1 | !WRF:MODEL_LAYER:DYNAMICS |
---|
2 | ! |
---|
3 | MODULE module_advect_em |
---|
4 | |
---|
5 | USE module_bc |
---|
6 | USE module_model_constants |
---|
7 | USE module_wrf_error |
---|
8 | |
---|
9 | CONTAINS |
---|
10 | |
---|
11 | |
---|
12 | SUBROUTINE mass_flux_divergence ( field, field_old, tendency, & |
---|
13 | ru, rv, rom, & |
---|
14 | mut, config_flags, & |
---|
15 | msfu, msfv, msft, & |
---|
16 | fzm, fzp, & |
---|
17 | rdx, rdy, rdzw, & |
---|
18 | ids, ide, jds, jde, kds, kde, & |
---|
19 | ims, ime, jms, jme, kms, kme, & |
---|
20 | its, ite, jts, jte, kts, kte ) |
---|
21 | |
---|
22 | IMPLICIT NONE |
---|
23 | |
---|
24 | ! Input data |
---|
25 | |
---|
26 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
27 | |
---|
28 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
29 | ims, ime, jms, jme, kms, kme, & |
---|
30 | its, ite, jts, jte, kts, kte |
---|
31 | |
---|
32 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: field, & |
---|
33 | field_old, & |
---|
34 | ru, & |
---|
35 | rv, & |
---|
36 | rom |
---|
37 | |
---|
38 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
---|
39 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
40 | |
---|
41 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
---|
42 | msfv, & |
---|
43 | msft |
---|
44 | |
---|
45 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
46 | fzp, & |
---|
47 | rdzw |
---|
48 | |
---|
49 | REAL , INTENT(IN ) :: rdx, & |
---|
50 | rdy |
---|
51 | |
---|
52 | ! Local data |
---|
53 | |
---|
54 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
55 | INTEGER :: i_start, i_end, j_start, j_end |
---|
56 | INTEGER :: imin, imax, jmin, jmax |
---|
57 | |
---|
58 | REAL :: mrdx, mrdy, ub, vb, uw, vw |
---|
59 | REAL , DIMENSION(its:ite,kts:kte) :: vflux |
---|
60 | |
---|
61 | LOGICAL :: specified |
---|
62 | |
---|
63 | !--------------- horizontal flux |
---|
64 | |
---|
65 | specified = .false. |
---|
66 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
---|
67 | |
---|
68 | ktf=MIN(kte,kde-1) |
---|
69 | i_start = its |
---|
70 | i_end = MIN(ite,ide-1) |
---|
71 | j_start = jts |
---|
72 | j_end = MIN(jte,jde-1) |
---|
73 | |
---|
74 | DO j = j_start, j_end |
---|
75 | DO k = kts, ktf |
---|
76 | DO i = i_start, i_end |
---|
77 | mrdx=msft(i,j)*rdx |
---|
78 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.5 & |
---|
79 | *(ru(i+1,k,j)*(field(i+1,k,j)+field(i ,k,j)) & |
---|
80 | -ru(i ,k,j)*(field(i ,k,j)+field(i-1,k,j))) |
---|
81 | ENDDO |
---|
82 | ENDDO |
---|
83 | ENDDO |
---|
84 | |
---|
85 | DO j = j_start, j_end |
---|
86 | DO k = kts, ktf |
---|
87 | DO i = i_start, i_end |
---|
88 | mrdy=msft(i,j)*rdy |
---|
89 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.5 & |
---|
90 | *(rv(i,k,j+1)*(field(i,k,j+1)+field(i,k,j )) & |
---|
91 | -rv(i,k,j )*(field(i,k,j )+field(i,k,j-1))) |
---|
92 | ENDDO |
---|
93 | ENDDO |
---|
94 | ENDDO |
---|
95 | |
---|
96 | !---------------- vertical flux divergence |
---|
97 | |
---|
98 | |
---|
99 | DO i = i_start, i_end |
---|
100 | vflux(i,kts)=0. |
---|
101 | vflux(i,kte)=0. |
---|
102 | ENDDO |
---|
103 | |
---|
104 | DO j = j_start, j_end |
---|
105 | |
---|
106 | DO k = kts+1, ktf |
---|
107 | DO i = i_start, i_end |
---|
108 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
109 | ENDDO |
---|
110 | ENDDO |
---|
111 | |
---|
112 | DO k = kts, ktf |
---|
113 | DO i = i_start, i_end |
---|
114 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
115 | ENDDO |
---|
116 | ENDDO |
---|
117 | |
---|
118 | ENDDO |
---|
119 | |
---|
120 | END SUBROUTINE mass_flux_divergence |
---|
121 | |
---|
122 | !------------------------------------------------------------------------------- |
---|
123 | |
---|
124 | SUBROUTINE advect_u ( u, u_old, tendency, & |
---|
125 | ru, rv, rom, & |
---|
126 | mut, time_step, config_flags, & |
---|
127 | msfu , msfv , & |
---|
128 | msft , & |
---|
129 | fzm, fzp, & |
---|
130 | rdx, rdy, rdzw, & |
---|
131 | ids, ide, jds, jde, kds, kde, & |
---|
132 | ims, ime, jms, jme, kms, kme, & |
---|
133 | its, ite, jts, jte, kts, kte ) |
---|
134 | |
---|
135 | IMPLICIT NONE |
---|
136 | |
---|
137 | ! Input data |
---|
138 | |
---|
139 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
140 | |
---|
141 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
142 | ims, ime, jms, jme, kms, kme, & |
---|
143 | its, ite, jts, jte, kts, kte |
---|
144 | |
---|
145 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: u, & |
---|
146 | u_old, & |
---|
147 | ru, & |
---|
148 | rv, & |
---|
149 | rom |
---|
150 | |
---|
151 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
---|
152 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
153 | |
---|
154 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
---|
155 | msfv, & |
---|
156 | msft |
---|
157 | |
---|
158 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
159 | fzp, & |
---|
160 | rdzw |
---|
161 | |
---|
162 | REAL , INTENT(IN ) :: rdx, & |
---|
163 | rdy |
---|
164 | INTEGER , INTENT(IN ) :: time_step |
---|
165 | |
---|
166 | ! Local data |
---|
167 | |
---|
168 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
169 | INTEGER :: i_start, i_end, j_start, j_end |
---|
170 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
---|
171 | INTEGER :: jmin, jmax, jp, jm, imin, imax, im, ip |
---|
172 | INTEGER :: jp1, jp0, jtmp |
---|
173 | |
---|
174 | INTEGER :: horz_order, vert_order |
---|
175 | |
---|
176 | REAL :: mrdx, mrdy, ub, vb, uw, vw, dvm, dvp |
---|
177 | REAL , DIMENSION(its:ite, kts:kte) :: vflux |
---|
178 | |
---|
179 | |
---|
180 | REAL, DIMENSION( its-1:ite+1, kts:kte ) :: fqx |
---|
181 | REAL, DIMENSION( its:ite, kts:kte, 2) :: fqy |
---|
182 | |
---|
183 | LOGICAL :: degrade_xs, degrade_ys |
---|
184 | LOGICAL :: degrade_xe, degrade_ye |
---|
185 | |
---|
186 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
---|
187 | |
---|
188 | REAL :: flux3, flux4, flux5, flux6 |
---|
189 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel |
---|
190 | |
---|
191 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
192 | ( 7.*(q_i + q_im1) - (q_ip1 + q_im2) )/12.0 |
---|
193 | |
---|
194 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
195 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
---|
196 | sign(1,time_step)*sign(1.,ua)*((q_ip1 - q_im2)-3.*(q_i-q_im1))/12.0 |
---|
197 | |
---|
198 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
199 | ( 37.*(q_i+q_im1) - 8.*(q_ip1+q_im2) & |
---|
200 | +(q_ip2+q_im3) )/60.0 |
---|
201 | |
---|
202 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
203 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
---|
204 | -sign(1,time_step)*sign(1.,ua)*( & |
---|
205 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) )/60.0 |
---|
206 | |
---|
207 | |
---|
208 | LOGICAL :: specified |
---|
209 | |
---|
210 | specified = .false. |
---|
211 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
---|
212 | |
---|
213 | ! set order for vertical and horzontal flux operators |
---|
214 | |
---|
215 | horz_order = config_flags%h_mom_adv_order |
---|
216 | vert_order = config_flags%v_mom_adv_order |
---|
217 | |
---|
218 | ktf=MIN(kte,kde-1) |
---|
219 | |
---|
220 | ! begin with horizontal flux divergence |
---|
221 | |
---|
222 | horizontal_order_test : IF( horz_order == 6 ) THEN |
---|
223 | |
---|
224 | ! determine boundary mods for flux operators |
---|
225 | ! We degrade the flux operators from 3rd/4th order |
---|
226 | ! to second order one gridpoint in from the boundaries for |
---|
227 | ! all boundary conditions except periodic and symmetry - these |
---|
228 | ! conditions have boundary zone data fill for correct application |
---|
229 | ! of the higher order flux stencils |
---|
230 | |
---|
231 | degrade_xs = .true. |
---|
232 | degrade_xe = .true. |
---|
233 | degrade_ys = .true. |
---|
234 | degrade_ye = .true. |
---|
235 | |
---|
236 | IF( config_flags%periodic_x .or. & |
---|
237 | config_flags%symmetric_xs .or. & |
---|
238 | (its > ids+3) ) degrade_xs = .false. |
---|
239 | IF( config_flags%periodic_x .or. & |
---|
240 | config_flags%symmetric_xe .or. & |
---|
241 | (ite < ide-2) ) degrade_xe = .false. |
---|
242 | IF( config_flags%periodic_y .or. & |
---|
243 | config_flags%symmetric_ys .or. & |
---|
244 | (jts > jds+3) ) degrade_ys = .false. |
---|
245 | IF( config_flags%periodic_y .or. & |
---|
246 | config_flags%symmetric_ye .or. & |
---|
247 | (jte < jde-4) ) degrade_ye = .false. |
---|
248 | |
---|
249 | !--------------- y - advection first |
---|
250 | |
---|
251 | i_start = its |
---|
252 | i_end = ite |
---|
253 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
254 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-1,ite) |
---|
255 | IF ( config_flags%periodic_x ) i_start = its |
---|
256 | IF ( config_flags%periodic_x ) i_end = ite |
---|
257 | |
---|
258 | j_start = jts |
---|
259 | j_end = MIN(jte,jde-1) |
---|
260 | |
---|
261 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
262 | ! bounds so we can switch to second order flux close to the boundary |
---|
263 | |
---|
264 | j_start_f = j_start |
---|
265 | j_end_f = j_end+1 |
---|
266 | |
---|
267 | IF(degrade_ys) then |
---|
268 | j_start = MAX(jts,jds+1) |
---|
269 | j_start_f = jds+3 |
---|
270 | ENDIF |
---|
271 | |
---|
272 | IF(degrade_ye) then |
---|
273 | j_end = MIN(jte,jde-2) |
---|
274 | j_end_f = jde-3 |
---|
275 | ENDIF |
---|
276 | |
---|
277 | |
---|
278 | ! compute fluxes, 5th or 6th order |
---|
279 | |
---|
280 | jp1 = 2 |
---|
281 | jp0 = 1 |
---|
282 | |
---|
283 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
---|
284 | |
---|
285 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
286 | |
---|
287 | DO k=kts,ktf |
---|
288 | DO i = i_start, i_end |
---|
289 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
290 | fqy( i, k, jp1 ) = vel*flux6( & |
---|
291 | u(i,k,j-3), u(i,k,j-2), u(i,k,j-1), & |
---|
292 | u(i,k,j ), u(i,k,j+1), u(i,k,j+2), vel ) |
---|
293 | ENDDO |
---|
294 | ENDDO |
---|
295 | |
---|
296 | ! we must be close to some boundary where we need to reduce the order of the stencil |
---|
297 | |
---|
298 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
299 | |
---|
300 | DO k=kts,ktf |
---|
301 | DO i = i_start, i_end |
---|
302 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
---|
303 | *(u(i,k,j)+u(i,k,j-1)) |
---|
304 | ENDDO |
---|
305 | ENDDO |
---|
306 | |
---|
307 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
308 | |
---|
309 | DO k=kts,ktf |
---|
310 | DO i = i_start, i_end |
---|
311 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
312 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
313 | u(i,k,j-2),u(i,k,j-1), u(i,k,j),u(i,k,j+1),vel ) |
---|
314 | ENDDO |
---|
315 | ENDDO |
---|
316 | |
---|
317 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
318 | |
---|
319 | DO k=kts,ktf |
---|
320 | DO i = i_start, i_end |
---|
321 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
---|
322 | *(u(i,k,j)+u(i,k,j-1)) |
---|
323 | ENDDO |
---|
324 | ENDDO |
---|
325 | |
---|
326 | ELSE IF ( j == jde-2 ) THEN ! 3rd order flux 2 in from north boundary |
---|
327 | |
---|
328 | DO k=kts,ktf |
---|
329 | DO i = i_start, i_end |
---|
330 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
331 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
332 | u(i,k,j-2),u(i,k,j-1), & |
---|
333 | u(i,k,j),u(i,k,j+1),vel ) |
---|
334 | ENDDO |
---|
335 | ENDDO |
---|
336 | |
---|
337 | END IF |
---|
338 | |
---|
339 | ! y flux-divergence into tendency |
---|
340 | |
---|
341 | IF(j > j_start) THEN |
---|
342 | |
---|
343 | DO k=kts,ktf |
---|
344 | DO i = i_start, i_end |
---|
345 | mrdy=msfu(i,j-1)*rdy |
---|
346 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
347 | ENDDO |
---|
348 | ENDDO |
---|
349 | |
---|
350 | ENDIF |
---|
351 | |
---|
352 | |
---|
353 | |
---|
354 | jtmp = jp1 |
---|
355 | jp1 = jp0 |
---|
356 | jp0 = jtmp |
---|
357 | |
---|
358 | ENDDO j_loop_y_flux_6 |
---|
359 | |
---|
360 | ! next, x - flux divergence |
---|
361 | |
---|
362 | i_start = its |
---|
363 | i_end = ite |
---|
364 | |
---|
365 | j_start = jts |
---|
366 | j_end = MIN(jte,jde-1) |
---|
367 | |
---|
368 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
369 | ! bounds so we can switch to second order flux close to the boundary |
---|
370 | |
---|
371 | i_start_f = i_start |
---|
372 | i_end_f = i_end+1 |
---|
373 | |
---|
374 | IF(degrade_xs) then |
---|
375 | i_start = MAX(ids+1,its) |
---|
376 | i_start_f = ids+3 |
---|
377 | ENDIF |
---|
378 | |
---|
379 | IF(degrade_xe) then |
---|
380 | i_end = MIN(ide-1,ite) |
---|
381 | i_end_f = ide-2 |
---|
382 | ENDIF |
---|
383 | |
---|
384 | ! compute fluxes |
---|
385 | |
---|
386 | DO j = j_start, j_end |
---|
387 | |
---|
388 | ! 5th or 6th order flux |
---|
389 | |
---|
390 | DO k=kts,ktf |
---|
391 | DO i = i_start_f, i_end_f |
---|
392 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
393 | fqx( i,k ) = vel*flux6( u(i-3,k,j), u(i-2,k,j), & |
---|
394 | u(i-1,k,j), u(i ,k,j), & |
---|
395 | u(i+1,k,j), u(i+2,k,j), & |
---|
396 | vel ) |
---|
397 | ENDDO |
---|
398 | ENDDO |
---|
399 | |
---|
400 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
401 | ! specified uses upstream normal wind at boundaries |
---|
402 | |
---|
403 | IF( degrade_xs ) THEN |
---|
404 | |
---|
405 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
406 | i = ids+1 |
---|
407 | DO k=kts,ktf |
---|
408 | ub = u(i-1,k,j) |
---|
409 | IF (specified .AND. u(i,k,j) .LT. 0.)ub = u(i,k,j) |
---|
410 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
411 | *(u(i,k,j)+ub) |
---|
412 | ENDDO |
---|
413 | END IF |
---|
414 | |
---|
415 | i = ids+2 |
---|
416 | DO k=kts,ktf |
---|
417 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
418 | fqx( i, k ) = vel*flux4( u(i-2,k,j), u(i-1,k,j), & |
---|
419 | u(i ,k,j), u(i+1,k,j), & |
---|
420 | vel ) |
---|
421 | ENDDO |
---|
422 | |
---|
423 | ENDIF |
---|
424 | |
---|
425 | IF( degrade_xe ) THEN |
---|
426 | |
---|
427 | IF( i_end == ide-1 ) THEN ! second order flux next to the boundary |
---|
428 | i = ide |
---|
429 | DO k=kts,ktf |
---|
430 | ub = u(i,k,j) |
---|
431 | IF (specified .AND. u(i-1,k,j) .GT. 0.)ub = u(i-1,k,j) |
---|
432 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
433 | *(u(i-1,k,j)+ub) |
---|
434 | ENDDO |
---|
435 | ENDIF |
---|
436 | |
---|
437 | DO k=kts,ktf |
---|
438 | i = ide-1 |
---|
439 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
440 | fqx( i,k ) = vel*flux4( u(i-2,k,j), u(i-1,k,j), & |
---|
441 | u(i ,k,j), u(i+1,k,j), & |
---|
442 | vel ) |
---|
443 | ENDDO |
---|
444 | |
---|
445 | ENDIF |
---|
446 | |
---|
447 | ! x flux-divergence into tendency |
---|
448 | |
---|
449 | DO k=kts,ktf |
---|
450 | DO i = i_start, i_end |
---|
451 | mrdx=msfu(i,j)*rdx |
---|
452 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
453 | ENDDO |
---|
454 | ENDDO |
---|
455 | |
---|
456 | ENDDO |
---|
457 | |
---|
458 | ELSE IF( horz_order == 5 ) THEN |
---|
459 | |
---|
460 | ! 5th order horizontal flux calculation |
---|
461 | ! This code is EXACTLY the same as the 6th order code |
---|
462 | ! EXCEPT the 5th order and 3rd operators are used in |
---|
463 | ! place of the 6th and 4th order operators |
---|
464 | |
---|
465 | ! determine boundary mods for flux operators |
---|
466 | ! We degrade the flux operators from 3rd/4th order |
---|
467 | ! to second order one gridpoint in from the boundaries for |
---|
468 | ! all boundary conditions except periodic and symmetry - these |
---|
469 | ! conditions have boundary zone data fill for correct application |
---|
470 | ! of the higher order flux stencils |
---|
471 | |
---|
472 | degrade_xs = .true. |
---|
473 | degrade_xe = .true. |
---|
474 | degrade_ys = .true. |
---|
475 | degrade_ye = .true. |
---|
476 | |
---|
477 | IF( config_flags%periodic_x .or. & |
---|
478 | config_flags%symmetric_xs .or. & |
---|
479 | (its > ids+3) ) degrade_xs = .false. |
---|
480 | IF( config_flags%periodic_x .or. & |
---|
481 | config_flags%symmetric_xe .or. & |
---|
482 | (ite < ide-2) ) degrade_xe = .false. |
---|
483 | IF( config_flags%periodic_y .or. & |
---|
484 | config_flags%symmetric_ys .or. & |
---|
485 | (jts > jds+3) ) degrade_ys = .false. |
---|
486 | IF( config_flags%periodic_y .or. & |
---|
487 | config_flags%symmetric_ye .or. & |
---|
488 | (jte < jde-4) ) degrade_ye = .false. |
---|
489 | |
---|
490 | !--------------- y - advection first |
---|
491 | |
---|
492 | i_start = its |
---|
493 | i_end = ite |
---|
494 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
495 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-1,ite) |
---|
496 | IF ( config_flags%periodic_x ) i_start = its |
---|
497 | IF ( config_flags%periodic_x ) i_end = ite |
---|
498 | |
---|
499 | j_start = jts |
---|
500 | j_end = MIN(jte,jde-1) |
---|
501 | |
---|
502 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
503 | ! bounds so we can switch to second order flux close to the boundary |
---|
504 | |
---|
505 | j_start_f = j_start |
---|
506 | j_end_f = j_end+1 |
---|
507 | |
---|
508 | IF(degrade_ys) then |
---|
509 | j_start = MAX(jts,jds+1) |
---|
510 | j_start_f = jds+3 |
---|
511 | ENDIF |
---|
512 | |
---|
513 | IF(degrade_ye) then |
---|
514 | j_end = MIN(jte,jde-2) |
---|
515 | j_end_f = jde-3 |
---|
516 | ENDIF |
---|
517 | |
---|
518 | |
---|
519 | ! compute fluxes, 5th or 6th order |
---|
520 | |
---|
521 | jp1 = 2 |
---|
522 | jp0 = 1 |
---|
523 | |
---|
524 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
---|
525 | |
---|
526 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
527 | |
---|
528 | DO k=kts,ktf |
---|
529 | DO i = i_start, i_end |
---|
530 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
531 | fqy( i, k, jp1 ) = vel*flux5( & |
---|
532 | u(i,k,j-3), u(i,k,j-2), u(i,k,j-1), & |
---|
533 | u(i,k,j ), u(i,k,j+1), u(i,k,j+2), vel ) |
---|
534 | ENDDO |
---|
535 | ENDDO |
---|
536 | |
---|
537 | ! we must be close to some boundary where we need to reduce the order of the stencil |
---|
538 | |
---|
539 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
540 | |
---|
541 | DO k=kts,ktf |
---|
542 | DO i = i_start, i_end |
---|
543 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
---|
544 | *(u(i,k,j)+u(i,k,j-1)) |
---|
545 | ENDDO |
---|
546 | ENDDO |
---|
547 | |
---|
548 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
549 | |
---|
550 | DO k=kts,ktf |
---|
551 | DO i = i_start, i_end |
---|
552 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
553 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
554 | u(i,k,j-2),u(i,k,j-1), u(i,k,j),u(i,k,j+1),vel ) |
---|
555 | ENDDO |
---|
556 | ENDDO |
---|
557 | |
---|
558 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
559 | |
---|
560 | DO k=kts,ktf |
---|
561 | DO i = i_start, i_end |
---|
562 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
---|
563 | *(u(i,k,j)+u(i,k,j-1)) |
---|
564 | ENDDO |
---|
565 | ENDDO |
---|
566 | |
---|
567 | ELSE IF ( j == jde-2 ) THEN ! 3rd order flux 2 in from north boundary |
---|
568 | |
---|
569 | DO k=kts,ktf |
---|
570 | DO i = i_start, i_end |
---|
571 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
572 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
573 | u(i,k,j-2),u(i,k,j-1), & |
---|
574 | u(i,k,j),u(i,k,j+1),vel ) |
---|
575 | ENDDO |
---|
576 | ENDDO |
---|
577 | |
---|
578 | END IF |
---|
579 | |
---|
580 | ! y flux-divergence into tendency |
---|
581 | |
---|
582 | IF(j > j_start) THEN |
---|
583 | |
---|
584 | DO k=kts,ktf |
---|
585 | DO i = i_start, i_end |
---|
586 | mrdy=msfu(i,j-1)*rdy |
---|
587 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
588 | ENDDO |
---|
589 | ENDDO |
---|
590 | |
---|
591 | ENDIF |
---|
592 | |
---|
593 | |
---|
594 | |
---|
595 | jtmp = jp1 |
---|
596 | jp1 = jp0 |
---|
597 | jp0 = jtmp |
---|
598 | |
---|
599 | ENDDO j_loop_y_flux_5 |
---|
600 | |
---|
601 | ! next, x - flux divergence |
---|
602 | |
---|
603 | i_start = its |
---|
604 | i_end = ite |
---|
605 | |
---|
606 | j_start = jts |
---|
607 | j_end = MIN(jte,jde-1) |
---|
608 | |
---|
609 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
610 | ! bounds so we can switch to second order flux close to the boundary |
---|
611 | |
---|
612 | i_start_f = i_start |
---|
613 | i_end_f = i_end+1 |
---|
614 | |
---|
615 | IF(degrade_xs) then |
---|
616 | i_start = MAX(ids+1,its) |
---|
617 | i_start_f = ids+3 |
---|
618 | ENDIF |
---|
619 | |
---|
620 | IF(degrade_xe) then |
---|
621 | i_end = MIN(ide-1,ite) |
---|
622 | i_end_f = ide-2 |
---|
623 | ENDIF |
---|
624 | |
---|
625 | ! compute fluxes |
---|
626 | |
---|
627 | DO j = j_start, j_end |
---|
628 | |
---|
629 | ! 5th or 6th order flux |
---|
630 | |
---|
631 | DO k=kts,ktf |
---|
632 | DO i = i_start_f, i_end_f |
---|
633 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
634 | fqx( i,k ) = vel*flux5( u(i-3,k,j), u(i-2,k,j), & |
---|
635 | u(i-1,k,j), u(i ,k,j), & |
---|
636 | u(i+1,k,j), u(i+2,k,j), & |
---|
637 | vel ) |
---|
638 | ENDDO |
---|
639 | ENDDO |
---|
640 | |
---|
641 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
642 | ! specified uses upstream normal wind at boundaries |
---|
643 | |
---|
644 | IF( degrade_xs ) THEN |
---|
645 | |
---|
646 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
647 | i = ids+1 |
---|
648 | DO k=kts,ktf |
---|
649 | ub = u(i-1,k,j) |
---|
650 | IF (specified .AND. u(i,k,j) .LT. 0.)ub = u(i,k,j) |
---|
651 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
652 | *(u(i,k,j)+ub) |
---|
653 | ENDDO |
---|
654 | END IF |
---|
655 | |
---|
656 | i = ids+2 |
---|
657 | DO k=kts,ktf |
---|
658 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
659 | fqx( i, k ) = vel*flux3( u(i-2,k,j), u(i-1,k,j), & |
---|
660 | u(i ,k,j), u(i+1,k,j), & |
---|
661 | vel ) |
---|
662 | ENDDO |
---|
663 | |
---|
664 | ENDIF |
---|
665 | |
---|
666 | IF( degrade_xe ) THEN |
---|
667 | |
---|
668 | IF( i_end == ide-1 ) THEN ! second order flux next to the boundary |
---|
669 | i = ide |
---|
670 | DO k=kts,ktf |
---|
671 | ub = u(i,k,j) |
---|
672 | IF (specified .AND. u(i-1,k,j) .GT. 0.)ub = u(i-1,k,j) |
---|
673 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
674 | *(u(i-1,k,j)+ub) |
---|
675 | ENDDO |
---|
676 | ENDIF |
---|
677 | |
---|
678 | DO k=kts,ktf |
---|
679 | i = ide-1 |
---|
680 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
681 | fqx( i,k ) = vel*flux3( u(i-2,k,j), u(i-1,k,j), & |
---|
682 | u(i ,k,j), u(i+1,k,j), & |
---|
683 | vel ) |
---|
684 | ENDDO |
---|
685 | |
---|
686 | ENDIF |
---|
687 | |
---|
688 | ! x flux-divergence into tendency |
---|
689 | |
---|
690 | DO k=kts,ktf |
---|
691 | DO i = i_start, i_end |
---|
692 | mrdx=msfu(i,j)*rdx |
---|
693 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
694 | ENDDO |
---|
695 | ENDDO |
---|
696 | |
---|
697 | ENDDO |
---|
698 | |
---|
699 | ELSE IF( horz_order == 4 ) THEN |
---|
700 | |
---|
701 | ! determine boundary mods for flux operators |
---|
702 | ! We degrade the flux operators from 3rd/4th order |
---|
703 | ! to second order one gridpoint in from the boundaries for |
---|
704 | ! all boundary conditions except periodic and symmetry - these |
---|
705 | ! conditions have boundary zone data fill for correct application |
---|
706 | ! of the higher order flux stencils |
---|
707 | |
---|
708 | degrade_xs = .true. |
---|
709 | degrade_xe = .true. |
---|
710 | degrade_ys = .true. |
---|
711 | degrade_ye = .true. |
---|
712 | |
---|
713 | IF( config_flags%periodic_x .or. & |
---|
714 | config_flags%symmetric_xs .or. & |
---|
715 | (its > ids+2) ) degrade_xs = .false. |
---|
716 | IF( config_flags%periodic_x .or. & |
---|
717 | config_flags%symmetric_xe .or. & |
---|
718 | (ite < ide-1) ) degrade_xe = .false. |
---|
719 | IF( config_flags%periodic_y .or. & |
---|
720 | config_flags%symmetric_ys .or. & |
---|
721 | (jts > jds+2) ) degrade_ys = .false. |
---|
722 | IF( config_flags%periodic_y .or. & |
---|
723 | config_flags%symmetric_ye .or. & |
---|
724 | (jte < jde-3) ) degrade_ye = .false. |
---|
725 | |
---|
726 | !--------------- x - advection first |
---|
727 | |
---|
728 | i_start = its |
---|
729 | i_end = ite |
---|
730 | j_start = jts |
---|
731 | j_end = MIN(jte,jde-1) |
---|
732 | |
---|
733 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
734 | ! bounds so we can switch to second order flux close to the boundary |
---|
735 | |
---|
736 | i_start_f = i_start |
---|
737 | i_end_f = i_end+1 |
---|
738 | |
---|
739 | IF(degrade_xs) then |
---|
740 | i_start = ids+1 |
---|
741 | i_start_f = i_start+1 |
---|
742 | ENDIF |
---|
743 | |
---|
744 | IF(degrade_xe) then |
---|
745 | i_end = ide-1 |
---|
746 | i_end_f = ide-1 |
---|
747 | ENDIF |
---|
748 | |
---|
749 | ! compute fluxes |
---|
750 | |
---|
751 | DO j = j_start, j_end |
---|
752 | |
---|
753 | DO k=kts,ktf |
---|
754 | DO i = i_start_f, i_end_f |
---|
755 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
756 | fqx( i, k ) = vel*flux4( u(i-2,k,j), u(i-1,k,j), & |
---|
757 | u(i ,k,j), u(i+1,k,j), vel ) |
---|
758 | ENDDO |
---|
759 | ENDDO |
---|
760 | |
---|
761 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
762 | ! specified uses upstream normal wind at boundaries |
---|
763 | |
---|
764 | IF( degrade_xs ) THEN |
---|
765 | i = i_start |
---|
766 | DO k=kts,ktf |
---|
767 | ub = u(i-1,k,j) |
---|
768 | IF (specified .AND. u(i,k,j) .LT. 0.)ub = u(i,k,j) |
---|
769 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
770 | *(u(i,k,j)+ub) |
---|
771 | ENDDO |
---|
772 | ENDIF |
---|
773 | |
---|
774 | IF( degrade_xe ) THEN |
---|
775 | i = i_end+1 |
---|
776 | DO k=kts,ktf |
---|
777 | ub = u(i,k,j) |
---|
778 | IF (specified .AND. u(i-1,k,j) .GT. 0.)ub = u(i-1,k,j) |
---|
779 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
780 | *(u(i-1,k,j)+ub) |
---|
781 | ENDDO |
---|
782 | ENDIF |
---|
783 | |
---|
784 | ! x flux-divergence into tendency |
---|
785 | |
---|
786 | DO k=kts,ktf |
---|
787 | DO i = i_start, i_end |
---|
788 | mrdx=msfu(i,j)*rdx |
---|
789 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
790 | ENDDO |
---|
791 | ENDDO |
---|
792 | |
---|
793 | ENDDO |
---|
794 | |
---|
795 | ! y flux divergence |
---|
796 | |
---|
797 | i_start = its |
---|
798 | i_end = ite |
---|
799 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
800 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-1,ite) |
---|
801 | IF ( config_flags%periodic_x ) i_start = its |
---|
802 | IF ( config_flags%periodic_x ) i_end = ite |
---|
803 | |
---|
804 | j_start = jts |
---|
805 | j_end = MIN(jte,jde-1) |
---|
806 | |
---|
807 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
808 | ! bounds so we can switch to second order flux close to the boundary |
---|
809 | |
---|
810 | j_start_f = j_start |
---|
811 | j_end_f = j_end+1 |
---|
812 | |
---|
813 | !CJM these may not work with tiling because they define j_start and end in terms of domain dim |
---|
814 | IF(degrade_ys) then |
---|
815 | j_start = jds+1 |
---|
816 | j_start_f = j_start+1 |
---|
817 | ENDIF |
---|
818 | |
---|
819 | IF(degrade_ye) then |
---|
820 | j_end = jde-2 |
---|
821 | j_end_f = jde-2 |
---|
822 | ENDIF |
---|
823 | |
---|
824 | |
---|
825 | ! j flux loop for v flux of u momentum |
---|
826 | |
---|
827 | jp1 = 2 |
---|
828 | jp0 = 1 |
---|
829 | |
---|
830 | DO j = j_start, j_end+1 |
---|
831 | |
---|
832 | IF ( (j < j_start_f) .and. degrade_ys) THEN |
---|
833 | DO k = kts, ktf |
---|
834 | DO i = i_start, i_end |
---|
835 | fqy(i, k, jp1) = 0.25*(rv(i,k,j_start)+rv(i-1,k,j_start)) & |
---|
836 | *(u(i,k,j_start)+u(i,k,j_start-1)) |
---|
837 | ENDDO |
---|
838 | ENDDO |
---|
839 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
840 | DO k = kts, ktf |
---|
841 | DO i = i_start, i_end |
---|
842 | ! Assumes j>j_end_f is ONLY j_end+1 ... |
---|
843 | ! fqy(i, k, jp1) = 0.25*(rv(i,k,j_end+1)+rv(i-1,k,j_end+1)) & |
---|
844 | ! *(u(i,k,j_end+1)+u(i,k,j_end)) |
---|
845 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
---|
846 | *(u(i,k,j)+u(i,k,j-1)) |
---|
847 | ENDDO |
---|
848 | ENDDO |
---|
849 | ELSE |
---|
850 | ! 3rd or 4th order flux |
---|
851 | DO k = kts, ktf |
---|
852 | DO i = i_start, i_end |
---|
853 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
854 | fqy( i, k, jp1 ) = vel*flux4( u(i,k,j-2), u(i,k,j-1), & |
---|
855 | u(i,k,j ), u(i,k,j+1), & |
---|
856 | vel ) |
---|
857 | ENDDO |
---|
858 | ENDDO |
---|
859 | |
---|
860 | END IF |
---|
861 | |
---|
862 | ! y flux-divergence into tendency |
---|
863 | |
---|
864 | IF (j > j_start) THEN |
---|
865 | |
---|
866 | DO k=kts,ktf |
---|
867 | DO i = i_start, i_end |
---|
868 | mrdy=msfu(i,j-1)*rdy |
---|
869 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
870 | ENDDO |
---|
871 | ENDDO |
---|
872 | |
---|
873 | END IF |
---|
874 | |
---|
875 | |
---|
876 | jtmp = jp1 |
---|
877 | jp1 = jp0 |
---|
878 | jp0 = jtmp |
---|
879 | |
---|
880 | ENDDO |
---|
881 | |
---|
882 | ELSE IF ( horz_order == 3 ) THEN |
---|
883 | |
---|
884 | ! As with the 5th and 6th order flux chioces, the 3rd and 4th order |
---|
885 | ! code is EXACTLY the same EXCEPT for the flux operator. |
---|
886 | |
---|
887 | ! determine boundary mods for flux operators |
---|
888 | ! We degrade the flux operators from 3rd/4th order |
---|
889 | ! to second order one gridpoint in from the boundaries for |
---|
890 | ! all boundary conditions except periodic and symmetry - these |
---|
891 | ! conditions have boundary zone data fill for correct application |
---|
892 | ! of the higher order flux stencils |
---|
893 | |
---|
894 | degrade_xs = .true. |
---|
895 | degrade_xe = .true. |
---|
896 | degrade_ys = .true. |
---|
897 | degrade_ye = .true. |
---|
898 | |
---|
899 | IF( config_flags%periodic_x .or. & |
---|
900 | config_flags%symmetric_xs .or. & |
---|
901 | (its > ids+2) ) degrade_xs = .false. |
---|
902 | IF( config_flags%periodic_x .or. & |
---|
903 | config_flags%symmetric_xe .or. & |
---|
904 | (ite < ide-1) ) degrade_xe = .false. |
---|
905 | IF( config_flags%periodic_y .or. & |
---|
906 | config_flags%symmetric_ys .or. & |
---|
907 | (jts > jds+2) ) degrade_ys = .false. |
---|
908 | IF( config_flags%periodic_y .or. & |
---|
909 | config_flags%symmetric_ye .or. & |
---|
910 | (jte < jde-3) ) degrade_ye = .false. |
---|
911 | |
---|
912 | !--------------- x - advection first |
---|
913 | |
---|
914 | i_start = its |
---|
915 | i_end = ite |
---|
916 | j_start = jts |
---|
917 | j_end = MIN(jte,jde-1) |
---|
918 | |
---|
919 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
920 | ! bounds so we can switch to second order flux close to the boundary |
---|
921 | |
---|
922 | i_start_f = i_start |
---|
923 | i_end_f = i_end+1 |
---|
924 | |
---|
925 | IF(degrade_xs) then |
---|
926 | i_start = ids+1 |
---|
927 | i_start_f = i_start+1 |
---|
928 | ENDIF |
---|
929 | |
---|
930 | IF(degrade_xe) then |
---|
931 | i_end = ide-1 |
---|
932 | i_end_f = ide-1 |
---|
933 | ENDIF |
---|
934 | |
---|
935 | ! compute fluxes |
---|
936 | |
---|
937 | DO j = j_start, j_end |
---|
938 | |
---|
939 | DO k=kts,ktf |
---|
940 | DO i = i_start_f, i_end_f |
---|
941 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
942 | fqx( i, k ) = vel*flux3( u(i-2,k,j), u(i-1,k,j), & |
---|
943 | u(i ,k,j), u(i+1,k,j), vel ) |
---|
944 | ENDDO |
---|
945 | ENDDO |
---|
946 | |
---|
947 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
948 | ! specified uses upstream normal wind at boundaries |
---|
949 | |
---|
950 | IF( degrade_xs ) THEN |
---|
951 | i = i_start |
---|
952 | DO k=kts,ktf |
---|
953 | ub = u(i-1,k,j) |
---|
954 | IF (specified .AND. u(i,k,j) .LT. 0.)ub = u(i,k,j) |
---|
955 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
956 | *(u(i,k,j)+ub) |
---|
957 | ENDDO |
---|
958 | ENDIF |
---|
959 | |
---|
960 | IF( degrade_xe ) THEN |
---|
961 | i = i_end+1 |
---|
962 | DO k=kts,ktf |
---|
963 | ub = u(i,k,j) |
---|
964 | IF (specified .AND. u(i-1,k,j) .GT. 0.)ub = u(i-1,k,j) |
---|
965 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
966 | *(u(i-1,k,j)+ub) |
---|
967 | ENDDO |
---|
968 | ENDIF |
---|
969 | |
---|
970 | ! x flux-divergence into tendency |
---|
971 | |
---|
972 | DO k=kts,ktf |
---|
973 | DO i = i_start, i_end |
---|
974 | mrdx=msfu(i,j)*rdx |
---|
975 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
976 | ENDDO |
---|
977 | ENDDO |
---|
978 | ENDDO |
---|
979 | |
---|
980 | ! y flux divergence |
---|
981 | |
---|
982 | i_start = its |
---|
983 | i_end = ite |
---|
984 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
985 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-1,ite) |
---|
986 | IF ( config_flags%periodic_x ) i_start = its |
---|
987 | IF ( config_flags%periodic_x ) i_end = ite |
---|
988 | |
---|
989 | j_start = jts |
---|
990 | j_end = MIN(jte,jde-1) |
---|
991 | |
---|
992 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
993 | ! bounds so we can switch to second order flux close to the boundary |
---|
994 | |
---|
995 | j_start_f = j_start |
---|
996 | j_end_f = j_end+1 |
---|
997 | |
---|
998 | !CJM these may not work with tiling because they define j_start and end in terms of domain dim |
---|
999 | IF(degrade_ys) then |
---|
1000 | j_start = jds+1 |
---|
1001 | j_start_f = j_start+1 |
---|
1002 | ENDIF |
---|
1003 | |
---|
1004 | IF(degrade_ye) then |
---|
1005 | j_end = jde-2 |
---|
1006 | j_end_f = jde-2 |
---|
1007 | ENDIF |
---|
1008 | |
---|
1009 | |
---|
1010 | ! j flux loop for v flux of u momentum |
---|
1011 | |
---|
1012 | jp1 = 2 |
---|
1013 | jp0 = 1 |
---|
1014 | |
---|
1015 | DO j = j_start, j_end+1 |
---|
1016 | |
---|
1017 | IF ( (j < j_start_f) .and. degrade_ys) THEN |
---|
1018 | DO k = kts, ktf |
---|
1019 | DO i = i_start, i_end |
---|
1020 | fqy(i, k, jp1) = 0.25*(rv(i,k,j_start)+rv(i-1,k,j_start)) & |
---|
1021 | *(u(i,k,j_start)+u(i,k,j_start-1)) |
---|
1022 | ENDDO |
---|
1023 | ENDDO |
---|
1024 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
1025 | DO k = kts, ktf |
---|
1026 | DO i = i_start, i_end |
---|
1027 | ! Assumes j>j_end_f is ONLY j_end+1 ... |
---|
1028 | ! fqy(i, k, jp1) = 0.25*(rv(i,k,j_end+1)+rv(i-1,k,j_end+1)) & |
---|
1029 | ! *(u(i,k,j_end+1)+u(i,k,j_end)) |
---|
1030 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
---|
1031 | *(u(i,k,j)+u(i,k,j-1)) |
---|
1032 | ENDDO |
---|
1033 | ENDDO |
---|
1034 | ELSE |
---|
1035 | ! 3rd or 4th order flux |
---|
1036 | DO k = kts, ktf |
---|
1037 | DO i = i_start, i_end |
---|
1038 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
1039 | fqy( i, k, jp1 ) = vel*flux3( u(i,k,j-2), u(i,k,j-1), & |
---|
1040 | u(i,k,j ), u(i,k,j+1), & |
---|
1041 | vel ) |
---|
1042 | ENDDO |
---|
1043 | ENDDO |
---|
1044 | |
---|
1045 | END IF |
---|
1046 | |
---|
1047 | ! y flux-divergence into tendency |
---|
1048 | |
---|
1049 | IF (j > j_start) THEN |
---|
1050 | |
---|
1051 | DO k=kts,ktf |
---|
1052 | DO i = i_start, i_end |
---|
1053 | mrdy=msfu(i,j-1)*rdy |
---|
1054 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
1055 | ENDDO |
---|
1056 | ENDDO |
---|
1057 | |
---|
1058 | END IF |
---|
1059 | |
---|
1060 | |
---|
1061 | jtmp = jp1 |
---|
1062 | jp1 = jp0 |
---|
1063 | jp0 = jtmp |
---|
1064 | |
---|
1065 | ENDDO |
---|
1066 | |
---|
1067 | ELSE IF ( horz_order == 2 ) THEN |
---|
1068 | |
---|
1069 | i_start = its |
---|
1070 | i_end = ite |
---|
1071 | j_start = jts |
---|
1072 | j_end = MIN(jte,jde-1) |
---|
1073 | |
---|
1074 | IF ( config_flags%open_xs ) i_start = MAX(ids+1,its) |
---|
1075 | IF ( config_flags%open_xe ) i_end = MIN(ide-1,ite) |
---|
1076 | IF ( specified ) i_start = MAX(ids+2,its) |
---|
1077 | IF ( specified ) i_end = MIN(ide-2,ite) |
---|
1078 | IF ( config_flags%periodic_x ) i_start = its |
---|
1079 | IF ( config_flags%periodic_x ) i_end = ite |
---|
1080 | |
---|
1081 | DO j = j_start, j_end |
---|
1082 | DO k=kts,ktf |
---|
1083 | DO i = i_start, i_end |
---|
1084 | mrdx=msfu(i,j)*rdx |
---|
1085 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 & |
---|
1086 | *((ru(i+1,k,j)+ru(i,k,j))*(u(i+1,k,j)+u(i,k,j)) & |
---|
1087 | -(ru(i,k,j)+ru(i-1,k,j))*(u(i,k,j)+u(i-1,k,j))) |
---|
1088 | ENDDO |
---|
1089 | ENDDO |
---|
1090 | ENDDO |
---|
1091 | |
---|
1092 | IF ( specified .AND. its .LE. ids+1 .AND. .NOT. config_flags%periodic_x ) THEN |
---|
1093 | DO j = j_start, j_end |
---|
1094 | DO k=kts,ktf |
---|
1095 | i = ids+1 |
---|
1096 | mrdx=msfu(i,j)*rdx |
---|
1097 | ub = u(i-1,k,j) |
---|
1098 | IF (u(i,k,j) .LT. 0.) ub = u(i,k,j) |
---|
1099 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 & |
---|
1100 | *((ru(i+1,k,j)+ru(i,k,j))*(u(i+1,k,j)+u(i,k,j)) & |
---|
1101 | -(ru(i,k,j)+ru(i-1,k,j))*(u(i,k,j)+ub)) |
---|
1102 | ENDDO |
---|
1103 | ENDDO |
---|
1104 | ENDIF |
---|
1105 | IF ( specified .AND. ite .GE. ide-1 .AND. .NOT. config_flags%periodic_x ) THEN |
---|
1106 | DO j = j_start, j_end |
---|
1107 | DO k=kts,ktf |
---|
1108 | i = ide-1 |
---|
1109 | mrdx=msfu(i,j)*rdx |
---|
1110 | ub = u(i+1,k,j) |
---|
1111 | IF (u(i,k,j) .GT. 0.) ub = u(i,k,j) |
---|
1112 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 & |
---|
1113 | *((ru(i+1,k,j)+ru(i,k,j))*(ub+u(i,k,j)) & |
---|
1114 | -(ru(i,k,j)+ru(i-1,k,j))*(u(i,k,j)+u(i-1,k,j))) |
---|
1115 | ENDDO |
---|
1116 | ENDDO |
---|
1117 | ENDIF |
---|
1118 | |
---|
1119 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
---|
1120 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-2,jte) |
---|
1121 | |
---|
1122 | DO j = j_start, j_end |
---|
1123 | DO k=kts,ktf |
---|
1124 | DO i = i_start, i_end |
---|
1125 | mrdy=msfu(i,j)*rdy |
---|
1126 | tendency(i,k,j)=tendency(i,k,j)-mrdy*0.25 & |
---|
1127 | *((rv(i,k,j+1)+rv(i-1,k,j+1))*(u(i,k,j+1)+u(i,k,j)) & |
---|
1128 | -(rv(i,k,j)+rv(i-1,k,j))*(u(i,k,j)+u(i,k,j-1))) |
---|
1129 | ENDDO |
---|
1130 | ENDDO |
---|
1131 | ENDDO |
---|
1132 | |
---|
1133 | ELSE IF ( horz_order == 0 ) THEN |
---|
1134 | |
---|
1135 | ! Just in case we want to turn horizontal advection off, we can do it |
---|
1136 | |
---|
1137 | ELSE |
---|
1138 | |
---|
1139 | WRITE ( wrf_err_message , * ) 'module_advect: advect_u_6a: h_order not known ',horz_order |
---|
1140 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
1141 | |
---|
1142 | ENDIF horizontal_order_test |
---|
1143 | |
---|
1144 | ! radiative lateral boundary condition in x for normal velocity (u) |
---|
1145 | |
---|
1146 | IF ( (config_flags%open_xs) .and. its == ids ) THEN |
---|
1147 | |
---|
1148 | j_start = jts |
---|
1149 | j_end = MIN(jte,jde-1) |
---|
1150 | |
---|
1151 | DO j = j_start, j_end |
---|
1152 | DO k = kts, ktf |
---|
1153 | ub = MIN(ru(its,k,j)-cb*mut(its,j), 0.) |
---|
1154 | tendency(its,k,j) = tendency(its,k,j) & |
---|
1155 | - rdx*ub*(u_old(its+1,k,j) - u_old(its,k,j)) |
---|
1156 | ENDDO |
---|
1157 | ENDDO |
---|
1158 | |
---|
1159 | ENDIF |
---|
1160 | |
---|
1161 | IF ( (config_flags%open_xe) .and. ite == ide ) THEN |
---|
1162 | |
---|
1163 | j_start = jts |
---|
1164 | j_end = MIN(jte,jde-1) |
---|
1165 | |
---|
1166 | DO j = j_start, j_end |
---|
1167 | DO k = kts, ktf |
---|
1168 | ub = MAX(ru(ite,k,j)+cb*mut(ite-1,j), 0.) |
---|
1169 | tendency(ite,k,j) = tendency(ite,k,j) & |
---|
1170 | - rdx*ub*(u_old(ite,k,j) - u_old(ite-1,k,j)) |
---|
1171 | ENDDO |
---|
1172 | ENDDO |
---|
1173 | |
---|
1174 | ENDIF |
---|
1175 | |
---|
1176 | ! pick up the rest of the horizontal radiation boundary conditions. |
---|
1177 | ! (these are the computations that don't require 'cb') |
---|
1178 | ! first, set to index ranges |
---|
1179 | |
---|
1180 | i_start = its |
---|
1181 | i_end = MIN(ite,ide) |
---|
1182 | imin = ids |
---|
1183 | imax = ide-1 |
---|
1184 | |
---|
1185 | IF (config_flags%open_xs) THEN |
---|
1186 | i_start = MAX(ids+1, its) |
---|
1187 | imin = ids |
---|
1188 | ENDIF |
---|
1189 | IF (config_flags%open_xe) THEN |
---|
1190 | i_end = MIN(ite,ide-1) |
---|
1191 | imax = ide-1 |
---|
1192 | ENDIF |
---|
1193 | |
---|
1194 | IF( (config_flags%open_ys) .and. (jts == jds)) THEN |
---|
1195 | |
---|
1196 | DO i = i_start, i_end |
---|
1197 | |
---|
1198 | mrdy=msfu(i,jts)*rdy |
---|
1199 | ip = MIN( imax, i ) |
---|
1200 | im = MAX( imin, i-1 ) |
---|
1201 | |
---|
1202 | DO k=kts,ktf |
---|
1203 | |
---|
1204 | vw = 0.5*(rv(ip,k,jts)+rv(im,k,jts)) |
---|
1205 | vb = MIN( vw, 0. ) |
---|
1206 | dvm = rv(ip,k,jts+1)-rv(ip,k,jts) |
---|
1207 | dvp = rv(im,k,jts+1)-rv(im,k,jts) |
---|
1208 | tendency(i,k,jts)=tendency(i,k,jts)-mrdy*( & |
---|
1209 | vb*(u_old(i,k,jts+1)-u_old(i,k,jts)) & |
---|
1210 | +0.5*u(i,k,jts)*(dvm+dvp)) |
---|
1211 | ENDDO |
---|
1212 | ENDDO |
---|
1213 | |
---|
1214 | ENDIF |
---|
1215 | |
---|
1216 | IF( (config_flags%open_ye) .and. (jte == jde)) THEN |
---|
1217 | |
---|
1218 | DO i = i_start, i_end |
---|
1219 | |
---|
1220 | mrdy=msfu(i,jte-1)*rdy |
---|
1221 | ip = MIN( imax, i ) |
---|
1222 | im = MAX( imin, i-1 ) |
---|
1223 | |
---|
1224 | DO k=kts,ktf |
---|
1225 | |
---|
1226 | vw = 0.5*(rv(ip,k,jte)+rv(im,k,jte)) |
---|
1227 | vb = MAX( vw, 0. ) |
---|
1228 | dvm = rv(ip,k,jte)-rv(ip,k,jte-1) |
---|
1229 | dvp = rv(im,k,jte)-rv(im,k,jte-1) |
---|
1230 | tendency(i,k,jte-1)=tendency(i,k,jte-1)-mrdy*( & |
---|
1231 | vb*(u_old(i,k,jte-1)-u_old(i,k,jte-2)) & |
---|
1232 | +0.5*u(i,k,jte-1)*(dvm+dvp)) |
---|
1233 | ENDDO |
---|
1234 | ENDDO |
---|
1235 | |
---|
1236 | ENDIF |
---|
1237 | |
---|
1238 | !-------------------- vertical advection |
---|
1239 | |
---|
1240 | i_start = its |
---|
1241 | i_end = ite |
---|
1242 | j_start = jts |
---|
1243 | j_end = min(jte,jde-1) |
---|
1244 | |
---|
1245 | ! IF ( config_flags%open_xs ) i_start = MAX(ids+1,its) |
---|
1246 | ! IF ( config_flags%open_xe ) i_end = MIN(ide-1,ite) |
---|
1247 | |
---|
1248 | IF ( config_flags%open_ys .or. specified ) i_start = MAX(ids+1,its) |
---|
1249 | IF ( config_flags%open_ye .or. specified ) i_end = MIN(ide-1,ite) |
---|
1250 | IF ( config_flags%periodic_x ) i_start = its |
---|
1251 | IF ( config_flags%periodic_x ) i_end = ite |
---|
1252 | |
---|
1253 | DO i = i_start, i_end |
---|
1254 | vflux(i,kts)=0. |
---|
1255 | vflux(i,kte)=0. |
---|
1256 | ENDDO |
---|
1257 | |
---|
1258 | vert_order_test : IF (vert_order == 6) THEN |
---|
1259 | |
---|
1260 | DO j = j_start, j_end |
---|
1261 | |
---|
1262 | DO k=kts+3,ktf-2 |
---|
1263 | DO i = i_start, i_end |
---|
1264 | vel=0.5*(rom(i-1,k,j)+rom(i,k,j)) |
---|
1265 | vflux(i,k) = vel*flux6( & |
---|
1266 | u(i,k-3,j), u(i,k-2,j), u(i,k-1,j), & |
---|
1267 | u(i,k ,j), u(i,k+1,j), u(i,k+2,j), -vel ) |
---|
1268 | ENDDO |
---|
1269 | ENDDO |
---|
1270 | |
---|
1271 | DO i = i_start, i_end |
---|
1272 | |
---|
1273 | k=kts+1 |
---|
1274 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1275 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1276 | k = kts+2 |
---|
1277 | vel=0.5*(rom(i,k,j)+rom(i-1,k,j)) |
---|
1278 | vflux(i,k) = vel*flux4( & |
---|
1279 | u(i,k-2,j), u(i,k-1,j), & |
---|
1280 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
1281 | k = ktf-1 |
---|
1282 | vel=0.5*(rom(i,k,j)+rom(i-1,k,j)) |
---|
1283 | vflux(i,k) = vel*flux4( & |
---|
1284 | u(i,k-2,j), u(i,k-1,j), & |
---|
1285 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
1286 | k=ktf |
---|
1287 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1288 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1289 | |
---|
1290 | ENDDO |
---|
1291 | DO k=kts,ktf |
---|
1292 | DO i = i_start, i_end |
---|
1293 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
1294 | ENDDO |
---|
1295 | ENDDO |
---|
1296 | ENDDO |
---|
1297 | |
---|
1298 | ELSE IF (vert_order == 5) THEN |
---|
1299 | |
---|
1300 | DO j = j_start, j_end |
---|
1301 | |
---|
1302 | DO k=kts+3,ktf-2 |
---|
1303 | DO i = i_start, i_end |
---|
1304 | vel=0.5*(rom(i-1,k,j)+rom(i,k,j)) |
---|
1305 | vflux(i,k) = vel*flux5( & |
---|
1306 | u(i,k-3,j), u(i,k-2,j), u(i,k-1,j), & |
---|
1307 | u(i,k ,j), u(i,k+1,j), u(i,k+2,j), -vel ) |
---|
1308 | ENDDO |
---|
1309 | ENDDO |
---|
1310 | |
---|
1311 | DO i = i_start, i_end |
---|
1312 | |
---|
1313 | k=kts+1 |
---|
1314 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1315 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1316 | k = kts+2 |
---|
1317 | vel=0.5*(rom(i,k,j)+rom(i-1,k,j)) |
---|
1318 | vflux(i,k) = vel*flux3( & |
---|
1319 | u(i,k-2,j), u(i,k-1,j), & |
---|
1320 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
1321 | k = ktf-1 |
---|
1322 | vel=0.5*(rom(i,k,j)+rom(i-1,k,j)) |
---|
1323 | vflux(i,k) = vel*flux3( & |
---|
1324 | u(i,k-2,j), u(i,k-1,j), & |
---|
1325 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
1326 | k=ktf |
---|
1327 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1328 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1329 | |
---|
1330 | ENDDO |
---|
1331 | DO k=kts,ktf |
---|
1332 | DO i = i_start, i_end |
---|
1333 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
1334 | ENDDO |
---|
1335 | ENDDO |
---|
1336 | ENDDO |
---|
1337 | |
---|
1338 | ELSE IF (vert_order == 4) THEN |
---|
1339 | |
---|
1340 | DO j = j_start, j_end |
---|
1341 | |
---|
1342 | DO k=kts+2,ktf-1 |
---|
1343 | DO i = i_start, i_end |
---|
1344 | vel=0.5*(rom(i-1,k,j)+rom(i,k,j)) |
---|
1345 | vflux(i,k) = vel*flux4( & |
---|
1346 | u(i,k-2,j), u(i,k-1,j), & |
---|
1347 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
1348 | ENDDO |
---|
1349 | ENDDO |
---|
1350 | |
---|
1351 | DO i = i_start, i_end |
---|
1352 | |
---|
1353 | k=kts+1 |
---|
1354 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1355 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1356 | k=ktf |
---|
1357 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1358 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1359 | |
---|
1360 | ENDDO |
---|
1361 | DO k=kts,ktf |
---|
1362 | DO i = i_start, i_end |
---|
1363 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
1364 | ENDDO |
---|
1365 | ENDDO |
---|
1366 | ENDDO |
---|
1367 | |
---|
1368 | ELSE IF (vert_order == 3) THEN |
---|
1369 | |
---|
1370 | DO j = j_start, j_end |
---|
1371 | |
---|
1372 | DO k=kts+2,ktf-1 |
---|
1373 | DO i = i_start, i_end |
---|
1374 | vel=0.5*(rom(i-1,k,j)+rom(i,k,j)) |
---|
1375 | vflux(i,k) = vel*flux3( & |
---|
1376 | u(i,k-2,j), u(i,k-1,j), & |
---|
1377 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
1378 | ENDDO |
---|
1379 | ENDDO |
---|
1380 | |
---|
1381 | DO i = i_start, i_end |
---|
1382 | |
---|
1383 | k=kts+1 |
---|
1384 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1385 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1386 | k=ktf |
---|
1387 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1388 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1389 | |
---|
1390 | ENDDO |
---|
1391 | DO k=kts,ktf |
---|
1392 | DO i = i_start, i_end |
---|
1393 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
1394 | ENDDO |
---|
1395 | ENDDO |
---|
1396 | ENDDO |
---|
1397 | |
---|
1398 | ELSE IF (vert_order == 2) THEN |
---|
1399 | |
---|
1400 | DO j = j_start, j_end |
---|
1401 | DO k=kts+1,ktf |
---|
1402 | DO i = i_start, i_end |
---|
1403 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1404 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1405 | ENDDO |
---|
1406 | ENDDO |
---|
1407 | |
---|
1408 | |
---|
1409 | DO k=kts,ktf |
---|
1410 | DO i = i_start, i_end |
---|
1411 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
1412 | ENDDO |
---|
1413 | ENDDO |
---|
1414 | |
---|
1415 | ENDDO |
---|
1416 | |
---|
1417 | ELSE |
---|
1418 | |
---|
1419 | WRITE ( wrf_err_message , * ) 'module_advect: advect_u_6a: v_order not known ',vert_order |
---|
1420 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
1421 | |
---|
1422 | ENDIF vert_order_test |
---|
1423 | |
---|
1424 | END SUBROUTINE advect_u |
---|
1425 | |
---|
1426 | !------------------------------------------------------------------------------- |
---|
1427 | |
---|
1428 | SUBROUTINE advect_v ( v, v_old, tendency, & |
---|
1429 | ru, rv, rom, & |
---|
1430 | mut, time_step, config_flags, & |
---|
1431 | msfu, msfv, msft, & |
---|
1432 | fzm, fzp, & |
---|
1433 | rdx, rdy, rdzw, & |
---|
1434 | ids, ide, jds, jde, kds, kde, & |
---|
1435 | ims, ime, jms, jme, kms, kme, & |
---|
1436 | its, ite, jts, jte, kts, kte ) |
---|
1437 | |
---|
1438 | IMPLICIT NONE |
---|
1439 | |
---|
1440 | ! Input data |
---|
1441 | |
---|
1442 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
1443 | |
---|
1444 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
1445 | ims, ime, jms, jme, kms, kme, & |
---|
1446 | its, ite, jts, jte, kts, kte |
---|
1447 | |
---|
1448 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: v, & |
---|
1449 | v_old, & |
---|
1450 | ru, & |
---|
1451 | rv, & |
---|
1452 | rom |
---|
1453 | |
---|
1454 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
---|
1455 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
1456 | |
---|
1457 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
---|
1458 | msfv, & |
---|
1459 | msft |
---|
1460 | |
---|
1461 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
1462 | fzp, & |
---|
1463 | rdzw |
---|
1464 | |
---|
1465 | REAL , INTENT(IN ) :: rdx, & |
---|
1466 | rdy |
---|
1467 | INTEGER , INTENT(IN ) :: time_step |
---|
1468 | |
---|
1469 | |
---|
1470 | ! Local data |
---|
1471 | |
---|
1472 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
1473 | INTEGER :: i_start, i_end, j_start, j_end |
---|
1474 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
---|
1475 | INTEGER :: jmin, jmax, jp, jm, imin, imax |
---|
1476 | |
---|
1477 | REAL :: mrdx, mrdy, ub, vb, uw, vw, dup, dum |
---|
1478 | REAL , DIMENSION(its:ite, kts:kte) :: vflux |
---|
1479 | |
---|
1480 | |
---|
1481 | REAL, DIMENSION( its:ite+1, kts:kte ) :: fqx |
---|
1482 | REAL, DIMENSION( its:ite, kts:kte, 2 ) :: fqy |
---|
1483 | |
---|
1484 | INTEGER :: horz_order |
---|
1485 | INTEGER :: vert_order |
---|
1486 | |
---|
1487 | LOGICAL :: degrade_xs, degrade_ys |
---|
1488 | LOGICAL :: degrade_xe, degrade_ye |
---|
1489 | |
---|
1490 | INTEGER :: jp1, jp0, jtmp |
---|
1491 | |
---|
1492 | |
---|
1493 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
---|
1494 | |
---|
1495 | REAL :: flux3, flux4, flux5, flux6 |
---|
1496 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel |
---|
1497 | |
---|
1498 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
1499 | ( 7.*(q_i + q_im1) - (q_ip1 + q_im2) )/12.0 |
---|
1500 | |
---|
1501 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
1502 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
---|
1503 | sign(1,time_step)*sign(1.,ua)*((q_ip1 - q_im2)-3.*(q_i-q_im1))/12.0 |
---|
1504 | |
---|
1505 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
1506 | ( 37.*(q_i+q_im1) - 8.*(q_ip1+q_im2) & |
---|
1507 | +(q_ip2+q_im3) )/60.0 |
---|
1508 | |
---|
1509 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
1510 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
---|
1511 | -sign(1,time_step)*sign(1.,ua)*( & |
---|
1512 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) )/60.0 |
---|
1513 | |
---|
1514 | |
---|
1515 | |
---|
1516 | LOGICAL :: specified |
---|
1517 | |
---|
1518 | specified = .false. |
---|
1519 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
---|
1520 | |
---|
1521 | ! set order for the advection schemes |
---|
1522 | |
---|
1523 | ktf=MIN(kte,kde-1) |
---|
1524 | horz_order = config_flags%h_mom_adv_order |
---|
1525 | vert_order = config_flags%v_mom_adv_order |
---|
1526 | |
---|
1527 | |
---|
1528 | ! here is the choice of flux operators |
---|
1529 | |
---|
1530 | |
---|
1531 | horizontal_order_test : IF( horz_order == 6 ) THEN |
---|
1532 | |
---|
1533 | ! determine boundary mods for flux operators |
---|
1534 | ! We degrade the flux operators from 3rd/4th order |
---|
1535 | ! to second order one gridpoint in from the boundaries for |
---|
1536 | ! all boundary conditions except periodic and symmetry - these |
---|
1537 | ! conditions have boundary zone data fill for correct application |
---|
1538 | ! of the higher order flux stencils |
---|
1539 | |
---|
1540 | degrade_xs = .true. |
---|
1541 | degrade_xe = .true. |
---|
1542 | degrade_ys = .true. |
---|
1543 | degrade_ye = .true. |
---|
1544 | |
---|
1545 | IF( config_flags%periodic_x .or. & |
---|
1546 | config_flags%symmetric_xs .or. & |
---|
1547 | (its > ids+3) ) degrade_xs = .false. |
---|
1548 | IF( config_flags%periodic_x .or. & |
---|
1549 | config_flags%symmetric_xe .or. & |
---|
1550 | (ite < ide-3) ) degrade_xe = .false. |
---|
1551 | IF( config_flags%periodic_y .or. & |
---|
1552 | config_flags%symmetric_ys .or. & |
---|
1553 | (jts > jds+3) ) degrade_ys = .false. |
---|
1554 | IF( config_flags%periodic_y .or. & |
---|
1555 | config_flags%symmetric_ye .or. & |
---|
1556 | (jte < jde-3) ) degrade_ye = .false. |
---|
1557 | |
---|
1558 | !--------------- y - advection first |
---|
1559 | |
---|
1560 | i_start = its |
---|
1561 | i_end = MIN(ite,ide-1) |
---|
1562 | j_start = jts |
---|
1563 | j_end = jte |
---|
1564 | |
---|
1565 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
1566 | ! bounds so we can switch to second order flux close to the boundary |
---|
1567 | |
---|
1568 | j_start_f = j_start |
---|
1569 | j_end_f = j_end+1 |
---|
1570 | |
---|
1571 | IF(degrade_ys) then |
---|
1572 | j_start = MAX(jts,jds+1) |
---|
1573 | j_start_f = jds+3 |
---|
1574 | ENDIF |
---|
1575 | |
---|
1576 | IF(degrade_ye) then |
---|
1577 | j_end = MIN(jte,jde-1) |
---|
1578 | j_end_f = jde-2 |
---|
1579 | ENDIF |
---|
1580 | |
---|
1581 | ! compute fluxes, 5th or 6th order |
---|
1582 | |
---|
1583 | jp1 = 2 |
---|
1584 | jp0 = 1 |
---|
1585 | |
---|
1586 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
---|
1587 | |
---|
1588 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN |
---|
1589 | |
---|
1590 | DO k=kts,ktf |
---|
1591 | DO i = i_start, i_end |
---|
1592 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
1593 | fqy( i, k, jp1 ) = vel*flux6( & |
---|
1594 | v(i,k,j-3), v(i,k,j-2), v(i,k,j-1), & |
---|
1595 | v(i,k,j ), v(i,k,j+1), v(i,k,j+2), vel ) |
---|
1596 | ENDDO |
---|
1597 | ENDDO |
---|
1598 | |
---|
1599 | ! we must be close to some boundary where we need to reduce the order of the stencil |
---|
1600 | ! specified uses upstream normal wind at boundaries |
---|
1601 | |
---|
1602 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
1603 | |
---|
1604 | DO k=kts,ktf |
---|
1605 | DO i = i_start, i_end |
---|
1606 | vb = v(i,k,j-1) |
---|
1607 | IF (specified .AND. v(i,k,j) .LT. 0.)vb = v(i,k,j) |
---|
1608 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
1609 | *(v(i,k,j)+vb) |
---|
1610 | ENDDO |
---|
1611 | ENDDO |
---|
1612 | |
---|
1613 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
1614 | |
---|
1615 | DO k=kts,ktf |
---|
1616 | DO i = i_start, i_end |
---|
1617 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
1618 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
1619 | v(i,k,j-2),v(i,k,j-1),v(i,k,j),v(i,k,j+1),vel ) |
---|
1620 | ENDDO |
---|
1621 | ENDDO |
---|
1622 | |
---|
1623 | |
---|
1624 | ELSE IF ( j == jde ) THEN ! 2nd order flux next to north boundary |
---|
1625 | |
---|
1626 | DO k=kts,ktf |
---|
1627 | DO i = i_start, i_end |
---|
1628 | vb = v(i,k,j) |
---|
1629 | IF (specified .AND. v(i,k,j-1) .GT. 0.)vb = v(i,k,j-1) |
---|
1630 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
1631 | *(vb+v(i,k,j-1)) |
---|
1632 | ENDDO |
---|
1633 | ENDDO |
---|
1634 | |
---|
1635 | ELSE IF ( j == jde-1 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
1636 | |
---|
1637 | DO k=kts,ktf |
---|
1638 | DO i = i_start, i_end |
---|
1639 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
1640 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
1641 | v(i,k,j-2),v(i,k,j-1),v(i,k,j),v(i,k,j+1),vel ) |
---|
1642 | ENDDO |
---|
1643 | ENDDO |
---|
1644 | |
---|
1645 | END IF |
---|
1646 | |
---|
1647 | ! y flux-divergence into tendency |
---|
1648 | |
---|
1649 | |
---|
1650 | IF(j > j_start) THEN |
---|
1651 | |
---|
1652 | DO k=kts,ktf |
---|
1653 | DO i = i_start, i_end |
---|
1654 | mrdy=msfv(i,j-1)*rdy |
---|
1655 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
1656 | ENDDO |
---|
1657 | ENDDO |
---|
1658 | |
---|
1659 | ENDIF |
---|
1660 | |
---|
1661 | |
---|
1662 | |
---|
1663 | jtmp = jp1 |
---|
1664 | jp1 = jp0 |
---|
1665 | jp0 = jtmp |
---|
1666 | |
---|
1667 | ENDDO j_loop_y_flux_6 |
---|
1668 | |
---|
1669 | ! next, x - flux divergence |
---|
1670 | |
---|
1671 | i_start = its |
---|
1672 | i_end = MIN(ite,ide-1) |
---|
1673 | |
---|
1674 | j_start = jts |
---|
1675 | j_end = jte |
---|
1676 | |
---|
1677 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
---|
1678 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-1,jte) |
---|
1679 | |
---|
1680 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
1681 | ! bounds so we can switch to second order flux close to the boundary |
---|
1682 | |
---|
1683 | i_start_f = i_start |
---|
1684 | i_end_f = i_end+1 |
---|
1685 | |
---|
1686 | IF(degrade_xs) then |
---|
1687 | i_start = MAX(ids+1,its) |
---|
1688 | ! i_start_f = i_start+2 |
---|
1689 | i_start_f = MIN(i_start+2,ids+3) |
---|
1690 | ENDIF |
---|
1691 | |
---|
1692 | IF(degrade_xe) then |
---|
1693 | i_end = MIN(ide-2,ite) |
---|
1694 | i_end_f = ide-3 |
---|
1695 | ENDIF |
---|
1696 | |
---|
1697 | ! compute fluxes |
---|
1698 | |
---|
1699 | DO j = j_start, j_end |
---|
1700 | |
---|
1701 | ! 5th or 6th order flux |
---|
1702 | |
---|
1703 | DO k=kts,ktf |
---|
1704 | DO i = i_start_f, i_end_f |
---|
1705 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
1706 | fqx( i, k ) = vel*flux6( v(i-3,k,j), v(i-2,k,j), & |
---|
1707 | v(i-1,k,j), v(i ,k,j), & |
---|
1708 | v(i+1,k,j), v(i+2,k,j), & |
---|
1709 | vel ) |
---|
1710 | ENDDO |
---|
1711 | ENDDO |
---|
1712 | |
---|
1713 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
1714 | |
---|
1715 | IF( degrade_xs ) THEN |
---|
1716 | |
---|
1717 | DO i=i_start,i_start_f-1 |
---|
1718 | |
---|
1719 | IF(i == ids+1) THEN ! second order |
---|
1720 | DO k=kts,ktf |
---|
1721 | fqx(i,k) = 0.25*(ru(i,k,j)+ru(i,k,j-1)) & |
---|
1722 | *(v(i,k,j)+v(i-1,k,j)) |
---|
1723 | ENDDO |
---|
1724 | ENDIF |
---|
1725 | |
---|
1726 | IF(i == ids+2) THEN ! third order |
---|
1727 | DO k=kts,ktf |
---|
1728 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
1729 | fqx( i,k ) = vel*flux4( v(i-2,k,j), v(i-1,k,j), & |
---|
1730 | v(i ,k,j), v(i+1,k,j), & |
---|
1731 | vel ) |
---|
1732 | ENDDO |
---|
1733 | ENDIF |
---|
1734 | |
---|
1735 | ENDDO |
---|
1736 | |
---|
1737 | ENDIF |
---|
1738 | |
---|
1739 | IF( degrade_xe ) THEN |
---|
1740 | |
---|
1741 | DO i = i_end_f+1, i_end+1 |
---|
1742 | |
---|
1743 | IF( i == ide-1 ) THEN ! second order flux next to the boundary |
---|
1744 | DO k=kts,ktf |
---|
1745 | fqx(i,k) = 0.25*(ru(i_end+1,k,j)+ru(i_end+1,k,j-1)) & |
---|
1746 | *(v(i_end+1,k,j)+v(i_end,k,j)) |
---|
1747 | ENDDO |
---|
1748 | ENDIF |
---|
1749 | |
---|
1750 | IF( i == ide-2 ) THEN ! third order flux one in from the boundary |
---|
1751 | DO k=kts,ktf |
---|
1752 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
1753 | fqx( i,k ) = vel*flux4( v(i-2,k,j), v(i-1,k,j), & |
---|
1754 | v(i ,k,j), v(i+1,k,j), & |
---|
1755 | vel ) |
---|
1756 | ENDDO |
---|
1757 | ENDIF |
---|
1758 | |
---|
1759 | ENDDO |
---|
1760 | |
---|
1761 | ENDIF |
---|
1762 | |
---|
1763 | ! x flux-divergence into tendency |
---|
1764 | |
---|
1765 | DO k=kts,ktf |
---|
1766 | DO i = i_start, i_end |
---|
1767 | mrdx=msfv(i,j)*rdx |
---|
1768 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
1769 | ENDDO |
---|
1770 | ENDDO |
---|
1771 | |
---|
1772 | ENDDO |
---|
1773 | |
---|
1774 | ELSE IF( horz_order == 5 ) THEN |
---|
1775 | |
---|
1776 | ! 5th order horizontal flux calculation |
---|
1777 | ! This code is EXACTLY the same as the 6th order code |
---|
1778 | ! EXCEPT the 5th order and 3rd operators are used in |
---|
1779 | ! place of the 6th and 4th order operators |
---|
1780 | |
---|
1781 | ! determine boundary mods for flux operators |
---|
1782 | ! We degrade the flux operators from 3rd/4th order |
---|
1783 | ! to second order one gridpoint in from the boundaries for |
---|
1784 | ! all boundary conditions except periodic and symmetry - these |
---|
1785 | ! conditions have boundary zone data fill for correct application |
---|
1786 | ! of the higher order flux stencils |
---|
1787 | |
---|
1788 | degrade_xs = .true. |
---|
1789 | degrade_xe = .true. |
---|
1790 | degrade_ys = .true. |
---|
1791 | degrade_ye = .true. |
---|
1792 | |
---|
1793 | IF( config_flags%periodic_x .or. & |
---|
1794 | config_flags%symmetric_xs .or. & |
---|
1795 | (its > ids+3) ) degrade_xs = .false. |
---|
1796 | IF( config_flags%periodic_x .or. & |
---|
1797 | config_flags%symmetric_xe .or. & |
---|
1798 | (ite < ide-3) ) degrade_xe = .false. |
---|
1799 | IF( config_flags%periodic_y .or. & |
---|
1800 | config_flags%symmetric_ys .or. & |
---|
1801 | (jts > jds+3) ) degrade_ys = .false. |
---|
1802 | IF( config_flags%periodic_y .or. & |
---|
1803 | config_flags%symmetric_ye .or. & |
---|
1804 | (jte < jde-3) ) degrade_ye = .false. |
---|
1805 | |
---|
1806 | !--------------- y - advection first |
---|
1807 | |
---|
1808 | i_start = its |
---|
1809 | i_end = MIN(ite,ide-1) |
---|
1810 | j_start = jts |
---|
1811 | j_end = jte |
---|
1812 | |
---|
1813 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
1814 | ! bounds so we can switch to second order flux close to the boundary |
---|
1815 | |
---|
1816 | j_start_f = j_start |
---|
1817 | j_end_f = j_end+1 |
---|
1818 | |
---|
1819 | IF(degrade_ys) then |
---|
1820 | j_start = MAX(jts,jds+1) |
---|
1821 | j_start_f = jds+3 |
---|
1822 | ENDIF |
---|
1823 | |
---|
1824 | IF(degrade_ye) then |
---|
1825 | j_end = MIN(jte,jde-1) |
---|
1826 | j_end_f = jde-2 |
---|
1827 | ENDIF |
---|
1828 | |
---|
1829 | ! compute fluxes, 5th or 6th order |
---|
1830 | |
---|
1831 | jp1 = 2 |
---|
1832 | jp0 = 1 |
---|
1833 | |
---|
1834 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
---|
1835 | |
---|
1836 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN |
---|
1837 | |
---|
1838 | DO k=kts,ktf |
---|
1839 | DO i = i_start, i_end |
---|
1840 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
1841 | fqy( i, k, jp1 ) = vel*flux5( & |
---|
1842 | v(i,k,j-3), v(i,k,j-2), v(i,k,j-1), & |
---|
1843 | v(i,k,j ), v(i,k,j+1), v(i,k,j+2), vel ) |
---|
1844 | ENDDO |
---|
1845 | ENDDO |
---|
1846 | |
---|
1847 | ! we must be close to some boundary where we need to reduce the order of the stencil |
---|
1848 | ! specified uses upstream normal wind at boundaries |
---|
1849 | |
---|
1850 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
1851 | |
---|
1852 | DO k=kts,ktf |
---|
1853 | DO i = i_start, i_end |
---|
1854 | vb = v(i,k,j-1) |
---|
1855 | IF (specified .AND. v(i,k,j) .LT. 0.)vb = v(i,k,j) |
---|
1856 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
1857 | *(v(i,k,j)+vb) |
---|
1858 | ENDDO |
---|
1859 | ENDDO |
---|
1860 | |
---|
1861 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
1862 | |
---|
1863 | DO k=kts,ktf |
---|
1864 | DO i = i_start, i_end |
---|
1865 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
1866 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
1867 | v(i,k,j-2),v(i,k,j-1),v(i,k,j),v(i,k,j+1),vel ) |
---|
1868 | ENDDO |
---|
1869 | ENDDO |
---|
1870 | |
---|
1871 | |
---|
1872 | ELSE IF ( j == jde ) THEN ! 2nd order flux next to north boundary |
---|
1873 | |
---|
1874 | DO k=kts,ktf |
---|
1875 | DO i = i_start, i_end |
---|
1876 | vb = v(i,k,j) |
---|
1877 | IF (specified .AND. v(i,k,j-1) .GT. 0.)vb = v(i,k,j-1) |
---|
1878 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
1879 | *(vb+v(i,k,j-1)) |
---|
1880 | ENDDO |
---|
1881 | ENDDO |
---|
1882 | |
---|
1883 | ELSE IF ( j == jde-1 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
1884 | |
---|
1885 | DO k=kts,ktf |
---|
1886 | DO i = i_start, i_end |
---|
1887 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
1888 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
1889 | v(i,k,j-2),v(i,k,j-1),v(i,k,j),v(i,k,j+1),vel ) |
---|
1890 | ENDDO |
---|
1891 | ENDDO |
---|
1892 | |
---|
1893 | END IF |
---|
1894 | |
---|
1895 | ! y flux-divergence into tendency |
---|
1896 | |
---|
1897 | IF(j > j_start) THEN |
---|
1898 | |
---|
1899 | DO k=kts,ktf |
---|
1900 | DO i = i_start, i_end |
---|
1901 | mrdy=msfv(i,j-1)*rdy |
---|
1902 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
1903 | ENDDO |
---|
1904 | ENDDO |
---|
1905 | |
---|
1906 | ENDIF |
---|
1907 | |
---|
1908 | |
---|
1909 | jtmp = jp1 |
---|
1910 | jp1 = jp0 |
---|
1911 | jp0 = jtmp |
---|
1912 | |
---|
1913 | ENDDO j_loop_y_flux_5 |
---|
1914 | |
---|
1915 | ! next, x - flux divergence |
---|
1916 | |
---|
1917 | i_start = its |
---|
1918 | i_end = MIN(ite,ide-1) |
---|
1919 | |
---|
1920 | j_start = jts |
---|
1921 | j_end = jte |
---|
1922 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
---|
1923 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-1,jte) |
---|
1924 | |
---|
1925 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
1926 | ! bounds so we can switch to second order flux close to the boundary |
---|
1927 | |
---|
1928 | i_start_f = i_start |
---|
1929 | i_end_f = i_end+1 |
---|
1930 | |
---|
1931 | IF(degrade_xs) then |
---|
1932 | i_start = MAX(ids+1,its) |
---|
1933 | ! i_start_f = i_start+2 |
---|
1934 | i_start_f = MIN(i_start+2,ids+3) |
---|
1935 | ENDIF |
---|
1936 | |
---|
1937 | IF(degrade_xe) then |
---|
1938 | i_end = MIN(ide-2,ite) |
---|
1939 | i_end_f = ide-3 |
---|
1940 | ENDIF |
---|
1941 | |
---|
1942 | ! compute fluxes |
---|
1943 | |
---|
1944 | DO j = j_start, j_end |
---|
1945 | |
---|
1946 | ! 5th or 6th order flux |
---|
1947 | |
---|
1948 | DO k=kts,ktf |
---|
1949 | DO i = i_start_f, i_end_f |
---|
1950 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
1951 | fqx( i, k ) = vel*flux5( v(i-3,k,j), v(i-2,k,j), & |
---|
1952 | v(i-1,k,j), v(i ,k,j), & |
---|
1953 | v(i+1,k,j), v(i+2,k,j), & |
---|
1954 | vel ) |
---|
1955 | ENDDO |
---|
1956 | ENDDO |
---|
1957 | |
---|
1958 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
1959 | |
---|
1960 | IF( degrade_xs ) THEN |
---|
1961 | |
---|
1962 | DO i=i_start,i_start_f-1 |
---|
1963 | |
---|
1964 | IF(i == ids+1) THEN ! second order |
---|
1965 | DO k=kts,ktf |
---|
1966 | fqx(i,k) = 0.25*(ru(i,k,j)+ru(i,k,j-1)) & |
---|
1967 | *(v(i,k,j)+v(i-1,k,j)) |
---|
1968 | ENDDO |
---|
1969 | ENDIF |
---|
1970 | |
---|
1971 | IF(i == ids+2) THEN ! third order |
---|
1972 | DO k=kts,ktf |
---|
1973 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
1974 | fqx( i,k ) = vel*flux3( v(i-2,k,j), v(i-1,k,j), & |
---|
1975 | v(i ,k,j), v(i+1,k,j), & |
---|
1976 | vel ) |
---|
1977 | ENDDO |
---|
1978 | ENDIF |
---|
1979 | |
---|
1980 | ENDDO |
---|
1981 | |
---|
1982 | ENDIF |
---|
1983 | |
---|
1984 | IF( degrade_xe ) THEN |
---|
1985 | |
---|
1986 | DO i = i_end_f+1, i_end+1 |
---|
1987 | |
---|
1988 | IF( i == ide-1 ) THEN ! second order flux next to the boundary |
---|
1989 | DO k=kts,ktf |
---|
1990 | fqx(i,k) = 0.25*(ru(i_end+1,k,j)+ru(i_end+1,k,j-1)) & |
---|
1991 | *(v(i_end+1,k,j)+v(i_end,k,j)) |
---|
1992 | ENDDO |
---|
1993 | ENDIF |
---|
1994 | |
---|
1995 | IF( i == ide-2 ) THEN ! third order flux one in from the boundary |
---|
1996 | DO k=kts,ktf |
---|
1997 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
1998 | fqx( i,k ) = vel*flux3( v(i-2,k,j), v(i-1,k,j), & |
---|
1999 | v(i ,k,j), v(i+1,k,j), & |
---|
2000 | vel ) |
---|
2001 | ENDDO |
---|
2002 | ENDIF |
---|
2003 | |
---|
2004 | ENDDO |
---|
2005 | |
---|
2006 | ENDIF |
---|
2007 | |
---|
2008 | ! x flux-divergence into tendency |
---|
2009 | |
---|
2010 | DO k=kts,ktf |
---|
2011 | DO i = i_start, i_end |
---|
2012 | mrdx=msfv(i,j)*rdx |
---|
2013 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
2014 | ENDDO |
---|
2015 | ENDDO |
---|
2016 | |
---|
2017 | ENDDO |
---|
2018 | |
---|
2019 | ELSE IF( horz_order == 4 ) THEN |
---|
2020 | |
---|
2021 | ! determine boundary mods for flux operators |
---|
2022 | ! We degrade the flux operators from 3rd/4th order |
---|
2023 | ! to second order one gridpoint in from the boundaries for |
---|
2024 | ! all boundary conditions except periodic and symmetry - these |
---|
2025 | ! conditions have boundary zone data fill for correct application |
---|
2026 | ! of the higher order flux stencils |
---|
2027 | |
---|
2028 | degrade_xs = .true. |
---|
2029 | degrade_xe = .true. |
---|
2030 | degrade_ys = .true. |
---|
2031 | degrade_ye = .true. |
---|
2032 | |
---|
2033 | IF( config_flags%periodic_x .or. & |
---|
2034 | config_flags%symmetric_xs .or. & |
---|
2035 | (its > ids+2) ) degrade_xs = .false. |
---|
2036 | IF( config_flags%periodic_x .or. & |
---|
2037 | config_flags%symmetric_xe .or. & |
---|
2038 | (ite < ide-2) ) degrade_xe = .false. |
---|
2039 | IF( config_flags%periodic_y .or. & |
---|
2040 | config_flags%symmetric_ys .or. & |
---|
2041 | (jts > jds+2) ) degrade_ys = .false. |
---|
2042 | IF( config_flags%periodic_y .or. & |
---|
2043 | config_flags%symmetric_ye .or. & |
---|
2044 | (jte < jde-2) ) degrade_ye = .false. |
---|
2045 | |
---|
2046 | !--------------- y - advection first |
---|
2047 | |
---|
2048 | |
---|
2049 | ktf=MIN(kte,kde-1) |
---|
2050 | |
---|
2051 | i_start = its |
---|
2052 | i_end = MIN(ite,ide-1) |
---|
2053 | j_start = jts |
---|
2054 | j_end = jte |
---|
2055 | |
---|
2056 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
2057 | ! bounds so we can switch to second order flux close to the boundary |
---|
2058 | |
---|
2059 | j_start_f = j_start |
---|
2060 | j_end_f = j_end+1 |
---|
2061 | |
---|
2062 | !CJM May not work with tiling because defined in terms of domain dims |
---|
2063 | IF(degrade_ys) then |
---|
2064 | j_start = jds+1 |
---|
2065 | j_start_f = j_start+1 |
---|
2066 | ENDIF |
---|
2067 | |
---|
2068 | IF(degrade_ye) then |
---|
2069 | j_end = jde-1 |
---|
2070 | j_end_f = jde-1 |
---|
2071 | ENDIF |
---|
2072 | |
---|
2073 | ! compute fluxes |
---|
2074 | ! specified uses upstream normal wind at boundaries |
---|
2075 | |
---|
2076 | jp0 = 1 |
---|
2077 | jp1 = 2 |
---|
2078 | |
---|
2079 | DO j = j_start, j_end+1 |
---|
2080 | |
---|
2081 | IF ((j == j_start) .and. degrade_ys) THEN |
---|
2082 | DO k = kts,ktf |
---|
2083 | DO i = i_start, i_end |
---|
2084 | vb = v(i,k,j-1) |
---|
2085 | IF (specified .AND. v(i,k,j) .LT. 0.)vb = v(i,k,j) |
---|
2086 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
2087 | *(v(i,k,j)+vb) |
---|
2088 | ENDDO |
---|
2089 | ENDDO |
---|
2090 | ELSE IF ((j == j_end+1) .and. degrade_ye) THEN |
---|
2091 | DO k = kts, ktf |
---|
2092 | DO i = i_start, i_end |
---|
2093 | vb = v(i,k,j) |
---|
2094 | IF (specified .AND. v(i,k,j-1) .GT. 0.)vb = v(i,k,j-1) |
---|
2095 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
2096 | *(vb+v(i,k,j-1)) |
---|
2097 | ENDDO |
---|
2098 | ENDDO |
---|
2099 | ELSE |
---|
2100 | DO k = kts, ktf |
---|
2101 | DO i = i_start, i_end |
---|
2102 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
2103 | fqy( i,k,jp1 ) = vel*flux4( v(i,k,j-2), v(i,k,j-1), & |
---|
2104 | v(i,k,j ), v(i,k,j+1), & |
---|
2105 | vel ) |
---|
2106 | ENDDO |
---|
2107 | ENDDO |
---|
2108 | END IF |
---|
2109 | |
---|
2110 | IF( j > j_start) THEN |
---|
2111 | DO k = kts, ktf |
---|
2112 | DO i = i_start, i_end |
---|
2113 | mrdy=msfv(i,j-1)*rdy |
---|
2114 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
2115 | ENDDO |
---|
2116 | ENDDO |
---|
2117 | |
---|
2118 | |
---|
2119 | END IF |
---|
2120 | |
---|
2121 | jtmp = jp1 |
---|
2122 | jp1 = jp0 |
---|
2123 | jp0 = jtmp |
---|
2124 | |
---|
2125 | ENDDO |
---|
2126 | |
---|
2127 | ! next, x - flux divergence |
---|
2128 | |
---|
2129 | |
---|
2130 | i_start = its |
---|
2131 | i_end = MIN(ite,ide-1) |
---|
2132 | |
---|
2133 | j_start = jts |
---|
2134 | j_end = jte |
---|
2135 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
---|
2136 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-1,jte) |
---|
2137 | |
---|
2138 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
2139 | ! bounds so we can switch to second order flux close to the boundary |
---|
2140 | |
---|
2141 | i_start_f = i_start |
---|
2142 | i_end_f = i_end+1 |
---|
2143 | |
---|
2144 | IF(degrade_xs) then |
---|
2145 | i_start = ids+1 |
---|
2146 | i_start_f = i_start+1 |
---|
2147 | ENDIF |
---|
2148 | |
---|
2149 | IF(degrade_xe) then |
---|
2150 | i_end = ide-2 |
---|
2151 | i_end_f = ide-2 |
---|
2152 | ENDIF |
---|
2153 | |
---|
2154 | ! compute fluxes |
---|
2155 | |
---|
2156 | DO j = j_start, j_end |
---|
2157 | |
---|
2158 | ! 3rd or 4th order flux |
---|
2159 | |
---|
2160 | DO k=kts,ktf |
---|
2161 | DO i = i_start_f, i_end_f |
---|
2162 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
2163 | fqx( i, k ) = vel*flux4( v(i-2,k,j), v(i-1,k,j), & |
---|
2164 | v(i ,k,j), v(i+1,k,j), & |
---|
2165 | vel ) |
---|
2166 | ENDDO |
---|
2167 | ENDDO |
---|
2168 | |
---|
2169 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
2170 | |
---|
2171 | IF( degrade_xs ) THEN |
---|
2172 | DO k=kts,ktf |
---|
2173 | fqx(i_start,k) = 0.25*(ru(i_start,k,j)+ru(i_start,k,j-1)) & |
---|
2174 | *(v(i_start,k,j)+v(i_start-1,k,j)) |
---|
2175 | ENDDO |
---|
2176 | ENDIF |
---|
2177 | |
---|
2178 | IF( degrade_xe ) THEN |
---|
2179 | DO k=kts,ktf |
---|
2180 | fqx(i_end+1,k) = 0.25*(ru(i_end+1,k,j)+ru(i_end+1,k,j-1)) & |
---|
2181 | *(v(i_end+1,k,j)+v(i_end,k,j)) |
---|
2182 | ENDDO |
---|
2183 | ENDIF |
---|
2184 | |
---|
2185 | ! x flux-divergence into tendency |
---|
2186 | |
---|
2187 | DO k=kts,ktf |
---|
2188 | DO i = i_start, i_end |
---|
2189 | mrdx=msfv(i,j)*rdx |
---|
2190 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
2191 | ENDDO |
---|
2192 | ENDDO |
---|
2193 | |
---|
2194 | ENDDO |
---|
2195 | |
---|
2196 | ELSE IF( horz_order == 3 ) THEN |
---|
2197 | |
---|
2198 | ! determine boundary mods for flux operators |
---|
2199 | ! We degrade the flux operators from 3rd/4th order |
---|
2200 | ! to second order one gridpoint in from the boundaries for |
---|
2201 | ! all boundary conditions except periodic and symmetry - these |
---|
2202 | ! conditions have boundary zone data fill for correct application |
---|
2203 | ! of the higher order flux stencils |
---|
2204 | |
---|
2205 | degrade_xs = .true. |
---|
2206 | degrade_xe = .true. |
---|
2207 | degrade_ys = .true. |
---|
2208 | degrade_ye = .true. |
---|
2209 | |
---|
2210 | IF( config_flags%periodic_x .or. & |
---|
2211 | config_flags%symmetric_xs .or. & |
---|
2212 | (its > ids+2) ) degrade_xs = .false. |
---|
2213 | IF( config_flags%periodic_x .or. & |
---|
2214 | config_flags%symmetric_xe .or. & |
---|
2215 | (ite < ide-2) ) degrade_xe = .false. |
---|
2216 | IF( config_flags%periodic_y .or. & |
---|
2217 | config_flags%symmetric_ys .or. & |
---|
2218 | (jts > jds+2) ) degrade_ys = .false. |
---|
2219 | IF( config_flags%periodic_y .or. & |
---|
2220 | config_flags%symmetric_ye .or. & |
---|
2221 | (jte < jde-2) ) degrade_ye = .false. |
---|
2222 | |
---|
2223 | !--------------- y - advection first |
---|
2224 | |
---|
2225 | |
---|
2226 | ktf=MIN(kte,kde-1) |
---|
2227 | |
---|
2228 | i_start = its |
---|
2229 | i_end = MIN(ite,ide-1) |
---|
2230 | j_start = jts |
---|
2231 | j_end = jte |
---|
2232 | |
---|
2233 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
2234 | ! bounds so we can switch to second order flux close to the boundary |
---|
2235 | |
---|
2236 | j_start_f = j_start |
---|
2237 | j_end_f = j_end+1 |
---|
2238 | |
---|
2239 | !CJM May not work with tiling because defined in terms of domain dims |
---|
2240 | IF(degrade_ys) then |
---|
2241 | j_start = jds+1 |
---|
2242 | j_start_f = j_start+1 |
---|
2243 | ENDIF |
---|
2244 | |
---|
2245 | IF(degrade_ye) then |
---|
2246 | j_end = jde-1 |
---|
2247 | j_end_f = jde-1 |
---|
2248 | ENDIF |
---|
2249 | |
---|
2250 | ! compute fluxes |
---|
2251 | ! specified uses upstream normal wind at boundaries |
---|
2252 | |
---|
2253 | jp0 = 1 |
---|
2254 | jp1 = 2 |
---|
2255 | |
---|
2256 | DO j = j_start, j_end+1 |
---|
2257 | |
---|
2258 | IF ((j == j_start) .and. degrade_ys) THEN |
---|
2259 | DO k = kts,ktf |
---|
2260 | DO i = i_start, i_end |
---|
2261 | vb = v(i,k,j-1) |
---|
2262 | IF (specified .AND. v(i,k,j) .LT. 0.)vb = v(i,k,j) |
---|
2263 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
2264 | *(v(i,k,j)+vb) |
---|
2265 | ENDDO |
---|
2266 | ENDDO |
---|
2267 | ELSE IF ((j == j_end+1) .and. degrade_ye) THEN |
---|
2268 | DO k = kts, ktf |
---|
2269 | DO i = i_start, i_end |
---|
2270 | vb = v(i,k,j) |
---|
2271 | IF (specified .AND. v(i,k,j-1) .GT. 0.)vb = v(i,k,j-1) |
---|
2272 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
2273 | *(vb+v(i,k,j-1)) |
---|
2274 | ENDDO |
---|
2275 | ENDDO |
---|
2276 | ELSE |
---|
2277 | DO k = kts, ktf |
---|
2278 | DO i = i_start, i_end |
---|
2279 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
2280 | fqy( i,k,jp1 ) = vel*flux3( v(i,k,j-2), v(i,k,j-1), & |
---|
2281 | v(i,k,j ), v(i,k,j+1), & |
---|
2282 | vel ) |
---|
2283 | ENDDO |
---|
2284 | ENDDO |
---|
2285 | END IF |
---|
2286 | |
---|
2287 | IF( j > j_start) THEN |
---|
2288 | DO k = kts, ktf |
---|
2289 | DO i = i_start, i_end |
---|
2290 | mrdy=msfv(i,j-1)*rdy |
---|
2291 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
2292 | ENDDO |
---|
2293 | ENDDO |
---|
2294 | |
---|
2295 | |
---|
2296 | END IF |
---|
2297 | |
---|
2298 | jtmp = jp1 |
---|
2299 | jp1 = jp0 |
---|
2300 | jp0 = jtmp |
---|
2301 | |
---|
2302 | ENDDO |
---|
2303 | |
---|
2304 | ! next, x - flux divergence |
---|
2305 | |
---|
2306 | |
---|
2307 | i_start = its |
---|
2308 | i_end = MIN(ite,ide-1) |
---|
2309 | |
---|
2310 | j_start = jts |
---|
2311 | j_end = jte |
---|
2312 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
---|
2313 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-1,jte) |
---|
2314 | |
---|
2315 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
2316 | ! bounds so we can switch to second order flux close to the boundary |
---|
2317 | |
---|
2318 | i_start_f = i_start |
---|
2319 | i_end_f = i_end+1 |
---|
2320 | |
---|
2321 | IF(degrade_xs) then |
---|
2322 | i_start = ids+1 |
---|
2323 | i_start_f = i_start+1 |
---|
2324 | ENDIF |
---|
2325 | |
---|
2326 | IF(degrade_xe) then |
---|
2327 | i_end = ide-2 |
---|
2328 | i_end_f = ide-2 |
---|
2329 | ENDIF |
---|
2330 | |
---|
2331 | ! compute fluxes |
---|
2332 | |
---|
2333 | DO j = j_start, j_end |
---|
2334 | |
---|
2335 | ! 3rd or 4th order flux |
---|
2336 | |
---|
2337 | DO k=kts,ktf |
---|
2338 | DO i = i_start_f, i_end_f |
---|
2339 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
2340 | fqx( i, k ) = vel*flux3( v(i-2,k,j), v(i-1,k,j), & |
---|
2341 | v(i ,k,j), v(i+1,k,j), & |
---|
2342 | vel ) |
---|
2343 | ENDDO |
---|
2344 | ENDDO |
---|
2345 | |
---|
2346 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
2347 | |
---|
2348 | IF( degrade_xs ) THEN |
---|
2349 | DO k=kts,ktf |
---|
2350 | fqx(i_start,k) = 0.25*(ru(i_start,k,j)+ru(i_start,k,j-1)) & |
---|
2351 | *(v(i_start,k,j)+v(i_start-1,k,j)) |
---|
2352 | ENDDO |
---|
2353 | ENDIF |
---|
2354 | |
---|
2355 | IF( degrade_xe ) THEN |
---|
2356 | DO k=kts,ktf |
---|
2357 | fqx(i_end+1,k) = 0.25*(ru(i_end+1,k,j)+ru(i_end+1,k,j-1)) & |
---|
2358 | *(v(i_end+1,k,j)+v(i_end,k,j)) |
---|
2359 | ENDDO |
---|
2360 | ENDIF |
---|
2361 | |
---|
2362 | ! x flux-divergence into tendency |
---|
2363 | |
---|
2364 | DO k=kts,ktf |
---|
2365 | DO i = i_start, i_end |
---|
2366 | mrdx=msfv(i,j)*rdx |
---|
2367 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
2368 | ENDDO |
---|
2369 | ENDDO |
---|
2370 | |
---|
2371 | ENDDO |
---|
2372 | |
---|
2373 | ELSE IF( horz_order == 2 ) THEN |
---|
2374 | |
---|
2375 | |
---|
2376 | i_start = its |
---|
2377 | i_end = MIN(ite,ide-1) |
---|
2378 | j_start = jts |
---|
2379 | j_end = jte |
---|
2380 | |
---|
2381 | IF ( config_flags%open_ys ) j_start = MAX(jds+1,jts) |
---|
2382 | IF ( config_flags%open_ye ) j_end = MIN(jde-1,jte) |
---|
2383 | IF ( specified ) j_start = MAX(jds+2,jts) |
---|
2384 | IF ( specified ) j_end = MIN(jde-2,jte) |
---|
2385 | |
---|
2386 | DO j = j_start, j_end |
---|
2387 | DO k=kts,ktf |
---|
2388 | DO i = i_start, i_end |
---|
2389 | |
---|
2390 | mrdy=msfv(i,j)*rdy |
---|
2391 | |
---|
2392 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.25 & |
---|
2393 | *((rv(i,k,j+1)+rv(i,k,j ))*(v(i,k,j+1)+v(i,k,j )) & |
---|
2394 | -(rv(i,k,j )+rv(i,k,j-1))*(v(i,k,j )+v(i,k,j-1))) |
---|
2395 | |
---|
2396 | ENDDO |
---|
2397 | ENDDO |
---|
2398 | ENDDO |
---|
2399 | ! specified uses upstream normal wind at boundaries |
---|
2400 | |
---|
2401 | IF ( specified .AND. jts .LE. jds+1 ) THEN |
---|
2402 | j = jds+1 |
---|
2403 | DO k=kts,ktf |
---|
2404 | DO i = i_start, i_end |
---|
2405 | mrdy=msfv(i,j)*rdy |
---|
2406 | vb = v(i,k,j-1) |
---|
2407 | IF (v(i,k,j) .LT. 0.) vb = v(i,k,j) |
---|
2408 | |
---|
2409 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.25 & |
---|
2410 | *((rv(i,k,j+1)+rv(i,k,j ))*(v(i,k,j+1)+v(i,k,j )) & |
---|
2411 | -(rv(i,k,j )+rv(i,k,j-1))*(v(i,k,j )+vb)) |
---|
2412 | |
---|
2413 | ENDDO |
---|
2414 | ENDDO |
---|
2415 | ENDIF |
---|
2416 | |
---|
2417 | IF ( specified .AND. jte .GE. jde-1 ) THEN |
---|
2418 | j = jde-1 |
---|
2419 | DO k=kts,ktf |
---|
2420 | DO i = i_start, i_end |
---|
2421 | |
---|
2422 | mrdy=msfv(i,j)*rdy |
---|
2423 | vb = v(i,k,j+1) |
---|
2424 | IF (v(i,k,j) .GT. 0.) vb = v(i,k,j) |
---|
2425 | |
---|
2426 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.25 & |
---|
2427 | *((rv(i,k,j+1)+rv(i,k,j ))*(vb+v(i,k,j )) & |
---|
2428 | -(rv(i,k,j )+rv(i,k,j-1))*(v(i,k,j )+v(i,k,j-1))) |
---|
2429 | |
---|
2430 | ENDDO |
---|
2431 | ENDDO |
---|
2432 | ENDIF |
---|
2433 | |
---|
2434 | IF ( .NOT. config_flags%periodic_x ) THEN |
---|
2435 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
2436 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-2,ite) |
---|
2437 | ENDIF |
---|
2438 | |
---|
2439 | DO j = j_start, j_end |
---|
2440 | DO k=kts,ktf |
---|
2441 | DO i = i_start, i_end |
---|
2442 | |
---|
2443 | mrdx=msfv(i,j)*rdx |
---|
2444 | |
---|
2445 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 & |
---|
2446 | *((ru(i+1,k,j)+ru(i+1,k,j-1))*(v(i+1,k,j)+v(i ,k,j)) & |
---|
2447 | -(ru(i ,k,j)+ru(i ,k,j-1))*(v(i ,k,j)+v(i-1,k,j))) |
---|
2448 | |
---|
2449 | ENDDO |
---|
2450 | ENDDO |
---|
2451 | ENDDO |
---|
2452 | |
---|
2453 | ELSE IF ( horz_order == 0 ) THEN |
---|
2454 | |
---|
2455 | ! Just in case we want to turn horizontal advection off, we can do it |
---|
2456 | |
---|
2457 | ELSE |
---|
2458 | |
---|
2459 | |
---|
2460 | WRITE ( wrf_err_message , * ) 'module_advect: advect_v_6a: h_order not known ',horz_order |
---|
2461 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
2462 | |
---|
2463 | ENDIF horizontal_order_test |
---|
2464 | |
---|
2465 | ! radiative lateral boundary condition in y for normal velocity (v) |
---|
2466 | |
---|
2467 | IF ( (config_flags%open_ys) .and. jts == jds ) THEN |
---|
2468 | |
---|
2469 | i_start = its |
---|
2470 | i_end = MIN(ite,ide-1) |
---|
2471 | |
---|
2472 | DO i = i_start, i_end |
---|
2473 | DO k = kts, ktf |
---|
2474 | vb = MIN(rv(i,k,jts)-cb*mut(i,jts), 0.) |
---|
2475 | tendency(i,k,jts) = tendency(i,k,jts) & |
---|
2476 | - rdy*vb*(v_old(i,k,jts+1) - v_old(i,k,jts)) |
---|
2477 | ENDDO |
---|
2478 | ENDDO |
---|
2479 | |
---|
2480 | ENDIF |
---|
2481 | |
---|
2482 | IF ( (config_flags%open_ye) .and. jte == jde ) THEN |
---|
2483 | |
---|
2484 | i_start = its |
---|
2485 | i_end = MIN(ite,ide-1) |
---|
2486 | |
---|
2487 | DO i = i_start, i_end |
---|
2488 | DO k = kts, ktf |
---|
2489 | vb = MAX(rv(i,k,jte)+cb*mut(i,jte-1), 0.) |
---|
2490 | tendency(i,k,jte) = tendency(i,k,jte) & |
---|
2491 | - rdy*vb*(v_old(i,k,jte) - v_old(i,k,jte-1)) |
---|
2492 | ENDDO |
---|
2493 | ENDDO |
---|
2494 | |
---|
2495 | ENDIF |
---|
2496 | |
---|
2497 | ! pick up the rest of the horizontal radiation boundary conditions. |
---|
2498 | ! (these are the computations that don't require 'cb'. |
---|
2499 | ! first, set to index ranges |
---|
2500 | |
---|
2501 | j_start = jts |
---|
2502 | j_end = MIN(jte,jde) |
---|
2503 | |
---|
2504 | jmin = jds |
---|
2505 | jmax = jde-1 |
---|
2506 | |
---|
2507 | IF (config_flags%open_ys) THEN |
---|
2508 | j_start = MAX(jds+1, jts) |
---|
2509 | jmin = jds |
---|
2510 | ENDIF |
---|
2511 | IF (config_flags%open_ye) THEN |
---|
2512 | j_end = MIN(jte,jde-1) |
---|
2513 | jmax = jde-1 |
---|
2514 | ENDIF |
---|
2515 | |
---|
2516 | ! compute x (u) conditions for v, w, or scalar |
---|
2517 | |
---|
2518 | IF( (config_flags%open_xs) .and. (its == ids)) THEN |
---|
2519 | |
---|
2520 | DO j = j_start, j_end |
---|
2521 | |
---|
2522 | mrdx=msfv(its,j)*rdx |
---|
2523 | jp = MIN( jmax, j ) |
---|
2524 | jm = MAX( jmin, j-1 ) |
---|
2525 | |
---|
2526 | DO k=kts,ktf |
---|
2527 | |
---|
2528 | uw = 0.5*(ru(its,k,jp)+ru(its,k,jm)) |
---|
2529 | ub = MIN( uw, 0. ) |
---|
2530 | dup = ru(its+1,k,jp)-ru(its,k,jp) |
---|
2531 | dum = ru(its+1,k,jm)-ru(its,k,jm) |
---|
2532 | tendency(its,k,j)=tendency(its,k,j)-mrdx*( & |
---|
2533 | ub*(v_old(its+1,k,j)-v_old(its,k,j)) & |
---|
2534 | +0.5*v(its,k,j)*(dup+dum)) |
---|
2535 | ENDDO |
---|
2536 | ENDDO |
---|
2537 | |
---|
2538 | ENDIF |
---|
2539 | |
---|
2540 | IF( (config_flags%open_xe) .and. (ite == ide) ) THEN |
---|
2541 | DO j = j_start, j_end |
---|
2542 | |
---|
2543 | mrdx=msfv(ite-1,j)*rdx |
---|
2544 | jp = MIN( jmax, j ) |
---|
2545 | jm = MAX( jmin, j-1 ) |
---|
2546 | |
---|
2547 | DO k=kts,ktf |
---|
2548 | |
---|
2549 | uw = 0.5*(ru(ite,k,jp)+ru(ite,k,jm)) |
---|
2550 | ub = MAX( uw, 0. ) |
---|
2551 | dup = ru(ite,k,jp)-ru(ite-1,k,jp) |
---|
2552 | dum = ru(ite,k,jm)-ru(ite-1,k,jm) |
---|
2553 | |
---|
2554 | ! tendency(ite-1,k,j)=tendency(ite-1,k,j)-mrdx*( & |
---|
2555 | ! ub*(v_old(ite-1,k,j)-v_old(ite-2,k,j)) & |
---|
2556 | ! +0.5*v(ite-1,k,j)* & |
---|
2557 | ! ( ru(ite,k,jp)-ru(ite-1,k,jp) & |
---|
2558 | ! +ru(ite,k,jm)-ru(ite-1,k,jm)) ) |
---|
2559 | tendency(ite-1,k,j)=tendency(ite-1,k,j)-mrdx*( & |
---|
2560 | ub*(v_old(ite-1,k,j)-v_old(ite-2,k,j)) & |
---|
2561 | +0.5*v(ite-1,k,j)*(dup+dum)) |
---|
2562 | |
---|
2563 | ENDDO |
---|
2564 | ENDDO |
---|
2565 | |
---|
2566 | ENDIF |
---|
2567 | |
---|
2568 | !-------------------- vertical advection |
---|
2569 | |
---|
2570 | |
---|
2571 | i_start = its |
---|
2572 | i_end = MIN(ite,ide-1) |
---|
2573 | j_start = jts |
---|
2574 | j_end = jte |
---|
2575 | |
---|
2576 | DO i = i_start, i_end |
---|
2577 | vflux(i,kts)=0. |
---|
2578 | vflux(i,kte)=0. |
---|
2579 | ENDDO |
---|
2580 | |
---|
2581 | ! |
---|
2582 | ! |
---|
2583 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
---|
2584 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-1,jte) |
---|
2585 | |
---|
2586 | vert_order_test : IF (vert_order == 6) THEN |
---|
2587 | |
---|
2588 | DO j = j_start, j_end |
---|
2589 | |
---|
2590 | |
---|
2591 | DO k=kts+3,ktf-2 |
---|
2592 | DO i = i_start, i_end |
---|
2593 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
2594 | vflux(i,k) = vel*flux6( & |
---|
2595 | v(i,k-3,j), v(i,k-2,j), v(i,k-1,j), & |
---|
2596 | v(i,k ,j), v(i,k+1,j), v(i,k+2,j), -vel ) |
---|
2597 | ENDDO |
---|
2598 | ENDDO |
---|
2599 | |
---|
2600 | DO i = i_start, i_end |
---|
2601 | k=kts+1 |
---|
2602 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2603 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2604 | k = kts+2 |
---|
2605 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
2606 | vflux(i,k) = vel*flux4( & |
---|
2607 | v(i,k-2,j), v(i,k-1,j), & |
---|
2608 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
2609 | k = ktf-1 |
---|
2610 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
2611 | vflux(i,k) = vel*flux4( & |
---|
2612 | v(i,k-2,j), v(i,k-1,j), & |
---|
2613 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
2614 | k=ktf |
---|
2615 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2616 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2617 | |
---|
2618 | ENDDO |
---|
2619 | |
---|
2620 | |
---|
2621 | DO k=kts,ktf |
---|
2622 | DO i = i_start, i_end |
---|
2623 | ! |
---|
2624 | ! |
---|
2625 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
2626 | ENDDO |
---|
2627 | ENDDO |
---|
2628 | |
---|
2629 | ENDDO |
---|
2630 | |
---|
2631 | ELSE IF (vert_order == 5) THEN |
---|
2632 | |
---|
2633 | DO j = j_start, j_end |
---|
2634 | |
---|
2635 | |
---|
2636 | DO k=kts+3,ktf-2 |
---|
2637 | DO i = i_start, i_end |
---|
2638 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
2639 | vflux(i,k) = vel*flux5( & |
---|
2640 | v(i,k-3,j), v(i,k-2,j), v(i,k-1,j), & |
---|
2641 | v(i,k ,j), v(i,k+1,j), v(i,k+2,j), -vel ) |
---|
2642 | ENDDO |
---|
2643 | ENDDO |
---|
2644 | |
---|
2645 | DO i = i_start, i_end |
---|
2646 | k=kts+1 |
---|
2647 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2648 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2649 | k = kts+2 |
---|
2650 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
2651 | vflux(i,k) = vel*flux3( & |
---|
2652 | v(i,k-2,j), v(i,k-1,j), & |
---|
2653 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
2654 | k = ktf-1 |
---|
2655 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
2656 | vflux(i,k) = vel*flux3( & |
---|
2657 | v(i,k-2,j), v(i,k-1,j), & |
---|
2658 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
2659 | k=ktf |
---|
2660 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2661 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2662 | |
---|
2663 | ENDDO |
---|
2664 | |
---|
2665 | |
---|
2666 | DO k=kts,ktf |
---|
2667 | DO i = i_start, i_end |
---|
2668 | ! |
---|
2669 | ! |
---|
2670 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
2671 | ENDDO |
---|
2672 | ENDDO |
---|
2673 | |
---|
2674 | ENDDO |
---|
2675 | |
---|
2676 | ELSE IF (vert_order == 4) THEN |
---|
2677 | |
---|
2678 | DO j = j_start, j_end |
---|
2679 | |
---|
2680 | |
---|
2681 | DO k=kts+2,ktf-1 |
---|
2682 | DO i = i_start, i_end |
---|
2683 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
2684 | vflux(i,k) = vel*flux4( & |
---|
2685 | v(i,k-2,j), v(i,k-1,j), & |
---|
2686 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
2687 | ENDDO |
---|
2688 | ENDDO |
---|
2689 | |
---|
2690 | DO i = i_start, i_end |
---|
2691 | k=kts+1 |
---|
2692 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2693 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2694 | k=ktf |
---|
2695 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2696 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2697 | |
---|
2698 | ENDDO |
---|
2699 | |
---|
2700 | |
---|
2701 | DO k=kts,ktf |
---|
2702 | DO i = i_start, i_end |
---|
2703 | ! |
---|
2704 | ! |
---|
2705 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
2706 | ENDDO |
---|
2707 | ENDDO |
---|
2708 | |
---|
2709 | ENDDO |
---|
2710 | |
---|
2711 | ELSE IF (vert_order == 3) THEN |
---|
2712 | |
---|
2713 | DO j = j_start, j_end |
---|
2714 | |
---|
2715 | |
---|
2716 | DO k=kts+2,ktf-1 |
---|
2717 | DO i = i_start, i_end |
---|
2718 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
2719 | vflux(i,k) = vel*flux3( & |
---|
2720 | v(i,k-2,j), v(i,k-1,j), & |
---|
2721 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
2722 | ENDDO |
---|
2723 | ENDDO |
---|
2724 | |
---|
2725 | DO i = i_start, i_end |
---|
2726 | k=kts+1 |
---|
2727 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2728 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2729 | k=ktf |
---|
2730 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2731 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2732 | |
---|
2733 | ENDDO |
---|
2734 | |
---|
2735 | |
---|
2736 | DO k=kts,ktf |
---|
2737 | DO i = i_start, i_end |
---|
2738 | ! |
---|
2739 | ! |
---|
2740 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
2741 | ENDDO |
---|
2742 | ENDDO |
---|
2743 | |
---|
2744 | ENDDO |
---|
2745 | |
---|
2746 | |
---|
2747 | ELSE IF (vert_order == 2) THEN |
---|
2748 | |
---|
2749 | DO j = j_start, j_end |
---|
2750 | DO k=kts+1,ktf |
---|
2751 | DO i = i_start, i_end |
---|
2752 | |
---|
2753 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2754 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2755 | ENDDO |
---|
2756 | ENDDO |
---|
2757 | |
---|
2758 | DO k=kts,ktf |
---|
2759 | DO i = i_start, i_end |
---|
2760 | ! |
---|
2761 | ! |
---|
2762 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
2763 | ENDDO |
---|
2764 | ENDDO |
---|
2765 | ENDDO |
---|
2766 | |
---|
2767 | ELSE |
---|
2768 | |
---|
2769 | WRITE ( wrf_err_message , * ) 'module_advect: advect_v_6a: v_order not known ',vert_order |
---|
2770 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
2771 | |
---|
2772 | ENDIF vert_order_test |
---|
2773 | |
---|
2774 | END SUBROUTINE advect_v |
---|
2775 | |
---|
2776 | !------------------------------------------------------------------- |
---|
2777 | |
---|
2778 | SUBROUTINE advect_scalar ( field, field_old, tendency, & |
---|
2779 | ru, rv, rom, & |
---|
2780 | mut, time_step, config_flags, & |
---|
2781 | msfu, msfv, msft, & |
---|
2782 | fzm, fzp, & |
---|
2783 | rdx, rdy, rdzw, & |
---|
2784 | ids, ide, jds, jde, kds, kde, & |
---|
2785 | ims, ime, jms, jme, kms, kme, & |
---|
2786 | its, ite, jts, jte, kts, kte ) |
---|
2787 | |
---|
2788 | IMPLICIT NONE |
---|
2789 | |
---|
2790 | ! Input data |
---|
2791 | |
---|
2792 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
2793 | |
---|
2794 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
2795 | ims, ime, jms, jme, kms, kme, & |
---|
2796 | its, ite, jts, jte, kts, kte |
---|
2797 | |
---|
2798 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: field, & |
---|
2799 | field_old, & |
---|
2800 | ru, & |
---|
2801 | rv, & |
---|
2802 | rom |
---|
2803 | |
---|
2804 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
---|
2805 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
2806 | |
---|
2807 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
---|
2808 | msfv, & |
---|
2809 | msft |
---|
2810 | |
---|
2811 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
2812 | fzp, & |
---|
2813 | rdzw |
---|
2814 | |
---|
2815 | REAL , INTENT(IN ) :: rdx, & |
---|
2816 | rdy |
---|
2817 | INTEGER , INTENT(IN ) :: time_step |
---|
2818 | |
---|
2819 | |
---|
2820 | ! Local data |
---|
2821 | |
---|
2822 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
2823 | INTEGER :: i_start, i_end, j_start, j_end |
---|
2824 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
---|
2825 | INTEGER :: jmin, jmax, jp, jm, imin, imax |
---|
2826 | |
---|
2827 | REAL :: mrdx, mrdy, ub, vb, uw, vw |
---|
2828 | REAL , DIMENSION(its:ite, kts:kte) :: vflux |
---|
2829 | |
---|
2830 | |
---|
2831 | REAL, DIMENSION( its:ite+1, kts:kte ) :: fqx |
---|
2832 | REAL, DIMENSION( its:ite, kts:kte, 2 ) :: fqy |
---|
2833 | |
---|
2834 | INTEGER :: horz_order, vert_order |
---|
2835 | |
---|
2836 | LOGICAL :: degrade_xs, degrade_ys |
---|
2837 | LOGICAL :: degrade_xe, degrade_ye |
---|
2838 | |
---|
2839 | INTEGER :: jp1, jp0, jtmp |
---|
2840 | |
---|
2841 | |
---|
2842 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
---|
2843 | |
---|
2844 | REAL :: flux3, flux4, flux5, flux6 |
---|
2845 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel |
---|
2846 | |
---|
2847 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
2848 | ( 7.*(q_i + q_im1) - (q_ip1 + q_im2) )/12.0 |
---|
2849 | |
---|
2850 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
2851 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
---|
2852 | sign(1,time_step)*sign(1.,ua)*((q_ip1 - q_im2)-3.*(q_i-q_im1))/12.0 |
---|
2853 | |
---|
2854 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
2855 | ( 37.*(q_i+q_im1) - 8.*(q_ip1+q_im2) & |
---|
2856 | +(q_ip2+q_im3) )/60.0 |
---|
2857 | |
---|
2858 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
2859 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
---|
2860 | -sign(1,time_step)*sign(1.,ua)*( & |
---|
2861 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) )/60.0 |
---|
2862 | |
---|
2863 | |
---|
2864 | LOGICAL :: specified |
---|
2865 | |
---|
2866 | specified = .false. |
---|
2867 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
---|
2868 | |
---|
2869 | ! set order for the advection schemes |
---|
2870 | |
---|
2871 | ktf=MIN(kte,kde-1) |
---|
2872 | horz_order = config_flags%h_sca_adv_order |
---|
2873 | vert_order = config_flags%v_sca_adv_order |
---|
2874 | |
---|
2875 | ! begin with horizontal flux divergence |
---|
2876 | ! here is the choice of flux operators |
---|
2877 | |
---|
2878 | |
---|
2879 | horizontal_order_test : IF( horz_order == 6 ) THEN |
---|
2880 | |
---|
2881 | ! determine boundary mods for flux operators |
---|
2882 | ! We degrade the flux operators from 3rd/4th order |
---|
2883 | ! to second order one gridpoint in from the boundaries for |
---|
2884 | ! all boundary conditions except periodic and symmetry - these |
---|
2885 | ! conditions have boundary zone data fill for correct application |
---|
2886 | ! of the higher order flux stencils |
---|
2887 | |
---|
2888 | degrade_xs = .true. |
---|
2889 | degrade_xe = .true. |
---|
2890 | degrade_ys = .true. |
---|
2891 | degrade_ye = .true. |
---|
2892 | |
---|
2893 | IF( config_flags%periodic_x .or. & |
---|
2894 | config_flags%symmetric_xs .or. & |
---|
2895 | (its > ids+3) ) degrade_xs = .false. |
---|
2896 | IF( config_flags%periodic_x .or. & |
---|
2897 | config_flags%symmetric_xe .or. & |
---|
2898 | (ite < ide-3) ) degrade_xe = .false. |
---|
2899 | IF( config_flags%periodic_y .or. & |
---|
2900 | config_flags%symmetric_ys .or. & |
---|
2901 | (jts > jds+3) ) degrade_ys = .false. |
---|
2902 | IF( config_flags%periodic_y .or. & |
---|
2903 | config_flags%symmetric_ye .or. & |
---|
2904 | (jte < jde-4) ) degrade_ye = .false. |
---|
2905 | |
---|
2906 | !--------------- y - advection first |
---|
2907 | |
---|
2908 | ktf=MIN(kte,kde-1) |
---|
2909 | i_start = its |
---|
2910 | i_end = MIN(ite,ide-1) |
---|
2911 | j_start = jts |
---|
2912 | j_end = MIN(jte,jde-1) |
---|
2913 | |
---|
2914 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
2915 | ! bounds so we can switch to second order flux close to the boundary |
---|
2916 | |
---|
2917 | j_start_f = j_start |
---|
2918 | j_end_f = j_end+1 |
---|
2919 | |
---|
2920 | IF(degrade_ys) then |
---|
2921 | j_start = MAX(jts,jds+1) |
---|
2922 | j_start_f = jds+3 |
---|
2923 | ENDIF |
---|
2924 | |
---|
2925 | IF(degrade_ye) then |
---|
2926 | j_end = MIN(jte,jde-2) |
---|
2927 | j_end_f = jde-3 |
---|
2928 | ENDIF |
---|
2929 | |
---|
2930 | |
---|
2931 | ! compute fluxes, 5th or 6th order |
---|
2932 | |
---|
2933 | jp1 = 2 |
---|
2934 | jp0 = 1 |
---|
2935 | |
---|
2936 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
---|
2937 | |
---|
2938 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
2939 | |
---|
2940 | DO k=kts,ktf |
---|
2941 | DO i = i_start, i_end |
---|
2942 | vel = rv(i,k,j) |
---|
2943 | fqy( i, k, jp1 ) = vel*flux6( & |
---|
2944 | field(i,k,j-3), field(i,k,j-2), field(i,k,j-1), & |
---|
2945 | field(i,k,j ), field(i,k,j+1), field(i,k,j+2), vel ) |
---|
2946 | ENDDO |
---|
2947 | ENDDO |
---|
2948 | |
---|
2949 | |
---|
2950 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
2951 | |
---|
2952 | DO k=kts,ktf |
---|
2953 | DO i = i_start, i_end |
---|
2954 | fqy(i,k, jp1) = 0.5*rv(i,k,j)* & |
---|
2955 | (field(i,k,j)+field(i,k,j-1)) |
---|
2956 | |
---|
2957 | ENDDO |
---|
2958 | ENDDO |
---|
2959 | |
---|
2960 | ELSE IF ( j == jds+2 ) THEN ! 4th order flux 2 in from south boundary |
---|
2961 | |
---|
2962 | DO k=kts,ktf |
---|
2963 | DO i = i_start, i_end |
---|
2964 | vel = rv(i,k,j) |
---|
2965 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
2966 | field(i,k,j-2),field(i,k,j-1),field(i,k,j),field(i,k,j+1),vel ) |
---|
2967 | ENDDO |
---|
2968 | ENDDO |
---|
2969 | |
---|
2970 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
2971 | |
---|
2972 | DO k=kts,ktf |
---|
2973 | DO i = i_start, i_end |
---|
2974 | fqy(i, k, jp1) = 0.5*rv(i,k,j)* & |
---|
2975 | (field(i,k,j)+field(i,k,j-1)) |
---|
2976 | ENDDO |
---|
2977 | ENDDO |
---|
2978 | |
---|
2979 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
2980 | |
---|
2981 | DO k=kts,ktf |
---|
2982 | DO i = i_start, i_end |
---|
2983 | vel = rv(i,k,j) |
---|
2984 | fqy( i, k, jp1) = vel*flux4( & |
---|
2985 | field(i,k,j-2),field(i,k,j-1), & |
---|
2986 | field(i,k,j),field(i,k,j+1),vel ) |
---|
2987 | ENDDO |
---|
2988 | ENDDO |
---|
2989 | |
---|
2990 | ENDIF |
---|
2991 | |
---|
2992 | ! y flux-divergence into tendency |
---|
2993 | |
---|
2994 | IF(j > j_start) THEN |
---|
2995 | |
---|
2996 | DO k=kts,ktf |
---|
2997 | DO i = i_start, i_end |
---|
2998 | mrdy=msft(i,j-1)*rdy |
---|
2999 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
3000 | ENDDO |
---|
3001 | ENDDO |
---|
3002 | |
---|
3003 | ENDIF |
---|
3004 | |
---|
3005 | |
---|
3006 | jtmp = jp1 |
---|
3007 | jp1 = jp0 |
---|
3008 | jp0 = jtmp |
---|
3009 | |
---|
3010 | ENDDO j_loop_y_flux_6 |
---|
3011 | |
---|
3012 | ! next, x - flux divergence |
---|
3013 | |
---|
3014 | i_start = its |
---|
3015 | i_end = MIN(ite,ide-1) |
---|
3016 | |
---|
3017 | j_start = jts |
---|
3018 | j_end = MIN(jte,jde-1) |
---|
3019 | |
---|
3020 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
3021 | ! bounds so we can switch to second order flux close to the boundary |
---|
3022 | |
---|
3023 | i_start_f = i_start |
---|
3024 | i_end_f = i_end+1 |
---|
3025 | |
---|
3026 | IF(degrade_xs) then |
---|
3027 | i_start = MAX(ids+1,its) |
---|
3028 | ! i_start_f = i_start+2 |
---|
3029 | i_start_f = MIN(i_start+2,ids+3) |
---|
3030 | ENDIF |
---|
3031 | |
---|
3032 | IF(degrade_xe) then |
---|
3033 | i_end = MIN(ide-2,ite) |
---|
3034 | i_end_f = ide-3 |
---|
3035 | ENDIF |
---|
3036 | |
---|
3037 | ! compute fluxes |
---|
3038 | |
---|
3039 | DO j = j_start, j_end |
---|
3040 | |
---|
3041 | ! 5th or 6th order flux |
---|
3042 | |
---|
3043 | DO k=kts,ktf |
---|
3044 | DO i = i_start_f, i_end_f |
---|
3045 | vel = ru(i,k,j) |
---|
3046 | fqx( i,k ) = vel*flux6( field(i-3,k,j), field(i-2,k,j), & |
---|
3047 | field(i-1,k,j), field(i ,k,j), & |
---|
3048 | field(i+1,k,j), field(i+2,k,j), & |
---|
3049 | vel ) |
---|
3050 | ENDDO |
---|
3051 | ENDDO |
---|
3052 | |
---|
3053 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
3054 | |
---|
3055 | IF( degrade_xs ) THEN |
---|
3056 | |
---|
3057 | DO i=i_start,i_start_f-1 |
---|
3058 | |
---|
3059 | IF(i == ids+1) THEN ! second order |
---|
3060 | DO k=kts,ktf |
---|
3061 | fqx(i,k) = 0.5*(ru(i,k,j)) & |
---|
3062 | *(field(i,k,j)+field(i-1,k,j)) |
---|
3063 | ENDDO |
---|
3064 | ENDIF |
---|
3065 | |
---|
3066 | IF(i == ids+2) THEN ! third order |
---|
3067 | DO k=kts,ktf |
---|
3068 | vel = ru(i,k,j) |
---|
3069 | fqx( i,k ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
3070 | field(i ,k,j), field(i+1,k,j), & |
---|
3071 | vel ) |
---|
3072 | ENDDO |
---|
3073 | END IF |
---|
3074 | |
---|
3075 | ENDDO |
---|
3076 | |
---|
3077 | ENDIF |
---|
3078 | |
---|
3079 | IF( degrade_xe ) THEN |
---|
3080 | |
---|
3081 | DO i = i_end_f+1, i_end+1 |
---|
3082 | |
---|
3083 | IF( i == ide-1 ) THEN ! second order flux next to the boundary |
---|
3084 | DO k=kts,ktf |
---|
3085 | fqx(i,k) = 0.5*(ru(i,k,j)) & |
---|
3086 | *(field(i,k,j)+field(i-1,k,j)) |
---|
3087 | ENDDO |
---|
3088 | ENDIF |
---|
3089 | |
---|
3090 | IF( i == ide-2 ) THEN ! third order flux one in from the boundary |
---|
3091 | DO k=kts,ktf |
---|
3092 | vel = ru(i,k,j) |
---|
3093 | fqx( i,k ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
3094 | field(i ,k,j), field(i+1,k,j), & |
---|
3095 | vel ) |
---|
3096 | ENDDO |
---|
3097 | ENDIF |
---|
3098 | |
---|
3099 | ENDDO |
---|
3100 | |
---|
3101 | ENDIF |
---|
3102 | |
---|
3103 | ! x flux-divergence into tendency |
---|
3104 | |
---|
3105 | DO k=kts,ktf |
---|
3106 | DO i = i_start, i_end |
---|
3107 | mrdx=msft(i,j)*rdx |
---|
3108 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
3109 | ENDDO |
---|
3110 | ENDDO |
---|
3111 | |
---|
3112 | ENDDO |
---|
3113 | |
---|
3114 | ELSE IF( horz_order == 5 ) THEN |
---|
3115 | |
---|
3116 | ! determine boundary mods for flux operators |
---|
3117 | ! We degrade the flux operators from 3rd/4th order |
---|
3118 | ! to second order one gridpoint in from the boundaries for |
---|
3119 | ! all boundary conditions except periodic and symmetry - these |
---|
3120 | ! conditions have boundary zone data fill for correct application |
---|
3121 | ! of the higher order flux stencils |
---|
3122 | |
---|
3123 | degrade_xs = .true. |
---|
3124 | degrade_xe = .true. |
---|
3125 | degrade_ys = .true. |
---|
3126 | degrade_ye = .true. |
---|
3127 | |
---|
3128 | IF( config_flags%periodic_x .or. & |
---|
3129 | config_flags%symmetric_xs .or. & |
---|
3130 | (its > ids+3) ) degrade_xs = .false. |
---|
3131 | IF( config_flags%periodic_x .or. & |
---|
3132 | config_flags%symmetric_xe .or. & |
---|
3133 | (ite < ide-3) ) degrade_xe = .false. |
---|
3134 | IF( config_flags%periodic_y .or. & |
---|
3135 | config_flags%symmetric_ys .or. & |
---|
3136 | (jts > jds+3) ) degrade_ys = .false. |
---|
3137 | IF( config_flags%periodic_y .or. & |
---|
3138 | config_flags%symmetric_ye .or. & |
---|
3139 | (jte < jde-4) ) degrade_ye = .false. |
---|
3140 | |
---|
3141 | !--------------- y - advection first |
---|
3142 | |
---|
3143 | ktf=MIN(kte,kde-1) |
---|
3144 | i_start = its |
---|
3145 | i_end = MIN(ite,ide-1) |
---|
3146 | j_start = jts |
---|
3147 | j_end = MIN(jte,jde-1) |
---|
3148 | |
---|
3149 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
3150 | ! bounds so we can switch to second order flux close to the boundary |
---|
3151 | |
---|
3152 | j_start_f = j_start |
---|
3153 | j_end_f = j_end+1 |
---|
3154 | |
---|
3155 | IF(degrade_ys) then |
---|
3156 | j_start = MAX(jts,jds+1) |
---|
3157 | j_start_f = jds+3 |
---|
3158 | ENDIF |
---|
3159 | |
---|
3160 | IF(degrade_ye) then |
---|
3161 | j_end = MIN(jte,jde-2) |
---|
3162 | j_end_f = jde-3 |
---|
3163 | ENDIF |
---|
3164 | |
---|
3165 | |
---|
3166 | ! compute fluxes, 5th or 6th order |
---|
3167 | |
---|
3168 | jp1 = 2 |
---|
3169 | jp0 = 1 |
---|
3170 | |
---|
3171 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
---|
3172 | |
---|
3173 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
3174 | |
---|
3175 | DO k=kts,ktf |
---|
3176 | DO i = i_start, i_end |
---|
3177 | vel = rv(i,k,j) |
---|
3178 | fqy( i, k, jp1 ) = vel*flux5( & |
---|
3179 | field(i,k,j-3), field(i,k,j-2), field(i,k,j-1), & |
---|
3180 | field(i,k,j ), field(i,k,j+1), field(i,k,j+2), vel ) |
---|
3181 | ENDDO |
---|
3182 | ENDDO |
---|
3183 | |
---|
3184 | |
---|
3185 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
3186 | |
---|
3187 | DO k=kts,ktf |
---|
3188 | DO i = i_start, i_end |
---|
3189 | fqy(i,k, jp1) = 0.5*rv(i,k,j)* & |
---|
3190 | (field(i,k,j)+field(i,k,j-1)) |
---|
3191 | |
---|
3192 | ENDDO |
---|
3193 | ENDDO |
---|
3194 | |
---|
3195 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
3196 | |
---|
3197 | DO k=kts,ktf |
---|
3198 | DO i = i_start, i_end |
---|
3199 | vel = rv(i,k,j) |
---|
3200 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
3201 | field(i,k,j-2),field(i,k,j-1),field(i,k,j),field(i,k,j+1),vel ) |
---|
3202 | ENDDO |
---|
3203 | ENDDO |
---|
3204 | |
---|
3205 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
3206 | |
---|
3207 | DO k=kts,ktf |
---|
3208 | DO i = i_start, i_end |
---|
3209 | fqy(i, k, jp1) = 0.5*rv(i,k,j)* & |
---|
3210 | (field(i,k,j)+field(i,k,j-1)) |
---|
3211 | ENDDO |
---|
3212 | ENDDO |
---|
3213 | |
---|
3214 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
3215 | |
---|
3216 | DO k=kts,ktf |
---|
3217 | DO i = i_start, i_end |
---|
3218 | vel = rv(i,k,j) |
---|
3219 | fqy( i, k, jp1) = vel*flux3( & |
---|
3220 | field(i,k,j-2),field(i,k,j-1), & |
---|
3221 | field(i,k,j),field(i,k,j+1),vel ) |
---|
3222 | ENDDO |
---|
3223 | ENDDO |
---|
3224 | |
---|
3225 | ENDIF |
---|
3226 | |
---|
3227 | ! y flux-divergence into tendency |
---|
3228 | |
---|
3229 | IF(j > j_start) THEN |
---|
3230 | |
---|
3231 | DO k=kts,ktf |
---|
3232 | DO i = i_start, i_end |
---|
3233 | mrdy=msft(i,j-1)*rdy |
---|
3234 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
3235 | ENDDO |
---|
3236 | ENDDO |
---|
3237 | |
---|
3238 | ENDIF |
---|
3239 | |
---|
3240 | |
---|
3241 | jtmp = jp1 |
---|
3242 | jp1 = jp0 |
---|
3243 | jp0 = jtmp |
---|
3244 | |
---|
3245 | ENDDO j_loop_y_flux_5 |
---|
3246 | |
---|
3247 | ! next, x - flux divergence |
---|
3248 | |
---|
3249 | i_start = its |
---|
3250 | i_end = MIN(ite,ide-1) |
---|
3251 | |
---|
3252 | j_start = jts |
---|
3253 | j_end = MIN(jte,jde-1) |
---|
3254 | |
---|
3255 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
3256 | ! bounds so we can switch to second order flux close to the boundary |
---|
3257 | |
---|
3258 | i_start_f = i_start |
---|
3259 | i_end_f = i_end+1 |
---|
3260 | |
---|
3261 | IF(degrade_xs) then |
---|
3262 | i_start = MAX(ids+1,its) |
---|
3263 | ! i_start_f = i_start+2 |
---|
3264 | i_start_f = MIN(i_start+2,ids+3) |
---|
3265 | ENDIF |
---|
3266 | |
---|
3267 | IF(degrade_xe) then |
---|
3268 | i_end = MIN(ide-2,ite) |
---|
3269 | i_end_f = ide-3 |
---|
3270 | ENDIF |
---|
3271 | |
---|
3272 | ! compute fluxes |
---|
3273 | |
---|
3274 | DO j = j_start, j_end |
---|
3275 | |
---|
3276 | ! 5th or 6th order flux |
---|
3277 | |
---|
3278 | DO k=kts,ktf |
---|
3279 | DO i = i_start_f, i_end_f |
---|
3280 | vel = ru(i,k,j) |
---|
3281 | fqx( i,k ) = vel*flux5( field(i-3,k,j), field(i-2,k,j), & |
---|
3282 | field(i-1,k,j), field(i ,k,j), & |
---|
3283 | field(i+1,k,j), field(i+2,k,j), & |
---|
3284 | vel ) |
---|
3285 | ENDDO |
---|
3286 | ENDDO |
---|
3287 | |
---|
3288 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
3289 | |
---|
3290 | IF( degrade_xs ) THEN |
---|
3291 | |
---|
3292 | DO i=i_start,i_start_f-1 |
---|
3293 | |
---|
3294 | IF(i == ids+1) THEN ! second order |
---|
3295 | DO k=kts,ktf |
---|
3296 | fqx(i,k) = 0.5*(ru(i,k,j)) & |
---|
3297 | *(field(i,k,j)+field(i-1,k,j)) |
---|
3298 | ENDDO |
---|
3299 | ENDIF |
---|
3300 | |
---|
3301 | IF(i == ids+2) THEN ! third order |
---|
3302 | DO k=kts,ktf |
---|
3303 | vel = ru(i,k,j) |
---|
3304 | fqx( i,k ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
3305 | field(i ,k,j), field(i+1,k,j), & |
---|
3306 | vel ) |
---|
3307 | ENDDO |
---|
3308 | END IF |
---|
3309 | |
---|
3310 | ENDDO |
---|
3311 | |
---|
3312 | ENDIF |
---|
3313 | |
---|
3314 | IF( degrade_xe ) THEN |
---|
3315 | |
---|
3316 | DO i = i_end_f+1, i_end+1 |
---|
3317 | |
---|
3318 | IF( i == ide-1 ) THEN ! second order flux next to the boundary |
---|
3319 | DO k=kts,ktf |
---|
3320 | fqx(i,k) = 0.5*(ru(i,k,j)) & |
---|
3321 | *(field(i,k,j)+field(i-1,k,j)) |
---|
3322 | ENDDO |
---|
3323 | ENDIF |
---|
3324 | |
---|
3325 | IF( i == ide-2 ) THEN ! third order flux one in from the boundary |
---|
3326 | DO k=kts,ktf |
---|
3327 | vel = ru(i,k,j) |
---|
3328 | fqx( i,k ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
3329 | field(i ,k,j), field(i+1,k,j), & |
---|
3330 | vel ) |
---|
3331 | ENDDO |
---|
3332 | ENDIF |
---|
3333 | |
---|
3334 | ENDDO |
---|
3335 | |
---|
3336 | ENDIF |
---|
3337 | |
---|
3338 | ! x flux-divergence into tendency |
---|
3339 | |
---|
3340 | DO k=kts,ktf |
---|
3341 | DO i = i_start, i_end |
---|
3342 | mrdx=msft(i,j)*rdx |
---|
3343 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
3344 | ENDDO |
---|
3345 | ENDDO |
---|
3346 | |
---|
3347 | ENDDO |
---|
3348 | |
---|
3349 | |
---|
3350 | ELSE IF( horz_order == 4 ) THEN |
---|
3351 | |
---|
3352 | degrade_xs = .true. |
---|
3353 | degrade_xe = .true. |
---|
3354 | degrade_ys = .true. |
---|
3355 | degrade_ye = .true. |
---|
3356 | |
---|
3357 | IF( config_flags%periodic_x .or. & |
---|
3358 | config_flags%symmetric_xs .or. & |
---|
3359 | (its > ids+2) ) degrade_xs = .false. |
---|
3360 | IF( config_flags%periodic_x .or. & |
---|
3361 | config_flags%symmetric_xe .or. & |
---|
3362 | (ite < ide-2) ) degrade_xe = .false. |
---|
3363 | IF( config_flags%periodic_y .or. & |
---|
3364 | config_flags%symmetric_ys .or. & |
---|
3365 | (jts > jds+2) ) degrade_ys = .false. |
---|
3366 | IF( config_flags%periodic_y .or. & |
---|
3367 | config_flags%symmetric_ye .or. & |
---|
3368 | (jte < jde-3) ) degrade_ye = .false. |
---|
3369 | |
---|
3370 | ! begin flux computations |
---|
3371 | ! start with x flux divergence |
---|
3372 | |
---|
3373 | ktf=MIN(kte,kde-1) |
---|
3374 | |
---|
3375 | i_start = its |
---|
3376 | i_end = MIN(ite,ide-1) |
---|
3377 | j_start = jts |
---|
3378 | j_end = MIN(jte,jde-1) |
---|
3379 | |
---|
3380 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
3381 | ! bounds so we can switch to second order flux close to the boundary |
---|
3382 | |
---|
3383 | i_start_f = i_start |
---|
3384 | i_end_f = i_end+1 |
---|
3385 | |
---|
3386 | IF(degrade_xs) then |
---|
3387 | i_start = ids+1 |
---|
3388 | i_start_f = i_start+1 |
---|
3389 | ENDIF |
---|
3390 | |
---|
3391 | IF(degrade_xe) then |
---|
3392 | i_end = ide-2 |
---|
3393 | i_end_f = ide-2 |
---|
3394 | ENDIF |
---|
3395 | |
---|
3396 | ! compute fluxes |
---|
3397 | |
---|
3398 | DO j = j_start, j_end |
---|
3399 | |
---|
3400 | ! 3rd or 4th order flux |
---|
3401 | |
---|
3402 | DO k=kts,ktf |
---|
3403 | DO i = i_start_f, i_end_f |
---|
3404 | |
---|
3405 | fqx( i, k) = ru(i,k,j)*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
3406 | field(i ,k,j), field(i+1,k,j), & |
---|
3407 | ru(i,k,j) ) |
---|
3408 | ENDDO |
---|
3409 | ENDDO |
---|
3410 | |
---|
3411 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
3412 | |
---|
3413 | IF( degrade_xs ) THEN |
---|
3414 | DO k=kts,ktf |
---|
3415 | fqx(i_start, k) = 0.5*ru(i_start,k,j) & |
---|
3416 | *(field(i_start,k,j)+field(i_start-1,k,j)) |
---|
3417 | ENDDO |
---|
3418 | ENDIF |
---|
3419 | |
---|
3420 | IF( degrade_xe ) THEN |
---|
3421 | DO k=kts,ktf |
---|
3422 | fqx(i_end+1,k ) = 0.5*ru(i_end+1,k,j) & |
---|
3423 | *(field(i_end+1,k,j)+field(i_end,k,j)) |
---|
3424 | ENDDO |
---|
3425 | ENDIF |
---|
3426 | |
---|
3427 | ! x flux-divergence into tendency |
---|
3428 | |
---|
3429 | DO k=kts,ktf |
---|
3430 | DO i = i_start, i_end |
---|
3431 | mrdx=msft(i,j)*rdx |
---|
3432 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
3433 | ENDDO |
---|
3434 | ENDDO |
---|
3435 | |
---|
3436 | ENDDO |
---|
3437 | |
---|
3438 | |
---|
3439 | ! next -> y flux divergence calculation |
---|
3440 | |
---|
3441 | i_start = its |
---|
3442 | i_end = MIN(ite,ide-1) |
---|
3443 | j_start = jts |
---|
3444 | j_end = MIN(jte,jde-1) |
---|
3445 | |
---|
3446 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
3447 | ! bounds so we can switch to second order flux close to the boundary |
---|
3448 | |
---|
3449 | j_start_f = j_start |
---|
3450 | j_end_f = j_end+1 |
---|
3451 | |
---|
3452 | IF(degrade_ys) then |
---|
3453 | j_start = jds+1 |
---|
3454 | j_start_f = j_start+1 |
---|
3455 | ENDIF |
---|
3456 | |
---|
3457 | IF(degrade_ye) then |
---|
3458 | j_end = jde-2 |
---|
3459 | j_end_f = jde-2 |
---|
3460 | ENDIF |
---|
3461 | |
---|
3462 | |
---|
3463 | jp1 = 2 |
---|
3464 | jp0 = 1 |
---|
3465 | |
---|
3466 | DO j = j_start, j_end+1 |
---|
3467 | |
---|
3468 | IF ((j < j_start_f) .and. degrade_ys) THEN |
---|
3469 | DO k = kts, ktf |
---|
3470 | DO i = i_start, i_end |
---|
3471 | fqy(i,k,jp1) = 0.5*rv(i,k,j_start) & |
---|
3472 | *(field(i,k,j_start)+field(i,k,j_start-1)) |
---|
3473 | ENDDO |
---|
3474 | ENDDO |
---|
3475 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
3476 | DO k = kts, ktf |
---|
3477 | DO i = i_start, i_end |
---|
3478 | ! Assumes j>j_end_f is ONLY j_end+1 ... |
---|
3479 | ! fqy(i,k,jp1) = 0.5*rv(i,k,j_end+1) & |
---|
3480 | ! *(field(i,k,j_end+1)+field(i,k,j_end)) |
---|
3481 | fqy(i,k,jp1) = 0.5*rv(i,k,j) & |
---|
3482 | *(field(i,k,j)+field(i,k,j-1)) |
---|
3483 | ENDDO |
---|
3484 | ENDDO |
---|
3485 | ELSE |
---|
3486 | ! 3rd or 4th order flux |
---|
3487 | DO k = kts, ktf |
---|
3488 | DO i = i_start, i_end |
---|
3489 | fqy( i, k, jp1 ) = rv(i,k,j)*flux4( field(i,k,j-2), field(i,k,j-1), & |
---|
3490 | field(i,k,j ), field(i,k,j+1), & |
---|
3491 | rv(i,k,j) ) |
---|
3492 | ENDDO |
---|
3493 | ENDDO |
---|
3494 | END IF |
---|
3495 | |
---|
3496 | ! y flux-divergence into tendency |
---|
3497 | IF ( j > j_start ) THEN |
---|
3498 | |
---|
3499 | DO k=kts,ktf |
---|
3500 | DO i = i_start, i_end |
---|
3501 | mrdy=msft(i,j-1)*rdy |
---|
3502 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
3503 | ENDDO |
---|
3504 | ENDDO |
---|
3505 | |
---|
3506 | |
---|
3507 | END IF |
---|
3508 | |
---|
3509 | jtmp = jp1 |
---|
3510 | jp1 = jp0 |
---|
3511 | jp0 = jtmp |
---|
3512 | |
---|
3513 | ENDDO |
---|
3514 | |
---|
3515 | |
---|
3516 | ELSE IF( horz_order == 3 ) THEN |
---|
3517 | |
---|
3518 | degrade_xs = .true. |
---|
3519 | degrade_xe = .true. |
---|
3520 | degrade_ys = .true. |
---|
3521 | degrade_ye = .true. |
---|
3522 | |
---|
3523 | IF( config_flags%periodic_x .or. & |
---|
3524 | config_flags%symmetric_xs .or. & |
---|
3525 | (its > ids+2) ) degrade_xs = .false. |
---|
3526 | IF( config_flags%periodic_x .or. & |
---|
3527 | config_flags%symmetric_xe .or. & |
---|
3528 | (ite < ide-2) ) degrade_xe = .false. |
---|
3529 | IF( config_flags%periodic_y .or. & |
---|
3530 | config_flags%symmetric_ys .or. & |
---|
3531 | (jts > jds+2) ) degrade_ys = .false. |
---|
3532 | IF( config_flags%periodic_y .or. & |
---|
3533 | config_flags%symmetric_ye .or. & |
---|
3534 | (jte < jde-3) ) degrade_ye = .false. |
---|
3535 | |
---|
3536 | ! begin flux computations |
---|
3537 | ! start with x flux divergence |
---|
3538 | |
---|
3539 | ktf=MIN(kte,kde-1) |
---|
3540 | |
---|
3541 | i_start = its |
---|
3542 | i_end = MIN(ite,ide-1) |
---|
3543 | j_start = jts |
---|
3544 | j_end = MIN(jte,jde-1) |
---|
3545 | |
---|
3546 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
3547 | ! bounds so we can switch to second order flux close to the boundary |
---|
3548 | |
---|
3549 | i_start_f = i_start |
---|
3550 | i_end_f = i_end+1 |
---|
3551 | |
---|
3552 | IF(degrade_xs) then |
---|
3553 | i_start = ids+1 |
---|
3554 | i_start_f = i_start+1 |
---|
3555 | ENDIF |
---|
3556 | |
---|
3557 | IF(degrade_xe) then |
---|
3558 | i_end = ide-2 |
---|
3559 | i_end_f = ide-2 |
---|
3560 | ENDIF |
---|
3561 | |
---|
3562 | ! compute fluxes |
---|
3563 | |
---|
3564 | DO j = j_start, j_end |
---|
3565 | |
---|
3566 | ! 3rd or 4th order flux |
---|
3567 | |
---|
3568 | DO k=kts,ktf |
---|
3569 | DO i = i_start_f, i_end_f |
---|
3570 | |
---|
3571 | fqx( i, k) = ru(i,k,j)*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
3572 | field(i ,k,j), field(i+1,k,j), & |
---|
3573 | ru(i,k,j) ) |
---|
3574 | ENDDO |
---|
3575 | ENDDO |
---|
3576 | |
---|
3577 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
3578 | |
---|
3579 | IF( degrade_xs ) THEN |
---|
3580 | DO k=kts,ktf |
---|
3581 | fqx(i_start, k) = 0.5*ru(i_start,k,j) & |
---|
3582 | *(field(i_start,k,j)+field(i_start-1,k,j)) |
---|
3583 | ENDDO |
---|
3584 | ENDIF |
---|
3585 | |
---|
3586 | IF( degrade_xe ) THEN |
---|
3587 | DO k=kts,ktf |
---|
3588 | fqx(i_end+1,k ) = 0.5*ru(i_end+1,k,j) & |
---|
3589 | *(field(i_end+1,k,j)+field(i_end,k,j)) |
---|
3590 | ENDDO |
---|
3591 | ENDIF |
---|
3592 | |
---|
3593 | ! x flux-divergence into tendency |
---|
3594 | |
---|
3595 | DO k=kts,ktf |
---|
3596 | DO i = i_start, i_end |
---|
3597 | mrdx=msft(i,j)*rdx |
---|
3598 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
3599 | ENDDO |
---|
3600 | ENDDO |
---|
3601 | |
---|
3602 | ENDDO |
---|
3603 | |
---|
3604 | |
---|
3605 | ! next -> y flux divergence calculation |
---|
3606 | |
---|
3607 | i_start = its |
---|
3608 | i_end = MIN(ite,ide-1) |
---|
3609 | j_start = jts |
---|
3610 | j_end = MIN(jte,jde-1) |
---|
3611 | |
---|
3612 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
3613 | ! bounds so we can switch to second order flux close to the boundary |
---|
3614 | |
---|
3615 | j_start_f = j_start |
---|
3616 | j_end_f = j_end+1 |
---|
3617 | |
---|
3618 | IF(degrade_ys) then |
---|
3619 | j_start = jds+1 |
---|
3620 | j_start_f = j_start+1 |
---|
3621 | ENDIF |
---|
3622 | |
---|
3623 | IF(degrade_ye) then |
---|
3624 | j_end = jde-2 |
---|
3625 | j_end_f = jde-2 |
---|
3626 | ENDIF |
---|
3627 | |
---|
3628 | |
---|
3629 | jp1 = 2 |
---|
3630 | jp0 = 1 |
---|
3631 | |
---|
3632 | DO j = j_start, j_end+1 |
---|
3633 | |
---|
3634 | IF ((j < j_start_f) .and. degrade_ys) THEN |
---|
3635 | DO k = kts, ktf |
---|
3636 | DO i = i_start, i_end |
---|
3637 | fqy(i,k,jp1) = 0.5*rv(i,k,j_start) & |
---|
3638 | *(field(i,k,j_start)+field(i,k,j_start-1)) |
---|
3639 | ENDDO |
---|
3640 | ENDDO |
---|
3641 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
3642 | DO k = kts, ktf |
---|
3643 | DO i = i_start, i_end |
---|
3644 | ! Assumes j>j_end_f is ONLY j_end+1 ... |
---|
3645 | ! fqy(i,k,jp1) = 0.5*rv(i,k,j_end+1) & |
---|
3646 | ! *(field(i,k,j_end+1)+field(i,k,j_end)) |
---|
3647 | fqy(i,k,jp1) = 0.5*rv(i,k,j) & |
---|
3648 | *(field(i,k,j)+field(i,k,j-1)) |
---|
3649 | ENDDO |
---|
3650 | ENDDO |
---|
3651 | ELSE |
---|
3652 | ! 3rd or 4th order flux |
---|
3653 | DO k = kts, ktf |
---|
3654 | DO i = i_start, i_end |
---|
3655 | fqy( i, k, jp1 ) = rv(i,k,j)*flux3( field(i,k,j-2), field(i,k,j-1), & |
---|
3656 | field(i,k,j ), field(i,k,j+1), & |
---|
3657 | rv(i,k,j) ) |
---|
3658 | ENDDO |
---|
3659 | ENDDO |
---|
3660 | END IF |
---|
3661 | |
---|
3662 | ! y flux-divergence into tendency |
---|
3663 | IF ( j > j_start ) THEN |
---|
3664 | |
---|
3665 | DO k=kts,ktf |
---|
3666 | DO i = i_start, i_end |
---|
3667 | mrdy=msft(i,j-1)*rdy |
---|
3668 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
3669 | ENDDO |
---|
3670 | ENDDO |
---|
3671 | |
---|
3672 | |
---|
3673 | END IF |
---|
3674 | |
---|
3675 | jtmp = jp1 |
---|
3676 | jp1 = jp0 |
---|
3677 | jp0 = jtmp |
---|
3678 | |
---|
3679 | ENDDO |
---|
3680 | |
---|
3681 | ELSE IF( horz_order == 2 ) THEN |
---|
3682 | |
---|
3683 | i_start = its |
---|
3684 | i_end = MIN(ite,ide-1) |
---|
3685 | j_start = jts |
---|
3686 | j_end = MIN(jte,jde-1) |
---|
3687 | |
---|
3688 | IF ( .NOT. config_flags%periodic_x ) THEN |
---|
3689 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
3690 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-2,ite) |
---|
3691 | ENDIF |
---|
3692 | |
---|
3693 | DO j = j_start, j_end |
---|
3694 | DO k = kts, ktf |
---|
3695 | DO i = i_start, i_end |
---|
3696 | mrdx=msft(i,j)*rdx |
---|
3697 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.5 & |
---|
3698 | *(ru(i+1,k,j)*(field(i+1,k,j)+field(i ,k,j)) & |
---|
3699 | -ru(i ,k,j)*(field(i ,k,j)+field(i-1,k,j))) |
---|
3700 | ENDDO |
---|
3701 | ENDDO |
---|
3702 | ENDDO |
---|
3703 | |
---|
3704 | i_start = its |
---|
3705 | i_end = MIN(ite,ide-1) |
---|
3706 | |
---|
3707 | ! |
---|
3708 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
---|
3709 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-2,jte) |
---|
3710 | |
---|
3711 | DO j = j_start, j_end |
---|
3712 | DO k = kts, ktf |
---|
3713 | DO i = i_start, i_end |
---|
3714 | mrdy=msft(i,j)*rdy |
---|
3715 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.5 & |
---|
3716 | *(rv(i,k,j+1)*(field(i,k,j+1)+field(i,k,j )) & |
---|
3717 | -rv(i,k,j )*(field(i,k,j )+field(i,k,j-1))) |
---|
3718 | ENDDO |
---|
3719 | ENDDO |
---|
3720 | ENDDO |
---|
3721 | |
---|
3722 | |
---|
3723 | ELSE IF ( horz_order == 0 ) THEN |
---|
3724 | |
---|
3725 | ! Just in case we want to turn horizontal advection off, we can do it |
---|
3726 | |
---|
3727 | ELSE |
---|
3728 | |
---|
3729 | WRITE ( wrf_err_message , * ) 'module_advect: advect_scalar_6a, h_order not known ',horz_order |
---|
3730 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
3731 | |
---|
3732 | ENDIF horizontal_order_test |
---|
3733 | |
---|
3734 | ! pick up the rest of the horizontal radiation boundary conditions. |
---|
3735 | ! (these are the computations that don't require 'cb'. |
---|
3736 | ! first, set to index ranges |
---|
3737 | |
---|
3738 | i_start = its |
---|
3739 | i_end = MIN(ite,ide-1) |
---|
3740 | j_start = jts |
---|
3741 | j_end = MIN(jte,jde-1) |
---|
3742 | |
---|
3743 | ! compute x (u) conditions for v, w, or scalar |
---|
3744 | |
---|
3745 | IF( (config_flags%open_xs) .and. (its == ids) ) THEN |
---|
3746 | |
---|
3747 | DO j = j_start, j_end |
---|
3748 | DO k = kts, ktf |
---|
3749 | ub = MIN( 0.5*(ru(its,k,j)+ru(its+1,k,j)), 0. ) |
---|
3750 | tendency(its,k,j) = tendency(its,k,j) & |
---|
3751 | - rdx*( & |
---|
3752 | ub*( field_old(its+1,k,j) & |
---|
3753 | - field_old(its ,k,j) ) + & |
---|
3754 | field(its,k,j)*(ru(its+1,k,j)-ru(its,k,j)) & |
---|
3755 | ) |
---|
3756 | ENDDO |
---|
3757 | ENDDO |
---|
3758 | |
---|
3759 | ENDIF |
---|
3760 | |
---|
3761 | IF( (config_flags%open_xe) .and. (ite == ide) ) THEN |
---|
3762 | |
---|
3763 | DO j = j_start, j_end |
---|
3764 | DO k = kts, ktf |
---|
3765 | ub = MAX( 0.5*(ru(ite-1,k,j)+ru(ite,k,j)), 0. ) |
---|
3766 | tendency(i_end,k,j) = tendency(i_end,k,j) & |
---|
3767 | - rdx*( & |
---|
3768 | ub*( field_old(i_end ,k,j) & |
---|
3769 | - field_old(i_end-1,k,j) ) + & |
---|
3770 | field(i_end,k,j)*(ru(ite,k,j)-ru(ite-1,k,j)) & |
---|
3771 | ) |
---|
3772 | ENDDO |
---|
3773 | ENDDO |
---|
3774 | |
---|
3775 | ENDIF |
---|
3776 | |
---|
3777 | IF( (config_flags%open_ys) .and. (jts == jds) ) THEN |
---|
3778 | |
---|
3779 | DO i = i_start, i_end |
---|
3780 | DO k = kts, ktf |
---|
3781 | vb = MIN( 0.5*(rv(i,k,jts)+rv(i,k,jts+1)), 0. ) |
---|
3782 | tendency(i,k,jts) = tendency(i,k,jts) & |
---|
3783 | - rdy*( & |
---|
3784 | vb*( field_old(i,k,jts+1) & |
---|
3785 | - field_old(i,k,jts ) ) + & |
---|
3786 | field(i,k,jts)*(rv(i,k,jts+1)-rv(i,k,jts)) & |
---|
3787 | ) |
---|
3788 | ENDDO |
---|
3789 | ENDDO |
---|
3790 | |
---|
3791 | ENDIF |
---|
3792 | |
---|
3793 | IF( (config_flags%open_ye) .and. (jte == jde)) THEN |
---|
3794 | |
---|
3795 | DO i = i_start, i_end |
---|
3796 | DO k = kts, ktf |
---|
3797 | vb = MAX( 0.5*(rv(i,k,jte-1)+rv(i,k,jte)), 0. ) |
---|
3798 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
---|
3799 | - rdy*( & |
---|
3800 | vb*( field_old(i,k,j_end ) & |
---|
3801 | - field_old(i,k,j_end-1) ) + & |
---|
3802 | field(i,k,j_end)*(rv(i,k,jte)-rv(i,k,jte-1)) & |
---|
3803 | ) |
---|
3804 | ENDDO |
---|
3805 | ENDDO |
---|
3806 | |
---|
3807 | ENDIF |
---|
3808 | |
---|
3809 | |
---|
3810 | !-------------------- vertical advection |
---|
3811 | |
---|
3812 | i_start = its |
---|
3813 | i_end = MIN(ite,ide-1) |
---|
3814 | j_start = jts |
---|
3815 | j_end = MIN(jte,jde-1) |
---|
3816 | |
---|
3817 | DO i = i_start, i_end |
---|
3818 | vflux(i,kts)=0. |
---|
3819 | vflux(i,kte)=0. |
---|
3820 | ENDDO |
---|
3821 | |
---|
3822 | vert_order_test : IF (vert_order == 6) THEN |
---|
3823 | |
---|
3824 | DO j = j_start, j_end |
---|
3825 | |
---|
3826 | DO k=kts+3,ktf-2 |
---|
3827 | DO i = i_start, i_end |
---|
3828 | vel=rom(i,k,j) |
---|
3829 | vflux(i,k) = vel*flux6( & |
---|
3830 | field(i,k-3,j), field(i,k-2,j), field(i,k-1,j), & |
---|
3831 | field(i,k ,j), field(i,k+1,j), field(i,k+2,j), -vel ) |
---|
3832 | ENDDO |
---|
3833 | ENDDO |
---|
3834 | |
---|
3835 | DO i = i_start, i_end |
---|
3836 | |
---|
3837 | k=kts+1 |
---|
3838 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3839 | |
---|
3840 | k = kts+2 |
---|
3841 | vel=rom(i,k,j) |
---|
3842 | vflux(i,k) = vel*flux4( & |
---|
3843 | field(i,k-2,j), field(i,k-1,j), & |
---|
3844 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
3845 | k = ktf-1 |
---|
3846 | vel=rom(i,k,j) |
---|
3847 | vflux(i,k) = vel*flux4( & |
---|
3848 | field(i,k-2,j), field(i,k-1,j), & |
---|
3849 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
3850 | |
---|
3851 | k=ktf |
---|
3852 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3853 | ENDDO |
---|
3854 | |
---|
3855 | DO k=kts,ktf |
---|
3856 | DO i = i_start, i_end |
---|
3857 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
3858 | ENDDO |
---|
3859 | ENDDO |
---|
3860 | |
---|
3861 | ENDDO |
---|
3862 | |
---|
3863 | ELSE IF (vert_order == 5) THEN |
---|
3864 | |
---|
3865 | DO j = j_start, j_end |
---|
3866 | |
---|
3867 | DO k=kts+3,ktf-2 |
---|
3868 | DO i = i_start, i_end |
---|
3869 | vel=rom(i,k,j) |
---|
3870 | vflux(i,k) = vel*flux5( & |
---|
3871 | field(i,k-3,j), field(i,k-2,j), field(i,k-1,j), & |
---|
3872 | field(i,k ,j), field(i,k+1,j), field(i,k+2,j), -vel ) |
---|
3873 | ENDDO |
---|
3874 | ENDDO |
---|
3875 | |
---|
3876 | DO i = i_start, i_end |
---|
3877 | |
---|
3878 | k=kts+1 |
---|
3879 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3880 | |
---|
3881 | k = kts+2 |
---|
3882 | vel=rom(i,k,j) |
---|
3883 | vflux(i,k) = vel*flux3( & |
---|
3884 | field(i,k-2,j), field(i,k-1,j), & |
---|
3885 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
3886 | k = ktf-1 |
---|
3887 | vel=rom(i,k,j) |
---|
3888 | vflux(i,k) = vel*flux3( & |
---|
3889 | field(i,k-2,j), field(i,k-1,j), & |
---|
3890 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
3891 | |
---|
3892 | k=ktf |
---|
3893 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3894 | ENDDO |
---|
3895 | |
---|
3896 | DO k=kts,ktf |
---|
3897 | DO i = i_start, i_end |
---|
3898 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
3899 | ENDDO |
---|
3900 | ENDDO |
---|
3901 | |
---|
3902 | ENDDO |
---|
3903 | |
---|
3904 | ELSE IF (vert_order == 4) THEN |
---|
3905 | |
---|
3906 | DO j = j_start, j_end |
---|
3907 | |
---|
3908 | DO k=kts+2,ktf-1 |
---|
3909 | DO i = i_start, i_end |
---|
3910 | vel=rom(i,k,j) |
---|
3911 | vflux(i,k) = vel*flux4( & |
---|
3912 | field(i,k-2,j), field(i,k-1,j), & |
---|
3913 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
3914 | ENDDO |
---|
3915 | ENDDO |
---|
3916 | |
---|
3917 | DO i = i_start, i_end |
---|
3918 | |
---|
3919 | k=kts+1 |
---|
3920 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3921 | k=ktf |
---|
3922 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3923 | ENDDO |
---|
3924 | |
---|
3925 | DO k=kts,ktf |
---|
3926 | DO i = i_start, i_end |
---|
3927 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
3928 | ENDDO |
---|
3929 | ENDDO |
---|
3930 | |
---|
3931 | ENDDO |
---|
3932 | |
---|
3933 | ELSE IF (vert_order == 3) THEN |
---|
3934 | |
---|
3935 | DO j = j_start, j_end |
---|
3936 | |
---|
3937 | DO k=kts+2,ktf-1 |
---|
3938 | DO i = i_start, i_end |
---|
3939 | vel=rom(i,k,j) |
---|
3940 | vflux(i,k) = vel*flux3( & |
---|
3941 | field(i,k-2,j), field(i,k-1,j), & |
---|
3942 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
3943 | ENDDO |
---|
3944 | ENDDO |
---|
3945 | |
---|
3946 | DO i = i_start, i_end |
---|
3947 | |
---|
3948 | k=kts+1 |
---|
3949 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3950 | k=ktf |
---|
3951 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3952 | ENDDO |
---|
3953 | |
---|
3954 | DO k=kts,ktf |
---|
3955 | DO i = i_start, i_end |
---|
3956 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
3957 | ENDDO |
---|
3958 | ENDDO |
---|
3959 | |
---|
3960 | ENDDO |
---|
3961 | |
---|
3962 | ELSE IF (vert_order == 2) THEN |
---|
3963 | |
---|
3964 | DO j = j_start, j_end |
---|
3965 | DO k = kts+1, ktf |
---|
3966 | DO i = i_start, i_end |
---|
3967 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3968 | ENDDO |
---|
3969 | ENDDO |
---|
3970 | |
---|
3971 | DO k = kts, ktf |
---|
3972 | DO i = i_start, i_end |
---|
3973 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
3974 | ENDDO |
---|
3975 | ENDDO |
---|
3976 | |
---|
3977 | ENDDO |
---|
3978 | |
---|
3979 | ELSE |
---|
3980 | |
---|
3981 | WRITE (wrf_err_message,*) ' advect_scalar_6a, v_order not known ',vert_order |
---|
3982 | CALL wrf_error_fatal ( wrf_err_message ) |
---|
3983 | |
---|
3984 | ENDIF vert_order_test |
---|
3985 | |
---|
3986 | END SUBROUTINE advect_scalar |
---|
3987 | |
---|
3988 | !--------------------------------------------------------------------------------- |
---|
3989 | |
---|
3990 | SUBROUTINE advect_w ( w, w_old, tendency, & |
---|
3991 | ru, rv, rom, & |
---|
3992 | mut, time_step, config_flags, & |
---|
3993 | msfu, msfv, msft, & |
---|
3994 | fzm, fzp, & |
---|
3995 | rdx, rdy, rdzu, & |
---|
3996 | ids, ide, jds, jde, kds, kde, & |
---|
3997 | ims, ime, jms, jme, kms, kme, & |
---|
3998 | its, ite, jts, jte, kts, kte ) |
---|
3999 | |
---|
4000 | IMPLICIT NONE |
---|
4001 | |
---|
4002 | ! Input data |
---|
4003 | |
---|
4004 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
4005 | |
---|
4006 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
4007 | ims, ime, jms, jme, kms, kme, & |
---|
4008 | its, ite, jts, jte, kts, kte |
---|
4009 | |
---|
4010 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: w, & |
---|
4011 | w_old, & |
---|
4012 | ru, & |
---|
4013 | rv, & |
---|
4014 | rom |
---|
4015 | |
---|
4016 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
---|
4017 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
4018 | |
---|
4019 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
---|
4020 | msfv, & |
---|
4021 | msft |
---|
4022 | |
---|
4023 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
4024 | fzp, & |
---|
4025 | rdzu |
---|
4026 | |
---|
4027 | REAL , INTENT(IN ) :: rdx, & |
---|
4028 | rdy |
---|
4029 | INTEGER , INTENT(IN ) :: time_step |
---|
4030 | |
---|
4031 | |
---|
4032 | ! Local data |
---|
4033 | |
---|
4034 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
4035 | INTEGER :: i_start, i_end, j_start, j_end |
---|
4036 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
---|
4037 | INTEGER :: jmin, jmax, jp, jm, imin, imax |
---|
4038 | |
---|
4039 | REAL :: mrdx, mrdy, ub, vb, uw, vw |
---|
4040 | REAL , DIMENSION(its:ite, kts:kte) :: vflux |
---|
4041 | |
---|
4042 | INTEGER :: horz_order, vert_order |
---|
4043 | |
---|
4044 | REAL, DIMENSION( its:ite+1, kts:kte ) :: fqx |
---|
4045 | REAL, DIMENSION( its:ite, kts:kte, 2 ) :: fqy |
---|
4046 | |
---|
4047 | LOGICAL :: degrade_xs, degrade_ys |
---|
4048 | LOGICAL :: degrade_xe, degrade_ye |
---|
4049 | |
---|
4050 | INTEGER :: jp1, jp0, jtmp |
---|
4051 | |
---|
4052 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
---|
4053 | |
---|
4054 | REAL :: flux3, flux4, flux5, flux6 |
---|
4055 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel |
---|
4056 | |
---|
4057 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
4058 | ( 7.*(q_i + q_im1) - (q_ip1 + q_im2) )/12.0 |
---|
4059 | |
---|
4060 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
4061 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
---|
4062 | sign(1,time_step)*sign(1.,ua)*((q_ip1 - q_im2)-3.*(q_i-q_im1))/12.0 |
---|
4063 | |
---|
4064 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
4065 | ( 37.*(q_i+q_im1) - 8.*(q_ip1+q_im2) & |
---|
4066 | +(q_ip2+q_im3) )/60.0 |
---|
4067 | |
---|
4068 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
4069 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
---|
4070 | -sign(1,time_step)*sign(1.,ua)*( & |
---|
4071 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) )/60.0 |
---|
4072 | |
---|
4073 | |
---|
4074 | LOGICAL :: specified |
---|
4075 | |
---|
4076 | specified = .false. |
---|
4077 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
---|
4078 | |
---|
4079 | ! set order for the advection scheme |
---|
4080 | |
---|
4081 | ktf=MIN(kte,kde-1) |
---|
4082 | horz_order = config_flags%h_sca_adv_order |
---|
4083 | vert_order = config_flags%v_sca_adv_order |
---|
4084 | |
---|
4085 | ! here is the choice of flux operators |
---|
4086 | |
---|
4087 | ! begin with horizontal flux divergence |
---|
4088 | |
---|
4089 | horizontal_order_test : IF( horz_order == 6 ) THEN |
---|
4090 | |
---|
4091 | ! determine boundary mods for flux operators |
---|
4092 | ! We degrade the flux operators from 3rd/4th order |
---|
4093 | ! to second order one gridpoint in from the boundaries for |
---|
4094 | ! all boundary conditions except periodic and symmetry - these |
---|
4095 | ! conditions have boundary zone data fill for correct application |
---|
4096 | ! of the higher order flux stencils |
---|
4097 | |
---|
4098 | degrade_xs = .true. |
---|
4099 | degrade_xe = .true. |
---|
4100 | degrade_ys = .true. |
---|
4101 | degrade_ye = .true. |
---|
4102 | |
---|
4103 | IF( config_flags%periodic_x .or. & |
---|
4104 | config_flags%symmetric_xs .or. & |
---|
4105 | (its > ids+3) ) degrade_xs = .false. |
---|
4106 | IF( config_flags%periodic_x .or. & |
---|
4107 | config_flags%symmetric_xe .or. & |
---|
4108 | (ite < ide-3) ) degrade_xe = .false. |
---|
4109 | IF( config_flags%periodic_y .or. & |
---|
4110 | config_flags%symmetric_ys .or. & |
---|
4111 | (jts > jds+3) ) degrade_ys = .false. |
---|
4112 | IF( config_flags%periodic_y .or. & |
---|
4113 | config_flags%symmetric_ye .or. & |
---|
4114 | (jte < jde-4) ) degrade_ye = .false. |
---|
4115 | |
---|
4116 | !--------------- y - advection first |
---|
4117 | |
---|
4118 | i_start = its |
---|
4119 | i_end = MIN(ite,ide-1) |
---|
4120 | j_start = jts |
---|
4121 | j_end = MIN(jte,jde-1) |
---|
4122 | |
---|
4123 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
4124 | ! bounds so we can switch to second order flux close to the boundary |
---|
4125 | |
---|
4126 | j_start_f = j_start |
---|
4127 | j_end_f = j_end+1 |
---|
4128 | |
---|
4129 | IF(degrade_ys) then |
---|
4130 | j_start = MAX(jts,jds+1) |
---|
4131 | j_start_f = jds+3 |
---|
4132 | ENDIF |
---|
4133 | |
---|
4134 | IF(degrade_ye) then |
---|
4135 | j_end = MIN(jte,jde-2) |
---|
4136 | j_end_f = jde-3 |
---|
4137 | ENDIF |
---|
4138 | |
---|
4139 | |
---|
4140 | ! compute fluxes, 5th or 6th order |
---|
4141 | |
---|
4142 | jp1 = 2 |
---|
4143 | jp0 = 1 |
---|
4144 | |
---|
4145 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
---|
4146 | |
---|
4147 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN |
---|
4148 | |
---|
4149 | DO k=kts+1,ktf |
---|
4150 | DO i = i_start, i_end |
---|
4151 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
4152 | fqy( i, k, jp1 ) = vel*flux6( & |
---|
4153 | w(i,k,j-3), w(i,k,j-2), w(i,k,j-1), & |
---|
4154 | w(i,k,j ), w(i,k,j+1), w(i,k,j+2), vel ) |
---|
4155 | ENDDO |
---|
4156 | ENDDO |
---|
4157 | |
---|
4158 | k = ktf+1 |
---|
4159 | DO i = i_start, i_end |
---|
4160 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
4161 | fqy( i, k, jp1 ) = vel*flux6( & |
---|
4162 | w(i,k,j-3), w(i,k,j-2), w(i,k,j-1), & |
---|
4163 | w(i,k,j ), w(i,k,j+1), w(i,k,j+2), vel ) |
---|
4164 | ENDDO |
---|
4165 | |
---|
4166 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
4167 | |
---|
4168 | DO k=kts+1,ktf |
---|
4169 | DO i = i_start, i_end |
---|
4170 | fqy(i, k, jp1) = 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j))* & |
---|
4171 | (w(i,k,j)+w(i,k,j-1)) |
---|
4172 | ENDDO |
---|
4173 | ENDDO |
---|
4174 | |
---|
4175 | k = ktf+1 |
---|
4176 | DO i = i_start, i_end |
---|
4177 | fqy(i, k, jp1) = 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j))* & |
---|
4178 | (w(i,k,j)+w(i,k,j-1)) |
---|
4179 | ENDDO |
---|
4180 | |
---|
4181 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
4182 | |
---|
4183 | DO k=kts+1,ktf |
---|
4184 | DO i = i_start, i_end |
---|
4185 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
4186 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
4187 | w(i,k,j-2),w(i,k,j-1),w(i,k,j),w(i,k,j+1),vel ) |
---|
4188 | ENDDO |
---|
4189 | ENDDO |
---|
4190 | |
---|
4191 | k = ktf+1 |
---|
4192 | DO i = i_start, i_end |
---|
4193 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
4194 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
4195 | w(i,k,j-2),w(i,k,j-1),w(i,k,j),w(i,k,j+1),vel ) |
---|
4196 | ENDDO |
---|
4197 | |
---|
4198 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
4199 | |
---|
4200 | DO k=kts+1,ktf |
---|
4201 | DO i = i_start, i_end |
---|
4202 | fqy(i, k, jp1) = 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j))* & |
---|
4203 | (w(i,k,j)+w(i,k,j-1)) |
---|
4204 | ENDDO |
---|
4205 | ENDDO |
---|
4206 | |
---|
4207 | k = ktf+1 |
---|
4208 | DO i = i_start, i_end |
---|
4209 | fqy(i, k, jp1) = 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j))* & |
---|
4210 | (w(i,k,j)+w(i,k,j-1)) |
---|
4211 | ENDDO |
---|
4212 | |
---|
4213 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
4214 | |
---|
4215 | DO k=kts+1,ktf |
---|
4216 | DO i = i_start, i_end |
---|
4217 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
4218 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
4219 | w(i,k,j-2),w(i,k,j-1), & |
---|
4220 | w(i,k,j),w(i,k,j+1),vel ) |
---|
4221 | ENDDO |
---|
4222 | ENDDO |
---|
4223 | |
---|
4224 | k = ktf+1 |
---|
4225 | DO i = i_start, i_end |
---|
4226 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
4227 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
4228 | w(i,k,j-2),w(i,k,j-1), & |
---|
4229 | w(i,k,j),w(i,k,j+1),vel ) |
---|
4230 | ENDDO |
---|
4231 | |
---|
4232 | ENDIF |
---|
4233 | |
---|
4234 | ! y flux-divergence into tendency |
---|
4235 | |
---|
4236 | IF(j > j_start) THEN |
---|
4237 | |
---|
4238 | DO k=kts+1,ktf+1 |
---|
4239 | DO i = i_start, i_end |
---|
4240 | mrdy=msft(i,j-1)*rdy |
---|
4241 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
4242 | ENDDO |
---|
4243 | ENDDO |
---|
4244 | |
---|
4245 | ENDIF |
---|
4246 | |
---|
4247 | |
---|
4248 | jtmp = jp1 |
---|
4249 | jp1 = jp0 |
---|
4250 | jp0 = jtmp |
---|
4251 | |
---|
4252 | ENDDO j_loop_y_flux_6 |
---|
4253 | |
---|
4254 | ! next, x - flux divergence |
---|
4255 | |
---|
4256 | i_start = its |
---|
4257 | i_end = MIN(ite,ide-1) |
---|
4258 | |
---|
4259 | j_start = jts |
---|
4260 | j_end = MIN(jte,jde-1) |
---|
4261 | |
---|
4262 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
4263 | ! bounds so we can switch to second order flux close to the boundary |
---|
4264 | |
---|
4265 | i_start_f = i_start |
---|
4266 | i_end_f = i_end+1 |
---|
4267 | |
---|
4268 | IF(degrade_xs) then |
---|
4269 | i_start = MAX(ids+1,its) |
---|
4270 | ! i_start_f = i_start+2 |
---|
4271 | i_start_f = MIN(i_start+2,ids+3) |
---|
4272 | ENDIF |
---|
4273 | |
---|
4274 | IF(degrade_xe) then |
---|
4275 | i_end = MIN(ide-2,ite) |
---|
4276 | i_end_f = ide-3 |
---|
4277 | ENDIF |
---|
4278 | |
---|
4279 | ! compute fluxes |
---|
4280 | |
---|
4281 | DO j = j_start, j_end |
---|
4282 | |
---|
4283 | ! 5th or 6th order flux |
---|
4284 | |
---|
4285 | DO k=kts+1,ktf |
---|
4286 | DO i = i_start_f, i_end_f |
---|
4287 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
4288 | fqx( i,k ) = vel*flux6( w(i-3,k,j), w(i-2,k,j), & |
---|
4289 | w(i-1,k,j), w(i ,k,j), & |
---|
4290 | w(i+1,k,j), w(i+2,k,j), & |
---|
4291 | vel ) |
---|
4292 | ENDDO |
---|
4293 | ENDDO |
---|
4294 | |
---|
4295 | k = ktf+1 |
---|
4296 | DO i = i_start_f, i_end_f |
---|
4297 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
4298 | fqx( i,k ) = vel*flux6( w(i-3,k,j), w(i-2,k,j), & |
---|
4299 | w(i-1,k,j), w(i ,k,j), & |
---|
4300 | w(i+1,k,j), w(i+2,k,j), & |
---|
4301 | vel ) |
---|
4302 | ENDDO |
---|
4303 | |
---|
4304 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
4305 | |
---|
4306 | IF( degrade_xs ) THEN |
---|
4307 | |
---|
4308 | DO i=i_start,i_start_f-1 |
---|
4309 | |
---|
4310 | IF(i == ids+1) THEN ! second order |
---|
4311 | DO k=kts+1,ktf |
---|
4312 | fqx(i,k) = 0.5*(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
---|
4313 | *(w(i,k,j)+w(i-1,k,j)) |
---|
4314 | ENDDO |
---|
4315 | k = ktf+1 |
---|
4316 | fqx(i,k) = 0.5*((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
---|
4317 | *(w(i,k,j)+w(i-1,k,j)) |
---|
4318 | ENDIF |
---|
4319 | |
---|
4320 | IF(i == ids+2) THEN ! third order |
---|
4321 | DO k=kts+1,ktf |
---|
4322 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
4323 | fqx( i,k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
4324 | w(i ,k,j), w(i+1,k,j), & |
---|
4325 | vel ) |
---|
4326 | ENDDO |
---|
4327 | k = ktf+1 |
---|
4328 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
4329 | fqx( i,k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
4330 | w(i ,k,j), w(i+1,k,j), & |
---|
4331 | vel ) |
---|
4332 | END IF |
---|
4333 | |
---|
4334 | ENDDO |
---|
4335 | |
---|
4336 | ENDIF |
---|
4337 | |
---|
4338 | IF( degrade_xe ) THEN |
---|
4339 | |
---|
4340 | DO i = i_end_f+1, i_end+1 |
---|
4341 | |
---|
4342 | IF( i == ide-1 ) THEN ! second order flux next to the boundary |
---|
4343 | DO k=kts+1,ktf |
---|
4344 | fqx(i,k) = 0.5*(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
---|
4345 | *(w(i,k,j)+w(i-1,k,j)) |
---|
4346 | ENDDO |
---|
4347 | k = ktf+1 |
---|
4348 | fqx(i,k) = 0.5*((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
---|
4349 | *(w(i,k,j)+w(i-1,k,j)) |
---|
4350 | ENDIF |
---|
4351 | |
---|
4352 | IF( i == ide-2 ) THEN ! third order flux one in from the boundary |
---|
4353 | DO k=kts+1,ktf |
---|
4354 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
4355 | fqx( i,k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
4356 | w(i ,k,j), w(i+1,k,j), & |
---|
4357 | vel ) |
---|
4358 | ENDDO |
---|
4359 | k = ktf+1 |
---|
4360 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
4361 | fqx( i,k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
4362 | w(i ,k,j), w(i+1,k,j), & |
---|
4363 | vel ) |
---|
4364 | ENDIF |
---|
4365 | |
---|
4366 | ENDDO |
---|
4367 | |
---|
4368 | ENDIF |
---|
4369 | |
---|
4370 | ! x flux-divergence into tendency |
---|
4371 | |
---|
4372 | DO k=kts+1,ktf+1 |
---|
4373 | DO i = i_start, i_end |
---|
4374 | mrdx=msft(i,j)*rdx |
---|
4375 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
4376 | ENDDO |
---|
4377 | ENDDO |
---|
4378 | |
---|
4379 | ENDDO |
---|
4380 | |
---|
4381 | ELSE IF (horz_order == 5 ) THEN |
---|
4382 | |
---|
4383 | ! determine boundary mods for flux operators |
---|
4384 | ! We degrade the flux operators from 3rd/4th order |
---|
4385 | ! to second order one gridpoint in from the boundaries for |
---|
4386 | ! all boundary conditions except periodic and symmetry - these |
---|
4387 | ! conditions have boundary zone data fill for correct application |
---|
4388 | ! of the higher order flux stencils |
---|
4389 | |
---|
4390 | degrade_xs = .true. |
---|
4391 | degrade_xe = .true. |
---|
4392 | degrade_ys = .true. |
---|
4393 | degrade_ye = .true. |
---|
4394 | |
---|
4395 | IF( config_flags%periodic_x .or. & |
---|
4396 | config_flags%symmetric_xs .or. & |
---|
4397 | (its > ids+3) ) degrade_xs = .false. |
---|
4398 | IF( config_flags%periodic_x .or. & |
---|
4399 | config_flags%symmetric_xe .or. & |
---|
4400 | (ite < ide-3) ) degrade_xe = .false. |
---|
4401 | IF( config_flags%periodic_y .or. & |
---|
4402 | config_flags%symmetric_ys .or. & |
---|
4403 | (jts > jds+3) ) degrade_ys = .false. |
---|
4404 | IF( config_flags%periodic_y .or. & |
---|
4405 | config_flags%symmetric_ye .or. & |
---|
4406 | (jte < jde-4) ) degrade_ye = .false. |
---|
4407 | |
---|
4408 | !--------------- y - advection first |
---|
4409 | |
---|
4410 | i_start = its |
---|
4411 | i_end = MIN(ite,ide-1) |
---|
4412 | j_start = jts |
---|
4413 | j_end = MIN(jte,jde-1) |
---|
4414 | |
---|
4415 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
4416 | ! bounds so we can switch to second order flux close to the boundary |
---|
4417 | |
---|
4418 | j_start_f = j_start |
---|
4419 | j_end_f = j_end+1 |
---|
4420 | |
---|
4421 | IF(degrade_ys) then |
---|
4422 | j_start = MAX(jts,jds+1) |
---|
4423 | j_start_f = jds+3 |
---|
4424 | ENDIF |
---|
4425 | |
---|
4426 | IF(degrade_ye) then |
---|
4427 | j_end = MIN(jte,jde-2) |
---|
4428 | j_end_f = jde-3 |
---|
4429 | ENDIF |
---|
4430 | |
---|
4431 | |
---|
4432 | ! compute fluxes, 5th or 6th order |
---|
4433 | |
---|
4434 | jp1 = 2 |
---|
4435 | jp0 = 1 |
---|
4436 | |
---|
4437 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
---|
4438 | |
---|
4439 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN |
---|
4440 | |
---|
4441 | DO k=kts+1,ktf |
---|
4442 | DO i = i_start, i_end |
---|
4443 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
4444 | fqy( i, k, jp1 ) = vel*flux5( & |
---|
4445 | w(i,k,j-3), w(i,k,j-2), w(i,k,j-1), & |
---|
4446 | w(i,k,j ), w(i,k,j+1), w(i,k,j+2), vel ) |
---|
4447 | ENDDO |
---|
4448 | ENDDO |
---|
4449 | |
---|
4450 | k = ktf+1 |
---|
4451 | DO i = i_start, i_end |
---|
4452 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
4453 | fqy( i, k, jp1 ) = vel*flux5( & |
---|
4454 | w(i,k,j-3), w(i,k,j-2), w(i,k,j-1), & |
---|
4455 | w(i,k,j ), w(i,k,j+1), w(i,k,j+2), vel ) |
---|
4456 | ENDDO |
---|
4457 | |
---|
4458 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
4459 | |
---|
4460 | DO k=kts+1,ktf |
---|
4461 | DO i = i_start, i_end |
---|
4462 | fqy(i, k, jp1) = 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j))* & |
---|
4463 | (w(i,k,j)+w(i,k,j-1)) |
---|
4464 | ENDDO |
---|
4465 | ENDDO |
---|
4466 | |
---|
4467 | k = ktf+1 |
---|
4468 | DO i = i_start, i_end |
---|
4469 | fqy(i, k, jp1) = 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j))* & |
---|
4470 | (w(i,k,j)+w(i,k,j-1)) |
---|
4471 | ENDDO |
---|
4472 | |
---|
4473 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
4474 | |
---|
4475 | DO k=kts+1,ktf |
---|
4476 | DO i = i_start, i_end |
---|
4477 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
4478 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
4479 | w(i,k,j-2),w(i,k,j-1),w(i,k,j),w(i,k,j+1),vel ) |
---|
4480 | ENDDO |
---|
4481 | ENDDO |
---|
4482 | |
---|
4483 | k = ktf+1 |
---|
4484 | DO i = i_start, i_end |
---|
4485 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
4486 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
4487 | w(i,k,j-2),w(i,k,j-1),w(i,k,j),w(i,k,j+1),vel ) |
---|
4488 | ENDDO |
---|
4489 | |
---|
4490 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
4491 | |
---|
4492 | DO k=kts+1,ktf |
---|
4493 | DO i = i_start, i_end |
---|
4494 | fqy(i, k, jp1) = 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j))* & |
---|
4495 | (w(i,k,j)+w(i,k,j-1)) |
---|
4496 | ENDDO |
---|
4497 | ENDDO |
---|
4498 | |
---|
4499 | k = ktf+1 |
---|
4500 | DO i = i_start, i_end |
---|
4501 | fqy(i, k, jp1) = 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j))* & |
---|
4502 | (w(i,k,j)+w(i,k,j-1)) |
---|
4503 | ENDDO |
---|
4504 | |
---|
4505 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
4506 | |
---|
4507 | DO k=kts+1,ktf |
---|
4508 | DO i = i_start, i_end |
---|
4509 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
4510 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
4511 | w(i,k,j-2),w(i,k,j-1), & |
---|
4512 | w(i,k,j),w(i,k,j+1),vel ) |
---|
4513 | ENDDO |
---|
4514 | ENDDO |
---|
4515 | |
---|
4516 | k = ktf+1 |
---|
4517 | DO i = i_start, i_end |
---|
4518 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
4519 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
4520 | w(i,k,j-2),w(i,k,j-1), & |
---|
4521 | w(i,k,j),w(i,k,j+1),vel ) |
---|
4522 | ENDDO |
---|
4523 | |
---|
4524 | ENDIF |
---|
4525 | |
---|
4526 | ! y flux-divergence into tendency |
---|
4527 | |
---|
4528 | IF(j > j_start) THEN |
---|
4529 | |
---|
4530 | DO k=kts+1,ktf+1 |
---|
4531 | DO i = i_start, i_end |
---|
4532 | mrdy=msft(i,j-1)*rdy |
---|
4533 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
4534 | ENDDO |
---|
4535 | ENDDO |
---|
4536 | |
---|
4537 | ENDIF |
---|
4538 | |
---|
4539 | |
---|
4540 | jtmp = jp1 |
---|
4541 | jp1 = jp0 |
---|
4542 | jp0 = jtmp |
---|
4543 | |
---|
4544 | ENDDO j_loop_y_flux_5 |
---|
4545 | |
---|
4546 | ! next, x - flux divergence |
---|
4547 | |
---|
4548 | i_start = its |
---|
4549 | i_end = MIN(ite,ide-1) |
---|
4550 | |
---|
4551 | j_start = jts |
---|
4552 | j_end = MIN(jte,jde-1) |
---|
4553 | |
---|
4554 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
4555 | ! bounds so we can switch to second order flux close to the boundary |
---|
4556 | |
---|
4557 | i_start_f = i_start |
---|
4558 | i_end_f = i_end+1 |
---|
4559 | |
---|
4560 | IF(degrade_xs) then |
---|
4561 | i_start = MAX(ids+1,its) |
---|
4562 | ! i_start_f = i_start+2 |
---|
4563 | i_start_f = MIN(i_start+2,ids+3) |
---|
4564 | ENDIF |
---|
4565 | |
---|
4566 | IF(degrade_xe) then |
---|
4567 | i_end = MIN(ide-2,ite) |
---|
4568 | i_end_f = ide-3 |
---|
4569 | ENDIF |
---|
4570 | |
---|
4571 | ! compute fluxes |
---|
4572 | |
---|
4573 | DO j = j_start, j_end |
---|
4574 | |
---|
4575 | ! 5th or 6th order flux |
---|
4576 | |
---|
4577 | DO k=kts+1,ktf |
---|
4578 | DO i = i_start_f, i_end_f |
---|
4579 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
4580 | fqx( i,k ) = vel*flux5( w(i-3,k,j), w(i-2,k,j), & |
---|
4581 | w(i-1,k,j), w(i ,k,j), & |
---|
4582 | w(i+1,k,j), w(i+2,k,j), & |
---|
4583 | vel ) |
---|
4584 | ENDDO |
---|
4585 | ENDDO |
---|
4586 | |
---|
4587 | k = ktf+1 |
---|
4588 | DO i = i_start_f, i_end_f |
---|
4589 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
4590 | fqx( i,k ) = vel*flux5( w(i-3,k,j), w(i-2,k,j), & |
---|
4591 | w(i-1,k,j), w(i ,k,j), & |
---|
4592 | w(i+1,k,j), w(i+2,k,j), & |
---|
4593 | vel ) |
---|
4594 | ENDDO |
---|
4595 | |
---|
4596 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
4597 | |
---|
4598 | IF( degrade_xs ) THEN |
---|
4599 | |
---|
4600 | DO i=i_start,i_start_f-1 |
---|
4601 | |
---|
4602 | IF(i == ids+1) THEN ! second order |
---|
4603 | DO k=kts+1,ktf |
---|
4604 | fqx(i,k) = 0.5*(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
---|
4605 | *(w(i,k,j)+w(i-1,k,j)) |
---|
4606 | ENDDO |
---|
4607 | k = ktf+1 |
---|
4608 | fqx(i,k) = 0.5*((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
---|
4609 | *(w(i,k,j)+w(i-1,k,j)) |
---|
4610 | ENDIF |
---|
4611 | |
---|
4612 | IF(i == ids+2) THEN ! third order |
---|
4613 | DO k=kts+1,ktf |
---|
4614 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
4615 | fqx( i,k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
4616 | w(i ,k,j), w(i+1,k,j), & |
---|
4617 | vel ) |
---|
4618 | ENDDO |
---|
4619 | k = ktf+1 |
---|
4620 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
4621 | fqx( i,k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
4622 | w(i ,k,j), w(i+1,k,j), & |
---|
4623 | vel ) |
---|
4624 | END IF |
---|
4625 | |
---|
4626 | ENDDO |
---|
4627 | |
---|
4628 | ENDIF |
---|
4629 | |
---|
4630 | IF( degrade_xe ) THEN |
---|
4631 | |
---|
4632 | DO i = i_end_f+1, i_end+1 |
---|
4633 | |
---|
4634 | IF( i == ide-1 ) THEN ! second order flux next to the boundary |
---|
4635 | DO k=kts+1,ktf |
---|
4636 | fqx(i,k) = 0.5*(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
---|
4637 | *(w(i,k,j)+w(i-1,k,j)) |
---|
4638 | ENDDO |
---|
4639 | k = ktf+1 |
---|
4640 | fqx(i,k) = 0.5*((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
---|
4641 | *(w(i,k,j)+w(i-1,k,j)) |
---|
4642 | ENDIF |
---|
4643 | |
---|
4644 | IF( i == ide-2 ) THEN ! third order flux one in from the boundary |
---|
4645 | DO k=kts+1,ktf |
---|
4646 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
4647 | fqx( i,k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
4648 | w(i ,k,j), w(i+1,k,j), & |
---|
4649 | vel ) |
---|
4650 | ENDDO |
---|
4651 | k = ktf+1 |
---|
4652 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
4653 | fqx( i,k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
4654 | w(i ,k,j), w(i+1,k,j), & |
---|
4655 | vel ) |
---|
4656 | ENDIF |
---|
4657 | |
---|
4658 | ENDDO |
---|
4659 | |
---|
4660 | ENDIF |
---|
4661 | |
---|
4662 | ! x flux-divergence into tendency |
---|
4663 | |
---|
4664 | DO k=kts+1,ktf+1 |
---|
4665 | DO i = i_start, i_end |
---|
4666 | mrdx=msft(i,j)*rdx |
---|
4667 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
4668 | ENDDO |
---|
4669 | ENDDO |
---|
4670 | |
---|
4671 | ENDDO |
---|
4672 | |
---|
4673 | ELSE IF ( horz_order == 4 ) THEN |
---|
4674 | |
---|
4675 | degrade_xs = .true. |
---|
4676 | degrade_xe = .true. |
---|
4677 | degrade_ys = .true. |
---|
4678 | degrade_ye = .true. |
---|
4679 | |
---|
4680 | IF( config_flags%periodic_x .or. & |
---|
4681 | config_flags%symmetric_xs .or. & |
---|
4682 | (its > ids+2) ) degrade_xs = .false. |
---|
4683 | IF( config_flags%periodic_x .or. & |
---|
4684 | config_flags%symmetric_xe .or. & |
---|
4685 | (ite < ide-2) ) degrade_xe = .false. |
---|
4686 | IF( config_flags%periodic_y .or. & |
---|
4687 | config_flags%symmetric_ys .or. & |
---|
4688 | (jts > jds+2) ) degrade_ys = .false. |
---|
4689 | IF( config_flags%periodic_y .or. & |
---|
4690 | config_flags%symmetric_ye .or. & |
---|
4691 | (jte < jde-3) ) degrade_ye = .false. |
---|
4692 | |
---|
4693 | ! begin flux computations |
---|
4694 | ! start with x flux divergence |
---|
4695 | |
---|
4696 | !--------------- |
---|
4697 | |
---|
4698 | ktf=MIN(kte,kde-1) |
---|
4699 | |
---|
4700 | i_start = its |
---|
4701 | i_end = MIN(ite,ide-1) |
---|
4702 | j_start = jts |
---|
4703 | j_end = MIN(jte,jde-1) |
---|
4704 | |
---|
4705 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
4706 | ! bounds so we can switch to second order flux close to the boundary |
---|
4707 | |
---|
4708 | i_start_f = i_start |
---|
4709 | i_end_f = i_end+1 |
---|
4710 | |
---|
4711 | IF(degrade_xs) then |
---|
4712 | i_start = ids+1 |
---|
4713 | i_start_f = i_start+1 |
---|
4714 | ENDIF |
---|
4715 | |
---|
4716 | IF(degrade_xe) then |
---|
4717 | i_end = ide-2 |
---|
4718 | i_end_f = ide-2 |
---|
4719 | ENDIF |
---|
4720 | |
---|
4721 | ! compute fluxes |
---|
4722 | |
---|
4723 | DO j = j_start, j_end |
---|
4724 | |
---|
4725 | DO k=kts+1,ktf |
---|
4726 | DO i = i_start_f, i_end_f |
---|
4727 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
4728 | fqx( i, k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
4729 | w(i ,k,j), w(i+1,k,j), & |
---|
4730 | vel ) |
---|
4731 | ENDDO |
---|
4732 | ENDDO |
---|
4733 | |
---|
4734 | k = ktf+1 |
---|
4735 | DO i = i_start_f, i_end_f |
---|
4736 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
4737 | fqx( i, k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
4738 | w(i ,k,j), w(i+1,k,j), & |
---|
4739 | vel ) |
---|
4740 | ENDDO |
---|
4741 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
4742 | |
---|
4743 | IF( degrade_xs ) THEN |
---|
4744 | DO k=kts+1,ktf |
---|
4745 | fqx(i_start, k) = & |
---|
4746 | 0.5*(fzm(k)*ru(i_start,k,j)+fzp(k)*ru(i_start,k-1,j)) & |
---|
4747 | *(w(i_start,k,j)+w(i_start-1,k,j)) |
---|
4748 | ENDDO |
---|
4749 | k = ktf+1 |
---|
4750 | fqx(i_start, k) = & |
---|
4751 | 0.5*((2.-fzm(k-1))*ru(i_start,k-1,j)-fzp(k-1)*ru(i_start,k-2,j)) & |
---|
4752 | *(w(i_start,k,j)+w(i_start-1,k,j)) |
---|
4753 | ENDIF |
---|
4754 | |
---|
4755 | IF( degrade_xe ) THEN |
---|
4756 | DO k=kts+1,ktf |
---|
4757 | fqx(i_end+1, k) = & |
---|
4758 | 0.5*(fzm(k)*ru(i_end+1,k,j)+fzp(k)*ru(i_end+1,k-1,j)) & |
---|
4759 | *(w(i_end+1,k,j)+w(i_end,k,j)) |
---|
4760 | ENDDO |
---|
4761 | k = ktf+1 |
---|
4762 | fqx(i_end+1, k) = & |
---|
4763 | 0.5*((2.-fzm(k-1))*ru(i_end+1,k-1,j)-fzp(k-1)*ru(i_end+1,k-2,j)) & |
---|
4764 | *(w(i_end+1,k,j)+w(i_end,k,j)) |
---|
4765 | ENDIF |
---|
4766 | |
---|
4767 | ! x flux-divergence into tendency |
---|
4768 | |
---|
4769 | DO k=kts+1,ktf+1 |
---|
4770 | DO i = i_start, i_end |
---|
4771 | mrdx=msft(i,j)*rdx |
---|
4772 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
4773 | ENDDO |
---|
4774 | ENDDO |
---|
4775 | |
---|
4776 | ENDDO |
---|
4777 | |
---|
4778 | ! next -> y flux divergence calculation |
---|
4779 | |
---|
4780 | i_start = its |
---|
4781 | i_end = MIN(ite,ide-1) |
---|
4782 | j_start = jts |
---|
4783 | j_end = MIN(jte,jde-1) |
---|
4784 | |
---|
4785 | |
---|
4786 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
4787 | ! bounds so we can switch to second order flux close to the boundary |
---|
4788 | |
---|
4789 | j_start_f = j_start |
---|
4790 | j_end_f = j_end+1 |
---|
4791 | |
---|
4792 | IF(degrade_ys) then |
---|
4793 | j_start = jds+1 |
---|
4794 | j_start_f = j_start+1 |
---|
4795 | ENDIF |
---|
4796 | |
---|
4797 | IF(degrade_ye) then |
---|
4798 | j_end = jde-2 |
---|
4799 | j_end_f = jde-2 |
---|
4800 | ENDIF |
---|
4801 | |
---|
4802 | |
---|
4803 | jp1 = 2 |
---|
4804 | jp0 = 1 |
---|
4805 | |
---|
4806 | DO j = j_start, j_end+1 |
---|
4807 | |
---|
4808 | IF ((j < j_start_f) .and. degrade_ys) THEN |
---|
4809 | DO k = kts+1, ktf |
---|
4810 | DO i = i_start, i_end |
---|
4811 | fqy(i, k, jp1) = & |
---|
4812 | 0.5*(fzm(k)*rv(i,k,j_start)+fzp(k)*rv(i,k-1,j_start)) & |
---|
4813 | *(w(i,k,j_start)+w(i,k,j_start-1)) |
---|
4814 | ENDDO |
---|
4815 | ENDDO |
---|
4816 | k = ktf+1 |
---|
4817 | DO i = i_start, i_end |
---|
4818 | fqy(i, k, jp1) = & |
---|
4819 | 0.5*((2.-fzm(k-1))*rv(i,k-1,j_start)-fzp(k-1)*rv(i,k-2,j_start)) & |
---|
4820 | *(w(i,k,j_start)+w(i,k,j_start-1)) |
---|
4821 | ENDDO |
---|
4822 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
4823 | DO k = kts+1, ktf |
---|
4824 | DO i = i_start, i_end |
---|
4825 | ! Assumes j>j_end_f is ONLY j_end+1 ... |
---|
4826 | ! fqy(i, k, jp1) = & |
---|
4827 | ! 0.5*(fzm(k)*rv(i,k,j_end+1)+fzp(k)*rv(i,k-1,j_end+1)) & |
---|
4828 | ! *(w(i,k,j_end+1)+w(i,k,j_end)) |
---|
4829 | fqy(i, k, jp1) = & |
---|
4830 | 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j)) & |
---|
4831 | *(w(i,k,j)+w(i,k,j-1)) |
---|
4832 | ENDDO |
---|
4833 | ENDDO |
---|
4834 | k = ktf+1 |
---|
4835 | DO i = i_start, i_end |
---|
4836 | ! Assumes j>j_end_f is ONLY j_end+1 ... |
---|
4837 | ! fqy(i, k, jp1) = & |
---|
4838 | ! 0.5*((2.-fzm(k-1))*rv(i,k-1,j_end+1)-fzp(k-1)*rv(i,k-2,j_end+1)) & |
---|
4839 | ! *(w(i,k,j_end+1)+w(i,k,j_end)) |
---|
4840 | fqy(i, k, jp1) = & |
---|
4841 | 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j)) & |
---|
4842 | *(w(i,k,j)+w(i,k,j-1)) |
---|
4843 | ENDDO |
---|
4844 | ELSE |
---|
4845 | ! 3rd or 4th order flux |
---|
4846 | DO k = kts+1, ktf |
---|
4847 | DO i = i_start, i_end |
---|
4848 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
4849 | fqy( i, k, jp1 ) = vel*flux4( w(i,k,j-2), w(i,k,j-1), & |
---|
4850 | w(i,k,j ), w(i,k,j+1), & |
---|
4851 | vel ) |
---|
4852 | ENDDO |
---|
4853 | ENDDO |
---|
4854 | k = ktf+1 |
---|
4855 | DO i = i_start, i_end |
---|
4856 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
4857 | fqy( i, k, jp1 ) = vel*flux4( w(i,k,j-2), w(i,k,j-1), & |
---|
4858 | w(i,k,j ), w(i,k,j+1), & |
---|
4859 | vel ) |
---|
4860 | ENDDO |
---|
4861 | END IF |
---|
4862 | |
---|
4863 | ! y flux-divergence into tendency |
---|
4864 | IF( j > j_start ) THEN |
---|
4865 | |
---|
4866 | DO k = kts+1, ktf+1 |
---|
4867 | DO i = i_start, i_end |
---|
4868 | mrdy=msft(i,j-1)*rdy |
---|
4869 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
4870 | ENDDO |
---|
4871 | ENDDO |
---|
4872 | |
---|
4873 | |
---|
4874 | END IF |
---|
4875 | |
---|
4876 | jtmp = jp1 |
---|
4877 | jp1 = jp0 |
---|
4878 | jp0 = jtmp |
---|
4879 | |
---|
4880 | ENDDO |
---|
4881 | |
---|
4882 | ELSE IF ( horz_order == 3 ) THEN |
---|
4883 | |
---|
4884 | degrade_xs = .true. |
---|
4885 | degrade_xe = .true. |
---|
4886 | degrade_ys = .true. |
---|
4887 | degrade_ye = .true. |
---|
4888 | |
---|
4889 | IF( config_flags%periodic_x .or. & |
---|
4890 | config_flags%symmetric_xs .or. & |
---|
4891 | (its > ids+2) ) degrade_xs = .false. |
---|
4892 | IF( config_flags%periodic_x .or. & |
---|
4893 | config_flags%symmetric_xe .or. & |
---|
4894 | (ite < ide-2) ) degrade_xe = .false. |
---|
4895 | IF( config_flags%periodic_y .or. & |
---|
4896 | config_flags%symmetric_ys .or. & |
---|
4897 | (jts > jds+2) ) degrade_ys = .false. |
---|
4898 | IF( config_flags%periodic_y .or. & |
---|
4899 | config_flags%symmetric_ye .or. & |
---|
4900 | (jte < jde-3) ) degrade_ye = .false. |
---|
4901 | |
---|
4902 | ! begin flux computations |
---|
4903 | ! start with x flux divergence |
---|
4904 | |
---|
4905 | !--------------- |
---|
4906 | |
---|
4907 | ktf=MIN(kte,kde-1) |
---|
4908 | |
---|
4909 | i_start = its |
---|
4910 | i_end = MIN(ite,ide-1) |
---|
4911 | j_start = jts |
---|
4912 | j_end = MIN(jte,jde-1) |
---|
4913 | |
---|
4914 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
4915 | ! bounds so we can switch to second order flux close to the boundary |
---|
4916 | |
---|
4917 | i_start_f = i_start |
---|
4918 | i_end_f = i_end+1 |
---|
4919 | |
---|
4920 | IF(degrade_xs) then |
---|
4921 | i_start = ids+1 |
---|
4922 | i_start_f = i_start+1 |
---|
4923 | ENDIF |
---|
4924 | |
---|
4925 | IF(degrade_xe) then |
---|
4926 | i_end = ide-2 |
---|
4927 | i_end_f = ide-2 |
---|
4928 | ENDIF |
---|
4929 | |
---|
4930 | ! compute fluxes |
---|
4931 | |
---|
4932 | DO j = j_start, j_end |
---|
4933 | |
---|
4934 | DO k=kts+1,ktf |
---|
4935 | DO i = i_start_f, i_end_f |
---|
4936 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
4937 | fqx( i, k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
4938 | w(i ,k,j), w(i+1,k,j), & |
---|
4939 | vel ) |
---|
4940 | ENDDO |
---|
4941 | ENDDO |
---|
4942 | k = ktf+1 |
---|
4943 | DO i = i_start_f, i_end_f |
---|
4944 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
4945 | fqx( i, k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
4946 | w(i ,k,j), w(i+1,k,j), & |
---|
4947 | vel ) |
---|
4948 | ENDDO |
---|
4949 | |
---|
4950 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
4951 | |
---|
4952 | IF( degrade_xs ) THEN |
---|
4953 | DO k=kts+1,ktf |
---|
4954 | fqx(i_start, k) = & |
---|
4955 | 0.5*(fzm(k)*ru(i_start,k,j)+fzp(k)*ru(i_start,k-1,j)) & |
---|
4956 | *(w(i_start,k,j)+w(i_start-1,k,j)) |
---|
4957 | ENDDO |
---|
4958 | k = ktf+1 |
---|
4959 | fqx(i_start, k) = & |
---|
4960 | 0.5*((2.-fzm(k-1))*ru(i_start,k-1,j)-fzp(k-1)*ru(i_start,k-2,j)) & |
---|
4961 | *(w(i_start,k,j)+w(i_start-1,k,j)) |
---|
4962 | ENDIF |
---|
4963 | |
---|
4964 | IF( degrade_xe ) THEN |
---|
4965 | DO k=kts+1,ktf |
---|
4966 | fqx(i_end+1, k) = & |
---|
4967 | 0.5*(fzm(k)*ru(i_end+1,k,j)+fzp(k)*ru(i_end+1,k-1,j)) & |
---|
4968 | *(w(i_end+1,k,j)+w(i_end,k,j)) |
---|
4969 | ENDDO |
---|
4970 | k = ktf+1 |
---|
4971 | fqx(i_end+1, k) = & |
---|
4972 | 0.5*((2.-fzm(k-1))*ru(i_end+1,k-1,j)-fzp(k-1)*ru(i_end+1,k-2,j)) & |
---|
4973 | *(w(i_end+1,k,j)+w(i_end,k,j)) |
---|
4974 | ENDIF |
---|
4975 | |
---|
4976 | ! x flux-divergence into tendency |
---|
4977 | |
---|
4978 | DO k=kts+1,ktf+1 |
---|
4979 | DO i = i_start, i_end |
---|
4980 | mrdx=msft(i,j)*rdx |
---|
4981 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
4982 | ENDDO |
---|
4983 | ENDDO |
---|
4984 | |
---|
4985 | ENDDO |
---|
4986 | |
---|
4987 | ! next -> y flux divergence calculation |
---|
4988 | |
---|
4989 | i_start = its |
---|
4990 | i_end = MIN(ite,ide-1) |
---|
4991 | j_start = jts |
---|
4992 | j_end = MIN(jte,jde-1) |
---|
4993 | |
---|
4994 | |
---|
4995 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
4996 | ! bounds so we can switch to second order flux close to the boundary |
---|
4997 | |
---|
4998 | j_start_f = j_start |
---|
4999 | j_end_f = j_end+1 |
---|
5000 | |
---|
5001 | IF(degrade_ys) then |
---|
5002 | j_start = jds+1 |
---|
5003 | j_start_f = j_start+1 |
---|
5004 | ENDIF |
---|
5005 | |
---|
5006 | IF(degrade_ye) then |
---|
5007 | j_end = jde-2 |
---|
5008 | j_end_f = jde-2 |
---|
5009 | ENDIF |
---|
5010 | |
---|
5011 | |
---|
5012 | jp1 = 2 |
---|
5013 | jp0 = 1 |
---|
5014 | |
---|
5015 | DO j = j_start, j_end+1 |
---|
5016 | |
---|
5017 | IF ((j < j_start_f) .and. degrade_ys) THEN |
---|
5018 | DO k = kts+1, ktf |
---|
5019 | DO i = i_start, i_end |
---|
5020 | fqy(i, k, jp1) = & |
---|
5021 | 0.5*(fzm(k)*rv(i,k,j_start)+fzp(k)*rv(i,k-1,j_start)) & |
---|
5022 | *(w(i,k,j_start)+w(i,k,j_start-1)) |
---|
5023 | ENDDO |
---|
5024 | ENDDO |
---|
5025 | k = ktf+1 |
---|
5026 | DO i = i_start, i_end |
---|
5027 | fqy(i, k, jp1) = & |
---|
5028 | 0.5*((2.-fzm(k-1))*rv(i,k-1,j_start)-fzp(k-1)*rv(i,k-2,j_start)) & |
---|
5029 | *(w(i,k,j_start)+w(i,k,j_start-1)) |
---|
5030 | ENDDO |
---|
5031 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
5032 | DO k = kts+1, ktf |
---|
5033 | DO i = i_start, i_end |
---|
5034 | ! Assumes j>j_end_f is ONLY j_end+1 ... |
---|
5035 | ! fqy(i, k, jp1) = & |
---|
5036 | ! 0.5*(fzm(k)*rv(i,k,j_end+1)+fzp(k)*rv(i,k-1,j_end+1)) & |
---|
5037 | ! *(w(i,k,j_end+1)+w(i,k,j_end)) |
---|
5038 | fqy(i, k, jp1) = & |
---|
5039 | 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j)) & |
---|
5040 | *(w(i,k,j)+w(i,k,j-1)) |
---|
5041 | ENDDO |
---|
5042 | ENDDO |
---|
5043 | k = ktf+1 |
---|
5044 | DO i = i_start, i_end |
---|
5045 | ! Assumes j>j_end_f is ONLY j_end+1 ... |
---|
5046 | ! fqy(i, k, jp1) = & |
---|
5047 | ! 0.5*((2.-fzm(k-1))*rv(i,k-1,j_end+1)-fzp(k-1)*rv(i,k-2,j_end+1)) & |
---|
5048 | ! *(w(i,k,j_end+1)+w(i,k,j_end)) |
---|
5049 | fqy(i, k, jp1) = & |
---|
5050 | 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j)) & |
---|
5051 | *(w(i,k,j)+w(i,k,j-1)) |
---|
5052 | ENDDO |
---|
5053 | ELSE |
---|
5054 | ! 3rd or 4th order flux |
---|
5055 | DO k = kts+1, ktf |
---|
5056 | DO i = i_start, i_end |
---|
5057 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
5058 | fqy( i, k, jp1 ) = vel*flux3( w(i,k,j-2), w(i,k,j-1), & |
---|
5059 | w(i,k,j ), w(i,k,j+1), & |
---|
5060 | vel ) |
---|
5061 | ENDDO |
---|
5062 | ENDDO |
---|
5063 | k = ktf+1 |
---|
5064 | DO i = i_start, i_end |
---|
5065 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
5066 | fqy( i, k, jp1 ) = vel*flux3( w(i,k,j-2), w(i,k,j-1), & |
---|
5067 | w(i,k,j ), w(i,k,j+1), & |
---|
5068 | vel ) |
---|
5069 | ENDDO |
---|
5070 | END IF |
---|
5071 | |
---|
5072 | ! y flux-divergence into tendency |
---|
5073 | IF( j > j_start ) THEN |
---|
5074 | |
---|
5075 | DO k = kts+1, ktf+1 |
---|
5076 | DO i = i_start, i_end |
---|
5077 | mrdy=msft(i,j-1)*rdy |
---|
5078 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
5079 | ENDDO |
---|
5080 | ENDDO |
---|
5081 | |
---|
5082 | |
---|
5083 | END IF |
---|
5084 | |
---|
5085 | jtmp = jp1 |
---|
5086 | jp1 = jp0 |
---|
5087 | jp0 = jtmp |
---|
5088 | |
---|
5089 | ENDDO |
---|
5090 | |
---|
5091 | ELSE IF (horz_order == 2 ) THEN |
---|
5092 | |
---|
5093 | i_start = its |
---|
5094 | i_end = MIN(ite,ide-1) |
---|
5095 | j_start = jts |
---|
5096 | j_end = MIN(jte,jde-1) |
---|
5097 | |
---|
5098 | IF ( .NOT. config_flags%periodic_x ) THEN |
---|
5099 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
5100 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-2,ite) |
---|
5101 | ENDIF |
---|
5102 | |
---|
5103 | DO j = j_start, j_end |
---|
5104 | DO k=kts+1,ktf |
---|
5105 | DO i = i_start, i_end |
---|
5106 | |
---|
5107 | mrdx=msft(i,j)*rdx |
---|
5108 | |
---|
5109 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.5 & |
---|
5110 | *((fzm(k)*ru(i+1,k,j)+fzp(k)*ru(i+1,k-1,j)) & |
---|
5111 | *(w(i+1,k,j)+w(i,k,j)) & |
---|
5112 | -(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
---|
5113 | *(w(i,k,j)+w(i-1,k,j))) |
---|
5114 | |
---|
5115 | ENDDO |
---|
5116 | ENDDO |
---|
5117 | |
---|
5118 | k = ktf+1 |
---|
5119 | DO i = i_start, i_end |
---|
5120 | |
---|
5121 | mrdx=msft(i,j)*rdx |
---|
5122 | |
---|
5123 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.5 & |
---|
5124 | *(((2.-fzm(k-1))*ru(i+1,k-1,j)-fzp(k-1)*ru(i+1,k-2,j)) & |
---|
5125 | *(w(i+1,k,j)+w(i,k,j)) & |
---|
5126 | -((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
---|
5127 | *(w(i,k,j)+w(i-1,k,j))) |
---|
5128 | |
---|
5129 | ENDDO |
---|
5130 | |
---|
5131 | ENDDO |
---|
5132 | |
---|
5133 | i_start = its |
---|
5134 | i_end = MIN(ite,ide-1) |
---|
5135 | ! |
---|
5136 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
---|
5137 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-2,jte) |
---|
5138 | |
---|
5139 | DO j = j_start, j_end |
---|
5140 | DO k=kts+1,ktf |
---|
5141 | DO i = i_start, i_end |
---|
5142 | |
---|
5143 | mrdy=msft(i,j)*rdy |
---|
5144 | |
---|
5145 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.5 & |
---|
5146 | *((fzm(k)*rv(i,k,j+1)+fzp(k)*rv(i,k-1,j+1))* & |
---|
5147 | (w(i,k,j+1)+w(i,k,j)) & |
---|
5148 | -(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j)) & |
---|
5149 | *(w(i,k,j)+w(i,k,j-1))) |
---|
5150 | |
---|
5151 | ENDDO |
---|
5152 | ENDDO |
---|
5153 | |
---|
5154 | k = ktf+1 |
---|
5155 | DO i = i_start, i_end |
---|
5156 | |
---|
5157 | mrdy=msft(i,j)*rdy |
---|
5158 | |
---|
5159 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.5 & |
---|
5160 | *(((2.-fzm(k-1))*rv(i,k-1,j+1)-fzp(k-1)*rv(i,k-2,j+1))* & |
---|
5161 | (w(i,k,j+1)+w(i,k,j)) & |
---|
5162 | -((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j)) & |
---|
5163 | *(w(i,k,j)+w(i,k,j-1))) |
---|
5164 | |
---|
5165 | ENDDO |
---|
5166 | |
---|
5167 | ENDDO |
---|
5168 | |
---|
5169 | ELSE IF ( horz_order == 0 ) THEN |
---|
5170 | |
---|
5171 | ! Just in case we want to turn horizontal advection off, we can do it |
---|
5172 | |
---|
5173 | ELSE |
---|
5174 | |
---|
5175 | WRITE ( wrf_err_message ,*) ' advect_w_6a, h_order not known ',horz_order |
---|
5176 | CALL wrf_error_fatal ( wrf_err_message ) |
---|
5177 | |
---|
5178 | ENDIF horizontal_order_test |
---|
5179 | |
---|
5180 | |
---|
5181 | ! pick up the the horizontal radiation boundary conditions. |
---|
5182 | ! (these are the computations that don't require 'cb'. |
---|
5183 | ! first, set to index ranges |
---|
5184 | |
---|
5185 | |
---|
5186 | i_start = its |
---|
5187 | i_end = MIN(ite,ide-1) |
---|
5188 | j_start = jts |
---|
5189 | j_end = MIN(jte,jde-1) |
---|
5190 | |
---|
5191 | IF( (config_flags%open_xs) .and. (its == ids)) THEN |
---|
5192 | |
---|
5193 | DO j = j_start, j_end |
---|
5194 | DO k = kts+1, ktf |
---|
5195 | |
---|
5196 | uw = 0.5*(fzm(k)*(ru(its,k ,j)+ru(its+1,k ,j)) + & |
---|
5197 | fzp(k)*(ru(its,k-1,j)+ru(its+1,k-1,j)) ) |
---|
5198 | ub = MIN( uw, 0. ) |
---|
5199 | |
---|
5200 | tendency(its,k,j) = tendency(its,k,j) & |
---|
5201 | - rdx*( & |
---|
5202 | ub*(w_old(its+1,k,j) - w_old(its,k,j)) + & |
---|
5203 | w(its,k,j)*( & |
---|
5204 | fzm(k)*(ru(its+1,k ,j)-ru(its,k ,j))+ & |
---|
5205 | fzp(k)*(ru(its+1,k-1,j)-ru(its,k-1,j))) & |
---|
5206 | ) |
---|
5207 | ENDDO |
---|
5208 | ENDDO |
---|
5209 | |
---|
5210 | k = ktf+1 |
---|
5211 | DO j = j_start, j_end |
---|
5212 | |
---|
5213 | uw = 0.5*( (2.-fzm(k-1))*(ru(its,k-1,j)+ru(its+1,k-1,j)) & |
---|
5214 | -fzp(k-1)*(ru(its,k-2,j)+ru(its+1,k-2,j)) ) |
---|
5215 | ub = MIN( uw, 0. ) |
---|
5216 | |
---|
5217 | tendency(its,k,j) = tendency(its,k,j) & |
---|
5218 | - rdx*( & |
---|
5219 | ub*(w_old(its+1,k,j) - w_old(its,k,j)) + & |
---|
5220 | w(its,k,j)*( & |
---|
5221 | (2.-fzm(k-1))*(ru(its+1,k-1,j)-ru(its,k-1,j))- & |
---|
5222 | fzp(k-1)*(ru(its+1,k-2,j)-ru(its,k-2,j))) & |
---|
5223 | ) |
---|
5224 | ENDDO |
---|
5225 | |
---|
5226 | ENDIF |
---|
5227 | |
---|
5228 | IF( (config_flags%open_xe) .and. (ite == ide)) THEN |
---|
5229 | |
---|
5230 | DO j = j_start, j_end |
---|
5231 | DO k = kts+1, ktf |
---|
5232 | |
---|
5233 | uw = 0.5*(fzm(k)*(ru(ite-1,k ,j)+ru(ite,k ,j)) + & |
---|
5234 | fzp(k)*(ru(ite-1,k-1,j)+ru(ite,k-1,j)) ) |
---|
5235 | ub = MAX( uw, 0. ) |
---|
5236 | |
---|
5237 | tendency(i_end,k,j) = tendency(i_end,k,j) & |
---|
5238 | - rdx*( & |
---|
5239 | ub*(w_old(i_end,k,j) - w_old(i_end-1,k,j)) + & |
---|
5240 | w(i_end,k,j)*( & |
---|
5241 | fzm(k)*(ru(ite,k ,j)-ru(ite-1,k ,j)) + & |
---|
5242 | fzp(k)*(ru(ite,k-1,j)-ru(ite-1,k-1,j))) & |
---|
5243 | ) |
---|
5244 | ENDDO |
---|
5245 | ENDDO |
---|
5246 | |
---|
5247 | k = ktf+1 |
---|
5248 | DO j = j_start, j_end |
---|
5249 | |
---|
5250 | uw = 0.5*( (2.-fzm(k-1))*(ru(ite-1,k-1,j)+ru(ite,k-1,j)) & |
---|
5251 | -fzp(k-1)*(ru(ite-1,k-2,j)+ru(ite,k-2,j)) ) |
---|
5252 | ub = MAX( uw, 0. ) |
---|
5253 | |
---|
5254 | tendency(i_end,k,j) = tendency(i_end,k,j) & |
---|
5255 | - rdx*( & |
---|
5256 | ub*(w_old(i_end,k,j) - w_old(i_end-1,k,j)) + & |
---|
5257 | w(i_end,k,j)*( & |
---|
5258 | (2.-fzm(k-1))*(ru(ite,k-1,j)-ru(ite-1,k-1,j)) - & |
---|
5259 | fzp(k-1)*(ru(ite,k-2,j)-ru(ite-1,k-2,j))) & |
---|
5260 | ) |
---|
5261 | ENDDO |
---|
5262 | |
---|
5263 | ENDIF |
---|
5264 | |
---|
5265 | |
---|
5266 | IF( (config_flags%open_ys) .and. (jts == jds)) THEN |
---|
5267 | |
---|
5268 | DO i = i_start, i_end |
---|
5269 | DO k = kts+1, ktf |
---|
5270 | |
---|
5271 | vw = 0.5*( fzm(k)*(rv(i,k ,jts)+rv(i,k ,jts+1)) + & |
---|
5272 | fzp(k)*(rv(i,k-1,jts)+rv(i,k-1,jts+1)) ) |
---|
5273 | vb = MIN( vw, 0. ) |
---|
5274 | |
---|
5275 | tendency(i,k,jts) = tendency(i,k,jts) & |
---|
5276 | - rdy*( & |
---|
5277 | vb*(w_old(i,k,jts+1) - w_old(i,k,jts)) + & |
---|
5278 | w(i,k,jts)*( & |
---|
5279 | fzm(k)*(rv(i,k ,jts+1)-rv(i,k ,jts))+ & |
---|
5280 | fzp(k)*(rv(i,k-1,jts+1)-rv(i,k-1,jts))) & |
---|
5281 | ) |
---|
5282 | ENDDO |
---|
5283 | ENDDO |
---|
5284 | |
---|
5285 | k = ktf+1 |
---|
5286 | DO i = i_start, i_end |
---|
5287 | vw = 0.5*( (2.-fzm(k-1))*(rv(i,k-1,jts)+rv(i,k-1,jts+1)) & |
---|
5288 | -fzp(k-1)*(rv(i,k-2,jts)+rv(i,k-2,jts+1)) ) |
---|
5289 | vb = MIN( vw, 0. ) |
---|
5290 | |
---|
5291 | tendency(i,k,jts) = tendency(i,k,jts) & |
---|
5292 | - rdy*( & |
---|
5293 | vb*(w_old(i,k,jts+1) - w_old(i,k,jts)) + & |
---|
5294 | w(i,k,jts)*( & |
---|
5295 | (2.-fzm(k-1))*(rv(i,k-1,jts+1)-rv(i,k-1,jts))- & |
---|
5296 | fzp(k-1)*(rv(i,k-2,jts+1)-rv(i,k-2,jts))) & |
---|
5297 | ) |
---|
5298 | ENDDO |
---|
5299 | |
---|
5300 | ENDIF |
---|
5301 | |
---|
5302 | IF( (config_flags%open_ye) .and. (jte == jde) ) THEN |
---|
5303 | |
---|
5304 | DO i = i_start, i_end |
---|
5305 | DO k = kts+1, ktf |
---|
5306 | |
---|
5307 | vw = 0.5*( fzm(k)*(rv(i,k ,jte-1)+rv(i,k ,jte)) + & |
---|
5308 | fzp(k)*(rv(i,k-1,jte-1)+rv(i,k-1,jte)) ) |
---|
5309 | vb = MAX( vw, 0. ) |
---|
5310 | |
---|
5311 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
---|
5312 | - rdy*( & |
---|
5313 | vb*(w_old(i,k,j_end) - w_old(i,k,j_end-1)) + & |
---|
5314 | w(i,k,j_end)*( & |
---|
5315 | fzm(k)*(rv(i,k ,jte)-rv(i,k ,jte-1))+ & |
---|
5316 | fzp(k)*(rv(i,k-1,jte)-rv(i,k-1,jte-1))) & |
---|
5317 | ) |
---|
5318 | ENDDO |
---|
5319 | ENDDO |
---|
5320 | |
---|
5321 | k = ktf+1 |
---|
5322 | DO i = i_start, i_end |
---|
5323 | |
---|
5324 | vw = 0.5*( (2.-fzm(k-1))*(rv(i,k-1,jte-1)+rv(i,k-1,jte)) & |
---|
5325 | -fzp(k-1)*(rv(i,k-2,jte-1)+rv(i,k-2,jte)) ) |
---|
5326 | vb = MAX( vw, 0. ) |
---|
5327 | |
---|
5328 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
---|
5329 | - rdy*( & |
---|
5330 | vb*(w_old(i,k,j_end) - w_old(i,k,j_end-1)) + & |
---|
5331 | w(i,k,j_end)*( & |
---|
5332 | (2.-fzm(k-1))*(rv(i,k-1,jte)-rv(i,k-1,jte-1))- & |
---|
5333 | fzp(k-1)*(rv(i,k-2,jte)-rv(i,k-2,jte-1))) & |
---|
5334 | ) |
---|
5335 | ENDDO |
---|
5336 | |
---|
5337 | ENDIF |
---|
5338 | |
---|
5339 | !-------------------- vertical advection |
---|
5340 | |
---|
5341 | i_start = its |
---|
5342 | i_end = MIN(ite,ide-1) |
---|
5343 | j_start = jts |
---|
5344 | j_end = MIN(jte,jde-1) |
---|
5345 | |
---|
5346 | DO i = i_start, i_end |
---|
5347 | vflux(i,kts)=0. |
---|
5348 | vflux(i,kte)=0. |
---|
5349 | ENDDO |
---|
5350 | |
---|
5351 | vert_order_test : IF (vert_order == 6) THEN |
---|
5352 | |
---|
5353 | DO j = j_start, j_end |
---|
5354 | |
---|
5355 | DO k=kts+3,ktf-1 |
---|
5356 | DO i = i_start, i_end |
---|
5357 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
5358 | vflux(i,k) = vel*flux6( & |
---|
5359 | w(i,k-3,j), w(i,k-2,j), w(i,k-1,j), & |
---|
5360 | w(i,k ,j), w(i,k+1,j), w(i,k+2,j), -vel ) |
---|
5361 | ENDDO |
---|
5362 | ENDDO |
---|
5363 | |
---|
5364 | DO i = i_start, i_end |
---|
5365 | |
---|
5366 | k=kts+1 |
---|
5367 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5368 | |
---|
5369 | k = kts+2 |
---|
5370 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
5371 | vflux(i,k) = vel*flux4( & |
---|
5372 | w(i,k-2,j), w(i,k-1,j), & |
---|
5373 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
5374 | |
---|
5375 | k = ktf |
---|
5376 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
5377 | vflux(i,k) = vel*flux4( & |
---|
5378 | w(i,k-2,j), w(i,k-1,j), & |
---|
5379 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
5380 | |
---|
5381 | k=ktf+1 |
---|
5382 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5383 | |
---|
5384 | ENDDO |
---|
5385 | |
---|
5386 | DO k=kts+1,ktf |
---|
5387 | DO i = i_start, i_end |
---|
5388 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
5389 | ENDDO |
---|
5390 | ENDDO |
---|
5391 | |
---|
5392 | ! pick up flux contribution for w at the lid. wcs, 13 march 2004 |
---|
5393 | k = ktf+1 |
---|
5394 | DO i = i_start, i_end |
---|
5395 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
---|
5396 | ENDDO |
---|
5397 | |
---|
5398 | ENDDO |
---|
5399 | |
---|
5400 | ELSE IF (vert_order == 5) THEN |
---|
5401 | |
---|
5402 | DO j = j_start, j_end |
---|
5403 | |
---|
5404 | DO k=kts+3,ktf-1 |
---|
5405 | DO i = i_start, i_end |
---|
5406 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
5407 | vflux(i,k) = vel*flux5( & |
---|
5408 | w(i,k-3,j), w(i,k-2,j), w(i,k-1,j), & |
---|
5409 | w(i,k ,j), w(i,k+1,j), w(i,k+2,j), -vel ) |
---|
5410 | ENDDO |
---|
5411 | ENDDO |
---|
5412 | |
---|
5413 | DO i = i_start, i_end |
---|
5414 | |
---|
5415 | k=kts+1 |
---|
5416 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5417 | |
---|
5418 | k = kts+2 |
---|
5419 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
5420 | vflux(i,k) = vel*flux3( & |
---|
5421 | w(i,k-2,j), w(i,k-1,j), & |
---|
5422 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
5423 | k = ktf |
---|
5424 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
5425 | vflux(i,k) = vel*flux3( & |
---|
5426 | w(i,k-2,j), w(i,k-1,j), & |
---|
5427 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
5428 | |
---|
5429 | k=ktf+1 |
---|
5430 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5431 | |
---|
5432 | ENDDO |
---|
5433 | |
---|
5434 | DO k=kts+1,ktf |
---|
5435 | DO i = i_start, i_end |
---|
5436 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
5437 | ENDDO |
---|
5438 | ENDDO |
---|
5439 | |
---|
5440 | ! pick up flux contribution for w at the lid, wcs. 13 march 2004 |
---|
5441 | k = ktf+1 |
---|
5442 | DO i = i_start, i_end |
---|
5443 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
---|
5444 | ENDDO |
---|
5445 | |
---|
5446 | ENDDO |
---|
5447 | |
---|
5448 | ELSE IF (vert_order == 4) THEN |
---|
5449 | |
---|
5450 | DO j = j_start, j_end |
---|
5451 | |
---|
5452 | DO k=kts+2,ktf |
---|
5453 | DO i = i_start, i_end |
---|
5454 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
5455 | vflux(i,k) = vel*flux4( & |
---|
5456 | w(i,k-2,j), w(i,k-1,j), & |
---|
5457 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
5458 | ENDDO |
---|
5459 | ENDDO |
---|
5460 | |
---|
5461 | DO i = i_start, i_end |
---|
5462 | |
---|
5463 | k=kts+1 |
---|
5464 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5465 | k=ktf+1 |
---|
5466 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5467 | |
---|
5468 | ENDDO |
---|
5469 | |
---|
5470 | DO k=kts+1,ktf |
---|
5471 | DO i = i_start, i_end |
---|
5472 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
5473 | ENDDO |
---|
5474 | ENDDO |
---|
5475 | |
---|
5476 | ! pick up flux contribution for w at the lid, wcs. 13 march 2004 |
---|
5477 | k = ktf+1 |
---|
5478 | DO i = i_start, i_end |
---|
5479 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
---|
5480 | ENDDO |
---|
5481 | |
---|
5482 | ENDDO |
---|
5483 | |
---|
5484 | ELSE IF (vert_order == 3) THEN |
---|
5485 | |
---|
5486 | DO j = j_start, j_end |
---|
5487 | |
---|
5488 | DO k=kts+2,ktf |
---|
5489 | DO i = i_start, i_end |
---|
5490 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
5491 | vflux(i,k) = vel*flux3( & |
---|
5492 | w(i,k-2,j), w(i,k-1,j), & |
---|
5493 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
5494 | ENDDO |
---|
5495 | ENDDO |
---|
5496 | |
---|
5497 | DO i = i_start, i_end |
---|
5498 | |
---|
5499 | k=kts+1 |
---|
5500 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5501 | k=ktf+1 |
---|
5502 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5503 | |
---|
5504 | ENDDO |
---|
5505 | |
---|
5506 | DO k=kts+1,ktf |
---|
5507 | DO i = i_start, i_end |
---|
5508 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
5509 | ENDDO |
---|
5510 | ENDDO |
---|
5511 | |
---|
5512 | ! pick up flux contribution for w at the lid, wcs. 13 march 2004 |
---|
5513 | k = ktf+1 |
---|
5514 | DO i = i_start, i_end |
---|
5515 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
---|
5516 | ENDDO |
---|
5517 | |
---|
5518 | ENDDO |
---|
5519 | |
---|
5520 | ELSE IF (vert_order == 2) THEN |
---|
5521 | |
---|
5522 | DO j = j_start, j_end |
---|
5523 | DO k=kts+1,ktf+1 |
---|
5524 | DO i = i_start, i_end |
---|
5525 | |
---|
5526 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5527 | ENDDO |
---|
5528 | ENDDO |
---|
5529 | DO k=kts+1,ktf |
---|
5530 | DO i = i_start, i_end |
---|
5531 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
5532 | |
---|
5533 | ENDDO |
---|
5534 | ENDDO |
---|
5535 | |
---|
5536 | ! pick up flux contribution for w at the lid, wcs. 13 march 2004 |
---|
5537 | k = ktf+1 |
---|
5538 | DO i = i_start, i_end |
---|
5539 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
---|
5540 | ENDDO |
---|
5541 | |
---|
5542 | ENDDO |
---|
5543 | |
---|
5544 | ELSE |
---|
5545 | |
---|
5546 | WRITE (wrf_err_message ,*) ' advect_w, v_order not known ',vert_order |
---|
5547 | CALL wrf_error_fatal ( wrf_err_message ) |
---|
5548 | |
---|
5549 | ENDIF vert_order_test |
---|
5550 | |
---|
5551 | END SUBROUTINE advect_w |
---|
5552 | |
---|
5553 | !---------------------------------------------------------------- |
---|
5554 | |
---|
5555 | SUBROUTINE advect_scalar_pd ( field, field_old, tendency, & |
---|
5556 | ru, rv, rom, & |
---|
5557 | mut, mub, mu_old, & |
---|
5558 | config_flags, & |
---|
5559 | msfu, msfv, msft, & |
---|
5560 | fzm, fzp, & |
---|
5561 | rdx, rdy, rdzw, dt, & |
---|
5562 | ids, ide, jds, jde, kds, kde, & |
---|
5563 | ims, ime, jms, jme, kms, kme, & |
---|
5564 | its, ite, jts, jte, kts, kte ) |
---|
5565 | |
---|
5566 | ! this is a first cut at a positive definite advection option |
---|
5567 | ! for scalars in WRF. This version is memory intensive -> |
---|
5568 | ! we save 3d arrays of x, y and z both high and low order fluxes |
---|
5569 | ! (six in all). Alternatively, we could sweep in a direction |
---|
5570 | ! and lower the cost considerably. |
---|
5571 | |
---|
5572 | ! uses the Smolarkiewicz MWR 1989 approach, with addition of first-order |
---|
5573 | ! fluxes initially |
---|
5574 | |
---|
5575 | ! WCS, 3 December 2002, 24 February 2003 |
---|
5576 | |
---|
5577 | IMPLICIT NONE |
---|
5578 | |
---|
5579 | ! Input data |
---|
5580 | |
---|
5581 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
5582 | |
---|
5583 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
5584 | ims, ime, jms, jme, kms, kme, & |
---|
5585 | its, ite, jts, jte, kts, kte |
---|
5586 | |
---|
5587 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: field, & |
---|
5588 | field_old, & |
---|
5589 | ru, & |
---|
5590 | rv, & |
---|
5591 | rom |
---|
5592 | |
---|
5593 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut, mub, mu_old |
---|
5594 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
5595 | |
---|
5596 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
---|
5597 | msfv, & |
---|
5598 | msft |
---|
5599 | |
---|
5600 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
5601 | fzp, & |
---|
5602 | rdzw |
---|
5603 | |
---|
5604 | REAL , INTENT(IN ) :: rdx, & |
---|
5605 | rdy, & |
---|
5606 | dt |
---|
5607 | |
---|
5608 | ! Local data |
---|
5609 | |
---|
5610 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
5611 | INTEGER :: i_start, i_end, j_start, j_end |
---|
5612 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
---|
5613 | INTEGER :: jmin, jmax, jp, jm, imin, imax |
---|
5614 | |
---|
5615 | REAL :: mrdx, mrdy, ub, vb, uw, vw, mu |
---|
5616 | |
---|
5617 | ! storage for high and low order fluxes |
---|
5618 | |
---|
5619 | REAL, DIMENSION( its-1:ite+2, kts:kte, jts-1:jte+2 ) :: fqx, fqy, fqz |
---|
5620 | REAL, DIMENSION( its-1:ite+2, kts:kte, jts-1:jte+2 ) :: fqxl, fqyl, fqzl |
---|
5621 | |
---|
5622 | INTEGER :: horz_order, vert_order |
---|
5623 | |
---|
5624 | LOGICAL :: degrade_xs, degrade_ys |
---|
5625 | LOGICAL :: degrade_xe, degrade_ye |
---|
5626 | |
---|
5627 | INTEGER :: jp1, jp0, jtmp |
---|
5628 | |
---|
5629 | REAL :: flux_out, ph_low, scale |
---|
5630 | REAL, PARAMETER :: eps=1.e-20 |
---|
5631 | |
---|
5632 | |
---|
5633 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
---|
5634 | |
---|
5635 | REAL :: flux3, flux4, flux5, flux6, flux_upwind |
---|
5636 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel, cr |
---|
5637 | |
---|
5638 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
5639 | (7./12.)*(q_i + q_im1) - (1./12.)*(q_ip1 + q_im2) |
---|
5640 | |
---|
5641 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
5642 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
---|
5643 | sign(1.,ua)*(1./12.)*((q_ip1 - q_im2)-3.*(q_i-q_im1)) |
---|
5644 | |
---|
5645 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
5646 | (37./60.)*(q_i+q_im1) - (2./15.)*(q_ip1+q_im2) & |
---|
5647 | +(1./60.)*(q_ip2+q_im3) |
---|
5648 | |
---|
5649 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
5650 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
---|
5651 | -sign(1.,ua)*(1./60.)*( & |
---|
5652 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) ) |
---|
5653 | |
---|
5654 | flux_upwind(q_im1, q_i, cr ) = 0.5*min( 1.0,(cr+abs(cr)))*q_im1 & |
---|
5655 | +0.5*max(-1.0,(cr-abs(cr)))*q_i |
---|
5656 | |
---|
5657 | ! flux_upwind(q_im1, q_i, cr ) = 0.5*(1.+sign(1.,cr))*q_im1 & |
---|
5658 | ! +0.5*(1.-sign(1.,cr))*q_i |
---|
5659 | ! flux_upwind(q_im1, q_i, cr ) = 0. |
---|
5660 | |
---|
5661 | REAL :: dx,dy,dz |
---|
5662 | |
---|
5663 | LOGICAL, PARAMETER :: pd_limit = .true. |
---|
5664 | |
---|
5665 | ! set order for the advection schemes |
---|
5666 | |
---|
5667 | ! write(6,*) ' in pd advection routine ' |
---|
5668 | |
---|
5669 | ktf=MIN(kte,kde-1) |
---|
5670 | horz_order = config_flags%h_sca_adv_order |
---|
5671 | vert_order = config_flags%v_sca_adv_order |
---|
5672 | |
---|
5673 | ! determine boundary mods for flux operators |
---|
5674 | ! We degrade the flux operators from 3rd/4th order |
---|
5675 | ! to second order one gridpoint in from the boundaries for |
---|
5676 | ! all boundary conditions except periodic and symmetry - these |
---|
5677 | ! conditions have boundary zone data fill for correct application |
---|
5678 | ! of the higher order flux stencils |
---|
5679 | |
---|
5680 | degrade_xs = .true. |
---|
5681 | degrade_xe = .true. |
---|
5682 | degrade_ys = .true. |
---|
5683 | degrade_ye = .true. |
---|
5684 | |
---|
5685 | ! begin with horizontal flux divergence |
---|
5686 | ! here is the choice of flux operators |
---|
5687 | |
---|
5688 | |
---|
5689 | horizontal_order_test : IF( horz_order == 6 ) THEN |
---|
5690 | |
---|
5691 | IF( config_flags%periodic_x .or. & |
---|
5692 | config_flags%symmetric_xs .or. & |
---|
5693 | (its > ids+3) ) degrade_xs = .false. |
---|
5694 | IF( config_flags%periodic_x .or. & |
---|
5695 | config_flags%symmetric_xe .or. & |
---|
5696 | (ite < ide-4) ) degrade_xe = .false. |
---|
5697 | IF( config_flags%periodic_y .or. & |
---|
5698 | config_flags%symmetric_ys .or. & |
---|
5699 | (jts > jds+3) ) degrade_ys = .false. |
---|
5700 | IF( config_flags%periodic_y .or. & |
---|
5701 | config_flags%symmetric_ye .or. & |
---|
5702 | (jte < jde-4) ) degrade_ye = .false. |
---|
5703 | |
---|
5704 | !--------------- y - advection first |
---|
5705 | |
---|
5706 | !-- y flux compute; these bounds are for periodic and sym b.c. |
---|
5707 | |
---|
5708 | ktf=MIN(kte,kde-1) |
---|
5709 | i_start = its-1 |
---|
5710 | i_end = MIN(ite,ide-1)+1 |
---|
5711 | j_start = jts-1 |
---|
5712 | j_end = MIN(jte,jde-1)+1 |
---|
5713 | j_start_f = j_start |
---|
5714 | j_end_f = j_end+1 |
---|
5715 | |
---|
5716 | !-- modify loop bounds if open or specified |
---|
5717 | |
---|
5718 | ! IF(degrade_xs) i_start = MAX(its-1,ids-1) |
---|
5719 | ! IF(degrade_xe) i_end = MIN(ite+1,ide-2) |
---|
5720 | IF(degrade_xs) i_start = MAX(its-1,ids) |
---|
5721 | IF(degrade_xe) i_end = MIN(ite+1,ide-1) |
---|
5722 | |
---|
5723 | IF(degrade_ys) then |
---|
5724 | j_start = MAX(jts-1,jds+1) |
---|
5725 | j_start_f = jds+3 |
---|
5726 | ENDIF |
---|
5727 | |
---|
5728 | IF(degrade_ye) then |
---|
5729 | j_end = MIN(jte+1,jde-2) |
---|
5730 | j_end_f = jde-3 |
---|
5731 | ENDIF |
---|
5732 | |
---|
5733 | ! compute fluxes, 6th order |
---|
5734 | |
---|
5735 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
---|
5736 | |
---|
5737 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
5738 | |
---|
5739 | DO k=kts,ktf |
---|
5740 | DO i = i_start, i_end |
---|
5741 | |
---|
5742 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
5743 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
5744 | vel = rv(i,k,j) |
---|
5745 | cr = vel*dt/dy/mu |
---|
5746 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
5747 | |
---|
5748 | fqy( i, k, j ) = vel*flux6( & |
---|
5749 | field(i,k,j-3), field(i,k,j-2), field(i,k,j-1), & |
---|
5750 | field(i,k,j ), field(i,k,j+1), field(i,k,j+2), vel ) |
---|
5751 | |
---|
5752 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
5753 | |
---|
5754 | ENDDO |
---|
5755 | ENDDO |
---|
5756 | |
---|
5757 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
5758 | |
---|
5759 | DO k=kts,ktf |
---|
5760 | DO i = i_start, i_end |
---|
5761 | |
---|
5762 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
5763 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
5764 | vel = rv(i,k,j) |
---|
5765 | cr = vel*dt/dy/mu |
---|
5766 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
5767 | |
---|
5768 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
---|
5769 | (field(i,k,j)+field(i,k,j-1)) |
---|
5770 | |
---|
5771 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
5772 | |
---|
5773 | ENDDO |
---|
5774 | ENDDO |
---|
5775 | |
---|
5776 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
5777 | |
---|
5778 | DO k=kts,ktf |
---|
5779 | DO i = i_start, i_end |
---|
5780 | |
---|
5781 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
5782 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
5783 | vel = rv(i,k,j) |
---|
5784 | cr = vel*dt/dy/mu |
---|
5785 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
5786 | |
---|
5787 | fqy( i, k, j ) = vel*flux4( & |
---|
5788 | field(i,k,j-2),field(i,k,j-1),field(i,k,j),field(i,k,j+1),vel ) |
---|
5789 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
5790 | |
---|
5791 | ENDDO |
---|
5792 | ENDDO |
---|
5793 | |
---|
5794 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
5795 | |
---|
5796 | DO k=kts,ktf |
---|
5797 | DO i = i_start, i_end |
---|
5798 | |
---|
5799 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
5800 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
5801 | vel = rv(i,k,j) |
---|
5802 | cr = vel*dt/dy/mu |
---|
5803 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
5804 | |
---|
5805 | fqy(i, k, j ) = 0.5*rv(i,k,j)* & |
---|
5806 | (field(i,k,j)+field(i,k,j-1)) |
---|
5807 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
5808 | |
---|
5809 | ENDDO |
---|
5810 | ENDDO |
---|
5811 | |
---|
5812 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
5813 | |
---|
5814 | DO k=kts,ktf |
---|
5815 | DO i = i_start, i_end |
---|
5816 | |
---|
5817 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
5818 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
5819 | vel = rv(i,k,j) |
---|
5820 | cr = vel*dt/dy/mu |
---|
5821 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
5822 | |
---|
5823 | fqy( i, k, j) = vel*flux4( & |
---|
5824 | field(i,k,j-2),field(i,k,j-1), & |
---|
5825 | field(i,k,j),field(i,k,j+1),vel ) |
---|
5826 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
5827 | |
---|
5828 | ENDDO |
---|
5829 | ENDDO |
---|
5830 | |
---|
5831 | ENDIF |
---|
5832 | |
---|
5833 | ENDDO j_loop_y_flux_6 |
---|
5834 | |
---|
5835 | ! next, x flux |
---|
5836 | |
---|
5837 | !-- these bounds are for periodic and sym conditions |
---|
5838 | |
---|
5839 | i_start = its-1 |
---|
5840 | i_end = MIN(ite,ide-1)+1 |
---|
5841 | i_start_f = i_start |
---|
5842 | i_end_f = i_end+1 |
---|
5843 | |
---|
5844 | j_start = jts-1 |
---|
5845 | j_end = MIN(jte,jde-1)+1 |
---|
5846 | |
---|
5847 | !-- modify loop bounds for open and specified b.c |
---|
5848 | |
---|
5849 | ! IF(degrade_ys) j_start = MAX(jts-1,jds+1) |
---|
5850 | ! IF(degrade_ye) j_end = MIN(jte+1,jde-2) |
---|
5851 | IF(degrade_ys) j_start = MAX(jts-1,jds) |
---|
5852 | IF(degrade_ye) j_end = MIN(jte+1,jde-1) |
---|
5853 | |
---|
5854 | IF(degrade_xs) then |
---|
5855 | i_start = MAX(ids+1,its-1) |
---|
5856 | i_start_f = ids+3 |
---|
5857 | ENDIF |
---|
5858 | |
---|
5859 | IF(degrade_xe) then |
---|
5860 | i_end = MIN(ide-2,ite+1) |
---|
5861 | i_end_f = ide-3 |
---|
5862 | ENDIF |
---|
5863 | |
---|
5864 | ! compute fluxes |
---|
5865 | |
---|
5866 | DO j = j_start, j_end |
---|
5867 | |
---|
5868 | ! 5th order flux |
---|
5869 | |
---|
5870 | DO k=kts,ktf |
---|
5871 | DO i = i_start_f, i_end_f |
---|
5872 | |
---|
5873 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
5874 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
5875 | vel = ru(i,k,j) |
---|
5876 | cr = vel*dt/dx/mu |
---|
5877 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
5878 | |
---|
5879 | fqx( i,k,j ) = vel*flux6( field(i-3,k,j), field(i-2,k,j), & |
---|
5880 | field(i-1,k,j), field(i ,k,j), & |
---|
5881 | field(i+1,k,j), field(i+2,k,j), & |
---|
5882 | vel ) |
---|
5883 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
5884 | |
---|
5885 | ENDDO |
---|
5886 | ENDDO |
---|
5887 | |
---|
5888 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
5889 | |
---|
5890 | IF( degrade_xs ) THEN |
---|
5891 | |
---|
5892 | DO i=i_start,i_start_f-1 |
---|
5893 | |
---|
5894 | IF(i == ids+1) THEN ! second order |
---|
5895 | DO k=kts,ktf |
---|
5896 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
5897 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
5898 | vel = ru(i,k,j)/mu |
---|
5899 | cr = vel*dt/dx |
---|
5900 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
5901 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
5902 | *(field(i,k,j)+field(i-1,k,j)) |
---|
5903 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
5904 | ENDDO |
---|
5905 | ENDIF |
---|
5906 | |
---|
5907 | IF(i == ids+2) THEN ! fourth order |
---|
5908 | DO k=kts,ktf |
---|
5909 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
5910 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
5911 | vel = ru(i,k,j) |
---|
5912 | cr = vel*dt/dx/mu |
---|
5913 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
5914 | fqx( i,k,j ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
5915 | field(i ,k,j), field(i+1,k,j), & |
---|
5916 | vel ) |
---|
5917 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
5918 | ENDDO |
---|
5919 | ENDIF |
---|
5920 | |
---|
5921 | ENDDO |
---|
5922 | |
---|
5923 | ENDIF |
---|
5924 | |
---|
5925 | IF( degrade_xe ) THEN |
---|
5926 | |
---|
5927 | DO i = i_end_f+1, i_end+1 |
---|
5928 | |
---|
5929 | IF( i == ide-1 ) THEN ! second order flux next to the boundary |
---|
5930 | DO k=kts,ktf |
---|
5931 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
5932 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
5933 | vel = ru(i,k,j) |
---|
5934 | cr = vel*dt/dx/mu |
---|
5935 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
5936 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
5937 | *(field(i,k,j)+field(i-1,k,j)) |
---|
5938 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
5939 | ENDDO |
---|
5940 | ENDIF |
---|
5941 | |
---|
5942 | |
---|
5943 | IF( i == ide-2 ) THEN ! fourth order flux one in from the boundary |
---|
5944 | DO k=kts,ktf |
---|
5945 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
5946 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
5947 | vel = ru(i,k,j) |
---|
5948 | cr = vel*dt/dx/mu |
---|
5949 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
5950 | fqx( i,k,j ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
5951 | field(i ,k,j), field(i+1,k,j), & |
---|
5952 | vel ) |
---|
5953 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
5954 | ENDDO |
---|
5955 | ENDIF |
---|
5956 | |
---|
5957 | ENDDO |
---|
5958 | |
---|
5959 | ENDIF |
---|
5960 | |
---|
5961 | ENDDO ! enddo for outer J loop |
---|
5962 | |
---|
5963 | !--- end of 6th order horizontal flux calculation |
---|
5964 | |
---|
5965 | ELSE IF( horz_order == 5 ) THEN |
---|
5966 | |
---|
5967 | IF( config_flags%periodic_x .or. & |
---|
5968 | config_flags%symmetric_xs .or. & |
---|
5969 | (its > ids+3) ) degrade_xs = .false. |
---|
5970 | IF( config_flags%periodic_x .or. & |
---|
5971 | config_flags%symmetric_xe .or. & |
---|
5972 | (ite < ide-4) ) degrade_xe = .false. |
---|
5973 | IF( config_flags%periodic_y .or. & |
---|
5974 | config_flags%symmetric_ys .or. & |
---|
5975 | (jts > jds+3) ) degrade_ys = .false. |
---|
5976 | IF( config_flags%periodic_y .or. & |
---|
5977 | config_flags%symmetric_ye .or. & |
---|
5978 | (jte < jde-4) ) degrade_ye = .false. |
---|
5979 | |
---|
5980 | !--------------- y - advection first |
---|
5981 | |
---|
5982 | !-- y flux compute; these bounds are for periodic and sym b.c. |
---|
5983 | |
---|
5984 | ktf=MIN(kte,kde-1) |
---|
5985 | i_start = its-1 |
---|
5986 | i_end = MIN(ite,ide-1)+1 |
---|
5987 | j_start = jts-1 |
---|
5988 | j_end = MIN(jte,jde-1)+1 |
---|
5989 | j_start_f = j_start |
---|
5990 | j_end_f = j_end+1 |
---|
5991 | |
---|
5992 | !-- modify loop bounds if open or specified |
---|
5993 | |
---|
5994 | ! IF(degrade_xs) i_start = MAX(its-1,ids-1) |
---|
5995 | ! IF(degrade_xe) i_end = MIN(ite+1,ide-2) |
---|
5996 | IF(degrade_xs) i_start = MAX(its-1,ids) |
---|
5997 | IF(degrade_xe) i_end = MIN(ite+1,ide-1) |
---|
5998 | |
---|
5999 | IF(degrade_ys) then |
---|
6000 | j_start = MAX(jts-1,jds+1) |
---|
6001 | j_start_f = jds+3 |
---|
6002 | ENDIF |
---|
6003 | |
---|
6004 | IF(degrade_ye) then |
---|
6005 | j_end = MIN(jte+1,jde-2) |
---|
6006 | j_end_f = jde-3 |
---|
6007 | ENDIF |
---|
6008 | |
---|
6009 | ! compute fluxes, 5th order |
---|
6010 | |
---|
6011 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
---|
6012 | |
---|
6013 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
6014 | |
---|
6015 | DO k=kts,ktf |
---|
6016 | DO i = i_start, i_end |
---|
6017 | |
---|
6018 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6019 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6020 | vel = rv(i,k,j) |
---|
6021 | cr = vel*dt/dy/mu |
---|
6022 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6023 | |
---|
6024 | fqy( i, k, j ) = vel*flux5( & |
---|
6025 | field(i,k,j-3), field(i,k,j-2), field(i,k,j-1), & |
---|
6026 | field(i,k,j ), field(i,k,j+1), field(i,k,j+2), vel ) |
---|
6027 | |
---|
6028 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6029 | |
---|
6030 | ENDDO |
---|
6031 | ENDDO |
---|
6032 | |
---|
6033 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
6034 | |
---|
6035 | DO k=kts,ktf |
---|
6036 | DO i = i_start, i_end |
---|
6037 | |
---|
6038 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6039 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6040 | vel = rv(i,k,j) |
---|
6041 | cr = vel*dt/dy/mu |
---|
6042 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6043 | |
---|
6044 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
---|
6045 | (field(i,k,j)+field(i,k,j-1)) |
---|
6046 | |
---|
6047 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6048 | |
---|
6049 | ENDDO |
---|
6050 | ENDDO |
---|
6051 | |
---|
6052 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
6053 | |
---|
6054 | DO k=kts,ktf |
---|
6055 | DO i = i_start, i_end |
---|
6056 | |
---|
6057 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6058 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6059 | vel = rv(i,k,j) |
---|
6060 | cr = vel*dt/dy/mu |
---|
6061 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6062 | |
---|
6063 | fqy( i, k, j ) = vel*flux3( & |
---|
6064 | field(i,k,j-2),field(i,k,j-1),field(i,k,j),field(i,k,j+1),vel ) |
---|
6065 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6066 | |
---|
6067 | ENDDO |
---|
6068 | ENDDO |
---|
6069 | |
---|
6070 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
6071 | |
---|
6072 | DO k=kts,ktf |
---|
6073 | DO i = i_start, i_end |
---|
6074 | |
---|
6075 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6076 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6077 | vel = rv(i,k,j) |
---|
6078 | cr = vel*dt/dy/mu |
---|
6079 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6080 | |
---|
6081 | fqy(i, k, j ) = 0.5*rv(i,k,j)* & |
---|
6082 | (field(i,k,j)+field(i,k,j-1)) |
---|
6083 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6084 | |
---|
6085 | ENDDO |
---|
6086 | ENDDO |
---|
6087 | |
---|
6088 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
6089 | |
---|
6090 | DO k=kts,ktf |
---|
6091 | DO i = i_start, i_end |
---|
6092 | |
---|
6093 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6094 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6095 | vel = rv(i,k,j) |
---|
6096 | cr = vel*dt/dy/mu |
---|
6097 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6098 | |
---|
6099 | fqy( i, k, j) = vel*flux3( & |
---|
6100 | field(i,k,j-2),field(i,k,j-1), & |
---|
6101 | field(i,k,j),field(i,k,j+1),vel ) |
---|
6102 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6103 | |
---|
6104 | ENDDO |
---|
6105 | ENDDO |
---|
6106 | |
---|
6107 | ENDIF |
---|
6108 | |
---|
6109 | ENDDO j_loop_y_flux_5 |
---|
6110 | |
---|
6111 | ! next, x flux |
---|
6112 | |
---|
6113 | !-- these bounds are for periodic and sym conditions |
---|
6114 | |
---|
6115 | i_start = its-1 |
---|
6116 | i_end = MIN(ite,ide-1)+1 |
---|
6117 | i_start_f = i_start |
---|
6118 | i_end_f = i_end+1 |
---|
6119 | |
---|
6120 | j_start = jts-1 |
---|
6121 | j_end = MIN(jte,jde-1)+1 |
---|
6122 | |
---|
6123 | !-- modify loop bounds for open and specified b.c |
---|
6124 | |
---|
6125 | ! IF(degrade_ys) j_start = MAX(jts-1,jds+1) |
---|
6126 | ! IF(degrade_ye) j_end = MIN(jte+1,jde-2) |
---|
6127 | IF(degrade_ys) j_start = MAX(jts-1,jds) |
---|
6128 | IF(degrade_ye) j_end = MIN(jte+1,jde-1) |
---|
6129 | |
---|
6130 | IF(degrade_xs) then |
---|
6131 | i_start = MAX(ids+1,its-1) |
---|
6132 | i_start_f = ids+3 |
---|
6133 | ENDIF |
---|
6134 | |
---|
6135 | IF(degrade_xe) then |
---|
6136 | i_end = MIN(ide-2,ite+1) |
---|
6137 | i_end_f = ide-3 |
---|
6138 | ENDIF |
---|
6139 | |
---|
6140 | ! compute fluxes |
---|
6141 | |
---|
6142 | DO j = j_start, j_end |
---|
6143 | |
---|
6144 | ! 5th order flux |
---|
6145 | |
---|
6146 | DO k=kts,ktf |
---|
6147 | DO i = i_start_f, i_end_f |
---|
6148 | |
---|
6149 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6150 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6151 | vel = ru(i,k,j) |
---|
6152 | cr = vel*dt/dx/mu |
---|
6153 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6154 | |
---|
6155 | fqx( i,k,j ) = vel*flux5( field(i-3,k,j), field(i-2,k,j), & |
---|
6156 | field(i-1,k,j), field(i ,k,j), & |
---|
6157 | field(i+1,k,j), field(i+2,k,j), & |
---|
6158 | vel ) |
---|
6159 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6160 | |
---|
6161 | ENDDO |
---|
6162 | ENDDO |
---|
6163 | |
---|
6164 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
6165 | |
---|
6166 | IF( degrade_xs ) THEN |
---|
6167 | |
---|
6168 | DO i=i_start,i_start_f-1 |
---|
6169 | |
---|
6170 | IF(i == ids+1) THEN ! second order |
---|
6171 | DO k=kts,ktf |
---|
6172 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6173 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6174 | vel = ru(i,k,j)/mu |
---|
6175 | cr = vel*dt/dx |
---|
6176 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6177 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
6178 | *(field(i,k,j)+field(i-1,k,j)) |
---|
6179 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6180 | ENDDO |
---|
6181 | ENDIF |
---|
6182 | |
---|
6183 | IF(i == ids+2) THEN ! third order |
---|
6184 | DO k=kts,ktf |
---|
6185 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6186 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6187 | vel = ru(i,k,j) |
---|
6188 | cr = vel*dt/dx/mu |
---|
6189 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6190 | fqx( i,k,j ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
6191 | field(i ,k,j), field(i+1,k,j), & |
---|
6192 | vel ) |
---|
6193 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6194 | ENDDO |
---|
6195 | ENDIF |
---|
6196 | |
---|
6197 | ENDDO |
---|
6198 | |
---|
6199 | ENDIF |
---|
6200 | |
---|
6201 | IF( degrade_xe ) THEN |
---|
6202 | |
---|
6203 | DO i = i_end_f+1, i_end+1 |
---|
6204 | |
---|
6205 | IF( i == ide-1 ) THEN ! second order flux next to the boundary |
---|
6206 | DO k=kts,ktf |
---|
6207 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6208 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6209 | vel = ru(i,k,j) |
---|
6210 | cr = vel*dt/dx/mu |
---|
6211 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6212 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
6213 | *(field(i,k,j)+field(i-1,k,j)) |
---|
6214 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6215 | ENDDO |
---|
6216 | ENDIF |
---|
6217 | |
---|
6218 | |
---|
6219 | IF( i == ide-2 ) THEN ! third order flux one in from the boundary |
---|
6220 | DO k=kts,ktf |
---|
6221 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6222 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6223 | vel = ru(i,k,j) |
---|
6224 | cr = vel*dt/dx/mu |
---|
6225 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6226 | fqx( i,k,j ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
6227 | field(i ,k,j), field(i+1,k,j), & |
---|
6228 | vel ) |
---|
6229 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6230 | ENDDO |
---|
6231 | ENDIF |
---|
6232 | |
---|
6233 | ENDDO |
---|
6234 | |
---|
6235 | ENDIF |
---|
6236 | |
---|
6237 | ENDDO ! enddo for outer J loop |
---|
6238 | |
---|
6239 | !--- end of 5th order horizontal flux calculation |
---|
6240 | |
---|
6241 | ELSE IF( horz_order == 4 ) THEN |
---|
6242 | |
---|
6243 | IF( config_flags%periodic_x .or. & |
---|
6244 | config_flags%symmetric_xs .or. & |
---|
6245 | (its > ids+1) ) degrade_xs = .false. |
---|
6246 | IF( config_flags%periodic_x .or. & |
---|
6247 | config_flags%symmetric_xe .or. & |
---|
6248 | (ite < ide-2) ) degrade_xe = .false. |
---|
6249 | IF( config_flags%periodic_y .or. & |
---|
6250 | config_flags%symmetric_ys .or. & |
---|
6251 | (jts > jds+1) ) degrade_ys = .false. |
---|
6252 | IF( config_flags%periodic_y .or. & |
---|
6253 | config_flags%symmetric_ye .or. & |
---|
6254 | (jte < jde-2) ) degrade_ye = .false. |
---|
6255 | |
---|
6256 | !--------------- y - advection first |
---|
6257 | |
---|
6258 | !-- y flux compute; these bounds are for periodic and sym b.c. |
---|
6259 | |
---|
6260 | ktf=MIN(kte,kde-1) |
---|
6261 | i_start = its-1 |
---|
6262 | i_end = MIN(ite,ide-1)+1 |
---|
6263 | j_start = jts-1 |
---|
6264 | j_end = MIN(jte,jde-1)+1 |
---|
6265 | j_start_f = j_start |
---|
6266 | j_end_f = j_end+1 |
---|
6267 | |
---|
6268 | !-- modify loop bounds if open or specified |
---|
6269 | |
---|
6270 | IF(degrade_xs) i_start = its |
---|
6271 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
6272 | |
---|
6273 | IF(degrade_ys) then |
---|
6274 | j_start = MAX(jts,jds+1) |
---|
6275 | j_start_f = jds+2 |
---|
6276 | ENDIF |
---|
6277 | |
---|
6278 | IF(degrade_ye) then |
---|
6279 | j_end = MIN(jte,jde-2) |
---|
6280 | j_end_f = jde-2 |
---|
6281 | ENDIF |
---|
6282 | |
---|
6283 | ! compute fluxes, 4th order |
---|
6284 | |
---|
6285 | j_loop_y_flux_4 : DO j = j_start, j_end+1 |
---|
6286 | |
---|
6287 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
6288 | |
---|
6289 | DO k=kts,ktf |
---|
6290 | DO i = i_start, i_end |
---|
6291 | |
---|
6292 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6293 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6294 | vel = rv(i,k,j) |
---|
6295 | cr = vel*dt/dy/mu |
---|
6296 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6297 | |
---|
6298 | fqy( i, k, j ) = vel*flux4( field(i,k,j-2), field(i,k,j-1), & |
---|
6299 | field(i,k,j ), field(i,k,j+1), vel ) |
---|
6300 | |
---|
6301 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6302 | |
---|
6303 | ENDDO |
---|
6304 | ENDDO |
---|
6305 | |
---|
6306 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
6307 | |
---|
6308 | DO k=kts,ktf |
---|
6309 | DO i = i_start, i_end |
---|
6310 | |
---|
6311 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6312 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6313 | vel = rv(i,k,j) |
---|
6314 | cr = vel*dt/dy/mu |
---|
6315 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6316 | |
---|
6317 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
---|
6318 | (field(i,k,j)+field(i,k,j-1)) |
---|
6319 | |
---|
6320 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6321 | |
---|
6322 | ENDDO |
---|
6323 | ENDDO |
---|
6324 | |
---|
6325 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
6326 | |
---|
6327 | DO k=kts,ktf |
---|
6328 | DO i = i_start, i_end |
---|
6329 | |
---|
6330 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6331 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6332 | vel = rv(i,k,j) |
---|
6333 | cr = vel*dt/dy/mu |
---|
6334 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6335 | |
---|
6336 | fqy(i, k, j ) = 0.5*rv(i,k,j)* & |
---|
6337 | (field(i,k,j)+field(i,k,j-1)) |
---|
6338 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6339 | |
---|
6340 | ENDDO |
---|
6341 | ENDDO |
---|
6342 | |
---|
6343 | ENDIF |
---|
6344 | |
---|
6345 | ENDDO j_loop_y_flux_4 |
---|
6346 | |
---|
6347 | ! next, x flux |
---|
6348 | |
---|
6349 | !-- these bounds are for periodic and sym conditions |
---|
6350 | |
---|
6351 | i_start = its-1 |
---|
6352 | i_end = MIN(ite,ide-1)+1 |
---|
6353 | i_start_f = i_start |
---|
6354 | i_end_f = i_end+1 |
---|
6355 | |
---|
6356 | j_start = jts-1 |
---|
6357 | j_end = MIN(jte,jde-1)+1 |
---|
6358 | |
---|
6359 | !-- modify loop bounds for open and specified b.c |
---|
6360 | |
---|
6361 | IF(degrade_ys) j_start = jts |
---|
6362 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
---|
6363 | |
---|
6364 | IF(degrade_xs) then |
---|
6365 | i_start = MAX(ids+1,its) |
---|
6366 | i_start_f = i_start+1 |
---|
6367 | ENDIF |
---|
6368 | |
---|
6369 | IF(degrade_xe) then |
---|
6370 | i_end = MIN(ide-2,ite) |
---|
6371 | i_end_f = ide-2 |
---|
6372 | ENDIF |
---|
6373 | |
---|
6374 | ! compute fluxes |
---|
6375 | |
---|
6376 | DO j = j_start, j_end |
---|
6377 | |
---|
6378 | ! 4th order flux |
---|
6379 | |
---|
6380 | DO k=kts,ktf |
---|
6381 | DO i = i_start_f, i_end_f |
---|
6382 | |
---|
6383 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6384 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6385 | vel = ru(i,k,j) |
---|
6386 | cr = vel*dt/dx/mu |
---|
6387 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6388 | |
---|
6389 | fqx( i,k,j ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
6390 | field(i ,k,j), field(i+1,k,j), vel ) |
---|
6391 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6392 | |
---|
6393 | ENDDO |
---|
6394 | ENDDO |
---|
6395 | |
---|
6396 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
6397 | |
---|
6398 | IF( degrade_xs ) THEN |
---|
6399 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
6400 | i = ids+1 |
---|
6401 | DO k=kts,ktf |
---|
6402 | |
---|
6403 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6404 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6405 | vel = ru(i,k,j)/mu |
---|
6406 | cr = vel*dt/dx |
---|
6407 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6408 | |
---|
6409 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
6410 | *(field(i,k,j)+field(i-1,k,j)) |
---|
6411 | |
---|
6412 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6413 | |
---|
6414 | ENDDO |
---|
6415 | ENDIF |
---|
6416 | ENDIF |
---|
6417 | |
---|
6418 | IF( degrade_xe ) THEN |
---|
6419 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
6420 | i = ide-1 |
---|
6421 | DO k=kts,ktf |
---|
6422 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6423 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6424 | vel = ru(i,k,j) |
---|
6425 | cr = vel*dt/dx/mu |
---|
6426 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6427 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
6428 | *(field(i,k,j)+field(i-1,k,j)) |
---|
6429 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6430 | |
---|
6431 | ENDDO |
---|
6432 | ENDIF |
---|
6433 | ENDIF |
---|
6434 | |
---|
6435 | ENDDO ! enddo for outer J loop |
---|
6436 | |
---|
6437 | !--- end of 4th order horizontal flux calculation |
---|
6438 | |
---|
6439 | ELSE IF( horz_order == 3 ) THEN |
---|
6440 | |
---|
6441 | IF( config_flags%periodic_x .or. & |
---|
6442 | config_flags%symmetric_xs .or. & |
---|
6443 | (its > ids+2) ) degrade_xs = .false. |
---|
6444 | IF( config_flags%periodic_x .or. & |
---|
6445 | config_flags%symmetric_xe .or. & |
---|
6446 | (ite < ide-1) ) degrade_xe = .false. |
---|
6447 | IF( config_flags%periodic_y .or. & |
---|
6448 | config_flags%symmetric_ys .or. & |
---|
6449 | (jts > jds+2) ) degrade_ys = .false. |
---|
6450 | IF( config_flags%periodic_y .or. & |
---|
6451 | config_flags%symmetric_ye .or. & |
---|
6452 | (jte < jde-1) ) degrade_ye = .false. |
---|
6453 | |
---|
6454 | !--------------- y - advection first |
---|
6455 | |
---|
6456 | !-- y flux compute; these bounds are for periodic and sym b.c. |
---|
6457 | |
---|
6458 | ktf=MIN(kte,kde-1) |
---|
6459 | i_start = its-1 |
---|
6460 | i_end = MIN(ite,ide-1)+1 |
---|
6461 | j_start = jts-1 |
---|
6462 | j_end = MIN(jte,jde-1)+1 |
---|
6463 | j_start_f = j_start |
---|
6464 | j_end_f = j_end+1 |
---|
6465 | |
---|
6466 | !-- modify loop bounds if open or specified |
---|
6467 | |
---|
6468 | IF(degrade_xs) i_start = its |
---|
6469 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
6470 | |
---|
6471 | IF(degrade_ys) then |
---|
6472 | j_start = MAX(jts,jds+1) |
---|
6473 | j_start_f = jds+2 |
---|
6474 | ENDIF |
---|
6475 | |
---|
6476 | IF(degrade_ye) then |
---|
6477 | j_end = MIN(jte,jde-2) |
---|
6478 | j_end_f = jde-2 |
---|
6479 | ENDIF |
---|
6480 | |
---|
6481 | ! compute fluxes, 3rd order |
---|
6482 | |
---|
6483 | j_loop_y_flux_3 : DO j = j_start, j_end+1 |
---|
6484 | |
---|
6485 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
6486 | |
---|
6487 | DO k=kts,ktf |
---|
6488 | DO i = i_start, i_end |
---|
6489 | |
---|
6490 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6491 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6492 | vel = rv(i,k,j) |
---|
6493 | cr = vel*dt/dy/mu |
---|
6494 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6495 | |
---|
6496 | fqy( i, k, j ) = vel*flux3( field(i,k,j-2), field(i,k,j-1), & |
---|
6497 | field(i,k,j ), field(i,k,j+1), vel ) |
---|
6498 | |
---|
6499 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6500 | |
---|
6501 | ENDDO |
---|
6502 | ENDDO |
---|
6503 | |
---|
6504 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
6505 | |
---|
6506 | DO k=kts,ktf |
---|
6507 | DO i = i_start, i_end |
---|
6508 | |
---|
6509 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6510 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6511 | vel = rv(i,k,j) |
---|
6512 | cr = vel*dt/dy/mu |
---|
6513 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6514 | |
---|
6515 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
---|
6516 | (field(i,k,j)+field(i,k,j-1)) |
---|
6517 | |
---|
6518 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6519 | |
---|
6520 | ENDDO |
---|
6521 | ENDDO |
---|
6522 | |
---|
6523 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
6524 | |
---|
6525 | DO k=kts,ktf |
---|
6526 | DO i = i_start, i_end |
---|
6527 | |
---|
6528 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6529 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6530 | vel = rv(i,k,j) |
---|
6531 | cr = vel*dt/dy/mu |
---|
6532 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6533 | |
---|
6534 | fqy(i, k, j ) = 0.5*rv(i,k,j)* & |
---|
6535 | (field(i,k,j)+field(i,k,j-1)) |
---|
6536 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6537 | |
---|
6538 | ENDDO |
---|
6539 | ENDDO |
---|
6540 | |
---|
6541 | ENDIF |
---|
6542 | |
---|
6543 | ENDDO j_loop_y_flux_3 |
---|
6544 | |
---|
6545 | ! next, x flux |
---|
6546 | |
---|
6547 | !-- these bounds are for periodic and sym conditions |
---|
6548 | |
---|
6549 | i_start = its-1 |
---|
6550 | i_end = MIN(ite,ide-1)+1 |
---|
6551 | i_start_f = i_start |
---|
6552 | i_end_f = i_end+1 |
---|
6553 | |
---|
6554 | j_start = jts-1 |
---|
6555 | j_end = MIN(jte,jde-1)+1 |
---|
6556 | |
---|
6557 | !-- modify loop bounds for open and specified b.c |
---|
6558 | |
---|
6559 | IF(degrade_ys) j_start = jts |
---|
6560 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
---|
6561 | |
---|
6562 | IF(degrade_xs) then |
---|
6563 | i_start = MAX(ids+1,its) |
---|
6564 | i_start_f = i_start+1 |
---|
6565 | ENDIF |
---|
6566 | |
---|
6567 | IF(degrade_xe) then |
---|
6568 | i_end = MIN(ide-2,ite) |
---|
6569 | i_end_f = ide-2 |
---|
6570 | ENDIF |
---|
6571 | |
---|
6572 | ! compute fluxes |
---|
6573 | |
---|
6574 | DO j = j_start, j_end |
---|
6575 | |
---|
6576 | ! 4th order flux |
---|
6577 | |
---|
6578 | DO k=kts,ktf |
---|
6579 | DO i = i_start_f, i_end_f |
---|
6580 | |
---|
6581 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6582 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6583 | vel = ru(i,k,j) |
---|
6584 | cr = vel*dt/dx/mu |
---|
6585 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6586 | |
---|
6587 | fqx( i,k,j ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
6588 | field(i ,k,j), field(i+1,k,j), vel ) |
---|
6589 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6590 | |
---|
6591 | ENDDO |
---|
6592 | ENDDO |
---|
6593 | |
---|
6594 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
6595 | |
---|
6596 | IF( degrade_xs ) THEN |
---|
6597 | |
---|
6598 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
6599 | i = ids+1 |
---|
6600 | DO k=kts,ktf |
---|
6601 | |
---|
6602 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6603 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6604 | vel = ru(i,k,j)/mu |
---|
6605 | cr = vel*dt/dx |
---|
6606 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6607 | |
---|
6608 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
6609 | *(field(i,k,j)+field(i-1,k,j)) |
---|
6610 | |
---|
6611 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6612 | |
---|
6613 | ENDDO |
---|
6614 | ENDIF |
---|
6615 | ENDIF |
---|
6616 | |
---|
6617 | IF( degrade_xe ) THEN |
---|
6618 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
6619 | i = ide-1 |
---|
6620 | DO k=kts,ktf |
---|
6621 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6622 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6623 | vel = ru(i,k,j) |
---|
6624 | cr = vel*dt/dx/mu |
---|
6625 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6626 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
6627 | *(field(i,k,j)+field(i-1,k,j)) |
---|
6628 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6629 | |
---|
6630 | ENDDO |
---|
6631 | ENDIF |
---|
6632 | ENDIF |
---|
6633 | |
---|
6634 | ENDDO ! enddo for outer J loop |
---|
6635 | |
---|
6636 | !--- end of 3rd order horizontal flux calculation |
---|
6637 | |
---|
6638 | |
---|
6639 | ELSE IF( horz_order == 2 ) THEN |
---|
6640 | |
---|
6641 | IF( config_flags%periodic_x .or. & |
---|
6642 | config_flags%symmetric_xs .or. & |
---|
6643 | (its > ids+1) ) degrade_xs = .false. |
---|
6644 | IF( config_flags%periodic_x .or. & |
---|
6645 | config_flags%symmetric_xe .or. & |
---|
6646 | (ite < ide-2) ) degrade_xe = .false. |
---|
6647 | IF( config_flags%periodic_y .or. & |
---|
6648 | config_flags%symmetric_ys .or. & |
---|
6649 | (jts > jds+1) ) degrade_ys = .false. |
---|
6650 | IF( config_flags%periodic_y .or. & |
---|
6651 | config_flags%symmetric_ye .or. & |
---|
6652 | (jte < jde-2) ) degrade_ye = .false. |
---|
6653 | |
---|
6654 | !-- y flux compute; these bounds are for periodic and sym b.c. |
---|
6655 | |
---|
6656 | ktf=MIN(kte,kde-1) |
---|
6657 | i_start = its-1 |
---|
6658 | i_end = MIN(ite,ide-1)+1 |
---|
6659 | j_start = jts-1 |
---|
6660 | j_end = MIN(jte,jde-1)+1 |
---|
6661 | |
---|
6662 | !-- modify loop bounds if open or specified |
---|
6663 | |
---|
6664 | IF(degrade_xs) i_start = its |
---|
6665 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
6666 | IF(degrade_ys) j_start = MAX(jts,jds+1) |
---|
6667 | IF(degrade_ye) j_end = MIN(jte,jde-2) |
---|
6668 | |
---|
6669 | ! compute fluxes, 2nd order, y flux |
---|
6670 | |
---|
6671 | DO j = j_start, j_end+1 |
---|
6672 | DO k=kts,ktf |
---|
6673 | DO i = i_start, i_end |
---|
6674 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6675 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6676 | vel = rv(i,k,j) |
---|
6677 | cr = vel*dt/dy/mu |
---|
6678 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6679 | |
---|
6680 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
---|
6681 | (field(i,k,j)+field(i,k,j-1)) |
---|
6682 | |
---|
6683 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6684 | ENDDO |
---|
6685 | ENDDO |
---|
6686 | ENDDO |
---|
6687 | |
---|
6688 | ! next, x flux |
---|
6689 | |
---|
6690 | DO j = j_start, j_end |
---|
6691 | DO k=kts,ktf |
---|
6692 | DO i = i_start, i_end+1 |
---|
6693 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6694 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6695 | vel = ru(i,k,j) |
---|
6696 | cr = vel*dt/dx/mu |
---|
6697 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6698 | fqx( i,k,j ) = 0.5*ru(i,k,j)* & |
---|
6699 | (field(i,k,j)+field(i-1,k,j)) |
---|
6700 | |
---|
6701 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6702 | ENDDO |
---|
6703 | ENDDO |
---|
6704 | ENDDO |
---|
6705 | |
---|
6706 | !--- end of 2nd order horizontal flux calculation |
---|
6707 | |
---|
6708 | ELSE |
---|
6709 | |
---|
6710 | WRITE ( wrf_err_message , * ) 'module_advect: advect_scalar_pd, h_order not known ',horz_order |
---|
6711 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
6712 | |
---|
6713 | ENDIF horizontal_order_test |
---|
6714 | |
---|
6715 | ! pick up the rest of the horizontal radiation boundary conditions. |
---|
6716 | ! (these are the computations that don't require 'cb'. |
---|
6717 | ! first, set to index ranges |
---|
6718 | |
---|
6719 | i_start = its |
---|
6720 | i_end = MIN(ite,ide-1) |
---|
6721 | j_start = jts |
---|
6722 | j_end = MIN(jte,jde-1) |
---|
6723 | |
---|
6724 | ! compute x (u) conditions for v, w, or scalar |
---|
6725 | |
---|
6726 | IF( (config_flags%open_xs) .and. (its == ids) ) THEN |
---|
6727 | |
---|
6728 | DO j = j_start, j_end |
---|
6729 | DO k = kts, ktf |
---|
6730 | ub = MIN( 0.5*(ru(its,k,j)+ru(its+1,k,j)), 0. ) |
---|
6731 | tendency(its,k,j) = tendency(its,k,j) & |
---|
6732 | - rdx*( & |
---|
6733 | ub*( field_old(its+1,k,j) & |
---|
6734 | - field_old(its ,k,j) ) + & |
---|
6735 | field(its,k,j)*(ru(its+1,k,j)-ru(its,k,j)) & |
---|
6736 | ) |
---|
6737 | ENDDO |
---|
6738 | ENDDO |
---|
6739 | |
---|
6740 | ENDIF |
---|
6741 | |
---|
6742 | IF( (config_flags%open_xe) .and. (ite == ide) ) THEN |
---|
6743 | |
---|
6744 | DO j = j_start, j_end |
---|
6745 | DO k = kts, ktf |
---|
6746 | ub = MAX( 0.5*(ru(ite-1,k,j)+ru(ite,k,j)), 0. ) |
---|
6747 | tendency(i_end,k,j) = tendency(i_end,k,j) & |
---|
6748 | - rdx*( & |
---|
6749 | ub*( field_old(i_end ,k,j) & |
---|
6750 | - field_old(i_end-1,k,j) ) + & |
---|
6751 | field(i_end,k,j)*(ru(ite,k,j)-ru(ite-1,k,j)) & |
---|
6752 | ) |
---|
6753 | ENDDO |
---|
6754 | ENDDO |
---|
6755 | |
---|
6756 | ENDIF |
---|
6757 | |
---|
6758 | IF( (config_flags%open_ys) .and. (jts == jds) ) THEN |
---|
6759 | |
---|
6760 | DO i = i_start, i_end |
---|
6761 | DO k = kts, ktf |
---|
6762 | vb = MIN( 0.5*(rv(i,k,jts)+rv(i,k,jts+1)), 0. ) |
---|
6763 | tendency(i,k,jts) = tendency(i,k,jts) & |
---|
6764 | - rdy*( & |
---|
6765 | vb*( field_old(i,k,jts+1) & |
---|
6766 | - field_old(i,k,jts ) ) + & |
---|
6767 | field(i,k,jts)*(rv(i,k,jts+1)-rv(i,k,jts)) & |
---|
6768 | ) |
---|
6769 | ENDDO |
---|
6770 | ENDDO |
---|
6771 | |
---|
6772 | ENDIF |
---|
6773 | |
---|
6774 | IF( (config_flags%open_ye) .and. (jte == jde)) THEN |
---|
6775 | |
---|
6776 | DO i = i_start, i_end |
---|
6777 | DO k = kts, ktf |
---|
6778 | vb = MAX( 0.5*(rv(i,k,jte-1)+rv(i,k,jte)), 0. ) |
---|
6779 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
---|
6780 | - rdy*( & |
---|
6781 | vb*( field_old(i,k,j_end ) & |
---|
6782 | - field_old(i,k,j_end-1) ) + & |
---|
6783 | field(i,k,j_end)*(rv(i,k,jte)-rv(i,k,jte-1)) & |
---|
6784 | ) |
---|
6785 | ENDDO |
---|
6786 | ENDDO |
---|
6787 | |
---|
6788 | ENDIF |
---|
6789 | |
---|
6790 | !-------------------- vertical advection |
---|
6791 | |
---|
6792 | !-- loop bounds for periodic or sym conditions |
---|
6793 | |
---|
6794 | i_start = its-1 |
---|
6795 | i_end = MIN(ite,ide-1)+1 |
---|
6796 | j_start = jts-1 |
---|
6797 | j_end = MIN(jte,jde-1)+1 |
---|
6798 | |
---|
6799 | !-- loop bounds for open or specified conditions |
---|
6800 | |
---|
6801 | IF(degrade_xs) i_start = MAX(its-1,ids) |
---|
6802 | IF(degrade_xe) i_end = MIN(ite+1,ide-1) |
---|
6803 | IF(degrade_ys) j_start = MAX(jts-1,jds) |
---|
6804 | IF(degrade_ye) j_end = MIN(jte+1,jde-1) |
---|
6805 | |
---|
6806 | vert_order_test : IF (vert_order == 6) THEN |
---|
6807 | |
---|
6808 | DO j = j_start, j_end |
---|
6809 | |
---|
6810 | DO i = i_start, i_end |
---|
6811 | fqz(i,1,j) = 0. |
---|
6812 | fqzl(i,1,j) = 0. |
---|
6813 | fqz(i,kde,j) = 0. |
---|
6814 | fqzl(i,kde,j) = 0. |
---|
6815 | ENDDO |
---|
6816 | |
---|
6817 | DO k=kts+3,ktf-2 |
---|
6818 | DO i = i_start, i_end |
---|
6819 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6820 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6821 | vel = rom(i,k,j) |
---|
6822 | cr = vel*dt/dz/mu |
---|
6823 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6824 | |
---|
6825 | fqz(i,k,j) = vel*flux6( field(i,k-3,j), field(i,k-2,j), field(i,k-1,j), & |
---|
6826 | field(i,k ,j), field(i,k+1,j), field(i,k+2,j), -vel ) |
---|
6827 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6828 | ENDDO |
---|
6829 | ENDDO |
---|
6830 | |
---|
6831 | DO i = i_start, i_end |
---|
6832 | |
---|
6833 | k=kts+1 |
---|
6834 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6835 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6836 | vel = rom(i,k,j) |
---|
6837 | cr = vel*dt/dz/mu |
---|
6838 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6839 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
6840 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6841 | |
---|
6842 | k=kts+2 |
---|
6843 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6844 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6845 | vel = rom(i,k,j) |
---|
6846 | cr = vel*dt/dz/mu |
---|
6847 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6848 | |
---|
6849 | fqz(i,k,j) = vel*flux4( & |
---|
6850 | field(i,k-2,j), field(i,k-1,j), & |
---|
6851 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
6852 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6853 | |
---|
6854 | k=ktf-1 |
---|
6855 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6856 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6857 | vel = rom(i,k,j) |
---|
6858 | cr = vel*dt/dz/mu |
---|
6859 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6860 | |
---|
6861 | fqz(i,k,j) = vel*flux4( & |
---|
6862 | field(i,k-2,j), field(i,k-1,j), & |
---|
6863 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
6864 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6865 | |
---|
6866 | k=ktf |
---|
6867 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6868 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6869 | vel = rom(i,k,j) |
---|
6870 | cr = vel*dt/dz/mu |
---|
6871 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6872 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
6873 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6874 | |
---|
6875 | ENDDO |
---|
6876 | |
---|
6877 | ENDDO |
---|
6878 | |
---|
6879 | ELSE IF (vert_order == 5) THEN |
---|
6880 | |
---|
6881 | DO j = j_start, j_end |
---|
6882 | |
---|
6883 | DO i = i_start, i_end |
---|
6884 | fqz(i,1,j) = 0. |
---|
6885 | fqzl(i,1,j) = 0. |
---|
6886 | fqz(i,kde,j) = 0. |
---|
6887 | fqzl(i,kde,j) = 0. |
---|
6888 | ENDDO |
---|
6889 | |
---|
6890 | DO k=kts+3,ktf-2 |
---|
6891 | DO i = i_start, i_end |
---|
6892 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6893 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6894 | vel = rom(i,k,j) |
---|
6895 | cr = vel*dt/dz/mu |
---|
6896 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6897 | |
---|
6898 | fqz(i,k,j) = vel*flux5( field(i,k-3,j), field(i,k-2,j), field(i,k-1,j), & |
---|
6899 | field(i,k ,j), field(i,k+1,j), field(i,k+2,j), -vel ) |
---|
6900 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6901 | ENDDO |
---|
6902 | ENDDO |
---|
6903 | |
---|
6904 | DO i = i_start, i_end |
---|
6905 | |
---|
6906 | k=kts+1 |
---|
6907 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6908 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6909 | vel = rom(i,k,j) |
---|
6910 | cr = vel*dt/dz/mu |
---|
6911 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6912 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
6913 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6914 | |
---|
6915 | k=kts+2 |
---|
6916 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6917 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6918 | vel = rom(i,k,j) |
---|
6919 | cr = vel*dt/dz/mu |
---|
6920 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6921 | |
---|
6922 | fqz(i,k,j) = vel*flux3( & |
---|
6923 | field(i,k-2,j), field(i,k-1,j), & |
---|
6924 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
6925 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6926 | |
---|
6927 | k=ktf-1 |
---|
6928 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6929 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6930 | vel = rom(i,k,j) |
---|
6931 | cr = vel*dt/dz/mu |
---|
6932 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6933 | |
---|
6934 | fqz(i,k,j) = vel*flux3( & |
---|
6935 | field(i,k-2,j), field(i,k-1,j), & |
---|
6936 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
6937 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6938 | |
---|
6939 | k=ktf |
---|
6940 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6941 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6942 | vel = rom(i,k,j) |
---|
6943 | cr = vel*dt/dz/mu |
---|
6944 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6945 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
6946 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6947 | |
---|
6948 | ENDDO |
---|
6949 | |
---|
6950 | ENDDO |
---|
6951 | |
---|
6952 | ELSE IF (vert_order == 4) THEN |
---|
6953 | |
---|
6954 | DO j = j_start, j_end |
---|
6955 | |
---|
6956 | DO i = i_start, i_end |
---|
6957 | fqz(i,1,j) = 0. |
---|
6958 | fqzl(i,1,j) = 0. |
---|
6959 | fqz(i,kde,j) = 0. |
---|
6960 | fqzl(i,kde,j) = 0. |
---|
6961 | ENDDO |
---|
6962 | |
---|
6963 | DO k=kts+2,ktf-1 |
---|
6964 | DO i = i_start, i_end |
---|
6965 | |
---|
6966 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6967 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6968 | vel = rom(i,k,j) |
---|
6969 | cr = vel*dt/dz/mu |
---|
6970 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6971 | |
---|
6972 | fqz(i,k,j) = vel*flux4( & |
---|
6973 | field(i,k-2,j), field(i,k-1,j), & |
---|
6974 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
6975 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6976 | ENDDO |
---|
6977 | ENDDO |
---|
6978 | |
---|
6979 | DO i = i_start, i_end |
---|
6980 | |
---|
6981 | k=kts+1 |
---|
6982 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6983 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6984 | vel = rom(i,k,j) |
---|
6985 | cr = vel*dt/dz/mu |
---|
6986 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6987 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
6988 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6989 | |
---|
6990 | k=ktf |
---|
6991 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6992 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6993 | vel = rom(i,k,j) |
---|
6994 | cr = vel*dt/dz/mu |
---|
6995 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6996 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
6997 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6998 | |
---|
6999 | ENDDO |
---|
7000 | |
---|
7001 | ENDDO |
---|
7002 | |
---|
7003 | ELSE IF (vert_order == 3) THEN |
---|
7004 | |
---|
7005 | DO j = j_start, j_end |
---|
7006 | |
---|
7007 | DO i = i_start, i_end |
---|
7008 | fqz(i,1,j) = 0. |
---|
7009 | fqzl(i,1,j) = 0. |
---|
7010 | fqz(i,kde,j) = 0. |
---|
7011 | fqzl(i,kde,j) = 0. |
---|
7012 | ENDDO |
---|
7013 | |
---|
7014 | DO k=kts+2,ktf-1 |
---|
7015 | DO i = i_start, i_end |
---|
7016 | |
---|
7017 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
7018 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
7019 | vel = rom(i,k,j) |
---|
7020 | cr = vel*dt/dz/mu |
---|
7021 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
7022 | |
---|
7023 | fqz(i,k,j) = vel*flux3( & |
---|
7024 | field(i,k-2,j), field(i,k-1,j), & |
---|
7025 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
7026 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
7027 | ENDDO |
---|
7028 | ENDDO |
---|
7029 | |
---|
7030 | DO i = i_start, i_end |
---|
7031 | |
---|
7032 | k=kts+1 |
---|
7033 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
7034 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
7035 | vel = rom(i,k,j) |
---|
7036 | cr = vel*dt/dz/mu |
---|
7037 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
7038 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
7039 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
7040 | |
---|
7041 | k=ktf |
---|
7042 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
7043 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
7044 | vel = rom(i,k,j) |
---|
7045 | cr = vel*dt/dz/mu |
---|
7046 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
7047 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
7048 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
7049 | |
---|
7050 | ENDDO |
---|
7051 | |
---|
7052 | ENDDO |
---|
7053 | |
---|
7054 | ELSE IF (vert_order == 2) THEN |
---|
7055 | |
---|
7056 | DO j = j_start, j_end |
---|
7057 | |
---|
7058 | DO i = i_start, i_end |
---|
7059 | fqz(i,1,j) = 0. |
---|
7060 | fqzl(i,1,j) = 0. |
---|
7061 | fqz(i,kde,j) = 0. |
---|
7062 | fqzl(i,kde,j) = 0. |
---|
7063 | ENDDO |
---|
7064 | |
---|
7065 | DO k=kts+1,ktf |
---|
7066 | DO i = i_start, i_end |
---|
7067 | |
---|
7068 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
7069 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
7070 | vel = rom(i,k,j) |
---|
7071 | cr = vel*dt/dz/mu |
---|
7072 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
7073 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
7074 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
7075 | |
---|
7076 | ENDDO |
---|
7077 | ENDDO |
---|
7078 | |
---|
7079 | ENDDO |
---|
7080 | |
---|
7081 | ELSE |
---|
7082 | |
---|
7083 | WRITE (wrf_err_message,*) ' advect_scalar_pd, v_order not known ',vert_order |
---|
7084 | CALL wrf_error_fatal ( wrf_err_message ) |
---|
7085 | |
---|
7086 | ENDIF vert_order_test |
---|
7087 | |
---|
7088 | IF (pd_limit) THEN |
---|
7089 | |
---|
7090 | ! positive definite filter |
---|
7091 | |
---|
7092 | i_start = its-1 |
---|
7093 | i_end = MIN(ite,ide-1)+1 |
---|
7094 | j_start = jts-1 |
---|
7095 | j_end = MIN(jte,jde-1)+1 |
---|
7096 | |
---|
7097 | !-- loop bounds for open or specified conditions |
---|
7098 | |
---|
7099 | IF(degrade_xs) i_start = MAX(its-1,ids) |
---|
7100 | IF(degrade_xe) i_end = MIN(ite+1,ide-1) |
---|
7101 | IF(degrade_ys) j_start = MAX(jts-1,jds) |
---|
7102 | IF(degrade_ye) j_end = MIN(jte+1,jde-1) |
---|
7103 | |
---|
7104 | IF(config_flags%specified .or. config_flags%nested) THEN |
---|
7105 | IF (degrade_xs) i_start = MAX(its-1,ids+1) |
---|
7106 | IF (degrade_xe) i_end = MIN(ite+1,ide-2) |
---|
7107 | IF (degrade_ys) j_start = MAX(jts-1,jds+1) |
---|
7108 | IF (degrade_ye) j_end = MIN(jte+1,jde-2) |
---|
7109 | END IF |
---|
7110 | |
---|
7111 | IF(config_flags%open_xs) THEN |
---|
7112 | IF (degrade_xs) i_start = MAX(its-1,ids+1) |
---|
7113 | END IF |
---|
7114 | IF(config_flags%open_xe) THEN |
---|
7115 | IF (degrade_xe) i_end = MIN(ite+1,ide-2) |
---|
7116 | END IF |
---|
7117 | IF(config_flags%open_ys) THEN |
---|
7118 | IF (degrade_ys) j_start = MAX(jts-1,jds+1) |
---|
7119 | END IF |
---|
7120 | IF(config_flags%open_ye) THEN |
---|
7121 | IF (degrade_ye) j_end = MIN(jte+1,jde-2) |
---|
7122 | END IF |
---|
7123 | |
---|
7124 | !-- here is the limiter... |
---|
7125 | |
---|
7126 | DO j=j_start, j_end |
---|
7127 | DO k=kts, ktf |
---|
7128 | DO i=i_start, i_end |
---|
7129 | |
---|
7130 | ph_low = (mub(i,j)+mu_old(i,j))*field_old(i,k,j) & |
---|
7131 | - dt*( msft(i,j)*( & |
---|
7132 | rdx*(fqxl(i+1,k,j)-fqxl(i,k,j)) + & |
---|
7133 | rdy*(fqyl(i,k,j+1)-fqyl(i,k,j)) ) & |
---|
7134 | + rdzw(k)*(fqzl(i,k+1,j)-fqzl(i,k,j)) ) |
---|
7135 | |
---|
7136 | flux_out = dt*( msft(i,j) *( & |
---|
7137 | rdx*( max(0.,fqx (i+1,k,j)) & |
---|
7138 | -min(0.,fqx (i ,k,j)) ) & |
---|
7139 | +rdy*( max(0.,fqy (i,k,j+1)) & |
---|
7140 | -min(0.,fqy (i,k,j )) ) ) & |
---|
7141 | + rdzw(k)*( min(0.,fqz (i,k+1,j)) & |
---|
7142 | -max(0.,fqz (i,k ,j)) ) ) |
---|
7143 | |
---|
7144 | IF( flux_out .gt. ph_low ) THEN |
---|
7145 | |
---|
7146 | scale = max(0.,ph_low/(flux_out+eps)) |
---|
7147 | IF( fqx (i+1,k,j) .gt. 0.) fqx(i+1,k,j) = scale*fqx(i+1,k,j) |
---|
7148 | IF( fqx (i ,k,j) .lt. 0.) fqx(i ,k,j) = scale*fqx(i ,k,j) |
---|
7149 | IF( fqy (i,k,j+1) .gt. 0.) fqy(i,k,j+1) = scale*fqy(i,k,j+1) |
---|
7150 | IF( fqy (i,k,j ) .lt. 0.) fqy(i,k,j ) = scale*fqy(i,k,j ) |
---|
7151 | ! note: z flux is opposite sign in mass coordinate because |
---|
7152 | ! vertical coordinate decreases with increasing k |
---|
7153 | IF( fqz (i,k+1,j) .lt. 0.) fqz(i,k+1,j) = scale*fqz(i,k+1,j) |
---|
7154 | IF( fqz (i,k ,j) .gt. 0.) fqz(i,k ,j) = scale*fqz(i,k ,j) |
---|
7155 | |
---|
7156 | END IF |
---|
7157 | |
---|
7158 | ENDDO |
---|
7159 | ENDDO |
---|
7160 | ENDDO |
---|
7161 | |
---|
7162 | END IF |
---|
7163 | |
---|
7164 | ! add in the pd-limited flux divergence |
---|
7165 | |
---|
7166 | i_start = its |
---|
7167 | i_end = MIN(ite,ide-1) |
---|
7168 | j_start = jts |
---|
7169 | j_end = MIN(jte,jde-1) |
---|
7170 | |
---|
7171 | DO j = j_start, j_end |
---|
7172 | DO k = kts, ktf |
---|
7173 | DO i = i_start, i_end |
---|
7174 | |
---|
7175 | tendency (i,k,j) = tendency(i,k,j) & |
---|
7176 | -rdzw(k)*( fqz (i,k+1,j)-fqz (i,k,j) & |
---|
7177 | +fqzl(i,k+1,j)-fqzl(i,k,j)) |
---|
7178 | |
---|
7179 | ENDDO |
---|
7180 | ENDDO |
---|
7181 | ENDDO |
---|
7182 | |
---|
7183 | ! x flux divergence |
---|
7184 | ! |
---|
7185 | IF(degrade_xs) i_start = MAX(its,ids+1) |
---|
7186 | IF(degrade_xe) i_end = MIN(ite,ide-2) |
---|
7187 | |
---|
7188 | DO j = j_start, j_end |
---|
7189 | DO k = kts, ktf |
---|
7190 | DO i = i_start, i_end |
---|
7191 | |
---|
7192 | tendency (i,k,j) = tendency(i,k,j) & |
---|
7193 | - msft(i,j)*( rdx*( fqx (i+1,k,j)-fqx (i,k,j) & |
---|
7194 | +fqxl(i+1,k,j)-fqxl(i,k,j)) ) |
---|
7195 | |
---|
7196 | ENDDO |
---|
7197 | ENDDO |
---|
7198 | ENDDO |
---|
7199 | |
---|
7200 | ! y flux divergence |
---|
7201 | ! |
---|
7202 | i_start = its |
---|
7203 | i_end = MIN(ite,ide-1) |
---|
7204 | IF(degrade_ys) j_start = MAX(jts,jds+1) |
---|
7205 | IF(degrade_ye) j_end = MIN(jte,jde-2) |
---|
7206 | |
---|
7207 | DO j = j_start, j_end |
---|
7208 | DO k = kts, ktf |
---|
7209 | DO i = i_start, i_end |
---|
7210 | |
---|
7211 | tendency (i,k,j) = tendency(i,k,j) & |
---|
7212 | - msft(i,j)*( rdy*( fqy (i,k,j+1)-fqy (i,k,j) & |
---|
7213 | +fqyl(i,k,j+1)-fqyl(i,k,j)) ) |
---|
7214 | |
---|
7215 | ENDDO |
---|
7216 | ENDDO |
---|
7217 | ENDDO |
---|
7218 | |
---|
7219 | END SUBROUTINE advect_scalar_pd |
---|
7220 | |
---|
7221 | !---------------------------------------------------------------- |
---|
7222 | |
---|
7223 | SUBROUTINE advect_scalar_mono ( field, field_old, tendency, & |
---|
7224 | ru, rv, rom, & |
---|
7225 | mut, mub, mu_old, & |
---|
7226 | config_flags, & |
---|
7227 | msfu, msfv, & |
---|
7228 | msft, & |
---|
7229 | fzm, fzp, & |
---|
7230 | rdx, rdy, rdzw, dt, & |
---|
7231 | ids, ide, jds, jde, kds, kde, & |
---|
7232 | ims, ime, jms, jme, kms, kme, & |
---|
7233 | its, ite, jts, jte, kts, kte ) |
---|
7234 | |
---|
7235 | ! monotonic advection option |
---|
7236 | ! for scalars in WRF RK3 advection. This version is memory intensive -> |
---|
7237 | ! we save 3d arrays of x, y and z both high and low order fluxes |
---|
7238 | ! (six in all). Alternatively, we could sweep in a direction |
---|
7239 | ! and lower the cost considerably. |
---|
7240 | |
---|
7241 | ! uses the Smolarkiewicz MWR 1989 approach, with addition of first-order |
---|
7242 | ! fluxes initially |
---|
7243 | |
---|
7244 | IMPLICIT NONE |
---|
7245 | |
---|
7246 | ! Input data |
---|
7247 | |
---|
7248 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
7249 | |
---|
7250 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
7251 | ims, ime, jms, jme, kms, kme, & |
---|
7252 | its, ite, jts, jte, kts, kte |
---|
7253 | |
---|
7254 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: field, & |
---|
7255 | field_old, & |
---|
7256 | ru, & |
---|
7257 | rv, & |
---|
7258 | rom |
---|
7259 | |
---|
7260 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut, mub, mu_old |
---|
7261 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
7262 | |
---|
7263 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
---|
7264 | msfv, & |
---|
7265 | msft |
---|
7266 | |
---|
7267 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
7268 | fzp, & |
---|
7269 | rdzw |
---|
7270 | |
---|
7271 | REAL , INTENT(IN ) :: rdx, & |
---|
7272 | rdy, & |
---|
7273 | dt |
---|
7274 | |
---|
7275 | ! Local data |
---|
7276 | |
---|
7277 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
7278 | INTEGER :: i_start, i_end, j_start, j_end |
---|
7279 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
---|
7280 | INTEGER :: jmin, jmax, jp, jm, imin, imax |
---|
7281 | |
---|
7282 | REAL :: mrdx, mrdy, ub, vb, uw, vw, mu |
---|
7283 | REAL , DIMENSION(its:ite, kts:kte) :: vflux |
---|
7284 | |
---|
7285 | |
---|
7286 | ! storage for high and low order fluxes |
---|
7287 | |
---|
7288 | REAL, DIMENSION( its-2:ite+2, kts:kte, jts-2:jte+2 ) :: fqx, fqy, fqz |
---|
7289 | REAL, DIMENSION( its-2:ite+2, kts:kte, jts-2:jte+2 ) :: fqxl, fqyl, fqzl |
---|
7290 | REAL, DIMENSION( its-2:ite+2, kts:kte, jts-2:jte+2 ) :: qmin, qmax |
---|
7291 | REAL, DIMENSION( its-2:ite+2, kts:kte, jts-2:jte+2 ) :: scale_in, scale_out |
---|
7292 | REAL :: ph_upwind |
---|
7293 | |
---|
7294 | INTEGER :: horz_order, vert_order |
---|
7295 | |
---|
7296 | LOGICAL :: degrade_xs, degrade_ys |
---|
7297 | LOGICAL :: degrade_xe, degrade_ye |
---|
7298 | |
---|
7299 | INTEGER :: jp1, jp0, jtmp |
---|
7300 | |
---|
7301 | REAL :: flux_out, ph_low, flux_in, ph_hi, scale |
---|
7302 | REAL, PARAMETER :: eps=1.e-20 |
---|
7303 | |
---|
7304 | |
---|
7305 | ! definition of flux operators, 3rd, 4rth, 5th or 6th order |
---|
7306 | |
---|
7307 | REAL :: flux3, flux4, flux5, flux6, flux_upwind |
---|
7308 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel, cr |
---|
7309 | |
---|
7310 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
7311 | (7./12.)*(q_i + q_im1) - (1./12.)*(q_ip1 + q_im2) |
---|
7312 | |
---|
7313 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
7314 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
---|
7315 | sign(1.,ua)*(1./12.)*((q_ip1 - q_im2)-3.*(q_i-q_im1)) |
---|
7316 | |
---|
7317 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
7318 | (37./60.)*(q_i+q_im1) - (2./15.)*(q_ip1+q_im2) & |
---|
7319 | +(1./60.)*(q_ip2+q_im3) |
---|
7320 | |
---|
7321 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
7322 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
---|
7323 | -sign(1.,ua)*(1./60.)*( & |
---|
7324 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) ) |
---|
7325 | |
---|
7326 | ! flux_upwind(q_im1, q_i, cr ) = 0. |
---|
7327 | flux_upwind(q_im1, q_i, cr ) = 0.5*(1.+sign(1.,cr))*q_im1 & |
---|
7328 | +0.5*(1.-sign(1.,cr))*q_i |
---|
7329 | |
---|
7330 | LOGICAL, PARAMETER :: mono_limit = .true. |
---|
7331 | |
---|
7332 | ! set order for the advection schemes |
---|
7333 | |
---|
7334 | ktf=MIN(kte,kde-1) |
---|
7335 | horz_order = config_flags%h_sca_adv_order |
---|
7336 | vert_order = config_flags%v_sca_adv_order |
---|
7337 | |
---|
7338 | do j=jts-2,jte+2 |
---|
7339 | do k=kts,kte |
---|
7340 | do i=its-2,ite+2 |
---|
7341 | qmin(i,k,j) = field_old(i,k,j) |
---|
7342 | qmax(i,k,j) = field_old(i,k,j) |
---|
7343 | scale_in(i,k,j) = 1. |
---|
7344 | scale_out(i,k,j) = 1. |
---|
7345 | fqx(i,k,j) = 0. |
---|
7346 | fqy(i,k,j) = 0. |
---|
7347 | fqz(i,k,j) = 0. |
---|
7348 | fqxl(i,k,j) = 0. |
---|
7349 | fqyl(i,k,j) = 0. |
---|
7350 | fqzl(i,k,j) = 0. |
---|
7351 | enddo |
---|
7352 | enddo |
---|
7353 | enddo |
---|
7354 | |
---|
7355 | ! begin with horizontal flux divergence |
---|
7356 | ! here is the choice of flux operators |
---|
7357 | |
---|
7358 | |
---|
7359 | horizontal_order_test : IF( horz_order == 5 ) THEN |
---|
7360 | |
---|
7361 | ! determine boundary mods for flux operators |
---|
7362 | ! We degrade the flux operators from 3rd/4rth order |
---|
7363 | ! to second order one gridpoint in from the boundaries for |
---|
7364 | ! all boundary conditions except periodic and symmetry - these |
---|
7365 | ! conditions have boundary zone data fill for correct application |
---|
7366 | ! of the higher order flux stencils |
---|
7367 | |
---|
7368 | degrade_xs = .true. |
---|
7369 | degrade_xe = .true. |
---|
7370 | degrade_ys = .true. |
---|
7371 | degrade_ye = .true. |
---|
7372 | |
---|
7373 | IF( config_flags%periodic_x .or. & |
---|
7374 | config_flags%symmetric_xs .or. & |
---|
7375 | (its > ids+3) ) degrade_xs = .false. |
---|
7376 | IF( config_flags%periodic_x .or. & |
---|
7377 | config_flags%symmetric_xe .or. & |
---|
7378 | (ite < ide-4) ) degrade_xe = .false. |
---|
7379 | IF( config_flags%periodic_y .or. & |
---|
7380 | config_flags%symmetric_ys .or. & |
---|
7381 | (jts > jds+3) ) degrade_ys = .false. |
---|
7382 | IF( config_flags%periodic_y .or. & |
---|
7383 | config_flags%symmetric_ye .or. & |
---|
7384 | (jte < jde-4) ) degrade_ye = .false. |
---|
7385 | |
---|
7386 | !--------------- y - advection first |
---|
7387 | |
---|
7388 | !-- y flux compute; these bounds are for periodic and sym b.c. |
---|
7389 | |
---|
7390 | ktf=MIN(kte,kde-1) |
---|
7391 | i_start = its-1 |
---|
7392 | i_end = MIN(ite,ide-1)+1 |
---|
7393 | j_start = jts-1 |
---|
7394 | j_end = MIN(jte,jde-1)+1 |
---|
7395 | j_start_f = j_start |
---|
7396 | j_end_f = j_end+1 |
---|
7397 | |
---|
7398 | !-- modify loop bounds if open or specified |
---|
7399 | |
---|
7400 | ! WCS 20090218 |
---|
7401 | ! IF(degrade_xs) i_start = its |
---|
7402 | ! IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
7403 | IF(degrade_xs) i_start = MAX(its-1,ids) |
---|
7404 | IF(degrade_xe) i_end = MIN(ite+1,ide-1) |
---|
7405 | |
---|
7406 | ! WCS 20090218 |
---|
7407 | ! IF(degrade_ys) then |
---|
7408 | ! j_start = MAX(jts,jds+1) |
---|
7409 | ! j_start_f = jds+3 |
---|
7410 | ! ENDIF |
---|
7411 | ! |
---|
7412 | ! IF(degrade_ye) then |
---|
7413 | ! j_end = MIN(jte,jde-2) |
---|
7414 | ! j_end_f = jde-3 |
---|
7415 | ! ENDIF |
---|
7416 | |
---|
7417 | IF(degrade_ys) then |
---|
7418 | j_start = MAX(jts-1,jds+1) |
---|
7419 | j_start_f = jds+3 |
---|
7420 | ENDIF |
---|
7421 | |
---|
7422 | IF(degrade_ye) then |
---|
7423 | j_end = MIN(jte+1,jde-2) |
---|
7424 | j_end_f = jde-3 |
---|
7425 | ENDIF |
---|
7426 | |
---|
7427 | ! compute fluxes, 5th order |
---|
7428 | |
---|
7429 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
---|
7430 | |
---|
7431 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
7432 | |
---|
7433 | DO k=kts,ktf |
---|
7434 | DO i = i_start, i_end |
---|
7435 | |
---|
7436 | vel = rv(i,k,j) |
---|
7437 | cr = vel |
---|
7438 | fqyl(i,k,j) = vel*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), vel) |
---|
7439 | |
---|
7440 | fqy( i, k, j ) = vel*flux5( & |
---|
7441 | field(i,k,j-3), field(i,k,j-2), field(i,k,j-1), & |
---|
7442 | field(i,k,j ), field(i,k,j+1), field(i,k,j+2), vel ) |
---|
7443 | |
---|
7444 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
7445 | |
---|
7446 | if(cr.gt. 0) then |
---|
7447 | qmax(i,k,j) = amax1(qmax(i,k,j),field_old(i,k,j-1)) |
---|
7448 | qmin(i,k,j) = amin1(qmin(i,k,j),field_old(i,k,j-1)) |
---|
7449 | else |
---|
7450 | qmax(i,k,j-1) = amax1(qmax(i,k,j-1),field_old(i,k,j)) |
---|
7451 | qmin(i,k,j-1) = amin1(qmin(i,k,j-1),field_old(i,k,j)) |
---|
7452 | end if |
---|
7453 | |
---|
7454 | ENDDO |
---|
7455 | ENDDO |
---|
7456 | |
---|
7457 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
7458 | |
---|
7459 | DO k=kts,ktf |
---|
7460 | DO i = i_start, i_end |
---|
7461 | |
---|
7462 | vel = rv(i,k,j) |
---|
7463 | cr = vel |
---|
7464 | fqyl(i,k,j) = vel*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
7465 | |
---|
7466 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
---|
7467 | (field(i,k,j)+field(i,k,j-1)) |
---|
7468 | |
---|
7469 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
7470 | |
---|
7471 | if(cr.gt. 0) then |
---|
7472 | qmax(i,k,j) = amax1(qmax(i,k,j),field_old(i,k,j-1)) |
---|
7473 | qmin(i,k,j) = amin1(qmin(i,k,j),field_old(i,k,j-1)) |
---|
7474 | else |
---|
7475 | qmax(i,k,j-1) = amax1(qmax(i,k,j-1),field_old(i,k,j)) |
---|
7476 | qmin(i,k,j-1) = amin1(qmin(i,k,j-1),field_old(i,k,j)) |
---|
7477 | end if |
---|
7478 | |
---|
7479 | ENDDO |
---|
7480 | ENDDO |
---|
7481 | |
---|
7482 | ELSE IF ( j == jds+2 ) THEN ! third of 4rth order flux 2 in from south boundary |
---|
7483 | |
---|
7484 | DO k=kts,ktf |
---|
7485 | DO i = i_start, i_end |
---|
7486 | |
---|
7487 | vel = rv(i,k,j) |
---|
7488 | cr = vel |
---|
7489 | fqyl(i,k,j) = vel*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
7490 | |
---|
7491 | fqy( i, k, j ) = vel*flux3( & |
---|
7492 | field(i,k,j-2),field(i,k,j-1),field(i,k,j),field(i,k,j+1),vel ) |
---|
7493 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
7494 | |
---|
7495 | if(cr.gt. 0) then |
---|
7496 | qmax(i,k,j) = amax1(qmax(i,k,j),field_old(i,k,j-1)) |
---|
7497 | qmin(i,k,j) = amin1(qmin(i,k,j),field_old(i,k,j-1)) |
---|
7498 | else |
---|
7499 | qmax(i,k,j-1) = amax1(qmax(i,k,j-1),field_old(i,k,j)) |
---|
7500 | qmin(i,k,j-1) = amin1(qmin(i,k,j-1),field_old(i,k,j)) |
---|
7501 | end if |
---|
7502 | |
---|
7503 | ENDDO |
---|
7504 | ENDDO |
---|
7505 | |
---|
7506 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
7507 | |
---|
7508 | DO k=kts,ktf |
---|
7509 | DO i = i_start, i_end |
---|
7510 | |
---|
7511 | vel = rv(i,k,j) |
---|
7512 | cr = vel |
---|
7513 | fqyl(i,k,j) = vel*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
7514 | |
---|
7515 | fqy(i, k, j ) = 0.5*rv(i,k,j)* & |
---|
7516 | (field(i,k,j)+field(i,k,j-1)) |
---|
7517 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
7518 | |
---|
7519 | if(cr.gt. 0) then |
---|
7520 | qmax(i,k,j) = amax1(qmax(i,k,j),field_old(i,k,j-1)) |
---|
7521 | qmin(i,k,j) = amin1(qmin(i,k,j),field_old(i,k,j-1)) |
---|
7522 | else |
---|
7523 | qmax(i,k,j-1) = amax1(qmax(i,k,j-1),field_old(i,k,j)) |
---|
7524 | qmin(i,k,j-1) = amin1(qmin(i,k,j-1),field_old(i,k,j)) |
---|
7525 | end if |
---|
7526 | |
---|
7527 | ENDDO |
---|
7528 | ENDDO |
---|
7529 | |
---|
7530 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4rth order flux 2 in from north boundary |
---|
7531 | |
---|
7532 | DO k=kts,ktf |
---|
7533 | DO i = i_start, i_end |
---|
7534 | |
---|
7535 | vel = rv(i,k,j) |
---|
7536 | cr = vel |
---|
7537 | fqyl(i,k,j) = vel*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
7538 | |
---|
7539 | fqy( i, k, j) = vel*flux3( & |
---|
7540 | field(i,k,j-2),field(i,k,j-1), & |
---|
7541 | field(i,k,j),field(i,k,j+1),vel ) |
---|
7542 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
7543 | |
---|
7544 | if(cr.gt. 0) then |
---|
7545 | qmax(i,k,j) = amax1(qmax(i,k,j),field_old(i,k,j-1)) |
---|
7546 | qmin(i,k,j) = amin1(qmin(i,k,j),field_old(i,k,j-1)) |
---|
7547 | else |
---|
7548 | qmax(i,k,j-1) = amax1(qmax(i,k,j-1),field_old(i,k,j)) |
---|
7549 | qmin(i,k,j-1) = amin1(qmin(i,k,j-1),field_old(i,k,j)) |
---|
7550 | end if |
---|
7551 | |
---|
7552 | ENDDO |
---|
7553 | ENDDO |
---|
7554 | |
---|
7555 | ENDIF |
---|
7556 | |
---|
7557 | ENDDO j_loop_y_flux_5 |
---|
7558 | |
---|
7559 | ! next, x flux |
---|
7560 | |
---|
7561 | !-- these bounds are for periodic and sym conditions |
---|
7562 | |
---|
7563 | i_start = its-1 |
---|
7564 | i_end = MIN(ite,ide-1)+1 |
---|
7565 | i_start_f = i_start |
---|
7566 | i_end_f = i_end+1 |
---|
7567 | |
---|
7568 | j_start = jts-1 |
---|
7569 | j_end = MIN(jte,jde-1)+1 |
---|
7570 | |
---|
7571 | !-- modify loop bounds for open and specified b.c |
---|
7572 | |
---|
7573 | ! WCS 20090218 |
---|
7574 | ! IF(degrade_ys) j_start = jts |
---|
7575 | ! IF(degrade_ye) j_end = MIN(jte,jde-1) |
---|
7576 | IF(degrade_ys) j_start = MAX(jts-1,jds) |
---|
7577 | IF(degrade_ye) j_end = MIN(jte+1,jde-1) |
---|
7578 | |
---|
7579 | ! WCS 20090218 |
---|
7580 | ! IF(degrade_xs) then |
---|
7581 | ! i_start = MAX(ids+1,its) |
---|
7582 | ! i_start_f = i_start+2 |
---|
7583 | ! ENDIF |
---|
7584 | |
---|
7585 | ! IF(degrade_xe) then |
---|
7586 | ! i_end = MIN(ide-2,ite) |
---|
7587 | ! i_end_f = ide-3 |
---|
7588 | ! ENDIF |
---|
7589 | |
---|
7590 | IF(degrade_xs) then |
---|
7591 | i_start = MAX(ids+1,its-1) |
---|
7592 | i_start_f = ids+3 |
---|
7593 | ENDIF |
---|
7594 | |
---|
7595 | IF(degrade_xe) then |
---|
7596 | i_end = MIN(ide-2,ite+1) |
---|
7597 | i_end_f = ide-3 |
---|
7598 | ENDIF |
---|
7599 | |
---|
7600 | ! compute fluxes |
---|
7601 | |
---|
7602 | DO j = j_start, j_end |
---|
7603 | |
---|
7604 | ! 5th or 6th order flux |
---|
7605 | |
---|
7606 | DO k=kts,ktf |
---|
7607 | DO i = i_start_f, i_end_f |
---|
7608 | |
---|
7609 | vel = ru(i,k,j) |
---|
7610 | cr = vel |
---|
7611 | fqxl(i,k,j) = vel*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
7612 | |
---|
7613 | fqx( i,k,j ) = vel*flux5( field(i-3,k,j), field(i-2,k,j), & |
---|
7614 | field(i-1,k,j), field(i ,k,j), & |
---|
7615 | field(i+1,k,j), field(i+2,k,j), & |
---|
7616 | vel ) |
---|
7617 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
7618 | |
---|
7619 | if(cr.gt. 0) then |
---|
7620 | qmax(i,k,j) = amax1(qmax(i,k,j),field_old(i-1,k,j)) |
---|
7621 | qmin(i,k,j) = amin1(qmin(i,k,j),field_old(i-1,k,j)) |
---|
7622 | else |
---|
7623 | qmax(i-1,k,j) = amax1(qmax(i-1,k,j),field_old(i,k,j)) |
---|
7624 | qmin(i-1,k,j) = amin1(qmin(i-1,k,j),field_old(i,k,j)) |
---|
7625 | end if |
---|
7626 | |
---|
7627 | ENDDO |
---|
7628 | ENDDO |
---|
7629 | |
---|
7630 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
7631 | |
---|
7632 | ! WCS 20090218 degrade_xs and xe recoded |
---|
7633 | |
---|
7634 | IF( degrade_xs ) THEN |
---|
7635 | |
---|
7636 | DO i=i_start,i_start_f-1 |
---|
7637 | |
---|
7638 | IF(i == ids+1) THEN ! second order |
---|
7639 | DO k=kts,ktf |
---|
7640 | vel = ru(i,k,j) |
---|
7641 | cr = vel |
---|
7642 | fqxl(i,k,j) = vel*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
7643 | |
---|
7644 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
7645 | *(field(i,k,j)+field(i-1,k,j)) |
---|
7646 | |
---|
7647 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
7648 | |
---|
7649 | if(cr.gt. 0) then |
---|
7650 | qmax(i,k,j) = amax1(qmax(i,k,j),field_old(i-1,k,j)) |
---|
7651 | qmin(i,k,j) = amin1(qmin(i,k,j),field_old(i-1,k,j)) |
---|
7652 | else |
---|
7653 | qmax(i-1,k,j) = amax1(qmax(i-1,k,j),field_old(i,k,j)) |
---|
7654 | qmin(i-1,k,j) = amin1(qmin(i-1,k,j),field_old(i,k,j)) |
---|
7655 | end if |
---|
7656 | ENDDO |
---|
7657 | ENDIF |
---|
7658 | |
---|
7659 | IF(i == ids+2) THEN ! third order |
---|
7660 | DO k=kts,ktf |
---|
7661 | vel = ru(i,k,j) |
---|
7662 | cr = vel |
---|
7663 | fqxl(i,k,j) = vel*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
7664 | fqx( i,k,j ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
7665 | field(i ,k,j), field(i+1,k,j), & |
---|
7666 | vel ) |
---|
7667 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
7668 | |
---|
7669 | if(cr.gt. 0) then |
---|
7670 | qmax(i,k,j) = amax1(qmax(i,k,j),field_old(i-1,k,j)) |
---|
7671 | qmin(i,k,j) = amin1(qmin(i,k,j),field_old(i-1,k,j)) |
---|
7672 | else |
---|
7673 | qmax(i-1,k,j) = amax1(qmax(i-1,k,j),field_old(i,k,j)) |
---|
7674 | qmin(i-1,k,j) = amin1(qmin(i-1,k,j),field_old(i,k,j)) |
---|
7675 | end if |
---|
7676 | ENDDO |
---|
7677 | ENDIF |
---|
7678 | |
---|
7679 | ENDDO |
---|
7680 | |
---|
7681 | ENDIF |
---|
7682 | |
---|
7683 | IF( degrade_xe ) THEN |
---|
7684 | |
---|
7685 | DO i = i_end_f+1, i_end+1 |
---|
7686 | |
---|
7687 | IF( i == ide-1 ) THEN ! second order flux next to the boundary |
---|
7688 | DO k=kts,ktf |
---|
7689 | vel = ru(i,k,j) |
---|
7690 | cr = vel |
---|
7691 | fqxl(i,k,j) = vel*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
7692 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
7693 | *(field(i,k,j)+field(i-1,k,j)) |
---|
7694 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
7695 | |
---|
7696 | if(cr.gt. 0) then |
---|
7697 | qmax(i,k,j) = amax1(qmax(i,k,j),field_old(i-1,k,j)) |
---|
7698 | qmin(i,k,j) = amin1(qmin(i,k,j),field_old(i-1,k,j)) |
---|
7699 | else |
---|
7700 | qmax(i-1,k,j) = amax1(qmax(i-1,k,j),field_old(i,k,j)) |
---|
7701 | qmin(i-1,k,j) = amin1(qmin(i-1,k,j),field_old(i,k,j)) |
---|
7702 | end if |
---|
7703 | ENDDO |
---|
7704 | ENDIF |
---|
7705 | |
---|
7706 | IF( i == ide-2 ) THEN ! third order flux one in from the boundary |
---|
7707 | DO k=kts,ktf |
---|
7708 | vel = ru(i,k,j) |
---|
7709 | cr = vel |
---|
7710 | fqxl(i,k,j) = vel*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
7711 | fqx( i,k,j ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
7712 | field(i ,k,j), field(i+1,k,j), & |
---|
7713 | vel ) |
---|
7714 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
7715 | |
---|
7716 | if(cr.gt. 0) then |
---|
7717 | qmax(i,k,j) = amax1(qmax(i,k,j),field_old(i-1,k,j)) |
---|
7718 | qmin(i,k,j) = amin1(qmin(i,k,j),field_old(i-1,k,j)) |
---|
7719 | else |
---|
7720 | qmax(i-1,k,j) = amax1(qmax(i-1,k,j),field_old(i,k,j)) |
---|
7721 | qmin(i-1,k,j) = amin1(qmin(i-1,k,j),field_old(i,k,j)) |
---|
7722 | end if |
---|
7723 | ENDDO |
---|
7724 | ENDIF |
---|
7725 | ENDDO |
---|
7726 | ENDIF |
---|
7727 | |
---|
7728 | ENDDO ! enddo for outer J loop |
---|
7729 | |
---|
7730 | ELSE |
---|
7731 | |
---|
7732 | WRITE ( wrf_err_message , * ) 'module_advect: advect_scalar_mono, h_order not known ',horz_order |
---|
7733 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
7734 | |
---|
7735 | ENDIF horizontal_order_test |
---|
7736 | |
---|
7737 | ! pick up the rest of the horizontal radiation boundary conditions. |
---|
7738 | ! (these are the computations that don't require 'cb'. |
---|
7739 | ! first, set to index ranges |
---|
7740 | |
---|
7741 | i_start = its |
---|
7742 | i_end = MIN(ite,ide-1) |
---|
7743 | j_start = jts |
---|
7744 | j_end = MIN(jte,jde-1) |
---|
7745 | |
---|
7746 | ! compute x (u) conditions for v, w, or scalar |
---|
7747 | |
---|
7748 | IF( (config_flags%open_xs) .and. (its == ids) ) THEN |
---|
7749 | |
---|
7750 | DO j = j_start, j_end |
---|
7751 | DO k = kts, ktf |
---|
7752 | ub = MIN( 0.5*(ru(its,k,j)+ru(its+1,k,j)), 0. ) |
---|
7753 | tendency(its,k,j) = tendency(its,k,j) & |
---|
7754 | - rdx*( & |
---|
7755 | ub*( field_old(its+1,k,j) & |
---|
7756 | - field_old(its ,k,j) ) + & |
---|
7757 | field(its,k,j)*(ru(its+1,k,j)-ru(its,k,j)) & |
---|
7758 | ) |
---|
7759 | ENDDO |
---|
7760 | ENDDO |
---|
7761 | |
---|
7762 | ENDIF |
---|
7763 | |
---|
7764 | IF( (config_flags%open_xe) .and. (ite == ide) ) THEN |
---|
7765 | |
---|
7766 | DO j = j_start, j_end |
---|
7767 | DO k = kts, ktf |
---|
7768 | ub = MAX( 0.5*(ru(ite-1,k,j)+ru(ite,k,j)), 0. ) |
---|
7769 | tendency(i_end,k,j) = tendency(i_end,k,j) & |
---|
7770 | - rdx*( & |
---|
7771 | ub*( field_old(i_end ,k,j) & |
---|
7772 | - field_old(i_end-1,k,j) ) + & |
---|
7773 | field(i_end,k,j)*(ru(ite,k,j)-ru(ite-1,k,j)) & |
---|
7774 | ) |
---|
7775 | ENDDO |
---|
7776 | ENDDO |
---|
7777 | |
---|
7778 | ENDIF |
---|
7779 | |
---|
7780 | IF( (config_flags%open_ys) .and. (jts == jds) ) THEN |
---|
7781 | |
---|
7782 | DO i = i_start, i_end |
---|
7783 | DO k = kts, ktf |
---|
7784 | vb = MIN( 0.5*(rv(i,k,jts)+rv(i,k,jts+1)), 0. ) |
---|
7785 | tendency(i,k,jts) = tendency(i,k,jts) & |
---|
7786 | - rdy*( & |
---|
7787 | vb*( field_old(i,k,jts+1) & |
---|
7788 | - field_old(i,k,jts ) ) + & |
---|
7789 | field(i,k,jts)*(rv(i,k,jts+1)-rv(i,k,jts)) & |
---|
7790 | ) |
---|
7791 | ENDDO |
---|
7792 | ENDDO |
---|
7793 | |
---|
7794 | ENDIF |
---|
7795 | |
---|
7796 | IF( (config_flags%open_ye) .and. (jte == jde)) THEN |
---|
7797 | |
---|
7798 | DO i = i_start, i_end |
---|
7799 | DO k = kts, ktf |
---|
7800 | vb = MAX( 0.5*(rv(i,k,jte-1)+rv(i,k,jte)), 0. ) |
---|
7801 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
---|
7802 | - rdy*( & |
---|
7803 | vb*( field_old(i,k,j_end ) & |
---|
7804 | - field_old(i,k,j_end-1) ) + & |
---|
7805 | field(i,k,j_end)*(rv(i,k,jte)-rv(i,k,jte-1)) & |
---|
7806 | ) |
---|
7807 | ENDDO |
---|
7808 | ENDDO |
---|
7809 | |
---|
7810 | ENDIF |
---|
7811 | |
---|
7812 | !-------------------- vertical advection |
---|
7813 | |
---|
7814 | !-- loop bounds for periodic or sym conditions |
---|
7815 | |
---|
7816 | i_start = its-1 |
---|
7817 | i_end = MIN(ite,ide-1)+1 |
---|
7818 | j_start = jts-1 |
---|
7819 | j_end = MIN(jte,jde-1)+1 |
---|
7820 | |
---|
7821 | !-- loop bounds for open or specified conditions |
---|
7822 | |
---|
7823 | ! WCS 20090218 |
---|
7824 | ! IF(degrade_xs) i_start = its |
---|
7825 | ! IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
7826 | ! IF(degrade_ys) j_start = jts |
---|
7827 | ! IF(degrade_ye) j_end = MIN(jte,jde-1) |
---|
7828 | |
---|
7829 | IF(degrade_xs) i_start = MAX(its-1,ids) |
---|
7830 | IF(degrade_xe) i_end = MIN(ite+1,ide-1) |
---|
7831 | IF(degrade_ys) j_start = MAX(jts-1,jds) |
---|
7832 | IF(degrade_ye) j_end = MIN(jte+1,jde-1) |
---|
7833 | |
---|
7834 | |
---|
7835 | vert_order_test : IF (vert_order == 3) THEN |
---|
7836 | |
---|
7837 | DO j = j_start, j_end |
---|
7838 | |
---|
7839 | DO i = i_start, i_end |
---|
7840 | fqz(i,1,j) = 0. |
---|
7841 | fqzl(i,1,j) = 0. |
---|
7842 | fqz(i,kde,j) = 0. |
---|
7843 | fqzl(i,kde,j) = 0. |
---|
7844 | ENDDO |
---|
7845 | |
---|
7846 | DO k=kts+2,ktf-1 |
---|
7847 | DO i = i_start, i_end |
---|
7848 | |
---|
7849 | vel = rom(i,k,j) |
---|
7850 | cr = -vel |
---|
7851 | fqzl(i,k,j) = vel*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
7852 | |
---|
7853 | fqz(i,k,j) = vel*flux3( & |
---|
7854 | field(i,k-2,j), field(i,k-1,j), & |
---|
7855 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
7856 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
7857 | |
---|
7858 | if(cr.gt. 0) then |
---|
7859 | qmax(i,k,j) = amax1(qmax(i,k,j),field_old(i,k-1,j)) |
---|
7860 | qmin(i,k,j) = amin1(qmin(i,k,j),field_old(i,k-1,j)) |
---|
7861 | else |
---|
7862 | qmax(i,k-1,j) = amax1(qmax(i,k-1,j),field_old(i,k,j)) |
---|
7863 | qmin(i,k-1,j) = amin1(qmin(i,k-1,j),field_old(i,k,j)) |
---|
7864 | end if |
---|
7865 | |
---|
7866 | ENDDO |
---|
7867 | ENDDO |
---|
7868 | |
---|
7869 | DO i = i_start, i_end |
---|
7870 | |
---|
7871 | k=kts+1 |
---|
7872 | vel = rom(i,k,j) |
---|
7873 | cr = -vel |
---|
7874 | fqzl(i,k,j) = vel*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
7875 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
7876 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
7877 | |
---|
7878 | if(cr.gt. 0) then |
---|
7879 | qmax(i,k,j) = amax1(qmax(i,k,j),field_old(i,k-1,j)) |
---|
7880 | qmin(i,k,j) = amin1(qmin(i,k,j),field_old(i,k-1,j)) |
---|
7881 | else |
---|
7882 | qmax(i,k-1,j) = amax1(qmax(i,k-1,j),field_old(i,k,j)) |
---|
7883 | qmin(i,k-1,j) = amin1(qmin(i,k-1,j),field_old(i,k,j)) |
---|
7884 | end if |
---|
7885 | |
---|
7886 | k=ktf |
---|
7887 | vel = rom(i,k,j) |
---|
7888 | cr = -vel |
---|
7889 | fqzl(i,k,j) = vel*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
7890 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
7891 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
7892 | |
---|
7893 | if(cr.gt. 0) then |
---|
7894 | qmax(i,k,j) = amax1(qmax(i,k,j),field_old(i,k-1,j)) |
---|
7895 | qmin(i,k,j) = amin1(qmin(i,k,j),field_old(i,k-1,j)) |
---|
7896 | else |
---|
7897 | qmax(i,k-1,j) = amax1(qmax(i,k-1,j),field_old(i,k,j)) |
---|
7898 | qmin(i,k-1,j) = amin1(qmin(i,k-1,j),field_old(i,k,j)) |
---|
7899 | end if |
---|
7900 | ENDDO |
---|
7901 | |
---|
7902 | ENDDO |
---|
7903 | |
---|
7904 | ELSE |
---|
7905 | |
---|
7906 | WRITE (wrf_err_message,*) ' advect_scalar_mono, v_order not known ',vert_order |
---|
7907 | CALL wrf_error_fatal ( wrf_err_message ) |
---|
7908 | |
---|
7909 | ENDIF vert_order_test |
---|
7910 | |
---|
7911 | IF (mono_limit) THEN |
---|
7912 | |
---|
7913 | ! montonic filter |
---|
7914 | |
---|
7915 | i_start = its-1 |
---|
7916 | i_end = MIN(ite,ide-1)+1 |
---|
7917 | j_start = jts-1 |
---|
7918 | j_end = MIN(jte,jde-1)+1 |
---|
7919 | |
---|
7920 | ! WCS 20090218 |
---|
7921 | |
---|
7922 | !-- loop bounds for open or specified conditions |
---|
7923 | ! |
---|
7924 | ! IF(degrade_xs) i_start = its |
---|
7925 | ! IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
7926 | ! IF(degrade_ys) j_start = jts |
---|
7927 | ! IF(degrade_ye) j_end = MIN(jte,jde-1) |
---|
7928 | ! |
---|
7929 | ! IF(config_flags%specified .or. config_flags%nested) THEN |
---|
7930 | ! IF (degrade_xs) i_start = MAX(its,ids+1) |
---|
7931 | ! IF (degrade_xe) i_end = MIN(ite,ide-2) |
---|
7932 | ! IF (degrade_ys) j_start = MAX(jts,jds+1) |
---|
7933 | ! IF (degrade_ye) j_end = MIN(jte,jde-2) |
---|
7934 | ! END IF |
---|
7935 | ! |
---|
7936 | ! IF(config_flags%open_xs) THEN |
---|
7937 | ! IF (degrade_xs) i_start = MAX(its,ids+1) |
---|
7938 | ! END IF |
---|
7939 | ! IF(config_flags%open_xe) THEN |
---|
7940 | ! IF (degrade_xe) i_end = MIN(ite,ide-2) |
---|
7941 | ! END IF |
---|
7942 | ! IF(config_flags%open_ys) THEN |
---|
7943 | ! IF (degrade_ys) j_start = MAX(jts,jds+1) |
---|
7944 | ! END IF |
---|
7945 | ! IF(config_flags%open_ye) THEN |
---|
7946 | ! IF (degrade_ye) j_end = MIN(jte,jde-2) |
---|
7947 | ! END IF |
---|
7948 | |
---|
7949 | IF(degrade_xs) i_start = MAX(its-1,ids) |
---|
7950 | IF(degrade_xe) i_end = MIN(ite+1,ide-1) |
---|
7951 | IF(degrade_ys) j_start = MAX(jts-1,jds) |
---|
7952 | IF(degrade_ye) j_end = MIN(jte+1,jde-1) |
---|
7953 | |
---|
7954 | IF(config_flags%specified .or. config_flags%nested) THEN |
---|
7955 | IF (degrade_xs) i_start = MAX(its-1,ids+1) |
---|
7956 | IF (degrade_xe) i_end = MIN(ite+1,ide-2) |
---|
7957 | IF (degrade_ys) j_start = MAX(jts-1,jds+1) |
---|
7958 | IF (degrade_ye) j_end = MIN(jte+1,jde-2) |
---|
7959 | END IF |
---|
7960 | |
---|
7961 | IF(config_flags%open_xs) THEN |
---|
7962 | IF (degrade_xs) i_start = MAX(its-1,ids+1) |
---|
7963 | END IF |
---|
7964 | IF(config_flags%open_xe) THEN |
---|
7965 | IF (degrade_xe) i_end = MIN(ite+1,ide-2) |
---|
7966 | END IF |
---|
7967 | IF(config_flags%open_ys) THEN |
---|
7968 | IF (degrade_ys) j_start = MAX(jts-1,jds+1) |
---|
7969 | END IF |
---|
7970 | IF(config_flags%open_ye) THEN |
---|
7971 | IF (degrade_ye) j_end = MIN(jte+1,jde-2) |
---|
7972 | END IF |
---|
7973 | |
---|
7974 | !-- here is the limiter... |
---|
7975 | |
---|
7976 | DO j=j_start, j_end |
---|
7977 | DO k=kts, ktf |
---|
7978 | DO i=i_start, i_end |
---|
7979 | |
---|
7980 | ph_upwind = (mub(i,j)+mu_old(i,j))*field_old(i,k,j) & |
---|
7981 | - dt*( msft(i,j) *( & |
---|
7982 | rdx*(fqxl(i+1,k,j)-fqxl(i,k,j)) + & |
---|
7983 | rdy*(fqyl(i,k,j+1)-fqyl(i,k,j)) ) & |
---|
7984 | + rdzw(k)*(fqzl(i,k+1,j)-fqzl(i,k,j)) ) |
---|
7985 | |
---|
7986 | flux_in = -dt*( msft(i,j) *( & |
---|
7987 | rdx*( min(0.,fqx (i+1,k,j)) & |
---|
7988 | -max(0.,fqx (i ,k,j)) ) & |
---|
7989 | +rdy*( min(0.,fqy (i,k,j+1)) & |
---|
7990 | -max(0.,fqy (i,k,j )) ) ) & |
---|
7991 | + rdzw(k)*( max(0.,fqz (i,k+1,j)) & |
---|
7992 | -min(0.,fqz (i,k ,j)) ) ) |
---|
7993 | |
---|
7994 | ph_hi = mut(i,j)*qmax(i,k,j) - ph_upwind |
---|
7995 | IF( flux_in .gt. ph_hi ) scale_in(i,k,j) = max(0.,ph_hi/(flux_in+eps)) |
---|
7996 | |
---|
7997 | |
---|
7998 | flux_out = dt*( msft(i,j)*( & |
---|
7999 | rdx*( max(0.,fqx (i+1,k,j)) & |
---|
8000 | -min(0.,fqx (i ,k,j)) ) & |
---|
8001 | +rdy*( max(0.,fqy (i,k,j+1)) & |
---|
8002 | -min(0.,fqy (i,k,j )) ) ) & |
---|
8003 | + rdzw(k)*( min(0.,fqz (i,k+1,j)) & |
---|
8004 | -max(0.,fqz (i,k ,j)) ) ) |
---|
8005 | |
---|
8006 | ph_low = ph_upwind - mut(i,j)*qmin(i,k,j) |
---|
8007 | IF( flux_out .gt. ph_low ) scale_out(i,k,j) = max(0.,ph_low/(flux_out+eps)) |
---|
8008 | |
---|
8009 | ENDDO |
---|
8010 | ENDDO |
---|
8011 | ENDDO |
---|
8012 | |
---|
8013 | DO j=j_start, j_end |
---|
8014 | DO k=kts, ktf |
---|
8015 | DO i=i_start, i_end+1 |
---|
8016 | IF( fqx (i,k,j) .gt. 0.) then |
---|
8017 | fqx(i,k,j) = min(scale_in(i,k,j),scale_out(i-1,k,j))*fqx(i,k,j) |
---|
8018 | ELSE |
---|
8019 | fqx(i,k,j) = min(scale_out(i,k,j),scale_in(i-1,k,j))*fqx(i,k,j) |
---|
8020 | ENDIF |
---|
8021 | ENDDO |
---|
8022 | ENDDO |
---|
8023 | ENDDO |
---|
8024 | |
---|
8025 | DO j=j_start, j_end+1 |
---|
8026 | DO k=kts, ktf |
---|
8027 | DO i=i_start, i_end |
---|
8028 | IF( fqy (i,k,j) .gt. 0.) then |
---|
8029 | fqy(i,k,j) = min(scale_in(i,k,j),scale_out(i,k,j-1))*fqy(i,k,j) |
---|
8030 | ELSE |
---|
8031 | fqy(i,k,j) = min(scale_out(i,k,j),scale_in(i,k,j-1))*fqy(i,k,j) |
---|
8032 | ENDIF |
---|
8033 | ENDDO |
---|
8034 | ENDDO |
---|
8035 | ENDDO |
---|
8036 | |
---|
8037 | DO j=j_start, j_end |
---|
8038 | DO k=kts+1, ktf |
---|
8039 | DO i=i_start, i_end |
---|
8040 | IF( fqz (i,k,j) .lt. 0.) then |
---|
8041 | fqz(i,k,j) = min(scale_in(i,k,j),scale_out(i,k-1,j))*fqz(i,k,j) |
---|
8042 | ELSE |
---|
8043 | fqz(i,k,j) = min(scale_out(i,k,j),scale_in(i,k-1,j))*fqz(i,k,j) |
---|
8044 | ENDIF |
---|
8045 | ENDDO |
---|
8046 | ENDDO |
---|
8047 | ENDDO |
---|
8048 | |
---|
8049 | END IF |
---|
8050 | |
---|
8051 | ! add in the mono-limited flux divergence |
---|
8052 | ! we need to fix this for open b.c set *********** |
---|
8053 | |
---|
8054 | i_start = its |
---|
8055 | i_end = MIN(ite,ide-1) |
---|
8056 | j_start = jts |
---|
8057 | j_end = MIN(jte,jde-1) |
---|
8058 | |
---|
8059 | DO j = j_start, j_end |
---|
8060 | DO k = kts, ktf |
---|
8061 | DO i = i_start, i_end |
---|
8062 | |
---|
8063 | tendency (i,k,j) = tendency(i,k,j) & |
---|
8064 | -rdzw(k)*( fqz (i,k+1,j)-fqz (i,k,j) & |
---|
8065 | +fqzl(i,k+1,j)-fqzl(i,k,j)) |
---|
8066 | |
---|
8067 | ENDDO |
---|
8068 | ENDDO |
---|
8069 | ENDDO |
---|
8070 | |
---|
8071 | ! x flux divergence |
---|
8072 | ! |
---|
8073 | |
---|
8074 | ! WCS 20090218 |
---|
8075 | ! IF(degrade_xs) i_start = i_start + 1 |
---|
8076 | ! IF(degrade_xe) i_end = i_end - 1 |
---|
8077 | |
---|
8078 | IF(degrade_xs) i_start = MAX(its,ids+1) |
---|
8079 | IF(degrade_xe) i_end = MIN(ite,ide-2) |
---|
8080 | |
---|
8081 | DO j = j_start, j_end |
---|
8082 | DO k = kts, ktf |
---|
8083 | DO i = i_start, i_end |
---|
8084 | |
---|
8085 | ! Un-"canceled" map scale factor, ADT Eq. 48 |
---|
8086 | tendency (i,k,j) = tendency(i,k,j) & |
---|
8087 | - msft(i,j)*( rdx*( fqx (i+1,k,j)-fqx (i,k,j) & |
---|
8088 | +fqxl(i+1,k,j)-fqxl(i,k,j)) ) |
---|
8089 | |
---|
8090 | ENDDO |
---|
8091 | ENDDO |
---|
8092 | ENDDO |
---|
8093 | |
---|
8094 | ! y flux divergence |
---|
8095 | ! |
---|
8096 | i_start = its |
---|
8097 | i_end = MIN(ite,ide-1) |
---|
8098 | |
---|
8099 | ! WCS 20090218 |
---|
8100 | ! IF(degrade_ys) j_start = j_start + 1 |
---|
8101 | ! IF(degrade_ye) j_end = j_end - 1 |
---|
8102 | |
---|
8103 | IF(degrade_ys) j_start = MAX(jts,jds+1) |
---|
8104 | IF(degrade_ye) j_end = MIN(jte,jde-2) |
---|
8105 | |
---|
8106 | DO j = j_start, j_end |
---|
8107 | DO k = kts, ktf |
---|
8108 | DO i = i_start, i_end |
---|
8109 | |
---|
8110 | ! Un-"canceled" map scale factor, ADT Eq. 48 |
---|
8111 | tendency (i,k,j) = tendency(i,k,j) & |
---|
8112 | - msft(i,j)*( rdy*( fqy (i,k,j+1)-fqy (i,k,j) & |
---|
8113 | +fqyl(i,k,j+1)-fqyl(i,k,j)) ) |
---|
8114 | |
---|
8115 | ENDDO |
---|
8116 | ENDDO |
---|
8117 | ENDDO |
---|
8118 | |
---|
8119 | END SUBROUTINE advect_scalar_mono |
---|
8120 | |
---|
8121 | !----------------------------------------------------------- |
---|
8122 | |
---|
8123 | END MODULE module_advect_em |
---|
8124 | |
---|