1 | !IDEAL:MODEL_LAYER:INITIALIZATION |
---|
2 | |
---|
3 | ! This MODULE holds the routines which are used to perform various initializations |
---|
4 | ! for the individual domains. |
---|
5 | |
---|
6 | !----------------------------------------------------------------------- |
---|
7 | |
---|
8 | MODULE module_initialize |
---|
9 | |
---|
10 | USE module_domain |
---|
11 | USE module_io_domain |
---|
12 | USE module_state_description |
---|
13 | USE module_model_constants |
---|
14 | USE module_bc |
---|
15 | USE module_timing |
---|
16 | USE module_configure |
---|
17 | USE module_init_utilities |
---|
18 | #ifdef DM_PARALLEL |
---|
19 | USE module_dm |
---|
20 | #endif |
---|
21 | |
---|
22 | |
---|
23 | CONTAINS |
---|
24 | |
---|
25 | |
---|
26 | !------------------------------------------------------------------- |
---|
27 | ! this is a wrapper for the solver-specific init_domain routines. |
---|
28 | ! Also dereferences the grid variables and passes them down as arguments. |
---|
29 | ! This is crucial, since the lower level routines may do message passing |
---|
30 | ! and this will get fouled up on machines that insist on passing down |
---|
31 | ! copies of assumed-shape arrays (by passing down as arguments, the |
---|
32 | ! data are treated as assumed-size -- ie. f77 -- arrays and the copying |
---|
33 | ! business is avoided). Fie on the F90 designers. Fie and a pox. |
---|
34 | |
---|
35 | SUBROUTINE init_domain ( grid ) |
---|
36 | |
---|
37 | IMPLICIT NONE |
---|
38 | |
---|
39 | ! Input data. |
---|
40 | TYPE (domain), POINTER :: grid |
---|
41 | ! Local data. |
---|
42 | INTEGER :: dyn_opt |
---|
43 | INTEGER :: idum1, idum2 |
---|
44 | |
---|
45 | CALL nl_get_dyn_opt( 1, dyn_opt ) |
---|
46 | |
---|
47 | CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 ) |
---|
48 | |
---|
49 | IF ( dyn_opt .eq. 1 & |
---|
50 | .or. dyn_opt .eq. 2 & |
---|
51 | .or. dyn_opt .eq. 3 & |
---|
52 | ) THEN |
---|
53 | CALL init_domain_rk( grid & |
---|
54 | ! |
---|
55 | #include <em_actual_new_args.inc> |
---|
56 | ! |
---|
57 | ) |
---|
58 | |
---|
59 | ELSE |
---|
60 | WRITE(0,*)' init_domain: unknown or unimplemented dyn_opt = ',dyn_opt |
---|
61 | call wrf_error_fatal ( ' init_domain: unknown or unimplemented dyn_opt ' ) |
---|
62 | ENDIF |
---|
63 | |
---|
64 | END SUBROUTINE init_domain |
---|
65 | |
---|
66 | !------------------------------------------------------------------- |
---|
67 | |
---|
68 | SUBROUTINE init_domain_rk ( grid & |
---|
69 | ! |
---|
70 | # include <em_dummy_new_args.inc> |
---|
71 | ! |
---|
72 | ) |
---|
73 | IMPLICIT NONE |
---|
74 | |
---|
75 | ! Input data. |
---|
76 | TYPE (domain), POINTER :: grid |
---|
77 | |
---|
78 | # include <em_dummy_decl.inc> |
---|
79 | |
---|
80 | TYPE (grid_config_rec_type) :: config_flags |
---|
81 | |
---|
82 | ! Local data |
---|
83 | INTEGER :: & |
---|
84 | ids, ide, jds, jde, kds, kde, & |
---|
85 | ims, ime, jms, jme, kms, kme, & |
---|
86 | its, ite, jts, jte, kts, kte, & |
---|
87 | i, j, k |
---|
88 | |
---|
89 | ! Local data |
---|
90 | |
---|
91 | INTEGER, PARAMETER :: nl_max = 1000 |
---|
92 | REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in |
---|
93 | INTEGER :: nl_in |
---|
94 | |
---|
95 | INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc |
---|
96 | REAL :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u |
---|
97 | REAL :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2 |
---|
98 | ! REAL, EXTERNAL :: interp_0 |
---|
99 | REAL :: hm |
---|
100 | REAL :: pi |
---|
101 | |
---|
102 | ! stuff from original initialization that has been dropped from the Registry |
---|
103 | REAL :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt |
---|
104 | REAL :: qvf1, qvf2, pd_surf |
---|
105 | INTEGER :: it |
---|
106 | |
---|
107 | LOGICAL :: moisture_init |
---|
108 | LOGICAL :: stretch_grid, dry_sounding, debug |
---|
109 | |
---|
110 | ! kludge space for initial jet |
---|
111 | |
---|
112 | INTEGER, parameter :: nz_jet=64, ny_jet=80 |
---|
113 | REAL, DIMENSION(nz_jet, ny_jet) :: u_jet, rho_jet, th_jet, z_jet |
---|
114 | |
---|
115 | ! perturbation parameters |
---|
116 | |
---|
117 | REAL, PARAMETER :: htbub=8000., radbub=2000000., radz=8000., tpbub=1.0 |
---|
118 | REAL :: piov2, tp |
---|
119 | INTEGER :: icen, jcen |
---|
120 | real :: thtmp, ptmp, temp(3) |
---|
121 | |
---|
122 | #ifdef DM_PARALLEL |
---|
123 | # include <em_data_calls.inc> |
---|
124 | #endif |
---|
125 | |
---|
126 | SELECT CASE ( model_data_order ) |
---|
127 | CASE ( DATA_ORDER_ZXY ) |
---|
128 | kds = grid%sd31 ; kde = grid%ed31 ; |
---|
129 | ids = grid%sd32 ; ide = grid%ed32 ; |
---|
130 | jds = grid%sd33 ; jde = grid%ed33 ; |
---|
131 | |
---|
132 | kms = grid%sm31 ; kme = grid%em31 ; |
---|
133 | ims = grid%sm32 ; ime = grid%em32 ; |
---|
134 | jms = grid%sm33 ; jme = grid%em33 ; |
---|
135 | |
---|
136 | kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch |
---|
137 | its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch |
---|
138 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
---|
139 | CASE ( DATA_ORDER_XYZ ) |
---|
140 | ids = grid%sd31 ; ide = grid%ed31 ; |
---|
141 | jds = grid%sd32 ; jde = grid%ed32 ; |
---|
142 | kds = grid%sd33 ; kde = grid%ed33 ; |
---|
143 | |
---|
144 | ims = grid%sm31 ; ime = grid%em31 ; |
---|
145 | jms = grid%sm32 ; jme = grid%em32 ; |
---|
146 | kms = grid%sm33 ; kme = grid%em33 ; |
---|
147 | |
---|
148 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
---|
149 | jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch |
---|
150 | kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch |
---|
151 | CASE ( DATA_ORDER_XZY ) |
---|
152 | ids = grid%sd31 ; ide = grid%ed31 ; |
---|
153 | kds = grid%sd32 ; kde = grid%ed32 ; |
---|
154 | jds = grid%sd33 ; jde = grid%ed33 ; |
---|
155 | |
---|
156 | ims = grid%sm31 ; ime = grid%em31 ; |
---|
157 | kms = grid%sm32 ; kme = grid%em32 ; |
---|
158 | jms = grid%sm33 ; jme = grid%em33 ; |
---|
159 | |
---|
160 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
---|
161 | kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch |
---|
162 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
---|
163 | |
---|
164 | END SELECT |
---|
165 | |
---|
166 | piov2 = 2.*atan(1.0) |
---|
167 | icen = ide/4 |
---|
168 | jcen = jde/2 |
---|
169 | |
---|
170 | stretch_grid = .true. |
---|
171 | delt = 0. |
---|
172 | z_scale = .50 |
---|
173 | pi = 2.*asin(1.0) |
---|
174 | write(6,*) ' pi is ',pi |
---|
175 | nxc = (ide-ids)/4 |
---|
176 | nyc = (jde-jds)/2 |
---|
177 | |
---|
178 | CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) |
---|
179 | |
---|
180 | ! here we check to see if the boundary conditions are set properly |
---|
181 | |
---|
182 | CALL boundary_condition_check( config_flags, bdyzone, error, grid%id ) |
---|
183 | |
---|
184 | moisture_init = .true. |
---|
185 | |
---|
186 | grid%itimestep=0 |
---|
187 | |
---|
188 | #ifdef DM_PARALLEL |
---|
189 | CALL wrf_dm_bcast_bytes( icm , IWORDSIZE ) |
---|
190 | CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE ) |
---|
191 | #endif |
---|
192 | |
---|
193 | CALL nl_set_mminlu(1,' ') |
---|
194 | CALL nl_set_iswater(1,0) |
---|
195 | CALL nl_set_cen_lat(1,40.) |
---|
196 | CALL nl_set_cen_lon(1,-105.) |
---|
197 | CALL nl_set_truelat1(1,0.) |
---|
198 | CALL nl_set_truelat2(1,0.) |
---|
199 | CALL nl_set_moad_cen_lat (1,0.) |
---|
200 | CALL nl_set_stand_lon (1,0.) |
---|
201 | CALL nl_set_map_proj(1,0) |
---|
202 | |
---|
203 | |
---|
204 | ! here we initialize data we currently is not initialized |
---|
205 | ! in the input data |
---|
206 | |
---|
207 | DO j = jts, jte |
---|
208 | DO i = its, ite |
---|
209 | |
---|
210 | grid%ht(i,j) = 0. |
---|
211 | grid%msft(i,j) = 1. |
---|
212 | grid%msfu(i,j) = 1. |
---|
213 | grid%msfv(i,j) = 1. |
---|
214 | grid%sina(i,j) = 0. |
---|
215 | grid%cosa(i,j) = 1. |
---|
216 | grid%e(i,j) = 0. |
---|
217 | grid%f(i,j) = 1.e-04 |
---|
218 | |
---|
219 | END DO |
---|
220 | END DO |
---|
221 | |
---|
222 | DO j = jts, jte |
---|
223 | DO k = kts, kte |
---|
224 | DO i = its, ite |
---|
225 | grid%em_ww(i,k,j) = 0. |
---|
226 | END DO |
---|
227 | END DO |
---|
228 | END DO |
---|
229 | |
---|
230 | grid%step_number = 0 |
---|
231 | |
---|
232 | ! set up the grid |
---|
233 | |
---|
234 | IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz) |
---|
235 | DO k=1, kde |
---|
236 | grid%em_znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ & |
---|
237 | (1.-exp(-1./z_scale)) |
---|
238 | ENDDO |
---|
239 | ELSE |
---|
240 | DO k=1, kde |
---|
241 | grid%em_znw(k) = 1. - float(k-1)/float(kde-1) |
---|
242 | ENDDO |
---|
243 | ENDIF |
---|
244 | |
---|
245 | DO k=1, kde-1 |
---|
246 | grid%em_dnw(k) = grid%em_znw(k+1) - grid%em_znw(k) |
---|
247 | grid%em_rdnw(k) = 1./grid%em_dnw(k) |
---|
248 | grid%em_znu(k) = 0.5*(grid%em_znw(k+1)+grid%em_znw(k)) |
---|
249 | ENDDO |
---|
250 | DO k=2, kde-1 |
---|
251 | grid%em_dn(k) = 0.5*(grid%em_dnw(k)+grid%em_dnw(k-1)) |
---|
252 | grid%em_rdn(k) = 1./grid%em_dn(k) |
---|
253 | grid%em_fnp(k) = .5* grid%em_dnw(k )/grid%em_dn(k) |
---|
254 | grid%em_fnm(k) = .5* grid%em_dnw(k-1)/grid%em_dn(k) |
---|
255 | ENDDO |
---|
256 | |
---|
257 | cof1 = (2.*grid%em_dn(2)+grid%em_dn(3))/(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(2) |
---|
258 | cof2 = grid%em_dn(2) /(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(3) |
---|
259 | grid%cf1 = grid%em_fnp(2) + cof1 |
---|
260 | grid%cf2 = grid%em_fnm(2) - cof1 - cof2 |
---|
261 | grid%cf3 = cof2 |
---|
262 | |
---|
263 | grid%cfn = (.5*grid%em_dnw(kde-1)+grid%em_dn(kde-1))/grid%em_dn(kde-1) |
---|
264 | grid%cfn1 = -.5*grid%em_dnw(kde-1)/grid%em_dn(kde-1) |
---|
265 | grid%rdx = 1./config_flags%dx |
---|
266 | grid%rdy = 1./config_flags%dy |
---|
267 | |
---|
268 | ! get the sounding from the ascii sounding file, first get dry sounding and |
---|
269 | ! calculate base state |
---|
270 | |
---|
271 | write(6,*) ' reading input jet sounding ' |
---|
272 | call read_input_jet( u_jet, rho_jet, th_jet, z_jet, nz_jet, ny_jet ) |
---|
273 | |
---|
274 | write(6,*) ' getting dry sounding for base state ' |
---|
275 | write(6,*) ' using middle column in jet sounding, j = ',ny_jet/2 |
---|
276 | dry_sounding = .true. |
---|
277 | |
---|
278 | dry_sounding = .true. |
---|
279 | debug = .true. ! this will produce print of the sounding |
---|
280 | CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, & |
---|
281 | nl_max, nl_in, u_jet, rho_jet, th_jet, z_jet, & |
---|
282 | nz_jet, ny_jet, ny_jet/2, debug ) |
---|
283 | |
---|
284 | write(6,*) ' returned from reading sounding, nl_in is ',nl_in |
---|
285 | |
---|
286 | ! find ptop for the desired ztop (ztop is input from the namelist), |
---|
287 | ! and find surface pressure |
---|
288 | |
---|
289 | ! For the jet, using the middle column for the base state means that |
---|
290 | ! we will be extrapolating above the highest height data to the south |
---|
291 | ! of the centerline. |
---|
292 | |
---|
293 | grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in ) |
---|
294 | |
---|
295 | DO j=jts,jte |
---|
296 | DO i=its,ite ! flat surface |
---|
297 | grid%em_phb(i,1,j) = 0. |
---|
298 | grid%em_php(i,1,j) = 0. |
---|
299 | grid%em_ph0(i,1,j) = 0. |
---|
300 | grid%ht(i,j) = 0. |
---|
301 | ENDDO |
---|
302 | ENDDO |
---|
303 | |
---|
304 | DO J = jts, jte |
---|
305 | DO I = its, ite |
---|
306 | |
---|
307 | p_surf = interp_0( p_in, zk, grid%em_phb(i,1,j)/g, nl_in ) |
---|
308 | grid%em_mub(i,j) = p_surf-grid%p_top |
---|
309 | |
---|
310 | ! this is dry hydrostatic sounding (base state), so given grid%em_p (coordinate), |
---|
311 | ! interp theta (from interp) and compute 1/rho from eqn. of state |
---|
312 | |
---|
313 | DO K = 1, kte-1 |
---|
314 | p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top |
---|
315 | grid%em_pb(i,k,j) = p_level |
---|
316 | grid%em_t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0 |
---|
317 | grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm |
---|
318 | ENDDO |
---|
319 | |
---|
320 | ! calc hydrostatic balance (alternatively we could interp the geopotential from the |
---|
321 | ! sounding, but this assures that the base state is in exact hydrostatic balance with |
---|
322 | ! respect to the model eqns. |
---|
323 | |
---|
324 | DO k = 2,kte |
---|
325 | grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j) |
---|
326 | ENDDO |
---|
327 | |
---|
328 | ENDDO |
---|
329 | ENDDO |
---|
330 | |
---|
331 | write(6,*) ' ptop is ',grid%p_top |
---|
332 | write(6,*) ' base state grid%em_mub(1,1), p_surf is ',grid%em_mub(1,1),grid%em_mub(1,1)+grid%p_top |
---|
333 | |
---|
334 | ! calculate full state for each column - this includes moisture. |
---|
335 | |
---|
336 | write(6,*) ' getting grid%moist sounding for full state ' |
---|
337 | |
---|
338 | dry_sounding = .true. |
---|
339 | IF (config_flags%mp_physics /= 0) dry_sounding = .false. |
---|
340 | |
---|
341 | DO J = jts, min(jde-1,jte) |
---|
342 | |
---|
343 | ! get sounding for this point |
---|
344 | |
---|
345 | debug = .false. ! this will turn off print of the sounding |
---|
346 | CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, & |
---|
347 | nl_max, nl_in, u_jet, rho_jet, th_jet, z_jet, & |
---|
348 | nz_jet, ny_jet, j, debug ) |
---|
349 | |
---|
350 | DO I = its, min(ide-1,ite) |
---|
351 | |
---|
352 | ! we could just do the first point in "i" and copy from there, but we'll |
---|
353 | ! be lazy and do all the points as if they are all, independent |
---|
354 | |
---|
355 | ! At this point grid%p_top is already set. find the DRY mass in the column |
---|
356 | ! by interpolating the DRY pressure. |
---|
357 | |
---|
358 | pd_surf = interp_0( pd_in, zk, grid%em_phb(i,1,j)/g, nl_in ) |
---|
359 | |
---|
360 | ! compute the perturbation mass and the full mass |
---|
361 | |
---|
362 | grid%em_mu_1(i,j) = pd_surf-grid%p_top - grid%em_mub(i,j) |
---|
363 | grid%em_mu_2(i,j) = grid%em_mu_1(i,j) |
---|
364 | grid%em_mu0(i,j) = grid%em_mu_1(i,j) + grid%em_mub(i,j) |
---|
365 | |
---|
366 | ! given the dry pressure and coordinate system, interp the potential |
---|
367 | ! temperature and qv |
---|
368 | |
---|
369 | do k=1,kde-1 |
---|
370 | |
---|
371 | p_level = grid%em_znu(k)*(pd_surf - grid%p_top) + grid%p_top |
---|
372 | |
---|
373 | grid%moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in ) |
---|
374 | grid%em_t_1(i,k,j) = interp_0( theta, pd_in, p_level, nl_in ) - t0 |
---|
375 | grid%em_t_2(i,k,j) = grid%em_t_1(i,k,j) |
---|
376 | |
---|
377 | |
---|
378 | enddo |
---|
379 | |
---|
380 | ! integrate the hydrostatic equation (from the RHS of the bigstep |
---|
381 | ! vertical momentum equation) down from the top to get grid%em_p. |
---|
382 | ! first from the top of the model to the top pressure |
---|
383 | |
---|
384 | k = kte-1 ! top level |
---|
385 | |
---|
386 | qvf1 = 0.5*(grid%moist(i,k,j,P_QV)+grid%moist(i,k,j,P_QV)) |
---|
387 | qvf2 = 1./(1.+qvf1) |
---|
388 | qvf1 = qvf1*qvf2 |
---|
389 | |
---|
390 | ! grid%em_p(i,k,j) = - 0.5*grid%em_mu_1(i,j)/grid%em_rdnw(k) |
---|
391 | grid%em_p(i,k,j) = - 0.5*(grid%em_mu_1(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2 |
---|
392 | qvf = 1. + rvovrd*grid%moist(i,k,j,P_QV) |
---|
393 | grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* & |
---|
394 | (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm) |
---|
395 | grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j) |
---|
396 | |
---|
397 | ! down the column |
---|
398 | |
---|
399 | do k=kte-2,1,-1 |
---|
400 | qvf1 = 0.5*(grid%moist(i,k,j,P_QV)+grid%moist(i,k+1,j,P_QV)) |
---|
401 | qvf2 = 1./(1.+qvf1) |
---|
402 | qvf1 = qvf1*qvf2 |
---|
403 | grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_1(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1) |
---|
404 | qvf = 1. + rvovrd*grid%moist(i,k,j,P_QV) |
---|
405 | grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* & |
---|
406 | (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm) |
---|
407 | grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j) |
---|
408 | enddo |
---|
409 | |
---|
410 | ! this is the hydrostatic equation used in the model after the |
---|
411 | ! small timesteps. In the model, grid%em_al (inverse density) |
---|
412 | ! is computed from the geopotential. |
---|
413 | |
---|
414 | |
---|
415 | grid%em_ph_1(i,1,j) = 0. |
---|
416 | DO k = 2,kte |
---|
417 | grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*( & |
---|
418 | (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ & |
---|
419 | grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j) ) |
---|
420 | |
---|
421 | grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j) |
---|
422 | grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j) |
---|
423 | ENDDO |
---|
424 | |
---|
425 | ! interp u |
---|
426 | |
---|
427 | DO K = 1, kte |
---|
428 | p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top |
---|
429 | grid%em_u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in ) |
---|
430 | grid%em_u_2(i,k,j) = grid%em_u_1(i,k,j) |
---|
431 | ENDDO |
---|
432 | |
---|
433 | ENDDO |
---|
434 | ENDDO |
---|
435 | |
---|
436 | ! thermal perturbation to kick off convection |
---|
437 | |
---|
438 | write(6,*) ' nxc, nyc for perturbation ',nxc,nyc |
---|
439 | write(6,*) ' delt for perturbation ',tpbub |
---|
440 | |
---|
441 | DO J = jts, min(jde-1,jte) |
---|
442 | yrad = config_flags%dy*float(j-jde/2-1)/radbub |
---|
443 | DO I = its, min(ide-1,ite) |
---|
444 | xrad = float(i-1)/float(ide-ids) |
---|
445 | |
---|
446 | DO K = 1, kte-1 |
---|
447 | |
---|
448 | ! put in preturbation theta (bubble) and recalc density. note, |
---|
449 | ! the mass in the column is not changing, so when theta changes, |
---|
450 | ! we recompute density and geopotential |
---|
451 | |
---|
452 | zrad = 0.5*(grid%em_ph_1(i,k,j)+grid%em_ph_1(i,k+1,j) & |
---|
453 | +grid%em_phb(i,k,j)+grid%em_phb(i,k+1,j))/g |
---|
454 | zrad = (zrad-htbub)/radz |
---|
455 | RAD=SQRT(yrad*yrad+zrad*zrad) |
---|
456 | IF(RAD <= 1.) THEN |
---|
457 | tp = tpbub*cos(rad*piov2)*cos(rad*piov2)*cos(xrad*2*pi+pi) |
---|
458 | grid%em_t_1(i,k,j)=grid%em_t_1(i,k,j)+tp |
---|
459 | grid%em_t_2(i,k,j)=grid%em_t_1(i,k,j) |
---|
460 | qvf = 1. + rvovrd*grid%moist(i,k,j,P_QV) |
---|
461 | grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* & |
---|
462 | (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm) |
---|
463 | grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j) |
---|
464 | ENDIF |
---|
465 | ENDDO |
---|
466 | |
---|
467 | ! rebalance hydrostatically |
---|
468 | |
---|
469 | DO k = 2,kte |
---|
470 | grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*( & |
---|
471 | (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ & |
---|
472 | grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j) ) |
---|
473 | |
---|
474 | grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j) |
---|
475 | grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j) |
---|
476 | ENDDO |
---|
477 | |
---|
478 | ENDDO |
---|
479 | ENDDO |
---|
480 | |
---|
481 | !#endif |
---|
482 | |
---|
483 | write(6,*) ' grid%em_mu_1 from comp ', grid%em_mu_1(1,1) |
---|
484 | write(6,*) ' pert state sounding from comp, grid%em_ph_1, pp, grid%em_al, grid%em_t_1, qv ' |
---|
485 | do k=1,kde-1 |
---|
486 | write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1),grid%em_p(1,k,1), grid%em_al(1,k,1), & |
---|
487 | grid%em_t_1(1,k,1), grid%moist(1,k,1,P_QV) |
---|
488 | enddo |
---|
489 | |
---|
490 | write(6,*) ' grid%em_mu_1 from comp ', grid%em_mu_1(1,1) |
---|
491 | write(6,*) ' full state sounding from comp, ph, grid%em_p, grid%em_al, grid%em_t_1, qv ' |
---|
492 | write(6,*) ' at j = 1 ' |
---|
493 | do k=1,kde-1 |
---|
494 | write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1)+grid%em_phb(1,k,1), & |
---|
495 | grid%em_p(1,k,1)+grid%em_pb(1,k,1), grid%em_al(1,k,1)+grid%em_alb(1,k,1), & |
---|
496 | grid%em_t_1(1,k,1)+t0, grid%moist(1,k,1,P_QV) |
---|
497 | enddo |
---|
498 | |
---|
499 | |
---|
500 | write(6,*) ' full state sounding from comp, ph, grid%em_p, grid%em_al, grid%em_t_1, qv ' |
---|
501 | write(6,*) ' at j = jde/2 ' |
---|
502 | do k=1,kde-1 |
---|
503 | write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,jde/2)+grid%em_phb(1,k,jde/2), & |
---|
504 | grid%em_p(1,k,jde/2)+grid%em_pb(1,k,jde/2), grid%em_al(1,k,jde/2)+grid%em_alb(1,k,jde/2), & |
---|
505 | grid%em_t_1(1,k,jde/2)+t0, grid%moist(1,k,jde/2,P_QV) |
---|
506 | enddo |
---|
507 | |
---|
508 | write(6,*) ' full state sounding from comp, ph, grid%em_p, grid%em_al, grid%em_t_1, qv ' |
---|
509 | write(6,*) ' at j = jde-1 ' |
---|
510 | do k=1,kde-1 |
---|
511 | write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,jde-1)+grid%em_phb(1,k,jde-1), & |
---|
512 | grid%em_p(1,k,jde-1)+grid%em_pb(1,k,jde-1), grid%em_al(1,k,jde-1)+grid%em_alb(1,k,jde-1), & |
---|
513 | grid%em_t_1(1,k,jde-1)+t0, grid%moist(1,k,jde-1,P_QV) |
---|
514 | enddo |
---|
515 | |
---|
516 | ! set v |
---|
517 | |
---|
518 | DO J = jts, jte |
---|
519 | DO I = its, min(ide-1,ite) |
---|
520 | |
---|
521 | DO K = 1, kte |
---|
522 | grid%em_v_1(i,k,j) = 0. |
---|
523 | grid%em_v_2(i,k,j) = grid%em_v_1(i,k,j) |
---|
524 | ENDDO |
---|
525 | |
---|
526 | ENDDO |
---|
527 | ENDDO |
---|
528 | |
---|
529 | ! fill out last i row for u |
---|
530 | |
---|
531 | DO J = jts, min(jde-1,jte) |
---|
532 | DO I = ite, ite |
---|
533 | |
---|
534 | DO K = 1, kte |
---|
535 | grid%em_u_1(i,k,j) = grid%em_u_1(its,k,j) |
---|
536 | grid%em_u_2(i,k,j) = grid%em_u_2(its,k,j) |
---|
537 | ENDDO |
---|
538 | |
---|
539 | ENDDO |
---|
540 | ENDDO |
---|
541 | |
---|
542 | ! set w |
---|
543 | |
---|
544 | DO J = jts, min(jde-1,jte) |
---|
545 | DO K = kts, kte |
---|
546 | DO I = its, min(ide-1,ite) |
---|
547 | grid%em_w_1(i,k,j) = 0. |
---|
548 | grid%em_w_2(i,k,j) = 0. |
---|
549 | ENDDO |
---|
550 | ENDDO |
---|
551 | ENDDO |
---|
552 | |
---|
553 | ! set a few more things |
---|
554 | |
---|
555 | DO J = jts, min(jde-1,jte) |
---|
556 | DO K = kts, kte-1 |
---|
557 | DO I = its, min(ide-1,ite) |
---|
558 | grid%h_diabatic(i,k,j) = 0. |
---|
559 | ENDDO |
---|
560 | ENDDO |
---|
561 | ENDDO |
---|
562 | |
---|
563 | DO k=1,kte-1 |
---|
564 | grid%em_t_base(k) = grid%em_t_1(1,k,1) |
---|
565 | grid%qv_base(k) = grid%moist(1,k,1,P_QV) |
---|
566 | grid%u_base(k) = grid%em_u_1(1,k,1) |
---|
567 | grid%v_base(k) = grid%em_v_1(1,k,1) |
---|
568 | ENDDO |
---|
569 | |
---|
570 | DO J = jts, min(jde-1,jte) |
---|
571 | DO I = its, min(ide-1,ite) |
---|
572 | thtmp = grid%em_t_2(i,1,j)+t0 |
---|
573 | ptmp = grid%em_p(i,1,j)+grid%em_pb(i,1,j) |
---|
574 | temp(1) = thtmp * (ptmp/p1000mb)**rcp |
---|
575 | thtmp = grid%em_t_2(i,2,j)+t0 |
---|
576 | ptmp = grid%em_p(i,2,j)+grid%em_pb(i,2,j) |
---|
577 | temp(2) = thtmp * (ptmp/p1000mb)**rcp |
---|
578 | thtmp = grid%em_t_2(i,3,j)+t0 |
---|
579 | ptmp = grid%em_p(i,3,j)+grid%em_pb(i,3,j) |
---|
580 | temp(3) = thtmp * (ptmp/p1000mb)**rcp |
---|
581 | |
---|
582 | grid%tsk(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3) |
---|
583 | if (i .eq. 1) print*,'sfctem',j,temp(1),temp(2),temp(3),grid%tsk(I,J) |
---|
584 | grid%tmn(I,J)=grid%tsk(I,J)-0.5 |
---|
585 | ENDDO |
---|
586 | ENDDO |
---|
587 | |
---|
588 | RETURN |
---|
589 | |
---|
590 | END SUBROUTINE init_domain_rk |
---|
591 | |
---|
592 | !--------------------------------------------------------------------- |
---|
593 | |
---|
594 | SUBROUTINE init_module_initialize |
---|
595 | END SUBROUTINE init_module_initialize |
---|
596 | |
---|
597 | !--------------------------------------------------------------------- |
---|
598 | #if 0 |
---|
599 | ! TEST DRIVER FOR "read_input_jet" and "get_sounding" |
---|
600 | implicit none |
---|
601 | integer, parameter :: nz_jet=64, ny_jet=80 |
---|
602 | real, dimension(nz_jet,ny_jet) :: u_jet, rho_jet, & |
---|
603 | th_jet, z_jet |
---|
604 | |
---|
605 | real, dimension(nz_jet,ny_jet) :: zk,p,p_dry,theta,rho,u,v,qv |
---|
606 | logical :: dry, debug |
---|
607 | integer :: j, nl |
---|
608 | |
---|
609 | call read_input_jet( u_jet, rho_jet, th_jet, z_jet, nz_jet, ny_jet ) |
---|
610 | |
---|
611 | call opngks |
---|
612 | call parray( u_jet, nz_jet, ny_jet) |
---|
613 | call parray( rho_jet, nz_jet, ny_jet) |
---|
614 | call parray( th_jet, nz_jet, ny_jet) |
---|
615 | ! call clsgks |
---|
616 | |
---|
617 | ! set up initial jet |
---|
618 | |
---|
619 | debug = .true. |
---|
620 | dry = .true. |
---|
621 | do j=1,ny_jet |
---|
622 | |
---|
623 | call get_sounding( zk(:,j),p(:,j),p_dry(:,j),theta(:,j), & |
---|
624 | rho(:,j),u(:,j), v(:,j), qv(:,j), & |
---|
625 | dry, nz_jet, nl, u_jet, rho_jet, th_jet, & |
---|
626 | z_jet, nz_jet, ny_jet, j, debug ) |
---|
627 | debug = .false. |
---|
628 | |
---|
629 | enddo |
---|
630 | |
---|
631 | write(6,*) ' lowest level p, th, and rho, highest level p ' |
---|
632 | |
---|
633 | do j=1,ny_jet |
---|
634 | write(6,*) j, p(1,j),theta(1,j),rho(1,j), p(nz_jet,j) |
---|
635 | ! write(6,*) j, p(1,j),theta(1,j)-th_jet(1,j),rho(1,j)-rho_jet(1,j) |
---|
636 | enddo |
---|
637 | |
---|
638 | call parray( p, nz_jet, ny_jet) |
---|
639 | call parray( p_dry, nz_jet, ny_jet) |
---|
640 | call parray( theta, nz_jet, ny_jet) |
---|
641 | |
---|
642 | call clsgks |
---|
643 | |
---|
644 | end |
---|
645 | |
---|
646 | !--------------------------------- |
---|
647 | |
---|
648 | subroutine parray(a,m,n) |
---|
649 | dimension a(m,n) |
---|
650 | dimension b(n,m) |
---|
651 | |
---|
652 | do i=1,m |
---|
653 | do j=1,n |
---|
654 | b(j,i) = a(i,j) |
---|
655 | enddo |
---|
656 | enddo |
---|
657 | |
---|
658 | write(6,'('' dimensions m,n '',2i6)')m,n |
---|
659 | call set(.05,.95,.05,.95,0.,1.,0.,1.,1) |
---|
660 | call perim(4,5,4,5) |
---|
661 | call setusv('LW',2000) |
---|
662 | ! CALL CONREC(a,m,m,n,cmax,cmin,cinc,-1,-638,-922) |
---|
663 | CALL CONREC(b,n,n,m,0.,0.,0.,-1,-638,-922) |
---|
664 | call frame |
---|
665 | return |
---|
666 | end |
---|
667 | |
---|
668 | ! END TEST DRIVER FOR "read_input_jet" and "get_sounding" |
---|
669 | #endif |
---|
670 | |
---|
671 | !------------------------------------------------------------------ |
---|
672 | |
---|
673 | subroutine get_sounding( zk, p, p_dry, theta, rho, & |
---|
674 | u, v, qv, dry, nl_max, nl_in, & |
---|
675 | u_jet, rho_jet, th_jet, z_jet, & |
---|
676 | nz_jet, ny_jet, j_point, debug ) |
---|
677 | implicit none |
---|
678 | |
---|
679 | integer nl_max, nl_in |
---|
680 | real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), & |
---|
681 | u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max) |
---|
682 | logical dry |
---|
683 | |
---|
684 | integer nz_jet, ny_jet, j_point |
---|
685 | real, dimension(nz_jet, ny_jet) :: u_jet, rho_jet, th_jet, z_jet |
---|
686 | |
---|
687 | integer n |
---|
688 | parameter(n=1000) |
---|
689 | logical debug |
---|
690 | |
---|
691 | ! input sounding data |
---|
692 | |
---|
693 | real p_surf, th_surf, qv_surf |
---|
694 | real pi_surf, pi(n) |
---|
695 | real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n) |
---|
696 | |
---|
697 | ! diagnostics |
---|
698 | |
---|
699 | real rho_surf, p_input(n), rho_input(n) |
---|
700 | real pm_input(n) ! this are for full moist sounding |
---|
701 | |
---|
702 | ! local data |
---|
703 | |
---|
704 | real p1000mb,cv,cp,r,cvpm,g |
---|
705 | parameter (p1000mb = 1.e+05, r = 287, cp = 1003., cv = cp-r, cvpm = -cv/cp, g=9.81 ) |
---|
706 | integer k, it, nl |
---|
707 | real qvf, qvf1, dz |
---|
708 | |
---|
709 | ! first, read the sounding |
---|
710 | |
---|
711 | ! call read_sounding( p_surf, th_surf, qv_surf, & |
---|
712 | ! h_input, th_input, qv_input, u_input, v_input,n, nl, debug ) |
---|
713 | |
---|
714 | call calc_jet_sounding( p_surf, th_surf, qv_surf, & |
---|
715 | h_input, th_input, qv_input, u_input, v_input, & |
---|
716 | n, nl, debug, u_jet, rho_jet, th_jet, z_jet, j_point, & |
---|
717 | nz_jet, ny_jet, dry ) |
---|
718 | |
---|
719 | nl = nz_jet |
---|
720 | |
---|
721 | if(dry) then |
---|
722 | do k=1,nl |
---|
723 | qv_input(k) = 0. |
---|
724 | enddo |
---|
725 | endif |
---|
726 | |
---|
727 | if(debug) write(6,*) ' number of input levels = ',nl |
---|
728 | |
---|
729 | nl_in = nl |
---|
730 | if(nl_in .gt. nl_max ) then |
---|
731 | write(6,*) ' too many levels for input arrays ',nl_in,nl_max |
---|
732 | call wrf_error_fatal ( ' too many levels for input arrays ' ) |
---|
733 | end if |
---|
734 | |
---|
735 | ! compute diagnostics, |
---|
736 | ! first, convert qv(g/kg) to qv(g/g) |
---|
737 | ! |
---|
738 | ! do k=1,nl |
---|
739 | ! qv_input(k) = 0.001*qv_input(k) |
---|
740 | ! enddo |
---|
741 | ! p_surf = 100.*p_surf ! convert to pascals |
---|
742 | |
---|
743 | qvf = 1. + rvovrd*qv_input(1) |
---|
744 | rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm)) |
---|
745 | pi_surf = (p_surf/p1000mb)**(r/cp) |
---|
746 | |
---|
747 | if(debug) then |
---|
748 | write(6,*) ' surface density is ',rho_surf |
---|
749 | write(6,*) ' surface pi is ',pi_surf |
---|
750 | end if |
---|
751 | |
---|
752 | |
---|
753 | ! integrate moist sounding hydrostatically, starting from the |
---|
754 | ! specified surface pressure |
---|
755 | ! -> first, integrate from surface to lowest level |
---|
756 | |
---|
757 | qvf = 1. + rvovrd*qv_input(1) |
---|
758 | qvf1 = 1. + qv_input(1) |
---|
759 | rho_input(1) = rho_surf |
---|
760 | dz = h_input(1) |
---|
761 | do it=1,10 |
---|
762 | pm_input(1) = p_surf & |
---|
763 | - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1 |
---|
764 | rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm)) |
---|
765 | enddo |
---|
766 | |
---|
767 | ! integrate up the column |
---|
768 | |
---|
769 | do k=2,nl |
---|
770 | rho_input(k) = rho_input(k-1) |
---|
771 | dz = h_input(k)-h_input(k-1) |
---|
772 | qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k))) |
---|
773 | qvf = 1. + rvovrd*qv_input(k) ! qv is in g/kg here |
---|
774 | |
---|
775 | do it=1,10 |
---|
776 | pm_input(k) = pm_input(k-1) & |
---|
777 | - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1 |
---|
778 | rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm)) |
---|
779 | enddo |
---|
780 | enddo |
---|
781 | |
---|
782 | ! we have the moist sounding |
---|
783 | |
---|
784 | ! next, compute the dry sounding using p at the highest level from the |
---|
785 | ! moist sounding and integrating down. |
---|
786 | |
---|
787 | p_input(nl) = pm_input(nl) |
---|
788 | |
---|
789 | do k=nl-1,1,-1 |
---|
790 | dz = h_input(k+1)-h_input(k) |
---|
791 | p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g |
---|
792 | enddo |
---|
793 | |
---|
794 | |
---|
795 | do k=1,nl |
---|
796 | |
---|
797 | zk(k) = h_input(k) |
---|
798 | p(k) = pm_input(k) |
---|
799 | p_dry(k) = p_input(k) |
---|
800 | theta(k) = th_input(k) |
---|
801 | rho(k) = rho_input(k) |
---|
802 | u(k) = u_input(k) |
---|
803 | v(k) = v_input(k) |
---|
804 | qv(k) = qv_input(k) |
---|
805 | |
---|
806 | enddo |
---|
807 | |
---|
808 | if(debug) then |
---|
809 | write(6,*) ' sounding ' |
---|
810 | write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) ' |
---|
811 | do k=1,nl |
---|
812 | write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k) |
---|
813 | enddo |
---|
814 | |
---|
815 | end if |
---|
816 | |
---|
817 | end subroutine get_sounding |
---|
818 | |
---|
819 | !------------------------------------------------------------------ |
---|
820 | |
---|
821 | subroutine calc_jet_sounding( p_surf, th_surf, qv_surf, & |
---|
822 | h, th, qv, u, v, n, nl, debug, & |
---|
823 | u_jet, rho_jet, th_jet, z_jet, & |
---|
824 | jp, nz_jet, ny_jet, dry ) |
---|
825 | implicit none |
---|
826 | integer :: n, nl, jp, nz_jet, ny_jet |
---|
827 | |
---|
828 | real, dimension(nz_jet, ny_jet) :: u_jet, rho_jet, th_jet, z_jet |
---|
829 | real, dimension(n) :: h,th,qv,u,v |
---|
830 | real :: p_surf, th_surf, qv_surf |
---|
831 | logical :: debug, dry |
---|
832 | |
---|
833 | real, dimension(1:nz_jet) :: rho, rel_hum, p |
---|
834 | integer :: k |
---|
835 | |
---|
836 | ! some local stuff |
---|
837 | |
---|
838 | real :: tmppi, es, qvs, temperature |
---|
839 | real, parameter :: p1000mb=1.e+05, rcp=287./1004.5, svpt0=273.15, & |
---|
840 | svp3 = 29.65, ep_2=287./461.6, r_d = 287., & |
---|
841 | cpovcv = 1004./(1004.-287.), & |
---|
842 | svp1 = 0.6112, svp2 = 17.67 |
---|
843 | |
---|
844 | ! get sounding from column jp |
---|
845 | |
---|
846 | do k=1,nz_jet |
---|
847 | h(k) = z_jet(k,jp) |
---|
848 | th(k) = th_jet(k,jp) |
---|
849 | qv(k) = 0. |
---|
850 | rho(k) = rho_jet(k,jp) |
---|
851 | u(k) = u_jet(k,jp) |
---|
852 | v(k) = 0. |
---|
853 | enddo |
---|
854 | |
---|
855 | if (.not.dry) then |
---|
856 | DO k=1,nz_jet |
---|
857 | if(h(k) .gt. 8000.) then |
---|
858 | rel_hum(k)=0.1 |
---|
859 | else |
---|
860 | rel_hum(k)=(1.-0.90*(h(k)/8000.)**1.25) |
---|
861 | end if |
---|
862 | rel_hum(k) = min(0.7,rel_hum(k)) |
---|
863 | ENDDO |
---|
864 | else |
---|
865 | do k=1,nz_jet |
---|
866 | rel_hum(k) = 0. |
---|
867 | enddo |
---|
868 | endif |
---|
869 | |
---|
870 | ! next, compute pressure |
---|
871 | |
---|
872 | do k=1,nz_jet |
---|
873 | p(k) = p1000mb*(R_d*rho(k)*th(k)/p1000mb)**cpovcv |
---|
874 | enddo |
---|
875 | |
---|
876 | ! here we adjust for fixed moisture profile |
---|
877 | |
---|
878 | IF (.not.dry) THEN |
---|
879 | |
---|
880 | ! here we assume the input theta is th_v, so we reset theta accordingly |
---|
881 | |
---|
882 | DO k=1,nz_jet |
---|
883 | tmppi=(p(k)/p1000mb)**rcp |
---|
884 | temperature = tmppi*th(k) |
---|
885 | if (temperature .gt. svpt0) then |
---|
886 | es = 1000.*svp1*exp(svp2*(temperature-svpt0)/(temperature-svp3)) |
---|
887 | qvs = ep_2*es/(p(k)-es) |
---|
888 | else |
---|
889 | es = 1000.*svp1*exp( 21.8745584*(temperature-273.16)/(temperature-7.66) ) |
---|
890 | qvs = ep_2*es/(p(k)-es) |
---|
891 | endif |
---|
892 | qv(k) = rel_hum(k)*qvs |
---|
893 | th(k) = th(k)/(1.+.61*qv(k)) |
---|
894 | ENDDO |
---|
895 | |
---|
896 | ENDIF |
---|
897 | |
---|
898 | ! finally, set the surface data. We'll just do a simple extrapolation |
---|
899 | |
---|
900 | p_surf = 1.5*p(1) - 0.5*p(2) |
---|
901 | th_surf = 1.5*th(1) - 0.5*th(2) |
---|
902 | qv_surf = 1.5*qv(1) - 0.5*qv(2) |
---|
903 | |
---|
904 | end subroutine calc_jet_sounding |
---|
905 | |
---|
906 | !--------------------------------------------------------------------- |
---|
907 | |
---|
908 | SUBROUTINE read_input_jet( u, r, t, zk, nz, ny ) |
---|
909 | implicit none |
---|
910 | |
---|
911 | integer, intent(in) :: nz,ny |
---|
912 | real, dimension(nz,ny), intent(out) :: u,r,t,zk |
---|
913 | integer :: ny_in, nz_in, j,k |
---|
914 | real, dimension(ny,nz) :: field_in |
---|
915 | |
---|
916 | ! this code assumes it is called on processor 0 only |
---|
917 | |
---|
918 | OPEN(unit=10, file='input_jet', form='unformatted', status='old' ) |
---|
919 | REWIND(10) |
---|
920 | read(10) ny_in,nz_in |
---|
921 | if((ny_in /= ny ) .or. (nz_in /= nz)) then |
---|
922 | write(0,*) ' error in input jet dimensions ' |
---|
923 | write(0,*) ' ny, ny_input, nz, nz_input ', ny, ny_in, nz,nz_in |
---|
924 | write(0,*) ' error exit ' |
---|
925 | call wrf_error_fatal ( ' error in input jet dimensions ' ) |
---|
926 | end if |
---|
927 | read(10) field_in |
---|
928 | do j=1,ny |
---|
929 | do k=1,nz |
---|
930 | u(k,j) = field_in(j,k) |
---|
931 | enddo |
---|
932 | enddo |
---|
933 | read(10) field_in |
---|
934 | do j=1,ny |
---|
935 | do k=1,nz |
---|
936 | t(k,j) = field_in(j,k) |
---|
937 | enddo |
---|
938 | enddo |
---|
939 | |
---|
940 | read(10) field_in |
---|
941 | do j=1,ny |
---|
942 | do k=1,nz |
---|
943 | r(k,j) = field_in(j,k) |
---|
944 | enddo |
---|
945 | enddo |
---|
946 | |
---|
947 | do j=1,ny |
---|
948 | do k=1,nz |
---|
949 | zk(k,j) = 125. + 250.*float(k-1) |
---|
950 | enddo |
---|
951 | enddo |
---|
952 | |
---|
953 | end subroutine read_input_jet |
---|
954 | |
---|
955 | END MODULE module_initialize |
---|