778 | ! grid%em_u_gc=grid%em_u_2 |
|---|
| 779 | ! grid%em_u_2(:,:,:)=0. |
|---|
| 780 | ! grid%em_v_gc=grid%em_v_2 |
|---|
| 781 | ! grid%em_v_2(:,:,:)=0. |
|---|
| 782 | ! grid%em_p_gc=grid%em_rh_gc |
|---|
| 783 | ! grid%em_rh_gc(:,:,:)=0. |
|---|
| 784 | !!!!****MARS |
|---|
| 785 | !!!****MARS |
|---|
| 786 | |
|---|
| 787 | |
|---|
| 788 | |
|---|
| 789 | |
|---|
| 790 | ! If we have the low-resolution surface elevation, stick that in the |
|---|
| 791 | ! "input" locations of the 3d height. We still have the "hi-res" topo |
|---|
| 792 | ! stuck in the grid%em_ht array. The grid%landmask if test is required as some sources |
|---|
| 793 | ! have ZERO elevation over water (thank you very much). |
|---|
| 794 | |
|---|
| 795 | IF ( flag_soilhgt .EQ. 1) THEN |
|---|
| 796 | DO j = jts, MIN(jte,jde-1) |
|---|
| 797 | DO i = its, MIN(ite,ide-1) |
|---|
| 798 | IF ( grid%landmask(i,j) .GT. 0.5 ) THEN |
|---|
| 799 | grid%em_ght_gc(i,1,j) = grid%toposoil(i,j) |
|---|
| 800 | grid%em_ht_gc(i,j)= grid%toposoil(i,j) |
|---|
| 801 | END IF |
|---|
| 802 | END DO |
|---|
| 803 | END DO |
|---|
| 804 | END IF |
|---|
| 805 | |
|---|
| 806 | ! Assign surface fields with original input values. If this is hybrid data, |
|---|
| 807 | ! the values are not exactly representative. However - this is only for |
|---|
| 808 | ! plotting purposes and such at the 0h of the forecast, so we are not all that |
|---|
| 809 | ! worried. |
|---|
| 810 | |
|---|
| 811 | !****MARS |
|---|
| 812 | ! DO j = jts, min(jde-1,jte) |
|---|
| 813 | ! DO i = its, min(ide,ite) |
|---|
| 814 | ! grid%u10(i,j)=grid%em_u_gc(i,1,j) |
|---|
| 815 | ! END DO |
|---|
| 816 | ! END DO |
|---|
| 817 | ! |
|---|
| 818 | ! DO j = jts, min(jde,jte) |
|---|
| 819 | ! DO i = its, min(ide-1,ite) |
|---|
| 820 | ! grid%v10(i,j)=grid%em_v_gc(i,1,j) |
|---|
| 821 | ! END DO |
|---|
| 822 | ! END DO |
|---|
| 823 | !****MARS |
|---|
| 824 | |
|---|
| 825 | ! DO j = jts, min(jde-1,jte) |
|---|
| 826 | ! DO i = its, min(ide-1,ite) |
|---|
| 827 | ! grid%t2(i,j)=grid%em_t_gc(i,1,j) |
|---|
| 828 | ! END DO |
|---|
| 829 | ! END DO |
|---|
| 830 | |
|---|
| 831 | |
|---|
| 832 | ! The number of vertical levels in the input data. There is no staggering for |
|---|
| 833 | ! different variables. |
|---|
| 834 | |
|---|
| 835 | num_metgrid_levels = grid%num_metgrid_levels |
|---|
| 836 | |
|---|
| 837 | ! The requested ptop for real data cases. |
|---|
| 838 | |
|---|
| 839 | p_top_requested = grid%p_top_requested |
|---|
| 840 | |
|---|
| 841 | ! Compute the top pressure, grid%p_top. For isobaric data, this is just the |
|---|
| 842 | ! top level. For the generalized vertical coordinate data, we find the |
|---|
| 843 | ! max pressure on the top level. We have to be careful of two things: |
|---|
| 844 | ! 1) the value has to be communicated, 2) the value can not increase |
|---|
| 845 | ! at subsequent times from the initial value. |
|---|
| 846 | |
|---|
| 847 | IF ( internal_time_loop .EQ. 1 ) THEN |
|---|
| 848 | |
|---|
| 849 | CALL find_p_top ( grid%em_p_gc , grid%p_top , & |
|---|
| 850 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 851 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 852 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 853 | |
|---|
| 854 | !! ^---- equivalent to: |
|---|
| 855 | !!grid%ptop=MINVAL(grid%em_p_gc(:,:,:)) |
|---|
| 856 | |
|---|
| 857 | |
|---|
| 858 | |
|---|
| 859 | !!!!obsolete |
|---|
| 860 | !print *,'ptop GCM',grid%em_rh_gc(2,1,2) |
|---|
| 861 | !IF (grid%em_rh_gc(2,1,2) == 0) THEN |
|---|
| 862 | ! print *,'ptop cannot be 0' |
|---|
| 863 | ! stop |
|---|
| 864 | !ENDIF |
|---|
| 865 | !grid%p_top=grid%em_rh_gc(2,1,2) |
|---|
| 866 | !!!!obsolete |
|---|
| 867 | |
|---|
| 868 | |
|---|
| 869 | #ifdef DM_PARALLEL |
|---|
| 870 | grid%p_top = wrf_dm_max_real ( grid%p_top ) |
|---|
| 871 | #endif |
|---|
| 872 | |
|---|
| 873 | ! Compare the requested grid%p_top with the value available from the input data. |
|---|
| 874 | |
|---|
| 875 | print *,'p_top_requested = ',p_top_requested |
|---|
| 876 | print *,'allowable grid%p_top in data = ',grid%p_top |
|---|
| 877 | IF ( p_top_requested .LT. grid%p_top ) THEN |
|---|
| 878 | CALL wrf_error_fatal ( 'p_top_requested < grid%p_top possible from data' ) |
|---|
| 879 | END IF |
|---|
| 880 | |
|---|
| 881 | ! The grid%p_top valus is the max of what is available from the data and the |
|---|
| 882 | ! requested value. We have already compared <, so grid%p_top is directly set to |
|---|
| 883 | ! the value in the namelist. |
|---|
| 884 | |
|---|
| 885 | grid%p_top = p_top_requested |
|---|
| 886 | |
|---|
| 887 | ! For subsequent times, we have to remember what the grid%p_top for the first |
|---|
| 888 | ! time was. Why? If we have a generalized vert coordinate, the grid%p_top value |
|---|
| 889 | ! could fluctuate. |
|---|
| 890 | |
|---|
| 891 | p_top_save = grid%p_top |
|---|
| 892 | |
|---|
| 893 | ELSE |
|---|
| 894 | CALL find_p_top ( grid%em_p_gc , grid%p_top , & |
|---|
| 895 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 896 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 897 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 898 | |
|---|
| 899 | #ifdef DM_PARALLEL |
|---|
| 900 | grid%p_top = wrf_dm_max_real ( grid%p_top ) |
|---|
| 901 | #endif |
|---|
| 902 | IF ( grid%p_top .GT. p_top_save ) THEN |
|---|
| 903 | print *,'grid%p_top from last time period = ',p_top_save |
|---|
| 904 | print *,'grid%p_top from this time period = ',grid%p_top |
|---|
| 905 | CALL wrf_error_fatal ( 'grid%p_top > previous value' ) |
|---|
| 906 | END IF |
|---|
| 907 | grid%p_top = p_top_save |
|---|
| 908 | ENDIF |
|---|
| 909 | |
|---|
| 910 | |
|---|
| 911 | !****MARS |
|---|
| 912 | !****MARS |
|---|
| 913 | print *,'ptop GCM', grid%p_top |
|---|
| 914 | print *,'sample: pressure at its jts' |
|---|
| 915 | print *,grid%em_p_gc(its,:,jts) |
|---|
| 916 | !****MARS |
|---|
| 917 | !****MARS |
|---|
| 918 | |
|---|
| 919 | |
|---|
| 920 | |
|---|
| 921 | !****MARS: useless |
|---|
| 922 | !****MARS: |
|---|
| 923 | ! ! Get the monthly values interpolated to the current date for the traditional monthly |
|---|
| 924 | ! ! fields of green-ness fraction and background albedo. |
|---|
| 925 | ! |
|---|
| 926 | ! CALL monthly_interp_to_date ( grid%em_greenfrac , current_date , grid%vegfra , & |
|---|
| 927 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 928 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 929 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 930 | ! |
|---|
| 931 | ! CALL monthly_interp_to_date ( grid%em_albedo12m , current_date , grid%albbck , & |
|---|
| 932 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 933 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 934 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 935 | ! |
|---|
| 936 | ! ! Get the min/max of each i,j for the monthly green-ness fraction. |
|---|
| 937 | ! |
|---|
| 938 | ! CALL monthly_min_max ( grid%em_greenfrac , grid%shdmin , grid%shdmax , & |
|---|
| 939 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 940 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 941 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 942 | ! |
|---|
| 943 | ! ! The model expects the green-ness values in percent, not fraction. |
|---|
| 944 | ! |
|---|
| 945 | ! DO j = jts, MIN(jte,jde-1) |
|---|
| 946 | ! DO i = its, MIN(ite,ide-1) |
|---|
| 947 | ! grid%vegfra(i,j) = grid%vegfra(i,j) * 100. |
|---|
| 948 | ! grid%shdmax(i,j) = grid%shdmax(i,j) * 100. |
|---|
| 949 | ! grid%shdmin(i,j) = grid%shdmin(i,j) * 100. |
|---|
| 950 | ! END DO |
|---|
| 951 | ! END DO |
|---|
| 952 | ! |
|---|
| 953 | ! ! The model expects the albedo fields as a fraction, not a percent. Set the |
|---|
| 954 | ! ! water values to 8%. |
|---|
| 955 | ! |
|---|
| 956 | ! DO j = jts, MIN(jte,jde-1) |
|---|
| 957 | ! DO i = its, MIN(ite,ide-1) |
|---|
| 958 | ! grid%albbck(i,j) = grid%albbck(i,j) / 100. |
|---|
| 959 | ! grid%snoalb(i,j) = grid%snoalb(i,j) / 100. |
|---|
| 960 | ! IF ( grid%landmask(i,j) .LT. 0.5 ) THEN |
|---|
| 961 | ! grid%albbck(i,j) = 0.08 |
|---|
| 962 | ! grid%snoalb(i,j) = 0.08 |
|---|
| 963 | ! END IF |
|---|
| 964 | ! END DO |
|---|
| 965 | ! END DO |
|---|
| 966 | !!****MARS: |
|---|
| 967 | !!****MARS: useless |
|---|
| 968 | |
|---|
| 969 | |
|---|
| 970 | |
|---|
| 971 | |
|---|
| 972 | !!****MARS: |
|---|
| 973 | ! ! Compute the mixing ratio from the input relative humidity. |
|---|
| 974 | ! |
|---|
| 975 | ! IF ( flag_qv .NE. 1 ) THEN |
|---|
| 976 | ! CALL rh_to_mxrat (grid%em_rh_gc, grid%em_t_gc, grid%em_p_gc, grid%em_qv_gc , .TRUE. , & |
|---|
| 977 | ! ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 978 | ! ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 979 | ! its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 980 | ! END IF |
|---|
| 981 | !!****MARS: |
|---|
| 982 | !!grid%em_rh_gc are GCM equivalent eta_levels |
|---|
| 983 | !!****MARS |
|---|
| 984 | |
|---|
| 985 | |
|---|
| 986 | |
|---|
| 987 | |
|---|
| 988 | ! Two ways to get the surface pressure. 1) If we have the low-res input surface |
|---|
| 989 | ! pressure and the low-res topography, then we can do a simple hydrostatic |
|---|
| 990 | ! relation. 2) Otherwise we compute the surface pressure from the sea-level |
|---|
| 991 | ! pressure. |
|---|
| 992 | ! Note that on output, grid%em_psfc is now hi-res. The low-res surface pressure and |
|---|
| 993 | ! elevation are grid%em_psfc_gc and grid%em_ht_gc (same as grid%em_ght_gc(k=1)). |
|---|
| 994 | |
|---|
| 995 | !!****MARS: switch off this option |
|---|
| 996 | !!****MARS: --> cf sfcprs2 and geopotential function at 500mb |
|---|
| 997 | ! IF ( config_flags%adjust_heights ) THEN |
|---|
| 998 | ! we_have_tavgsfc = ( flag_tavgsfc == 1 ) |
|---|
| 999 | ! ELSE |
|---|
| 1000 | ! we_have_tavgsfc = .FALSE. |
|---|
| 1001 | ! END IF |
|---|
| 1002 | !****MARS: |
|---|
| 1003 | we_have_tavgsfc = .FALSE. |
|---|
| 1004 | |
|---|
| 1005 | |
|---|
| 1006 | |
|---|
| 1007 | !****MARS: hi-res psfc is done if the flag 'sfcp_to_sfcp' is active (recommended) |
|---|
| 1008 | IF ( ( flag_psfc .EQ. 1 ) .AND. ( flag_soilhgt .EQ. 1 ) .AND. & |
|---|
| 1009 | ( config_flags%sfcp_to_sfcp ) ) THEN |
|---|
| 1010 | print *,'compute psfc from hi-res topography' |
|---|
| 1011 | CALL sfcprs2(grid%em_t_gc, grid%em_qv_gc, grid%em_ght_gc, grid%em_psfc_gc, grid%ht, & |
|---|
| 1012 | grid%em_tavgsfc, grid%em_p_gc, grid%psfc, we_have_tavgsfc, & |
|---|
| 1013 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 1014 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 1015 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 1016 | !****MARS: here, in reality, grid%em_p_gc is not used |
|---|
| 1017 | |
|---|
| 1018 | !****MARS: no sea-level pressure inputs possible |
|---|
| 1019 | ! ELSE |
|---|
| 1020 | ! CALL sfcprs (grid%em_t_gc, grid%em_qv_gc, grid%em_ght_gc, grid%em_pslv_gc, grid%ht, & |
|---|
| 1021 | ! grid%em_tavgsfc, grid%em_p_gc, grid%psfc, we_have_tavgsfc, & |
|---|
| 1022 | ! ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 1023 | ! ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 1024 | ! its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 1025 | !****MARS: no sea-level pressure inputs possible |
|---|
| 1026 | |
|---|
| 1027 | |
|---|
| 1028 | ! If we have no input surface pressure, we'd better stick something in there. |
|---|
| 1029 | |
|---|
| 1030 | IF ( flag_psfc .NE. 1 ) THEN |
|---|
| 1031 | DO j = jts, MIN(jte,jde-1) |
|---|
| 1032 | DO i = its, MIN(ite,ide-1) |
|---|
| 1033 | grid%em_psfc_gc(i,j) = grid%psfc(i,j) |
|---|
| 1034 | grid%em_p_gc(i,1,j) = grid%psfc(i,j) |
|---|
| 1035 | END DO |
|---|
| 1036 | END DO |
|---|
| 1037 | END IF |
|---|
| 1038 | |
|---|
| 1039 | END IF |
|---|
| 1040 | |
|---|
| 1041 | |
|---|
| 1042 | !!!****MARS: |
|---|
| 1043 | !!!****MARS: old stuff |
|---|
| 1044 | !!! grid%em_p_gc is needed ... so it is computed from eta_gcm |
|---|
| 1045 | ! |
|---|
| 1046 | !print *,'computing pressure levels for input data...' |
|---|
| 1047 | ! |
|---|
| 1048 | ! !! pressure is computed from eta_gcm and hi-res topography |
|---|
| 1049 | ! DO j = jts, MIN(jte,jde-1) |
|---|
| 1050 | ! DO i = its, MIN(ite,ide-1) |
|---|
| 1051 | !!!psfc ou em_psfc_gc ? em_psfc_gc, sinon c'est faux et déclenche instabilités |
|---|
| 1052 | !grid%em_p_gc(i,:,j)=grid%em_rh_gc(i,:,j)*(grid%em_psfc_gc(i,j)-grid%em_rh_gc(2,1,2))+grid%em_rh_gc(2,1,2) |
|---|
| 1053 | !grid%em_p_gc(i,1,j)=grid%em_psfc_gc(i,j) |
|---|
| 1054 | ! |
|---|
| 1055 | ! |
|---|
| 1056 | ! END DO |
|---|
| 1057 | ! END DO |
|---|
| 1058 | !! |
|---|
| 1059 | !!****MARS: |
|---|
| 1060 | |
|---|
| 1061 | |
|---|
| 1062 | |
|---|
| 1063 | !! Integrate the mixing ratio to get the vapor pressure. |
|---|
| 1064 | ! |
|---|
| 1065 | !CALL integ_moist ( grid%em_qv_gc , grid%em_p_gc , grid%em_pd_gc , grid%em_t_gc , grid%em_ght_gc , grid%em_intq_gc , & |
|---|
| 1066 | ! ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 1067 | ! ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 1068 | ! its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 1069 | |
|---|
| 1070 | |
|---|
| 1071 | !!****MARS |
|---|
| 1072 | !!****MARS |
|---|
| 1073 | !! and now, convert the GCM sigma levels into WRF sigma levels using hi-res surface pressure |
|---|
| 1074 | !!DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 1075 | !!DO i = its , MIN (ide-1 , ite ) |
|---|
| 1076 | !! |
|---|
| 1077 | !! grid%em_pd_gc(i,:,j)=ap(i,:,j)+bp(i,:,j)*grid%psfc(i,j) |
|---|
| 1078 | !! |
|---|
| 1079 | !!END DO |
|---|
| 1080 | !!END DO |
|---|
| 1081 | |
|---|
| 1082 | IF ( planet == "mars" ) then |
|---|
| 1083 | !--get vertical size of the GCM input array and allocate new stuff |
|---|
| 1084 | sizegcm=SIZE(grid%em_rh_gc(1,:,1)) |
|---|
| 1085 | ALLOCATE(sig(MIN(ite,ide-1)-its+1,sizegcm, MIN(jte,jde-1)-jts+1)) |
|---|
| 1086 | !ALLOCATE(ap(MIN(ite,ide-1)-its+1,sizegcm, MIN(jte,jde-1)-jts+1)) |
|---|
| 1087 | ALLOCATE(bp(MIN(ite,ide-1)-its+1,sizegcm, MIN(jte,jde-1)-jts+1)) |
|---|
| 1088 | |
|---|
| 1089 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 1090 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 1091 | |
|---|
| 1092 | !!! Define old sigma levels for each column |
|---|
| 1093 | sig(i,:,j)=grid%em_p_gc(i,:,j)/grid%em_psfc_gc(i,j) |
|---|
| 1094 | |
|---|
| 1095 | !!! Compute new sigma levels from old sigma levels with GCM (low-res) and WRF (hi-res) surface pressure |
|---|
| 1096 | !!! (dimlevs,sigma_gcm, ps_gcm, ps_hr, sigma_hr) |
|---|
| 1097 | CALL build_sigma_hr(sizegcm,sig(i,:,j),grid%em_psfc_gc(i,j),grid%psfc(i,j),bp(i,:,j)) |
|---|
| 1098 | |
|---|
| 1099 | !!! Calculate new pressure levels |
|---|
| 1100 | grid%em_pd_gc(i,:,j)=bp(i,:,j)*grid%psfc(i,j) |
|---|
| 1101 | |
|---|
| 1102 | END DO |
|---|
| 1103 | END DO |
|---|
| 1104 | |
|---|
| 1105 | DEALLOCATE(sig) |
|---|
| 1106 | DEALLOCATE(bp) |
|---|
| 1107 | |
|---|
| 1108 | !!****MARS who knows... |
|---|
| 1109 | grid%em_rh_gc(:,:,:)=0. |
|---|
| 1110 | |
|---|
| 1111 | |
|---|
| 1112 | !!****MARS |
|---|
| 1113 | !grid%em_pd_gc=grid%em_p_gc |
|---|
| 1114 | !!****MARS |
|---|
| 1115 | ELSE ! VENUS |
|---|
| 1116 | |
|---|
| 1117 | |
|---|
| 1118 | |
|---|
| 1119 | !! Compute the difference between the dry, total surface pressure (input) and the |
|---|
| 1120 | !! dry top pressure (constant). |
|---|
| 1121 | ! |
|---|
| 1122 | CALL p_dts ( grid%em_mu0 , grid%em_intq_gc , grid%psfc , grid%p_top , & |
|---|
| 1123 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 1124 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 1125 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 1126 | ENDIF |
|---|
| 1127 | IF ( planet == "mars" ) then |
|---|
| 1128 | !!****MARS |
|---|
| 1129 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 1130 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 1131 | |
|---|
| 1132 | grid%em_mu0(i,j) = grid%psfc(i,j) - grid%p_top |
|---|
| 1133 | |
|---|
| 1134 | END DO |
|---|
| 1135 | END DO |
|---|
| 1136 | !!****MARS |
|---|
| 1137 | ELSE ! VENUS |
|---|
| 1138 | |
|---|
| 1139 | !! Compute the dry, hydrostatic surface pressure. |
|---|
| 1140 | ! |
|---|
| 1141 | CALL p_dhs ( grid%em_pdhs , grid%ht , p00 , t00 , a , & |
|---|
| 1142 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1143 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1144 | its , ite , jts , jte , kts , kte ) |
|---|
| 1145 | ENDIF |
|---|
| 1146 | !!****MARS: voir remarques dans la routine |
|---|
| 1147 | !!****MARS: dry hydrostatic pressure comes from the GCM ... |
|---|
| 1148 | ! DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 1149 | ! DO i = its , MIN (ide-1 , ite ) |
|---|
| 1150 | ! grid%em_pdhs(i,j) = grid%psfc(i,j) |
|---|
| 1151 | ! END DO |
|---|
| 1152 | ! END DO |
|---|
| 1153 | !!****MARS: em_pdhs ne sert qu'ici ! |
|---|
| 1154 | |
|---|
| 1155 | |
|---|
| 1156 | ! Compute the eta levels if not defined already. |
|---|
| 1157 | |
|---|
| 1158 | !!TODO: pb when ptop<1Pa |
|---|
| 1159 | |
|---|
| 1160 | IF ( grid%em_znw(1) .NE. 1.0 ) THEN |
|---|
| 1161 | |
|---|
| 1162 | eta_levels(1:kde) = model_config_rec%eta_levels(1:kde) |
|---|
| 1163 | max_dz = model_config_rec%max_dz |
|---|
| 1164 | |
|---|
| 1165 | !!****MARS |
|---|
| 1166 | IF (grid%force_sfc_in_vinterp == 0) grid%force_sfc_in_vinterp = 8 |
|---|
| 1167 | !!default choice |
|---|
| 1168 | !!****MARS |
|---|
| 1169 | |
|---|
| 1170 | CALL compute_eta ( grid%em_znw , & |
|---|
| 1171 | eta_levels , max_eta , max_dz , & |
|---|
| 1172 | grid%force_sfc_in_vinterp, & !!ne sert pas par ailleurs |
|---|
| 1173 | grid%p_top , g , p00 , cvpm , a , r_d , cp , t00 , p1000mb , t0 , & |
|---|
| 1174 | tiso, & |
|---|
| 1175 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1176 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1177 | its , ite , jts , jte , kts , kte ) |
|---|
| 1178 | END IF |
|---|
| 1179 | |
|---|
| 1180 | IF ( interp_theta ) THEN |
|---|
| 1181 | ! The input field is temperature, we want potential temp. |
|---|
| 1182 | !****MARS: here em_p_gc is really needed ! |
|---|
| 1183 | CALL t_to_theta ( grid%em_t_gc , grid%em_p_gc , p00 , & |
|---|
| 1184 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 1185 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 1186 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 1187 | ENDIF |
|---|
| 1188 | |
|---|
| 1189 | |
|---|
| 1190 | |
|---|
| 1191 | ! On the eta surfaces, compute the dry pressure = mu eta, stored in |
|---|
| 1192 | ! grid%em_pb, since it is a pressure, and we don't need another kms:kme 3d |
|---|
| 1193 | ! array floating around. The grid%em_pb array is re-computed as the base pressure |
|---|
| 1194 | ! later after the vertical interpolations are complete. |
|---|
| 1195 | CALL p_dry ( grid%em_mu0 , grid%em_znw , grid%p_top , grid%em_pb , & |
|---|
| 1196 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1197 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1198 | its , ite , jts , jte , kts , kte ) |
|---|
| 1199 | |
|---|
| 1200 | print *, 'test sample' |
|---|
| 1201 | print *, grid%em_pb(its+10,:,jts+10) |
|---|
| 1202 | print *, 'test sample 2' |
|---|
| 1203 | print *, grid%em_pb(its,:,jts) |
|---|
| 1204 | |
|---|
| 1205 | |
|---|
| 1206 | !****MARS |
|---|
| 1207 | !****MARS: old stuff |
|---|
| 1208 | !****MARS |
|---|
| 1209 | !!! and now eta levels from the GCM are computed with the WRF ptop and GCM psfc |
|---|
| 1210 | !!! and em_pb is filled with WRF eta levels to prepare interpolation |
|---|
| 1211 | !print *,'computing eta levels for input data...' |
|---|
| 1212 | ! DO j = jts, MIN(jte,jde-1) |
|---|
| 1213 | ! DO i = its, MIN(ite,ide-1) |
|---|
| 1214 | ! |
|---|
| 1215 | !!grid%em_psfc_gc: pb en haut!!!! |
|---|
| 1216 | !!!!valeurs plus grandes que 1 et extrapolation |
|---|
| 1217 | !!grid%em_p_gc(i,:,j)=(grid%em_p_gc(i,:,j)-grid%p_top)/(grid%psfc(i,j)-grid%p_top) |
|---|
| 1218 | !!!!utile si l'on est proche de la surface, mais pb plus haut ! |
|---|
| 1219 | !grid%em_p_gc(i,:,j)=(grid%em_p_gc(i,:,j)-grid%p_top)/(grid%em_psfc_gc(i,j)-grid%p_top) |
|---|
| 1220 | !grid%em_pb(i,:,j)=grid%em_znw(:) |
|---|
| 1221 | ! |
|---|
| 1222 | !! |
|---|
| 1223 | !!!!manage negative values |
|---|
| 1224 | !!DO k=1,num_metgrid_levels |
|---|
| 1225 | !! grid%em_p_gc(i,k,j)=MAX(0.,grid%em_p_gc(i,k,j)) |
|---|
| 1226 | !!END DO |
|---|
| 1227 | !! |
|---|
| 1228 | ! |
|---|
| 1229 | ! END DO |
|---|
| 1230 | ! END DO |
|---|
| 1231 | !! |
|---|
| 1232 | !!print *,'sample: eta GCM at its jts' |
|---|
| 1233 | !!print *,grid%em_p_gc(its,:,jts) |
|---|
| 1234 | !!print *,'sample: eta WRF at its jts' |
|---|
| 1235 | !!print *,grid%em_pb(its,:,jts) |
|---|
| 1236 | !! |
|---|
| 1237 | !!print *,grid%em_p_gc(:,2,:) |
|---|
| 1238 | !!print *, 'yeah yeah' |
|---|
| 1239 | !!grid%em_pd_gc(:,:,:)=grid%em_p_gc(:,:,:) |
|---|
| 1240 | !! |
|---|
| 1241 | !****MARS |
|---|
| 1242 | !****MARS: old stuff |
|---|
| 1243 | !****MARS |
|---|
| 1244 | |
|---|
| 1245 | |
|---|
| 1246 | |
|---|
| 1247 | |
|---|
| 1248 | ! All of the vertical interpolations are done in dry-pressure space. The |
|---|
| 1249 | ! input data has had the moisture removed (grid%em_pd_gc). The target levels (grid%em_pb) |
|---|
| 1250 | ! had the vapor pressure removed from the surface pressure, then they were |
|---|
| 1251 | ! scaled by the eta levels. |
|---|
| 1252 | |
|---|
| 1253 | interp_type = grid%interp_type |
|---|
| 1254 | lagrange_order = grid%lagrange_order |
|---|
| 1255 | lowest_lev_from_sfc = grid%lowest_lev_from_sfc |
|---|
| 1256 | zap_close_levels = grid%zap_close_levels |
|---|
| 1257 | force_sfc_in_vinterp = grid%force_sfc_in_vinterp |
|---|
| 1258 | |
|---|
| 1259 | !!****MARS: normalement c'est vert_interp |
|---|
| 1260 | !!****MARS: mais les résultats sont trop discontinus > retour à une |
|---|
| 1261 | !!****MARS: interpolation plus classique |
|---|
| 1262 | CALL vert_interp_old ( grid%em_qv_gc , grid%em_pd_gc , moist(:,:,:,P_QV) , grid%em_pb , & |
|---|
| 1263 | num_metgrid_levels , 'Q' , & |
|---|
| 1264 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1265 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1266 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1267 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1268 | its , ite , jts , jte , kts , kte ) |
|---|
| 1269 | |
|---|
| 1270 | ! Depending on the setting of interp_theta = T/F, t_gc is is either theta Xor |
|---|
| 1271 | ! temperature, and that means that the t_2 field is also the associated field. |
|---|
| 1272 | ! It is better to interpolate temperature and potential temperature in LOG(p), |
|---|
| 1273 | ! regardless of requested default. |
|---|
| 1274 | |
|---|
| 1275 | !!****MARS: normalement c'est vert_interp |
|---|
| 1276 | CALL vert_interp_old ( grid%em_t_gc , grid%em_pd_gc , grid%em_t_2 , grid%em_pb , & |
|---|
| 1277 | num_metgrid_levels , 'T' , & |
|---|
| 1278 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1279 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1280 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1281 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1282 | its , ite , jts , jte , kts , kte ) |
|---|
| 1283 | |
|---|
| 1284 | IF ( .NOT. interp_theta ) THEN |
|---|
| 1285 | |
|---|
| 1286 | !! correction Wee et al. 2012 |
|---|
| 1287 | !! first interpolate temperature (see above) |
|---|
| 1288 | !! then interpolate pressure |
|---|
| 1289 | !! and in the end compute potential temperature |
|---|
| 1290 | |
|---|
| 1291 | !! scalar just an intermediate thing for interpolated pressure |
|---|
| 1292 | !! -- it is reinitialized afterwards |
|---|
| 1293 | !! It is better to interpolate pressure in p regardless default options |
|---|
| 1294 | CALL vert_interp_old ( grid%em_p_gc , grid%em_pd_gc , scalar(:,:,:,1) , grid%em_pb , & |
|---|
| 1295 | num_metgrid_levels , 'T' , & |
|---|
| 1296 | 1, lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1297 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1298 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1299 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1300 | its , ite , jts , jte , kts , kte ) |
|---|
| 1301 | |
|---|
| 1302 | CALL t_to_theta ( grid%em_t_2 , scalar(:,:,:,1) , p00 , & |
|---|
| 1303 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1304 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1305 | its , ite , jts , jte , kts , kte ) |
|---|
| 1306 | |
|---|
| 1307 | scalar(:,:,:,1) = 0. |
|---|
| 1308 | END IF |
|---|
| 1309 | |
|---|
| 1310 | |
|---|
| 1311 | |
|---|
| 1312 | !!!!!!****MARS****!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1313 | !!!!!! ****MARS MARS MARS for order in rank for each option, check in REGISTRY.EM |
|---|
| 1314 | !!!!!! [a little bit too hardcoded here unfortunately... but e.g. P_QH2O must be known] |
|---|
| 1315 | !!!!!! [there is a more flexible option with flags in metgrid.tbl, TBD?] |
|---|
| 1316 | !!!!!! NB: real_em.F must also be modified |
|---|
| 1317 | !!!!!! NB2: qvapor is not used to avoid collision with earth-related calculations |
|---|
| 1318 | if ( ( config_flags%mars == 2 ) .OR. ( config_flags%mars == 3 ) ) then |
|---|
| 1319 | print *, '**** INTERPOLATE DUSTQ **** RANK 2 in SCALAR' |
|---|
| 1320 | CALL vert_interp_old ( grid%em_dustq_gc , grid%em_pd_gc , scalar(:,:,:,2) , grid%em_pb , & |
|---|
| 1321 | num_metgrid_levels , 'Q' , & |
|---|
| 1322 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1323 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1324 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1325 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1326 | its , ite , jts , jte , kts , kte ) |
|---|
| 1327 | endif |
|---|
| 1328 | if ( ( config_flags%mars == 3 ) ) then |
|---|
| 1329 | print *, '**** INTERPOLATE DUSTN **** RANK 3 in SCALAR' |
|---|
| 1330 | CALL vert_interp_old ( grid%em_dustn_gc , grid%em_pd_gc , scalar(:,:,:,3) , grid%em_pb , & |
|---|
| 1331 | num_metgrid_levels , 'Q' , & |
|---|
| 1332 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1333 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1334 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1335 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1336 | its , ite , jts , jte , kts , kte ) |
|---|
| 1337 | endif |
|---|
| 1338 | if ( ( config_flags%mars == 1 ) .OR. ( config_flags%mars == 11 ) .OR. ( config_flags%mars == 12 ) .OR. ( config_flags%mars == 32 ) ) then |
|---|
| 1339 | print *, '**** INTERPOLATE HV **** RANK 2 in SCALAR' |
|---|
| 1340 | !print *, size(scalar(0,0,0,:)), P_QH2O, P_QH2O_ICE |
|---|
| 1341 | CALL vert_interp_old ( grid%em_hv_gc , grid%em_pd_gc , scalar(:,:,:,2) , grid%em_pb , & |
|---|
| 1342 | num_metgrid_levels , 'Q' , & |
|---|
| 1343 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1344 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1345 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1346 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1347 | its , ite , jts , jte , kts , kte ) |
|---|
| 1348 | print *, '**** INTERPOLATE HI **** RANK 3 in SCALAR' |
|---|
| 1349 | CALL vert_interp_old ( grid%em_hi_gc , grid%em_pd_gc , scalar(:,:,:,3) , grid%em_pb , & |
|---|
| 1350 | num_metgrid_levels , 'Q' , & |
|---|
| 1351 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1352 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1353 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1354 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1355 | its , ite , jts , jte , kts , kte ) |
|---|
| 1356 | endif |
|---|
| 1357 | #ifdef NEWPHYS |
|---|
| 1358 | if ( (config_flags%mars == 10) ) then |
|---|
| 1359 | print *, '**** INTERPOLATE CO2 **** RANK 2 in SCALAR' |
|---|
| 1360 | CALL vert_interp_old ( grid%em_co2_gc , grid%em_pd_gc , scalar(:,:,:,2) , grid%em_pb , & |
|---|
| 1361 | num_metgrid_levels , 'Q' , & |
|---|
| 1362 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1363 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1364 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1365 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1366 | its , ite , jts , jte , kts , kte ) |
|---|
| 1367 | endif |
|---|
| 1368 | if ( (config_flags%mars == 11) .OR. (config_flags%mars == 12) .OR. (config_flags%mars == 32) ) then |
|---|
| 1369 | print *, '**** INTERPOLATE DUSTQ **** RANK 4 in SCALAR' |
|---|
| 1370 | CALL vert_interp_old ( grid%em_dustq_gc , grid%em_pd_gc , scalar(:,:,:,4) , grid%em_pb , & |
|---|
| 1371 | num_metgrid_levels , 'Q' , & |
|---|
| 1372 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1373 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1374 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1375 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1376 | its , ite , jts , jte , kts , kte ) |
|---|
| 1377 | print *, '**** INTERPOLATE DUSTN **** RANK 5 in SCALAR' |
|---|
| 1378 | CALL vert_interp_old ( grid%em_dustn_gc , grid%em_pd_gc , scalar(:,:,:,5) , grid%em_pb , & |
|---|
| 1379 | num_metgrid_levels , 'Q' , & |
|---|
| 1380 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1381 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1382 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1383 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1384 | its , ite , jts , jte , kts , kte ) |
|---|
| 1385 | endif |
|---|
| 1386 | if ( (config_flags%mars == 12) .OR. (config_flags%mars == 32) ) then |
|---|
| 1387 | print *, '**** INTERPOLATE CCNQ **** RANK 6 in SCALAR' |
|---|
| 1388 | CALL vert_interp_old ( grid%em_ccnq_gc , grid%em_pd_gc , scalar(:,:,:,6) , grid%em_pb , & |
|---|
| 1389 | num_metgrid_levels , 'Q' , & |
|---|
| 1390 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1391 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1392 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1393 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1394 | its , ite , jts , jte , kts , kte ) |
|---|
| 1395 | print *, '**** INTERPOLATE CCNN **** RANK 7 in SCALAR' |
|---|
| 1396 | CALL vert_interp_old ( grid%em_ccnn_gc , grid%em_pd_gc , scalar(:,:,:,7) , grid%em_pb , & |
|---|
| 1397 | num_metgrid_levels , 'Q' , & |
|---|
| 1398 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1399 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1400 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1401 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1402 | its , ite , jts , jte , kts , kte ) |
|---|
| 1403 | endif |
|---|
| 1404 | if ( (config_flags%mars == 32) ) then |
|---|
| 1405 | print *, '**** INTERPOLATE CO2 **** RANK 8 in SCALAR' |
|---|
| 1406 | CALL vert_interp_old ( grid%em_co2_gc , grid%em_pd_gc , scalar(:,:,:,8) , grid%em_pb , & |
|---|
| 1407 | num_metgrid_levels , 'Q' , & |
|---|
| 1408 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1409 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1410 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1411 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1412 | its , ite , jts , jte , kts , kte ) |
|---|
| 1413 | print *, '**** set other CO2 tracers to 0' |
|---|
| 1414 | scalar(:,:,:,9) = 0. |
|---|
| 1415 | scalar(:,:,:,10) = 0. |
|---|
| 1416 | scalar(:,:,:,11) = 0. |
|---|
| 1417 | endif |
|---|
| 1418 | #endif |
|---|
| 1419 | |
|---|
| 1420 | !#ifdef NEWPHYS |
|---|
| 1421 | !!VENUS photochemistry |
|---|
| 1422 | !if ( config_flags%mars == 34 ) then |
|---|
| 1423 | ! print*,'grid%em_qco2_gc',grid%em_qco2_gc(0,:,0) |
|---|
| 1424 | ! CALL vert_interp_old ( grid%em_qco2_gc , grid%em_pd_gc , scalar(:,:,:,2) , grid%em_pb , & |
|---|
| 1425 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1426 | ! interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1427 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1428 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1429 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1430 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1431 | ! |
|---|
| 1432 | ! CALL vert_interp_old ( grid%em_qco_gc , grid%em_pd_gc , scalar(:,:,:,3), grid%em_pb , & |
|---|
| 1433 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1434 | ! interp_type , lagrange_order ,lowest_lev_from_sfc , & |
|---|
| 1435 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1436 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1437 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1438 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1439 | ! |
|---|
| 1440 | ! CALL vert_interp_old ( grid%em_qh2_gc , grid%em_pd_gc , scalar(:,:,:,4),grid%em_pb , & |
|---|
| 1441 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1442 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1443 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1444 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1445 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1446 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1447 | ! |
|---|
| 1448 | ! CALL vert_interp_old ( grid%em_qh2o_gc , grid%em_pd_gc , scalar(:,:,:,5),grid%em_pb , & |
|---|
| 1449 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1450 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1451 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1452 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1453 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1454 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1455 | ! |
|---|
| 1456 | ! CALL vert_interp_old ( grid%em_qo1d_gc , grid%em_pd_gc , scalar(:,:,:,6),grid%em_pb , & |
|---|
| 1457 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1458 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1459 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1460 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1461 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1462 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1463 | ! |
|---|
| 1464 | ! CALL vert_interp_old ( grid%em_qo_gc , grid%em_pd_gc , scalar(:,:,:,7),grid%em_pb , & |
|---|
| 1465 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1466 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1467 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1468 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1469 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1470 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1471 | ! |
|---|
| 1472 | ! CALL vert_interp_old ( grid%em_qo2_gc , grid%em_pd_gc , scalar(:,:,:,8),grid%em_pb , & |
|---|
| 1473 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1474 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1475 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1476 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1477 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1478 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1479 | ! |
|---|
| 1480 | ! CALL vert_interp_old ( grid%em_qo2dg_gc , grid%em_pd_gc , scalar(:,:,:,9),grid%em_pb , & |
|---|
| 1481 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1482 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1483 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1484 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1485 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1486 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1487 | ! |
|---|
| 1488 | ! CALL vert_interp_old ( grid%em_qo3_gc , grid%em_pd_gc , scalar(:,:,:,10),grid%em_pb , & |
|---|
| 1489 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1490 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1491 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1492 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1493 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1494 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1495 | ! |
|---|
| 1496 | ! CALL vert_interp_old ( grid%em_qh_gc , grid%em_pd_gc , scalar(:,:,:,11),grid%em_pb , & |
|---|
| 1497 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1498 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1499 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1500 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1501 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1502 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1503 | ! |
|---|
| 1504 | ! CALL vert_interp_old ( grid%em_qoh_gc , grid%em_pd_gc , scalar(:,:,:,12), grid%em_pb , & |
|---|
| 1505 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1506 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1507 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1508 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1509 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1510 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1511 | ! |
|---|
| 1512 | ! CALL vert_interp_old ( grid%em_qho2_gc , grid%em_pd_gc , scalar(:,:,:,13),grid%em_pb , & |
|---|
| 1513 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1514 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1515 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1516 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1517 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1518 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1519 | ! |
|---|
| 1520 | ! CALL vert_interp_old ( grid%em_qh2o2_gc , grid%em_pd_gc , scalar(:,:,:,14),grid%em_pb , & |
|---|
| 1521 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1522 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1523 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1524 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1525 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1526 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1527 | ! |
|---|
| 1528 | ! CALL vert_interp_old ( grid%em_qcl_gc , grid%em_pd_gc , scalar(:,:,:,15),grid%em_pb , & |
|---|
| 1529 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1530 | ! interp_type , lagrange_order ,lowest_lev_from_sfc , & |
|---|
| 1531 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1532 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1533 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1534 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1535 | ! |
|---|
| 1536 | ! CALL vert_interp_old ( grid%em_qclo_gc , grid%em_pd_gc , scalar(:,:,:,16),grid%em_pb , & |
|---|
| 1537 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1538 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1539 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1540 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1541 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1542 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1543 | ! |
|---|
| 1544 | ! CALL vert_interp_old ( grid%em_qcl2_gc , grid%em_pd_gc , scalar(:,:,:,17),grid%em_pb , & |
|---|
| 1545 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1546 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1547 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1548 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1549 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1550 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1551 | ! |
|---|
| 1552 | ! CALL vert_interp_old ( grid%em_qhcl_gc , grid%em_pd_gc , scalar(:,:,:,18),grid%em_pb , & |
|---|
| 1553 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1554 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1555 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1556 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1557 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1558 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1559 | ! |
|---|
| 1560 | ! CALL vert_interp_old ( grid%em_qhocl_gc , grid%em_pd_gc , scalar(:,:,:,19),grid%em_pb , & |
|---|
| 1561 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1562 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1563 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1564 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1565 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1566 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1567 | ! |
|---|
| 1568 | ! CALL vert_interp_old ( grid%em_qclco_gc , grid%em_pd_gc , scalar(:,:,:,20),grid%em_pb , & |
|---|
| 1569 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1570 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1571 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1572 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1573 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1574 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1575 | ! |
|---|
| 1576 | ! CALL vert_interp_old ( grid%em_qclco3_gc , grid%em_pd_gc , scalar(:,:,:,21),grid%em_pb , & |
|---|
| 1577 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1578 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1579 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1580 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1581 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1582 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1583 | ! |
|---|
| 1584 | ! CALL vert_interp_old ( grid%em_qcocl2_gc , grid%em_pd_gc , scalar(:,:,:,22),grid%em_pb , & |
|---|
| 1585 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1586 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1587 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1588 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1589 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1590 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1591 | ! |
|---|
| 1592 | ! CALL vert_interp_old ( grid%em_qs_gc , grid%em_pd_gc , scalar(:,:,:,23), grid%em_pb , & |
|---|
| 1593 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1594 | ! interp_type , lagrange_order ,lowest_lev_from_sfc , & |
|---|
| 1595 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1596 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1597 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1598 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1599 | ! |
|---|
| 1600 | ! CALL vert_interp_old ( grid%em_qso_gc , grid%em_pd_gc , scalar(:,:,:,24),grid%em_pb , & |
|---|
| 1601 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1602 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1603 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1604 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1605 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1606 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1607 | ! |
|---|
| 1608 | ! CALL vert_interp_old ( grid%em_qso2_gc , grid%em_pd_gc , scalar(:,:,:,25), grid%em_pb , & |
|---|
| 1609 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1610 | ! interp_type , lagrange_order ,lowest_lev_from_sfc , & |
|---|
| 1611 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1612 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1613 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1614 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1615 | ! |
|---|
| 1616 | ! CALL vert_interp_old ( grid%em_qo3_gc , grid%em_pd_gc , scalar(:,:,:,26),grid%em_pb , & |
|---|
| 1617 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1618 | ! interp_type , lagrange_order ,lowest_lev_from_sfc , & |
|---|
| 1619 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1620 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1621 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1622 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1623 | ! |
|---|
| 1624 | ! CALL vert_interp_old ( grid%em_qs2o2_gc , grid%em_pd_gc , scalar(:,:,:,27),grid%em_pb , & |
|---|
| 1625 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1626 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1627 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1628 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1629 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1630 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1631 | ! |
|---|
| 1632 | ! CALL vert_interp_old ( grid%em_qocs_gc , grid%em_pd_gc , scalar(:,:,:,28),grid%em_pb , & |
|---|
| 1633 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1634 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1635 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1636 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1637 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1638 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1639 | ! |
|---|
| 1640 | ! CALL vert_interp_old ( grid%em_qhso3_gc , grid%em_pd_gc , scalar(:,:,:,29),grid%em_pb , & |
|---|
| 1641 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1642 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1643 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1644 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1645 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1646 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1647 | ! |
|---|
| 1648 | ! CALL vert_interp_old ( grid%em_qh2so4_gc , grid%em_pd_gc , scalar(:,:,:,30),grid%em_pb , & |
|---|
| 1649 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1650 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1651 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1652 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1653 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1654 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1655 | ! |
|---|
| 1656 | ! CALL vert_interp_old ( grid%em_qs2_gc , grid%em_pd_gc , scalar(:,:,:,31),grid%em_pb , & |
|---|
| 1657 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1658 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1659 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1660 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1661 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1662 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1663 | ! |
|---|
| 1664 | ! CALL vert_interp_old ( grid%em_qclso2_gc , grid%em_pd_gc , scalar(:,:,:,32),grid%em_pb , & |
|---|
| 1665 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1666 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1667 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1668 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1669 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1670 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1671 | ! |
|---|
| 1672 | ! CALL vert_interp_old ( grid%em_qoscl_gc , grid%em_pd_gc , scalar(:,:,:,33),grid%em_pb , & |
|---|
| 1673 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1674 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1675 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1676 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1677 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1678 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1679 | ! |
|---|
| 1680 | ! CALL vert_interp_old ( grid%em_qh2oliq_gc , grid%em_pd_gc , scalar(:,:,:,34),grid%em_pb , & |
|---|
| 1681 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1682 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1683 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1684 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1685 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1686 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1687 | ! |
|---|
| 1688 | ! CALL vert_interp_old ( grid%em_qh2so4liq_gc , grid%em_pd_gc , scalar(:,:,:,35),grid%em_pb , & |
|---|
| 1689 | ! num_metgrid_levels , 'Q' , & |
|---|
| 1690 | ! interp_type , lagrange_order,lowest_lev_from_sfc , & |
|---|
| 1691 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1692 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1693 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1694 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1695 | ! |
|---|
| 1696 | !endif |
|---|
| 1697 | !#endif |
|---|
| 1698 | |
|---|
| 1699 | !!! we want any scalar (i.e. tracer) to be positive |
|---|
| 1700 | !!! and because of interpolation it is possible that negative values occur... |
|---|
| 1701 | WHERE( scalar < 0. ) scalar = 0. |
|---|
| 1702 | |
|---|
| 1703 | !!!!!!****MARS****!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1704 | |
|---|
| 1705 | #if 0 |
|---|
| 1706 | ! Uncomment the Registry entries to activate these. This adds |
|---|
| 1707 | ! noticeably to the allocated space for the model. |
|---|
| 1708 | |
|---|
| 1709 | IF ( flag_qr .EQ. 1 ) THEN |
|---|
| 1710 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
|---|
| 1711 | IF ( im .EQ. P_QR ) THEN |
|---|
| 1712 | CALL vert_interp_old ( qr_gc , grid%em_pd_gc , moist(:,:,:,P_QR) , grid%em_pb , & |
|---|
| 1713 | num_metgrid_levels , 'Q' , & |
|---|
| 1714 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1715 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1716 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1717 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1718 | its , ite , jts , jte , kts , kte ) |
|---|
| 1719 | END IF |
|---|
| 1720 | END DO |
|---|
| 1721 | END IF |
|---|
| 1722 | |
|---|
| 1723 | IF ( flag_qc .EQ. 1 ) THEN |
|---|
| 1724 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
|---|
| 1725 | IF ( im .EQ. P_QC ) THEN |
|---|
| 1726 | CALL vert_interp_old ( qc_gc , grid%em_pd_gc , moist(:,:,:,P_QC) , grid%em_pb , & |
|---|
| 1727 | num_metgrid_levels , 'Q' , & |
|---|
| 1728 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1729 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1730 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1731 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1732 | its , ite , jts , jte , kts , kte ) |
|---|
| 1733 | END IF |
|---|
| 1734 | END DO |
|---|
| 1735 | END IF |
|---|
| 1736 | |
|---|
| 1737 | IF ( flag_qi .EQ. 1 ) THEN |
|---|
| 1738 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
|---|
| 1739 | IF ( im .EQ. P_QI ) THEN |
|---|
| 1740 | CALL vert_interp_old ( qi_gc , grid%em_pd_gc , moist(:,:,:,P_QI) , grid%em_pb , & |
|---|
| 1741 | num_metgrid_levels , 'Q' , & |
|---|
| 1742 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1743 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1744 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1745 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1746 | its , ite , jts , jte , kts , kte ) |
|---|
| 1747 | END IF |
|---|
| 1748 | END DO |
|---|
| 1749 | END IF |
|---|
| 1750 | |
|---|
| 1751 | IF ( flag_qs .EQ. 1 ) THEN |
|---|
| 1752 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
|---|
| 1753 | IF ( im .EQ. P_QS ) THEN |
|---|
| 1754 | CALL vert_interp_old ( qs_gc , grid%em_pd_gc , moist(:,:,:,P_QS) , grid%em_pb , & |
|---|
| 1755 | num_metgrid_levels , 'Q' , & |
|---|
| 1756 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1757 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1758 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1759 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1760 | its , ite , jts , jte , kts , kte ) |
|---|
| 1761 | END IF |
|---|
| 1762 | END DO |
|---|
| 1763 | END IF |
|---|
| 1764 | |
|---|
| 1765 | IF ( flag_qg .EQ. 1 ) THEN |
|---|
| 1766 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
|---|
| 1767 | IF ( im .EQ. P_QG ) THEN |
|---|
| 1768 | CALL vert_interp_old ( qg_gc , grid%em_pd_gc , moist(:,:,:,P_QG) , grid%em_pb , & |
|---|
| 1769 | num_metgrid_levels , 'Q' , & |
|---|
| 1770 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1771 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1772 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1773 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1774 | its , ite , jts , jte , kts , kte ) |
|---|
| 1775 | END IF |
|---|
| 1776 | END DO |
|---|
| 1777 | END IF |
|---|
| 1778 | #endif |
|---|
| 1779 | |
|---|
| 1780 | #ifdef DM_PARALLEL |
|---|
| 1781 | ips = its ; ipe = ite ; jps = jts ; jpe = jte ; kps = kts ; kpe = kte |
|---|
| 1782 | |
|---|
| 1783 | ! For the U and V vertical interpolation, we need the pressure defined |
|---|
| 1784 | ! at both the locations for the horizontal momentum, which we get by |
|---|
| 1785 | ! averaging two pressure values (i and i-1 for U, j and j-1 for V). The |
|---|
| 1786 | ! pressure field on input (grid%em_pd_gc) and the pressure of the new coordinate |
|---|
| 1787 | ! (grid%em_pb) are both communicated with an 8 stencil. |
|---|
| 1788 | |
|---|
| 1789 | # include "HALO_EM_VINTERP_UV_1.inc" |
|---|
| 1790 | #endif |
|---|
| 1791 | |
|---|
| 1792 | !!****MARS: normalement c'est vert_interp |
|---|
| 1793 | CALL vert_interp_old ( grid%em_u_gc , grid%em_pd_gc , grid%em_u_2, grid%em_pb , & |
|---|
| 1794 | num_metgrid_levels , 'U' , & |
|---|
| 1795 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1796 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1797 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1798 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1799 | its , ite , jts , jte , kts , kte ) |
|---|
| 1800 | !!****MARS: normalement c'est vert_interp |
|---|
| 1801 | CALL vert_interp_old ( grid%em_v_gc , grid%em_pd_gc , grid%em_v_2, grid%em_pb , & |
|---|
| 1802 | num_metgrid_levels , 'V' , & |
|---|
| 1803 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 1804 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1805 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1806 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1807 | its , ite , jts , jte , kts , kte ) |
|---|
| 1808 | |
|---|
| 1809 | |
|---|
| 1810 | !!****MARS |
|---|
| 1811 | !!****MARS |
|---|
| 1812 | !! |
|---|
| 1813 | !! old obsolete method |
|---|
| 1814 | !! ------------------- |
|---|
| 1815 | !! |
|---|
| 1816 | !!! and now eta levels from the GCM are computed with the WRF ptop and GCM psfc |
|---|
| 1817 | !!! and em_pb is filled with WRF eta levels to prepare interpolation |
|---|
| 1818 | !print *,'computing eta levels for input data...' |
|---|
| 1819 | ! |
|---|
| 1820 | ! DO j = jts, MIN(jte,jde-1) |
|---|
| 1821 | ! DO i = its, MIN(ite,ide-1) |
|---|
| 1822 | ! |
|---|
| 1823 | !! grid%em_psfc_gc: pb en haut!!!! |
|---|
| 1824 | !!!!valeurs plus grandes que 1 et extrapolation |
|---|
| 1825 | !! grid%em_p_gc(i,:,j)=(grid%em_p_gc(i,:,j)-grid%p_top)/(grid%psfc(i,j)-grid%p_top) |
|---|
| 1826 | !!!!utile si l'on est proche de la surface, mais pb plus haut ! |
|---|
| 1827 | !grid%em_pd_gc(i,:,j)=(grid%em_p_gc(i,:,j)-grid%p_top)/(grid%em_psfc_gc(i,j)-grid%p_top) |
|---|
| 1828 | !grid%em_pb(i,:,j)=grid%em_znw(:) |
|---|
| 1829 | ! |
|---|
| 1830 | !! |
|---|
| 1831 | !!!!manage negative values |
|---|
| 1832 | !!DO k=1,num_metgrid_levels |
|---|
| 1833 | !! grid%em_p_gc(i,k,j)=MAX(0.,grid%em_p_gc(i,k,j)) |
|---|
| 1834 | !!END DO |
|---|
| 1835 | !! |
|---|
| 1836 | ! |
|---|
| 1837 | ! END DO |
|---|
| 1838 | ! END DO |
|---|
| 1839 | ! |
|---|
| 1840 | !print *,'sample: eta GCM at its jts' |
|---|
| 1841 | !print *,grid%em_pd_gc(its,:,jts) |
|---|
| 1842 | !print *,'sample: eta WRF at its jts' |
|---|
| 1843 | !print *,grid%em_pb(its,:,jts) |
|---|
| 1844 | !! |
|---|
| 1845 | !!!****MARS |
|---|
| 1846 | ! |
|---|
| 1847 | ! |
|---|
| 1848 | ! |
|---|
| 1849 | !!!!****MARS |
|---|
| 1850 | !!!! |
|---|
| 1851 | !!!!grid%force_sfc_in_vinterp ne sert pas dans vert_interp_old :) |
|---|
| 1852 | !!!!peut donc servir pour préciser le nombre de niveaux |
|---|
| 1853 | !!!!pris à partir de l'interpolation eta |
|---|
| 1854 | ! |
|---|
| 1855 | !IF (grid%force_sfc_in_vinterp .NE. 0) THEN |
|---|
| 1856 | ! |
|---|
| 1857 | ! !!!save in an array that is now unused |
|---|
| 1858 | ! !!!the previously performed pressure interpolation |
|---|
| 1859 | ! grid%em_qv_gc(:,:,:)=grid%em_t_2(:,:,:) |
|---|
| 1860 | ! |
|---|
| 1861 | ! |
|---|
| 1862 | ! !!!perform interpolation on eta levels |
|---|
| 1863 | ! print *, 'interpolate on eta levels for near-surface fields' |
|---|
| 1864 | ! CALL vert_interp_old ( grid%em_t_gc , grid%em_pd_gc , grid%em_t_2, grid%em_pb , & |
|---|
| 1865 | ! num_metgrid_levels , 'T' , & |
|---|
| 1866 | ! interp_type , lagrange_order , lowest_lev_from_sfc ,& |
|---|
| 1867 | ! zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1868 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 1869 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 1870 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 1871 | ! |
|---|
| 1872 | ! !!!take the first layers from the eta interpolation |
|---|
| 1873 | ! print *, 'the first ', & |
|---|
| 1874 | ! grid%force_sfc_in_vinterp, & |
|---|
| 1875 | ! 'layers will be taken from eta interpolation' |
|---|
| 1876 | ! grid%em_qv_gc(:,1:grid%force_sfc_in_vinterp,:)=grid%em_t_2(:,1:grid%force_sfc_in_vinterp,:) |
|---|
| 1877 | ! |
|---|
| 1878 | ! !!!fix the possible little discontinuity at the limit |
|---|
| 1879 | ! !!!between the two interpolation methods |
|---|
| 1880 | ! grid%em_qv_gc(:,grid%force_sfc_in_vinterp+1,:)= & |
|---|
| 1881 | ! 0.5*(grid%em_t_2(:,grid%force_sfc_in_vinterp,:) + & !!eta interpolation below |
|---|
| 1882 | ! grid%em_qv_gc(:,grid%force_sfc_in_vinterp+2,:)) !!pressure interpolation above |
|---|
| 1883 | ! |
|---|
| 1884 | ! |
|---|
| 1885 | ! !!!assign the final result in t_2 |
|---|
| 1886 | ! grid%em_t_2(:,:,:)=grid%em_qv_gc(:,:,:) |
|---|
| 1887 | ! grid%em_qv_gc(:,:,:)=0. |
|---|
| 1888 | ! |
|---|
| 1889 | ! |
|---|
| 1890 | !ELSE |
|---|
| 1891 | ! |
|---|
| 1892 | ! |
|---|
| 1893 | !ENDIF |
|---|
| 1894 | !!****MARS |
|---|
| 1895 | !!****MARS |
|---|
| 1896 | |
|---|
| 1897 | |
|---|
| 1898 | END IF ! <----- END OF VERTICAL INTERPOLATION PART ----> |
|---|
| 1899 | |
|---|
| 1900 | |
|---|
| 1901 | |
|---|
| 1902 | !****MARS: no need |
|---|
| 1903 | ! ! Protect against bad grid%em_tsk values over water by supplying grid%sst (if it is |
|---|
| 1904 | ! ! available, and if the grid%sst is reasonable). |
|---|
| 1905 | ! |
|---|
| 1906 | ! DO j = jts, MIN(jde-1,jte) |
|---|
| 1907 | ! DO i = its, MIN(ide-1,ite) |
|---|
| 1908 | ! IF ( ( grid%landmask(i,j) .LT. 0.5 ) .AND. ( flag_sst .EQ. 1 ) .AND. & |
|---|
| 1909 | ! ( grid%sst(i,j) .GT. 200. ) .AND. ( grid%sst(i,j) .LT. 350. ) ) THEN |
|---|
| 1910 | ! grid%tsk(i,j) = grid%sst(i,j) |
|---|
| 1911 | ! ENDIF |
|---|
| 1912 | ! END DO |
|---|
| 1913 | ! END DO |
|---|
| 1914 | ! |
|---|
| 1915 | ! ! Save the grid%em_tsk field for later use in the sea ice surface temperature |
|---|
| 1916 | ! ! for the Noah LSM scheme. |
|---|
| 1917 | ! |
|---|
| 1918 | ! DO j = jts, MIN(jte,jde-1) |
|---|
| 1919 | ! DO i = its, MIN(ite,ide-1) |
|---|
| 1920 | ! grid%tsk_save(i,j) = grid%tsk(i,j) |
|---|
| 1921 | ! END DO |
|---|
| 1922 | ! END DO |
|---|
| 1923 | ! |
|---|
| 1924 | !!****MARS: no need |
|---|
| 1925 | ! ! Take the data from the input file and store it in the variables that |
|---|
| 1926 | ! ! use the WRF naming and ordering conventions. |
|---|
| 1927 | ! |
|---|
| 1928 | ! DO j = jts, MIN(jte,jde-1) |
|---|
| 1929 | ! DO i = its, MIN(ite,ide-1) |
|---|
| 1930 | ! IF ( grid%snow(i,j) .GE. 10. ) then |
|---|
| 1931 | ! grid%snowc(i,j) = 1. |
|---|
| 1932 | ! ELSE |
|---|
| 1933 | ! grid%snowc(i,j) = 0.0 |
|---|
| 1934 | ! END IF |
|---|
| 1935 | ! END DO |
|---|
| 1936 | ! END DO |
|---|
| 1937 | ! |
|---|
| 1938 | ! ! Set flag integers for presence of snowh and soilw fields |
|---|
| 1939 | ! |
|---|
| 1940 | ! grid%ifndsnowh = flag_snowh |
|---|
| 1941 | ! IF (num_sw_levels_input .GE. 1) THEN |
|---|
| 1942 | ! grid%ifndsoilw = 1 |
|---|
| 1943 | ! ELSE |
|---|
| 1944 | ! grid%ifndsoilw = 0 |
|---|
| 1945 | ! END IF |
|---|
| 1946 | ! |
|---|
| 1947 | !****MARS: no need |
|---|
| 1948 | ! ! We require input data for the various LSM schemes. |
|---|
| 1949 | ! |
|---|
| 1950 | ! enough_data : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
|---|
| 1951 | ! |
|---|
| 1952 | ! CASE (LSMSCHEME) |
|---|
| 1953 | ! IF ( num_st_levels_input .LT. 2 ) THEN |
|---|
| 1954 | ! CALL wrf_error_fatal ( 'Not enough soil temperature data for Noah LSM scheme.') |
|---|
| 1955 | ! END IF |
|---|
| 1956 | ! |
|---|
| 1957 | ! CASE (RUCLSMSCHEME) |
|---|
| 1958 | ! IF ( num_st_levels_input .LT. 2 ) THEN |
|---|
| 1959 | ! CALL wrf_error_fatal ( 'Not enough soil temperature data for RUC LSM scheme.') |
|---|
| 1960 | ! END IF |
|---|
| 1961 | ! |
|---|
| 1962 | ! END SELECT enough_data |
|---|
| 1963 | ! |
|---|
| 1964 | ! ! For sf_surface_physics = 1, we want to use close to a 30 cm value |
|---|
| 1965 | ! ! for the bottom level of the soil temps. |
|---|
| 1966 | ! |
|---|
| 1967 | ! fix_bottom_level_for_temp : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
|---|
| 1968 | ! |
|---|
| 1969 | ! CASE (SLABSCHEME) |
|---|
| 1970 | ! IF ( flag_tavgsfc .EQ. 1 ) THEN |
|---|
| 1971 | ! DO j = jts , MIN(jde-1,jte) |
|---|
| 1972 | ! DO i = its , MIN(ide-1,ite) |
|---|
| 1973 | ! grid%tmn(i,j) = grid%em_tavgsfc(i,j) |
|---|
| 1974 | ! END DO |
|---|
| 1975 | ! END DO |
|---|
| 1976 | ! ELSE IF ( flag_st010040 .EQ. 1 ) THEN |
|---|
| 1977 | ! DO j = jts , MIN(jde-1,jte) |
|---|
| 1978 | ! DO i = its , MIN(ide-1,ite) |
|---|
| 1979 | ! grid%tmn(i,j) = grid%st010040(i,j) |
|---|
| 1980 | ! END DO |
|---|
| 1981 | ! END DO |
|---|
| 1982 | ! ELSE IF ( flag_st000010 .EQ. 1 ) THEN |
|---|
| 1983 | ! DO j = jts , MIN(jde-1,jte) |
|---|
| 1984 | ! DO i = its , MIN(ide-1,ite) |
|---|
| 1985 | ! grid%tmn(i,j) = grid%st000010(i,j) |
|---|
| 1986 | ! END DO |
|---|
| 1987 | ! END DO |
|---|
| 1988 | ! ELSE IF ( flag_soilt020 .EQ. 1 ) THEN |
|---|
| 1989 | ! DO j = jts , MIN(jde-1,jte) |
|---|
| 1990 | ! DO i = its , MIN(ide-1,ite) |
|---|
| 1991 | ! grid%tmn(i,j) = grid%soilt020(i,j) |
|---|
| 1992 | ! END DO |
|---|
| 1993 | ! END DO |
|---|
| 1994 | ! ELSE IF ( flag_st007028 .EQ. 1 ) THEN |
|---|
| 1995 | ! DO j = jts , MIN(jde-1,jte) |
|---|
| 1996 | ! DO i = its , MIN(ide-1,ite) |
|---|
| 1997 | ! grid%tmn(i,j) = grid%st007028(i,j) |
|---|
| 1998 | ! END DO |
|---|
| 1999 | ! END DO |
|---|
| 2000 | ! ELSE |
|---|
| 2001 | ! CALL wrf_debug ( 0 , 'No 10-40 cm, 0-10 cm, 7-28, or 20 cm soil temperature data for grid%em_tmn') |
|---|
| 2002 | ! CALL wrf_debug ( 0 , 'Using 1 degree static annual mean temps' ) |
|---|
| 2003 | ! END IF |
|---|
| 2004 | ! |
|---|
| 2005 | ! CASE (LSMSCHEME) |
|---|
| 2006 | ! |
|---|
| 2007 | ! CASE (RUCLSMSCHEME) |
|---|
| 2008 | ! |
|---|
| 2009 | ! END SELECT fix_bottom_level_for_temp |
|---|
| 2010 | ! |
|---|
| 2011 | ! ! Adjustments for the seaice field PRIOR to the grid%tslb computations. This is |
|---|
| 2012 | ! ! is for the 5-layer scheme. |
|---|
| 2013 | ! |
|---|
| 2014 | ! num_veg_cat = SIZE ( grid%landusef , DIM=2 ) |
|---|
| 2015 | ! num_soil_top_cat = SIZE ( grid%soilctop , DIM=2 ) |
|---|
| 2016 | ! num_soil_bot_cat = SIZE ( grid%soilcbot , DIM=2 ) |
|---|
| 2017 | ! CALL nl_get_seaice_threshold ( grid%id , grid%seaice_threshold ) |
|---|
| 2018 | ! CALL nl_get_isice ( grid%id , grid%isice ) |
|---|
| 2019 | ! CALL nl_get_iswater ( grid%id , grid%iswater ) |
|---|
| 2020 | ! CALL adjust_for_seaice_pre ( grid%xice , grid%landmask , grid%tsk , grid%ivgtyp , grid%vegcat , grid%lu_index , & |
|---|
| 2021 | ! grid%xland , grid%landusef , grid%isltyp , grid%soilcat , grid%soilctop , & |
|---|
| 2022 | ! grid%soilcbot , grid%tmn , & |
|---|
| 2023 | ! grid%seaice_threshold , & |
|---|
| 2024 | ! num_veg_cat , num_soil_top_cat , num_soil_bot_cat , & |
|---|
| 2025 | ! grid%iswater , grid%isice , & |
|---|
| 2026 | ! model_config_rec%sf_surface_physics(grid%id) , & |
|---|
| 2027 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 2028 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 2029 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 2030 | ! |
|---|
| 2031 | ! ! surface_input_source=1 => use data from static file (fractional category as input) |
|---|
| 2032 | ! ! surface_input_source=2 => use data from grib file (dominant category as input) |
|---|
| 2033 | ! |
|---|
| 2034 | ! IF ( config_flags%surface_input_source .EQ. 1 ) THEN |
|---|
| 2035 | ! grid%vegcat (its,jts) = 0 |
|---|
| 2036 | ! grid%soilcat(its,jts) = 0 |
|---|
| 2037 | ! END IF |
|---|
| 2038 | ! |
|---|
| 2039 | ! ! Generate the vegetation and soil category information from the fractional input |
|---|
| 2040 | ! ! data, or use the existing dominant category fields if they exist. |
|---|
| 2041 | ! |
|---|
| 2042 | ! IF ( ( grid%soilcat(its,jts) .LT. 0.5 ) .AND. ( grid%vegcat(its,jts) .LT. 0.5 ) ) THEN |
|---|
| 2043 | ! |
|---|
| 2044 | ! num_veg_cat = SIZE ( grid%landusef , DIM=2 ) |
|---|
| 2045 | ! num_soil_top_cat = SIZE ( grid%soilctop , DIM=2 ) |
|---|
| 2046 | ! num_soil_bot_cat = SIZE ( grid%soilcbot , DIM=2 ) |
|---|
| 2047 | ! |
|---|
| 2048 | ! CALL process_percent_cat_new ( grid%landmask , & |
|---|
| 2049 | ! grid%landusef , grid%soilctop , grid%soilcbot , & |
|---|
| 2050 | ! grid%isltyp , grid%ivgtyp , & |
|---|
| 2051 | ! num_veg_cat , num_soil_top_cat , num_soil_bot_cat , & |
|---|
| 2052 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 2053 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 2054 | ! its , ite , jts , jte , kts , kte , & |
|---|
| 2055 | ! model_config_rec%iswater(grid%id) ) |
|---|
| 2056 | ! |
|---|
| 2057 | ! ! Make all the veg/soil parms the same so as not to confuse the developer. |
|---|
| 2058 | ! |
|---|
| 2059 | ! DO j = jts , MIN(jde-1,jte) |
|---|
| 2060 | ! DO i = its , MIN(ide-1,ite) |
|---|
| 2061 | ! grid%vegcat(i,j) = grid%ivgtyp(i,j) |
|---|
| 2062 | ! grid%soilcat(i,j) = grid%isltyp(i,j) |
|---|
| 2063 | ! END DO |
|---|
| 2064 | ! END DO |
|---|
| 2065 | ! |
|---|
| 2066 | ! ELSE |
|---|
| 2067 | ! |
|---|
| 2068 | ! ! Do we have dominant soil and veg data from the input already? |
|---|
| 2069 | ! |
|---|
| 2070 | ! IF ( grid%soilcat(its,jts) .GT. 0.5 ) THEN |
|---|
| 2071 | ! DO j = jts, MIN(jde-1,jte) |
|---|
| 2072 | ! DO i = its, MIN(ide-1,ite) |
|---|
| 2073 | ! grid%isltyp(i,j) = NINT( grid%soilcat(i,j) ) |
|---|
| 2074 | ! END DO |
|---|
| 2075 | ! END DO |
|---|
| 2076 | ! END IF |
|---|
| 2077 | ! IF ( grid%vegcat(its,jts) .GT. 0.5 ) THEN |
|---|
| 2078 | ! DO j = jts, MIN(jde-1,jte) |
|---|
| 2079 | ! DO i = its, MIN(ide-1,ite) |
|---|
| 2080 | ! grid%ivgtyp(i,j) = NINT( grid%vegcat(i,j) ) |
|---|
| 2081 | ! END DO |
|---|
| 2082 | ! END DO |
|---|
| 2083 | ! END IF |
|---|
| 2084 | ! |
|---|
| 2085 | ! END IF |
|---|
| 2086 | ! |
|---|
| 2087 | ! ! Land use assignment. |
|---|
| 2088 | ! |
|---|
| 2089 | ! DO j = jts, MIN(jde-1,jte) |
|---|
| 2090 | ! DO i = its, MIN(ide-1,ite) |
|---|
| 2091 | ! grid%lu_index(i,j) = grid%ivgtyp(i,j) |
|---|
| 2092 | ! IF ( grid%lu_index(i,j) .NE. model_config_rec%iswater(grid%id) ) THEN |
|---|
| 2093 | ! grid%landmask(i,j) = 1 |
|---|
| 2094 | ! grid%xland(i,j) = 1 |
|---|
| 2095 | ! ELSE |
|---|
| 2096 | ! grid%landmask(i,j) = 0 |
|---|
| 2097 | ! grid%xland(i,j) = 2 |
|---|
| 2098 | ! END IF |
|---|
| 2099 | ! END DO |
|---|
| 2100 | ! END DO |
|---|
| 2101 | ! |
|---|
| 2102 | ! ! Adjust the various soil temperature values depending on the difference in |
|---|
| 2103 | ! ! in elevation between the current model's elevation and the incoming data's |
|---|
| 2104 | ! ! orography. |
|---|
| 2105 | ! |
|---|
| 2106 | ! IF ( flag_soilhgt .EQ. 1 ) THEN |
|---|
| 2107 | ! adjust_soil : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
|---|
| 2108 | ! |
|---|
| 2109 | ! CASE ( SLABSCHEME , LSMSCHEME , RUCLSMSCHEME ) |
|---|
| 2110 | ! CALL adjust_soil_temp_new ( grid%tmn , model_config_rec%sf_surface_physics(grid%id) , & |
|---|
| 2111 | ! grid%tsk , grid%ht , grid%toposoil , grid%landmask , flag_soilhgt , & |
|---|
| 2112 | ! grid%st000010 , grid%st010040 , grid%st040100 , grid%st100200 , grid%st010200 , & |
|---|
| 2113 | ! flag_st000010 , flag_st010040 , flag_st040100 , flag_st100200 , flag_st010200 , & |
|---|
| 2114 | ! grid%st000007 , grid%st007028 , grid%st028100 , grid%st100255 , & |
|---|
| 2115 | ! flag_st000007 , flag_st007028 , flag_st028100 , flag_st100255 , & |
|---|
| 2116 | ! grid%soilt000 , grid%soilt005 , grid%soilt020 , grid%soilt040 , grid%soilt160 , & |
|---|
| 2117 | ! grid%soilt300 , & |
|---|
| 2118 | ! flag_soilt000 , flag_soilt005 , flag_soilt020 , flag_soilt040 , & |
|---|
| 2119 | ! flag_soilt160 , flag_soilt300 , & |
|---|
| 2120 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 2121 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 2122 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 2123 | ! |
|---|
| 2124 | ! END SELECT adjust_soil |
|---|
| 2125 | ! END IF |
|---|
| 2126 | ! |
|---|
| 2127 | ! ! Fix grid%em_tmn and grid%em_tsk. |
|---|
| 2128 | ! |
|---|
| 2129 | ! fix_tsk_tmn : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
|---|
| 2130 | ! |
|---|
| 2131 | ! CASE ( SLABSCHEME , LSMSCHEME , RUCLSMSCHEME ) |
|---|
| 2132 | ! DO j = jts, MIN(jde-1,jte) |
|---|
| 2133 | ! DO i = its, MIN(ide-1,ite) |
|---|
| 2134 | ! IF ( ( grid%landmask(i,j) .LT. 0.5 ) .AND. ( flag_sst .EQ. 1 ) .AND. & |
|---|
| 2135 | ! ( grid%sst(i,j) .GT. 240. ) .AND. ( grid%sst(i,j) .LT. 350. ) ) THEN |
|---|
| 2136 | ! grid%tmn(i,j) = grid%sst(i,j) |
|---|
| 2137 | ! grid%tsk(i,j) = grid%sst(i,j) |
|---|
| 2138 | ! ELSE IF ( grid%landmask(i,j) .LT. 0.5 ) THEN |
|---|
| 2139 | ! grid%tmn(i,j) = grid%tsk(i,j) |
|---|
| 2140 | ! END IF |
|---|
| 2141 | ! END DO |
|---|
| 2142 | ! END DO |
|---|
| 2143 | ! END SELECT fix_tsk_tmn |
|---|
| 2144 | ! |
|---|
| 2145 | ! ! Is the grid%em_tsk reasonable? |
|---|
| 2146 | ! |
|---|
| 2147 | |
|---|
| 2148 | |
|---|
| 2149 | !!**** MARS |
|---|
| 2150 | DO j = jts, MIN(jde-1,jte) |
|---|
| 2151 | DO i = its, MIN(ide-1,ite) |
|---|
| 2152 | !!grid%tsk(i,j)=200 |
|---|
| 2153 | grid%tmn(i,j)=0 |
|---|
| 2154 | grid%sst(i,j)=0 !!no use on Mars!! |
|---|
| 2155 | grid%tslb(i,:,j)=0 !!tslb is 3D field |
|---|
| 2156 | END DO |
|---|
| 2157 | END DO |
|---|
| 2158 | !!**** MARS |
|---|
| 2159 | |
|---|
| 2160 | ! IF ( internal_time_loop .NE. 1 ) THEN |
|---|
| 2161 | ! DO j = jts, MIN(jde-1,jte) |
|---|
| 2162 | ! DO i = its, MIN(ide-1,ite) |
|---|
| 2163 | ! IF ( grid%tsk(i,j) .LT. 170 .or. grid%tsk(i,j) .GT. 400. ) THEN |
|---|
| 2164 | ! grid%tsk(i,j) = grid%em_t_2(i,1,j) |
|---|
| 2165 | ! END IF |
|---|
| 2166 | ! END DO |
|---|
| 2167 | ! END DO |
|---|
| 2168 | ! ELSE |
|---|
| 2169 | ! DO j = jts, MIN(jde-1,jte) |
|---|
| 2170 | ! DO i = its, MIN(ide-1,ite) |
|---|
| 2171 | ! IF ( grid%tsk(i,j) .LT. 170 .or. grid%tsk(i,j) .GT. 400. ) THEN |
|---|
| 2172 | ! print *,'error in the grid%em_tsk' |
|---|
| 2173 | ! print *,'i,j=',i,j |
|---|
| 2174 | ! print *,'grid%landmask=',grid%landmask(i,j) |
|---|
| 2175 | ! print *,'grid%tsk, grid%sst, grid%tmn=',grid%tsk(i,j),grid%sst(i,j),grid%tmn(i,j) |
|---|
| 2176 | ! if(grid%tmn(i,j).gt.170. .and. grid%tmn(i,j).lt.400.)then |
|---|
| 2177 | ! grid%tsk(i,j)=grid%tmn(i,j) |
|---|
| 2178 | ! else if(grid%sst(i,j).gt.170. .and. grid%sst(i,j).lt.400.)then |
|---|
| 2179 | ! grid%tsk(i,j)=grid%sst(i,j) |
|---|
| 2180 | ! else |
|---|
| 2181 | ! CALL wrf_error_fatal ( 'grid%em_tsk unreasonable' ) |
|---|
| 2182 | ! end if |
|---|
| 2183 | ! END IF |
|---|
| 2184 | ! END DO |
|---|
| 2185 | ! END DO |
|---|
| 2186 | ! END IF |
|---|
| 2187 | ! |
|---|
| 2188 | ! ! Is the grid%em_tmn reasonable? |
|---|
| 2189 | ! |
|---|
| 2190 | ! DO j = jts, MIN(jde-1,jte) |
|---|
| 2191 | ! DO i = its, MIN(ide-1,ite) |
|---|
| 2192 | ! IF ( ( ( grid%tmn(i,j) .LT. 170. ) .OR. ( grid%tmn(i,j) .GT. 400. ) ) & |
|---|
| 2193 | ! .AND. ( grid%landmask(i,j) .GT. 0.5 ) ) THEN |
|---|
| 2194 | ! IF ( model_config_rec%sf_surface_physics(grid%id) .NE. LSMSCHEME ) THEN |
|---|
| 2195 | ! print *,'error in the grid%em_tmn' |
|---|
| 2196 | ! print *,'i,j=',i,j |
|---|
| 2197 | ! print *,'grid%landmask=',grid%landmask(i,j) |
|---|
| 2198 | ! print *,'grid%tsk, grid%sst, grid%tmn=',grid%tsk(i,j),grid%sst(i,j),grid%tmn(i,j) |
|---|
| 2199 | ! END IF |
|---|
| 2200 | ! |
|---|
| 2201 | ! if(grid%tsk(i,j).gt.170. .and. grid%tsk(i,j).lt.400.)then |
|---|
| 2202 | ! grid%tmn(i,j)=grid%tsk(i,j) |
|---|
| 2203 | ! else if(grid%sst(i,j).gt.170. .and. grid%sst(i,j).lt.400.)then |
|---|
| 2204 | ! grid%tmn(i,j)=grid%sst(i,j) |
|---|
| 2205 | ! else |
|---|
| 2206 | ! CALL wrf_error_fatal ( 'grid%em_tmn unreasonable' ) |
|---|
| 2207 | ! endif |
|---|
| 2208 | ! END IF |
|---|
| 2209 | ! END DO |
|---|
| 2210 | ! END DO |
|---|
| 2211 | ! |
|---|
| 2212 | ! interpolate_soil_tmw : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
|---|
| 2213 | ! |
|---|
| 2214 | ! CASE ( SLABSCHEME , LSMSCHEME , RUCLSMSCHEME ) |
|---|
| 2215 | ! CALL process_soil_real ( grid%tsk , grid%tmn , & |
|---|
| 2216 | ! grid%landmask , grid%sst , & |
|---|
| 2217 | ! st_input , sm_input , sw_input , st_levels_input , sm_levels_input , sw_levels_input , & |
|---|
| 2218 | ! grid%zs , grid%dzs , grid%tslb , grid%smois , grid%sh2o , & |
|---|
| 2219 | ! flag_sst , flag_soilt000, flag_soilm000, & |
|---|
| 2220 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 2221 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 2222 | ! its , ite , jts , jte , kts , kte , & |
|---|
| 2223 | ! model_config_rec%sf_surface_physics(grid%id) , & |
|---|
| 2224 | ! model_config_rec%num_soil_layers , & |
|---|
| 2225 | ! model_config_rec%real_data_init_type , & |
|---|
| 2226 | ! num_st_levels_input , num_sm_levels_input , num_sw_levels_input , & |
|---|
| 2227 | ! num_st_levels_alloc , num_sm_levels_alloc , num_sw_levels_alloc ) |
|---|
| 2228 | ! |
|---|
| 2229 | ! END SELECT interpolate_soil_tmw |
|---|
| 2230 | ! |
|---|
| 2231 | ! ! Minimum soil values, residual, from RUC LSM scheme. For input from Noah and using |
|---|
| 2232 | ! ! RUC LSM scheme, this must be subtracted from the input total soil moisture. For |
|---|
| 2233 | ! ! input RUC data and using the Noah LSM scheme, this value must be added to the soil |
|---|
| 2234 | ! ! moisture input. |
|---|
| 2235 | ! |
|---|
| 2236 | ! lqmi(1:num_soil_top_cat) = & |
|---|
| 2237 | ! (/0.045, 0.057, 0.065, 0.067, 0.034, 0.078, 0.10, & |
|---|
| 2238 | ! 0.089, 0.095, 0.10, 0.070, 0.068, 0.078, 0.0, & |
|---|
| 2239 | ! 0.004, 0.065 /) |
|---|
| 2240 | !! 0.004, 0.065, 0.020, 0.004, 0.008 /) ! has extra levels for playa, lava, and white sand |
|---|
| 2241 | ! |
|---|
| 2242 | ! ! At the initial time we care about values of soil moisture and temperature, other times are |
|---|
| 2243 | ! ! ignored by the model, so we ignore them, too. |
|---|
| 2244 | ! |
|---|
| 2245 | ! IF ( domain_ClockIsStartTime(grid) ) THEN |
|---|
| 2246 | ! account_for_zero_soil_moisture : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
|---|
| 2247 | ! |
|---|
| 2248 | ! CASE ( LSMSCHEME ) |
|---|
| 2249 | ! iicount = 0 |
|---|
| 2250 | ! IF ( FLAG_SM000010 .EQ. 1 ) THEN |
|---|
| 2251 | ! DO j = jts, MIN(jde-1,jte) |
|---|
| 2252 | ! DO i = its, MIN(ide-1,ite) |
|---|
| 2253 | ! IF ( (grid%landmask(i,j).gt.0.5) .and. ( grid%tslb(i,1,j) .gt. 200 ) .and. & |
|---|
| 2254 | ! ( grid%tslb(i,1,j) .lt. 400 ) .and. ( grid%smois(i,1,j) .lt. 0.005 ) ) then |
|---|
| 2255 | ! print *,'Noah -> Noah: bad soil moisture at i,j = ',i,j,grid%smois(i,:,j) |
|---|
| 2256 | ! iicount = iicount + 1 |
|---|
| 2257 | ! grid%smois(i,:,j) = 0.005 |
|---|
| 2258 | ! END IF |
|---|
| 2259 | ! END DO |
|---|
| 2260 | ! END DO |
|---|
| 2261 | ! IF ( iicount .GT. 0 ) THEN |
|---|
| 2262 | ! print *,'Noah -> Noah: total number of small soil moisture locations = ',iicount |
|---|
| 2263 | ! END IF |
|---|
| 2264 | ! ELSE IF ( FLAG_SOILM000 .EQ. 1 ) THEN |
|---|
| 2265 | ! DO j = jts, MIN(jde-1,jte) |
|---|
| 2266 | ! DO i = its, MIN(ide-1,ite) |
|---|
| 2267 | ! grid%smois(i,:,j) = grid%smois(i,:,j) + lqmi(grid%isltyp(i,j)) |
|---|
| 2268 | ! END DO |
|---|
| 2269 | ! END DO |
|---|
| 2270 | ! DO j = jts, MIN(jde-1,jte) |
|---|
| 2271 | ! DO i = its, MIN(ide-1,ite) |
|---|
| 2272 | ! IF ( (grid%landmask(i,j).gt.0.5) .and. ( grid%tslb(i,1,j) .gt. 200 ) .and. & |
|---|
| 2273 | ! ( grid%tslb(i,1,j) .lt. 400 ) .and. ( grid%smois(i,1,j) .lt. 0.005 ) ) then |
|---|
| 2274 | ! print *,'RUC -> Noah: bad soil moisture at i,j = ',i,j,grid%smois(i,:,j) |
|---|
| 2275 | ! iicount = iicount + 1 |
|---|
| 2276 | ! grid%smois(i,:,j) = 0.005 |
|---|
| 2277 | ! END IF |
|---|
| 2278 | ! END DO |
|---|
| 2279 | ! END DO |
|---|
| 2280 | ! IF ( iicount .GT. 0 ) THEN |
|---|
| 2281 | ! print *,'RUC -> Noah: total number of small soil moisture locations = ',iicount |
|---|
| 2282 | ! END IF |
|---|
| 2283 | ! END IF |
|---|
| 2284 | ! |
|---|
| 2285 | ! CASE ( RUCLSMSCHEME ) |
|---|
| 2286 | ! iicount = 0 |
|---|
| 2287 | ! IF ( FLAG_SM000010 .EQ. 1 ) THEN |
|---|
| 2288 | ! DO j = jts, MIN(jde-1,jte) |
|---|
| 2289 | ! DO i = its, MIN(ide-1,ite) |
|---|
| 2290 | ! grid%smois(i,:,j) = MAX ( grid%smois(i,:,j) - lqmi(grid%isltyp(i,j)) , 0. ) |
|---|
| 2291 | ! END DO |
|---|
| 2292 | ! END DO |
|---|
| 2293 | ! ELSE IF ( FLAG_SOILM000 .EQ. 1 ) THEN |
|---|
| 2294 | ! ! no op |
|---|
| 2295 | ! END IF |
|---|
| 2296 | ! |
|---|
| 2297 | ! END SELECT account_for_zero_soil_moisture |
|---|
| 2298 | ! END IF |
|---|
| 2299 | ! |
|---|
| 2300 | ! ! Is the grid%tslb reasonable? |
|---|
| 2301 | ! |
|---|
| 2302 | ! IF ( internal_time_loop .NE. 1 ) THEN |
|---|
| 2303 | ! DO j = jts, MIN(jde-1,jte) |
|---|
| 2304 | ! DO ns = 1 , model_config_rec%num_soil_layers |
|---|
| 2305 | ! DO i = its, MIN(ide-1,ite) |
|---|
| 2306 | ! IF ( grid%tslb(i,ns,j) .LT. 170 .or. grid%tslb(i,ns,j) .GT. 400. ) THEN |
|---|
| 2307 | ! grid%tslb(i,ns,j) = grid%em_t_2(i,1,j) |
|---|
| 2308 | ! grid%smois(i,ns,j) = 0.3 |
|---|
| 2309 | ! END IF |
|---|
| 2310 | ! END DO |
|---|
| 2311 | ! END DO |
|---|
| 2312 | ! END DO |
|---|
| 2313 | ! ELSE |
|---|
| 2314 | ! DO j = jts, MIN(jde-1,jte) |
|---|
| 2315 | ! DO i = its, MIN(ide-1,ite) |
|---|
| 2316 | ! IF ( ( ( grid%tslb(i,1,j) .LT. 170. ) .OR. ( grid%tslb(i,1,j) .GT. 400. ) ) .AND. & |
|---|
| 2317 | ! ( grid%landmask(i,j) .GT. 0.5 ) ) THEN |
|---|
| 2318 | ! IF ( ( model_config_rec%sf_surface_physics(grid%id) .NE. LSMSCHEME ) .AND. & |
|---|
| 2319 | ! ( model_config_rec%sf_surface_physics(grid%id) .NE. RUCLSMSCHEME ) ) THEN |
|---|
| 2320 | ! print *,'error in the grid%tslb' |
|---|
| 2321 | ! print *,'i,j=',i,j |
|---|
| 2322 | ! print *,'grid%landmask=',grid%landmask(i,j) |
|---|
| 2323 | ! print *,'grid%tsk, grid%sst, grid%tmn=',grid%tsk(i,j),grid%sst(i,j),grid%tmn(i,j) |
|---|
| 2324 | ! print *,'grid%tslb = ',grid%tslb(i,:,j) |
|---|
| 2325 | ! print *,'old grid%smois = ',grid%smois(i,:,j) |
|---|
| 2326 | ! grid%smois(i,1,j) = 0.3 |
|---|
| 2327 | ! grid%smois(i,2,j) = 0.3 |
|---|
| 2328 | ! grid%smois(i,3,j) = 0.3 |
|---|
| 2329 | ! grid%smois(i,4,j) = 0.3 |
|---|
| 2330 | ! END IF |
|---|
| 2331 | ! |
|---|
| 2332 | ! IF ( (grid%tsk(i,j).GT.170. .AND. grid%tsk(i,j).LT.400.) .AND. & |
|---|
| 2333 | ! (grid%tmn(i,j).GT.170. .AND. grid%tmn(i,j).LT.400.) ) THEN |
|---|
| 2334 | ! fake_soil_temp : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
|---|
| 2335 | ! CASE ( SLABSCHEME ) |
|---|
| 2336 | ! DO ns = 1 , model_config_rec%num_soil_layers |
|---|
| 2337 | ! grid%tslb(i,ns,j) = ( grid%tsk(i,j)*(3.0 - grid%zs(ns)) + & |
|---|
| 2338 | ! grid%tmn(i,j)*(0.0 - grid%zs(ns)) ) /(3.0 - 0.0) |
|---|
| 2339 | ! END DO |
|---|
| 2340 | ! CASE ( LSMSCHEME , RUCLSMSCHEME ) |
|---|
| 2341 | ! CALL wrf_error_fatal ( 'Assigning constant soil moisture, bad idea') |
|---|
| 2342 | ! DO ns = 1 , model_config_rec%num_soil_layers |
|---|
| 2343 | ! grid%tslb(i,ns,j) = ( grid%tsk(i,j)*(3.0 - grid%zs(ns)) + & |
|---|
| 2344 | ! grid%tmn(i,j)*(0.0 - grid%zs(ns)) ) /(3.0 - 0.0) |
|---|
| 2345 | ! END DO |
|---|
| 2346 | ! END SELECT fake_soil_temp |
|---|
| 2347 | ! else if(grid%tsk(i,j).gt.170. .and. grid%tsk(i,j).lt.400.)then |
|---|
| 2348 | ! CALL wrf_error_fatal ( 'grid%tslb unreasonable 1' ) |
|---|
| 2349 | ! DO ns = 1 , model_config_rec%num_soil_layers |
|---|
| 2350 | ! grid%tslb(i,ns,j)=grid%tsk(i,j) |
|---|
| 2351 | ! END DO |
|---|
| 2352 | ! else if(grid%sst(i,j).gt.170. .and. grid%sst(i,j).lt.400.)then |
|---|
| 2353 | ! CALL wrf_error_fatal ( 'grid%tslb unreasonable 2' ) |
|---|
| 2354 | ! DO ns = 1 , model_config_rec%num_soil_layers |
|---|
| 2355 | ! grid%tslb(i,ns,j)=grid%sst(i,j) |
|---|
| 2356 | ! END DO |
|---|
| 2357 | ! else if(grid%tmn(i,j).gt.170. .and. grid%tmn(i,j).lt.400.)then |
|---|
| 2358 | ! CALL wrf_error_fatal ( 'grid%tslb unreasonable 3' ) |
|---|
| 2359 | ! DO ns = 1 , model_config_rec%num_soil_layers |
|---|
| 2360 | ! grid%tslb(i,ns,j)=grid%tmn(i,j) |
|---|
| 2361 | ! END DO |
|---|
| 2362 | ! else |
|---|
| 2363 | ! CALL wrf_error_fatal ( 'grid%tslb unreasonable 4' ) |
|---|
| 2364 | ! endif |
|---|
| 2365 | ! END IF |
|---|
| 2366 | ! END DO |
|---|
| 2367 | ! END DO |
|---|
| 2368 | ! END IF |
|---|
| 2369 | ! |
|---|
| 2370 | ! ! Adjustments for the seaice field AFTER the grid%tslb computations. This is |
|---|
| 2371 | ! ! is for the Noah LSM scheme. |
|---|
| 2372 | ! |
|---|
| 2373 | ! num_veg_cat = SIZE ( grid%landusef , DIM=2 ) |
|---|
| 2374 | ! num_soil_top_cat = SIZE ( grid%soilctop , DIM=2 ) |
|---|
| 2375 | ! num_soil_bot_cat = SIZE ( grid%soilcbot , DIM=2 ) |
|---|
| 2376 | ! CALL nl_get_seaice_threshold ( grid%id , grid%seaice_threshold ) |
|---|
| 2377 | ! CALL nl_get_isice ( grid%id , grid%isice ) |
|---|
| 2378 | ! CALL nl_get_iswater ( grid%id , grid%iswater ) |
|---|
| 2379 | ! CALL adjust_for_seaice_post ( grid%xice , grid%landmask , grid%tsk , grid%tsk_save , & |
|---|
| 2380 | ! grid%ivgtyp , grid%vegcat , grid%lu_index , & |
|---|
| 2381 | ! grid%xland , grid%landusef , grid%isltyp , grid%soilcat , & |
|---|
| 2382 | ! grid%soilctop , & |
|---|
| 2383 | ! grid%soilcbot , grid%tmn , grid%vegfra , & |
|---|
| 2384 | ! grid%tslb , grid%smois , grid%sh2o , & |
|---|
| 2385 | ! grid%seaice_threshold , & |
|---|
| 2386 | ! num_veg_cat , num_soil_top_cat , num_soil_bot_cat , & |
|---|
| 2387 | ! model_config_rec%num_soil_layers , & |
|---|
| 2388 | ! grid%iswater , grid%isice , & |
|---|
| 2389 | ! model_config_rec%sf_surface_physics(grid%id) , & |
|---|
| 2390 | ! ids , ide , jds , jde , kds , kde , & |
|---|
| 2391 | ! ims , ime , jms , jme , kms , kme , & |
|---|
| 2392 | ! its , ite , jts , jte , kts , kte ) |
|---|
| 2393 | ! |
|---|
| 2394 | ! ! Let us make sure (again) that the grid%landmask and the veg/soil categories match. |
|---|
| 2395 | ! |
|---|
| 2396 | !oops1=0 |
|---|
| 2397 | !oops2=0 |
|---|
| 2398 | ! DO j = jts, MIN(jde-1,jte) |
|---|
| 2399 | ! DO i = its, MIN(ide-1,ite) |
|---|
| 2400 | ! IF ( ( ( grid%landmask(i,j) .LT. 0.5 ) .AND. & |
|---|
| 2401 | ! ( grid%ivgtyp(i,j) .NE. config_flags%iswater .OR. grid%isltyp(i,j) .NE. 14 ) ) .OR. & |
|---|
| 2402 | ! ( ( grid%landmask(i,j) .GT. 0.5 ) .AND. & |
|---|
| 2403 | ! ( grid%ivgtyp(i,j) .EQ. config_flags%iswater .OR. grid%isltyp(i,j) .EQ. 14 ) ) ) THEN |
|---|
| 2404 | ! IF ( grid%tslb(i,1,j) .GT. 1. ) THEN |
|---|
| 2405 | !oops1=oops1+1 |
|---|
| 2406 | ! grid%ivgtyp(i,j) = 5 |
|---|
| 2407 | ! grid%isltyp(i,j) = 8 |
|---|
| 2408 | ! grid%landmask(i,j) = 1 |
|---|
| 2409 | ! grid%xland(i,j) = 1 |
|---|
| 2410 | ! ELSE IF ( grid%sst(i,j) .GT. 1. ) THEN |
|---|
| 2411 | !oops2=oops2+1 |
|---|
| 2412 | ! grid%ivgtyp(i,j) = config_flags%iswater |
|---|
| 2413 | ! grid%isltyp(i,j) = 14 |
|---|
| 2414 | ! grid%landmask(i,j) = 0 |
|---|
| 2415 | ! grid%xland(i,j) = 2 |
|---|
| 2416 | ! ELSE |
|---|
| 2417 | ! print *,'the grid%landmask and soil/veg cats do not match' |
|---|
| 2418 | ! print *,'i,j=',i,j |
|---|
| 2419 | ! print *,'grid%landmask=',grid%landmask(i,j) |
|---|
| 2420 | ! print *,'grid%ivgtyp=',grid%ivgtyp(i,j) |
|---|
| 2421 | ! print *,'grid%isltyp=',grid%isltyp(i,j) |
|---|
| 2422 | ! print *,'iswater=', config_flags%iswater |
|---|
| 2423 | ! print *,'grid%tslb=',grid%tslb(i,:,j) |
|---|
| 2424 | ! print *,'grid%sst=',grid%sst(i,j) |
|---|
| 2425 | ! CALL wrf_error_fatal ( 'mismatch_landmask_ivgtyp' ) |
|---|
| 2426 | ! END IF |
|---|
| 2427 | ! END IF |
|---|
| 2428 | ! END DO |
|---|
| 2429 | ! END DO |
|---|
| 2430 | !if (oops1.gt.0) then |
|---|
| 2431 | !print *,'points artificially set to land : ',oops1 |
|---|
| 2432 | !endif |
|---|
| 2433 | !if(oops2.gt.0) then |
|---|
| 2434 | !print *,'points artificially set to water: ',oops2 |
|---|
| 2435 | !endif |
|---|
| 2436 | !! fill grid%sst array with grid%em_tsk if missing in real input (needed for time-varying grid%sst in wrf) |
|---|
| 2437 | ! DO j = jts, MIN(jde-1,jte) |
|---|
| 2438 | ! DO i = its, MIN(ide-1,ite) |
|---|
| 2439 | ! IF ( flag_sst .NE. 1 ) THEN |
|---|
| 2440 | ! grid%sst(i,j) = grid%tsk(i,j) |
|---|
| 2441 | ! ENDIF |
|---|
| 2442 | ! END DO |
|---|
| 2443 | ! END DO |
|---|
| 2444 | |
|---|
| 2445 | |
|---|
| 2446 | ! From the full level data, we can get the half levels, reciprocals, and layer |
|---|
| 2447 | ! thicknesses. These are all defined at half level locations, so one less level. |
|---|
| 2448 | ! We allow the vertical coordinate to *accidently* come in upside down. We want |
|---|
| 2449 | ! the first full level to be the ground surface. |
|---|
| 2450 | |
|---|
| 2451 | ! Check whether grid%em_znw (full level) data are truly full levels. If not, we need to adjust them |
|---|
| 2452 | ! to be full levels. |
|---|
| 2453 | ! in this test, we check if grid%em_znw(1) is neither 0 nor 1 (within a tolerance of 10**-5) |
|---|
| 2454 | |
|---|
| 2455 | were_bad = .false. |
|---|
| 2456 | IF ( ( (grid%em_znw(1).LT.(1-1.E-5) ) .OR. ( grid%em_znw(1).GT.(1+1.E-5) ) ).AND. & |
|---|
| 2457 | ( (grid%em_znw(1).LT.(0-1.E-5) ) .OR. ( grid%em_znw(1).GT.(0+1.E-5) ) ) ) THEN |
|---|
| 2458 | were_bad = .true. |
|---|
| 2459 | print *,'Your grid%em_znw input values are probably half-levels. ' |
|---|
| 2460 | print *,grid%em_znw |
|---|
| 2461 | print *,'WRF expects grid%em_znw values to be full levels. ' |
|---|
| 2462 | print *,'Adjusting now to full levels...' |
|---|
| 2463 | ! We want to ignore the first value if it's negative |
|---|
| 2464 | IF (grid%em_znw(1).LT.0) THEN |
|---|
| 2465 | grid%em_znw(1)=0 |
|---|
| 2466 | END IF |
|---|
| 2467 | DO k=2,kde |
|---|
| 2468 | grid%em_znw(k)=2*grid%em_znw(k)-grid%em_znw(k-1) |
|---|
| 2469 | END DO |
|---|
| 2470 | END IF |
|---|
| 2471 | |
|---|
| 2472 | ! Let's check our changes |
|---|
| 2473 | |
|---|
| 2474 | IF ( ( ( grid%em_znw(1) .LT. (1-1.E-5) ) .OR. ( grid%em_znw(1) .GT. (1+1.E-5) ) ).AND. & |
|---|
| 2475 | ( ( grid%em_znw(1) .LT. (0-1.E-5) ) .OR. ( grid%em_znw(1) .GT. (0+1.E-5) ) ) ) THEN |
|---|
| 2476 | print *,'The input grid%em_znw height values were half-levels or erroneous. ' |
|---|
| 2477 | print *,'Attempts to treat the values as half-levels and change them ' |
|---|
| 2478 | print *,'to valid full levels failed.' |
|---|
| 2479 | CALL wrf_error_fatal("bad grid%em_znw values from input files") |
|---|
| 2480 | ELSE IF ( were_bad ) THEN |
|---|
| 2481 | print *,'...adjusted. grid%em_znw array now contains full eta level values. ' |
|---|
| 2482 | ENDIF |
|---|
| 2483 | |
|---|
| 2484 | IF ( grid%em_znw(1) .LT. grid%em_znw(kde) ) THEN |
|---|
| 2485 | DO k=1, kde/2 |
|---|
| 2486 | hold_znw = grid%em_znw(k) |
|---|
| 2487 | grid%em_znw(k)=grid%em_znw(kde+1-k) |
|---|
| 2488 | grid%em_znw(kde+1-k)=hold_znw |
|---|
| 2489 | END DO |
|---|
| 2490 | END IF |
|---|
| 2491 | |
|---|
| 2492 | DO k=1, kde-1 |
|---|
| 2493 | grid%em_dnw(k) = grid%em_znw(k+1) - grid%em_znw(k) |
|---|
| 2494 | grid%em_rdnw(k) = 1./grid%em_dnw(k) |
|---|
| 2495 | grid%em_znu(k) = 0.5*(grid%em_znw(k+1)+grid%em_znw(k)) |
|---|
| 2496 | END DO |
|---|
| 2497 | |
|---|
| 2498 | ! Now the same sort of computations with the half eta levels, even ANOTHER |
|---|
| 2499 | ! level less than the one above. |
|---|
| 2500 | |
|---|
| 2501 | DO k=2, kde-1 |
|---|
| 2502 | grid%em_dn(k) = 0.5*(grid%em_dnw(k)+grid%em_dnw(k-1)) |
|---|
| 2503 | grid%em_rdn(k) = 1./grid%em_dn(k) |
|---|
| 2504 | grid%em_fnp(k) = .5* grid%em_dnw(k )/grid%em_dn(k) |
|---|
| 2505 | grid%em_fnm(k) = .5* grid%em_dnw(k-1)/grid%em_dn(k) |
|---|
| 2506 | END DO |
|---|
| 2507 | |
|---|
| 2508 | ! Scads of vertical coefficients. |
|---|
| 2509 | |
|---|
| 2510 | cof1 = (2.*grid%em_dn(2)+grid%em_dn(3))/(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(2) |
|---|
| 2511 | cof2 = grid%em_dn(2) /(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(3) |
|---|
| 2512 | |
|---|
| 2513 | grid%cf1 = grid%em_fnp(2) + cof1 |
|---|
| 2514 | grid%cf2 = grid%em_fnm(2) - cof1 - cof2 |
|---|
| 2515 | grid%cf3 = cof2 |
|---|
| 2516 | |
|---|
| 2517 | grid%cfn = (.5*grid%em_dnw(kde-1)+grid%em_dn(kde-1))/grid%em_dn(kde-1) |
|---|
| 2518 | grid%cfn1 = -.5*grid%em_dnw(kde-1)/grid%em_dn(kde-1) |
|---|
| 2519 | |
|---|
| 2520 | ! Inverse grid distances. |
|---|
| 2521 | |
|---|
| 2522 | grid%rdx = 1./config_flags%dx |
|---|
| 2523 | grid%rdy = 1./config_flags%dy |
|---|
| 2524 | |
|---|
| 2525 | ! Some of the many weird geopotential initializations that we'll see today: grid%em_ph0 is total, |
|---|
| 2526 | ! and grid%em_ph_2 is a perturbation from the base state geopotential. We set the base geopotential |
|---|
| 2527 | ! at the lowest level to terrain elevation * gravity. |
|---|
| 2528 | |
|---|
| 2529 | DO j=jts,jte |
|---|
| 2530 | DO i=its,ite |
|---|
| 2531 | grid%em_ph0(i,1,j) = grid%ht(i,j) * g |
|---|
| 2532 | grid%em_ph_2(i,1,j) = 0. |
|---|
| 2533 | END DO |
|---|
| 2534 | END DO |
|---|
| 2535 | |
|---|
| 2536 | ! Base state potential temperature and inverse density (alpha = 1/rho) from |
|---|
| 2537 | ! the half eta levels and the base-profile surface pressure. Compute 1/rho |
|---|
| 2538 | ! from equation of state. The potential temperature is a perturbation from t0. |
|---|
| 2539 | |
|---|
| 2540 | DO j = jts, MIN(jte,jde-1) |
|---|
| 2541 | DO i = its, MIN(ite,ide-1) |
|---|
| 2542 | |
|---|
| 2543 | |
|---|
| 2544 | !****MARS |
|---|
| 2545 | !TODO: etudier si une meilleure formule n'existe pas pour Mars |
|---|
| 2546 | !TODO: mais il s'agit juste d'un etat de base ... |
|---|
| 2547 | !****MARS |
|---|
| 2548 | ! Base state pressure is a function of eta level and terrain, only, plus |
|---|
| 2549 | ! the hand full of constants: p00 (sea level pressure, Pa), t00 (sea level |
|---|
| 2550 | ! temperature, K), and A (temperature difference, from 1000 mb to 300 mb, K). |
|---|
| 2551 | |
|---|
| 2552 | !!****MARS |
|---|
| 2553 | !!ici il s'agit de definir un etat de base, de reference |
|---|
| 2554 | !!- on ne peut prendre le profil de temperature du modele |
|---|
| 2555 | !! qui conduit a des instabilites |
|---|
| 2556 | !! grid%em_t_init(i,k,j)=grid%em_t_2(i,k,j) - t0 est a eviter donc. |
|---|
| 2557 | !!- pour la pression de surface, aucune information |
|---|
| 2558 | !! sur un profil de temperature variable et non equilibre |
|---|
| 2559 | !! ne doit transparaitre |
|---|
| 2560 | !! p_surf = grid%psfc(i,j) pourquoi pas ... mais t y est utilisee ... |
|---|
| 2561 | !! |
|---|
| 2562 | !!>> l'etat de base ne doit dependre "geographiquement" que de la topographie |
|---|
| 2563 | !! |
|---|
| 2564 | !!****MARS |
|---|
| 2565 | p_surf = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht(i,j)/a/r_d ) **0.5 ) |
|---|
| 2566 | |
|---|
| 2567 | DO k = 1, kte-1 |
|---|
| 2568 | grid%em_php(i,k,j) = grid%em_znw(k)*(p_surf - grid%p_top) + grid%p_top ! temporary, full lev base pressure |
|---|
| 2569 | grid%em_pb(i,k,j) = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top |
|---|
| 2570 | ! temp = MAX ( 200., t00 + A*LOG(grid%em_pb(i,k,j)/p00) ) |
|---|
| 2571 | ! temp = t00 + A*LOG(grid%em_pb(i,k,j)/p00) |
|---|
| 2572 | !!! MODIF WRFV3.1 - parameter tiso |
|---|
| 2573 | !!! have to change as well in start_em |
|---|
| 2574 | temp = MAX ( tiso, t00 + A*LOG(grid%em_pb(i,k,j)/p00) ) |
|---|
| 2575 | IF (( i .EQ. its ) .AND. ( j .EQ. jts )) print *, temp, k |
|---|
| 2576 | !!! MODIF WRFV3.1 - parameter tiso |
|---|
| 2577 | IF (planet .eq. "mars" ) THEN |
|---|
| 2578 | grid%em_t_init(i,k,j) = temp*(p00/grid%em_pb(i,k,j))**(r_d/cp) - t0 |
|---|
| 2579 | ELSE |
|---|
| 2580 | grid%em_t_init(i,k,j) = (temp**nu + nu*(TT00**nu)*log((p00/grid%em_pb(i,k,j))**rcp))**(1/nu) -t0 |
|---|
| 2581 | ENDIF |
|---|
| 2582 | grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm |
|---|
| 2583 | END DO |
|---|
| 2584 | |
|---|
| 2585 | ! Base state mu is defined as base state surface pressure minus grid%p_top |
|---|
| 2586 | |
|---|
| 2587 | grid%em_mub(i,j) = p_surf - grid%p_top |
|---|
| 2588 | |
|---|
| 2589 | ! Dry surface pressure is defined as the following (this mu is from the input file |
|---|
| 2590 | ! computed from the dry pressure). Here the dry pressure is just reconstituted. |
|---|
| 2591 | |
|---|
| 2592 | pd_surf = grid%em_mu0(i,j) + grid%p_top |
|---|
| 2593 | |
|---|
| 2594 | ! Integrate base geopotential, starting at terrain elevation. This assures that |
|---|
| 2595 | ! the base state is in exact hydrostatic balance with respect to the model equations. |
|---|
| 2596 | ! This field is on full levels. |
|---|
| 2597 | |
|---|
| 2598 | grid%em_phb(i,1,j) = grid%ht(i,j) * g |
|---|
| 2599 | IF (hypsometric_opt == 1) THEN |
|---|
| 2600 | DO k = 2,kte |
|---|
| 2601 | grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j) |
|---|
| 2602 | END DO |
|---|
| 2603 | ELSE IF (hypsometric_opt == 2) THEN |
|---|
| 2604 | DO k = 2,kte |
|---|
| 2605 | pfu = grid%em_mub(i,j)*grid%em_znw(k) + grid%p_top |
|---|
| 2606 | pfd = grid%em_mub(i,j)*grid%em_znw(k-1) + grid%p_top |
|---|
| 2607 | phm = grid%em_mub(i,j)*grid%em_znu(k-1) + grid%p_top |
|---|
| 2608 | grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) + grid%em_alb(i,k-1,j)*phm*LOG(pfd/pfu) |
|---|
| 2609 | END DO |
|---|
| 2610 | END IF |
|---|
| 2611 | |
|---|
| 2612 | END DO |
|---|
| 2613 | END DO |
|---|
| 2614 | |
|---|
| 2615 | ! Fill in the outer rows and columns to allow us to be sloppy. |
|---|
| 2616 | |
|---|
| 2617 | IF ( ite .EQ. ide ) THEN |
|---|
| 2618 | i = ide |
|---|
| 2619 | DO j = jts, MIN(jde-1,jte) |
|---|
| 2620 | grid%em_mub(i,j) = grid%em_mub(i-1,j) |
|---|
| 2621 | grid%em_mu_2(i,j) = grid%em_mu_2(i-1,j) |
|---|
| 2622 | DO k = 1, kte-1 |
|---|
| 2623 | grid%em_pb(i,k,j) = grid%em_pb(i-1,k,j) |
|---|
| 2624 | grid%em_t_init(i,k,j) = grid%em_t_init(i-1,k,j) |
|---|
| 2625 | grid%em_alb(i,k,j) = grid%em_alb(i-1,k,j) |
|---|
| 2626 | END DO |
|---|
| 2627 | DO k = 1, kte |
|---|
| 2628 | grid%em_phb(i,k,j) = grid%em_phb(i-1,k,j) |
|---|
| 2629 | END DO |
|---|
| 2630 | END DO |
|---|
| 2631 | END IF |
|---|
| 2632 | |
|---|
| 2633 | IF ( jte .EQ. jde ) THEN |
|---|
| 2634 | j = jde |
|---|
| 2635 | DO i = its, ite |
|---|
| 2636 | grid%em_mub(i,j) = grid%em_mub(i,j-1) |
|---|
| 2637 | grid%em_mu_2(i,j) = grid%em_mu_2(i,j-1) |
|---|
| 2638 | DO k = 1, kte-1 |
|---|
| 2639 | grid%em_pb(i,k,j) = grid%em_pb(i,k,j-1) |
|---|
| 2640 | grid%em_t_init(i,k,j) = grid%em_t_init(i,k,j-1) |
|---|
| 2641 | grid%em_alb(i,k,j) = grid%em_alb(i,k,j-1) |
|---|
| 2642 | END DO |
|---|
| 2643 | DO k = 1, kte |
|---|
| 2644 | grid%em_phb(i,k,j) = grid%em_phb(i,k,j-1) |
|---|
| 2645 | END DO |
|---|
| 2646 | END DO |
|---|
| 2647 | END IF |
|---|
| 2648 | |
|---|
| 2649 | ! Compute the perturbation dry pressure (grid%em_mub + grid%em_mu_2 + ptop = dry grid%em_psfc). |
|---|
| 2650 | |
|---|
| 2651 | DO j = jts, min(jde-1,jte) |
|---|
| 2652 | DO i = its, min(ide-1,ite) |
|---|
| 2653 | grid%em_mu_2(i,j) = grid%em_mu0(i,j) - grid%em_mub(i,j) |
|---|
| 2654 | END DO |
|---|
| 2655 | END DO |
|---|
| 2656 | |
|---|
| 2657 | ! Fill in the outer rows and columns to allow us to be sloppy. |
|---|
| 2658 | |
|---|
| 2659 | IF ( ite .EQ. ide ) THEN |
|---|
| 2660 | i = ide |
|---|
| 2661 | DO j = jts, MIN(jde-1,jte) |
|---|
| 2662 | grid%em_mu_2(i,j) = grid%em_mu_2(i-1,j) |
|---|
| 2663 | END DO |
|---|
| 2664 | END IF |
|---|
| 2665 | |
|---|
| 2666 | IF ( jte .EQ. jde ) THEN |
|---|
| 2667 | j = jde |
|---|
| 2668 | DO i = its, ite |
|---|
| 2669 | grid%em_mu_2(i,j) = grid%em_mu_2(i,j-1) |
|---|
| 2670 | END DO |
|---|
| 2671 | END IF |
|---|
| 2672 | |
|---|
| 2673 | lev500 = 0 |
|---|
| 2674 | DO j = jts, min(jde-1,jte) |
|---|
| 2675 | DO i = its, min(ide-1,ite) |
|---|
| 2676 | |
|---|
| 2677 | ! Assign the potential temperature (perturbation from t0) and qv on all the mass |
|---|
| 2678 | ! point locations. |
|---|
| 2679 | |
|---|
| 2680 | DO k = 1 , kde-1 |
|---|
| 2681 | grid%em_t_2(i,k,j) = grid%em_t_2(i,k,j) - t0 |
|---|
| 2682 | END DO |
|---|
| 2683 | |
|---|
| 2684 | !!--------------------------------------------------------------- |
|---|
| 2685 | !!****MARS: no 500mb adjustment needed |
|---|
| 2686 | !!****MARS: must keep however the hydrostatic equation integration performed in this loop ! |
|---|
| 2687 | !!****MARS: the DO WHILE loop is deactivated, since we will always be in the case |
|---|
| 2688 | !!****MARS: ... of "ELSE dpmu = 0." |
|---|
| 2689 | !!--------------------------------------------------------------- |
|---|
| 2690 | ! dpmu = 10001. |
|---|
| 2691 | ! loop_count = 0 |
|---|
| 2692 | ! |
|---|
| 2693 | ! DO WHILE ( ( ABS(dpmu) .GT. 10. ) .AND. & |
|---|
| 2694 | ! ( loop_count .LT. 5 ) ) |
|---|
| 2695 | ! |
|---|
| 2696 | ! loop_count = loop_count + 1 |
|---|
| 2697 | |
|---|
| 2698 | ! Integrate the hydrostatic equation (from the RHS of the bigstep vertical momentum |
|---|
| 2699 | ! equation) down from the top to get the pressure perturbation. First get the pressure |
|---|
| 2700 | ! perturbation, moisture, and inverse density (total and perturbation) at the top-most level. |
|---|
| 2701 | |
|---|
| 2702 | k = kte-1 |
|---|
| 2703 | |
|---|
| 2704 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV)) |
|---|
| 2705 | qvf2 = 1./(1.+qvf1) |
|---|
| 2706 | qvf1 = qvf1*qvf2 |
|---|
| 2707 | |
|---|
| 2708 | grid%em_p(i,k,j) = - 0.5*(grid%em_mu_2(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2 |
|---|
| 2709 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
|---|
| 2710 | grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_2(i,k,j)+t0)*qvf& |
|---|
| 2711 | *(((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm) |
|---|
| 2712 | grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j) |
|---|
| 2713 | |
|---|
| 2714 | ! Now, integrate down the column to compute the pressure perturbation, and diagnose the two |
|---|
| 2715 | ! inverse density fields (total and perturbation). |
|---|
| 2716 | |
|---|
| 2717 | DO k=kte-2,1,-1 |
|---|
| 2718 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV)) |
|---|
| 2719 | qvf2 = 1./(1.+qvf1) |
|---|
| 2720 | qvf1 = qvf1*qvf2 |
|---|
| 2721 | grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_2(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1) |
|---|
| 2722 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
|---|
| 2723 | grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_2(i,k,j)+t0)*qvf* & |
|---|
| 2724 | (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm) |
|---|
| 2725 | grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j) |
|---|
| 2726 | END DO |
|---|
| 2727 | |
|---|
| 2728 | ! This is the hydrostatic equation used in the model after the small timesteps. In |
|---|
| 2729 | ! the model, grid%em_al (inverse density) is computed from the geopotential. |
|---|
| 2730 | |
|---|
| 2731 | IF (hypsometric_opt == 1) THEN |
|---|
| 2732 | DO k = 2,kte |
|---|
| 2733 | grid%em_ph_2(i,k,j) = grid%em_ph_2(i,k-1,j) - & |
|---|
| 2734 | grid%em_dnw(k-1) * ( (grid%em_mub(i,j)+grid%em_mu_2(i,j))*grid%em_al(i,k-1,j) & |
|---|
| 2735 | + grid%em_mu_2(i,j)*grid%em_alb(i,k-1,j) ) |
|---|
| 2736 | grid%em_ph0(i,k,j) = grid%em_ph_2(i,k,j) + grid%em_phb(i,k,j) |
|---|
| 2737 | END DO |
|---|
| 2738 | ELSE IF (hypsometric_opt == 2) THEN |
|---|
| 2739 | ! Alternative hydrostatic eq.: dZ = -al*p*dLOG(p), where p is dry pressure. |
|---|
| 2740 | ! Note that al*p approximates Rd*T and dLOG(p) does z. |
|---|
| 2741 | ! Here T varies mostly linear with z, the first-order integration produces better result. |
|---|
| 2742 | PRINT*,"WEE ET AL. 2012 CORRECTION." |
|---|
| 2743 | grid%em_ph_2(i,1,j) = grid%em_phb(i,1,j) |
|---|
| 2744 | DO k = 2,kte |
|---|
| 2745 | pfu = grid%em_mu0(i,j)*grid%em_znw(k) + grid%p_top |
|---|
| 2746 | pfd = grid%em_mu0(i,j)*grid%em_znw(k-1) + grid%p_top |
|---|
| 2747 | phm = grid%em_mu0(i,j)*grid%em_znu(k-1) + grid%p_top |
|---|
| 2748 | grid%em_ph_2(i,k,j) = grid%em_ph_2(i,k-1,j) + grid%em_alt(i,k-1,j)*phm*LOG(pfd/pfu) |
|---|
| 2749 | END DO |
|---|
| 2750 | |
|---|
| 2751 | DO k = 1,kte |
|---|
| 2752 | grid%em_ph_2(i,k,j) = grid%em_ph_2(i,k,j) - grid%em_phb(i,k,j) |
|---|
| 2753 | END DO |
|---|
| 2754 | END IF |
|---|
| 2755 | |
|---|
| 2756 | |
|---|
| 2757 | ! ! Adjust the column pressure so that the computed 500 mb height is close to the |
|---|
| 2758 | ! ! input value (of course, not when we are doing hybrid input). |
|---|
| 2759 | ! |
|---|
| 2760 | ! IF ( ( flag_metgrid .EQ. 1 ) .AND. ( i .EQ. its ) .AND. ( j .EQ. jts ) ) THEN |
|---|
| 2761 | ! DO k = 1 , num_metgrid_levels |
|---|
| 2762 | ! IF ( ABS ( grid%em_p_gc(i,k,j) - 50000. ) .LT. 1. ) THEN |
|---|
| 2763 | ! lev500 = k |
|---|
| 2764 | ! EXIT |
|---|
| 2765 | ! END IF |
|---|
| 2766 | ! END DO |
|---|
| 2767 | ! END IF |
|---|
| 2768 | ! |
|---|
| 2769 | ! ! We only do the adjustment of height if we have the input data on pressure |
|---|
| 2770 | ! ! surfaces, and folks have asked to do this option. |
|---|
| 2771 | ! |
|---|
| 2772 | ! IF ( ( flag_metgrid .EQ. 1 ) .AND. & |
|---|
| 2773 | ! ( config_flags%adjust_heights ) .AND. & |
|---|
| 2774 | ! ( lev500 .NE. 0 ) ) THEN |
|---|
| 2775 | ! |
|---|
| 2776 | ! DO k = 2 , kte-1 |
|---|
| 2777 | ! |
|---|
| 2778 | ! ! Get the pressures on the full eta levels (grid%em_php is defined above as |
|---|
| 2779 | ! ! the full-lev base pressure, an easy array to use for 3d space). |
|---|
| 2780 | ! |
|---|
| 2781 | ! pl = grid%em_php(i,k ,j) + & |
|---|
| 2782 | ! ( grid%em_p(i,k-1 ,j) * ( grid%em_znw(k ) - grid%em_znu(k ) ) + & |
|---|
| 2783 | ! grid%em_p(i,k ,j) * ( grid%em_znu(k-1 ) - grid%em_znw(k ) ) ) / & |
|---|
| 2784 | ! ( grid%em_znu(k-1 ) - grid%em_znu(k ) ) |
|---|
| 2785 | ! pu = grid%em_php(i,k+1,j) + & |
|---|
| 2786 | ! ( grid%em_p(i,k-1+1,j) * ( grid%em_znw(k +1) - grid%em_znu(k+1) ) + & |
|---|
| 2787 | ! grid%em_p(i,k +1,j) * ( grid%em_znu(k-1+1) - grid%em_znw(k+1) ) ) / & |
|---|
| 2788 | ! ( grid%em_znu(k-1+1) - grid%em_znu(k+1) ) |
|---|
| 2789 | ! |
|---|
| 2790 | ! ! If these pressure levels trap 500 mb, use them to interpolate |
|---|
| 2791 | ! ! to the 500 mb level of the computed height. |
|---|
| 2792 | !!**** PB on MARS .... ? |
|---|
| 2793 | ! IF ( ( pl .GE. 50000. ) .AND. ( pu .LT. 50000. ) ) THEN |
|---|
| 2794 | ! zl = ( grid%em_ph_2(i,k ,j) + grid%em_phb(i,k ,j) ) / g |
|---|
| 2795 | ! zu = ( grid%em_ph_2(i,k+1,j) + grid%em_phb(i,k+1,j) ) / g |
|---|
| 2796 | ! |
|---|
| 2797 | ! z500 = ( zl * ( LOG(50000.) - LOG(pu ) ) + & |
|---|
| 2798 | ! zu * ( LOG(pl ) - LOG(50000.) ) ) / & |
|---|
| 2799 | ! ( LOG(pl) - LOG(pu) ) |
|---|
| 2800 | !! z500 = ( zl * ( (50000.) - (pu ) ) + & |
|---|
| 2801 | !! zu * ( (pl ) - (50000.) ) ) / & |
|---|
| 2802 | !! ( (pl) - (pu) ) |
|---|
| 2803 | ! |
|---|
| 2804 | ! ! Compute the difference of the 500 mb heights (computed minus input), and |
|---|
| 2805 | ! ! then the change in grid%em_mu_2. The grid%em_php is still full-levels, base pressure. |
|---|
| 2806 | ! |
|---|
| 2807 | ! dz500 = z500 - grid%em_ght_gc(i,lev500,j) |
|---|
| 2808 | ! tvsfc = ((grid%em_t_2(i,1,j)+t0)*((grid%em_p(i,1,j)+grid%em_php(i,1,j))/p1000mb)**(r_d/cp)) * & |
|---|
| 2809 | ! (1.+0.6*moist(i,1,j,P_QV)) |
|---|
| 2810 | ! dpmu = ( grid%em_php(i,1,j) + grid%em_p(i,1,j) ) * EXP ( g * dz500 / ( r_d * tvsfc ) ) |
|---|
| 2811 | ! dpmu = dpmu - ( grid%em_php(i,1,j) + grid%em_p(i,1,j) ) |
|---|
| 2812 | ! grid%em_mu_2(i,j) = grid%em_mu_2(i,j) - dpmu |
|---|
| 2813 | ! EXIT |
|---|
| 2814 | ! END IF |
|---|
| 2815 | ! |
|---|
| 2816 | ! END DO |
|---|
| 2817 | ! ELSE |
|---|
| 2818 | ! dpmu = 0. |
|---|
| 2819 | ! END IF |
|---|
| 2820 | ! |
|---|
| 2821 | ! END DO |
|---|
| 2822 | |
|---|
| 2823 | END DO |
|---|
| 2824 | END DO |
|---|
| 2825 | |
|---|
| 2826 | !!****MARS: we use WPS |
|---|
| 2827 | ! |
|---|
| 2828 | ! ! If this is data from the SI, then we probably do not have the original |
|---|
| 2829 | ! ! surface data laying around. Note that these are all the lowest levels |
|---|
| 2830 | ! ! of the respective 3d arrays. For surface pressure, we assume that the |
|---|
| 2831 | ! ! vertical gradient of grid%em_p prime is zilch. This is not all that important. |
|---|
| 2832 | ! ! These are filled in so that the various plotting routines have something |
|---|
| 2833 | ! ! to play with at the initial time for the model. |
|---|
| 2834 | ! |
|---|
| 2835 | ! IF ( flag_metgrid .NE. 1 ) THEN |
|---|
| 2836 | ! DO j = jts, min(jde-1,jte) |
|---|
| 2837 | ! DO i = its, min(ide,ite) |
|---|
| 2838 | ! grid%u10(i,j)=grid%em_u_2(i,1,j) |
|---|
| 2839 | ! END DO |
|---|
| 2840 | ! END DO |
|---|
| 2841 | ! |
|---|
| 2842 | ! DO j = jts, min(jde,jte) |
|---|
| 2843 | ! DO i = its, min(ide-1,ite) |
|---|
| 2844 | ! grid%v10(i,j)=grid%em_v_2(i,1,j) |
|---|
| 2845 | ! END DO |
|---|
| 2846 | ! END DO |
|---|
| 2847 | ! |
|---|
| 2848 | ! DO j = jts, min(jde-1,jte) |
|---|
| 2849 | ! DO i = its, min(ide-1,ite) |
|---|
| 2850 | ! p_surf = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht(i,j)/a/r_d ) **0.5 ) |
|---|
| 2851 | ! grid%psfc(i,j)=p_surf + grid%em_p(i,1,j) |
|---|
| 2852 | ! grid%q2(i,j)=moist(i,1,j,P_QV) |
|---|
| 2853 | ! grid%th2(i,j)=grid%em_t_2(i,1,j)+300. |
|---|
| 2854 | ! grid%t2(i,j)=grid%th2(i,j)*(((grid%em_p(i,1,j)+grid%em_pb(i,1,j))/p00)**(r_d/cp)) |
|---|
| 2855 | ! END DO |
|---|
| 2856 | ! END DO |
|---|
| 2857 | ! |
|---|
| 2858 | ! ! If this data is from WPS, then we have previously assigned the surface |
|---|
| 2859 | ! ! data for u, v, and t. If we have an input qv, welp, we assigned that one, |
|---|
| 2860 | ! ! too. Now we pick up the left overs, and if RH came in - we assign the |
|---|
| 2861 | ! ! mixing ratio. |
|---|
| 2862 | ! |
|---|
| 2863 | ! ELSE IF ( flag_metgrid .EQ. 1 ) THEN |
|---|
| 2864 | ! |
|---|
| 2865 | !!****MARS: we use WPS |
|---|
| 2866 | |
|---|
| 2867 | DO j = jts, min(jde-1,jte) |
|---|
| 2868 | DO i = its, min(ide-1,ite) |
|---|
| 2869 | p_surf = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht(i,j)/a/r_d ) **0.5 ) |
|---|
| 2870 | ! recompute the value of surface pressure as calculated by sfcprs2 |
|---|
| 2871 | grid%psfc(i,j)=p_surf + grid%em_p(i,1,j) |
|---|
| 2872 | !!grid%th2 is used for other purpose |
|---|
| 2873 | !grid%th2(i,j)=grid%t2(i,j)*(p00/(grid%em_p(i,1,j)+grid%em_pb(i,1,j)))**(r_d/cp) |
|---|
| 2874 | grid%th2(i,j)=0. !!TODO TODO TODO - waiting for an input |
|---|
| 2875 | END DO |
|---|
| 2876 | END DO |
|---|
| 2877 | |
|---|
| 2878 | !!NB: q2 is used for other purpose ... |
|---|
| 2879 | !IF ( flag_qv .NE. 1 ) THEN |
|---|
| 2880 | ! DO j = jts, min(jde-1,jte) |
|---|
| 2881 | ! DO i = its, min(ide-1,ite) |
|---|
| 2882 | ! grid%q2(i,j)=moist(i,1,j,P_QV) |
|---|
| 2883 | ! END DO |
|---|
| 2884 | ! END DO |
|---|
| 2885 | !END IF |
|---|
| 2886 | !!NB: q2 is used for other purpose ... |
|---|
| 2887 | |
|---|
| 2888 | |
|---|
| 2889 | ! END IF |
|---|
| 2890 | |
|---|
| 2891 | !!!!MARS |
|---|
| 2892 | !!!! |
|---|
| 2893 | !!!! useful for history files @ first step |
|---|
| 2894 | !!!! |
|---|
| 2895 | grid%em_phtot = grid%em_ph0 |
|---|
| 2896 | grid%em_ptot = grid%em_p + grid%em_pb |
|---|
| 2897 | print *, 'OK OK OK OK' |
|---|
| 2898 | !!!! |
|---|
| 2899 | !!!!MARS |
|---|
| 2900 | |
|---|
| 2901 | ips = its ; ipe = ite ; jps = jts ; jpe = jte ; kps = kts ; kpe = kte |
|---|
| 2902 | #ifdef DM_PARALLEL |
|---|
| 2903 | # include "HALO_EM_INIT_1.inc" |
|---|
| 2904 | # include "HALO_EM_INIT_2.inc" |
|---|
| 2905 | # include "HALO_EM_INIT_3.inc" |
|---|
| 2906 | # include "HALO_EM_INIT_4.inc" |
|---|
| 2907 | # include "HALO_EM_INIT_5.inc" |
|---|
| 2908 | #endif |
|---|
| 2909 | |
|---|
| 2910 | RETURN |
|---|
| 2911 | |
|---|
| 2912 | END SUBROUTINE init_domain_rk |
|---|
| 2913 | |
|---|
| 2914 | !--------------------------------------------------------------------- |
|---|
| 2915 | |
|---|
| 2916 | SUBROUTINE const_module_initialize ( p00 , t00 , a, tiso ) |
|---|
| 2917 | USE module_configure |
|---|
| 2918 | IMPLICIT NONE |
|---|
| 2919 | ! For the real-data-cases only. |
|---|
| 2920 | REAL , INTENT(OUT) :: p00 , t00 , a, tiso |
|---|
| 2921 | CALL nl_get_base_pres ( 1 , p00 ) |
|---|
| 2922 | CALL nl_get_base_temp ( 1 , t00 ) |
|---|
| 2923 | CALL nl_get_base_lapse ( 1 , a ) |
|---|
| 2924 | CALL nl_get_tiso ( 1 , tiso ) |
|---|
| 2925 | END SUBROUTINE const_module_initialize |
|---|
| 2926 | |
|---|
| 2927 | !------------------------------------------------------------------- |
|---|
| 2928 | |
|---|
| 2929 | SUBROUTINE rebalance_driver ( grid ) |
|---|
| 2930 | |
|---|
| 2931 | IMPLICIT NONE |
|---|
| 2932 | |
|---|
| 2933 | TYPE (domain) :: grid |
|---|
| 2934 | |
|---|
| 2935 | CALL rebalance( grid & |
|---|
| 2936 | ! |
|---|
| 2937 | #include "em_actual_new_args.inc" |
|---|
| 2938 | ! |
|---|
| 2939 | ) |
|---|
| 2940 | |
|---|
| 2941 | END SUBROUTINE rebalance_driver |
|---|
| 2942 | |
|---|
| 2943 | !--------------------------------------------------------------------- |
|---|
| 2944 | |
|---|
| 2945 | SUBROUTINE rebalance ( grid & |
|---|
| 2946 | ! |
|---|
| 2947 | #include "em_dummy_new_args.inc" |
|---|
| 2948 | ! |
|---|
| 2949 | ) |
|---|
| 2950 | IMPLICIT NONE |
|---|
| 2951 | |
|---|
| 2952 | TYPE (domain) :: grid |
|---|
| 2953 | |
|---|
| 2954 | #include "em_dummy_new_decl.inc" |
|---|
| 2955 | |
|---|
| 2956 | TYPE (grid_config_rec_type) :: config_flags |
|---|
| 2957 | |
|---|
| 2958 | REAL :: p_surf , pd_surf, p_surf_int , pb_int , ht_hold |
|---|
| 2959 | REAL :: qvf , qvf1 , qvf2 |
|---|
| 2960 | REAL :: p00 , t00 , a, tiso, temp1, temp2 |
|---|
| 2961 | REAL , DIMENSION(:,:,:) , ALLOCATABLE :: t_init_int |
|---|
| 2962 | |
|---|
| 2963 | ! Local domain indices and counters. |
|---|
| 2964 | |
|---|
| 2965 | INTEGER :: num_veg_cat , num_soil_top_cat , num_soil_bot_cat |
|---|
| 2966 | |
|---|
| 2967 | INTEGER :: & |
|---|
| 2968 | ids, ide, jds, jde, kds, kde, & |
|---|
| 2969 | ims, ime, jms, jme, kms, kme, & |
|---|
| 2970 | its, ite, jts, jte, kts, kte, & |
|---|
| 2971 | ips, ipe, jps, jpe, kps, kpe, & |
|---|
| 2972 | i, j, k |
|---|
| 2973 | |
|---|
| 2974 | REAL :: pfu, pfd, phm |
|---|
| 2975 | INTEGER :: hypsometric_opt = 1 ! classic |
|---|
| 2976 | !INTEGER :: hypsometric_opt = 2 ! Wee et al. 2012 correction |
|---|
| 2977 | |
|---|
| 2978 | |
|---|
| 2979 | |
|---|
| 2980 | #ifdef DM_PARALLEL |
|---|
| 2981 | # include "em_data_calls.inc" |
|---|
| 2982 | #endif |
|---|
| 2983 | |
|---|
| 2984 | SELECT CASE ( model_data_order ) |
|---|
| 2985 | CASE ( DATA_ORDER_ZXY ) |
|---|
| 2986 | kds = grid%sd31 ; kde = grid%ed31 ; |
|---|
| 2987 | ids = grid%sd32 ; ide = grid%ed32 ; |
|---|
| 2988 | jds = grid%sd33 ; jde = grid%ed33 ; |
|---|
| 2989 | |
|---|
| 2990 | kms = grid%sm31 ; kme = grid%em31 ; |
|---|
| 2991 | ims = grid%sm32 ; ime = grid%em32 ; |
|---|
| 2992 | jms = grid%sm33 ; jme = grid%em33 ; |
|---|
| 2993 | |
|---|
| 2994 | kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch |
|---|
| 2995 | its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch |
|---|
| 2996 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
|---|
| 2997 | |
|---|
| 2998 | CASE ( DATA_ORDER_XYZ ) |
|---|
| 2999 | ids = grid%sd31 ; ide = grid%ed31 ; |
|---|
| 3000 | jds = grid%sd32 ; jde = grid%ed32 ; |
|---|
| 3001 | kds = grid%sd33 ; kde = grid%ed33 ; |
|---|
| 3002 | |
|---|
| 3003 | ims = grid%sm31 ; ime = grid%em31 ; |
|---|
| 3004 | jms = grid%sm32 ; jme = grid%em32 ; |
|---|
| 3005 | kms = grid%sm33 ; kme = grid%em33 ; |
|---|
| 3006 | |
|---|
| 3007 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
|---|
| 3008 | jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch |
|---|
| 3009 | kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch |
|---|
| 3010 | |
|---|
| 3011 | CASE ( DATA_ORDER_XZY ) |
|---|
| 3012 | ids = grid%sd31 ; ide = grid%ed31 ; |
|---|
| 3013 | kds = grid%sd32 ; kde = grid%ed32 ; |
|---|
| 3014 | jds = grid%sd33 ; jde = grid%ed33 ; |
|---|
| 3015 | |
|---|
| 3016 | ims = grid%sm31 ; ime = grid%em31 ; |
|---|
| 3017 | kms = grid%sm32 ; kme = grid%em32 ; |
|---|
| 3018 | jms = grid%sm33 ; jme = grid%em33 ; |
|---|
| 3019 | |
|---|
| 3020 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
|---|
| 3021 | kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch |
|---|
| 3022 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
|---|
| 3023 | |
|---|
| 3024 | END SELECT |
|---|
| 3025 | |
|---|
| 3026 | ALLOCATE ( t_init_int(ims:ime,kms:kme,jms:jme) ) |
|---|
| 3027 | |
|---|
| 3028 | ! Some of the many weird geopotential initializations that we'll see today: grid%em_ph0 is total, |
|---|
| 3029 | ! and grid%em_ph_2 is a perturbation from the base state geopotential. We set the base geopotential |
|---|
| 3030 | ! at the lowest level to terrain elevation * gravity. |
|---|
| 3031 | |
|---|
| 3032 | DO j=jts,jte |
|---|
| 3033 | DO i=its,ite |
|---|
| 3034 | grid%em_ph0(i,1,j) = grid%ht_fine(i,j) * g |
|---|
| 3035 | grid%em_ph_2(i,1,j) = 0. |
|---|
| 3036 | END DO |
|---|
| 3037 | END DO |
|---|
| 3038 | |
|---|
| 3039 | ! To define the base state, we call a USER MODIFIED routine to set the three |
|---|
| 3040 | ! necessary constants: p00 (sea level pressure, Pa), t00 (sea level temperature, K), |
|---|
| 3041 | ! and A (temperature difference, from 1000 mb to 300 mb, K). |
|---|
| 3042 | |
|---|
| 3043 | CALL const_module_initialize ( p00 , t00 , a , tiso ) |
|---|
| 3044 | |
|---|
| 3045 | ! Base state potential temperature and inverse density (alpha = 1/rho) from |
|---|
| 3046 | ! the half eta levels and the base-profile surface pressure. Compute 1/rho |
|---|
| 3047 | ! from equation of state. The potential temperature is a perturbation from t0. |
|---|
| 3048 | |
|---|
| 3049 | DO j = jts, MIN(jte,jde-1) |
|---|
| 3050 | DO i = its, MIN(ite,ide-1) |
|---|
| 3051 | |
|---|
| 3052 | ! Base state pressure is a function of eta level and terrain, only, plus |
|---|
| 3053 | ! the hand full of constants: p00 (sea level pressure, Pa), t00 (sea level |
|---|
| 3054 | ! temperature, K), and A (temperature difference, from 1000 mb to 300 mb, K). |
|---|
| 3055 | ! The fine grid terrain is ht_fine, the interpolated is grid%em_ht. |
|---|
| 3056 | |
|---|
| 3057 | p_surf = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht_fine(i,j)/a/r_d ) **0.5 ) |
|---|
| 3058 | p_surf_int = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht(i,j) /a/r_d ) **0.5 ) |
|---|
| 3059 | |
|---|
| 3060 | DO k = 1, kte-1 |
|---|
| 3061 | grid%em_pb(i,k,j) = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top |
|---|
| 3062 | pb_int = grid%em_znu(k)*(p_surf_int - grid%p_top) + grid%p_top |
|---|
| 3063 | ! grid%em_t_init(i,k,j) = (t00 + A*LOG(grid%em_pb(i,k,j)/p00))*(p00/grid%em_pb(i,k,j))**(r_d/cp) - t0 |
|---|
| 3064 | ! t_init_int(i,k,j)= (t00 + A*LOG(pb_int /p00))*(p00/pb_int )**(r_d/cp) - t0 |
|---|
| 3065 | temp1 = MAX(tiso,t00+A*LOG(grid%em_pb(i,k,j)/p00)) |
|---|
| 3066 | temp2 = MAX(tiso,t00+A*LOG( pb_int/p00)) |
|---|
| 3067 | IF (planet .eq. "mars" ) THEN |
|---|
| 3068 | grid%em_t_init(i,k,j) = temp1*(p00/grid%em_pb(i,k,j))**(r_d/cp) - t0 |
|---|
| 3069 | t_init_int(i,k,j) = temp2*(p00/pb_int )**(r_d/cp) - t0 |
|---|
| 3070 | ELSE |
|---|
| 3071 | grid%em_t_init(i,k,j) = (temp1**nu + nu*(TT00**nu)*log((p00/grid%em_pb(i,k,j))**(rcp)))**(1/nu) - t0 |
|---|
| 3072 | t_init_int(i,k,j) = (temp2**nu + nu*(TT00**nu)*log((p00/pb_int)**(rcp)))**(1/nu) - t0 |
|---|
| 3073 | ENDIF |
|---|
| 3074 | grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm |
|---|
| 3075 | END DO |
|---|
| 3076 | |
|---|
| 3077 | ! Base state mu is defined as base state surface pressure minus grid%p_top |
|---|
| 3078 | |
|---|
| 3079 | grid%em_mub(i,j) = p_surf - grid%p_top |
|---|
| 3080 | |
|---|
| 3081 | ! Dry surface pressure is defined as the following (this mu is from the input file |
|---|
| 3082 | ! computed from the dry pressure). Here the dry pressure is just reconstituted. |
|---|
| 3083 | |
|---|
| 3084 | pd_surf = ( grid%em_mub(i,j) + grid%em_mu_2(i,j) ) + grid%p_top |
|---|
| 3085 | |
|---|
| 3086 | ! Integrate base geopotential, starting at terrain elevation. This assures that |
|---|
| 3087 | ! the base state is in exact hydrostatic balance with respect to the model equations. |
|---|
| 3088 | ! This field is on full levels. |
|---|
| 3089 | |
|---|
| 3090 | grid%em_phb(i,1,j) = grid%ht_fine(i,j) * g |
|---|
| 3091 | IF (hypsometric_opt == 1) THEN |
|---|
| 3092 | DO k = 2,kte |
|---|
| 3093 | grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j) |
|---|
| 3094 | END DO |
|---|
| 3095 | ELSE IF (hypsometric_opt == 2) THEN |
|---|
| 3096 | DO k = 2,kte |
|---|
| 3097 | pfu = grid%em_mub(i,j)*grid%em_znw(k) + grid%p_top |
|---|
| 3098 | pfd = grid%em_mub(i,j)*grid%em_znw(k-1) + grid%p_top |
|---|
| 3099 | phm = grid%em_mub(i,j)*grid%em_znu(k-1) + grid%p_top |
|---|
| 3100 | grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) + grid%em_alb(i,k-1,j)*phm*LOG(pfd/pfu) |
|---|
| 3101 | END DO |
|---|
| 3102 | END IF |
|---|
| 3103 | END DO |
|---|
| 3104 | END DO |
|---|
| 3105 | |
|---|
| 3106 | ! Replace interpolated terrain with fine grid values. |
|---|
| 3107 | |
|---|
| 3108 | DO j = jts, MIN(jte,jde-1) |
|---|
| 3109 | DO i = its, MIN(ite,ide-1) |
|---|
| 3110 | grid%ht(i,j) = grid%ht_fine(i,j) |
|---|
| 3111 | END DO |
|---|
| 3112 | END DO |
|---|
| 3113 | |
|---|
| 3114 | ! Perturbation fields. |
|---|
| 3115 | |
|---|
| 3116 | DO j = jts, min(jde-1,jte) |
|---|
| 3117 | DO i = its, min(ide-1,ite) |
|---|
| 3118 | |
|---|
| 3119 | ! The potential temperature is THETAnest = THETAinterp + ( TBARnest - TBARinterp) |
|---|
| 3120 | |
|---|
| 3121 | DO k = 1 , kde-1 |
|---|
| 3122 | grid%em_t_2(i,k,j) = grid%em_t_2(i,k,j) + ( grid%em_t_init(i,k,j) - t_init_int(i,k,j) ) |
|---|
| 3123 | END DO |
|---|
| 3124 | |
|---|
| 3125 | ! Integrate the hydrostatic equation (from the RHS of the bigstep vertical momentum |
|---|
| 3126 | ! equation) down from the top to get the pressure perturbation. First get the pressure |
|---|
| 3127 | ! perturbation, moisture, and inverse density (total and perturbation) at the top-most level. |
|---|
| 3128 | |
|---|
| 3129 | k = kte-1 |
|---|
| 3130 | |
|---|
| 3131 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV)) |
|---|
| 3132 | qvf2 = 1./(1.+qvf1) |
|---|
| 3133 | qvf1 = qvf1*qvf2 |
|---|
| 3134 | |
|---|
| 3135 | grid%em_p(i,k,j) = - 0.5*(grid%em_mu_2(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2 |
|---|
| 3136 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
|---|
| 3137 | grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_2(i,k,j)+t0)*qvf* & |
|---|
| 3138 | (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm) |
|---|
| 3139 | grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j) |
|---|
| 3140 | |
|---|
| 3141 | ! Now, integrate down the column to compute the pressure perturbation, and diagnose the two |
|---|
| 3142 | ! inverse density fields (total and perturbation). |
|---|
| 3143 | |
|---|
| 3144 | DO k=kte-2,1,-1 |
|---|
| 3145 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV)) |
|---|
| 3146 | qvf2 = 1./(1.+qvf1) |
|---|
| 3147 | qvf1 = qvf1*qvf2 |
|---|
| 3148 | grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_2(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1) |
|---|
| 3149 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
|---|
| 3150 | grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_2(i,k,j)+t0)*qvf* & |
|---|
| 3151 | (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm) |
|---|
| 3152 | grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j) |
|---|
| 3153 | END DO |
|---|
| 3154 | |
|---|
| 3155 | ! This is the hydrostatic equation used in the model after the small timesteps. In |
|---|
| 3156 | ! the model, grid%al (inverse density) is computed from the geopotential. |
|---|
| 3157 | |
|---|
| 3158 | IF (hypsometric_opt == 1) THEN |
|---|
| 3159 | DO k = 2,kte |
|---|
| 3160 | grid%em_ph_2(i,k,j) = grid%em_ph_2(i,k-1,j) - & |
|---|
| 3161 | grid%em_dnw(k-1) * ( (grid%em_mub(i,j)+grid%em_mu_2(i,j))*grid%em_al(i,k-1,j) & |
|---|
| 3162 | + grid%em_mu_2(i,j)*grid%em_alb(i,k-1,j) ) |
|---|
| 3163 | grid%em_ph0(i,k,j) = grid%em_ph_2(i,k,j) + grid%em_phb(i,k,j) |
|---|
| 3164 | END DO |
|---|
| 3165 | ELSE IF (hypsometric_opt == 2) THEN |
|---|
| 3166 | |
|---|
| 3167 | ! Alternative hydrostatic eq.: dZ = -al*p*dLOG(p), where p is dry pressure. |
|---|
| 3168 | ! Note that al*p approximates Rd*T and dLOG(p) does z. |
|---|
| 3169 | ! Here T varies mostly linear with z, the first-order integration produces better result. |
|---|
| 3170 | |
|---|
| 3171 | grid%em_ph_2(i,1,j) = grid%em_phb(i,1,j) |
|---|
| 3172 | DO k = 2,kte |
|---|
| 3173 | pfu = grid%em_mu0(i,j)*grid%em_znw(k) + grid%p_top |
|---|
| 3174 | pfd = grid%em_mu0(i,j)*grid%em_znw(k-1) + grid%p_top |
|---|
| 3175 | phm = grid%em_mu0(i,j)*grid%em_znu(k-1) + grid%p_top |
|---|
| 3176 | grid%em_ph_2(i,k,j) = grid%em_ph_2(i,k-1,j) + grid%em_alt(i,k-1,j)*phm*LOG(pfd/pfu) |
|---|
| 3177 | END DO |
|---|
| 3178 | |
|---|
| 3179 | DO k = 1,kte |
|---|
| 3180 | grid%em_ph_2(i,k,j) = grid%em_ph_2(i,k,j) - grid%em_phb(i,k,j) |
|---|
| 3181 | END DO |
|---|
| 3182 | |
|---|
| 3183 | END IF |
|---|
| 3184 | |
|---|
| 3185 | END DO |
|---|
| 3186 | END DO |
|---|
| 3187 | |
|---|
| 3188 | DEALLOCATE ( t_init_int ) |
|---|
| 3189 | |
|---|
| 3190 | ips = its ; ipe = ite ; jps = jts ; jpe = jte ; kps = kts ; kpe = kte |
|---|
| 3191 | #ifdef DM_PARALLEL |
|---|
| 3192 | # include "HALO_EM_INIT_1.inc" |
|---|
| 3193 | # include "HALO_EM_INIT_2.inc" |
|---|
| 3194 | # include "HALO_EM_INIT_3.inc" |
|---|
| 3195 | # include "HALO_EM_INIT_4.inc" |
|---|
| 3196 | # include "HALO_EM_INIT_5.inc" |
|---|
| 3197 | #endif |
|---|
| 3198 | END SUBROUTINE rebalance |
|---|
| 3199 | |
|---|
| 3200 | !--------------------------------------------------------------------- |
|---|
| 3201 | |
|---|
| 3202 | RECURSIVE SUBROUTINE find_my_parent ( grid_ptr_in , grid_ptr_out , id_i_am , id_wanted , found_the_id ) |
|---|
| 3203 | |
|---|
| 3204 | USE module_domain |
|---|
| 3205 | |
|---|
| 3206 | TYPE(domain) , POINTER :: grid_ptr_in , grid_ptr_out |
|---|
| 3207 | TYPE(domain) , POINTER :: grid_ptr_sibling |
|---|
| 3208 | INTEGER :: id_wanted , id_i_am |
|---|
| 3209 | LOGICAL :: found_the_id |
|---|
| 3210 | |
|---|
| 3211 | found_the_id = .FALSE. |
|---|
| 3212 | grid_ptr_sibling => grid_ptr_in |
|---|
| 3213 | DO WHILE ( ASSOCIATED ( grid_ptr_sibling ) ) |
|---|
| 3214 | |
|---|
| 3215 | IF ( grid_ptr_sibling%grid_id .EQ. id_wanted ) THEN |
|---|
| 3216 | found_the_id = .TRUE. |
|---|
| 3217 | grid_ptr_out => grid_ptr_sibling |
|---|
| 3218 | RETURN |
|---|
| 3219 | ELSE IF ( grid_ptr_sibling%num_nests .GT. 0 ) THEN |
|---|
| 3220 | grid_ptr_sibling => grid_ptr_sibling%nests(1)%ptr |
|---|
| 3221 | CALL find_my_parent ( grid_ptr_sibling , grid_ptr_out , id_i_am , id_wanted , found_the_id ) |
|---|
| 3222 | ELSE |
|---|
| 3223 | grid_ptr_sibling => grid_ptr_sibling%sibling |
|---|
| 3224 | END IF |
|---|
| 3225 | |
|---|
| 3226 | END DO |
|---|
| 3227 | |
|---|
| 3228 | END SUBROUTINE find_my_parent |
|---|
| 3229 | |
|---|
| 3230 | #endif |
|---|
| 3231 | |
|---|
| 3232 | !--------------------------------------------------------------------- |
|---|
| 3233 | |
|---|
| 3234 | #ifdef VERT_UNIT |
|---|
| 3235 | |
|---|
| 3236 | !This is a main program for a small unit test for the vertical interpolation. |
|---|
| 3237 | |
|---|
| 3238 | program vint |
|---|
| 3239 | |
|---|
| 3240 | implicit none |
|---|
| 3241 | |
|---|
| 3242 | integer , parameter :: ij = 3 |
|---|
| 3243 | integer , parameter :: keta = 30 |
|---|
| 3244 | integer , parameter :: kgen =20 |
|---|
| 3245 | |
|---|
| 3246 | integer :: ids , ide , jds , jde , kds , kde , & |
|---|
| 3247 | ims , ime , jms , jme , kms , kme , & |
|---|
| 3248 | its , ite , jts , jte , kts , kte |
|---|
| 3249 | |
|---|
| 3250 | integer :: generic |
|---|
| 3251 | |
|---|
| 3252 | real , dimension(1:ij,kgen,1:ij) :: fo , po |
|---|
| 3253 | real , dimension(1:ij,1:keta,1:ij) :: fn_calc , fn_interp , pn |
|---|
| 3254 | |
|---|
| 3255 | integer, parameter :: interp_type = 1 ! 2 |
|---|
| 3256 | ! integer, parameter :: lagrange_order = 2 ! 1 |
|---|
| 3257 | integer :: lagrange_order |
|---|
| 3258 | logical, parameter :: lowest_lev_from_sfc = .FALSE. ! .TRUE. |
|---|
| 3259 | real , parameter :: zap_close_levels = 500. ! 100. |
|---|
| 3260 | integer, parameter :: force_sfc_in_vinterp = 0 ! 6 |
|---|
| 3261 | |
|---|
| 3262 | integer :: k |
|---|
| 3263 | |
|---|
| 3264 | ids = 1 ; ide = ij ; jds = 1 ; jde = ij ; kds = 1 ; kde = keta |
|---|
| 3265 | ims = 1 ; ime = ij ; jms = 1 ; jme = ij ; kms = 1 ; kme = keta |
|---|
| 3266 | its = 1 ; ite = ij ; jts = 1 ; jte = ij ; kts = 1 ; kte = keta |
|---|
| 3267 | |
|---|
| 3268 | generic = kgen |
|---|
| 3269 | |
|---|
| 3270 | print *,' ' |
|---|
| 3271 | print *,'------------------------------------' |
|---|
| 3272 | print *,'UNIT TEST FOR VERTICAL INTERPOLATION' |
|---|
| 3273 | print *,'------------------------------------' |
|---|
| 3274 | print *,' ' |
|---|
| 3275 | do lagrange_order = 1 , 2 |
|---|
| 3276 | print *,' ' |
|---|
| 3277 | print *,'------------------------------------' |
|---|
| 3278 | print *,'Lagrange Order = ',lagrange_order |
|---|
| 3279 | print *,'------------------------------------' |
|---|
| 3280 | print *,' ' |
|---|
| 3281 | call fillitup ( fo , po , fn_calc , pn , & |
|---|
| 3282 | ids , ide , jds , jde , kds , kde , & |
|---|
| 3283 | ims , ime , jms , jme , kms , kme , & |
|---|
| 3284 | its , ite , jts , jte , kts , kte , & |
|---|
| 3285 | generic , lagrange_order ) |
|---|
| 3286 | |
|---|
| 3287 | print *,' ' |
|---|
| 3288 | print *,'Level Pressure Field' |
|---|
| 3289 | print *,' (Pa) (generic)' |
|---|
| 3290 | print *,'------------------------------------' |
|---|
| 3291 | print *,' ' |
|---|
| 3292 | do k = 1 , generic |
|---|
| 3293 | write (*,fmt='(i2,2x,f12.3,1x,g15.8)' ) & |
|---|
| 3294 | k,po(2,k,2),fo(2,k,2) |
|---|
| 3295 | end do |
|---|
| 3296 | print *,' ' |
|---|
| 3297 | |
|---|
| 3298 | call vert_interp ( fo , po , fn_interp , pn , & |
|---|
| 3299 | generic , 'T' , & |
|---|
| 3300 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 3301 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 3302 | ids , ide , jds , jde , kds , kde , & |
|---|
| 3303 | ims , ime , jms , jme , kms , kme , & |
|---|
| 3304 | its , ite , jts , jte , kts , kte ) |
|---|
| 3305 | |
|---|
| 3306 | print *,'Multi-Order Interpolator' |
|---|
| 3307 | print *,'------------------------------------' |
|---|
| 3308 | print *,' ' |
|---|
| 3309 | print *,'Level Pressure Field Field Field' |
|---|
| 3310 | print *,' (Pa) Calc Interp Diff' |
|---|
| 3311 | print *,'------------------------------------' |
|---|
| 3312 | print *,' ' |
|---|
| 3313 | do k = kts , kte-1 |
|---|
| 3314 | write (*,fmt='(i2,2x,f12.3,1x,3(g15.7))' ) & |
|---|
| 3315 | k,pn(2,k,2),fn_calc(2,k,2),fn_interp(2,k,2),fn_calc(2,k,2)-fn_interp(2,k,2) |
|---|
| 3316 | end do |
|---|
| 3317 | |
|---|
| 3318 | call vert_interp_old ( fo , po , fn_interp , pn , & |
|---|
| 3319 | generic , 'T' , & |
|---|
| 3320 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 3321 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 3322 | ids , ide , jds , jde , kds , kde , & |
|---|
| 3323 | ims , ime , jms , jme , kms , kme , & |
|---|
| 3324 | its , ite , jts , jte , kts , kte ) |
|---|
| 3325 | |
|---|
| 3326 | print *,'Linear Interpolator' |
|---|
| 3327 | print *,'------------------------------------' |
|---|
| 3328 | print *,' ' |
|---|
| 3329 | print *,'Level Pressure Field Field Field' |
|---|
| 3330 | print *,' (Pa) Calc Interp Diff' |
|---|
| 3331 | print *,'------------------------------------' |
|---|
| 3332 | print *,' ' |
|---|
| 3333 | do k = kts , kte-1 |
|---|
| 3334 | write (*,fmt='(i2,2x,f12.3,1x,3(g15.7))' ) & |
|---|
| 3335 | k,pn(2,k,2),fn_calc(2,k,2),fn_interp(2,k,2),fn_calc(2,k,2)-fn_interp(2,k,2) |
|---|
| 3336 | end do |
|---|
| 3337 | end do |
|---|
| 3338 | |
|---|
| 3339 | end program vint |
|---|
| 3340 | |
|---|
| 3341 | subroutine wrf_error_fatal (string) |
|---|
| 3342 | character (len=*) :: string |
|---|
| 3343 | print *,string |
|---|
| 3344 | stop |
|---|
| 3345 | end subroutine wrf_error_fatal |
|---|
| 3346 | |
|---|
| 3347 | subroutine fillitup ( fo , po , fn , pn , & |
|---|
| 3348 | ids , ide , jds , jde , kds , kde , & |
|---|
| 3349 | ims , ime , jms , jme , kms , kme , & |
|---|
| 3350 | its , ite , jts , jte , kts , kte , & |
|---|
| 3351 | generic , lagrange_order ) |
|---|
| 3352 | |
|---|
| 3353 | implicit none |
|---|
| 3354 | |
|---|
| 3355 | integer , intent(in) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 3356 | ims , ime , jms , jme , kms , kme , & |
|---|
| 3357 | its , ite , jts , jte , kts , kte |
|---|
| 3358 | |
|---|
| 3359 | integer , intent(in) :: generic , lagrange_order |
|---|
| 3360 | |
|---|
| 3361 | real , dimension(ims:ime,generic,jms:jme) , intent(out) :: fo , po |
|---|
| 3362 | real , dimension(ims:ime,kms:kme,jms:jme) , intent(out) :: fn , pn |
|---|
| 3363 | |
|---|
| 3364 | integer :: i , j , k |
|---|
| 3365 | |
|---|
| 3366 | real , parameter :: piov2 = 3.14159265358 / 2. |
|---|
| 3367 | |
|---|
| 3368 | k = 1 |
|---|
| 3369 | do j = jts , jte |
|---|
| 3370 | do i = its , ite |
|---|
| 3371 | po(i,k,j) = 102000. |
|---|
| 3372 | end do |
|---|
| 3373 | end do |
|---|
| 3374 | |
|---|
| 3375 | do k = 2 , generic |
|---|
| 3376 | do j = jts , jte |
|---|
| 3377 | do i = its , ite |
|---|
| 3378 | po(i,k,j) = ( 5000. * ( 1 - (k-1) ) + 100000. * ( (k-1) - (generic-1) ) ) / (1. - real(generic-1) ) |
|---|
| 3379 | end do |
|---|
| 3380 | end do |
|---|
| 3381 | end do |
|---|
| 3382 | |
|---|
| 3383 | if ( lagrange_order .eq. 1 ) then |
|---|
| 3384 | do k = 1 , generic |
|---|
| 3385 | do j = jts , jte |
|---|
| 3386 | do i = its , ite |
|---|
| 3387 | fo(i,k,j) = po(i,k,j) |
|---|
| 3388 | ! fo(i,k,j) = sin(po(i,k,j) * piov2 / 102000. ) |
|---|
| 3389 | end do |
|---|
| 3390 | end do |
|---|
| 3391 | end do |
|---|
| 3392 | else if ( lagrange_order .eq. 2 ) then |
|---|
| 3393 | do k = 1 , generic |
|---|
| 3394 | do j = jts , jte |
|---|
| 3395 | do i = its , ite |
|---|
| 3396 | fo(i,k,j) = (((po(i,k,j)-5000.)/102000.)*((102000.-po(i,k,j))/102000.))*102000. |
|---|
| 3397 | ! fo(i,k,j) = sin(po(i,k,j) * piov2 / 102000. ) |
|---|
| 3398 | end do |
|---|
| 3399 | end do |
|---|
| 3400 | end do |
|---|
| 3401 | end if |
|---|
| 3402 | |
|---|
| 3403 | !!!!!!!!!!!! |
|---|
| 3404 | |
|---|
| 3405 | do k = kts , kte |
|---|
| 3406 | do j = jts , jte |
|---|
| 3407 | do i = its , ite |
|---|
| 3408 | pn(i,k,j) = ( 5000. * ( 0 - (k-1) ) + 102000. * ( (k-1) - (kte-1) ) ) / (-1. * real(kte-1) ) |
|---|
| 3409 | end do |
|---|
| 3410 | end do |
|---|
| 3411 | end do |
|---|
| 3412 | |
|---|
| 3413 | do k = kts , kte-1 |
|---|
| 3414 | do j = jts , jte |
|---|
| 3415 | do i = its , ite |
|---|
| 3416 | pn(i,k,j) = ( pn(i,k,j) + pn(i,k+1,j) ) /2. |
|---|
| 3417 | end do |
|---|
| 3418 | end do |
|---|
| 3419 | end do |
|---|
| 3420 | |
|---|
| 3421 | |
|---|
| 3422 | if ( lagrange_order .eq. 1 ) then |
|---|
| 3423 | do k = kts , kte-1 |
|---|
| 3424 | do j = jts , jte |
|---|
| 3425 | do i = its , ite |
|---|
| 3426 | fn(i,k,j) = pn(i,k,j) |
|---|
| 3427 | ! fn(i,k,j) = sin(pn(i,k,j) * piov2 / 102000. ) |
|---|
| 3428 | end do |
|---|
| 3429 | end do |
|---|
| 3430 | end do |
|---|
| 3431 | else if ( lagrange_order .eq. 2 ) then |
|---|
| 3432 | do k = kts , kte-1 |
|---|
| 3433 | do j = jts , jte |
|---|
| 3434 | do i = its , ite |
|---|
| 3435 | fn(i,k,j) = (((pn(i,k,j)-5000.)/102000.)*((102000.-pn(i,k,j))/102000.))*102000. |
|---|
| 3436 | ! fn(i,k,j) = sin(pn(i,k,j) * piov2 / 102000. ) |
|---|
| 3437 | end do |
|---|
| 3438 | end do |
|---|
| 3439 | end do |
|---|
| 3440 | end if |
|---|
| 3441 | |
|---|
| 3442 | end subroutine fillitup |
|---|
| 3443 | |
|---|
| 3444 | #endif |
|---|
| 3445 | |
|---|
| 3446 | !--------------------------------------------------------------------- |
|---|
| 3447 | |
|---|
| 3448 | SUBROUTINE vert_interp ( fo , po , fnew , pnu , & |
|---|
| 3449 | generic , var_type , & |
|---|
| 3450 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 3451 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 3452 | ids , ide , jds , jde , kds , kde , & |
|---|
| 3453 | ims , ime , jms , jme , kms , kme , & |
|---|
| 3454 | its , ite , jts , jte , kts , kte ) |
|---|
| 3455 | |
|---|
| 3456 | ! Vertically interpolate the new field. The original field on the original |
|---|
| 3457 | ! pressure levels is provided, and the new pressure surfaces to interpolate to. |
|---|
| 3458 | |
|---|
| 3459 | IMPLICIT NONE |
|---|
| 3460 | |
|---|
| 3461 | INTEGER , INTENT(IN) :: interp_type , lagrange_order |
|---|
| 3462 | LOGICAL , INTENT(IN) :: lowest_lev_from_sfc |
|---|
| 3463 | REAL , INTENT(IN) :: zap_close_levels |
|---|
| 3464 | INTEGER , INTENT(IN) :: force_sfc_in_vinterp |
|---|
| 3465 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 3466 | ims , ime , jms , jme , kms , kme , & |
|---|
| 3467 | its , ite , jts , jte , kts , kte |
|---|
| 3468 | INTEGER , INTENT(IN) :: generic |
|---|
| 3469 | |
|---|
| 3470 | CHARACTER (LEN=1) :: var_type |
|---|
| 3471 | |
|---|
| 3472 | REAL , DIMENSION(ims:ime,generic,jms:jme) , INTENT(IN) :: fo , po |
|---|
| 3473 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: pnu |
|---|
| 3474 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: fnew |
|---|
| 3475 | |
|---|
| 3476 | REAL , DIMENSION(ims:ime,generic,jms:jme) :: forig , porig |
|---|
| 3477 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) :: pnew |
|---|
| 3478 | |
|---|
| 3479 | ! Local vars |
|---|
| 3480 | |
|---|
| 3481 | INTEGER :: i , j , k , ko , kn , k1 , k2 , ko_1 , ko_2 , knext |
|---|
| 3482 | INTEGER :: istart , iend , jstart , jend , kstart , kend |
|---|
| 3483 | INTEGER , DIMENSION(ims:ime,kms:kme ) :: k_above , k_below |
|---|
| 3484 | INTEGER , DIMENSION(ims:ime ) :: ks |
|---|
| 3485 | INTEGER , DIMENSION(ims:ime ) :: ko_above_sfc |
|---|
| 3486 | INTEGER :: count , zap , kst |
|---|
| 3487 | |
|---|
| 3488 | LOGICAL :: any_below_ground |
|---|
| 3489 | |
|---|
| 3490 | REAL :: p1 , p2 , pn, hold |
|---|
| 3491 | REAL , DIMENSION(1:generic) :: ordered_porig , ordered_forig |
|---|
| 3492 | REAL , DIMENSION(kts:kte) :: ordered_pnew , ordered_fnew |
|---|
| 3493 | |
|---|
| 3494 | !****MARS |
|---|
| 3495 | !big problems ... discontinuity in the interpolated fields ... |
|---|
| 3496 | print *, '25/05/2007: decided to use simple linear interpolations' |
|---|
| 3497 | print *, 'use that one at your own risk' |
|---|
| 3498 | !stop |
|---|
| 3499 | !****MARS |
|---|
| 3500 | |
|---|
| 3501 | |
|---|
| 3502 | ! Horiontal loop bounds for different variable types. |
|---|
| 3503 | |
|---|
| 3504 | IF ( var_type .EQ. 'U' ) THEN |
|---|
| 3505 | istart = its |
|---|
| 3506 | iend = ite |
|---|
| 3507 | jstart = jts |
|---|
| 3508 | jend = MIN(jde-1,jte) |
|---|
| 3509 | kstart = kts |
|---|
| 3510 | kend = kte-1 |
|---|
| 3511 | DO j = jstart,jend |
|---|
| 3512 | DO k = 1,generic |
|---|
| 3513 | DO i = MAX(ids+1,its) , MIN(ide-1,ite) |
|---|
| 3514 | porig(i,k,j) = ( po(i,k,j) + po(i-1,k,j) ) * 0.5 |
|---|
| 3515 | END DO |
|---|
| 3516 | END DO |
|---|
| 3517 | IF ( ids .EQ. its ) THEN |
|---|
| 3518 | DO k = 1,generic |
|---|
| 3519 | porig(its,k,j) = po(its,k,j) |
|---|
| 3520 | END DO |
|---|
| 3521 | END IF |
|---|
| 3522 | IF ( ide .EQ. ite ) THEN |
|---|
| 3523 | DO k = 1,generic |
|---|
| 3524 | porig(ite,k,j) = po(ite-1,k,j) |
|---|
| 3525 | END DO |
|---|
| 3526 | END IF |
|---|
| 3527 | |
|---|
| 3528 | DO k = kstart,kend |
|---|
| 3529 | DO i = MAX(ids+1,its) , MIN(ide-1,ite) |
|---|
| 3530 | pnew(i,k,j) = ( pnu(i,k,j) + pnu(i-1,k,j) ) * 0.5 |
|---|
| 3531 | END DO |
|---|
| 3532 | END DO |
|---|
| 3533 | IF ( ids .EQ. its ) THEN |
|---|
| 3534 | DO k = kstart,kend |
|---|
| 3535 | pnew(its,k,j) = pnu(its,k,j) |
|---|
| 3536 | END DO |
|---|
| 3537 | END IF |
|---|
| 3538 | IF ( ide .EQ. ite ) THEN |
|---|
| 3539 | DO k = kstart,kend |
|---|
| 3540 | pnew(ite,k,j) = pnu(ite-1,k,j) |
|---|
| 3541 | END DO |
|---|
| 3542 | END IF |
|---|
| 3543 | END DO |
|---|
| 3544 | ELSE IF ( var_type .EQ. 'V' ) THEN |
|---|
| 3545 | istart = its |
|---|
| 3546 | iend = MIN(ide-1,ite) |
|---|
| 3547 | jstart = jts |
|---|
| 3548 | jend = jte |
|---|
| 3549 | kstart = kts |
|---|
| 3550 | kend = kte-1 |
|---|
| 3551 | DO i = istart,iend |
|---|
| 3552 | DO k = 1,generic |
|---|
| 3553 | DO j = MAX(jds+1,jts) , MIN(jde-1,jte) |
|---|
| 3554 | porig(i,k,j) = ( po(i,k,j) + po(i,k,j-1) ) * 0.5 |
|---|
| 3555 | END DO |
|---|
| 3556 | END DO |
|---|
| 3557 | IF ( jds .EQ. jts ) THEN |
|---|
| 3558 | DO k = 1,generic |
|---|
| 3559 | porig(i,k,jts) = po(i,k,jts) |
|---|
| 3560 | END DO |
|---|
| 3561 | END IF |
|---|
| 3562 | IF ( jde .EQ. jte ) THEN |
|---|
| 3563 | DO k = 1,generic |
|---|
| 3564 | porig(i,k,jte) = po(i,k,jte-1) |
|---|
| 3565 | END DO |
|---|
| 3566 | END IF |
|---|
| 3567 | |
|---|
| 3568 | DO k = kstart,kend |
|---|
| 3569 | DO j = MAX(jds+1,jts) , MIN(jde-1,jte) |
|---|
| 3570 | pnew(i,k,j) = ( pnu(i,k,j) + pnu(i,k,j-1) ) * 0.5 |
|---|
| 3571 | END DO |
|---|
| 3572 | END DO |
|---|
| 3573 | IF ( jds .EQ. jts ) THEN |
|---|
| 3574 | DO k = kstart,kend |
|---|
| 3575 | pnew(i,k,jts) = pnu(i,k,jts) |
|---|
| 3576 | END DO |
|---|
| 3577 | END IF |
|---|
| 3578 | IF ( jde .EQ. jte ) THEN |
|---|
| 3579 | DO k = kstart,kend |
|---|
| 3580 | pnew(i,k,jte) = pnu(i,k,jte-1) |
|---|
| 3581 | END DO |
|---|
| 3582 | END IF |
|---|
| 3583 | END DO |
|---|
| 3584 | ELSE IF ( ( var_type .EQ. 'W' ) .OR. ( var_type .EQ. 'Z' ) ) THEN |
|---|
| 3585 | istart = its |
|---|
| 3586 | iend = MIN(ide-1,ite) |
|---|
| 3587 | jstart = jts |
|---|
| 3588 | jend = MIN(jde-1,jte) |
|---|
| 3589 | kstart = kts |
|---|
| 3590 | kend = kte |
|---|
| 3591 | DO j = jstart,jend |
|---|
| 3592 | DO k = 1,generic |
|---|
| 3593 | DO i = istart,iend |
|---|
| 3594 | porig(i,k,j) = po(i,k,j) |
|---|
| 3595 | END DO |
|---|
| 3596 | END DO |
|---|
| 3597 | |
|---|
| 3598 | DO k = kstart,kend |
|---|
| 3599 | DO i = istart,iend |
|---|
| 3600 | pnew(i,k,j) = pnu(i,k,j) |
|---|
| 3601 | END DO |
|---|
| 3602 | END DO |
|---|
| 3603 | END DO |
|---|
| 3604 | ELSE IF ( ( var_type .EQ. 'T' ) .OR. ( var_type .EQ. 'Q' ) ) THEN |
|---|
| 3605 | istart = its |
|---|
| 3606 | iend = MIN(ide-1,ite) |
|---|
| 3607 | jstart = jts |
|---|
| 3608 | jend = MIN(jde-1,jte) |
|---|
| 3609 | kstart = kts |
|---|
| 3610 | kend = kte-1 |
|---|
| 3611 | DO j = jstart,jend |
|---|
| 3612 | DO k = 1,generic |
|---|
| 3613 | DO i = istart,iend |
|---|
| 3614 | porig(i,k,j) = po(i,k,j) |
|---|
| 3615 | END DO |
|---|
| 3616 | END DO |
|---|
| 3617 | |
|---|
| 3618 | DO k = kstart,kend |
|---|
| 3619 | DO i = istart,iend |
|---|
| 3620 | pnew(i,k,j) = pnu(i,k,j) |
|---|
| 3621 | END DO |
|---|
| 3622 | END DO |
|---|
| 3623 | END DO |
|---|
| 3624 | ELSE |
|---|
| 3625 | istart = its |
|---|
| 3626 | iend = MIN(ide-1,ite) |
|---|
| 3627 | jstart = jts |
|---|
| 3628 | jend = MIN(jde-1,jte) |
|---|
| 3629 | kstart = kts |
|---|
| 3630 | kend = kte-1 |
|---|
| 3631 | DO j = jstart,jend |
|---|
| 3632 | DO k = 1,generic |
|---|
| 3633 | DO i = istart,iend |
|---|
| 3634 | porig(i,k,j) = po(i,k,j) |
|---|
| 3635 | END DO |
|---|
| 3636 | END DO |
|---|
| 3637 | |
|---|
| 3638 | DO k = kstart,kend |
|---|
| 3639 | DO i = istart,iend |
|---|
| 3640 | pnew(i,k,j) = pnu(i,k,j) |
|---|
| 3641 | END DO |
|---|
| 3642 | END DO |
|---|
| 3643 | END DO |
|---|
| 3644 | END IF |
|---|
| 3645 | |
|---|
| 3646 | DO j = jstart , jend |
|---|
| 3647 | |
|---|
| 3648 | ! The lowest level is the surface. Levels 2 through "generic" are supposed to |
|---|
| 3649 | ! be "bottom-up". Flip if they are not. This is based on the input pressure |
|---|
| 3650 | ! array. |
|---|
| 3651 | |
|---|
| 3652 | IF ( porig(its,2,j) .LT. porig(its,generic,j) ) THEN |
|---|
| 3653 | DO kn = 2 , ( generic + 1 ) / 2 |
|---|
| 3654 | DO i = istart , iend |
|---|
| 3655 | hold = porig(i,kn,j) |
|---|
| 3656 | porig(i,kn,j) = porig(i,generic+2-kn,j) |
|---|
| 3657 | porig(i,generic+2-kn,j) = hold |
|---|
| 3658 | forig(i,kn,j) = fo (i,generic+2-kn,j) |
|---|
| 3659 | forig(i,generic+2-kn,j) = fo (i,kn,j) |
|---|
| 3660 | END DO |
|---|
| 3661 | DO i = istart , iend |
|---|
| 3662 | forig(i,1,j) = fo (i,1,j) |
|---|
| 3663 | END DO |
|---|
| 3664 | END DO |
|---|
| 3665 | ELSE |
|---|
| 3666 | DO kn = 1 , generic |
|---|
| 3667 | DO i = istart , iend |
|---|
| 3668 | forig(i,kn,j) = fo (i,kn,j) |
|---|
| 3669 | END DO |
|---|
| 3670 | END DO |
|---|
| 3671 | END IF |
|---|
| 3672 | |
|---|
| 3673 | ! Skip all of the levels below ground in the original data based upon the surface pressure. |
|---|
| 3674 | ! The ko_above_sfc is the index in the pressure array that is above the surface. If there |
|---|
| 3675 | ! are no levels underground, this is index = 2. The remaining levels are eligible for use |
|---|
| 3676 | ! in the vertical interpolation. |
|---|
| 3677 | |
|---|
| 3678 | DO i = istart , iend |
|---|
| 3679 | ko_above_sfc(i) = -1 |
|---|
| 3680 | END DO |
|---|
| 3681 | DO ko = kstart+1 , kend |
|---|
| 3682 | DO i = istart , iend |
|---|
| 3683 | IF ( ko_above_sfc(i) .EQ. -1 ) THEN |
|---|
| 3684 | IF ( porig(i,1,j) .GT. porig(i,ko,j) ) THEN |
|---|
| 3685 | ko_above_sfc(i) = ko |
|---|
| 3686 | END IF |
|---|
| 3687 | END IF |
|---|
| 3688 | END DO |
|---|
| 3689 | END DO |
|---|
| 3690 | |
|---|
| 3691 | ! Piece together columns of the original input data. Pass the vertical columns to |
|---|
| 3692 | ! the iterpolator. |
|---|
| 3693 | |
|---|
| 3694 | DO i = istart , iend |
|---|
| 3695 | |
|---|
| 3696 | ! If the surface value is in the middle of the array, three steps: 1) do the |
|---|
| 3697 | ! values below the ground (this is just to catch the occasional value that is |
|---|
| 3698 | ! inconsistently below the surface based on input data), 2) do the surface level, then |
|---|
| 3699 | ! 3) add in the levels that are above the surface. For the levels next to the surface, |
|---|
| 3700 | ! we check to remove any levels that are "too close". When building the column of input |
|---|
| 3701 | ! pressures, we also attend to the request for forcing the surface analysis to be used |
|---|
| 3702 | ! in a few lower eta-levels. |
|---|
| 3703 | |
|---|
| 3704 | ! How many levels have we skipped in the input column. |
|---|
| 3705 | |
|---|
| 3706 | zap = 0 |
|---|
| 3707 | |
|---|
| 3708 | ! Fill in the column from up to the level just below the surface with the input |
|---|
| 3709 | ! presssure and the input field (orig or old, which ever). For an isobaric input |
|---|
| 3710 | ! file, this data is isobaric. |
|---|
| 3711 | |
|---|
| 3712 | IF ( ko_above_sfc(i) .GT. 2 ) THEN |
|---|
| 3713 | count = 1 |
|---|
| 3714 | DO ko = 2 , ko_above_sfc(i)-1 |
|---|
| 3715 | ordered_porig(count) = porig(i,ko,j) |
|---|
| 3716 | ordered_forig(count) = forig(i,ko,j) |
|---|
| 3717 | count = count + 1 |
|---|
| 3718 | END DO |
|---|
| 3719 | |
|---|
| 3720 | ! Make sure the pressure just below the surface is not "too close", this |
|---|
| 3721 | ! will cause havoc with the higher order interpolators. In case of a "too close" |
|---|
| 3722 | ! instance, we toss out the offending level (NOT the surface one) by simply |
|---|
| 3723 | ! decrementing the accumulating loop counter. |
|---|
| 3724 | |
|---|
| 3725 | IF ( ordered_porig(count-1) - porig(i,1,j) .LT. zap_close_levels ) THEN |
|---|
| 3726 | count = count -1 |
|---|
| 3727 | zap = 1 |
|---|
| 3728 | END IF |
|---|
| 3729 | |
|---|
| 3730 | ! Add in the surface values. |
|---|
| 3731 | |
|---|
| 3732 | ordered_porig(count) = porig(i,1,j) |
|---|
| 3733 | ordered_forig(count) = forig(i,1,j) |
|---|
| 3734 | count = count + 1 |
|---|
| 3735 | |
|---|
| 3736 | ! A usual way to do the vertical interpolation is to pay more attention to the |
|---|
| 3737 | ! surface data. Why? Well it has about 20x the density as the upper air, so we |
|---|
| 3738 | ! hope the analysis is better there. We more strongly use this data by artificially |
|---|
| 3739 | ! tossing out levels above the surface that are beneath a certain number of prescribed |
|---|
| 3740 | ! eta levels at this (i,j). The "zap" value is how many levels of input we are |
|---|
| 3741 | ! removing, which is used to tell the interpolator how many valid values are in |
|---|
| 3742 | ! the column. The "count" value is the increment to the index of levels, and is |
|---|
| 3743 | ! only used for assignments. |
|---|
| 3744 | |
|---|
| 3745 | IF ( force_sfc_in_vinterp .GT. 0 ) THEN |
|---|
| 3746 | |
|---|
| 3747 | ! Get the pressure at the eta level. We want to remove all input pressure levels |
|---|
| 3748 | ! between the level above the surface to the pressure at this eta surface. That |
|---|
| 3749 | ! forces the surface value to be used through the selected eta level. Keep track |
|---|
| 3750 | ! of two things: the level to use above the eta levels, and how many levels we are |
|---|
| 3751 | ! skipping. |
|---|
| 3752 | |
|---|
| 3753 | knext = ko_above_sfc(i) |
|---|
| 3754 | find_level : DO ko = ko_above_sfc(i) , generic |
|---|
| 3755 | IF ( porig(i,ko,j) .LE. pnew(i,force_sfc_in_vinterp,j) ) THEN |
|---|
| 3756 | knext = ko |
|---|
| 3757 | exit find_level |
|---|
| 3758 | ELSE |
|---|
| 3759 | zap = zap + 1 |
|---|
| 3760 | END IF |
|---|
| 3761 | END DO find_level |
|---|
| 3762 | |
|---|
| 3763 | ! No request for special interpolation, so we just assign the next level to use |
|---|
| 3764 | ! above the surface as, ta da, the first level above the surface. I know, wow. |
|---|
| 3765 | |
|---|
| 3766 | ELSE |
|---|
| 3767 | knext = ko_above_sfc(i) |
|---|
| 3768 | END IF |
|---|
| 3769 | |
|---|
| 3770 | ! One more time, make sure the pressure just above the surface is not "too close", this |
|---|
| 3771 | ! will cause havoc with the higher order interpolators. In case of a "too close" |
|---|
| 3772 | ! instance, we toss out the offending level above the surface (NOT the surface one) by simply |
|---|
| 3773 | ! incrementing the loop counter. Here, count-1 is the surface level and knext is either |
|---|
| 3774 | ! the next level up OR it is the level above the prescribed number of eta surfaces. |
|---|
| 3775 | |
|---|
| 3776 | IF ( ordered_porig(count-1) - porig(i,knext,j) .LT. zap_close_levels ) THEN |
|---|
| 3777 | kst = knext+1 |
|---|
| 3778 | zap = zap + 1 |
|---|
| 3779 | ELSE |
|---|
| 3780 | kst = knext |
|---|
| 3781 | END IF |
|---|
| 3782 | |
|---|
| 3783 | DO ko = kst , generic |
|---|
| 3784 | ordered_porig(count) = porig(i,ko,j) |
|---|
| 3785 | ordered_forig(count) = forig(i,ko,j) |
|---|
| 3786 | count = count + 1 |
|---|
| 3787 | END DO |
|---|
| 3788 | |
|---|
| 3789 | ! This is easy, the surface is the lowest level, just stick them in, in this order. OK, |
|---|
| 3790 | ! there are a couple of subtleties. We have to check for that special interpolation that |
|---|
| 3791 | ! skips some input levels so that the surface is used for the lowest few eta levels. Also, |
|---|
| 3792 | ! we must macke sure that we still do not have levels that are "too close" together. |
|---|
| 3793 | |
|---|
| 3794 | ELSE |
|---|
| 3795 | |
|---|
| 3796 | ! Initialize no input levels have yet been removed from consideration. |
|---|
| 3797 | |
|---|
| 3798 | zap = 0 |
|---|
| 3799 | |
|---|
| 3800 | ! The surface is the lowest level, so it gets set right away to location 1. |
|---|
| 3801 | |
|---|
| 3802 | ordered_porig(1) = porig(i,1,j) |
|---|
| 3803 | ordered_forig(1) = forig(i,1,j) |
|---|
| 3804 | |
|---|
| 3805 | ! We start filling in the array at loc 2, as in just above the level we just stored. |
|---|
| 3806 | |
|---|
| 3807 | count = 2 |
|---|
| 3808 | |
|---|
| 3809 | ! Are we forcing the interpolator to skip valid input levels so that the |
|---|
| 3810 | ! surface data is used through more levels? Essentially as above. |
|---|
| 3811 | |
|---|
| 3812 | IF ( force_sfc_in_vinterp .GT. 0 ) THEN |
|---|
| 3813 | knext = 2 |
|---|
| 3814 | find_level2: DO ko = 2 , generic |
|---|
| 3815 | IF ( porig(i,ko,j) .LE. pnew(i,force_sfc_in_vinterp,j) ) THEN |
|---|
| 3816 | knext = ko |
|---|
| 3817 | exit find_level2 |
|---|
| 3818 | ELSE |
|---|
| 3819 | zap = zap + 1 |
|---|
| 3820 | END IF |
|---|
| 3821 | END DO find_level2 |
|---|
| 3822 | ELSE |
|---|
| 3823 | knext = 2 |
|---|
| 3824 | END IF |
|---|
| 3825 | |
|---|
| 3826 | ! Fill in the data above the surface. The "knext" index is either the one |
|---|
| 3827 | ! just above the surface OR it is the index associated with the level that |
|---|
| 3828 | ! is just above the pressure at this (i,j) of the top eta level that is to |
|---|
| 3829 | ! be directly impacted with the surface level in interpolation. |
|---|
| 3830 | |
|---|
| 3831 | DO ko = knext , generic |
|---|
| 3832 | IF ( ordered_porig(count-1) - porig(i,ko,j) .LT. zap_close_levels ) THEN |
|---|
| 3833 | zap = zap + 1 |
|---|
| 3834 | CYCLE |
|---|
| 3835 | END IF |
|---|
| 3836 | ordered_porig(count) = porig(i,ko,j) |
|---|
| 3837 | ordered_forig(count) = forig(i,ko,j) |
|---|
| 3838 | count = count + 1 |
|---|
| 3839 | END DO |
|---|
| 3840 | |
|---|
| 3841 | END IF |
|---|
| 3842 | |
|---|
| 3843 | ! Now get the column of the "new" pressure data. So, this one is easy. |
|---|
| 3844 | |
|---|
| 3845 | DO kn = kstart , kend |
|---|
| 3846 | ordered_pnew(kn) = pnew(i,kn,j) |
|---|
| 3847 | END DO |
|---|
| 3848 | |
|---|
| 3849 | ! The polynomials are either in pressure or LOG(pressure). |
|---|
| 3850 | |
|---|
| 3851 | IF ( interp_type .EQ. 1 ) THEN |
|---|
| 3852 | CALL lagrange_setup ( var_type , & |
|---|
| 3853 | ordered_porig , ordered_forig , generic-zap , lagrange_order , & |
|---|
| 3854 | ordered_pnew , ordered_fnew , kend-kstart+1 ,i,j) |
|---|
| 3855 | ELSE |
|---|
| 3856 | CALL lagrange_setup ( var_type , & |
|---|
| 3857 | LOG(ordered_porig(1:generic-zap)) , ordered_forig , generic-zap , lagrange_order , & |
|---|
| 3858 | LOG(ordered_pnew(kstart:kend)) , ordered_fnew , kend-kstart+1 ,i,j) |
|---|
| 3859 | END IF |
|---|
| 3860 | |
|---|
| 3861 | ! Save the computed data. |
|---|
| 3862 | |
|---|
| 3863 | DO kn = kstart , kend |
|---|
| 3864 | fnew(i,kn,j) = ordered_fnew(kn) |
|---|
| 3865 | END DO |
|---|
| 3866 | |
|---|
| 3867 | ! There may have been a request to have the surface data from the input field |
|---|
| 3868 | ! to be assigned as to the lowest eta level. This assumes thin layers (usually |
|---|
| 3869 | ! the isobaric original field has the surface from 2-m T and RH, and 10-m U and V). |
|---|
| 3870 | |
|---|
| 3871 | IF ( lowest_lev_from_sfc ) THEN |
|---|
| 3872 | fnew(i,1,j) = forig(i,ko_above_sfc(i)-1,j) |
|---|
| 3873 | END IF |
|---|
| 3874 | |
|---|
| 3875 | END DO |
|---|
| 3876 | |
|---|
| 3877 | END DO |
|---|
| 3878 | |
|---|
| 3879 | END SUBROUTINE vert_interp |
|---|
| 3880 | |
|---|
| 3881 | !--------------------------------------------------------------------- |
|---|
| 3882 | |
|---|
| 3883 | SUBROUTINE vert_interp_old ( forig , po , fnew , pnu , & |
|---|
| 3884 | generic , var_type , & |
|---|
| 3885 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
|---|
| 3886 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 3887 | ids , ide , jds , jde , kds , kde , & |
|---|
| 3888 | ims , ime , jms , jme , kms , kme , & |
|---|
| 3889 | its , ite , jts , jte , kts , kte ) |
|---|
| 3890 | |
|---|
| 3891 | ! Vertically interpolate the new field. The original field on the original |
|---|
| 3892 | ! pressure levels is provided, and the new pressure surfaces to interpolate to. |
|---|
| 3893 | |
|---|
| 3894 | IMPLICIT NONE |
|---|
| 3895 | |
|---|
| 3896 | INTEGER , INTENT(IN) :: interp_type , lagrange_order |
|---|
| 3897 | LOGICAL , INTENT(IN) :: lowest_lev_from_sfc |
|---|
| 3898 | REAL , INTENT(IN) :: zap_close_levels |
|---|
| 3899 | INTEGER , INTENT(IN) :: force_sfc_in_vinterp |
|---|
| 3900 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 3901 | ims , ime , jms , jme , kms , kme , & |
|---|
| 3902 | its , ite , jts , jte , kts , kte |
|---|
| 3903 | INTEGER , INTENT(IN) :: generic |
|---|
| 3904 | |
|---|
| 3905 | CHARACTER (LEN=1) :: var_type |
|---|
| 3906 | |
|---|
| 3907 | ! REAL , DIMENSION(ims:ime,generic,jms:jme) , INTENT(IN) :: forig , po |
|---|
| 3908 | !****MARS |
|---|
| 3909 | !error with g95 and warning with pgf90 |
|---|
| 3910 | REAL , DIMENSION(ims:ime,generic,jms:jme) , INTENT(IN) :: po |
|---|
| 3911 | REAL , DIMENSION(ims:ime,generic,jms:jme) , INTENT(INOUT) :: forig |
|---|
| 3912 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: pnu |
|---|
| 3913 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: fnew |
|---|
| 3914 | |
|---|
| 3915 | REAL , DIMENSION(ims:ime,generic,jms:jme) :: porig |
|---|
| 3916 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) :: pnew |
|---|
| 3917 | |
|---|
| 3918 | ! Local vars |
|---|
| 3919 | |
|---|
| 3920 | INTEGER :: i , j , k , ko , kn , k1 , k2 , ko_1 , ko_2 |
|---|
| 3921 | INTEGER :: istart , iend , jstart , jend , kstart , kend |
|---|
| 3922 | INTEGER , DIMENSION(ims:ime,kms:kme ) :: k_above , k_below |
|---|
| 3923 | INTEGER , DIMENSION(ims:ime ) :: ks |
|---|
| 3924 | INTEGER , DIMENSION(ims:ime ) :: ko_above_sfc |
|---|
| 3925 | |
|---|
| 3926 | LOGICAL :: any_below_ground |
|---|
| 3927 | |
|---|
| 3928 | REAL :: p1 , p2 , pn |
|---|
| 3929 | !****MARS |
|---|
| 3930 | integer vert_extrap |
|---|
| 3931 | integer kn_save |
|---|
| 3932 | vert_extrap = 0 |
|---|
| 3933 | kn_save = 0 |
|---|
| 3934 | !****MARS |
|---|
| 3935 | |
|---|
| 3936 | ! Horizontal loop bounds for different variable types. |
|---|
| 3937 | |
|---|
| 3938 | IF ( var_type .EQ. 'U' ) THEN |
|---|
| 3939 | istart = its |
|---|
| 3940 | iend = ite |
|---|
| 3941 | jstart = jts |
|---|
| 3942 | jend = MIN(jde-1,jte) |
|---|
| 3943 | kstart = kts |
|---|
| 3944 | kend = kte-1 |
|---|
| 3945 | DO j = jstart,jend |
|---|
| 3946 | DO k = 1,generic |
|---|
| 3947 | DO i = MAX(ids+1,its) , MIN(ide-1,ite) |
|---|
| 3948 | porig(i,k,j) = ( po(i,k,j) + po(i-1,k,j) ) * 0.5 |
|---|
| 3949 | END DO |
|---|
| 3950 | END DO |
|---|
| 3951 | IF ( ids .EQ. its ) THEN |
|---|
| 3952 | DO k = 1,generic |
|---|
| 3953 | porig(its,k,j) = po(its,k,j) |
|---|
| 3954 | END DO |
|---|
| 3955 | END IF |
|---|
| 3956 | IF ( ide .EQ. ite ) THEN |
|---|
| 3957 | DO k = 1,generic |
|---|
| 3958 | porig(ite,k,j) = po(ite-1,k,j) |
|---|
| 3959 | END DO |
|---|
| 3960 | END IF |
|---|
| 3961 | |
|---|
| 3962 | DO k = kstart,kend |
|---|
| 3963 | DO i = MAX(ids+1,its) , MIN(ide-1,ite) |
|---|
| 3964 | pnew(i,k,j) = ( pnu(i,k,j) + pnu(i-1,k,j) ) * 0.5 |
|---|
| 3965 | END DO |
|---|
| 3966 | END DO |
|---|
| 3967 | IF ( ids .EQ. its ) THEN |
|---|
| 3968 | DO k = kstart,kend |
|---|
| 3969 | pnew(its,k,j) = pnu(its,k,j) |
|---|
| 3970 | END DO |
|---|
| 3971 | END IF |
|---|
| 3972 | IF ( ide .EQ. ite ) THEN |
|---|
| 3973 | DO k = kstart,kend |
|---|
| 3974 | pnew(ite,k,j) = pnu(ite-1,k,j) |
|---|
| 3975 | END DO |
|---|
| 3976 | END IF |
|---|
| 3977 | END DO |
|---|
| 3978 | ELSE IF ( var_type .EQ. 'V' ) THEN |
|---|
| 3979 | istart = its |
|---|
| 3980 | iend = MIN(ide-1,ite) |
|---|
| 3981 | jstart = jts |
|---|
| 3982 | jend = jte |
|---|
| 3983 | kstart = kts |
|---|
| 3984 | kend = kte-1 |
|---|
| 3985 | DO i = istart,iend |
|---|
| 3986 | DO k = 1,generic |
|---|
| 3987 | DO j = MAX(jds+1,jts) , MIN(jde-1,jte) |
|---|
| 3988 | porig(i,k,j) = ( po(i,k,j) + po(i,k,j-1) ) * 0.5 |
|---|
| 3989 | END DO |
|---|
| 3990 | END DO |
|---|
| 3991 | IF ( jds .EQ. jts ) THEN |
|---|
| 3992 | DO k = 1,generic |
|---|
| 3993 | porig(i,k,jts) = po(i,k,jts) |
|---|
| 3994 | END DO |
|---|
| 3995 | END IF |
|---|
| 3996 | IF ( jde .EQ. jte ) THEN |
|---|
| 3997 | DO k = 1,generic |
|---|
| 3998 | porig(i,k,jte) = po(i,k,jte-1) |
|---|
| 3999 | END DO |
|---|
| 4000 | END IF |
|---|
| 4001 | |
|---|
| 4002 | DO k = kstart,kend |
|---|
| 4003 | DO j = MAX(jds+1,jts) , MIN(jde-1,jte) |
|---|
| 4004 | pnew(i,k,j) = ( pnu(i,k,j) + pnu(i,k,j-1) ) * 0.5 |
|---|
| 4005 | END DO |
|---|
| 4006 | END DO |
|---|
| 4007 | IF ( jds .EQ. jts ) THEN |
|---|
| 4008 | DO k = kstart,kend |
|---|
| 4009 | pnew(i,k,jts) = pnu(i,k,jts) |
|---|
| 4010 | END DO |
|---|
| 4011 | END IF |
|---|
| 4012 | IF ( jde .EQ. jte ) THEN |
|---|
| 4013 | DO k = kstart,kend |
|---|
| 4014 | pnew(i,k,jte) = pnu(i,k,jte-1) |
|---|
| 4015 | END DO |
|---|
| 4016 | END IF |
|---|
| 4017 | END DO |
|---|
| 4018 | ELSE IF ( ( var_type .EQ. 'W' ) .OR. ( var_type .EQ. 'Z' ) ) THEN |
|---|
| 4019 | istart = its |
|---|
| 4020 | iend = MIN(ide-1,ite) |
|---|
| 4021 | jstart = jts |
|---|
| 4022 | jend = MIN(jde-1,jte) |
|---|
| 4023 | kstart = kts |
|---|
| 4024 | kend = kte |
|---|
| 4025 | DO j = jstart,jend |
|---|
| 4026 | DO k = 1,generic |
|---|
| 4027 | DO i = istart,iend |
|---|
| 4028 | porig(i,k,j) = po(i,k,j) |
|---|
| 4029 | END DO |
|---|
| 4030 | END DO |
|---|
| 4031 | |
|---|
| 4032 | DO k = kstart,kend |
|---|
| 4033 | DO i = istart,iend |
|---|
| 4034 | pnew(i,k,j) = pnu(i,k,j) |
|---|
| 4035 | END DO |
|---|
| 4036 | END DO |
|---|
| 4037 | END DO |
|---|
| 4038 | ELSE IF ( ( var_type .EQ. 'T' ) .OR. ( var_type .EQ. 'Q' ) ) THEN |
|---|
| 4039 | istart = its |
|---|
| 4040 | iend = MIN(ide-1,ite) |
|---|
| 4041 | jstart = jts |
|---|
| 4042 | jend = MIN(jde-1,jte) |
|---|
| 4043 | kstart = kts |
|---|
| 4044 | kend = kte-1 |
|---|
| 4045 | DO j = jstart,jend |
|---|
| 4046 | DO k = 1,generic |
|---|
| 4047 | DO i = istart,iend |
|---|
| 4048 | porig(i,k,j) = po(i,k,j) |
|---|
| 4049 | END DO |
|---|
| 4050 | END DO |
|---|
| 4051 | |
|---|
| 4052 | DO k = kstart,kend |
|---|
| 4053 | DO i = istart,iend |
|---|
| 4054 | pnew(i,k,j) = pnu(i,k,j) |
|---|
| 4055 | END DO |
|---|
| 4056 | END DO |
|---|
| 4057 | END DO |
|---|
| 4058 | ELSE |
|---|
| 4059 | istart = its |
|---|
| 4060 | iend = MIN(ide-1,ite) |
|---|
| 4061 | jstart = jts |
|---|
| 4062 | jend = MIN(jde-1,jte) |
|---|
| 4063 | kstart = kts |
|---|
| 4064 | kend = kte-1 |
|---|
| 4065 | DO j = jstart,jend |
|---|
| 4066 | DO k = 1,generic |
|---|
| 4067 | DO i = istart,iend |
|---|
| 4068 | porig(i,k,j) = po(i,k,j) |
|---|
| 4069 | END DO |
|---|
| 4070 | END DO |
|---|
| 4071 | |
|---|
| 4072 | DO k = kstart,kend |
|---|
| 4073 | DO i = istart,iend |
|---|
| 4074 | pnew(i,k,j) = pnu(i,k,j) |
|---|
| 4075 | END DO |
|---|
| 4076 | END DO |
|---|
| 4077 | END DO |
|---|
| 4078 | END IF |
|---|
| 4079 | |
|---|
| 4080 | |
|---|
| 4081 | DO j = jstart , jend |
|---|
| 4082 | |
|---|
| 4083 | ! Skip all of the levels below ground in the original data based upon the surface pressure. |
|---|
| 4084 | ! The ko_above_sfc is the index in the pressure array that is above the surface. If there |
|---|
| 4085 | ! are no levels underground, this is index = 2. The remaining levels are eligible for use |
|---|
| 4086 | ! in the vertical interpolation. |
|---|
| 4087 | |
|---|
| 4088 | DO i = istart , iend |
|---|
| 4089 | ko_above_sfc(i) = -1 |
|---|
| 4090 | END DO |
|---|
| 4091 | DO ko = kstart+1 , kend |
|---|
| 4092 | DO i = istart , iend |
|---|
| 4093 | |
|---|
| 4094 | IF ( ko_above_sfc(i) .EQ. -1 ) THEN |
|---|
| 4095 | IF ( porig(i,1,j) .GT. porig(i,ko,j) ) THEN |
|---|
| 4096 | ko_above_sfc(i) = ko |
|---|
| 4097 | !!****MARS |
|---|
| 4098 | !!old stuff |
|---|
| 4099 | !! |
|---|
| 4100 | !! Pressure level may be OK, however data from the diagfi is possibly missing |
|---|
| 4101 | !IF (forig(i,ko,j) .EQ. -1.0e+30) THEN |
|---|
| 4102 | ! ko_above_sfc(i) = -1 |
|---|
| 4103 | !END IF |
|---|
| 4104 | ! !! Once the right start level is found, check that it is OK |
|---|
| 4105 | ! !! >> first column should be 1e30 or so, second column should be a realistic value |
|---|
| 4106 | ! !IF ( ko_above_sfc(i) .NE. -1 ) THEN |
|---|
| 4107 | ! ! print *, 'verif', forig(i,ko-1,j), forig(i,ko,j), forig(i,ko+1,j), ko |
|---|
| 4108 | ! !END IF |
|---|
| 4109 | !! |
|---|
| 4110 | !!****MARS |
|---|
| 4111 | END IF |
|---|
| 4112 | END IF |
|---|
| 4113 | |
|---|
| 4114 | END DO |
|---|
| 4115 | END DO |
|---|
| 4116 | |
|---|
| 4117 | ! Initialize interpolation location. These are the levels in the original pressure |
|---|
| 4118 | ! data that are physically below and above the targeted new pressure level. |
|---|
| 4119 | |
|---|
| 4120 | DO kn = kts , kte |
|---|
| 4121 | DO i = its , ite |
|---|
| 4122 | k_above(i,kn) = -1 |
|---|
| 4123 | k_below(i,kn) = -2 |
|---|
| 4124 | END DO |
|---|
| 4125 | END DO |
|---|
| 4126 | |
|---|
| 4127 | ! Starting location is no lower than previous found location. This is for O(n logn) |
|---|
| 4128 | ! and not O(n^2), where n is the number of vertical levels to search. |
|---|
| 4129 | |
|---|
| 4130 | DO i = its , ite |
|---|
| 4131 | ks(i) = 1 |
|---|
| 4132 | END DO |
|---|
| 4133 | |
|---|
| 4134 | ! Find trapping layer for interpolation. The kn index runs through all of the "new" |
|---|
| 4135 | ! levels of data. |
|---|
| 4136 | |
|---|
| 4137 | DO kn = kstart , kend |
|---|
| 4138 | |
|---|
| 4139 | DO i = istart , iend |
|---|
| 4140 | |
|---|
| 4141 | ! For each "new" level (kn), we search to find the trapping levels in the "orig" |
|---|
| 4142 | ! data. Most of the time, the "new" levels are the eta surfaces, and the "orig" |
|---|
| 4143 | ! levels are the input pressure levels. |
|---|
| 4144 | |
|---|
| 4145 | found_trap_above : DO ko = ks(i) , generic-1 |
|---|
| 4146 | |
|---|
| 4147 | ! Because we can have levels in the interpolation that are not valid, |
|---|
| 4148 | ! let's toss out any candidate orig pressure values that are below ground |
|---|
| 4149 | ! based on the surface pressure. If the level =1, then this IS the surface |
|---|
| 4150 | ! level, so we HAVE to keep that one, but maybe not the ones above. If the |
|---|
| 4151 | ! level (ks) is NOT=1, then we have to just CYCLE our loop to find a legit |
|---|
| 4152 | ! below-pressure value. If we are not below ground, then we choose two |
|---|
| 4153 | ! neighboring levels to test whether they surround the new pressure level. |
|---|
| 4154 | |
|---|
| 4155 | ! The input trapping levels that we are trying is the surface and the first valid |
|---|
| 4156 | ! level above the surface. |
|---|
| 4157 | |
|---|
| 4158 | IF ( ( ko .LT. ko_above_sfc(i) ) .AND. ( ko .EQ. 1 ) ) THEN |
|---|
| 4159 | ko_1 = ko |
|---|
| 4160 | ko_2 = ko_above_sfc(i) |
|---|
| 4161 | !!****MARS |
|---|
| 4162 | !!old remark: the possible issue is fixed later in the code ... |
|---|
| 4163 | !!****MARS |
|---|
| 4164 | |
|---|
| 4165 | ! The "below" level is underground, cycle until we get to a valid pressure |
|---|
| 4166 | ! above ground. |
|---|
| 4167 | |
|---|
| 4168 | ELSE IF ( ( ko .LT. ko_above_sfc(i) ) .AND. ( ko .NE. 1 ) ) THEN |
|---|
| 4169 | CYCLE found_trap_above |
|---|
| 4170 | |
|---|
| 4171 | ! The "below" level is above the surface, so we are in the clear to test these |
|---|
| 4172 | ! two levels out. |
|---|
| 4173 | |
|---|
| 4174 | ELSE |
|---|
| 4175 | ko_1 = ko |
|---|
| 4176 | ko_2 = ko+1 |
|---|
| 4177 | |
|---|
| 4178 | END IF |
|---|
| 4179 | |
|---|
| 4180 | |
|---|
| 4181 | ! The test of the candidate levels: "below" has to have a larger pressure, and |
|---|
| 4182 | ! "above" has to have a smaller pressure. |
|---|
| 4183 | |
|---|
| 4184 | ! OK, we found the correct two surrounding levels. The locations are saved for use in the |
|---|
| 4185 | ! interpolation. |
|---|
| 4186 | |
|---|
| 4187 | IF ( ( porig(i,ko_1,j) .GE. pnew(i,kn,j) ) .AND. & |
|---|
| 4188 | ( porig(i,ko_2,j) .LT. pnew(i,kn,j) ) ) THEN |
|---|
| 4189 | k_above(i,kn) = ko_2 |
|---|
| 4190 | k_below(i,kn) = ko_1 |
|---|
| 4191 | ks(i) = ko_1 |
|---|
| 4192 | EXIT found_trap_above |
|---|
| 4193 | |
|---|
| 4194 | ! What do we do is we need to extrapolate the data underground? This happens when the |
|---|
| 4195 | ! lowest pressure that we have is physically "above" the new target pressure. Our |
|---|
| 4196 | ! actions depend on the type of variable we are interpolating. |
|---|
| 4197 | |
|---|
| 4198 | ELSE IF ( porig(i,1,j) .LT. pnew(i,kn,j) ) THEN |
|---|
| 4199 | !!****MARS |
|---|
| 4200 | !!old stuff |
|---|
| 4201 | !!check: values are usually quite close |
|---|
| 4202 | !print *,porig(i,1,j),pnew(i,kn,j) |
|---|
| 4203 | !!****MARS |
|---|
| 4204 | |
|---|
| 4205 | ! For horizontal winds and moisture, we keep a constant value under ground. |
|---|
| 4206 | |
|---|
| 4207 | IF ( ( var_type .EQ. 'U' ) .OR. & |
|---|
| 4208 | ( var_type .EQ. 'V' ) .OR. & |
|---|
| 4209 | ( var_type .EQ. 'Q' ) ) THEN |
|---|
| 4210 | k_above(i,kn) = 1 |
|---|
| 4211 | ks(i) = 1 |
|---|
| 4212 | |
|---|
| 4213 | ! For temperature and height, we extrapolate the data. Hopefully, we are not |
|---|
| 4214 | ! extrapolating too far. For pressure level input, the eta levels are always |
|---|
| 4215 | ! contained within the surface to p_top levels, so no extrapolation is ever |
|---|
| 4216 | ! required. |
|---|
| 4217 | |
|---|
| 4218 | ELSE IF ( ( var_type .EQ. 'Z' ) .OR. & |
|---|
| 4219 | ( var_type .EQ. 'T' ) ) THEN |
|---|
| 4220 | k_above(i,kn) = ko_above_sfc(i) |
|---|
| 4221 | k_below(i,kn) = 1 |
|---|
| 4222 | ks(i) = 1 |
|---|
| 4223 | !!!****MARS |
|---|
| 4224 | !!old stuff |
|---|
| 4225 | !k_above(i,kn) = 1 |
|---|
| 4226 | !ks(i) = 1 |
|---|
| 4227 | !!!"Hopefully, we are not extrapolating too far" |
|---|
| 4228 | !!!>> true on Mars ?? |
|---|
| 4229 | !!!****MARS |
|---|
| 4230 | |
|---|
| 4231 | ! Just a catch all right now. |
|---|
| 4232 | |
|---|
| 4233 | ELSE |
|---|
| 4234 | k_above(i,kn) = 1 |
|---|
| 4235 | ks(i) = 1 |
|---|
| 4236 | END IF |
|---|
| 4237 | |
|---|
| 4238 | EXIT found_trap_above |
|---|
| 4239 | |
|---|
| 4240 | ! The other extrapolation that might be required is when we are going above the |
|---|
| 4241 | ! top level of the input data. Usually this means we chose a P_PTOP value that |
|---|
| 4242 | ! was inappropriate, and we should stop and let someone fix this mess. |
|---|
| 4243 | |
|---|
| 4244 | ELSE IF ( porig(i,generic,j) .GT. pnew(i,kn,j) ) THEN |
|---|
| 4245 | print *,'data is too high, try a lower p_top' |
|---|
| 4246 | print *,'pnew=',pnew(i,kn,j),'i',i,'j',j,'kn',kn |
|---|
| 4247 | print *,'pnew=',pnew(i,:,j) |
|---|
| 4248 | print *,'porig=',porig(i,:,j) |
|---|
| 4249 | CALL wrf_error_fatal ('requested p_top is higher than input data, lower p_top') |
|---|
| 4250 | |
|---|
| 4251 | END IF |
|---|
| 4252 | END DO found_trap_above |
|---|
| 4253 | END DO |
|---|
| 4254 | END DO |
|---|
| 4255 | |
|---|
| 4256 | ! Linear vertical interpolation. |
|---|
| 4257 | |
|---|
| 4258 | DO kn = kstart , kend |
|---|
| 4259 | DO i = istart , iend |
|---|
| 4260 | IF ( k_above(i,kn) .EQ. 1 ) THEN |
|---|
| 4261 | !!!****MARS |
|---|
| 4262 | !!old stuff |
|---|
| 4263 | !!!ne doit pas arriver avec la temperature si l'on definit bien le champ au sol |
|---|
| 4264 | !IF (forig(i,1,j) .EQ. -1.0e+30) THEN |
|---|
| 4265 | ! print *,'no data here - surface - var is ...',var_type,i,j,1 |
|---|
| 4266 | ! print *,'setting to first level with data...',ko_above_sfc(i),porig(i,ko_above_sfc(i),j) |
|---|
| 4267 | ! forig(i,1,j) = forig(i,ko_above_sfc(i),j) |
|---|
| 4268 | ! !IF ( ( var_type .EQ. 'U' ) .OR. & |
|---|
| 4269 | ! ! ( var_type .EQ. 'V' ) .OR. & |
|---|
| 4270 | ! ! ( var_type .EQ. 'Q' ) ) THEN |
|---|
| 4271 | ! ! print *,'zero wind at the ground' |
|---|
| 4272 | ! ! forig(i,1,j) = 0 |
|---|
| 4273 | ! !ENDIF |
|---|
| 4274 | ! IF (forig(i,1,j) .EQ. -1.0e+30) THEN |
|---|
| 4275 | ! print *,'well ... are you sure ?' |
|---|
| 4276 | ! stop |
|---|
| 4277 | ! ENDIF |
|---|
| 4278 | !END IF |
|---|
| 4279 | !!!****MARS |
|---|
| 4280 | fnew(i,kn,j) = forig(i,1,j) |
|---|
| 4281 | ELSE |
|---|
| 4282 | k2 = MAX ( k_above(i,kn) , 2) |
|---|
| 4283 | k1 = MAX ( k_below(i,kn) , 1) |
|---|
| 4284 | IF ( k1 .EQ. k2 ) THEN |
|---|
| 4285 | CALL wrf_error_fatal ( 'identical values in the interp, bad for divisions' ) |
|---|
| 4286 | END IF |
|---|
| 4287 | !!!****MARS |
|---|
| 4288 | !!old stuff |
|---|
| 4289 | !IF (forig(i,k2,j) .EQ. -1.0e+30) THEN |
|---|
| 4290 | ! print *,'no data here - level above - you_d better stop',i,j,k2 |
|---|
| 4291 | ! stop |
|---|
| 4292 | !END IF |
|---|
| 4293 | !IF (forig(i,k1,j) .EQ. -1.0e+30) THEN |
|---|
| 4294 | ! print *,'no data here - level below - var is ...',var_type,i,j,k1 |
|---|
| 4295 | ! print *,'setting to first level with data...',ko_above_sfc(i),porig(i,ko_above_sfc(i),j) |
|---|
| 4296 | ! forig(i,k1,j) = forig(i,ko_above_sfc(i),j) |
|---|
| 4297 | ! !!!VERIFIER QUE LA TEMPERATURE AU SOL N'EST PAS CONCERNEE |
|---|
| 4298 | ! !!!(montagnes=sources locales de chaleur) |
|---|
| 4299 | ! !!!normalement, pas de souci, et lors de l'exécution rien ne s'affiche |
|---|
| 4300 | !END IF |
|---|
| 4301 | !!!****MARS |
|---|
| 4302 | IF ( interp_type .EQ. 1 ) THEN |
|---|
| 4303 | p1 = porig(i,k1,j) |
|---|
| 4304 | p2 = porig(i,k2,j) |
|---|
| 4305 | pn = pnew(i,kn,j) |
|---|
| 4306 | ELSE IF ( interp_type .EQ. 2 ) THEN |
|---|
| 4307 | p1 = ALOG(porig(i,k1,j)) |
|---|
| 4308 | p2 = ALOG(porig(i,k2,j)) |
|---|
| 4309 | pn = ALOG(pnew(i,kn,j)) |
|---|
| 4310 | END IF |
|---|
| 4311 | IF ( ( p1-pn) * (p2-pn) > 0. ) THEN |
|---|
| 4312 | ! CALL wrf_error_fatal ( 'both trapping pressures are on the same side of the new pressure' ) |
|---|
| 4313 | ! CALL wrf_debug ( 0 , 'both trapping pressures are on the same side of the new pressure' ) |
|---|
| 4314 | !!!****MARS |
|---|
| 4315 | vert_extrap = vert_extrap + 1 |
|---|
| 4316 | !print *, 'extrapolate', pnew(i,kn,j)-porig(i,k1,j), 'for WRF level', kn |
|---|
| 4317 | IF (kn_save < kn) kn_save=kn |
|---|
| 4318 | !!!****MARS |
|---|
| 4319 | END IF |
|---|
| 4320 | fnew(i,kn,j) = ( forig(i,k1,j) * ( p2 - pn ) + & |
|---|
| 4321 | forig(i,k2,j) * ( pn - p1 ) ) / & |
|---|
| 4322 | ( p2 - p1 ) |
|---|
| 4323 | END IF |
|---|
| 4324 | END DO |
|---|
| 4325 | END DO |
|---|
| 4326 | |
|---|
| 4327 | search_below_ground : DO kn = kstart , kend |
|---|
| 4328 | any_below_ground = .FALSE. |
|---|
| 4329 | DO i = istart , iend |
|---|
| 4330 | IF ( k_above(i,kn) .EQ. 1 ) THEN |
|---|
| 4331 | fnew(i,kn,j) = forig(i,1,j) |
|---|
| 4332 | any_below_ground = .TRUE. |
|---|
| 4333 | END IF |
|---|
| 4334 | END DO |
|---|
| 4335 | IF ( .NOT. any_below_ground ) THEN |
|---|
| 4336 | EXIT search_below_ground |
|---|
| 4337 | END IF |
|---|
| 4338 | END DO search_below_ground |
|---|
| 4339 | |
|---|
| 4340 | ! There may have been a request to have the surface data from the input field |
|---|
| 4341 | ! to be assigned as to the lowest eta level. This assumes thin layers (usually |
|---|
| 4342 | ! the isobaric original field has the surface from 2-m T and RH, and 10-m U and V). |
|---|
| 4343 | |
|---|
| 4344 | |
|---|
| 4345 | DO i = istart , iend |
|---|
| 4346 | IF ( lowest_lev_from_sfc ) THEN |
|---|
| 4347 | fnew(i,1,j) = forig(i,ko_above_sfc(i),j) |
|---|
| 4348 | END IF |
|---|
| 4349 | END DO |
|---|
| 4350 | |
|---|
| 4351 | END DO |
|---|
| 4352 | print *,'VERT EXTRAP = ', vert_extrap |
|---|
| 4353 | print *,'finished with ... ', var_type |
|---|
| 4354 | print *,'max WRF eta level where extrap. occurs: ',kn_save |
|---|
| 4355 | |
|---|
| 4356 | END SUBROUTINE vert_interp_old |
|---|
| 4357 | |
|---|
| 4358 | !--------------------------------------------------------------------- |
|---|
| 4359 | |
|---|
| 4360 | SUBROUTINE lagrange_setup ( var_type , all_x , all_y , all_dim , n , target_x , target_y , target_dim ,i,j) |
|---|
| 4361 | |
|---|
| 4362 | ! We call a Lagrange polynomial interpolator. The parallel concerns are put off as this |
|---|
| 4363 | ! is initially set up for vertical use. The purpose is an input column of pressure (all_x), |
|---|
| 4364 | ! and the associated pressure level data (all_y). These are assumed to be sorted (ascending |
|---|
| 4365 | ! or descending, no matter). The locations to be interpolated to are the pressures in |
|---|
| 4366 | ! target_x, probably the new vertical coordinate values. The field that is output is the |
|---|
| 4367 | ! target_y, which is defined at the target_x location. Mostly we expect to be 2nd order |
|---|
| 4368 | ! overlapping polynomials, with only a single 2nd order method near the top and bottom. |
|---|
| 4369 | ! When n=1, this is linear; when n=2, this is a second order interpolator. |
|---|
| 4370 | |
|---|
| 4371 | IMPLICIT NONE |
|---|
| 4372 | |
|---|
| 4373 | CHARACTER (LEN=1) :: var_type |
|---|
| 4374 | INTEGER , INTENT(IN) :: all_dim , n , target_dim |
|---|
| 4375 | REAL, DIMENSION(all_dim) , INTENT(IN) :: all_x , all_y |
|---|
| 4376 | REAL , DIMENSION(target_dim) , INTENT(IN) :: target_x |
|---|
| 4377 | REAL , DIMENSION(target_dim) , INTENT(OUT) :: target_y |
|---|
| 4378 | |
|---|
| 4379 | ! Brought in for debug purposes, all of the computations are in a single column. |
|---|
| 4380 | |
|---|
| 4381 | INTEGER , INTENT(IN) :: i,j |
|---|
| 4382 | |
|---|
| 4383 | ! Local vars |
|---|
| 4384 | |
|---|
| 4385 | REAL , DIMENSION(n+1) :: x , y |
|---|
| 4386 | REAL :: target_y_1 , target_y_2 |
|---|
| 4387 | LOGICAL :: found_loc |
|---|
| 4388 | INTEGER :: loop , loc_center_left , loc_center_right , ist , iend , target_loop |
|---|
| 4389 | |
|---|
| 4390 | |
|---|
| 4391 | IF ( all_dim .LT. n+1 ) THEN |
|---|
| 4392 | print *,'all_dim = ',all_dim |
|---|
| 4393 | print *,'order = ',n |
|---|
| 4394 | print *,'i,j = ',i,j |
|---|
| 4395 | print *,'p array = ',all_x |
|---|
| 4396 | print *,'f array = ',all_y |
|---|
| 4397 | print *,'p target= ',target_x |
|---|
| 4398 | CALL wrf_error_fatal ( 'troubles, the interpolating order is too large for this few input values' ) |
|---|
| 4399 | END IF |
|---|
| 4400 | |
|---|
| 4401 | IF ( n .LT. 1 ) THEN |
|---|
| 4402 | CALL wrf_error_fatal ( 'pal, linear is about as low as we go' ) |
|---|
| 4403 | END IF |
|---|
| 4404 | |
|---|
| 4405 | ! Loop over the list of target x and y values. |
|---|
| 4406 | |
|---|
| 4407 | DO target_loop = 1 , target_dim |
|---|
| 4408 | |
|---|
| 4409 | ! Find the two trapping x values, and keep the indices. |
|---|
| 4410 | |
|---|
| 4411 | found_loc = .FALSE. |
|---|
| 4412 | find_trap : DO loop = 1 , all_dim -1 |
|---|
| 4413 | IF ( ( target_x(target_loop) - all_x(loop) ) * ( target_x(target_loop) - all_x(loop+1) ) .LE. 0.0 ) THEN |
|---|
| 4414 | loc_center_left = loop |
|---|
| 4415 | loc_center_right = loop+1 |
|---|
| 4416 | found_loc = .TRUE. |
|---|
| 4417 | !****MARS: check if no errors here |
|---|
| 4418 | !print *,'interpolating ... ',var_type |
|---|
| 4419 | ! print *,'i,j = ',i,j |
|---|
| 4420 | ! print *,'target pressure and value = ',target_x(target_loop),target_y(target_loop) |
|---|
| 4421 | ! DO loop = 1 , all_dim |
|---|
| 4422 | ! print *,'column of pressure and value = ',all_x(loop),all_y(loop) |
|---|
| 4423 | ! END DO |
|---|
| 4424 | !END IF |
|---|
| 4425 | !****MARS |
|---|
| 4426 | EXIT find_trap |
|---|
| 4427 | END IF |
|---|
| 4428 | END DO find_trap |
|---|
| 4429 | |
|---|
| 4430 | IF ( ( .NOT. found_loc ) .AND. ( target_x(target_loop) .GT. all_x(1) ) ) THEN |
|---|
| 4431 | IF ( var_type .EQ. 'T' ) THEN |
|---|
| 4432 | write(6,fmt='(A,2i5,2f11.3)') & |
|---|
| 4433 | ' --> extrapolating TEMPERATURE near sfc: i,j,psfc, p target = ',& |
|---|
| 4434 | i,j,all_x(1),target_x(target_loop) |
|---|
| 4435 | target_y(target_loop) = ( all_y(1) * ( target_x(target_loop) - all_x(2) ) + & |
|---|
| 4436 | all_y(2) * ( all_x(1) - target_x(target_loop) ) ) / & |
|---|
| 4437 | ( all_x(1) - all_x(2) ) |
|---|
| 4438 | ELSE |
|---|
| 4439 | !write(6,fmt='(A,2i5,2f11.3)') & |
|---|
| 4440 | !' --> extrapolating zero gradient near sfc: i,j,psfc, p target = ',& |
|---|
| 4441 | !i,j,all_x(1),target_x(target_loop) |
|---|
| 4442 | target_y(target_loop) = all_y(1) |
|---|
| 4443 | END IF |
|---|
| 4444 | CYCLE |
|---|
| 4445 | ELSE IF ( .NOT. found_loc ) THEN |
|---|
| 4446 | !****MARS: normally, no errors here (otherwise, keep this part commented ?) |
|---|
| 4447 | print *, var_type |
|---|
| 4448 | print *,'i,j = ',i,j |
|---|
| 4449 | print *,'target pressure and value = ',target_x(target_loop),target_y(target_loop) |
|---|
| 4450 | DO loop = 1 , all_dim |
|---|
| 4451 | print *,'column of pressure and value = ',all_x(loop),all_y(loop) |
|---|
| 4452 | END DO |
|---|
| 4453 | CALL wrf_error_fatal ( 'troubles, could not find trapping x locations' ) |
|---|
| 4454 | !****MARS: end of 'keep this part commented' |
|---|
| 4455 | END IF |
|---|
| 4456 | |
|---|
| 4457 | ! Even or odd order? We can put the value in the middle if this is |
|---|
| 4458 | ! an odd order interpolator. For the even guys, we'll do it twice |
|---|
| 4459 | ! and shift the range one index, then get an average. |
|---|
| 4460 | |
|---|
| 4461 | IF ( MOD(n,2) .NE. 0 ) THEN |
|---|
| 4462 | IF ( ( loc_center_left -(((n+1)/2)-1) .GE. 1 ) .AND. & |
|---|
| 4463 | ( loc_center_right+(((n+1)/2)-1) .LE. all_dim ) ) THEN |
|---|
| 4464 | ist = loc_center_left -(((n+1)/2)-1) |
|---|
| 4465 | iend = iend + n |
|---|
| 4466 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y(target_loop) ) |
|---|
| 4467 | ELSE |
|---|
| 4468 | IF ( .NOT. found_loc ) THEN |
|---|
| 4469 | CALL wrf_error_fatal ( 'I doubt this will happen, I will only do 2nd order for now' ) |
|---|
| 4470 | END IF |
|---|
| 4471 | END IF |
|---|
| 4472 | |
|---|
| 4473 | ELSE IF ( MOD(n,2) .EQ. 0 ) THEN |
|---|
| 4474 | IF ( ( loc_center_left -(((n )/2)-1) .GE. 1 ) .AND. & |
|---|
| 4475 | ( loc_center_right+(((n )/2) ) .LE. all_dim ) .AND. & |
|---|
| 4476 | ( loc_center_left -(((n )/2) ) .GE. 1 ) .AND. & |
|---|
| 4477 | ( loc_center_right+(((n )/2)-1) .LE. all_dim ) ) THEN |
|---|
| 4478 | ist = loc_center_left -(((n )/2)-1) |
|---|
| 4479 | iend = ist + n |
|---|
| 4480 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y_1 ) |
|---|
| 4481 | ist = loc_center_left -(((n )/2) ) |
|---|
| 4482 | iend = ist + n |
|---|
| 4483 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y_2 ) |
|---|
| 4484 | target_y(target_loop) = ( target_y_1 + target_y_2 ) * 0.5 |
|---|
| 4485 | |
|---|
| 4486 | ELSE IF ( ( loc_center_left -(((n )/2)-1) .GE. 1 ) .AND. & |
|---|
| 4487 | ( loc_center_right+(((n )/2) ) .LE. all_dim ) ) THEN |
|---|
| 4488 | ist = loc_center_left -(((n )/2)-1) |
|---|
| 4489 | iend = ist + n |
|---|
| 4490 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y(target_loop) ) |
|---|
| 4491 | ELSE IF ( ( loc_center_left -(((n )/2) ) .GE. 1 ) .AND. & |
|---|
| 4492 | ( loc_center_right+(((n )/2)-1) .LE. all_dim ) ) THEN |
|---|
| 4493 | ist = loc_center_left -(((n )/2) ) |
|---|
| 4494 | iend = ist + n |
|---|
| 4495 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y(target_loop) ) |
|---|
| 4496 | ELSE |
|---|
| 4497 | CALL wrf_error_fatal ( 'unauthorized area, you should not be here' ) |
|---|
| 4498 | END IF |
|---|
| 4499 | |
|---|
| 4500 | END IF |
|---|
| 4501 | |
|---|
| 4502 | END DO |
|---|
| 4503 | |
|---|
| 4504 | END SUBROUTINE lagrange_setup |
|---|
| 4505 | |
|---|
| 4506 | !--------------------------------------------------------------------- |
|---|
| 4507 | |
|---|
| 4508 | SUBROUTINE lagrange_interp ( x , y , n , target_x , target_y ) |
|---|
| 4509 | |
|---|
| 4510 | ! Interpolation using Lagrange polynomials. |
|---|
| 4511 | ! P(x) = f(x0)Ln0(x) + ... + f(xn)Lnn(x) |
|---|
| 4512 | ! where Lnk(x) = (x -x0)(x -x1)...(x -xk-1)(x -xk+1)...(x -xn) |
|---|
| 4513 | ! --------------------------------------------- |
|---|
| 4514 | ! (xk-x0)(xk-x1)...(xk-xk-1)(xk-xk+1)...(xk-xn) |
|---|
| 4515 | |
|---|
| 4516 | IMPLICIT NONE |
|---|
| 4517 | |
|---|
| 4518 | INTEGER , INTENT(IN) :: n |
|---|
| 4519 | REAL , DIMENSION(0:n) , INTENT(IN) :: x , y |
|---|
| 4520 | REAL , INTENT(IN) :: target_x |
|---|
| 4521 | |
|---|
| 4522 | REAL , INTENT(OUT) :: target_y |
|---|
| 4523 | |
|---|
| 4524 | ! Local vars |
|---|
| 4525 | |
|---|
| 4526 | INTEGER :: i , k |
|---|
| 4527 | REAL :: numer , denom , Px |
|---|
| 4528 | REAL , DIMENSION(0:n) :: Ln |
|---|
| 4529 | |
|---|
| 4530 | Px = 0. |
|---|
| 4531 | DO i = 0 , n |
|---|
| 4532 | numer = 1. |
|---|
| 4533 | denom = 1. |
|---|
| 4534 | DO k = 0 , n |
|---|
| 4535 | IF ( k .EQ. i ) CYCLE |
|---|
| 4536 | numer = numer * ( target_x - x(k) ) |
|---|
| 4537 | denom = denom * ( x(i) - x(k) ) |
|---|
| 4538 | END DO |
|---|
| 4539 | Ln(i) = y(i) * numer / denom |
|---|
| 4540 | Px = Px + Ln(i) |
|---|
| 4541 | END DO |
|---|
| 4542 | target_y = Px |
|---|
| 4543 | |
|---|
| 4544 | END SUBROUTINE lagrange_interp |
|---|
| 4545 | |
|---|
| 4546 | #ifndef VERT_UNIT |
|---|
| 4547 | !--------------------------------------------------------------------- |
|---|
| 4548 | |
|---|
| 4549 | SUBROUTINE p_dry ( mu0 , eta , pdht , pdry , & |
|---|
| 4550 | ids , ide , jds , jde , kds , kde , & |
|---|
| 4551 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4552 | its , ite , jts , jte , kts , kte ) |
|---|
| 4553 | |
|---|
| 4554 | ! Compute reference pressure and the reference mu. |
|---|
| 4555 | |
|---|
| 4556 | IMPLICIT NONE |
|---|
| 4557 | |
|---|
| 4558 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 4559 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4560 | its , ite , jts , jte , kts , kte |
|---|
| 4561 | |
|---|
| 4562 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(IN) :: mu0 |
|---|
| 4563 | REAL , DIMENSION( kms:kme ) , INTENT(IN) :: eta |
|---|
| 4564 | REAL :: pdht |
|---|
| 4565 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: pdry |
|---|
| 4566 | |
|---|
| 4567 | ! Local vars |
|---|
| 4568 | |
|---|
| 4569 | INTEGER :: i , j , k |
|---|
| 4570 | REAL , DIMENSION( kms:kme ) :: eta_h |
|---|
| 4571 | |
|---|
| 4572 | DO k = kts , kte-1 |
|---|
| 4573 | eta_h(k) = ( eta(k) + eta(k+1) ) * 0.5 |
|---|
| 4574 | END DO |
|---|
| 4575 | |
|---|
| 4576 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4577 | DO k = kts , kte-1 |
|---|
| 4578 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4579 | pdry(i,k,j) = eta_h(k) * mu0(i,j) + pdht |
|---|
| 4580 | END DO |
|---|
| 4581 | END DO |
|---|
| 4582 | END DO |
|---|
| 4583 | |
|---|
| 4584 | END SUBROUTINE p_dry |
|---|
| 4585 | |
|---|
| 4586 | !--------------------------------------------------------------------- |
|---|
| 4587 | |
|---|
| 4588 | SUBROUTINE p_dts ( pdts , intq , psfc , p_top , & |
|---|
| 4589 | ids , ide , jds , jde , kds , kde , & |
|---|
| 4590 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4591 | its , ite , jts , jte , kts , kte ) |
|---|
| 4592 | |
|---|
| 4593 | ! Compute difference between the dry, total surface pressure and the top pressure. |
|---|
| 4594 | |
|---|
| 4595 | IMPLICIT NONE |
|---|
| 4596 | |
|---|
| 4597 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 4598 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4599 | its , ite , jts , jte , kts , kte |
|---|
| 4600 | |
|---|
| 4601 | REAL , INTENT(IN) :: p_top |
|---|
| 4602 | REAL , DIMENSION(ims:ime,jms:jme) , INTENT(IN) :: psfc |
|---|
| 4603 | REAL , DIMENSION(ims:ime,jms:jme) , INTENT(IN) :: intq |
|---|
| 4604 | REAL , DIMENSION(ims:ime,jms:jme) , INTENT(OUT) :: pdts |
|---|
| 4605 | |
|---|
| 4606 | ! Local vars |
|---|
| 4607 | |
|---|
| 4608 | INTEGER :: i , j , k |
|---|
| 4609 | |
|---|
| 4610 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4611 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4612 | pdts(i,j) = psfc(i,j) - intq(i,j) - p_top |
|---|
| 4613 | END DO |
|---|
| 4614 | END DO |
|---|
| 4615 | |
|---|
| 4616 | END SUBROUTINE p_dts |
|---|
| 4617 | |
|---|
| 4618 | !--------------------------------------------------------------------- |
|---|
| 4619 | |
|---|
| 4620 | SUBROUTINE p_dhs ( pdhs , ht , p0 , t0 , a , & |
|---|
| 4621 | ids , ide , jds , jde , kds , kde , & |
|---|
| 4622 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4623 | its , ite , jts , jte , kts , kte ) |
|---|
| 4624 | |
|---|
| 4625 | ! Compute dry, hydrostatic surface pressure. |
|---|
| 4626 | |
|---|
| 4627 | IMPLICIT NONE |
|---|
| 4628 | |
|---|
| 4629 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 4630 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4631 | its , ite , jts , jte , kts , kte |
|---|
| 4632 | |
|---|
| 4633 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(IN) :: ht |
|---|
| 4634 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: pdhs |
|---|
| 4635 | |
|---|
| 4636 | REAL , INTENT(IN) :: p0 , t0 , a |
|---|
| 4637 | |
|---|
| 4638 | ! Local vars |
|---|
| 4639 | |
|---|
| 4640 | INTEGER :: i , j , k |
|---|
| 4641 | !****MARS .... |
|---|
| 4642 | REAL , PARAMETER :: Rd = 192. |
|---|
| 4643 | REAL , PARAMETER :: g = 3.72 |
|---|
| 4644 | print *,'compute dry, hydrostatic surface pressure' |
|---|
| 4645 | !****MARS .... |
|---|
| 4646 | |
|---|
| 4647 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4648 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4649 | pdhs(i,j) = p0 * EXP ( -t0/a + SQRT ( (t0/a)**2 - 2. * g * ht(i,j)/(a * Rd) ) ) |
|---|
| 4650 | END DO |
|---|
| 4651 | END DO |
|---|
| 4652 | |
|---|
| 4653 | !****MARS |
|---|
| 4654 | !****MARS cette formule est-elle juste sur Mars ? |
|---|
| 4655 | !****MARS >> a premiere vue, ne donne pas de resultats absurdes |
|---|
| 4656 | !****TODO: il y a peut etre meilleur ! |
|---|
| 4657 | !****MARS |
|---|
| 4658 | |
|---|
| 4659 | !print *,pdhs |
|---|
| 4660 | !stop |
|---|
| 4661 | |
|---|
| 4662 | |
|---|
| 4663 | END SUBROUTINE p_dhs |
|---|
| 4664 | |
|---|
| 4665 | !--------------------------------------------------------------------- |
|---|
| 4666 | |
|---|
| 4667 | SUBROUTINE find_p_top ( p , p_top , & |
|---|
| 4668 | ids , ide , jds , jde , kds , kde , & |
|---|
| 4669 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4670 | its , ite , jts , jte , kts , kte ) |
|---|
| 4671 | |
|---|
| 4672 | ! Find the largest pressure in the top level. This is our p_top. We are |
|---|
| 4673 | ! assuming that the top level is the location where the pressure is a minimum |
|---|
| 4674 | ! for each column. In cases where the top surface is not isobaric, a |
|---|
| 4675 | ! communicated value must be shared in the calling routine. Also in cases |
|---|
| 4676 | ! where the top surface is not isobaric, care must be taken that the new |
|---|
| 4677 | ! maximum pressure is not greater than the previous value. This test is |
|---|
| 4678 | ! also handled in the calling routine. |
|---|
| 4679 | |
|---|
| 4680 | IMPLICIT NONE |
|---|
| 4681 | |
|---|
| 4682 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 4683 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4684 | its , ite , jts , jte , kts , kte |
|---|
| 4685 | |
|---|
| 4686 | REAL :: p_top |
|---|
| 4687 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: p |
|---|
| 4688 | |
|---|
| 4689 | ! Local vars |
|---|
| 4690 | |
|---|
| 4691 | INTEGER :: i , j , k, min_lev |
|---|
| 4692 | |
|---|
| 4693 | i = its |
|---|
| 4694 | j = jts |
|---|
| 4695 | p_top = p(i,2,j) |
|---|
| 4696 | min_lev = 2 |
|---|
| 4697 | DO k = 2 , kte |
|---|
| 4698 | IF ( p_top .GT. p(i,k,j) ) THEN |
|---|
| 4699 | p_top = p(i,k,j) |
|---|
| 4700 | min_lev = k |
|---|
| 4701 | END IF |
|---|
| 4702 | END DO |
|---|
| 4703 | |
|---|
| 4704 | k = min_lev |
|---|
| 4705 | p_top = p(its,k,jts) |
|---|
| 4706 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4707 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4708 | p_top = MAX ( p_top , p(i,k,j) ) |
|---|
| 4709 | END DO |
|---|
| 4710 | END DO |
|---|
| 4711 | |
|---|
| 4712 | END SUBROUTINE find_p_top |
|---|
| 4713 | |
|---|
| 4714 | !--------------------------------------------------------------------- |
|---|
| 4715 | |
|---|
| 4716 | SUBROUTINE t_to_theta ( t , p , p00 , & |
|---|
| 4717 | ids , ide , jds , jde , kds , kde , & |
|---|
| 4718 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4719 | its , ite , jts , jte , kts , kte ) |
|---|
| 4720 | |
|---|
| 4721 | ! Compute dry, hydrostatic surface pressure. |
|---|
| 4722 | |
|---|
| 4723 | IMPLICIT NONE |
|---|
| 4724 | |
|---|
| 4725 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 4726 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4727 | its , ite , jts , jte , kts , kte |
|---|
| 4728 | |
|---|
| 4729 | REAL , INTENT(IN) :: p00 |
|---|
| 4730 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: p |
|---|
| 4731 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(INOUT) :: t |
|---|
| 4732 | |
|---|
| 4733 | ! Local vars |
|---|
| 4734 | |
|---|
| 4735 | INTEGER :: i , j , k |
|---|
| 4736 | !****MARS warning warning hardcoded !!!! |
|---|
| 4737 | ! REAL , PARAMETER :: Rd = 192. |
|---|
| 4738 | ! REAL , PARAMETER :: Cp = 844.6 |
|---|
| 4739 | REAL , PARAMETER :: Rd = 191. |
|---|
| 4740 | REAL , PARAMETER :: Cp = 744.5 |
|---|
| 4741 | !****MARS |
|---|
| 4742 | |
|---|
| 4743 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4744 | DO k = kts , kte |
|---|
| 4745 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4746 | t(i,k,j) = t(i,k,j) * ( p00 / p(i,k,j) ) ** (Rd / Cp) |
|---|
| 4747 | END DO |
|---|
| 4748 | END DO |
|---|
| 4749 | END DO |
|---|
| 4750 | |
|---|
| 4751 | END SUBROUTINE t_to_theta |
|---|
| 4752 | |
|---|
| 4753 | !--------------------------------------------------------------------- |
|---|
| 4754 | |
|---|
| 4755 | SUBROUTINE integ_moist ( q_in , p_in , pd_out , t_in , ght_in , intq , & |
|---|
| 4756 | ids , ide , jds , jde , kds , kde , & |
|---|
| 4757 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4758 | its , ite , jts , jte , kts , kte ) |
|---|
| 4759 | |
|---|
| 4760 | ! Integrate the moisture field vertically. Mostly used to get the total |
|---|
| 4761 | ! vapor pressure, which can be subtracted from the total pressure to get |
|---|
| 4762 | ! the dry pressure. |
|---|
| 4763 | |
|---|
| 4764 | IMPLICIT NONE |
|---|
| 4765 | |
|---|
| 4766 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 4767 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4768 | its , ite , jts , jte , kts , kte |
|---|
| 4769 | |
|---|
| 4770 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: q_in , p_in , t_in , ght_in |
|---|
| 4771 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: pd_out |
|---|
| 4772 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: intq |
|---|
| 4773 | |
|---|
| 4774 | ! Local vars |
|---|
| 4775 | |
|---|
| 4776 | INTEGER :: i , j , k |
|---|
| 4777 | INTEGER , DIMENSION(ims:ime) :: level_above_sfc |
|---|
| 4778 | REAL , DIMENSION(ims:ime,jms:jme) :: psfc , tsfc , qsfc, zsfc |
|---|
| 4779 | REAL , DIMENSION(ims:ime,kms:kme) :: q , p , t , ght, pd |
|---|
| 4780 | |
|---|
| 4781 | REAL :: rhobar , qbar , dz |
|---|
| 4782 | REAL :: p1 , p2 , t1 , t2 , q1 , q2 , z1, z2 |
|---|
| 4783 | |
|---|
| 4784 | LOGICAL :: upside_down |
|---|
| 4785 | |
|---|
| 4786 | !****MARS |
|---|
| 4787 | REAL , PARAMETER :: Rd = 192. |
|---|
| 4788 | REAL , PARAMETER :: g = 3.72 |
|---|
| 4789 | !****MARS |
|---|
| 4790 | |
|---|
| 4791 | |
|---|
| 4792 | ! Get a surface value, always the first level of a 3d field. |
|---|
| 4793 | |
|---|
| 4794 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4795 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4796 | psfc(i,j) = p_in(i,kts,j) |
|---|
| 4797 | tsfc(i,j) = t_in(i,kts,j) |
|---|
| 4798 | qsfc(i,j) = q_in(i,kts,j) |
|---|
| 4799 | zsfc(i,j) = ght_in(i,kts,j) |
|---|
| 4800 | END DO |
|---|
| 4801 | END DO |
|---|
| 4802 | |
|---|
| 4803 | IF ( p_in(its,kts+1,jts) .LT. p_in(its,kte,jts) ) THEN |
|---|
| 4804 | upside_down = .TRUE. |
|---|
| 4805 | ELSE |
|---|
| 4806 | upside_down = .FALSE. |
|---|
| 4807 | END IF |
|---|
| 4808 | |
|---|
| 4809 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4810 | |
|---|
| 4811 | ! Initialize the integrated quantity of moisture to zero. |
|---|
| 4812 | |
|---|
| 4813 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4814 | intq(i,j) = 0. |
|---|
| 4815 | END DO |
|---|
| 4816 | |
|---|
| 4817 | IF ( upside_down ) THEN |
|---|
| 4818 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4819 | p(i,kts) = p_in(i,kts,j) |
|---|
| 4820 | t(i,kts) = t_in(i,kts,j) |
|---|
| 4821 | q(i,kts) = q_in(i,kts,j) |
|---|
| 4822 | ght(i,kts) = ght_in(i,kts,j) |
|---|
| 4823 | DO k = kts+1,kte |
|---|
| 4824 | p(i,k) = p_in(i,kte+2-k,j) |
|---|
| 4825 | t(i,k) = t_in(i,kte+2-k,j) |
|---|
| 4826 | q(i,k) = q_in(i,kte+2-k,j) |
|---|
| 4827 | ght(i,k) = ght_in(i,kte+2-k,j) |
|---|
| 4828 | END DO |
|---|
| 4829 | END DO |
|---|
| 4830 | ELSE |
|---|
| 4831 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4832 | DO k = kts,kte |
|---|
| 4833 | p(i,k) = p_in(i,k ,j) |
|---|
| 4834 | t(i,k) = t_in(i,k ,j) |
|---|
| 4835 | q(i,k) = q_in(i,k ,j) |
|---|
| 4836 | ght(i,k) = ght_in(i,k ,j) |
|---|
| 4837 | END DO |
|---|
| 4838 | END DO |
|---|
| 4839 | END IF |
|---|
| 4840 | |
|---|
| 4841 | ! Find the first level above the ground. If all of the levels are above ground, such as |
|---|
| 4842 | ! a terrain following lower coordinate, then the first level above ground is index #2. |
|---|
| 4843 | |
|---|
| 4844 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4845 | level_above_sfc(i) = -1 |
|---|
| 4846 | IF ( p(i,kts+1) .LT. psfc(i,j) ) THEN |
|---|
| 4847 | level_above_sfc(i) = kts+1 |
|---|
| 4848 | ELSE |
|---|
| 4849 | find_k : DO k = kts+1,kte-1 |
|---|
| 4850 | IF ( ( p(i,k )-psfc(i,j) .GE. 0. ) .AND. & |
|---|
| 4851 | ( p(i,k+1)-psfc(i,j) .LT. 0. ) ) THEN |
|---|
| 4852 | level_above_sfc(i) = k+1 |
|---|
| 4853 | EXIT find_k |
|---|
| 4854 | END IF |
|---|
| 4855 | END DO find_k |
|---|
| 4856 | IF ( level_above_sfc(i) .EQ. -1 ) THEN |
|---|
| 4857 | print *,'i,j = ',i,j |
|---|
| 4858 | print *,'p = ',p(i,:) |
|---|
| 4859 | print *,'p sfc = ',psfc(i,j) |
|---|
| 4860 | CALL wrf_error_fatal ( 'Could not find level above ground') |
|---|
| 4861 | END IF |
|---|
| 4862 | END IF |
|---|
| 4863 | END DO |
|---|
| 4864 | |
|---|
| 4865 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4866 | |
|---|
| 4867 | ! Account for the moisture above the ground. |
|---|
| 4868 | |
|---|
| 4869 | pd(i,kte) = p(i,kte) |
|---|
| 4870 | DO k = kte-1,level_above_sfc(i),-1 |
|---|
| 4871 | rhobar = ( p(i,k ) / ( Rd * t(i,k ) ) + & |
|---|
| 4872 | p(i,k+1) / ( Rd * t(i,k+1) ) ) * 0.5 |
|---|
| 4873 | qbar = ( q(i,k ) + q(i,k+1) ) * 0.5 |
|---|
| 4874 | dz = ght(i,k+1) - ght(i,k) |
|---|
| 4875 | intq(i,j) = intq(i,j) + g * qbar * rhobar / (1. + qbar) * dz |
|---|
| 4876 | pd(i,k) = p(i,k) - intq(i,j) |
|---|
| 4877 | END DO |
|---|
| 4878 | |
|---|
| 4879 | ! Account for the moisture between the surface and the first level up. |
|---|
| 4880 | |
|---|
| 4881 | IF ( ( p(i,level_above_sfc(i)-1)-psfc(i,j) .GE. 0. ) .AND. & |
|---|
| 4882 | ( p(i,level_above_sfc(i) )-psfc(i,j) .LT. 0. ) .AND. & |
|---|
| 4883 | ( level_above_sfc(i) .GT. kts ) ) THEN |
|---|
| 4884 | p1 = psfc(i,j) |
|---|
| 4885 | p2 = p(i,level_above_sfc(i)) |
|---|
| 4886 | t1 = tsfc(i,j) |
|---|
| 4887 | t2 = t(i,level_above_sfc(i)) |
|---|
| 4888 | q1 = qsfc(i,j) |
|---|
| 4889 | q2 = q(i,level_above_sfc(i)) |
|---|
| 4890 | z1 = zsfc(i,j) |
|---|
| 4891 | z2 = ght(i,level_above_sfc(i)) |
|---|
| 4892 | rhobar = ( p1 / ( Rd * t1 ) + & |
|---|
| 4893 | p2 / ( Rd * t2 ) ) * 0.5 |
|---|
| 4894 | qbar = ( q1 + q2 ) * 0.5 |
|---|
| 4895 | dz = z2 - z1 |
|---|
| 4896 | IF ( dz .GT. 0.1 ) THEN |
|---|
| 4897 | intq(i,j) = intq(i,j) + g * qbar * rhobar / (1. + qbar) * dz |
|---|
| 4898 | END IF |
|---|
| 4899 | |
|---|
| 4900 | ! Fix the underground values. |
|---|
| 4901 | |
|---|
| 4902 | DO k = level_above_sfc(i)-1,kts+1,-1 |
|---|
| 4903 | pd(i,k) = p(i,k) - intq(i,j) |
|---|
| 4904 | END DO |
|---|
| 4905 | END IF |
|---|
| 4906 | pd(i,kts) = psfc(i,j) - intq(i,j) |
|---|
| 4907 | |
|---|
| 4908 | END DO |
|---|
| 4909 | |
|---|
| 4910 | IF ( upside_down ) THEN |
|---|
| 4911 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4912 | pd_out(i,kts,j) = pd(i,kts) |
|---|
| 4913 | DO k = kts+1,kte |
|---|
| 4914 | pd_out(i,kte+2-k,j) = pd(i,k) |
|---|
| 4915 | END DO |
|---|
| 4916 | END DO |
|---|
| 4917 | ELSE |
|---|
| 4918 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4919 | DO k = kts,kte |
|---|
| 4920 | pd_out(i,k,j) = pd(i,k) |
|---|
| 4921 | END DO |
|---|
| 4922 | END DO |
|---|
| 4923 | END IF |
|---|
| 4924 | |
|---|
| 4925 | END DO |
|---|
| 4926 | |
|---|
| 4927 | |
|---|
| 4928 | !!!****MARS: no water vapor pressure |
|---|
| 4929 | !! DO k = level_above_sfc(i)-1,kts+1,-1 |
|---|
| 4930 | !! pd(i,k) = p(i,k) |
|---|
| 4931 | !! END DO |
|---|
| 4932 | !! pd(i,kts) = psfc(i,j) |
|---|
| 4933 | !!!****MARS |
|---|
| 4934 | |
|---|
| 4935 | |
|---|
| 4936 | END SUBROUTINE integ_moist |
|---|
| 4937 | |
|---|
| 4938 | !--------------------------------------------------------------------- |
|---|
| 4939 | |
|---|
| 4940 | SUBROUTINE rh_to_mxrat (rh, t, p, q , wrt_liquid , & |
|---|
| 4941 | ids , ide , jds , jde , kds , kde , & |
|---|
| 4942 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4943 | its , ite , jts , jte , kts , kte ) |
|---|
| 4944 | |
|---|
| 4945 | IMPLICIT NONE |
|---|
| 4946 | |
|---|
| 4947 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 4948 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4949 | its , ite , jts , jte , kts , kte |
|---|
| 4950 | |
|---|
| 4951 | LOGICAL , INTENT(IN) :: wrt_liquid |
|---|
| 4952 | |
|---|
| 4953 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: p , t |
|---|
| 4954 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(INOUT) :: rh |
|---|
| 4955 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: q |
|---|
| 4956 | |
|---|
| 4957 | ! Local vars |
|---|
| 4958 | |
|---|
| 4959 | INTEGER :: i , j , k |
|---|
| 4960 | |
|---|
| 4961 | REAL :: ew , q1 , t1 |
|---|
| 4962 | !****MARS .... regler si besoin .... |
|---|
| 4963 | !****MARS |
|---|
| 4964 | REAL, PARAMETER :: T_REF = 0.0 |
|---|
| 4965 | REAL, PARAMETER :: MW_AIR = 28.966 |
|---|
| 4966 | REAL, PARAMETER :: MW_VAP = 18.0152 |
|---|
| 4967 | |
|---|
| 4968 | REAL, PARAMETER :: A0 = 6.107799961 |
|---|
| 4969 | REAL, PARAMETER :: A1 = 4.436518521e-01 |
|---|
| 4970 | REAL, PARAMETER :: A2 = 1.428945805e-02 |
|---|
| 4971 | REAL, PARAMETER :: A3 = 2.650648471e-04 |
|---|
| 4972 | REAL, PARAMETER :: A4 = 3.031240396e-06 |
|---|
| 4973 | REAL, PARAMETER :: A5 = 2.034080948e-08 |
|---|
| 4974 | REAL, PARAMETER :: A6 = 6.136820929e-11 |
|---|
| 4975 | |
|---|
| 4976 | REAL, PARAMETER :: ES0 = 6.1121 |
|---|
| 4977 | |
|---|
| 4978 | REAL, PARAMETER :: C1 = 9.09718 |
|---|
| 4979 | REAL, PARAMETER :: C2 = 3.56654 |
|---|
| 4980 | REAL, PARAMETER :: C3 = 0.876793 |
|---|
| 4981 | REAL, PARAMETER :: EIS = 6.1071 |
|---|
| 4982 | REAL :: RHS |
|---|
| 4983 | REAL, PARAMETER :: TF = 273.16 |
|---|
| 4984 | REAL :: TK |
|---|
| 4985 | |
|---|
| 4986 | REAL :: ES |
|---|
| 4987 | REAL :: QS |
|---|
| 4988 | REAL, PARAMETER :: EPS = 0.622 |
|---|
| 4989 | REAL, PARAMETER :: SVP1 = 0.6112 |
|---|
| 4990 | REAL, PARAMETER :: SVP2 = 17.67 |
|---|
| 4991 | REAL, PARAMETER :: SVP3 = 29.65 |
|---|
| 4992 | REAL, PARAMETER :: SVPT0 = 273.15 |
|---|
| 4993 | !****MARS |
|---|
| 4994 | !****MARS |
|---|
| 4995 | |
|---|
| 4996 | |
|---|
| 4997 | ! This subroutine computes mixing ratio (q, kg/kg) from basic variables |
|---|
| 4998 | ! pressure (p, Pa), temperature (t, K) and relative humidity (rh, 1-100%). |
|---|
| 4999 | ! The reference temperature (t_ref, C) is used to describe the temperature |
|---|
| 5000 | ! at which the liquid and ice phase change occurs. |
|---|
| 5001 | |
|---|
| 5002 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 5003 | DO k = kts , kte |
|---|
| 5004 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 5005 | rh(i,k,j) = MIN ( MAX ( rh(i,k,j) , 1. ) , 100. ) |
|---|
| 5006 | END DO |
|---|
| 5007 | END DO |
|---|
| 5008 | END DO |
|---|
| 5009 | |
|---|
| 5010 | IF ( wrt_liquid ) THEN |
|---|
| 5011 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 5012 | DO k = kts , kte |
|---|
| 5013 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 5014 | es=svp1*10.*EXP(svp2*(t(i,k,j)-svpt0)/(t(i,k,j)-svp3)) |
|---|
| 5015 | qs=eps*es/(p(i,k,j)/100.-es) |
|---|
| 5016 | q(i,k,j)=MAX(.01*rh(i,k,j)*qs,0.0) |
|---|
| 5017 | END DO |
|---|
| 5018 | END DO |
|---|
| 5019 | END DO |
|---|
| 5020 | |
|---|
| 5021 | ELSE |
|---|
| 5022 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 5023 | DO k = kts , kte |
|---|
| 5024 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 5025 | |
|---|
| 5026 | t1 = t(i,k,j) - 273.16 |
|---|
| 5027 | |
|---|
| 5028 | ! Obviously dry. |
|---|
| 5029 | |
|---|
| 5030 | IF ( t1 .lt. -200. ) THEN |
|---|
| 5031 | q(i,k,j) = 0 |
|---|
| 5032 | |
|---|
| 5033 | ELSE |
|---|
| 5034 | |
|---|
| 5035 | ! First compute the ambient vapor pressure of water |
|---|
| 5036 | |
|---|
| 5037 | IF ( ( t1 .GE. t_ref ) .AND. ( t1 .GE. -47.) ) THEN ! liq phase ESLO |
|---|
| 5038 | ew = a0 + t1 * (a1 + t1 * (a2 + t1 * (a3 + t1 * (a4 + t1 * (a5 + t1 * a6))))) |
|---|
| 5039 | |
|---|
| 5040 | ELSE IF ( ( t1 .GE. t_ref ) .AND. ( t1 .LT. -47. ) ) then !liq phas poor ES |
|---|
| 5041 | ew = es0 * exp(17.67 * t1 / ( t1 + 243.5)) |
|---|
| 5042 | |
|---|
| 5043 | ELSE |
|---|
| 5044 | tk = t(i,k,j) |
|---|
| 5045 | rhs = -c1 * (tf / tk - 1.) - c2 * alog10(tf / tk) + & |
|---|
| 5046 | c3 * (1. - tk / tf) + alog10(eis) |
|---|
| 5047 | ew = 10. ** rhs |
|---|
| 5048 | |
|---|
| 5049 | END IF |
|---|
| 5050 | |
|---|
| 5051 | ! Now sat vap pres obtained compute local vapor pressure |
|---|
| 5052 | |
|---|
| 5053 | ew = MAX ( ew , 0. ) * rh(i,k,j) * 0.01 |
|---|
| 5054 | |
|---|
| 5055 | ! Now compute the specific humidity using the partial vapor |
|---|
| 5056 | ! pressures of water vapor (ew) and dry air (p-ew). The |
|---|
| 5057 | ! constants assume that the pressure is in hPa, so we divide |
|---|
| 5058 | ! the pressures by 100. |
|---|
| 5059 | |
|---|
| 5060 | q1 = mw_vap * ew |
|---|
| 5061 | q1 = q1 / (q1 + mw_air * (p(i,k,j)/100. - ew)) |
|---|
| 5062 | |
|---|
| 5063 | q(i,k,j) = q1 / (1. - q1 ) |
|---|
| 5064 | |
|---|
| 5065 | END IF |
|---|
| 5066 | |
|---|
| 5067 | END DO |
|---|
| 5068 | END DO |
|---|
| 5069 | END DO |
|---|
| 5070 | |
|---|
| 5071 | END IF |
|---|
| 5072 | |
|---|
| 5073 | !!****MARS |
|---|
| 5074 | !!TODO: change once tracers are activated ? |
|---|
| 5075 | !q=0. |
|---|
| 5076 | !!****MARS |
|---|
| 5077 | |
|---|
| 5078 | END SUBROUTINE rh_to_mxrat |
|---|
| 5079 | |
|---|
| 5080 | !--------------------------------------------------------------------- |
|---|
| 5081 | |
|---|
| 5082 | SUBROUTINE compute_eta ( znw , & |
|---|
| 5083 | eta_levels , max_eta , max_dz , & |
|---|
| 5084 | fixedpbl, & |
|---|
| 5085 | p_top , g , p00 , cvpm , a , r_d , cp , t00 , p1000mb , t0 , & |
|---|
| 5086 | tiso, & |
|---|
| 5087 | ids , ide , jds , jde , kds , kde , & |
|---|
| 5088 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5089 | its , ite , jts , jte , kts , kte ) |
|---|
| 5090 | |
|---|
| 5091 | ! Compute eta levels, either using given values from the namelist (hardly |
|---|
| 5092 | ! a computation, yep, I know), or assuming a constant dz above the PBL, |
|---|
| 5093 | ! knowing p_top and the number of eta levels. |
|---|
| 5094 | |
|---|
| 5095 | IMPLICIT NONE |
|---|
| 5096 | |
|---|
| 5097 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 5098 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5099 | its , ite , jts , jte , kts , kte |
|---|
| 5100 | REAL , INTENT(IN) :: max_dz |
|---|
| 5101 | REAL , INTENT(IN) :: p_top , g , p00 , cvpm , a , r_d , cp , t00 , p1000mb , t0 |
|---|
| 5102 | INTEGER , INTENT(IN) :: max_eta |
|---|
| 5103 | REAL , DIMENSION (max_eta) , INTENT(IN) :: eta_levels |
|---|
| 5104 | |
|---|
| 5105 | REAL , DIMENSION (kts:kte) , INTENT(OUT) :: znw |
|---|
| 5106 | |
|---|
| 5107 | ! Local vars |
|---|
| 5108 | |
|---|
| 5109 | INTEGER :: k |
|---|
| 5110 | REAL :: mub , t_init , p_surf , pb, ztop, ztop_pbl , dz , temp |
|---|
| 5111 | REAL , DIMENSION(kts:kte) :: dnw |
|---|
| 5112 | |
|---|
| 5113 | INTEGER , PARAMETER :: prac_levels = 17 |
|---|
| 5114 | INTEGER :: loop , loop1 |
|---|
| 5115 | REAL , DIMENSION(prac_levels) :: znw_prac , znu_prac , dnw_prac |
|---|
| 5116 | REAL , DIMENSION(kts:kte) :: alb , phb |
|---|
| 5117 | |
|---|
| 5118 | REAL :: z_scale |
|---|
| 5119 | REAL, INTENT(IN) :: tiso |
|---|
| 5120 | |
|---|
| 5121 | !****MARS |
|---|
| 5122 | !****MARS |
|---|
| 5123 | INTEGER :: fixedpbl ! usually, 8 first layers are fixed |
|---|
| 5124 | ! change this parameter if the top is very |
|---|
| 5125 | ! low |
|---|
| 5126 | print *, 'check Mars: p_top , g , p00 , cvpm , a , r_d , cp , t00 , p1000mb , t0' |
|---|
| 5127 | print *, p_top , g , p00 , cvpm , a , r_d , cp , t00 , p1000mb , t0 |
|---|
| 5128 | !-----solution alternative: definir dans la namelist les niveaux verticaux |
|---|
| 5129 | !****MARS |
|---|
| 5130 | !****MARS |
|---|
| 5131 | |
|---|
| 5132 | |
|---|
| 5133 | ! Gee, do the eta levels come in from the namelist? |
|---|
| 5134 | |
|---|
| 5135 | IF ( ABS(eta_levels(1)+1.) .GT. 0.0000001 ) THEN |
|---|
| 5136 | |
|---|
| 5137 | IF ( ( ABS(eta_levels(1 )-1.) .LT. 0.0000001 ) .AND. & |
|---|
| 5138 | ( ABS(eta_levels(kde)-0.) .LT. 0.0000001 ) ) THEN |
|---|
| 5139 | DO k = kds+1 , kde-1 |
|---|
| 5140 | znw(k) = eta_levels(k) |
|---|
| 5141 | END DO |
|---|
| 5142 | znw( 1) = 1. |
|---|
| 5143 | znw(kde) = 0. |
|---|
| 5144 | |
|---|
| 5145 | ELSE |
|---|
| 5146 | !CALL wrf_error_fatal ( 'First eta level should be 1.0 and the last 0.0 in namelist' ) |
|---|
| 5147 | |
|---|
| 5148 | print *, 'ok that s bad so I read the file, got it' |
|---|
| 5149 | !!MARS |
|---|
| 5150 | !!MARS |
|---|
| 5151 | open(unit=12,file='levels',form='formatted',status='old') |
|---|
| 5152 | rewind(12) |
|---|
| 5153 | DO k = kds, kde-1 |
|---|
| 5154 | read(12,*) znw(k) |
|---|
| 5155 | write(6,*) 'read level ', k, znw(k) |
|---|
| 5156 | ENDDO |
|---|
| 5157 | close(12) |
|---|
| 5158 | znw( 1) = 1. |
|---|
| 5159 | znw(kde) = 0. |
|---|
| 5160 | |
|---|
| 5161 | ! z_scale = .40 |
|---|
| 5162 | ! DO k=1, kde |
|---|
| 5163 | ! znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ & |
|---|
| 5164 | ! (1.-exp(-1./z_scale)) |
|---|
| 5165 | ! ENDDO |
|---|
| 5166 | ! znw(1) = 1.0000 |
|---|
| 5167 | ! znw(2) = 0.9995 |
|---|
| 5168 | ! znw(3) = 0.9980 |
|---|
| 5169 | ! znw(4) = 0.9950 |
|---|
| 5170 | ! znw(5) = 0.9850 |
|---|
| 5171 | ! znw(6) = 0.9700 |
|---|
| 5172 | ! znw(7) = 0.9400 |
|---|
| 5173 | ! znw(8) = 0.9000 |
|---|
| 5174 | |
|---|
| 5175 | !!MARS |
|---|
| 5176 | !!MARS |
|---|
| 5177 | |
|---|
| 5178 | |
|---|
| 5179 | END IF |
|---|
| 5180 | |
|---|
| 5181 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 5182 | p_surf=p00 |
|---|
| 5183 | print *, 'prescribed levels' |
|---|
| 5184 | DO k = 1, kde |
|---|
| 5185 | pb = znw(k) * (p_surf - p_top) + p_top |
|---|
| 5186 | print *, 'level', k, & |
|---|
| 5187 | ', pressure (Pa)', pb, & |
|---|
| 5188 | ', logp height (m)', -10000.*log(pb/p00) |
|---|
| 5189 | END DO |
|---|
| 5190 | !mub = p_surf - p_top |
|---|
| 5191 | !DO k = 1, kde-1 |
|---|
| 5192 | ! pb = (znw(k)+znw(k+1))*0.5 * (p_surf - p_top) + p_top |
|---|
| 5193 | ! !temp = MAX ( 200., t00 + A*LOG(pb/p00) ) |
|---|
| 5194 | ! temp = t00 + A*LOG(pb/p00) |
|---|
| 5195 | ! t_init = temp*(p00/pb)**(r_d/cp) - t0 |
|---|
| 5196 | ! alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
|---|
| 5197 | !END DO |
|---|
| 5198 | !phb(1) = 0. |
|---|
| 5199 | !DO k = 2,kde |
|---|
| 5200 | ! phb(k) = phb(k-1) - (znw(k)-znw(k-1)) * mub*alb(k-1) |
|---|
| 5201 | !END DO |
|---|
| 5202 | !ztop = phb(kde)/g |
|---|
| 5203 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 5204 | |
|---|
| 5205 | ! Compute eta levels assuming a constant delta z above the PBL. |
|---|
| 5206 | |
|---|
| 5207 | ELSE |
|---|
| 5208 | |
|---|
| 5209 | ! Compute top of the atmosphere with some silly levels. We just want to |
|---|
| 5210 | ! integrate to get a reasonable value for ztop. We use the planned PBL-esque |
|---|
| 5211 | ! levels, and then just coarse resolution above that. We know p_top, and we |
|---|
| 5212 | ! have the base state vars. |
|---|
| 5213 | |
|---|
| 5214 | p_surf = p00 |
|---|
| 5215 | |
|---|
| 5216 | ! znw_prac = (/ 1.000 , 0.993 , 0.983 , 0.970 , 0.954 , 0.934 , 0.909 , & |
|---|
| 5217 | ! 0.88 , 0.8 , 0.7 , 0.6 , 0.5 , 0.4 , 0.3 , 0.2 , 0.1 , 0.0 /) |
|---|
| 5218 | |
|---|
| 5219 | !****MARS |
|---|
| 5220 | !****MARS |
|---|
| 5221 | ! on Mars, this is important to correctly resolve the surface |
|---|
| 5222 | ! -- levels were changed to get closer to the surface |
|---|
| 5223 | ! -- values were chosen as done typically in LMD GCM simulations |
|---|
| 5224 | !TODO: better repartition ? |
|---|
| 5225 | |
|---|
| 5226 | ! znw_prac = (/ 1.000 , & |
|---|
| 5227 | ! 0.9999 , & !1m |
|---|
| 5228 | ! 0.9995 , & !5m |
|---|
| 5229 | ! 0.9980 , & !20m |
|---|
| 5230 | ! 0.9950 , & !55m |
|---|
| 5231 | ! 0.9850 , & !166m |
|---|
| 5232 | ! 0.9550 , & !504m 0.9700 , & !334m 0.9400 , & !676m |
|---|
| 5233 | ! 0.9000 , & |
|---|
| 5234 | ! 0.8 , 0.7 , 0.6 , 0.5 , 0.4 , 0.3 , 0.2 , 0.1 , 0.0 /) |
|---|
| 5235 | |
|---|
| 5236 | |
|---|
| 5237 | znw_prac = (/ 1.000 , & |
|---|
| 5238 | 0.9995 , & !5m |
|---|
| 5239 | 0.9980 , & !20m |
|---|
| 5240 | 0.9950 , & !55m |
|---|
| 5241 | 0.9850 , & !166m |
|---|
| 5242 | 0.9700 , & !334m |
|---|
| 5243 | 0.9400 , & !676m |
|---|
| 5244 | 0.9000 , & |
|---|
| 5245 | 0.8 , 0.7 , 0.6 , 0.5 , 0.4 , 0.3 , 0.2 , 0.1 , 0.0 /) |
|---|
| 5246 | |
|---|
| 5247 | !****MARS |
|---|
| 5248 | !****MARS |
|---|
| 5249 | |
|---|
| 5250 | |
|---|
| 5251 | DO k = 1 , prac_levels - 1 |
|---|
| 5252 | znu_prac(k) = ( znw_prac(k) + znw_prac(k+1) ) * 0.5 |
|---|
| 5253 | dnw_prac(k) = znw_prac(k+1) - znw_prac(k) |
|---|
| 5254 | END DO |
|---|
| 5255 | |
|---|
| 5256 | DO k = 1, prac_levels-1 |
|---|
| 5257 | pb = znu_prac(k)*(p_surf - p_top) + p_top |
|---|
| 5258 | !! temp = MAX ( 200., t00 + A*LOG(pb/p00) ) |
|---|
| 5259 | ! temp = t00 + A*LOG(pb/p00) |
|---|
| 5260 | temp = MAX ( tiso, t00 + A*LOG(pb/p00) ) |
|---|
| 5261 | IF (planet .eq. "mars" ) THEN |
|---|
| 5262 | t_init = temp*(p00/pb)**(r_d/cp) - t0 |
|---|
| 5263 | ELSE |
|---|
| 5264 | t_init = (temp**nu + nu*(TT00**nu)*log((p00/pb)**(rcp)))**(1/nu) - t0 |
|---|
| 5265 | ENDIF |
|---|
| 5266 | alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
|---|
| 5267 | END DO |
|---|
| 5268 | |
|---|
| 5269 | ! Base state mu is defined as base state surface pressure minus p_top |
|---|
| 5270 | |
|---|
| 5271 | mub = p_surf - p_top |
|---|
| 5272 | |
|---|
| 5273 | ! Integrate base geopotential, starting at terrain elevation. |
|---|
| 5274 | |
|---|
| 5275 | phb(1) = 0. |
|---|
| 5276 | DO k = 2,prac_levels |
|---|
| 5277 | phb(k) = phb(k-1) - dnw_prac(k-1)*mub*alb(k-1) |
|---|
| 5278 | END DO |
|---|
| 5279 | |
|---|
| 5280 | ! So, now we know the model top in meters. Get the average depth above the PBL |
|---|
| 5281 | ! of each of the remaining levels. We are going for a constant delta z thickness. |
|---|
| 5282 | |
|---|
| 5283 | ztop = phb(prac_levels) / g |
|---|
| 5284 | ztop_pbl = phb(fixedpbl) / g |
|---|
| 5285 | dz = ( ztop - ztop_pbl ) / REAL ( kde - fixedpbl ) |
|---|
| 5286 | |
|---|
| 5287 | ! Standard levels near the surface so no one gets in trouble. |
|---|
| 5288 | DO k = 1 , fixedpbl |
|---|
| 5289 | znw(k) = znw_prac(k) |
|---|
| 5290 | END DO |
|---|
| 5291 | |
|---|
| 5292 | ! Using d phb(k)/ d eta(k) = -mub * alb(k), eqn 2.9 |
|---|
| 5293 | ! Skamarock et al, NCAR TN 468. Use full levels, so |
|---|
| 5294 | ! use twice the thickness. |
|---|
| 5295 | |
|---|
| 5296 | DO k = fixedpbl, kte-1 |
|---|
| 5297 | pb = znw(k) * (p_surf - p_top) + p_top |
|---|
| 5298 | !! temp = MAX ( 200., t00 + A*LOG(pb/p00) ) |
|---|
| 5299 | ! temp = t00 + A*LOG(pb/p00) |
|---|
| 5300 | temp = MAX ( tiso, t00 + A*LOG(pb/p00) ) |
|---|
| 5301 | IF (planet .eq. "mars" ) THEN |
|---|
| 5302 | t_init = temp*(p00/pb)**(r_d/cp) - t0 |
|---|
| 5303 | ELSE |
|---|
| 5304 | t_init = (temp**nu + nu*(TT00**nu)*log((p00/pb)**(rcp)))**(1/nu) -t0 |
|---|
| 5305 | ENDIF |
|---|
| 5306 | alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
|---|
| 5307 | znw(k+1) = znw(k) - dz*g / ( mub*alb(k) ) |
|---|
| 5308 | END DO |
|---|
| 5309 | znw(kte) = 0.000 |
|---|
| 5310 | |
|---|
| 5311 | ! There is some iteration. We want the top level, ztop, to be |
|---|
| 5312 | ! consistent with the delta z, and we want the half level values |
|---|
| 5313 | ! to be consistent with the eta levels. The inner loop to 10 gets |
|---|
| 5314 | ! the eta levels very accurately, but has a residual at the top, due |
|---|
| 5315 | ! to dz changing. We reset dz five times, and then things seem OK. |
|---|
| 5316 | |
|---|
| 5317 | |
|---|
| 5318 | DO loop1 = 1 , 5 |
|---|
| 5319 | DO loop = 1 , 10 |
|---|
| 5320 | DO k = fixedpbl, kte-1 |
|---|
| 5321 | pb = (znw(k)+znw(k+1))*0.5 * (p_surf - p_top) + p_top |
|---|
| 5322 | !! temp = MAX ( 200., t00 + A*LOG(pb/p00) ) |
|---|
| 5323 | ! temp = t00 + A*LOG(pb/p00) |
|---|
| 5324 | temp = MAX ( tiso, t00 + A*LOG(pb/p00) ) |
|---|
| 5325 | IF (planet .eq. "mars" ) THEN |
|---|
| 5326 | t_init = temp*(p00/pb)**(r_d/cp) - t0 |
|---|
| 5327 | ELSE |
|---|
| 5328 | t_init = (temp**nu + nu*(TT00**nu)*log((p00/pb)**(rcp)))**(1/nu) -t0 |
|---|
| 5329 | ENDIF |
|---|
| 5330 | alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
|---|
| 5331 | znw(k+1) = znw(k) - dz*g / ( mub*alb(k) ) |
|---|
| 5332 | !!****MARS |
|---|
| 5333 | !!attention 'base_lapse' ne doit pas etre trop grand |
|---|
| 5334 | !!sinon ... des NaN car temperatures negatives en haut |
|---|
| 5335 | !IF ( ( loop1 .EQ. 5 ) .AND. ( loop .EQ. 10 ) ) THEN |
|---|
| 5336 | ! IF (k .EQ. 8) THEN |
|---|
| 5337 | ! print *, 'p,t,z,k' |
|---|
| 5338 | ! END IF |
|---|
| 5339 | ! print *, pb,temp,znw(k+1),k |
|---|
| 5340 | !END IF |
|---|
| 5341 | !****MARS |
|---|
| 5342 | END DO |
|---|
| 5343 | IF ( ( loop1 .EQ. 5 ) .AND. ( loop .EQ. 10 ) ) THEN |
|---|
| 5344 | print *,'Converged znw(kte) should be 0.0 = ',znw(kte) |
|---|
| 5345 | END IF |
|---|
| 5346 | znw(kte) = 0.000 |
|---|
| 5347 | END DO |
|---|
| 5348 | |
|---|
| 5349 | ! Here is where we check the eta levels values we just computed. |
|---|
| 5350 | |
|---|
| 5351 | DO k = 1, kde-1 |
|---|
| 5352 | pb = (znw(k)+znw(k+1))*0.5 * (p_surf - p_top) + p_top |
|---|
| 5353 | !! temp = MAX ( 200., t00 + A*LOG(pb/p00) ) |
|---|
| 5354 | ! temp = t00 + A*LOG(pb/p00) |
|---|
| 5355 | temp = MAX ( tiso, t00 + A*LOG(pb/p00) ) |
|---|
| 5356 | IF (planet .eq. "mars" ) THEN |
|---|
| 5357 | t_init = temp*(p00/pb)**(r_d/cp) - t0 |
|---|
| 5358 | ELSE |
|---|
| 5359 | t_init = (temp**nu + nu*(TT00**nu)*log((p00/pb)**(rcp)))**(1/nu) -t0 |
|---|
| 5360 | ENDIF |
|---|
| 5361 | alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
|---|
| 5362 | END DO |
|---|
| 5363 | |
|---|
| 5364 | phb(1) = 0. |
|---|
| 5365 | DO k = 2,kde |
|---|
| 5366 | phb(k) = phb(k-1) - (znw(k)-znw(k-1)) * mub*alb(k-1) |
|---|
| 5367 | END DO |
|---|
| 5368 | |
|---|
| 5369 | ! Reset the model top and the dz, and iterate. |
|---|
| 5370 | |
|---|
| 5371 | ztop = phb(kde)/g |
|---|
| 5372 | ztop_pbl = phb(fixedpbl)/g |
|---|
| 5373 | dz = ( ztop - ztop_pbl ) / REAL ( kde - fixedpbl ) |
|---|
| 5374 | END DO |
|---|
| 5375 | |
|---|
| 5376 | |
|---|
| 5377 | ! ****MARS |
|---|
| 5378 | |
|---|
| 5379 | print *, 'eta_levels= ', znw |
|---|
| 5380 | |
|---|
| 5381 | |
|---|
| 5382 | ! Display the computed levels |
|---|
| 5383 | print *,'WRF levels are:' |
|---|
| 5384 | print *,'z (m) = ',phb(1)/g |
|---|
| 5385 | do k = 2 ,kte |
|---|
| 5386 | print *,'z (m) and dz (m) = ',phb(k)/g,(phb(k)-phb(k-1))/g |
|---|
| 5387 | |
|---|
| 5388 | |
|---|
| 5389 | !! little check of the repartition |
|---|
| 5390 | if (k>2) then |
|---|
| 5391 | if ((phb(k)-2.*phb(k-1)+phb(k-2))/g < -1.e-2) then |
|---|
| 5392 | print *, 'problem on the repartition' |
|---|
| 5393 | print *, '>> try to decrease force_sfc_in_vinterp (<8)' |
|---|
| 5394 | print *, '>> or increase model top (i.e. lower ptop)' |
|---|
| 5395 | print *, (phb(k)-2.*phb(k-1)+phb(k-2))/g |
|---|
| 5396 | stop |
|---|
| 5397 | endif |
|---|
| 5398 | endif |
|---|
| 5399 | end do |
|---|
| 5400 | ! ****MARS |
|---|
| 5401 | |
|---|
| 5402 | |
|---|
| 5403 | IF ( dz .GT. max_dz ) THEN |
|---|
| 5404 | print *,'z (m) = ',phb(1)/g |
|---|
| 5405 | do k = 2 ,kte |
|---|
| 5406 | print *,'z (m) and dz (m) = ',phb(k)/g,(phb(k)-phb(k-1))/g |
|---|
| 5407 | end do |
|---|
| 5408 | print *,'dz (m) above fixed eta levels = ',dz |
|---|
| 5409 | print *,'namelist max_dz (m) = ',max_dz |
|---|
| 5410 | print *,'namelist p_top (Pa) = ',p_top |
|---|
| 5411 | CALL wrf_debug ( 0, 'You need one of three things:' ) |
|---|
| 5412 | CALL wrf_debug ( 0, '1) More eta levels to reduce the dz: e_vert' ) |
|---|
| 5413 | CALL wrf_debug ( 0, '2) A lower p_top so your total height is reduced: p_top_requested') |
|---|
| 5414 | CALL wrf_debug ( 0, '3) Increase the maximum allowable eta thickness: max_dz') |
|---|
| 5415 | CALL wrf_debug ( 0, 'All are namelist options') |
|---|
| 5416 | CALL wrf_error_fatal ( 'dz above fixed eta levels is too large') |
|---|
| 5417 | END IF |
|---|
| 5418 | |
|---|
| 5419 | END IF |
|---|
| 5420 | |
|---|
| 5421 | END SUBROUTINE compute_eta |
|---|
| 5422 | |
|---|
| 5423 | !--------------------------------------------------------------------- |
|---|
| 5424 | |
|---|
| 5425 | SUBROUTINE monthly_min_max ( field_in , field_min , field_max , & |
|---|
| 5426 | ids , ide , jds , jde , kds , kde , & |
|---|
| 5427 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5428 | its , ite , jts , jte , kts , kte ) |
|---|
| 5429 | |
|---|
| 5430 | ! Plow through each month, find the max, min values for each i,j. |
|---|
| 5431 | |
|---|
| 5432 | IMPLICIT NONE |
|---|
| 5433 | |
|---|
| 5434 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 5435 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5436 | its , ite , jts , jte , kts , kte |
|---|
| 5437 | |
|---|
| 5438 | REAL , DIMENSION(ims:ime,12,jms:jme) , INTENT(IN) :: field_in |
|---|
| 5439 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: field_min , field_max |
|---|
| 5440 | |
|---|
| 5441 | ! Local vars |
|---|
| 5442 | |
|---|
| 5443 | INTEGER :: i , j , l |
|---|
| 5444 | REAL :: minner , maxxer |
|---|
| 5445 | |
|---|
| 5446 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5447 | DO i = its , MIN(ide-1,ite) |
|---|
| 5448 | minner = field_in(i,1,j) |
|---|
| 5449 | maxxer = field_in(i,1,j) |
|---|
| 5450 | DO l = 2 , 12 |
|---|
| 5451 | IF ( field_in(i,l,j) .LT. minner ) THEN |
|---|
| 5452 | minner = field_in(i,l,j) |
|---|
| 5453 | END IF |
|---|
| 5454 | IF ( field_in(i,l,j) .GT. maxxer ) THEN |
|---|
| 5455 | maxxer = field_in(i,l,j) |
|---|
| 5456 | END IF |
|---|
| 5457 | END DO |
|---|
| 5458 | field_min(i,j) = minner |
|---|
| 5459 | field_max(i,j) = maxxer |
|---|
| 5460 | END DO |
|---|
| 5461 | END DO |
|---|
| 5462 | |
|---|
| 5463 | END SUBROUTINE monthly_min_max |
|---|
| 5464 | |
|---|
| 5465 | !--------------------------------------------------------------------- |
|---|
| 5466 | |
|---|
| 5467 | SUBROUTINE monthly_interp_to_date ( field_in , date_str , field_out , & |
|---|
| 5468 | ids , ide , jds , jde , kds , kde , & |
|---|
| 5469 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5470 | its , ite , jts , jte , kts , kte ) |
|---|
| 5471 | |
|---|
| 5472 | ! Linrarly in time interpolate data to a current valid time. The data is |
|---|
| 5473 | ! assumed to come in "monthly", valid at the 15th of every month. |
|---|
| 5474 | |
|---|
| 5475 | IMPLICIT NONE |
|---|
| 5476 | |
|---|
| 5477 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 5478 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5479 | its , ite , jts , jte , kts , kte |
|---|
| 5480 | |
|---|
| 5481 | CHARACTER (LEN=24) , INTENT(IN) :: date_str |
|---|
| 5482 | REAL , DIMENSION(ims:ime,12,jms:jme) , INTENT(IN) :: field_in |
|---|
| 5483 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: field_out |
|---|
| 5484 | |
|---|
| 5485 | ! Local vars |
|---|
| 5486 | |
|---|
| 5487 | INTEGER :: i , j , l |
|---|
| 5488 | INTEGER , DIMENSION(0:13) :: middle |
|---|
| 5489 | INTEGER :: target_julyr , target_julday , target_date |
|---|
| 5490 | INTEGER :: julyr , julday , int_month , month1 , month2 |
|---|
| 5491 | REAL :: gmt |
|---|
| 5492 | CHARACTER (LEN=4) :: yr |
|---|
| 5493 | CHARACTER (LEN=2) :: mon , day15 |
|---|
| 5494 | |
|---|
| 5495 | |
|---|
| 5496 | WRITE(day15,FMT='(I2.2)') 15 |
|---|
| 5497 | DO l = 1 , 12 |
|---|
| 5498 | WRITE(mon,FMT='(I2.2)') l |
|---|
| 5499 | CALL get_julgmt ( date_str(1:4)//'-'//mon//'-'//day15//'_'//'00:00:00.0000' , julyr , julday , gmt ) |
|---|
| 5500 | middle(l) = julyr*1000 + julday |
|---|
| 5501 | END DO |
|---|
| 5502 | |
|---|
| 5503 | l = 0 |
|---|
| 5504 | middle(l) = middle( 1) - 31 |
|---|
| 5505 | |
|---|
| 5506 | l = 13 |
|---|
| 5507 | middle(l) = middle(12) + 31 |
|---|
| 5508 | |
|---|
| 5509 | CALL get_julgmt ( date_str , target_julyr , target_julday , gmt ) |
|---|
| 5510 | target_date = target_julyr * 1000 + target_julday |
|---|
| 5511 | find_month : DO l = 0 , 12 |
|---|
| 5512 | IF ( ( middle(l) .LT. target_date ) .AND. ( middle(l+1) .GE. target_date ) ) THEN |
|---|
| 5513 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 5514 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 5515 | int_month = l |
|---|
| 5516 | IF ( ( int_month .EQ. 0 ) .OR. ( int_month .EQ. 12 ) ) THEN |
|---|
| 5517 | month1 = 12 |
|---|
| 5518 | month2 = 1 |
|---|
| 5519 | ELSE |
|---|
| 5520 | month1 = int_month |
|---|
| 5521 | month2 = month1 + 1 |
|---|
| 5522 | END IF |
|---|
| 5523 | field_out(i,j) = ( field_in(i,month2,j) * ( target_date - middle(l) ) + & |
|---|
| 5524 | field_in(i,month1,j) * ( middle(l+1) - target_date ) ) / & |
|---|
| 5525 | ( middle(l+1) - middle(l) ) |
|---|
| 5526 | END DO |
|---|
| 5527 | END DO |
|---|
| 5528 | EXIT find_month |
|---|
| 5529 | END IF |
|---|
| 5530 | END DO find_month |
|---|
| 5531 | |
|---|
| 5532 | END SUBROUTINE monthly_interp_to_date |
|---|
| 5533 | |
|---|
| 5534 | !--------------------------------------------------------------------- |
|---|
| 5535 | |
|---|
| 5536 | SUBROUTINE sfcprs (t, q, height, pslv, ter, avgsfct, p, & |
|---|
| 5537 | psfc, ez_method, & |
|---|
| 5538 | ids , ide , jds , jde , kds , kde , & |
|---|
| 5539 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5540 | its , ite , jts , jte , kts , kte ) |
|---|
| 5541 | |
|---|
| 5542 | |
|---|
| 5543 | ! Computes the surface pressure using the input height, |
|---|
| 5544 | ! temperature and q (already computed from relative |
|---|
| 5545 | ! humidity) on p surfaces. Sea level pressure is used |
|---|
| 5546 | ! to extrapolate a first guess. |
|---|
| 5547 | |
|---|
| 5548 | IMPLICIT NONE |
|---|
| 5549 | |
|---|
| 5550 | !****MARS: ok not used |
|---|
| 5551 | REAL , PARAMETER :: Rd = 192. |
|---|
| 5552 | REAL , PARAMETER :: Cp = 844.6 |
|---|
| 5553 | REAL, PARAMETER :: g = 3.72 |
|---|
| 5554 | REAL, PARAMETER :: pconst = 610. |
|---|
| 5555 | !****MARS |
|---|
| 5556 | |
|---|
| 5557 | !****MARS .... to be changed if used |
|---|
| 5558 | REAL, PARAMETER :: gamma = 6.5E-3 |
|---|
| 5559 | REAL, PARAMETER :: TC = 273.15 + 17.5 |
|---|
| 5560 | REAL, PARAMETER :: gammarg = gamma * Rd / g |
|---|
| 5561 | REAL, PARAMETER :: rov2 = Rd / 2. |
|---|
| 5562 | !****MARS .... to be changed if used |
|---|
| 5563 | |
|---|
| 5564 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 5565 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5566 | its , ite , jts , jte , kts , kte |
|---|
| 5567 | LOGICAL , INTENT ( IN ) :: ez_method |
|---|
| 5568 | |
|---|
| 5569 | REAL , DIMENSION (ims:ime,kms:kme,jms:jme) , INTENT(IN ):: t, q, height, p |
|---|
| 5570 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(IN ):: pslv , ter, avgsfct |
|---|
| 5571 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(OUT):: psfc |
|---|
| 5572 | |
|---|
| 5573 | INTEGER :: i |
|---|
| 5574 | INTEGER :: j |
|---|
| 5575 | INTEGER :: k |
|---|
| 5576 | INTEGER , DIMENSION (its:ite,jts:jte) :: k500 , k700 , k850 |
|---|
| 5577 | |
|---|
| 5578 | LOGICAL :: l1 |
|---|
| 5579 | LOGICAL :: l2 |
|---|
| 5580 | LOGICAL :: l3 |
|---|
| 5581 | LOGICAL :: OK |
|---|
| 5582 | |
|---|
| 5583 | REAL :: gamma78 ( its:ite,jts:jte ) |
|---|
| 5584 | REAL :: gamma57 ( its:ite,jts:jte ) |
|---|
| 5585 | REAL :: ht ( its:ite,jts:jte ) |
|---|
| 5586 | REAL :: p1 ( its:ite,jts:jte ) |
|---|
| 5587 | REAL :: t1 ( its:ite,jts:jte ) |
|---|
| 5588 | REAL :: t500 ( its:ite,jts:jte ) |
|---|
| 5589 | REAL :: t700 ( its:ite,jts:jte ) |
|---|
| 5590 | REAL :: t850 ( its:ite,jts:jte ) |
|---|
| 5591 | REAL :: tfixed ( its:ite,jts:jte ) |
|---|
| 5592 | REAL :: tsfc ( its:ite,jts:jte ) |
|---|
| 5593 | REAL :: tslv ( its:ite,jts:jte ) |
|---|
| 5594 | |
|---|
| 5595 | ! We either compute the surface pressure from a time averaged surface temperature |
|---|
| 5596 | ! (what we will call the "easy way"), or we try to remove the diurnal impact on the |
|---|
| 5597 | ! surface temperature (what we will call the "other way"). Both are essentially |
|---|
| 5598 | ! corrections to a sea level pressure with a high-resolution topography field. |
|---|
| 5599 | |
|---|
| 5600 | !****MARS .... |
|---|
| 5601 | !****MARS .... the mean sea level method is abandoned |
|---|
| 5602 | print *, 'no sea level pressure on Mars, please' |
|---|
| 5603 | stop |
|---|
| 5604 | !****MARS .... |
|---|
| 5605 | |
|---|
| 5606 | IF ( ez_method ) THEN |
|---|
| 5607 | |
|---|
| 5608 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5609 | DO i = its , MIN(ide-1,ite) |
|---|
| 5610 | psfc(i,j) = pslv(i,j) * ( 1.0 + gamma * ter(i,j) / avgsfct(i,j) ) ** ( - g / ( Rd * gamma ) ) |
|---|
| 5611 | END DO |
|---|
| 5612 | END DO |
|---|
| 5613 | |
|---|
| 5614 | ELSE |
|---|
| 5615 | |
|---|
| 5616 | ! Find the locations of the 850, 700 and 500 mb levels. |
|---|
| 5617 | |
|---|
| 5618 | k850 = 0 ! find k at: P=850 |
|---|
| 5619 | k700 = 0 ! P=700 |
|---|
| 5620 | k500 = 0 ! P=500 |
|---|
| 5621 | |
|---|
| 5622 | i = its |
|---|
| 5623 | j = jts |
|---|
| 5624 | DO k = kts+1 , kte |
|---|
| 5625 | IF (NINT(p(i,k,j)) .EQ. 85000) THEN |
|---|
| 5626 | k850(i,j) = k |
|---|
| 5627 | ELSE IF (NINT(p(i,k,j)) .EQ. 70000) THEN |
|---|
| 5628 | k700(i,j) = k |
|---|
| 5629 | ELSE IF (NINT(p(i,k,j)) .EQ. 50000) THEN |
|---|
| 5630 | k500(i,j) = k |
|---|
| 5631 | END IF |
|---|
| 5632 | END DO |
|---|
| 5633 | |
|---|
| 5634 | IF ( ( k850(i,j) .EQ. 0 ) .OR. ( k700(i,j) .EQ. 0 ) .OR. ( k500(i,j) .EQ. 0 ) ) THEN |
|---|
| 5635 | |
|---|
| 5636 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5637 | DO i = its , MIN(ide-1,ite) |
|---|
| 5638 | psfc(i,j) = pslv(i,j) * ( 1.0 + gamma * ter(i,j) / t(i,1,j) ) ** ( - g / ( Rd * gamma ) ) |
|---|
| 5639 | END DO |
|---|
| 5640 | END DO |
|---|
| 5641 | |
|---|
| 5642 | RETURN |
|---|
| 5643 | #if 0 |
|---|
| 5644 | |
|---|
| 5645 | ! Possibly it is just that we have a generalized vertical coord, so we do not |
|---|
| 5646 | ! have the values exactly. Do a simple assignment to a close vertical level. |
|---|
| 5647 | |
|---|
| 5648 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5649 | DO i = its , MIN(ide-1,ite) |
|---|
| 5650 | DO k = kts+1 , kte-1 |
|---|
| 5651 | IF ( ( p(i,k,j) - 85000. ) * ( p(i,k+1,j) - 85000. ) .LE. 0.0 ) THEN |
|---|
| 5652 | k850(i,j) = k |
|---|
| 5653 | END IF |
|---|
| 5654 | IF ( ( p(i,k,j) - 70000. ) * ( p(i,k+1,j) - 70000. ) .LE. 0.0 ) THEN |
|---|
| 5655 | k700(i,j) = k |
|---|
| 5656 | END IF |
|---|
| 5657 | IF ( ( p(i,k,j) - 50000. ) * ( p(i,k+1,j) - 50000. ) .LE. 0.0 ) THEN |
|---|
| 5658 | k500(i,j) = k |
|---|
| 5659 | END IF |
|---|
| 5660 | END DO |
|---|
| 5661 | END DO |
|---|
| 5662 | END DO |
|---|
| 5663 | |
|---|
| 5664 | ! If we *still* do not have the k levels, punt. I mean, we did try. |
|---|
| 5665 | |
|---|
| 5666 | OK = .TRUE. |
|---|
| 5667 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5668 | DO i = its , MIN(ide-1,ite) |
|---|
| 5669 | IF ( ( k850(i,j) .EQ. 0 ) .OR. ( k700(i,j) .EQ. 0 ) .OR. ( k500(i,j) .EQ. 0 ) ) THEN |
|---|
| 5670 | OK = .FALSE. |
|---|
| 5671 | PRINT '(A)','(i,j) = ',i,j,' Error in finding p level for 850, 700 or 500 hPa.' |
|---|
| 5672 | DO K = kts+1 , kte |
|---|
| 5673 | PRINT '(A,I3,A,F10.2,A)','K = ',k,' PRESSURE = ',p(i,k,j),' Pa' |
|---|
| 5674 | END DO |
|---|
| 5675 | PRINT '(A)','Expected 850, 700, and 500 mb values, at least.' |
|---|
| 5676 | END IF |
|---|
| 5677 | END DO |
|---|
| 5678 | END DO |
|---|
| 5679 | IF ( .NOT. OK ) THEN |
|---|
| 5680 | CALL wrf_error_fatal ( 'wrong pressure levels' ) |
|---|
| 5681 | END IF |
|---|
| 5682 | #endif |
|---|
| 5683 | |
|---|
| 5684 | ! We are here if the data is isobaric and we found the levels for 850, 700, |
|---|
| 5685 | ! and 500 mb right off the bat. |
|---|
| 5686 | |
|---|
| 5687 | ELSE |
|---|
| 5688 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5689 | DO i = its , MIN(ide-1,ite) |
|---|
| 5690 | k850(i,j) = k850(its,jts) |
|---|
| 5691 | k700(i,j) = k700(its,jts) |
|---|
| 5692 | k500(i,j) = k500(its,jts) |
|---|
| 5693 | END DO |
|---|
| 5694 | END DO |
|---|
| 5695 | END IF |
|---|
| 5696 | |
|---|
| 5697 | ! The 850 hPa level of geopotential height is called something special. |
|---|
| 5698 | |
|---|
| 5699 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5700 | DO i = its , MIN(ide-1,ite) |
|---|
| 5701 | ht(i,j) = height(i,k850(i,j),j) |
|---|
| 5702 | END DO |
|---|
| 5703 | END DO |
|---|
| 5704 | |
|---|
| 5705 | ! The variable ht is now -ter/ht(850 hPa). The plot thickens. |
|---|
| 5706 | |
|---|
| 5707 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5708 | DO i = its , MIN(ide-1,ite) |
|---|
| 5709 | ht(i,j) = -ter(i,j) / ht(i,j) |
|---|
| 5710 | END DO |
|---|
| 5711 | END DO |
|---|
| 5712 | |
|---|
| 5713 | ! Make an isothermal assumption to get a first guess at the surface |
|---|
| 5714 | ! pressure. This is to tell us which levels to use for the lapse |
|---|
| 5715 | ! rates in a bit. |
|---|
| 5716 | |
|---|
| 5717 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5718 | DO i = its , MIN(ide-1,ite) |
|---|
| 5719 | psfc(i,j) = pslv(i,j) * (pslv(i,j) / p(i,k850(i,j),j)) ** ht(i,j) |
|---|
| 5720 | END DO |
|---|
| 5721 | END DO |
|---|
| 5722 | |
|---|
| 5723 | ! Get a pressure more than pconst Pa above the surface - p1. The |
|---|
| 5724 | ! p1 is the top of the level that we will use for our lapse rate |
|---|
| 5725 | ! computations. |
|---|
| 5726 | |
|---|
| 5727 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5728 | DO i = its , MIN(ide-1,ite) |
|---|
| 5729 | IF ( ( psfc(i,j) - 95000. ) .GE. 0. ) THEN |
|---|
| 5730 | p1(i,j) = 85000. |
|---|
| 5731 | ELSE IF ( ( psfc(i,j) - 70000. ) .GE. 0. ) THEN |
|---|
| 5732 | p1(i,j) = psfc(i,j) - pconst |
|---|
| 5733 | ELSE |
|---|
| 5734 | p1(i,j) = 50000. |
|---|
| 5735 | END IF |
|---|
| 5736 | END DO |
|---|
| 5737 | END DO |
|---|
| 5738 | |
|---|
| 5739 | ! Compute virtual temperatures for k850, k700, and k500 layers. Now |
|---|
| 5740 | ! you see why we wanted Q on pressure levels, it all is beginning |
|---|
| 5741 | ! to make sense. |
|---|
| 5742 | |
|---|
| 5743 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5744 | DO i = its , MIN(ide-1,ite) |
|---|
| 5745 | t850(i,j) = t(i,k850(i,j),j) * (1. + 0.608 * q(i,k850(i,j),j)) |
|---|
| 5746 | t700(i,j) = t(i,k700(i,j),j) * (1. + 0.608 * q(i,k700(i,j),j)) |
|---|
| 5747 | t500(i,j) = t(i,k500(i,j),j) * (1. + 0.608 * q(i,k500(i,j),j)) |
|---|
| 5748 | END DO |
|---|
| 5749 | END DO |
|---|
| 5750 | |
|---|
| 5751 | ! Compute lapse rates between these three levels. These are |
|---|
| 5752 | ! environmental values for each (i,j). |
|---|
| 5753 | |
|---|
| 5754 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5755 | DO i = its , MIN(ide-1,ite) |
|---|
| 5756 | gamma78(i,j) = ALOG(t850(i,j) / t700(i,j)) / ALOG (p(i,k850(i,j),j) / p(i,k700(i,j),j) ) |
|---|
| 5757 | gamma57(i,j) = ALOG(t700(i,j) / t500(i,j)) / ALOG (p(i,k700(i,j),j) / p(i,k500(i,j),j) ) |
|---|
| 5758 | END DO |
|---|
| 5759 | END DO |
|---|
| 5760 | |
|---|
| 5761 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5762 | DO i = its , MIN(ide-1,ite) |
|---|
| 5763 | IF ( ( psfc(i,j) - 95000. ) .GE. 0. ) THEN |
|---|
| 5764 | t1(i,j) = t850(i,j) |
|---|
| 5765 | ELSE IF ( ( psfc(i,j) - 85000. ) .GE. 0. ) THEN |
|---|
| 5766 | t1(i,j) = t700(i,j) * (p1(i,j) / (p(i,k700(i,j),j))) ** gamma78(i,j) |
|---|
| 5767 | ELSE IF ( ( psfc(i,j) - 70000. ) .GE. 0.) THEN |
|---|
| 5768 | t1(i,j) = t500(i,j) * (p1(i,j) / (p(i,k500(i,j),j))) ** gamma57(i,j) |
|---|
| 5769 | ELSE |
|---|
| 5770 | t1(i,j) = t500(i,j) |
|---|
| 5771 | ENDIF |
|---|
| 5772 | END DO |
|---|
| 5773 | END DO |
|---|
| 5774 | |
|---|
| 5775 | ! From our temperature way up in the air, we extrapolate down to |
|---|
| 5776 | ! the sea level to get a guess at the sea level temperature. |
|---|
| 5777 | |
|---|
| 5778 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5779 | DO i = its , MIN(ide-1,ite) |
|---|
| 5780 | tslv(i,j) = t1(i,j) * (pslv(i,j) / p1(i,j)) ** gammarg |
|---|
| 5781 | END DO |
|---|
| 5782 | END DO |
|---|
| 5783 | |
|---|
| 5784 | ! The new surface temperature is computed from the with new sea level |
|---|
| 5785 | ! temperature, just using the elevation and a lapse rate. This lapse |
|---|
| 5786 | ! rate is -6.5 K/km. |
|---|
| 5787 | |
|---|
| 5788 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5789 | DO i = its , MIN(ide-1,ite) |
|---|
| 5790 | tsfc(i,j) = tslv(i,j) - gamma * ter(i,j) |
|---|
| 5791 | END DO |
|---|
| 5792 | END DO |
|---|
| 5793 | |
|---|
| 5794 | ! A small correction to the sea-level temperature, in case it is too warm. |
|---|
| 5795 | |
|---|
| 5796 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5797 | DO i = its , MIN(ide-1,ite) |
|---|
| 5798 | tfixed(i,j) = tc - 0.005 * (tsfc(i,j) - tc) ** 2 |
|---|
| 5799 | END DO |
|---|
| 5800 | END DO |
|---|
| 5801 | |
|---|
| 5802 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5803 | DO i = its , MIN(ide-1,ite) |
|---|
| 5804 | l1 = tslv(i,j) .LT. tc |
|---|
| 5805 | l2 = tsfc(i,j) .LE. tc |
|---|
| 5806 | l3 = .NOT. l1 |
|---|
| 5807 | IF ( l2 .AND. l3 ) THEN |
|---|
| 5808 | tslv(i,j) = tc |
|---|
| 5809 | ELSE IF ( ( .NOT. l2 ) .AND. l3 ) THEN |
|---|
| 5810 | tslv(i,j) = tfixed(i,j) |
|---|
| 5811 | END IF |
|---|
| 5812 | END DO |
|---|
| 5813 | END DO |
|---|
| 5814 | |
|---|
| 5815 | ! Finally, we can get to the surface pressure. |
|---|
| 5816 | |
|---|
| 5817 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5818 | DO i = its , MIN(ide-1,ite) |
|---|
| 5819 | p1(i,j) = - ter(i,j) * g / ( rov2 * ( tsfc(i,j) + tslv(i,j) ) ) |
|---|
| 5820 | psfc(i,j) = pslv(i,j) * EXP ( p1(i,j) ) |
|---|
| 5821 | END DO |
|---|
| 5822 | END DO |
|---|
| 5823 | |
|---|
| 5824 | END IF |
|---|
| 5825 | |
|---|
| 5826 | ! Surface pressure and sea-level pressure are the same at sea level. |
|---|
| 5827 | |
|---|
| 5828 | ! DO j = jts , MIN(jde-1,jte) |
|---|
| 5829 | ! DO i = its , MIN(ide-1,ite) |
|---|
| 5830 | ! IF ( ABS ( ter(i,j) ) .LT. 0.1 ) THEN |
|---|
| 5831 | ! psfc(i,j) = pslv(i,j) |
|---|
| 5832 | ! END IF |
|---|
| 5833 | ! END DO |
|---|
| 5834 | ! END DO |
|---|
| 5835 | |
|---|
| 5836 | END SUBROUTINE sfcprs |
|---|
| 5837 | |
|---|
| 5838 | !--------------------------------------------------------------------- |
|---|
| 5839 | |
|---|
| 5840 | SUBROUTINE sfcprs2(t, q, height, psfc_in, ter, avgsfct, p, & |
|---|
| 5841 | psfc, ez_method, & |
|---|
| 5842 | ids , ide , jds , jde , kds , kde , & |
|---|
| 5843 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5844 | its , ite , jts , jte , kts , kte ) |
|---|
| 5845 | |
|---|
| 5846 | |
|---|
| 5847 | ! Computes the surface pressure using the input height, |
|---|
| 5848 | ! temperature and q (already computed from relative |
|---|
| 5849 | ! humidity) on p surfaces. Sea level pressure is used |
|---|
| 5850 | ! to extrapolate a first guess. |
|---|
| 5851 | |
|---|
| 5852 | IMPLICIT NONE |
|---|
| 5853 | |
|---|
| 5854 | !****MARS: beware, hardcoded !!! |
|---|
| 5855 | ! REAL , PARAMETER :: Rd = 192. |
|---|
| 5856 | REAL, PARAMETER :: Rd = 191. |
|---|
| 5857 | REAL, PARAMETER :: g = 3.72 |
|---|
| 5858 | !****MARS |
|---|
| 5859 | |
|---|
| 5860 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 5861 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5862 | its , ite , jts , jte , kts , kte |
|---|
| 5863 | LOGICAL , INTENT ( IN ) :: ez_method |
|---|
| 5864 | |
|---|
| 5865 | REAL , DIMENSION (ims:ime,kms:kme,jms:jme) , INTENT(IN ):: t, q, height, p |
|---|
| 5866 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(IN ):: psfc_in , ter, avgsfct |
|---|
| 5867 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(OUT):: psfc |
|---|
| 5868 | |
|---|
| 5869 | INTEGER :: i |
|---|
| 5870 | INTEGER :: j |
|---|
| 5871 | INTEGER :: k |
|---|
| 5872 | |
|---|
| 5873 | REAL :: tv_sfc_avg , tv_sfc , del_z |
|---|
| 5874 | |
|---|
| 5875 | ! Compute the new surface pressure from the old surface pressure, and a |
|---|
| 5876 | ! known change in elevation at the surface. |
|---|
| 5877 | |
|---|
| 5878 | |
|---|
| 5879 | !****MARS: as is done in MCD/pres0 with the MOLA topography :) |
|---|
| 5880 | |
|---|
| 5881 | !!--------- |
|---|
| 5882 | !! del_z = diff in surface topo, lo-res vs hi-res |
|---|
| 5883 | !grid%em_ght_gc - grid%ht |
|---|
| 5884 | !!--------- |
|---|
| 5885 | !!* em_ght_gc: surface geopotential height from the GCM |
|---|
| 5886 | !!* ht: hi-res altimetry |
|---|
| 5887 | ! psfc = psfc_in * exp ( g del_z / (Rd Tv_sfc ) ) |
|---|
| 5888 | !!--------- |
|---|
| 5889 | |
|---|
| 5890 | |
|---|
| 5891 | IF ( ez_method ) THEN |
|---|
| 5892 | !! |
|---|
| 5893 | !!****MARS: 'ez_method' is 'we_have_tavgsfc', hard-coded as false |
|---|
| 5894 | !! |
|---|
| 5895 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5896 | DO i = its , MIN(ide-1,ite) |
|---|
| 5897 | tv_sfc_avg = avgsfct(i,j) * (1. + 0.608 * q(i,1,j)) |
|---|
| 5898 | del_z = height(i,1,j) - ter(i,j) |
|---|
| 5899 | psfc(i,j) = psfc_in(i,j) * EXP ( g * del_z / ( Rd * tv_sfc_avg ) ) |
|---|
| 5900 | END DO |
|---|
| 5901 | END DO |
|---|
| 5902 | ELSE |
|---|
| 5903 | !! |
|---|
| 5904 | !!****MARS .... here is what is done for Mars |
|---|
| 5905 | !! |
|---|
| 5906 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5907 | DO i = its , MIN(ide-1,ite) |
|---|
| 5908 | ! tv_sfc = t(i,1,j) * (1. + 0.608 * q(i,1,j)) |
|---|
| 5909 | !!****MARS: 0.608 >> nonsense on Mars |
|---|
| 5910 | tv_sfc = t(i,1,j) |
|---|
| 5911 | !!****MARS .... changer pour t_1km - 7e couche GCM |
|---|
| 5912 | !!****MARS .... spiga et al. (2007) |
|---|
| 5913 | tv_sfc = t(i,8,j) |
|---|
| 5914 | del_z = height(i,1,j) - ter(i,j) |
|---|
| 5915 | psfc(i,j) = psfc_in(i,j) * EXP ( g * del_z / ( Rd * tv_sfc ) ) |
|---|
| 5916 | !****MARS |
|---|
| 5917 | !****MARS .... which temperature is used in the Laplace formula ? |
|---|
| 5918 | !!****MARS: hardcoded as 220K (t0) |
|---|
| 5919 | !!****MARS: pas une enorme influence |
|---|
| 5920 | !psfc(i,j) = psfc_in(i,j) * EXP ( g * del_z / ( Rd * 220 ) ) |
|---|
| 5921 | |
|---|
| 5922 | |
|---|
| 5923 | ! !****MARS .... check of the altimetry differences |
|---|
| 5924 | ! print *,del_z, tv_sfc |
|---|
| 5925 | |
|---|
| 5926 | END DO |
|---|
| 5927 | END DO |
|---|
| 5928 | print *, '1 km temperatures - max' |
|---|
| 5929 | print *, MAXVAL(t(:,8,:)) |
|---|
| 5930 | END IF |
|---|
| 5931 | |
|---|
| 5932 | END SUBROUTINE sfcprs2 |
|---|
| 5933 | |
|---|
| 5934 | !--------------------------------------------------------------------- |
|---|
| 5935 | |
|---|
| 5936 | SUBROUTINE init_module_initialize |
|---|
| 5937 | END SUBROUTINE init_module_initialize |
|---|
| 5938 | |
|---|
| 5939 | !--------------------------------------------------------------------- |
|---|
| 5940 | SUBROUTINE constante3(field, field_custom, & |
|---|
| 5941 | ids , ide , jds , jde , kds , kde , & |
|---|
| 5942 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5943 | its , ite , jts , jte , kts , kte ) |
|---|
| 5944 | |
|---|
| 5945 | |
|---|
| 5946 | IMPLICIT NONE |
|---|
| 5947 | |
|---|
| 5948 | REAL :: field_custom |
|---|
| 5949 | REAL, DIMENSION (ims:ime,kms:kme,jms:jme), INTENT(INOUT):: field |
|---|
| 5950 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 5951 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5952 | its , ite , jts , jte , kts , kte |
|---|
| 5953 | |
|---|
| 5954 | |
|---|
| 5955 | !!****MARS: set the 3D field to a constant value |
|---|
| 5956 | field(:,:,:)=field_custom |
|---|
| 5957 | |
|---|
| 5958 | END SUBROUTINE constante3 |
|---|
| 5959 | !--------------------------------------------------------------------- |
|---|
| 5960 | SUBROUTINE constante2(field, field_custom, & |
|---|
| 5961 | ids , ide , jds , jde , kds , kde , & |
|---|
| 5962 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5963 | its , ite , jts , jte , kts , kte ) |
|---|
| 5964 | |
|---|
| 5965 | |
|---|
| 5966 | IMPLICIT NONE |
|---|
| 5967 | |
|---|
| 5968 | REAL :: field_custom |
|---|
| 5969 | REAL, DIMENSION (ims:ime,jms:jme), INTENT(INOUT):: field |
|---|
| 5970 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 5971 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5972 | its , ite , jts , jte , kts , kte |
|---|
| 5973 | |
|---|
| 5974 | |
|---|
| 5975 | !!****MARS: set the 3D field to a constant value |
|---|
| 5976 | field(:,:)=field_custom |
|---|
| 5977 | |
|---|
| 5978 | END SUBROUTINE constante2 |
|---|
| 5979 | !--------------------------------------------------------------------- |
|---|
| 5980 | |
|---|
| 5981 | subroutine build_sigma_hr(dimlevs,sigma_gcm,ps_gcm,ps_hr,sigma_hr) !,p_pgcm) |
|---|
| 5982 | |
|---|
| 5983 | implicit none |
|---|
| 5984 | ! include "constants_mcd.inc" |
|---|
| 5985 | |
|---|
| 5986 | !--------------------------------------- |
|---|
| 5987 | ! written by E. Millour and F. Forget |
|---|
| 5988 | ! Mars Climate Database v4.2 |
|---|
| 5989 | ! see DDD page 27 and following |
|---|
| 5990 | !--------------------------------------- |
|---|
| 5991 | |
|---|
| 5992 | INTEGER , INTENT(IN) :: dimlevs |
|---|
| 5993 | |
|---|
| 5994 | ! inputs |
|---|
| 5995 | real sigma_gcm(dimlevs) ! GCM sigma levels |
|---|
| 5996 | real ps_gcm ! GCM surface pressure |
|---|
| 5997 | real ps_hr ! High res surface pressure |
|---|
| 5998 | ! outputs |
|---|
| 5999 | real sigma_hr(dimlevs) ! High res sigma levels |
|---|
| 6000 | ! real p_pgcm(dimlevs) ! high res to GCM pressure ratios |
|---|
| 6001 | |
|---|
| 6002 | ! local variables |
|---|
| 6003 | integer l |
|---|
| 6004 | real x ! lower layer compression (-0.9<x<0) or dilatation (0.<x<0.9) |
|---|
| 6005 | real rp ! surface pressure ratio ps_hr/ps_gcm |
|---|
| 6006 | real deltaz ! corresponding pseudo-altitude difference (km) |
|---|
| 6007 | real f ! coefficient f= p_hr / p_gcm |
|---|
| 6008 | real z ! altitude of transition of p_hr toward p_gcm (km) |
|---|
| 6009 | real p_pgcm(dimlevs) ! high res to GCM pressure ratios |
|---|
| 6010 | |
|---|
| 6011 | ! 1. Coefficients |
|---|
| 6012 | rp=ps_hr/ps_gcm |
|---|
| 6013 | deltaz=-10.*log(rp) |
|---|
| 6014 | x = min(max(0.12*(abs(deltaz)-1.),0.),0.8) |
|---|
| 6015 | if(deltaz.gt.0) x=-x |
|---|
| 6016 | z=max(deltaz + 3.,3.) |
|---|
| 6017 | |
|---|
| 6018 | do l=1,dimlevs |
|---|
| 6019 | f=rp*sigma_gcm(l)**x |
|---|
| 6020 | ! f=f+(1-f)*0.5*(1+tanh(6.*(-10.*log(sigma_gcm(l))-z)/z)) |
|---|
| 6021 | ! sigma_hr(l)=f*sigma_gcm(l)/rp |
|---|
| 6022 | p_pgcm(l)=f+(1-f)*0.5*(1+tanh(6.*(-10.*log(sigma_gcm(l))-z)/z)) |
|---|
| 6023 | sigma_hr(l)=p_pgcm(l)*sigma_gcm(l)/rp |
|---|
| 6024 | enddo |
|---|
| 6025 | |
|---|
| 6026 | end subroutine build_sigma_hr |
|---|
| 6027 | |
|---|
| 6028 | |
|---|
| 6029 | |
|---|
| 6030 | |
|---|
| 6031 | |
|---|
| 6032 | END MODULE module_initialize |
|---|
| 6033 | |
|---|
| 6034 | #endif |
|---|