1 | !WRF:MODEL_LAYER:DYNAMICS |
---|
2 | ! |
---|
3 | MODULE module_advect_em |
---|
4 | |
---|
5 | USE module_bc |
---|
6 | USE module_model_constants |
---|
7 | USE module_wrf_error |
---|
8 | |
---|
9 | CONTAINS |
---|
10 | |
---|
11 | |
---|
12 | SUBROUTINE mass_flux_divergence ( field, field_old, tendency, & |
---|
13 | ru, rv, rom, & |
---|
14 | mut, config_flags, & |
---|
15 | msfu, msfv, msft, & |
---|
16 | fzm, fzp, & |
---|
17 | rdx, rdy, rdzw, & |
---|
18 | ids, ide, jds, jde, kds, kde, & |
---|
19 | ims, ime, jms, jme, kms, kme, & |
---|
20 | its, ite, jts, jte, kts, kte ) |
---|
21 | |
---|
22 | IMPLICIT NONE |
---|
23 | |
---|
24 | ! Input data |
---|
25 | |
---|
26 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
27 | |
---|
28 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
29 | ims, ime, jms, jme, kms, kme, & |
---|
30 | its, ite, jts, jte, kts, kte |
---|
31 | |
---|
32 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: field, & |
---|
33 | field_old, & |
---|
34 | ru, & |
---|
35 | rv, & |
---|
36 | rom |
---|
37 | |
---|
38 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
---|
39 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
40 | |
---|
41 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
---|
42 | msfv, & |
---|
43 | msft |
---|
44 | |
---|
45 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
46 | fzp, & |
---|
47 | rdzw |
---|
48 | |
---|
49 | REAL , INTENT(IN ) :: rdx, & |
---|
50 | rdy |
---|
51 | |
---|
52 | ! Local data |
---|
53 | |
---|
54 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
55 | INTEGER :: i_start, i_end, j_start, j_end |
---|
56 | INTEGER :: imin, imax, jmin, jmax |
---|
57 | |
---|
58 | REAL :: mrdx, mrdy, ub, vb, uw, vw |
---|
59 | REAL , DIMENSION(its:ite,kts:kte) :: vflux |
---|
60 | |
---|
61 | LOGICAL :: specified |
---|
62 | |
---|
63 | !--------------- horizontal flux |
---|
64 | |
---|
65 | specified = .false. |
---|
66 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
---|
67 | |
---|
68 | ktf=MIN(kte,kde-1) |
---|
69 | i_start = its |
---|
70 | i_end = MIN(ite,ide-1) |
---|
71 | j_start = jts |
---|
72 | j_end = MIN(jte,jde-1) |
---|
73 | |
---|
74 | DO j = j_start, j_end |
---|
75 | DO k = kts, ktf |
---|
76 | DO i = i_start, i_end |
---|
77 | mrdx=msft(i,j)*rdx |
---|
78 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.5 & |
---|
79 | *(ru(i+1,k,j)*(field(i+1,k,j)+field(i ,k,j)) & |
---|
80 | -ru(i ,k,j)*(field(i ,k,j)+field(i-1,k,j))) |
---|
81 | ENDDO |
---|
82 | ENDDO |
---|
83 | ENDDO |
---|
84 | |
---|
85 | DO j = j_start, j_end |
---|
86 | DO k = kts, ktf |
---|
87 | DO i = i_start, i_end |
---|
88 | mrdy=msft(i,j)*rdy |
---|
89 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.5 & |
---|
90 | *(rv(i,k,j+1)*(field(i,k,j+1)+field(i,k,j )) & |
---|
91 | -rv(i,k,j )*(field(i,k,j )+field(i,k,j-1))) |
---|
92 | ENDDO |
---|
93 | ENDDO |
---|
94 | ENDDO |
---|
95 | |
---|
96 | !---------------- vertical flux divergence |
---|
97 | |
---|
98 | |
---|
99 | DO i = i_start, i_end |
---|
100 | vflux(i,kts)=0. |
---|
101 | vflux(i,kte)=0. |
---|
102 | ENDDO |
---|
103 | |
---|
104 | DO j = j_start, j_end |
---|
105 | |
---|
106 | DO k = kts+1, ktf |
---|
107 | DO i = i_start, i_end |
---|
108 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
109 | ENDDO |
---|
110 | ENDDO |
---|
111 | |
---|
112 | DO k = kts, ktf |
---|
113 | DO i = i_start, i_end |
---|
114 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
115 | ENDDO |
---|
116 | ENDDO |
---|
117 | |
---|
118 | ENDDO |
---|
119 | |
---|
120 | END SUBROUTINE mass_flux_divergence |
---|
121 | |
---|
122 | !------------------------------------------------------------------------------- |
---|
123 | |
---|
124 | SUBROUTINE advect_u ( u, u_old, tendency, & |
---|
125 | ru, rv, rom, & |
---|
126 | mut, config_flags, & |
---|
127 | msfu, msfv, msft, & |
---|
128 | fzm, fzp, & |
---|
129 | rdx, rdy, rdzw, & |
---|
130 | ids, ide, jds, jde, kds, kde, & |
---|
131 | ims, ime, jms, jme, kms, kme, & |
---|
132 | its, ite, jts, jte, kts, kte ) |
---|
133 | |
---|
134 | IMPLICIT NONE |
---|
135 | |
---|
136 | ! Input data |
---|
137 | |
---|
138 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
139 | |
---|
140 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
141 | ims, ime, jms, jme, kms, kme, & |
---|
142 | its, ite, jts, jte, kts, kte |
---|
143 | |
---|
144 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: u, & |
---|
145 | u_old, & |
---|
146 | ru, & |
---|
147 | rv, & |
---|
148 | rom |
---|
149 | |
---|
150 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
---|
151 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
152 | |
---|
153 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
---|
154 | msfv, & |
---|
155 | msft |
---|
156 | |
---|
157 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
158 | fzp, & |
---|
159 | rdzw |
---|
160 | |
---|
161 | REAL , INTENT(IN ) :: rdx, & |
---|
162 | rdy |
---|
163 | |
---|
164 | ! Local data |
---|
165 | |
---|
166 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
167 | INTEGER :: i_start, i_end, j_start, j_end |
---|
168 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
---|
169 | INTEGER :: jmin, jmax, jp, jm, imin, imax, im, ip |
---|
170 | INTEGER :: jp1, jp0, jtmp |
---|
171 | |
---|
172 | INTEGER :: horz_order, vert_order |
---|
173 | |
---|
174 | REAL :: mrdx, mrdy, ub, vb, uw, vw, dvm, dvp |
---|
175 | REAL , DIMENSION(its:ite, kts:kte) :: vflux |
---|
176 | |
---|
177 | |
---|
178 | REAL, DIMENSION( its-1:ite+1, kts:kte ) :: fqx |
---|
179 | REAL, DIMENSION( its:ite, kts:kte, 2) :: fqy |
---|
180 | |
---|
181 | LOGICAL :: degrade_xs, degrade_ys |
---|
182 | LOGICAL :: degrade_xe, degrade_ye |
---|
183 | |
---|
184 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
---|
185 | |
---|
186 | REAL :: flux3, flux4, flux5, flux6 |
---|
187 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel |
---|
188 | |
---|
189 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
190 | ( 7.*(q_i + q_im1) - (q_ip1 + q_im2) )/12.0 |
---|
191 | |
---|
192 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
193 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
---|
194 | sign(1.,ua)*((q_ip1 - q_im2)-3.*(q_i-q_im1))/12.0 |
---|
195 | |
---|
196 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
197 | ( 37.*(q_i+q_im1) - 8.*(q_ip1+q_im2) & |
---|
198 | +(q_ip2+q_im3) )/60.0 |
---|
199 | |
---|
200 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
201 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
---|
202 | -sign(1.,ua)*( & |
---|
203 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) )/60.0 |
---|
204 | |
---|
205 | |
---|
206 | LOGICAL :: specified |
---|
207 | |
---|
208 | specified = .false. |
---|
209 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
---|
210 | |
---|
211 | ! set order for vertical and horzontal flux operators |
---|
212 | |
---|
213 | horz_order = config_flags%h_mom_adv_order |
---|
214 | vert_order = config_flags%v_mom_adv_order |
---|
215 | |
---|
216 | ktf=MIN(kte,kde-1) |
---|
217 | |
---|
218 | ! begin with horizontal flux divergence |
---|
219 | |
---|
220 | horizontal_order_test : IF( horz_order == 6 ) THEN |
---|
221 | |
---|
222 | ! determine boundary mods for flux operators |
---|
223 | ! We degrade the flux operators from 3rd/4th order |
---|
224 | ! to second order one gridpoint in from the boundaries for |
---|
225 | ! all boundary conditions except periodic and symmetry - these |
---|
226 | ! conditions have boundary zone data fill for correct application |
---|
227 | ! of the higher order flux stencils |
---|
228 | |
---|
229 | degrade_xs = .true. |
---|
230 | degrade_xe = .true. |
---|
231 | degrade_ys = .true. |
---|
232 | degrade_ye = .true. |
---|
233 | |
---|
234 | IF( config_flags%periodic_x .or. & |
---|
235 | config_flags%symmetric_xs .or. & |
---|
236 | (its > ids+2) ) degrade_xs = .false. |
---|
237 | IF( config_flags%periodic_x .or. & |
---|
238 | config_flags%symmetric_xe .or. & |
---|
239 | (ite < ide-2) ) degrade_xe = .false. |
---|
240 | IF( config_flags%periodic_y .or. & |
---|
241 | config_flags%symmetric_ys .or. & |
---|
242 | (jts > jds+2) ) degrade_ys = .false. |
---|
243 | IF( config_flags%periodic_y .or. & |
---|
244 | config_flags%symmetric_ye .or. & |
---|
245 | (jte < jde-3) ) degrade_ye = .false. |
---|
246 | |
---|
247 | !--------------- y - advection first |
---|
248 | |
---|
249 | i_start = its |
---|
250 | i_end = ite |
---|
251 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
252 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-1,ite) |
---|
253 | IF ( config_flags%periodic_x ) i_start = its |
---|
254 | IF ( config_flags%periodic_x ) i_end = ite |
---|
255 | |
---|
256 | j_start = jts |
---|
257 | j_end = MIN(jte,jde-1) |
---|
258 | |
---|
259 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
260 | ! bounds so we can switch to second order flux close to the boundary |
---|
261 | |
---|
262 | j_start_f = j_start |
---|
263 | j_end_f = j_end+1 |
---|
264 | |
---|
265 | IF(degrade_ys) then |
---|
266 | j_start = MAX(jts,jds+1) |
---|
267 | j_start_f = jds+3 |
---|
268 | ENDIF |
---|
269 | |
---|
270 | IF(degrade_ye) then |
---|
271 | j_end = MIN(jte,jde-2) |
---|
272 | j_end_f = jde-3 |
---|
273 | ENDIF |
---|
274 | |
---|
275 | ! compute fluxes, 5th or 6th order |
---|
276 | |
---|
277 | jp1 = 2 |
---|
278 | jp0 = 1 |
---|
279 | |
---|
280 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
---|
281 | |
---|
282 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
283 | |
---|
284 | DO k=kts,ktf |
---|
285 | DO i = i_start, i_end |
---|
286 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
287 | fqy( i, k, jp1 ) = vel*flux6( & |
---|
288 | u(i,k,j-3), u(i,k,j-2), u(i,k,j-1), & |
---|
289 | u(i,k,j ), u(i,k,j+1), u(i,k,j+2), vel ) |
---|
290 | ENDDO |
---|
291 | ENDDO |
---|
292 | |
---|
293 | ! we must be close to some boundary where we need to reduce the order of the stencil |
---|
294 | |
---|
295 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
296 | |
---|
297 | DO k=kts,ktf |
---|
298 | DO i = i_start, i_end |
---|
299 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
---|
300 | *(u(i,k,j)+u(i,k,j-1)) |
---|
301 | ENDDO |
---|
302 | ENDDO |
---|
303 | |
---|
304 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
305 | |
---|
306 | DO k=kts,ktf |
---|
307 | DO i = i_start, i_end |
---|
308 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
309 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
310 | u(i,k,j-2),u(i,k,j-1), u(i,k,j),u(i,k,j+1),vel ) |
---|
311 | ENDDO |
---|
312 | ENDDO |
---|
313 | |
---|
314 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
315 | |
---|
316 | DO k=kts,ktf |
---|
317 | DO i = i_start, i_end |
---|
318 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
---|
319 | *(u(i,k,j)+u(i,k,j-1)) |
---|
320 | ENDDO |
---|
321 | ENDDO |
---|
322 | |
---|
323 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
324 | |
---|
325 | DO k=kts,ktf |
---|
326 | DO i = i_start, i_end |
---|
327 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
328 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
329 | u(i,k,j-2),u(i,k,j-1), & |
---|
330 | u(i,k,j),u(i,k,j+1),vel ) |
---|
331 | ENDDO |
---|
332 | ENDDO |
---|
333 | |
---|
334 | END IF |
---|
335 | |
---|
336 | !stopped |
---|
337 | |
---|
338 | ! y flux-divergence into tendency |
---|
339 | |
---|
340 | IF(j > j_start) THEN |
---|
341 | |
---|
342 | DO k=kts,ktf |
---|
343 | DO i = i_start, i_end |
---|
344 | mrdy=msfu(i,j-1)*rdy |
---|
345 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
346 | ENDDO |
---|
347 | ENDDO |
---|
348 | |
---|
349 | ENDIF |
---|
350 | |
---|
351 | |
---|
352 | jtmp = jp1 |
---|
353 | jp1 = jp0 |
---|
354 | jp0 = jtmp |
---|
355 | |
---|
356 | ENDDO j_loop_y_flux_6 |
---|
357 | |
---|
358 | ! next, x - flux divergence |
---|
359 | |
---|
360 | i_start = its |
---|
361 | i_end = ite |
---|
362 | |
---|
363 | j_start = jts |
---|
364 | j_end = MIN(jte,jde-1) |
---|
365 | |
---|
366 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
367 | ! bounds so we can switch to second order flux close to the boundary |
---|
368 | |
---|
369 | i_start_f = i_start |
---|
370 | i_end_f = i_end+1 |
---|
371 | |
---|
372 | IF(degrade_xs) then |
---|
373 | i_start = MAX(ids+1,its) |
---|
374 | i_start_f = ids+3 |
---|
375 | ENDIF |
---|
376 | |
---|
377 | IF(degrade_xe) then |
---|
378 | i_end = MIN(ide-1,ite) |
---|
379 | i_end_f = ide-2 |
---|
380 | ENDIF |
---|
381 | |
---|
382 | ! compute fluxes |
---|
383 | |
---|
384 | DO j = j_start, j_end |
---|
385 | |
---|
386 | ! 5th or 6th order flux |
---|
387 | |
---|
388 | DO k=kts,ktf |
---|
389 | DO i = i_start_f, i_end_f |
---|
390 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
391 | fqx( i,k ) = vel*flux6( u(i-3,k,j), u(i-2,k,j), & |
---|
392 | u(i-1,k,j), u(i ,k,j), & |
---|
393 | u(i+1,k,j), u(i+2,k,j), & |
---|
394 | vel ) |
---|
395 | ENDDO |
---|
396 | ENDDO |
---|
397 | |
---|
398 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
399 | ! specified uses upstream normal wind at boundaries |
---|
400 | |
---|
401 | IF( degrade_xs ) THEN |
---|
402 | |
---|
403 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
404 | i = ids+1 |
---|
405 | DO k=kts,ktf |
---|
406 | ub = u(i-1,k,j) |
---|
407 | IF (specified .AND. u(i,k,j) .LT. 0.)ub = u(i,k,j) |
---|
408 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
409 | *(u(i,k,j)+ub) |
---|
410 | ENDDO |
---|
411 | END IF |
---|
412 | |
---|
413 | i = ids+2 |
---|
414 | DO k=kts,ktf |
---|
415 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
416 | fqx( i, k ) = vel*flux4( u(i-2,k,j), u(i-1,k,j), & |
---|
417 | u(i ,k,j), u(i+1,k,j), & |
---|
418 | vel ) |
---|
419 | ENDDO |
---|
420 | |
---|
421 | ENDIF |
---|
422 | |
---|
423 | IF( degrade_xe ) THEN |
---|
424 | |
---|
425 | IF( i_end == ide-1 ) THEN ! second order flux next to the boundary |
---|
426 | i = ide |
---|
427 | DO k=kts,ktf |
---|
428 | ub = u(i,k,j) |
---|
429 | IF (specified .AND. u(i-1,k,j) .GT. 0.)ub = u(i-1,k,j) |
---|
430 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
431 | *(u(i-1,k,j)+ub) |
---|
432 | ENDDO |
---|
433 | ENDIF |
---|
434 | |
---|
435 | DO k=kts,ktf |
---|
436 | i = ide-1 |
---|
437 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
438 | fqx( i,k ) = vel*flux4( u(i-2,k,j), u(i-1,k,j), & |
---|
439 | u(i ,k,j), u(i+1,k,j), & |
---|
440 | vel ) |
---|
441 | ENDDO |
---|
442 | |
---|
443 | ENDIF |
---|
444 | |
---|
445 | ! x flux-divergence into tendency |
---|
446 | |
---|
447 | DO k=kts,ktf |
---|
448 | DO i = i_start, i_end |
---|
449 | mrdx=msfu(i,j)*rdx |
---|
450 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
451 | ENDDO |
---|
452 | ENDDO |
---|
453 | |
---|
454 | ENDDO |
---|
455 | |
---|
456 | ELSE IF( horz_order == 5 ) THEN |
---|
457 | |
---|
458 | ! 5th order horizontal flux calculation |
---|
459 | ! This code is EXACTLY the same as the 6th order code |
---|
460 | ! EXCEPT the 5th order and 3rd operators are used in |
---|
461 | ! place of the 6th and 4th order operators |
---|
462 | |
---|
463 | ! determine boundary mods for flux operators |
---|
464 | ! We degrade the flux operators from 3rd/4th order |
---|
465 | ! to second order one gridpoint in from the boundaries for |
---|
466 | ! all boundary conditions except periodic and symmetry - these |
---|
467 | ! conditions have boundary zone data fill for correct application |
---|
468 | ! of the higher order flux stencils |
---|
469 | |
---|
470 | degrade_xs = .true. |
---|
471 | degrade_xe = .true. |
---|
472 | degrade_ys = .true. |
---|
473 | degrade_ye = .true. |
---|
474 | |
---|
475 | IF( config_flags%periodic_x .or. & |
---|
476 | config_flags%symmetric_xs .or. & |
---|
477 | (its > ids+2) ) degrade_xs = .false. |
---|
478 | IF( config_flags%periodic_x .or. & |
---|
479 | config_flags%symmetric_xe .or. & |
---|
480 | (ite < ide-2) ) degrade_xe = .false. |
---|
481 | IF( config_flags%periodic_y .or. & |
---|
482 | config_flags%symmetric_ys .or. & |
---|
483 | (jts > jds+2) ) degrade_ys = .false. |
---|
484 | IF( config_flags%periodic_y .or. & |
---|
485 | config_flags%symmetric_ye .or. & |
---|
486 | (jte < jde-3) ) degrade_ye = .false. |
---|
487 | |
---|
488 | !--------------- y - advection first |
---|
489 | |
---|
490 | i_start = its |
---|
491 | i_end = ite |
---|
492 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
493 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-1,ite) |
---|
494 | IF ( config_flags%periodic_x ) i_start = its |
---|
495 | IF ( config_flags%periodic_x ) i_end = ite |
---|
496 | |
---|
497 | j_start = jts |
---|
498 | j_end = MIN(jte,jde-1) |
---|
499 | |
---|
500 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
501 | ! bounds so we can switch to second order flux close to the boundary |
---|
502 | |
---|
503 | j_start_f = j_start |
---|
504 | j_end_f = j_end+1 |
---|
505 | |
---|
506 | IF(degrade_ys) then |
---|
507 | j_start = MAX(jts,jds+1) |
---|
508 | j_start_f = jds+3 |
---|
509 | ENDIF |
---|
510 | |
---|
511 | IF(degrade_ye) then |
---|
512 | j_end = MIN(jte,jde-2) |
---|
513 | j_end_f = jde-3 |
---|
514 | ENDIF |
---|
515 | |
---|
516 | ! compute fluxes, 5th or 6th order |
---|
517 | |
---|
518 | jp1 = 2 |
---|
519 | jp0 = 1 |
---|
520 | |
---|
521 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
---|
522 | |
---|
523 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
524 | |
---|
525 | DO k=kts,ktf |
---|
526 | DO i = i_start, i_end |
---|
527 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
528 | fqy( i, k, jp1 ) = vel*flux5( & |
---|
529 | u(i,k,j-3), u(i,k,j-2), u(i,k,j-1), & |
---|
530 | u(i,k,j ), u(i,k,j+1), u(i,k,j+2), vel ) |
---|
531 | ENDDO |
---|
532 | ENDDO |
---|
533 | |
---|
534 | ! we must be close to some boundary where we need to reduce the order of the stencil |
---|
535 | |
---|
536 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
537 | |
---|
538 | DO k=kts,ktf |
---|
539 | DO i = i_start, i_end |
---|
540 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
---|
541 | *(u(i,k,j)+u(i,k,j-1)) |
---|
542 | ENDDO |
---|
543 | ENDDO |
---|
544 | |
---|
545 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
546 | |
---|
547 | DO k=kts,ktf |
---|
548 | DO i = i_start, i_end |
---|
549 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
550 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
551 | u(i,k,j-2),u(i,k,j-1), u(i,k,j),u(i,k,j+1),vel ) |
---|
552 | ENDDO |
---|
553 | ENDDO |
---|
554 | |
---|
555 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
556 | |
---|
557 | DO k=kts,ktf |
---|
558 | DO i = i_start, i_end |
---|
559 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
---|
560 | *(u(i,k,j)+u(i,k,j-1)) |
---|
561 | ENDDO |
---|
562 | ENDDO |
---|
563 | |
---|
564 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
565 | |
---|
566 | DO k=kts,ktf |
---|
567 | DO i = i_start, i_end |
---|
568 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
569 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
570 | u(i,k,j-2),u(i,k,j-1), & |
---|
571 | u(i,k,j),u(i,k,j+1),vel ) |
---|
572 | ENDDO |
---|
573 | ENDDO |
---|
574 | |
---|
575 | END IF |
---|
576 | |
---|
577 | ! y flux-divergence into tendency |
---|
578 | |
---|
579 | IF(j > j_start) THEN |
---|
580 | |
---|
581 | DO k=kts,ktf |
---|
582 | DO i = i_start, i_end |
---|
583 | mrdy=msfu(i,j-1)*rdy |
---|
584 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
585 | ENDDO |
---|
586 | ENDDO |
---|
587 | |
---|
588 | ENDIF |
---|
589 | |
---|
590 | |
---|
591 | jtmp = jp1 |
---|
592 | jp1 = jp0 |
---|
593 | jp0 = jtmp |
---|
594 | |
---|
595 | ENDDO j_loop_y_flux_5 |
---|
596 | |
---|
597 | ! next, x - flux divergence |
---|
598 | |
---|
599 | i_start = its |
---|
600 | i_end = ite |
---|
601 | |
---|
602 | j_start = jts |
---|
603 | j_end = MIN(jte,jde-1) |
---|
604 | |
---|
605 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
606 | ! bounds so we can switch to second order flux close to the boundary |
---|
607 | |
---|
608 | i_start_f = i_start |
---|
609 | i_end_f = i_end+1 |
---|
610 | |
---|
611 | IF(degrade_xs) then |
---|
612 | i_start = MAX(ids+1,its) |
---|
613 | i_start_f = ids+3 |
---|
614 | ENDIF |
---|
615 | |
---|
616 | IF(degrade_xe) then |
---|
617 | i_end = MIN(ide-1,ite) |
---|
618 | i_end_f = ide-2 |
---|
619 | ENDIF |
---|
620 | |
---|
621 | ! compute fluxes |
---|
622 | |
---|
623 | DO j = j_start, j_end |
---|
624 | |
---|
625 | ! 5th or 6th order flux |
---|
626 | |
---|
627 | DO k=kts,ktf |
---|
628 | DO i = i_start_f, i_end_f |
---|
629 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
630 | fqx( i,k ) = vel*flux5( u(i-3,k,j), u(i-2,k,j), & |
---|
631 | u(i-1,k,j), u(i ,k,j), & |
---|
632 | u(i+1,k,j), u(i+2,k,j), & |
---|
633 | vel ) |
---|
634 | ENDDO |
---|
635 | ENDDO |
---|
636 | |
---|
637 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
638 | ! specified uses upstream normal wind at boundaries |
---|
639 | |
---|
640 | IF( degrade_xs ) THEN |
---|
641 | |
---|
642 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
643 | i = ids+1 |
---|
644 | DO k=kts,ktf |
---|
645 | ub = u(i-1,k,j) |
---|
646 | IF (specified .AND. u(i,k,j) .LT. 0.)ub = u(i,k,j) |
---|
647 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
648 | *(u(i,k,j)+ub) |
---|
649 | ENDDO |
---|
650 | END IF |
---|
651 | |
---|
652 | i = ids+2 |
---|
653 | DO k=kts,ktf |
---|
654 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
655 | fqx( i, k ) = vel*flux3( u(i-2,k,j), u(i-1,k,j), & |
---|
656 | u(i ,k,j), u(i+1,k,j), & |
---|
657 | vel ) |
---|
658 | ENDDO |
---|
659 | |
---|
660 | ENDIF |
---|
661 | |
---|
662 | IF( degrade_xe ) THEN |
---|
663 | |
---|
664 | IF( i_end == ide-1 ) THEN ! second order flux next to the boundary |
---|
665 | i = ide |
---|
666 | DO k=kts,ktf |
---|
667 | ub = u(i,k,j) |
---|
668 | IF (specified .AND. u(i-1,k,j) .GT. 0.)ub = u(i-1,k,j) |
---|
669 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
670 | *(u(i-1,k,j)+ub) |
---|
671 | ENDDO |
---|
672 | ENDIF |
---|
673 | |
---|
674 | DO k=kts,ktf |
---|
675 | i = ide-1 |
---|
676 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
677 | fqx( i,k ) = vel*flux3( u(i-2,k,j), u(i-1,k,j), & |
---|
678 | u(i ,k,j), u(i+1,k,j), & |
---|
679 | vel ) |
---|
680 | ENDDO |
---|
681 | |
---|
682 | ENDIF |
---|
683 | |
---|
684 | ! x flux-divergence into tendency |
---|
685 | |
---|
686 | DO k=kts,ktf |
---|
687 | DO i = i_start, i_end |
---|
688 | mrdx=msfu(i,j)*rdx |
---|
689 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
690 | ENDDO |
---|
691 | ENDDO |
---|
692 | |
---|
693 | ENDDO |
---|
694 | |
---|
695 | ELSE IF( horz_order == 4 ) THEN |
---|
696 | |
---|
697 | ! determine boundary mods for flux operators |
---|
698 | ! We degrade the flux operators from 3rd/4th order |
---|
699 | ! to second order one gridpoint in from the boundaries for |
---|
700 | ! all boundary conditions except periodic and symmetry - these |
---|
701 | ! conditions have boundary zone data fill for correct application |
---|
702 | ! of the higher order flux stencils |
---|
703 | |
---|
704 | degrade_xs = .true. |
---|
705 | degrade_xe = .true. |
---|
706 | degrade_ys = .true. |
---|
707 | degrade_ye = .true. |
---|
708 | |
---|
709 | IF( config_flags%periodic_x .or. & |
---|
710 | config_flags%symmetric_xs .or. & |
---|
711 | (its > ids+1) ) degrade_xs = .false. |
---|
712 | IF( config_flags%periodic_x .or. & |
---|
713 | config_flags%symmetric_xe .or. & |
---|
714 | (ite < ide-1) ) degrade_xe = .false. |
---|
715 | IF( config_flags%periodic_y .or. & |
---|
716 | config_flags%symmetric_ys .or. & |
---|
717 | (jts > jds+1) ) degrade_ys = .false. |
---|
718 | IF( config_flags%periodic_y .or. & |
---|
719 | config_flags%symmetric_ye .or. & |
---|
720 | (jte < jde-2) ) degrade_ye = .false. |
---|
721 | |
---|
722 | !--------------- x - advection first |
---|
723 | |
---|
724 | i_start = its |
---|
725 | i_end = ite |
---|
726 | j_start = jts |
---|
727 | j_end = MIN(jte,jde-1) |
---|
728 | |
---|
729 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
730 | ! bounds so we can switch to second order flux close to the boundary |
---|
731 | |
---|
732 | i_start_f = i_start |
---|
733 | i_end_f = i_end+1 |
---|
734 | |
---|
735 | IF(degrade_xs) then |
---|
736 | i_start = ids+1 |
---|
737 | i_start_f = i_start+1 |
---|
738 | ENDIF |
---|
739 | |
---|
740 | IF(degrade_xe) then |
---|
741 | i_end = ide-1 |
---|
742 | i_end_f = ide-1 |
---|
743 | ENDIF |
---|
744 | |
---|
745 | ! compute fluxes |
---|
746 | |
---|
747 | DO j = j_start, j_end |
---|
748 | |
---|
749 | DO k=kts,ktf |
---|
750 | DO i = i_start_f, i_end_f |
---|
751 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
752 | fqx( i, k ) = vel*flux4( u(i-2,k,j), u(i-1,k,j), & |
---|
753 | u(i ,k,j), u(i+1,k,j), vel ) |
---|
754 | ENDDO |
---|
755 | ENDDO |
---|
756 | |
---|
757 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
758 | ! specified uses upstream normal wind at boundaries |
---|
759 | |
---|
760 | IF( degrade_xs ) THEN |
---|
761 | i = i_start |
---|
762 | DO k=kts,ktf |
---|
763 | ub = u(i-1,k,j) |
---|
764 | IF (specified .AND. u(i,k,j) .LT. 0.)ub = u(i,k,j) |
---|
765 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
766 | *(u(i,k,j)+ub) |
---|
767 | ENDDO |
---|
768 | ENDIF |
---|
769 | |
---|
770 | IF( degrade_xe ) THEN |
---|
771 | i = i_end+1 |
---|
772 | DO k=kts,ktf |
---|
773 | ub = u(i,k,j) |
---|
774 | IF (specified .AND. u(i-1,k,j) .GT. 0.)ub = u(i-1,k,j) |
---|
775 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
776 | *(u(i-1,k,j)+ub) |
---|
777 | ENDDO |
---|
778 | ENDIF |
---|
779 | |
---|
780 | ! x flux-divergence into tendency |
---|
781 | |
---|
782 | DO k=kts,ktf |
---|
783 | DO i = i_start, i_end |
---|
784 | mrdx=msfu(i,j)*rdx |
---|
785 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
786 | ENDDO |
---|
787 | ENDDO |
---|
788 | |
---|
789 | ENDDO |
---|
790 | |
---|
791 | ! y flux divergence |
---|
792 | |
---|
793 | i_start = its |
---|
794 | i_end = ite |
---|
795 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
796 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-1,ite) |
---|
797 | IF ( config_flags%periodic_x ) i_start = its |
---|
798 | IF ( config_flags%periodic_x ) i_end = ite |
---|
799 | |
---|
800 | j_start = jts |
---|
801 | j_end = MIN(jte,jde-1) |
---|
802 | |
---|
803 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
804 | ! bounds so we can switch to second order flux close to the boundary |
---|
805 | |
---|
806 | j_start_f = j_start |
---|
807 | j_end_f = j_end+1 |
---|
808 | |
---|
809 | !CJM these may not work with tiling because they define j_start and end in terms of domain dim |
---|
810 | IF(degrade_ys) then |
---|
811 | j_start = jds+1 |
---|
812 | j_start_f = j_start+1 |
---|
813 | ENDIF |
---|
814 | |
---|
815 | IF(degrade_ye) then |
---|
816 | j_end = jde-2 |
---|
817 | j_end_f = jde-2 |
---|
818 | ENDIF |
---|
819 | |
---|
820 | ! j flux loop for v flux of u momentum |
---|
821 | |
---|
822 | jp1 = 2 |
---|
823 | jp0 = 1 |
---|
824 | |
---|
825 | DO j = j_start, j_end+1 |
---|
826 | |
---|
827 | IF ( (j < j_start_f) .and. degrade_ys) THEN |
---|
828 | DO k = kts, ktf |
---|
829 | DO i = i_start, i_end |
---|
830 | fqy(i, k, jp1) = 0.25*(rv(i,k,j_start)+rv(i-1,k,j_start)) & |
---|
831 | *(u(i,k,j_start)+u(i,k,j_start-1)) |
---|
832 | ENDDO |
---|
833 | ENDDO |
---|
834 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
835 | DO k = kts, ktf |
---|
836 | DO i = i_start, i_end |
---|
837 | fqy(i, k, jp1) = 0.25*(rv(i,k,j_end+1)+rv(i-1,k,j_end+1)) & |
---|
838 | *(u(i,k,j_end+1)+u(i,k,j_end)) |
---|
839 | ENDDO |
---|
840 | ENDDO |
---|
841 | ELSE |
---|
842 | ! 3rd or 4th order flux |
---|
843 | DO k = kts, ktf |
---|
844 | DO i = i_start, i_end |
---|
845 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
846 | fqy( i, k, jp1 ) = vel*flux4( u(i,k,j-2), u(i,k,j-1), & |
---|
847 | u(i,k,j ), u(i,k,j+1), & |
---|
848 | vel ) |
---|
849 | ENDDO |
---|
850 | ENDDO |
---|
851 | |
---|
852 | END IF |
---|
853 | |
---|
854 | IF (j > j_start) THEN |
---|
855 | |
---|
856 | ! y flux-divergence into tendency |
---|
857 | |
---|
858 | DO k=kts,ktf |
---|
859 | DO i = i_start, i_end |
---|
860 | mrdy=msfu(i,j-1)*rdy |
---|
861 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
862 | ENDDO |
---|
863 | ENDDO |
---|
864 | |
---|
865 | END IF |
---|
866 | |
---|
867 | jtmp = jp1 |
---|
868 | jp1 = jp0 |
---|
869 | jp0 = jtmp |
---|
870 | |
---|
871 | ENDDO |
---|
872 | |
---|
873 | ELSE IF ( horz_order == 3 ) THEN |
---|
874 | |
---|
875 | ! As with the 5th and 6th order flux chioces, the 3rd and 4th order |
---|
876 | ! code is EXACTLY the same EXCEPT for the flux operator. |
---|
877 | |
---|
878 | ! determine boundary mods for flux operators |
---|
879 | ! We degrade the flux operators from 3rd/4th order |
---|
880 | ! to second order one gridpoint in from the boundaries for |
---|
881 | ! all boundary conditions except periodic and symmetry - these |
---|
882 | ! conditions have boundary zone data fill for correct application |
---|
883 | ! of the higher order flux stencils |
---|
884 | |
---|
885 | degrade_xs = .true. |
---|
886 | degrade_xe = .true. |
---|
887 | degrade_ys = .true. |
---|
888 | degrade_ye = .true. |
---|
889 | |
---|
890 | IF( config_flags%periodic_x .or. & |
---|
891 | config_flags%symmetric_xs .or. & |
---|
892 | (its > ids+1) ) degrade_xs = .false. |
---|
893 | IF( config_flags%periodic_x .or. & |
---|
894 | config_flags%symmetric_xe .or. & |
---|
895 | (ite < ide-1) ) degrade_xe = .false. |
---|
896 | IF( config_flags%periodic_y .or. & |
---|
897 | config_flags%symmetric_ys .or. & |
---|
898 | (jts > jds+1) ) degrade_ys = .false. |
---|
899 | IF( config_flags%periodic_y .or. & |
---|
900 | config_flags%symmetric_ye .or. & |
---|
901 | (jte < jde-2) ) degrade_ye = .false. |
---|
902 | |
---|
903 | !--------------- x - advection first |
---|
904 | |
---|
905 | i_start = its |
---|
906 | i_end = ite |
---|
907 | j_start = jts |
---|
908 | j_end = MIN(jte,jde-1) |
---|
909 | |
---|
910 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
911 | ! bounds so we can switch to second order flux close to the boundary |
---|
912 | |
---|
913 | i_start_f = i_start |
---|
914 | i_end_f = i_end+1 |
---|
915 | |
---|
916 | IF(degrade_xs) then |
---|
917 | i_start = ids+1 |
---|
918 | i_start_f = i_start+1 |
---|
919 | ENDIF |
---|
920 | |
---|
921 | IF(degrade_xe) then |
---|
922 | i_end = ide-1 |
---|
923 | i_end_f = ide-1 |
---|
924 | ENDIF |
---|
925 | |
---|
926 | ! compute fluxes |
---|
927 | |
---|
928 | DO j = j_start, j_end |
---|
929 | |
---|
930 | DO k=kts,ktf |
---|
931 | DO i = i_start_f, i_end_f |
---|
932 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
---|
933 | fqx( i, k ) = vel*flux3( u(i-2,k,j), u(i-1,k,j), & |
---|
934 | u(i ,k,j), u(i+1,k,j), vel ) |
---|
935 | ENDDO |
---|
936 | ENDDO |
---|
937 | |
---|
938 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
939 | ! specified uses upstream normal wind at boundaries |
---|
940 | |
---|
941 | IF( degrade_xs ) THEN |
---|
942 | i = i_start |
---|
943 | DO k=kts,ktf |
---|
944 | ub = u(i-1,k,j) |
---|
945 | IF (specified .AND. u(i,k,j) .LT. 0.)ub = u(i,k,j) |
---|
946 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
947 | *(u(i,k,j)+ub) |
---|
948 | ENDDO |
---|
949 | ENDIF |
---|
950 | |
---|
951 | IF( degrade_xe ) THEN |
---|
952 | i = i_end+1 |
---|
953 | DO k=kts,ktf |
---|
954 | ub = u(i,k,j) |
---|
955 | IF (specified .AND. u(i-1,k,j) .GT. 0.)ub = u(i-1,k,j) |
---|
956 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
---|
957 | *(u(i-1,k,j)+ub) |
---|
958 | ENDDO |
---|
959 | ENDIF |
---|
960 | |
---|
961 | ! x flux-divergence into tendency |
---|
962 | |
---|
963 | DO k=kts,ktf |
---|
964 | DO i = i_start, i_end |
---|
965 | mrdx=msfu(i,j)*rdx |
---|
966 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
967 | ENDDO |
---|
968 | ENDDO |
---|
969 | ENDDO |
---|
970 | |
---|
971 | ! y flux divergence |
---|
972 | |
---|
973 | i_start = its |
---|
974 | i_end = ite |
---|
975 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
976 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-1,ite) |
---|
977 | IF ( config_flags%periodic_x ) i_start = its |
---|
978 | IF ( config_flags%periodic_x ) i_end = ite |
---|
979 | |
---|
980 | j_start = jts |
---|
981 | j_end = MIN(jte,jde-1) |
---|
982 | |
---|
983 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
984 | ! bounds so we can switch to second order flux close to the boundary |
---|
985 | |
---|
986 | j_start_f = j_start |
---|
987 | j_end_f = j_end+1 |
---|
988 | |
---|
989 | !CJM these may not work with tiling because they define j_start and end in terms of domain dim |
---|
990 | IF(degrade_ys) then |
---|
991 | j_start = jds+1 |
---|
992 | j_start_f = j_start+1 |
---|
993 | ENDIF |
---|
994 | |
---|
995 | IF(degrade_ye) then |
---|
996 | j_end = jde-2 |
---|
997 | j_end_f = jde-2 |
---|
998 | ENDIF |
---|
999 | |
---|
1000 | ! j flux loop for v flux of u momentum |
---|
1001 | |
---|
1002 | jp1 = 2 |
---|
1003 | jp0 = 1 |
---|
1004 | |
---|
1005 | DO j = j_start, j_end+1 |
---|
1006 | |
---|
1007 | IF ( (j < j_start_f) .and. degrade_ys) THEN |
---|
1008 | DO k = kts, ktf |
---|
1009 | DO i = i_start, i_end |
---|
1010 | fqy(i, k, jp1) = 0.25*(rv(i,k,j_start)+rv(i-1,k,j_start)) & |
---|
1011 | *(u(i,k,j_start)+u(i,k,j_start-1)) |
---|
1012 | ENDDO |
---|
1013 | ENDDO |
---|
1014 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
1015 | DO k = kts, ktf |
---|
1016 | DO i = i_start, i_end |
---|
1017 | fqy(i, k, jp1) = 0.25*(rv(i,k,j_end+1)+rv(i-1,k,j_end+1)) & |
---|
1018 | *(u(i,k,j_end+1)+u(i,k,j_end)) |
---|
1019 | ENDDO |
---|
1020 | ENDDO |
---|
1021 | ELSE |
---|
1022 | ! 3rd or 4th order flux |
---|
1023 | DO k = kts, ktf |
---|
1024 | DO i = i_start, i_end |
---|
1025 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
---|
1026 | fqy( i, k, jp1 ) = vel*flux3( u(i,k,j-2), u(i,k,j-1), & |
---|
1027 | u(i,k,j ), u(i,k,j+1), & |
---|
1028 | vel ) |
---|
1029 | ENDDO |
---|
1030 | ENDDO |
---|
1031 | |
---|
1032 | END IF |
---|
1033 | |
---|
1034 | IF (j > j_start) THEN |
---|
1035 | |
---|
1036 | ! y flux-divergence into tendency |
---|
1037 | |
---|
1038 | DO k=kts,ktf |
---|
1039 | DO i = i_start, i_end |
---|
1040 | mrdy=msfu(i,j-1)*rdy |
---|
1041 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
1042 | ENDDO |
---|
1043 | ENDDO |
---|
1044 | |
---|
1045 | END IF |
---|
1046 | |
---|
1047 | jtmp = jp1 |
---|
1048 | jp1 = jp0 |
---|
1049 | jp0 = jtmp |
---|
1050 | |
---|
1051 | ENDDO |
---|
1052 | |
---|
1053 | ELSE IF ( horz_order == 2 ) THEN |
---|
1054 | |
---|
1055 | i_start = its |
---|
1056 | i_end = ite |
---|
1057 | j_start = jts |
---|
1058 | j_end = MIN(jte,jde-1) |
---|
1059 | |
---|
1060 | IF ( config_flags%open_xs ) i_start = MAX(ids+1,its) |
---|
1061 | IF ( config_flags%open_xe ) i_end = MIN(ide-1,ite) |
---|
1062 | IF ( specified ) i_start = MAX(ids+2,its) |
---|
1063 | IF ( specified ) i_end = MIN(ide-2,ite) |
---|
1064 | IF ( config_flags%periodic_x ) i_start = its |
---|
1065 | IF ( config_flags%periodic_x ) i_end = ite |
---|
1066 | |
---|
1067 | DO j = j_start, j_end |
---|
1068 | DO k=kts,ktf |
---|
1069 | DO i = i_start, i_end |
---|
1070 | mrdx=msfu(i,j)*rdx |
---|
1071 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 & |
---|
1072 | *((ru(i+1,k,j)+ru(i,k,j))*(u(i+1,k,j)+u(i,k,j)) & |
---|
1073 | -(ru(i,k,j)+ru(i-1,k,j))*(u(i,k,j)+u(i-1,k,j))) |
---|
1074 | ENDDO |
---|
1075 | ENDDO |
---|
1076 | ENDDO |
---|
1077 | |
---|
1078 | IF ( specified .AND. its .LE. ids+1 .AND. .NOT. config_flags%periodic_x ) THEN |
---|
1079 | DO j = j_start, j_end |
---|
1080 | DO k=kts,ktf |
---|
1081 | i = ids+1 |
---|
1082 | mrdx=msfu(i,j)*rdx |
---|
1083 | ub = u(i-1,k,j) |
---|
1084 | IF (u(i,k,j) .LT. 0.) ub = u(i,k,j) |
---|
1085 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 & |
---|
1086 | *((ru(i+1,k,j)+ru(i,k,j))*(u(i+1,k,j)+u(i,k,j)) & |
---|
1087 | -(ru(i,k,j)+ru(i-1,k,j))*(u(i,k,j)+ub)) |
---|
1088 | ENDDO |
---|
1089 | ENDDO |
---|
1090 | ENDIF |
---|
1091 | IF ( specified .AND. ite .GE. ide-1 .AND. .NOT. config_flags%periodic_x ) THEN |
---|
1092 | DO j = j_start, j_end |
---|
1093 | DO k=kts,ktf |
---|
1094 | i = ide-1 |
---|
1095 | mrdx=msfu(i,j)*rdx |
---|
1096 | ub = u(i+1,k,j) |
---|
1097 | IF (u(i,k,j) .GT. 0.) ub = u(i,k,j) |
---|
1098 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 & |
---|
1099 | *((ru(i+1,k,j)+ru(i,k,j))*(ub+u(i,k,j)) & |
---|
1100 | -(ru(i,k,j)+ru(i-1,k,j))*(u(i,k,j)+u(i-1,k,j))) |
---|
1101 | ENDDO |
---|
1102 | ENDDO |
---|
1103 | ENDIF |
---|
1104 | |
---|
1105 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
---|
1106 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-2,jte) |
---|
1107 | |
---|
1108 | DO j = j_start, j_end |
---|
1109 | DO k=kts,ktf |
---|
1110 | DO i = i_start, i_end |
---|
1111 | mrdy=msfu(i,j)*rdy |
---|
1112 | tendency(i,k,j)=tendency(i,k,j)-mrdy*0.25 & |
---|
1113 | *((rv(i,k,j+1)+rv(i-1,k,j+1))*(u(i,k,j+1)+u(i,k,j)) & |
---|
1114 | -(rv(i,k,j)+rv(i-1,k,j))*(u(i,k,j)+u(i,k,j-1))) |
---|
1115 | ENDDO |
---|
1116 | ENDDO |
---|
1117 | ENDDO |
---|
1118 | |
---|
1119 | ELSE |
---|
1120 | |
---|
1121 | WRITE ( wrf_err_message , * ) 'module_advect: advect_u_6a: h_order not known ',horz_order |
---|
1122 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
1123 | |
---|
1124 | ENDIF horizontal_order_test |
---|
1125 | |
---|
1126 | ! radiative lateral boundary condition in x for normal velocity (u) |
---|
1127 | |
---|
1128 | IF ( (config_flags%open_xs) .and. its == ids ) THEN |
---|
1129 | |
---|
1130 | j_start = jts |
---|
1131 | j_end = MIN(jte,jde-1) |
---|
1132 | |
---|
1133 | DO j = j_start, j_end |
---|
1134 | DO k = kts, ktf |
---|
1135 | ub = MIN(ru(its,k,j)-cb*mut(its,j), 0.) |
---|
1136 | tendency(its,k,j) = tendency(its,k,j) & |
---|
1137 | - rdx*ub*(u_old(its+1,k,j) - u_old(its,k,j)) |
---|
1138 | ENDDO |
---|
1139 | ENDDO |
---|
1140 | |
---|
1141 | ENDIF |
---|
1142 | |
---|
1143 | IF ( (config_flags%open_xe) .and. ite == ide ) THEN |
---|
1144 | |
---|
1145 | j_start = jts |
---|
1146 | j_end = MIN(jte,jde-1) |
---|
1147 | |
---|
1148 | DO j = j_start, j_end |
---|
1149 | DO k = kts, ktf |
---|
1150 | ub = MAX(ru(ite,k,j)+cb*mut(ite-1,j), 0.) |
---|
1151 | tendency(ite,k,j) = tendency(ite,k,j) & |
---|
1152 | - rdx*ub*(u_old(ite,k,j) - u_old(ite-1,k,j)) |
---|
1153 | ENDDO |
---|
1154 | ENDDO |
---|
1155 | |
---|
1156 | ENDIF |
---|
1157 | |
---|
1158 | ! pick up the rest of the horizontal radiation boundary conditions. |
---|
1159 | ! (these are the computations that don't require 'cb') |
---|
1160 | ! first, set to index ranges |
---|
1161 | |
---|
1162 | i_start = its |
---|
1163 | i_end = MIN(ite,ide) |
---|
1164 | imin = ids |
---|
1165 | imax = ide-1 |
---|
1166 | |
---|
1167 | IF (config_flags%open_xs) THEN |
---|
1168 | i_start = MAX(ids+1, its) |
---|
1169 | imin = ids |
---|
1170 | ENDIF |
---|
1171 | IF (config_flags%open_xe) THEN |
---|
1172 | i_end = MIN(ite,ide-1) |
---|
1173 | imax = ide-1 |
---|
1174 | ENDIF |
---|
1175 | |
---|
1176 | IF( (config_flags%open_ys) .and. (jts == jds)) THEN |
---|
1177 | |
---|
1178 | DO i = i_start, i_end |
---|
1179 | |
---|
1180 | mrdy=msfu(i,jts)*rdy |
---|
1181 | ip = MIN( imax, i ) |
---|
1182 | im = MAX( imin, i-1 ) |
---|
1183 | |
---|
1184 | DO k=kts,ktf |
---|
1185 | |
---|
1186 | vw = 0.5*(rv(ip,k,jts)+rv(im,k,jts)) |
---|
1187 | vb = MIN( vw, 0. ) |
---|
1188 | dvm = rv(ip,k,jts+1)-rv(ip,k,jts) |
---|
1189 | dvp = rv(im,k,jts+1)-rv(im,k,jts) |
---|
1190 | tendency(i,k,jts)=tendency(i,k,jts)-mrdy*( & |
---|
1191 | vb*(u_old(i,k,jts+1)-u_old(i,k,jts)) & |
---|
1192 | +0.5*u(i,k,jts)*(dvm+dvp)) |
---|
1193 | ENDDO |
---|
1194 | ENDDO |
---|
1195 | |
---|
1196 | ENDIF |
---|
1197 | |
---|
1198 | IF( (config_flags%open_ye) .and. (jte == jde)) THEN |
---|
1199 | |
---|
1200 | DO i = i_start, i_end |
---|
1201 | |
---|
1202 | mrdy=msfu(i,jte-1)*rdy |
---|
1203 | ip = MIN( imax, i ) |
---|
1204 | im = MAX( imin, i-1 ) |
---|
1205 | |
---|
1206 | DO k=kts,ktf |
---|
1207 | |
---|
1208 | vw = 0.5*(rv(ip,k,jte)+rv(im,k,jte)) |
---|
1209 | vb = MAX( vw, 0. ) |
---|
1210 | dvm = rv(ip,k,jte)-rv(ip,k,jte-1) |
---|
1211 | dvp = rv(im,k,jte)-rv(im,k,jte-1) |
---|
1212 | tendency(i,k,jte-1)=tendency(i,k,jte-1)-mrdy*( & |
---|
1213 | vb*(u_old(i,k,jte-1)-u_old(i,k,jte-2)) & |
---|
1214 | +0.5*u(i,k,jte-1)*(dvm+dvp)) |
---|
1215 | ENDDO |
---|
1216 | ENDDO |
---|
1217 | |
---|
1218 | ENDIF |
---|
1219 | |
---|
1220 | !-------------------- vertical advection |
---|
1221 | |
---|
1222 | i_start = its |
---|
1223 | i_end = ite |
---|
1224 | j_start = jts |
---|
1225 | j_end = min(jte,jde-1) |
---|
1226 | |
---|
1227 | ! IF ( config_flags%open_xs ) i_start = MAX(ids+1,its) |
---|
1228 | ! IF ( config_flags%open_xe ) i_end = MIN(ide-1,ite) |
---|
1229 | |
---|
1230 | IF ( config_flags%open_ys .or. specified ) i_start = MAX(ids+1,its) |
---|
1231 | IF ( config_flags%open_ye .or. specified ) i_end = MIN(ide-1,ite) |
---|
1232 | IF ( config_flags%periodic_x ) i_start = its |
---|
1233 | IF ( config_flags%periodic_x ) i_end = ite |
---|
1234 | |
---|
1235 | DO i = i_start, i_end |
---|
1236 | vflux(i,kts)=0. |
---|
1237 | vflux(i,kte)=0. |
---|
1238 | ENDDO |
---|
1239 | |
---|
1240 | vert_order_test : IF (vert_order == 6) THEN |
---|
1241 | |
---|
1242 | DO j = j_start, j_end |
---|
1243 | |
---|
1244 | DO k=kts+3,ktf-2 |
---|
1245 | DO i = i_start, i_end |
---|
1246 | vel=0.5*(rom(i-1,k,j)+rom(i,k,j)) |
---|
1247 | vflux(i,k) = vel*flux6( & |
---|
1248 | u(i,k-3,j), u(i,k-2,j), u(i,k-1,j), & |
---|
1249 | u(i,k ,j), u(i,k+1,j), u(i,k+2,j), -vel ) |
---|
1250 | ENDDO |
---|
1251 | ENDDO |
---|
1252 | |
---|
1253 | DO i = i_start, i_end |
---|
1254 | |
---|
1255 | k=kts+1 |
---|
1256 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1257 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1258 | k = kts+2 |
---|
1259 | vel=0.5*(rom(i,k,j)+rom(i-1,k,j)) |
---|
1260 | vflux(i,k) = vel*flux4( & |
---|
1261 | u(i,k-2,j), u(i,k-1,j), & |
---|
1262 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
1263 | k = ktf-1 |
---|
1264 | vel=0.5*(rom(i,k,j)+rom(i-1,k,j)) |
---|
1265 | vflux(i,k) = vel*flux4( & |
---|
1266 | u(i,k-2,j), u(i,k-1,j), & |
---|
1267 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
1268 | k=ktf |
---|
1269 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1270 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1271 | |
---|
1272 | ENDDO |
---|
1273 | DO k=kts,ktf |
---|
1274 | DO i = i_start, i_end |
---|
1275 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
1276 | ENDDO |
---|
1277 | ENDDO |
---|
1278 | ENDDO |
---|
1279 | |
---|
1280 | ELSE IF (vert_order == 5) THEN |
---|
1281 | |
---|
1282 | DO j = j_start, j_end |
---|
1283 | |
---|
1284 | DO k=kts+3,ktf-2 |
---|
1285 | DO i = i_start, i_end |
---|
1286 | vel=0.5*(rom(i-1,k,j)+rom(i,k,j)) |
---|
1287 | vflux(i,k) = vel*flux5( & |
---|
1288 | u(i,k-3,j), u(i,k-2,j), u(i,k-1,j), & |
---|
1289 | u(i,k ,j), u(i,k+1,j), u(i,k+2,j), -vel ) |
---|
1290 | ENDDO |
---|
1291 | ENDDO |
---|
1292 | |
---|
1293 | DO i = i_start, i_end |
---|
1294 | |
---|
1295 | k=kts+1 |
---|
1296 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1297 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1298 | k = kts+2 |
---|
1299 | vel=0.5*(rom(i,k,j)+rom(i-1,k,j)) |
---|
1300 | vflux(i,k) = vel*flux3( & |
---|
1301 | u(i,k-2,j), u(i,k-1,j), & |
---|
1302 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
1303 | k = ktf-1 |
---|
1304 | vel=0.5*(rom(i,k,j)+rom(i-1,k,j)) |
---|
1305 | vflux(i,k) = vel*flux3( & |
---|
1306 | u(i,k-2,j), u(i,k-1,j), & |
---|
1307 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
1308 | k=ktf |
---|
1309 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1310 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1311 | |
---|
1312 | ENDDO |
---|
1313 | DO k=kts,ktf |
---|
1314 | DO i = i_start, i_end |
---|
1315 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
1316 | ENDDO |
---|
1317 | ENDDO |
---|
1318 | ENDDO |
---|
1319 | |
---|
1320 | ELSE IF (vert_order == 4) THEN |
---|
1321 | |
---|
1322 | DO j = j_start, j_end |
---|
1323 | |
---|
1324 | DO k=kts+2,ktf-1 |
---|
1325 | DO i = i_start, i_end |
---|
1326 | vel=0.5*(rom(i-1,k,j)+rom(i,k,j)) |
---|
1327 | vflux(i,k) = vel*flux4( & |
---|
1328 | u(i,k-2,j), u(i,k-1,j), & |
---|
1329 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
1330 | ENDDO |
---|
1331 | ENDDO |
---|
1332 | |
---|
1333 | DO i = i_start, i_end |
---|
1334 | |
---|
1335 | k=kts+1 |
---|
1336 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1337 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1338 | k=ktf |
---|
1339 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1340 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1341 | |
---|
1342 | ENDDO |
---|
1343 | DO k=kts,ktf |
---|
1344 | DO i = i_start, i_end |
---|
1345 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
1346 | ENDDO |
---|
1347 | ENDDO |
---|
1348 | ENDDO |
---|
1349 | |
---|
1350 | ELSE IF (vert_order == 3) THEN |
---|
1351 | |
---|
1352 | DO j = j_start, j_end |
---|
1353 | |
---|
1354 | DO k=kts+2,ktf-1 |
---|
1355 | DO i = i_start, i_end |
---|
1356 | vel=0.5*(rom(i-1,k,j)+rom(i,k,j)) |
---|
1357 | vflux(i,k) = vel*flux3( & |
---|
1358 | u(i,k-2,j), u(i,k-1,j), & |
---|
1359 | u(i,k ,j), u(i,k+1,j), -vel ) |
---|
1360 | ENDDO |
---|
1361 | ENDDO |
---|
1362 | |
---|
1363 | DO i = i_start, i_end |
---|
1364 | |
---|
1365 | k=kts+1 |
---|
1366 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1367 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1368 | k=ktf |
---|
1369 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1370 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1371 | |
---|
1372 | ENDDO |
---|
1373 | DO k=kts,ktf |
---|
1374 | DO i = i_start, i_end |
---|
1375 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
1376 | ENDDO |
---|
1377 | ENDDO |
---|
1378 | ENDDO |
---|
1379 | |
---|
1380 | ELSE IF (vert_order == 2) THEN |
---|
1381 | |
---|
1382 | DO j = j_start, j_end |
---|
1383 | DO k=kts+1,ktf |
---|
1384 | DO i = i_start, i_end |
---|
1385 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
---|
1386 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
---|
1387 | ENDDO |
---|
1388 | ENDDO |
---|
1389 | |
---|
1390 | |
---|
1391 | DO k=kts,ktf |
---|
1392 | DO i = i_start, i_end |
---|
1393 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
1394 | ENDDO |
---|
1395 | ENDDO |
---|
1396 | |
---|
1397 | ENDDO |
---|
1398 | |
---|
1399 | ELSE |
---|
1400 | |
---|
1401 | WRITE ( wrf_err_message , * ) 'module_advect: advect_u_6a: v_order not known ',vert_order |
---|
1402 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
1403 | |
---|
1404 | ENDIF vert_order_test |
---|
1405 | |
---|
1406 | END SUBROUTINE advect_u |
---|
1407 | |
---|
1408 | !------------------------------------------------------------------------------- |
---|
1409 | |
---|
1410 | SUBROUTINE advect_v ( v, v_old, tendency, & |
---|
1411 | ru, rv, rom, & |
---|
1412 | mut, config_flags, & |
---|
1413 | msfu, msfv, msft, & |
---|
1414 | fzm, fzp, & |
---|
1415 | rdx, rdy, rdzw, & |
---|
1416 | ids, ide, jds, jde, kds, kde, & |
---|
1417 | ims, ime, jms, jme, kms, kme, & |
---|
1418 | its, ite, jts, jte, kts, kte ) |
---|
1419 | |
---|
1420 | IMPLICIT NONE |
---|
1421 | |
---|
1422 | ! Input data |
---|
1423 | |
---|
1424 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
1425 | |
---|
1426 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
1427 | ims, ime, jms, jme, kms, kme, & |
---|
1428 | its, ite, jts, jte, kts, kte |
---|
1429 | |
---|
1430 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: v, & |
---|
1431 | v_old, & |
---|
1432 | ru, & |
---|
1433 | rv, & |
---|
1434 | rom |
---|
1435 | |
---|
1436 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
---|
1437 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
1438 | |
---|
1439 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
---|
1440 | msfv, & |
---|
1441 | msft |
---|
1442 | |
---|
1443 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
1444 | fzp, & |
---|
1445 | rdzw |
---|
1446 | |
---|
1447 | REAL , INTENT(IN ) :: rdx, & |
---|
1448 | rdy |
---|
1449 | |
---|
1450 | ! Local data |
---|
1451 | |
---|
1452 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
1453 | INTEGER :: i_start, i_end, j_start, j_end |
---|
1454 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
---|
1455 | INTEGER :: jmin, jmax, jp, jm, imin, imax |
---|
1456 | |
---|
1457 | REAL :: mrdx, mrdy, ub, vb, uw, vw, dup, dum |
---|
1458 | REAL , DIMENSION(its:ite, kts:kte) :: vflux |
---|
1459 | |
---|
1460 | |
---|
1461 | REAL, DIMENSION( its:ite+1, kts:kte ) :: fqx |
---|
1462 | REAL, DIMENSION( its:ite, kts:kte, 2 ) :: fqy |
---|
1463 | |
---|
1464 | INTEGER :: horz_order |
---|
1465 | INTEGER :: vert_order |
---|
1466 | |
---|
1467 | LOGICAL :: degrade_xs, degrade_ys |
---|
1468 | LOGICAL :: degrade_xe, degrade_ye |
---|
1469 | |
---|
1470 | INTEGER :: jp1, jp0, jtmp |
---|
1471 | |
---|
1472 | |
---|
1473 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
---|
1474 | |
---|
1475 | REAL :: flux3, flux4, flux5, flux6 |
---|
1476 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel |
---|
1477 | |
---|
1478 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
1479 | ( 7.*(q_i + q_im1) - (q_ip1 + q_im2) )/12.0 |
---|
1480 | |
---|
1481 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
1482 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
---|
1483 | sign(1.,ua)*((q_ip1 - q_im2)-3.*(q_i-q_im1))/12.0 |
---|
1484 | |
---|
1485 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
1486 | ( 37.*(q_i+q_im1) - 8.*(q_ip1+q_im2) & |
---|
1487 | +(q_ip2+q_im3) )/60.0 |
---|
1488 | |
---|
1489 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
1490 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
---|
1491 | -sign(1.,ua)*( & |
---|
1492 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) )/60.0 |
---|
1493 | |
---|
1494 | |
---|
1495 | |
---|
1496 | LOGICAL :: specified |
---|
1497 | |
---|
1498 | specified = .false. |
---|
1499 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
---|
1500 | |
---|
1501 | ! set order for the advection schemes |
---|
1502 | |
---|
1503 | ktf=MIN(kte,kde-1) |
---|
1504 | horz_order = config_flags%h_mom_adv_order |
---|
1505 | vert_order = config_flags%v_mom_adv_order |
---|
1506 | |
---|
1507 | |
---|
1508 | ! here is the choice of flux operators |
---|
1509 | |
---|
1510 | |
---|
1511 | horizontal_order_test : IF( horz_order == 6 ) THEN |
---|
1512 | |
---|
1513 | ! determine boundary mods for flux operators |
---|
1514 | ! We degrade the flux operators from 3rd/4th order |
---|
1515 | ! to second order one gridpoint in from the boundaries for |
---|
1516 | ! all boundary conditions except periodic and symmetry - these |
---|
1517 | ! conditions have boundary zone data fill for correct application |
---|
1518 | ! of the higher order flux stencils |
---|
1519 | |
---|
1520 | degrade_xs = .true. |
---|
1521 | degrade_xe = .true. |
---|
1522 | degrade_ys = .true. |
---|
1523 | degrade_ye = .true. |
---|
1524 | |
---|
1525 | IF( config_flags%periodic_x .or. & |
---|
1526 | config_flags%symmetric_xs .or. & |
---|
1527 | (its > ids+2) ) degrade_xs = .false. |
---|
1528 | IF( config_flags%periodic_x .or. & |
---|
1529 | config_flags%symmetric_xe .or. & |
---|
1530 | (ite < ide-3) ) degrade_xe = .false. |
---|
1531 | IF( config_flags%periodic_y .or. & |
---|
1532 | config_flags%symmetric_ys .or. & |
---|
1533 | (jts > jds+2) ) degrade_ys = .false. |
---|
1534 | IF( config_flags%periodic_y .or. & |
---|
1535 | config_flags%symmetric_ye .or. & |
---|
1536 | (jte < jde-2) ) degrade_ye = .false. |
---|
1537 | |
---|
1538 | !--------------- y - advection first |
---|
1539 | |
---|
1540 | ktf=MIN(kte,kde-1) |
---|
1541 | |
---|
1542 | i_start = its |
---|
1543 | i_end = MIN(ite,ide-1) |
---|
1544 | j_start = jts |
---|
1545 | j_end = jte |
---|
1546 | |
---|
1547 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
1548 | ! bounds so we can switch to second order flux close to the boundary |
---|
1549 | |
---|
1550 | j_start_f = j_start |
---|
1551 | j_end_f = j_end+1 |
---|
1552 | |
---|
1553 | IF(degrade_ys) then |
---|
1554 | j_start = MAX(jts,jds+1) |
---|
1555 | j_start_f = jds+3 |
---|
1556 | ENDIF |
---|
1557 | |
---|
1558 | IF(degrade_ye) then |
---|
1559 | j_end = MIN(jte,jde-1) |
---|
1560 | j_end_f = jde-2 |
---|
1561 | ENDIF |
---|
1562 | |
---|
1563 | ! compute fluxes, 5th or 6th order |
---|
1564 | |
---|
1565 | jp1 = 2 |
---|
1566 | jp0 = 1 |
---|
1567 | |
---|
1568 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
---|
1569 | |
---|
1570 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN |
---|
1571 | |
---|
1572 | DO k=kts,ktf |
---|
1573 | DO i = i_start, i_end |
---|
1574 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
1575 | fqy( i, k, jp1 ) = vel*flux6( & |
---|
1576 | v(i,k,j-3), v(i,k,j-2), v(i,k,j-1), & |
---|
1577 | v(i,k,j ), v(i,k,j+1), v(i,k,j+2), vel ) |
---|
1578 | ENDDO |
---|
1579 | ENDDO |
---|
1580 | |
---|
1581 | ! we must be close to some boundary where we need to reduce the order of the stencil |
---|
1582 | ! specified uses upstream normal wind at boundaries |
---|
1583 | |
---|
1584 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
1585 | |
---|
1586 | DO k=kts,ktf |
---|
1587 | DO i = i_start, i_end |
---|
1588 | vb = v(i,k,j-1) |
---|
1589 | IF (specified .AND. v(i,k,j) .LT. 0.)vb = v(i,k,j) |
---|
1590 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
1591 | *(v(i,k,j)+vb) |
---|
1592 | ENDDO |
---|
1593 | ENDDO |
---|
1594 | |
---|
1595 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
1596 | |
---|
1597 | DO k=kts,ktf |
---|
1598 | DO i = i_start, i_end |
---|
1599 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
1600 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
1601 | v(i,k,j-2),v(i,k,j-1),v(i,k,j),v(i,k,j+1),vel ) |
---|
1602 | ENDDO |
---|
1603 | ENDDO |
---|
1604 | |
---|
1605 | |
---|
1606 | ELSE IF ( j == jde ) THEN ! 2nd order flux next to north boundary |
---|
1607 | |
---|
1608 | DO k=kts,ktf |
---|
1609 | DO i = i_start, i_end |
---|
1610 | vb = v(i,k,j) |
---|
1611 | IF (specified .AND. v(i,k,j-1) .GT. 0.)vb = v(i,k,j-1) |
---|
1612 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
1613 | *(vb+v(i,k,j-1)) |
---|
1614 | ENDDO |
---|
1615 | ENDDO |
---|
1616 | |
---|
1617 | ELSE IF ( j == jde-1 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
1618 | |
---|
1619 | DO k=kts,ktf |
---|
1620 | DO i = i_start, i_end |
---|
1621 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
1622 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
1623 | v(i,k,j-2),v(i,k,j-1),v(i,k,j),v(i,k,j+1),vel ) |
---|
1624 | ENDDO |
---|
1625 | ENDDO |
---|
1626 | |
---|
1627 | END IF |
---|
1628 | |
---|
1629 | ! y flux-divergence into tendency |
---|
1630 | |
---|
1631 | IF(j > j_start) THEN |
---|
1632 | |
---|
1633 | DO k=kts,ktf |
---|
1634 | DO i = i_start, i_end |
---|
1635 | mrdy=msfv(i,j-1)*rdy |
---|
1636 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
1637 | ENDDO |
---|
1638 | ENDDO |
---|
1639 | |
---|
1640 | ENDIF |
---|
1641 | |
---|
1642 | jtmp = jp1 |
---|
1643 | jp1 = jp0 |
---|
1644 | jp0 = jtmp |
---|
1645 | |
---|
1646 | ENDDO j_loop_y_flux_6 |
---|
1647 | |
---|
1648 | ! next, x - flux divergence |
---|
1649 | |
---|
1650 | i_start = its |
---|
1651 | i_end = MIN(ite,ide-1) |
---|
1652 | |
---|
1653 | j_start = jts |
---|
1654 | j_end = jte |
---|
1655 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
---|
1656 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-1,jte) |
---|
1657 | |
---|
1658 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
1659 | ! bounds so we can switch to second order flux close to the boundary |
---|
1660 | |
---|
1661 | i_start_f = i_start |
---|
1662 | i_end_f = i_end+1 |
---|
1663 | |
---|
1664 | IF(degrade_xs) then |
---|
1665 | i_start = MAX(ids+1,its) |
---|
1666 | i_start_f = i_start+2 |
---|
1667 | ENDIF |
---|
1668 | |
---|
1669 | IF(degrade_xe) then |
---|
1670 | i_end = MIN(ide-2,ite) |
---|
1671 | i_end_f = ide-3 |
---|
1672 | ENDIF |
---|
1673 | |
---|
1674 | ! compute fluxes |
---|
1675 | |
---|
1676 | DO j = j_start, j_end |
---|
1677 | |
---|
1678 | ! 5th or 6th order flux |
---|
1679 | |
---|
1680 | DO k=kts,ktf |
---|
1681 | DO i = i_start_f, i_end_f |
---|
1682 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
1683 | fqx( i, k ) = vel*flux6( v(i-3,k,j), v(i-2,k,j), & |
---|
1684 | v(i-1,k,j), v(i ,k,j), & |
---|
1685 | v(i+1,k,j), v(i+2,k,j), & |
---|
1686 | vel ) |
---|
1687 | ENDDO |
---|
1688 | ENDDO |
---|
1689 | |
---|
1690 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
1691 | |
---|
1692 | IF( degrade_xs ) THEN |
---|
1693 | |
---|
1694 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
1695 | i = ids+1 |
---|
1696 | DO k=kts,ktf |
---|
1697 | fqx(i,k) = 0.25*(ru(i,k,j)+ru(i,k,j-1)) & |
---|
1698 | *(v(i,k,j)+v(i-1,k,j)) |
---|
1699 | ENDDO |
---|
1700 | ENDIF |
---|
1701 | |
---|
1702 | i = ids+2 |
---|
1703 | DO k=kts,ktf |
---|
1704 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
1705 | fqx( i,k ) = vel*flux4( v(i-2,k,j), v(i-1,k,j), & |
---|
1706 | v(i ,k,j), v(i+1,k,j), & |
---|
1707 | vel ) |
---|
1708 | ENDDO |
---|
1709 | |
---|
1710 | ENDIF |
---|
1711 | |
---|
1712 | IF( degrade_xe ) THEN |
---|
1713 | |
---|
1714 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
1715 | i = ide-1 |
---|
1716 | DO k=kts,ktf |
---|
1717 | fqx(i,k) = 0.25*(ru(i_end+1,k,j)+ru(i_end+1,k,j-1)) & |
---|
1718 | *(v(i_end+1,k,j)+v(i_end,k,j)) |
---|
1719 | ENDDO |
---|
1720 | ENDIF |
---|
1721 | |
---|
1722 | i = ide-2 |
---|
1723 | DO k=kts,ktf |
---|
1724 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
1725 | fqx( i,k ) = vel*flux4( v(i-2,k,j), v(i-1,k,j), & |
---|
1726 | v(i ,k,j), v(i+1,k,j), & |
---|
1727 | vel ) |
---|
1728 | ENDDO |
---|
1729 | |
---|
1730 | ENDIF |
---|
1731 | |
---|
1732 | ! x flux-divergence into tendency |
---|
1733 | |
---|
1734 | DO k=kts,ktf |
---|
1735 | DO i = i_start, i_end |
---|
1736 | mrdx=msfv(i,j)*rdx |
---|
1737 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
1738 | ENDDO |
---|
1739 | ENDDO |
---|
1740 | |
---|
1741 | ENDDO |
---|
1742 | |
---|
1743 | ELSE IF( horz_order == 5 ) THEN |
---|
1744 | |
---|
1745 | ! 5th order horizontal flux calculation |
---|
1746 | ! This code is EXACTLY the same as the 6th order code |
---|
1747 | ! EXCEPT the 5th order and 3rd operators are used in |
---|
1748 | ! place of the 6th and 4th order operators |
---|
1749 | |
---|
1750 | ! determine boundary mods for flux operators |
---|
1751 | ! We degrade the flux operators from 3rd/4th order |
---|
1752 | ! to second order one gridpoint in from the boundaries for |
---|
1753 | ! all boundary conditions except periodic and symmetry - these |
---|
1754 | ! conditions have boundary zone data fill for correct application |
---|
1755 | ! of the higher order flux stencils |
---|
1756 | |
---|
1757 | degrade_xs = .true. |
---|
1758 | degrade_xe = .true. |
---|
1759 | degrade_ys = .true. |
---|
1760 | degrade_ye = .true. |
---|
1761 | |
---|
1762 | IF( config_flags%periodic_x .or. & |
---|
1763 | config_flags%symmetric_xs .or. & |
---|
1764 | (its > ids+2) ) degrade_xs = .false. |
---|
1765 | IF( config_flags%periodic_x .or. & |
---|
1766 | config_flags%symmetric_xe .or. & |
---|
1767 | (ite < ide-3) ) degrade_xe = .false. |
---|
1768 | IF( config_flags%periodic_y .or. & |
---|
1769 | config_flags%symmetric_ys .or. & |
---|
1770 | (jts > jds+2) ) degrade_ys = .false. |
---|
1771 | IF( config_flags%periodic_y .or. & |
---|
1772 | config_flags%symmetric_ye .or. & |
---|
1773 | (jte < jde-2) ) degrade_ye = .false. |
---|
1774 | |
---|
1775 | !--------------- y - advection first |
---|
1776 | |
---|
1777 | i_start = its |
---|
1778 | i_end = MIN(ite,ide-1) |
---|
1779 | j_start = jts |
---|
1780 | j_end = jte |
---|
1781 | |
---|
1782 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
1783 | ! bounds so we can switch to second order flux close to the boundary |
---|
1784 | |
---|
1785 | j_start_f = j_start |
---|
1786 | j_end_f = j_end+1 |
---|
1787 | |
---|
1788 | IF(degrade_ys) then |
---|
1789 | j_start = MAX(jts,jds+1) |
---|
1790 | j_start_f = jds+3 |
---|
1791 | ENDIF |
---|
1792 | |
---|
1793 | IF(degrade_ye) then |
---|
1794 | j_end = MIN(jte,jde-1) |
---|
1795 | j_end_f = jde-2 |
---|
1796 | ENDIF |
---|
1797 | |
---|
1798 | ! compute fluxes, 5th or 6th order |
---|
1799 | |
---|
1800 | jp1 = 2 |
---|
1801 | jp0 = 1 |
---|
1802 | |
---|
1803 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
---|
1804 | |
---|
1805 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN |
---|
1806 | |
---|
1807 | DO k=kts,ktf |
---|
1808 | DO i = i_start, i_end |
---|
1809 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
1810 | fqy( i, k, jp1 ) = vel*flux5( & |
---|
1811 | v(i,k,j-3), v(i,k,j-2), v(i,k,j-1), & |
---|
1812 | v(i,k,j ), v(i,k,j+1), v(i,k,j+2), vel ) |
---|
1813 | ENDDO |
---|
1814 | ENDDO |
---|
1815 | |
---|
1816 | ! we must be close to some boundary where we need to reduce the order of the stencil |
---|
1817 | ! specified uses upstream normal wind at boundaries |
---|
1818 | |
---|
1819 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
1820 | |
---|
1821 | DO k=kts,ktf |
---|
1822 | DO i = i_start, i_end |
---|
1823 | vb = v(i,k,j-1) |
---|
1824 | IF (specified .AND. v(i,k,j) .LT. 0.)vb = v(i,k,j) |
---|
1825 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
1826 | *(v(i,k,j)+vb) |
---|
1827 | ENDDO |
---|
1828 | ENDDO |
---|
1829 | |
---|
1830 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
1831 | |
---|
1832 | DO k=kts,ktf |
---|
1833 | DO i = i_start, i_end |
---|
1834 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
1835 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
1836 | v(i,k,j-2),v(i,k,j-1),v(i,k,j),v(i,k,j+1),vel ) |
---|
1837 | ENDDO |
---|
1838 | ENDDO |
---|
1839 | |
---|
1840 | |
---|
1841 | ELSE IF ( j == jde ) THEN ! 2nd order flux next to north boundary |
---|
1842 | |
---|
1843 | DO k=kts,ktf |
---|
1844 | DO i = i_start, i_end |
---|
1845 | vb = v(i,k,j) |
---|
1846 | IF (specified .AND. v(i,k,j-1) .GT. 0.)vb = v(i,k,j-1) |
---|
1847 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
1848 | *(vb+v(i,k,j-1)) |
---|
1849 | ENDDO |
---|
1850 | ENDDO |
---|
1851 | |
---|
1852 | ELSE IF ( j == jde-1 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
1853 | |
---|
1854 | DO k=kts,ktf |
---|
1855 | DO i = i_start, i_end |
---|
1856 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
1857 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
1858 | v(i,k,j-2),v(i,k,j-1),v(i,k,j),v(i,k,j+1),vel ) |
---|
1859 | ENDDO |
---|
1860 | ENDDO |
---|
1861 | |
---|
1862 | END IF |
---|
1863 | |
---|
1864 | ! y flux-divergence into tendency |
---|
1865 | |
---|
1866 | IF(j > j_start) THEN |
---|
1867 | |
---|
1868 | DO k=kts,ktf |
---|
1869 | DO i = i_start, i_end |
---|
1870 | mrdy=msfv(i,j-1)*rdy |
---|
1871 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
1872 | ENDDO |
---|
1873 | ENDDO |
---|
1874 | |
---|
1875 | ENDIF |
---|
1876 | |
---|
1877 | jtmp = jp1 |
---|
1878 | jp1 = jp0 |
---|
1879 | jp0 = jtmp |
---|
1880 | |
---|
1881 | ENDDO j_loop_y_flux_5 |
---|
1882 | |
---|
1883 | ! next, x - flux divergence |
---|
1884 | |
---|
1885 | i_start = its |
---|
1886 | i_end = MIN(ite,ide-1) |
---|
1887 | |
---|
1888 | j_start = jts |
---|
1889 | j_end = jte |
---|
1890 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
---|
1891 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-1,jte) |
---|
1892 | |
---|
1893 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
1894 | ! bounds so we can switch to second order flux close to the boundary |
---|
1895 | |
---|
1896 | i_start_f = i_start |
---|
1897 | i_end_f = i_end+1 |
---|
1898 | |
---|
1899 | IF(degrade_xs) then |
---|
1900 | i_start = MAX(ids+1,its) |
---|
1901 | i_start_f = i_start+2 |
---|
1902 | ENDIF |
---|
1903 | |
---|
1904 | IF(degrade_xe) then |
---|
1905 | i_end = MIN(ide-2,ite) |
---|
1906 | i_end_f = ide-3 |
---|
1907 | ENDIF |
---|
1908 | |
---|
1909 | ! compute fluxes |
---|
1910 | |
---|
1911 | DO j = j_start, j_end |
---|
1912 | |
---|
1913 | ! 5th or 6th order flux |
---|
1914 | |
---|
1915 | DO k=kts,ktf |
---|
1916 | DO i = i_start_f, i_end_f |
---|
1917 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
1918 | fqx( i, k ) = vel*flux5( v(i-3,k,j), v(i-2,k,j), & |
---|
1919 | v(i-1,k,j), v(i ,k,j), & |
---|
1920 | v(i+1,k,j), v(i+2,k,j), & |
---|
1921 | vel ) |
---|
1922 | ENDDO |
---|
1923 | ENDDO |
---|
1924 | |
---|
1925 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
1926 | |
---|
1927 | IF( degrade_xs ) THEN |
---|
1928 | |
---|
1929 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
1930 | i = ids+1 |
---|
1931 | DO k=kts,ktf |
---|
1932 | fqx(i,k) = 0.25*(ru(i,k,j)+ru(i,k,j-1)) & |
---|
1933 | *(v(i,k,j)+v(i-1,k,j)) |
---|
1934 | ENDDO |
---|
1935 | ENDIF |
---|
1936 | |
---|
1937 | i = ids+2 |
---|
1938 | DO k=kts,ktf |
---|
1939 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
1940 | fqx( i,k ) = vel*flux3( v(i-2,k,j), v(i-1,k,j), & |
---|
1941 | v(i ,k,j), v(i+1,k,j), & |
---|
1942 | vel ) |
---|
1943 | ENDDO |
---|
1944 | |
---|
1945 | ENDIF |
---|
1946 | |
---|
1947 | IF( degrade_xe ) THEN |
---|
1948 | |
---|
1949 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
1950 | i = ide-1 |
---|
1951 | DO k=kts,ktf |
---|
1952 | fqx(i,k) = 0.25*(ru(i_end+1,k,j)+ru(i_end+1,k,j-1)) & |
---|
1953 | *(v(i_end+1,k,j)+v(i_end,k,j)) |
---|
1954 | ENDDO |
---|
1955 | ENDIF |
---|
1956 | |
---|
1957 | i = ide-2 |
---|
1958 | DO k=kts,ktf |
---|
1959 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
1960 | fqx( i,k ) = vel*flux3( v(i-2,k,j), v(i-1,k,j), & |
---|
1961 | v(i ,k,j), v(i+1,k,j), & |
---|
1962 | vel ) |
---|
1963 | ENDDO |
---|
1964 | |
---|
1965 | ENDIF |
---|
1966 | |
---|
1967 | ! x flux-divergence into tendency |
---|
1968 | |
---|
1969 | DO k=kts,ktf |
---|
1970 | DO i = i_start, i_end |
---|
1971 | mrdx=msfv(i,j)*rdx |
---|
1972 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
1973 | ENDDO |
---|
1974 | ENDDO |
---|
1975 | |
---|
1976 | ENDDO |
---|
1977 | |
---|
1978 | ELSE IF( horz_order == 4 ) THEN |
---|
1979 | |
---|
1980 | ! determine boundary mods for flux operators |
---|
1981 | ! We degrade the flux operators from 3rd/4th order |
---|
1982 | ! to second order one gridpoint in from the boundaries for |
---|
1983 | ! all boundary conditions except periodic and symmetry - these |
---|
1984 | ! conditions have boundary zone data fill for correct application |
---|
1985 | ! of the higher order flux stencils |
---|
1986 | |
---|
1987 | degrade_xs = .true. |
---|
1988 | degrade_xe = .true. |
---|
1989 | degrade_ys = .true. |
---|
1990 | degrade_ye = .true. |
---|
1991 | |
---|
1992 | IF( config_flags%periodic_x .or. & |
---|
1993 | config_flags%symmetric_xs .or. & |
---|
1994 | (its > ids+1) ) degrade_xs = .false. |
---|
1995 | IF( config_flags%periodic_x .or. & |
---|
1996 | config_flags%symmetric_xe .or. & |
---|
1997 | (ite < ide-2) ) degrade_xe = .false. |
---|
1998 | IF( config_flags%periodic_y .or. & |
---|
1999 | config_flags%symmetric_ys .or. & |
---|
2000 | (jts > jds+1) ) degrade_ys = .false. |
---|
2001 | IF( config_flags%periodic_y .or. & |
---|
2002 | config_flags%symmetric_ye .or. & |
---|
2003 | (jte < jde-1) ) degrade_ye = .false. |
---|
2004 | |
---|
2005 | !--------------- y - advection first |
---|
2006 | |
---|
2007 | |
---|
2008 | ktf=MIN(kte,kde-1) |
---|
2009 | |
---|
2010 | i_start = its |
---|
2011 | i_end = MIN(ite,ide-1) |
---|
2012 | j_start = jts |
---|
2013 | j_end = jte |
---|
2014 | |
---|
2015 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
2016 | ! bounds so we can switch to second order flux close to the boundary |
---|
2017 | |
---|
2018 | j_start_f = j_start |
---|
2019 | j_end_f = j_end+1 |
---|
2020 | |
---|
2021 | !CJM May not work with tiling because defined in terms of domain dims |
---|
2022 | IF(degrade_ys) then |
---|
2023 | j_start = jds+1 |
---|
2024 | j_start_f = j_start+1 |
---|
2025 | ENDIF |
---|
2026 | |
---|
2027 | IF(degrade_ye) then |
---|
2028 | j_end = jde-1 |
---|
2029 | j_end_f = jde-1 |
---|
2030 | ENDIF |
---|
2031 | |
---|
2032 | ! compute fluxes |
---|
2033 | ! specified uses upstream normal wind at boundaries |
---|
2034 | |
---|
2035 | jp0 = 1 |
---|
2036 | jp1 = 2 |
---|
2037 | |
---|
2038 | DO j = j_start, j_end+1 |
---|
2039 | |
---|
2040 | IF ((j == j_start) .and. degrade_ys) THEN |
---|
2041 | DO k = kts,ktf |
---|
2042 | DO i = i_start, i_end |
---|
2043 | vb = v(i,k,j-1) |
---|
2044 | IF (specified .AND. v(i,k,j) .LT. 0.)vb = v(i,k,j) |
---|
2045 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
2046 | *(v(i,k,j)+vb) |
---|
2047 | ENDDO |
---|
2048 | ENDDO |
---|
2049 | ELSE IF ((j == j_end+1) .and. degrade_ye) THEN |
---|
2050 | DO k = kts, ktf |
---|
2051 | DO i = i_start, i_end |
---|
2052 | vb = v(i,k,j) |
---|
2053 | IF (specified .AND. v(i,k,j-1) .GT. 0.)vb = v(i,k,j-1) |
---|
2054 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
2055 | *(vb+v(i,k,j-1)) |
---|
2056 | ENDDO |
---|
2057 | ENDDO |
---|
2058 | ELSE |
---|
2059 | DO k = kts, ktf |
---|
2060 | DO i = i_start, i_end |
---|
2061 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
2062 | fqy( i,k,jp1 ) = vel*flux4( v(i,k,j-2), v(i,k,j-1), & |
---|
2063 | v(i,k,j ), v(i,k,j+1), & |
---|
2064 | vel ) |
---|
2065 | ENDDO |
---|
2066 | ENDDO |
---|
2067 | END IF |
---|
2068 | |
---|
2069 | IF( j > j_start) THEN |
---|
2070 | DO k = kts, ktf |
---|
2071 | DO i = i_start, i_end |
---|
2072 | mrdy=msfv(i,j-1)*rdy |
---|
2073 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
2074 | ENDDO |
---|
2075 | ENDDO |
---|
2076 | END IF |
---|
2077 | |
---|
2078 | jtmp = jp1 |
---|
2079 | jp1 = jp0 |
---|
2080 | jp0 = jtmp |
---|
2081 | |
---|
2082 | ENDDO |
---|
2083 | |
---|
2084 | ! next, x - flux divergence |
---|
2085 | |
---|
2086 | |
---|
2087 | i_start = its |
---|
2088 | i_end = MIN(ite,ide-1) |
---|
2089 | |
---|
2090 | j_start = jts |
---|
2091 | j_end = jte |
---|
2092 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
---|
2093 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-1,jte) |
---|
2094 | |
---|
2095 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
2096 | ! bounds so we can switch to second order flux close to the boundary |
---|
2097 | |
---|
2098 | i_start_f = i_start |
---|
2099 | i_end_f = i_end+1 |
---|
2100 | |
---|
2101 | IF(degrade_xs) then |
---|
2102 | i_start = ids+1 |
---|
2103 | i_start_f = i_start+1 |
---|
2104 | ENDIF |
---|
2105 | |
---|
2106 | IF(degrade_xe) then |
---|
2107 | i_end = ide-2 |
---|
2108 | i_end_f = ide-2 |
---|
2109 | ENDIF |
---|
2110 | |
---|
2111 | ! compute fluxes |
---|
2112 | |
---|
2113 | DO j = j_start, j_end |
---|
2114 | |
---|
2115 | ! 3rd or 4th order flux |
---|
2116 | |
---|
2117 | DO k=kts,ktf |
---|
2118 | DO i = i_start_f, i_end_f |
---|
2119 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
2120 | fqx( i, k ) = vel*flux4( v(i-2,k,j), v(i-1,k,j), & |
---|
2121 | v(i ,k,j), v(i+1,k,j), & |
---|
2122 | vel ) |
---|
2123 | ENDDO |
---|
2124 | ENDDO |
---|
2125 | |
---|
2126 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
2127 | |
---|
2128 | IF( degrade_xs ) THEN |
---|
2129 | DO k=kts,ktf |
---|
2130 | fqx(i_start,k) = 0.25*(ru(i_start,k,j)+ru(i_start,k,j-1)) & |
---|
2131 | *(v(i_start,k,j)+v(i_start-1,k,j)) |
---|
2132 | ENDDO |
---|
2133 | ENDIF |
---|
2134 | |
---|
2135 | IF( degrade_xe ) THEN |
---|
2136 | DO k=kts,ktf |
---|
2137 | fqx(i_end+1,k) = 0.25*(ru(i_end+1,k,j)+ru(i_end+1,k,j-1)) & |
---|
2138 | *(v(i_end+1,k,j)+v(i_end,k,j)) |
---|
2139 | ENDDO |
---|
2140 | ENDIF |
---|
2141 | |
---|
2142 | ! x flux-divergence into tendency |
---|
2143 | |
---|
2144 | DO k=kts,ktf |
---|
2145 | DO i = i_start, i_end |
---|
2146 | mrdx=msfv(i,j)*rdx |
---|
2147 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
2148 | ENDDO |
---|
2149 | ENDDO |
---|
2150 | |
---|
2151 | ENDDO |
---|
2152 | |
---|
2153 | ELSE IF( horz_order == 3 ) THEN |
---|
2154 | |
---|
2155 | ! determine boundary mods for flux operators |
---|
2156 | ! We degrade the flux operators from 3rd/4th order |
---|
2157 | ! to second order one gridpoint in from the boundaries for |
---|
2158 | ! all boundary conditions except periodic and symmetry - these |
---|
2159 | ! conditions have boundary zone data fill for correct application |
---|
2160 | ! of the higher order flux stencils |
---|
2161 | |
---|
2162 | degrade_xs = .true. |
---|
2163 | degrade_xe = .true. |
---|
2164 | degrade_ys = .true. |
---|
2165 | degrade_ye = .true. |
---|
2166 | |
---|
2167 | IF( config_flags%periodic_x .or. & |
---|
2168 | config_flags%symmetric_xs .or. & |
---|
2169 | (its > ids+1) ) degrade_xs = .false. |
---|
2170 | IF( config_flags%periodic_x .or. & |
---|
2171 | config_flags%symmetric_xe .or. & |
---|
2172 | (ite < ide-2) ) degrade_xe = .false. |
---|
2173 | IF( config_flags%periodic_y .or. & |
---|
2174 | config_flags%symmetric_ys .or. & |
---|
2175 | (jts > jds+1) ) degrade_ys = .false. |
---|
2176 | IF( config_flags%periodic_y .or. & |
---|
2177 | config_flags%symmetric_ye .or. & |
---|
2178 | (jte < jde-1) ) degrade_ye = .false. |
---|
2179 | |
---|
2180 | !--------------- y - advection first |
---|
2181 | |
---|
2182 | |
---|
2183 | ktf=MIN(kte,kde-1) |
---|
2184 | |
---|
2185 | i_start = its |
---|
2186 | i_end = MIN(ite,ide-1) |
---|
2187 | j_start = jts |
---|
2188 | j_end = jte |
---|
2189 | |
---|
2190 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
2191 | ! bounds so we can switch to second order flux close to the boundary |
---|
2192 | |
---|
2193 | j_start_f = j_start |
---|
2194 | j_end_f = j_end+1 |
---|
2195 | |
---|
2196 | !CJM May not work with tiling because defined in terms of domain dims |
---|
2197 | IF(degrade_ys) then |
---|
2198 | j_start = jds+1 |
---|
2199 | j_start_f = j_start+1 |
---|
2200 | ENDIF |
---|
2201 | |
---|
2202 | IF(degrade_ye) then |
---|
2203 | j_end = jde-1 |
---|
2204 | j_end_f = jde-1 |
---|
2205 | ENDIF |
---|
2206 | |
---|
2207 | ! compute fluxes |
---|
2208 | ! specified uses upstream normal wind at boundaries |
---|
2209 | |
---|
2210 | jp0 = 1 |
---|
2211 | jp1 = 2 |
---|
2212 | |
---|
2213 | DO j = j_start, j_end+1 |
---|
2214 | |
---|
2215 | IF ((j == j_start) .and. degrade_ys) THEN |
---|
2216 | DO k = kts,ktf |
---|
2217 | DO i = i_start, i_end |
---|
2218 | vb = v(i,k,j-1) |
---|
2219 | IF (specified .AND. v(i,k,j) .LT. 0.)vb = v(i,k,j) |
---|
2220 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
2221 | *(v(i,k,j)+vb) |
---|
2222 | ENDDO |
---|
2223 | ENDDO |
---|
2224 | ELSE IF ((j == j_end+1) .and. degrade_ye) THEN |
---|
2225 | DO k = kts, ktf |
---|
2226 | DO i = i_start, i_end |
---|
2227 | vb = v(i,k,j) |
---|
2228 | IF (specified .AND. v(i,k,j-1) .GT. 0.)vb = v(i,k,j-1) |
---|
2229 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
---|
2230 | *(vb+v(i,k,j-1)) |
---|
2231 | ENDDO |
---|
2232 | ENDDO |
---|
2233 | ELSE |
---|
2234 | DO k = kts, ktf |
---|
2235 | DO i = i_start, i_end |
---|
2236 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
---|
2237 | fqy( i,k,jp1 ) = vel*flux3( v(i,k,j-2), v(i,k,j-1), & |
---|
2238 | v(i,k,j ), v(i,k,j+1), & |
---|
2239 | vel ) |
---|
2240 | ENDDO |
---|
2241 | ENDDO |
---|
2242 | END IF |
---|
2243 | |
---|
2244 | IF( j > j_start) THEN |
---|
2245 | DO k = kts, ktf |
---|
2246 | DO i = i_start, i_end |
---|
2247 | mrdy=msfv(i,j-1)*rdy |
---|
2248 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
2249 | ENDDO |
---|
2250 | ENDDO |
---|
2251 | END IF |
---|
2252 | |
---|
2253 | jtmp = jp1 |
---|
2254 | jp1 = jp0 |
---|
2255 | jp0 = jtmp |
---|
2256 | |
---|
2257 | ENDDO |
---|
2258 | |
---|
2259 | ! next, x - flux divergence |
---|
2260 | |
---|
2261 | |
---|
2262 | i_start = its |
---|
2263 | i_end = MIN(ite,ide-1) |
---|
2264 | |
---|
2265 | j_start = jts |
---|
2266 | j_end = jte |
---|
2267 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
---|
2268 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-1,jte) |
---|
2269 | |
---|
2270 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
2271 | ! bounds so we can switch to second order flux close to the boundary |
---|
2272 | |
---|
2273 | i_start_f = i_start |
---|
2274 | i_end_f = i_end+1 |
---|
2275 | |
---|
2276 | IF(degrade_xs) then |
---|
2277 | i_start = ids+1 |
---|
2278 | i_start_f = i_start+1 |
---|
2279 | ENDIF |
---|
2280 | |
---|
2281 | IF(degrade_xe) then |
---|
2282 | i_end = ide-2 |
---|
2283 | i_end_f = ide-2 |
---|
2284 | ENDIF |
---|
2285 | |
---|
2286 | ! compute fluxes |
---|
2287 | |
---|
2288 | DO j = j_start, j_end |
---|
2289 | |
---|
2290 | ! 3rd or 4th order flux |
---|
2291 | |
---|
2292 | DO k=kts,ktf |
---|
2293 | DO i = i_start_f, i_end_f |
---|
2294 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
---|
2295 | fqx( i, k ) = vel*flux3( v(i-2,k,j), v(i-1,k,j), & |
---|
2296 | v(i ,k,j), v(i+1,k,j), & |
---|
2297 | vel ) |
---|
2298 | ENDDO |
---|
2299 | ENDDO |
---|
2300 | |
---|
2301 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
2302 | |
---|
2303 | IF( degrade_xs ) THEN |
---|
2304 | DO k=kts,ktf |
---|
2305 | fqx(i_start,k) = 0.25*(ru(i_start,k,j)+ru(i_start,k,j-1)) & |
---|
2306 | *(v(i_start,k,j)+v(i_start-1,k,j)) |
---|
2307 | ENDDO |
---|
2308 | ENDIF |
---|
2309 | |
---|
2310 | IF( degrade_xe ) THEN |
---|
2311 | DO k=kts,ktf |
---|
2312 | fqx(i_end+1,k) = 0.25*(ru(i_end+1,k,j)+ru(i_end+1,k,j-1)) & |
---|
2313 | *(v(i_end+1,k,j)+v(i_end,k,j)) |
---|
2314 | ENDDO |
---|
2315 | ENDIF |
---|
2316 | |
---|
2317 | ! x flux-divergence into tendency |
---|
2318 | |
---|
2319 | DO k=kts,ktf |
---|
2320 | DO i = i_start, i_end |
---|
2321 | mrdx=msfv(i,j)*rdx |
---|
2322 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
2323 | ENDDO |
---|
2324 | ENDDO |
---|
2325 | |
---|
2326 | ENDDO |
---|
2327 | |
---|
2328 | ELSE IF( horz_order == 2 ) THEN |
---|
2329 | |
---|
2330 | |
---|
2331 | i_start = its |
---|
2332 | i_end = MIN(ite,ide-1) |
---|
2333 | j_start = jts |
---|
2334 | j_end = jte |
---|
2335 | |
---|
2336 | IF ( config_flags%open_ys ) j_start = MAX(jds+1,jts) |
---|
2337 | IF ( config_flags%open_ye ) j_end = MIN(jde-1,jte) |
---|
2338 | IF ( specified ) j_start = MAX(jds+2,jts) |
---|
2339 | IF ( specified ) j_end = MIN(jde-2,jte) |
---|
2340 | |
---|
2341 | DO j = j_start, j_end |
---|
2342 | DO k=kts,ktf |
---|
2343 | DO i = i_start, i_end |
---|
2344 | |
---|
2345 | mrdy=msfv(i,j)*rdy |
---|
2346 | |
---|
2347 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.25 & |
---|
2348 | *((rv(i,k,j+1)+rv(i,k,j ))*(v(i,k,j+1)+v(i,k,j )) & |
---|
2349 | -(rv(i,k,j )+rv(i,k,j-1))*(v(i,k,j )+v(i,k,j-1))) |
---|
2350 | |
---|
2351 | ENDDO |
---|
2352 | ENDDO |
---|
2353 | ENDDO |
---|
2354 | ! specified uses upstream normal wind at boundaries |
---|
2355 | |
---|
2356 | IF ( specified .AND. jts .LE. jds+1 ) THEN |
---|
2357 | j = jds+1 |
---|
2358 | DO k=kts,ktf |
---|
2359 | DO i = i_start, i_end |
---|
2360 | mrdy=msfv(i,j)*rdy |
---|
2361 | vb = v(i,k,j-1) |
---|
2362 | IF (v(i,k,j) .LT. 0.) vb = v(i,k,j) |
---|
2363 | |
---|
2364 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.25 & |
---|
2365 | *((rv(i,k,j+1)+rv(i,k,j ))*(v(i,k,j+1)+v(i,k,j )) & |
---|
2366 | -(rv(i,k,j )+rv(i,k,j-1))*(v(i,k,j )+vb)) |
---|
2367 | |
---|
2368 | ENDDO |
---|
2369 | ENDDO |
---|
2370 | ENDIF |
---|
2371 | |
---|
2372 | IF ( specified .AND. jte .GE. jde-1 ) THEN |
---|
2373 | j = jde-1 |
---|
2374 | DO k=kts,ktf |
---|
2375 | DO i = i_start, i_end |
---|
2376 | |
---|
2377 | mrdy=msfv(i,j)*rdy |
---|
2378 | vb = v(i,k,j+1) |
---|
2379 | IF (v(i,k,j) .GT. 0.) vb = v(i,k,j) |
---|
2380 | |
---|
2381 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.25 & |
---|
2382 | *((rv(i,k,j+1)+rv(i,k,j ))*(vb+v(i,k,j )) & |
---|
2383 | -(rv(i,k,j )+rv(i,k,j-1))*(v(i,k,j )+v(i,k,j-1))) |
---|
2384 | |
---|
2385 | ENDDO |
---|
2386 | ENDDO |
---|
2387 | ENDIF |
---|
2388 | |
---|
2389 | IF ( .NOT. config_flags%periodic_x ) THEN |
---|
2390 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
2391 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-2,ite) |
---|
2392 | ENDIF |
---|
2393 | |
---|
2394 | DO j = j_start, j_end |
---|
2395 | DO k=kts,ktf |
---|
2396 | DO i = i_start, i_end |
---|
2397 | |
---|
2398 | mrdx=msfv(i,j)*rdx |
---|
2399 | |
---|
2400 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 & |
---|
2401 | *((ru(i+1,k,j)+ru(i+1,k,j-1))*(v(i+1,k,j)+v(i ,k,j)) & |
---|
2402 | -(ru(i ,k,j)+ru(i ,k,j-1))*(v(i ,k,j)+v(i-1,k,j))) |
---|
2403 | |
---|
2404 | ENDDO |
---|
2405 | ENDDO |
---|
2406 | ENDDO |
---|
2407 | |
---|
2408 | ELSE |
---|
2409 | |
---|
2410 | |
---|
2411 | WRITE ( wrf_err_message , * ) 'module_advect: advect_v_6a: h_order not known ',horz_order |
---|
2412 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
2413 | |
---|
2414 | ENDIF horizontal_order_test |
---|
2415 | |
---|
2416 | ! radiative lateral boundary condition in y for normal velocity (v) |
---|
2417 | |
---|
2418 | IF ( (config_flags%open_ys) .and. jts == jds ) THEN |
---|
2419 | |
---|
2420 | i_start = its |
---|
2421 | i_end = MIN(ite,ide-1) |
---|
2422 | |
---|
2423 | DO i = i_start, i_end |
---|
2424 | DO k = kts, ktf |
---|
2425 | vb = MIN(rv(i,k,jts)-cb*mut(i,jts), 0.) |
---|
2426 | tendency(i,k,jts) = tendency(i,k,jts) & |
---|
2427 | - rdy*vb*(v_old(i,k,jts+1) - v_old(i,k,jts)) |
---|
2428 | ENDDO |
---|
2429 | ENDDO |
---|
2430 | |
---|
2431 | ENDIF |
---|
2432 | |
---|
2433 | IF ( (config_flags%open_ye) .and. jte == jde ) THEN |
---|
2434 | |
---|
2435 | i_start = its |
---|
2436 | i_end = MIN(ite,ide-1) |
---|
2437 | |
---|
2438 | DO i = i_start, i_end |
---|
2439 | DO k = kts, ktf |
---|
2440 | vb = MAX(rv(i,k,jte)+cb*mut(i,jte-1), 0.) |
---|
2441 | tendency(i,k,jte) = tendency(i,k,jte) & |
---|
2442 | - rdy*vb*(v_old(i,k,jte) - v_old(i,k,jte-1)) |
---|
2443 | ENDDO |
---|
2444 | ENDDO |
---|
2445 | |
---|
2446 | ENDIF |
---|
2447 | |
---|
2448 | ! pick up the rest of the horizontal radiation boundary conditions. |
---|
2449 | ! (these are the computations that don't require 'cb'. |
---|
2450 | ! first, set to index ranges |
---|
2451 | |
---|
2452 | j_start = jts |
---|
2453 | j_end = MIN(jte,jde) |
---|
2454 | |
---|
2455 | jmin = jds |
---|
2456 | jmax = jde-1 |
---|
2457 | |
---|
2458 | IF (config_flags%open_ys) THEN |
---|
2459 | j_start = MAX(jds+1, jts) |
---|
2460 | jmin = jds |
---|
2461 | ENDIF |
---|
2462 | IF (config_flags%open_ye) THEN |
---|
2463 | j_end = MIN(jte,jde-1) |
---|
2464 | jmax = jde-1 |
---|
2465 | ENDIF |
---|
2466 | |
---|
2467 | ! compute x (u) conditions for v, w, or scalar |
---|
2468 | |
---|
2469 | IF( (config_flags%open_xs) .and. (its == ids)) THEN |
---|
2470 | |
---|
2471 | DO j = j_start, j_end |
---|
2472 | |
---|
2473 | mrdx=msfv(its,j)*rdx |
---|
2474 | jp = MIN( jmax, j ) |
---|
2475 | jm = MAX( jmin, j-1 ) |
---|
2476 | |
---|
2477 | DO k=kts,ktf |
---|
2478 | |
---|
2479 | uw = 0.5*(ru(its,k,jp)+ru(its,k,jm)) |
---|
2480 | ub = MIN( uw, 0. ) |
---|
2481 | dup = ru(its+1,k,jp)-ru(its,k,jp) |
---|
2482 | dum = ru(its+1,k,jm)-ru(its,k,jm) |
---|
2483 | tendency(its,k,j)=tendency(its,k,j)-mrdx*( & |
---|
2484 | ub*(v_old(its+1,k,j)-v_old(its,k,j)) & |
---|
2485 | +0.5*v(its,k,j)*(dup+dum)) |
---|
2486 | ENDDO |
---|
2487 | ENDDO |
---|
2488 | |
---|
2489 | ENDIF |
---|
2490 | |
---|
2491 | IF( (config_flags%open_xe) .and. (ite == ide) ) THEN |
---|
2492 | DO j = j_start, j_end |
---|
2493 | |
---|
2494 | mrdx=msfv(ite-1,j)*rdx |
---|
2495 | jp = MIN( jmax, j ) |
---|
2496 | jm = MAX( jmin, j-1 ) |
---|
2497 | |
---|
2498 | DO k=kts,ktf |
---|
2499 | |
---|
2500 | uw = 0.5*(ru(ite,k,jp)+ru(ite,k,jm)) |
---|
2501 | ub = MAX( uw, 0. ) |
---|
2502 | dup = ru(ite,k,jp)-ru(ite-1,k,jp) |
---|
2503 | dum = ru(ite,k,jm)-ru(ite-1,k,jm) |
---|
2504 | |
---|
2505 | ! tendency(ite-1,k,j)=tendency(ite-1,k,j)-mrdx*( & |
---|
2506 | ! ub*(v_old(ite-1,k,j)-v_old(ite-2,k,j)) & |
---|
2507 | ! +0.5*v(ite-1,k,j)* & |
---|
2508 | ! ( ru(ite,k,jp)-ru(ite-1,k,jp) & |
---|
2509 | ! +ru(ite,k,jm)-ru(ite-1,k,jm)) ) |
---|
2510 | tendency(ite-1,k,j)=tendency(ite-1,k,j)-mrdx*( & |
---|
2511 | ub*(v_old(ite-1,k,j)-v_old(ite-2,k,j)) & |
---|
2512 | +0.5*v(ite-1,k,j)*(dup+dum)) |
---|
2513 | |
---|
2514 | ENDDO |
---|
2515 | ENDDO |
---|
2516 | |
---|
2517 | ENDIF |
---|
2518 | |
---|
2519 | !-------------------- vertical advection |
---|
2520 | |
---|
2521 | |
---|
2522 | i_start = its |
---|
2523 | i_end = MIN(ite,ide-1) |
---|
2524 | j_start = jts |
---|
2525 | j_end = jte |
---|
2526 | |
---|
2527 | DO i = i_start, i_end |
---|
2528 | vflux(i,kts)=0. |
---|
2529 | vflux(i,kte)=0. |
---|
2530 | ENDDO |
---|
2531 | |
---|
2532 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
---|
2533 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-1,jte) |
---|
2534 | |
---|
2535 | vert_order_test : IF (vert_order == 6) THEN |
---|
2536 | |
---|
2537 | DO j = j_start, j_end |
---|
2538 | |
---|
2539 | |
---|
2540 | DO k=kts+3,ktf-2 |
---|
2541 | DO i = i_start, i_end |
---|
2542 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
2543 | vflux(i,k) = vel*flux6( & |
---|
2544 | v(i,k-3,j), v(i,k-2,j), v(i,k-1,j), & |
---|
2545 | v(i,k ,j), v(i,k+1,j), v(i,k+2,j), -vel ) |
---|
2546 | ENDDO |
---|
2547 | ENDDO |
---|
2548 | |
---|
2549 | DO i = i_start, i_end |
---|
2550 | k=kts+1 |
---|
2551 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2552 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2553 | k = kts+2 |
---|
2554 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
2555 | vflux(i,k) = vel*flux4( & |
---|
2556 | v(i,k-2,j), v(i,k-1,j), & |
---|
2557 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
2558 | k = ktf-1 |
---|
2559 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
2560 | vflux(i,k) = vel*flux4( & |
---|
2561 | v(i,k-2,j), v(i,k-1,j), & |
---|
2562 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
2563 | k=ktf |
---|
2564 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2565 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2566 | |
---|
2567 | ENDDO |
---|
2568 | |
---|
2569 | |
---|
2570 | DO k=kts,ktf |
---|
2571 | DO i = i_start, i_end |
---|
2572 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
2573 | ENDDO |
---|
2574 | ENDDO |
---|
2575 | |
---|
2576 | ENDDO |
---|
2577 | |
---|
2578 | ELSE IF (vert_order == 5) THEN |
---|
2579 | |
---|
2580 | DO j = j_start, j_end |
---|
2581 | |
---|
2582 | |
---|
2583 | DO k=kts+3,ktf-2 |
---|
2584 | DO i = i_start, i_end |
---|
2585 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
2586 | vflux(i,k) = vel*flux5( & |
---|
2587 | v(i,k-3,j), v(i,k-2,j), v(i,k-1,j), & |
---|
2588 | v(i,k ,j), v(i,k+1,j), v(i,k+2,j), -vel ) |
---|
2589 | ENDDO |
---|
2590 | ENDDO |
---|
2591 | |
---|
2592 | DO i = i_start, i_end |
---|
2593 | k=kts+1 |
---|
2594 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2595 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2596 | k = kts+2 |
---|
2597 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
2598 | vflux(i,k) = vel*flux3( & |
---|
2599 | v(i,k-2,j), v(i,k-1,j), & |
---|
2600 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
2601 | k = ktf-1 |
---|
2602 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
2603 | vflux(i,k) = vel*flux3( & |
---|
2604 | v(i,k-2,j), v(i,k-1,j), & |
---|
2605 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
2606 | k=ktf |
---|
2607 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2608 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2609 | |
---|
2610 | ENDDO |
---|
2611 | |
---|
2612 | |
---|
2613 | DO k=kts,ktf |
---|
2614 | DO i = i_start, i_end |
---|
2615 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
2616 | ENDDO |
---|
2617 | ENDDO |
---|
2618 | |
---|
2619 | ENDDO |
---|
2620 | |
---|
2621 | ELSE IF (vert_order == 4) THEN |
---|
2622 | |
---|
2623 | DO j = j_start, j_end |
---|
2624 | |
---|
2625 | |
---|
2626 | DO k=kts+2,ktf-1 |
---|
2627 | DO i = i_start, i_end |
---|
2628 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
2629 | vflux(i,k) = vel*flux4( & |
---|
2630 | v(i,k-2,j), v(i,k-1,j), & |
---|
2631 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
2632 | ENDDO |
---|
2633 | ENDDO |
---|
2634 | |
---|
2635 | DO i = i_start, i_end |
---|
2636 | k=kts+1 |
---|
2637 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2638 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2639 | k=ktf |
---|
2640 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2641 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2642 | |
---|
2643 | ENDDO |
---|
2644 | |
---|
2645 | |
---|
2646 | DO k=kts,ktf |
---|
2647 | DO i = i_start, i_end |
---|
2648 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
2649 | ENDDO |
---|
2650 | ENDDO |
---|
2651 | |
---|
2652 | ENDDO |
---|
2653 | |
---|
2654 | ELSE IF (vert_order == 3) THEN |
---|
2655 | |
---|
2656 | DO j = j_start, j_end |
---|
2657 | |
---|
2658 | |
---|
2659 | DO k=kts+2,ktf-1 |
---|
2660 | DO i = i_start, i_end |
---|
2661 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
---|
2662 | vflux(i,k) = vel*flux3( & |
---|
2663 | v(i,k-2,j), v(i,k-1,j), & |
---|
2664 | v(i,k ,j), v(i,k+1,j), -vel ) |
---|
2665 | ENDDO |
---|
2666 | ENDDO |
---|
2667 | |
---|
2668 | DO i = i_start, i_end |
---|
2669 | k=kts+1 |
---|
2670 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2671 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2672 | k=ktf |
---|
2673 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2674 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2675 | |
---|
2676 | ENDDO |
---|
2677 | |
---|
2678 | |
---|
2679 | DO k=kts,ktf |
---|
2680 | DO i = i_start, i_end |
---|
2681 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
2682 | ENDDO |
---|
2683 | ENDDO |
---|
2684 | |
---|
2685 | ENDDO |
---|
2686 | |
---|
2687 | |
---|
2688 | ELSE IF (vert_order == 2) THEN |
---|
2689 | |
---|
2690 | DO j = j_start, j_end |
---|
2691 | DO k=kts+1,ktf |
---|
2692 | DO i = i_start, i_end |
---|
2693 | |
---|
2694 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
---|
2695 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
---|
2696 | ENDDO |
---|
2697 | ENDDO |
---|
2698 | |
---|
2699 | DO k=kts,ktf |
---|
2700 | DO i = i_start, i_end |
---|
2701 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
2702 | |
---|
2703 | ENDDO |
---|
2704 | ENDDO |
---|
2705 | ENDDO |
---|
2706 | |
---|
2707 | ELSE |
---|
2708 | |
---|
2709 | WRITE ( wrf_err_message , * ) 'module_advect: advect_v_6a: v_order not known ',vert_order |
---|
2710 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
2711 | |
---|
2712 | ENDIF vert_order_test |
---|
2713 | |
---|
2714 | END SUBROUTINE advect_v |
---|
2715 | |
---|
2716 | !------------------------------------------------------------------- |
---|
2717 | |
---|
2718 | SUBROUTINE advect_scalar ( field, field_old, tendency, & |
---|
2719 | ru, rv, rom, & |
---|
2720 | mut, config_flags, & |
---|
2721 | msfu, msfv, msft, & |
---|
2722 | fzm, fzp, & |
---|
2723 | rdx, rdy, rdzw, & |
---|
2724 | ids, ide, jds, jde, kds, kde, & |
---|
2725 | ims, ime, jms, jme, kms, kme, & |
---|
2726 | its, ite, jts, jte, kts, kte ) |
---|
2727 | |
---|
2728 | IMPLICIT NONE |
---|
2729 | |
---|
2730 | ! Input data |
---|
2731 | |
---|
2732 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
2733 | |
---|
2734 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
2735 | ims, ime, jms, jme, kms, kme, & |
---|
2736 | its, ite, jts, jte, kts, kte |
---|
2737 | |
---|
2738 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: field, & |
---|
2739 | field_old, & |
---|
2740 | ru, & |
---|
2741 | rv, & |
---|
2742 | rom |
---|
2743 | |
---|
2744 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
---|
2745 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
2746 | |
---|
2747 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
---|
2748 | msfv, & |
---|
2749 | msft |
---|
2750 | |
---|
2751 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
2752 | fzp, & |
---|
2753 | rdzw |
---|
2754 | |
---|
2755 | REAL , INTENT(IN ) :: rdx, & |
---|
2756 | rdy |
---|
2757 | |
---|
2758 | ! Local data |
---|
2759 | |
---|
2760 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
2761 | INTEGER :: i_start, i_end, j_start, j_end |
---|
2762 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
---|
2763 | INTEGER :: jmin, jmax, jp, jm, imin, imax |
---|
2764 | |
---|
2765 | REAL :: mrdx, mrdy, ub, vb, uw, vw |
---|
2766 | REAL , DIMENSION(its:ite, kts:kte) :: vflux |
---|
2767 | |
---|
2768 | |
---|
2769 | REAL, DIMENSION( its:ite+1, kts:kte ) :: fqx |
---|
2770 | REAL, DIMENSION( its:ite, kts:kte, 2 ) :: fqy |
---|
2771 | |
---|
2772 | INTEGER :: horz_order, vert_order |
---|
2773 | |
---|
2774 | LOGICAL :: degrade_xs, degrade_ys |
---|
2775 | LOGICAL :: degrade_xe, degrade_ye |
---|
2776 | |
---|
2777 | INTEGER :: jp1, jp0, jtmp |
---|
2778 | |
---|
2779 | |
---|
2780 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
---|
2781 | |
---|
2782 | REAL :: flux3, flux4, flux5, flux6 |
---|
2783 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel |
---|
2784 | |
---|
2785 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
2786 | ( 7.*(q_i + q_im1) - (q_ip1 + q_im2) )/12.0 |
---|
2787 | |
---|
2788 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
2789 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
---|
2790 | sign(1.,ua)*((q_ip1 - q_im2)-3.*(q_i-q_im1))/12.0 |
---|
2791 | |
---|
2792 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
2793 | ( 37.*(q_i+q_im1) - 8.*(q_ip1+q_im2) & |
---|
2794 | +(q_ip2+q_im3) )/60.0 |
---|
2795 | |
---|
2796 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
2797 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
---|
2798 | -sign(1.,ua)*( & |
---|
2799 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) )/60.0 |
---|
2800 | |
---|
2801 | |
---|
2802 | LOGICAL :: specified |
---|
2803 | |
---|
2804 | specified = .false. |
---|
2805 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
---|
2806 | |
---|
2807 | ! set order for the advection schemes |
---|
2808 | |
---|
2809 | ktf=MIN(kte,kde-1) |
---|
2810 | horz_order = config_flags%h_sca_adv_order |
---|
2811 | vert_order = config_flags%v_sca_adv_order |
---|
2812 | |
---|
2813 | ! begin with horizontal flux divergence |
---|
2814 | ! here is the choice of flux operators |
---|
2815 | |
---|
2816 | |
---|
2817 | horizontal_order_test : IF( horz_order == 6 ) THEN |
---|
2818 | |
---|
2819 | ! determine boundary mods for flux operators |
---|
2820 | ! We degrade the flux operators from 3rd/4th order |
---|
2821 | ! to second order one gridpoint in from the boundaries for |
---|
2822 | ! all boundary conditions except periodic and symmetry - these |
---|
2823 | ! conditions have boundary zone data fill for correct application |
---|
2824 | ! of the higher order flux stencils |
---|
2825 | |
---|
2826 | degrade_xs = .true. |
---|
2827 | degrade_xe = .true. |
---|
2828 | degrade_ys = .true. |
---|
2829 | degrade_ye = .true. |
---|
2830 | |
---|
2831 | IF( config_flags%periodic_x .or. & |
---|
2832 | config_flags%symmetric_xs .or. & |
---|
2833 | (its > ids+2) ) degrade_xs = .false. |
---|
2834 | IF( config_flags%periodic_x .or. & |
---|
2835 | config_flags%symmetric_xe .or. & |
---|
2836 | (ite < ide-3) ) degrade_xe = .false. |
---|
2837 | IF( config_flags%periodic_y .or. & |
---|
2838 | config_flags%symmetric_ys .or. & |
---|
2839 | (jts > jds+2) ) degrade_ys = .false. |
---|
2840 | IF( config_flags%periodic_y .or. & |
---|
2841 | config_flags%symmetric_ye .or. & |
---|
2842 | (jte < jde-3) ) degrade_ye = .false. |
---|
2843 | |
---|
2844 | !--------------- y - advection first |
---|
2845 | |
---|
2846 | ktf=MIN(kte,kde-1) |
---|
2847 | i_start = its |
---|
2848 | i_end = MIN(ite,ide-1) |
---|
2849 | j_start = jts |
---|
2850 | j_end = MIN(jte,jde-1) |
---|
2851 | |
---|
2852 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
2853 | ! bounds so we can switch to second order flux close to the boundary |
---|
2854 | |
---|
2855 | j_start_f = j_start |
---|
2856 | j_end_f = j_end+1 |
---|
2857 | |
---|
2858 | IF(degrade_ys) then |
---|
2859 | j_start = MAX(jts,jds+1) |
---|
2860 | j_start_f = jds+3 |
---|
2861 | ENDIF |
---|
2862 | |
---|
2863 | IF(degrade_ye) then |
---|
2864 | j_end = MIN(jte,jde-2) |
---|
2865 | j_end_f = jde-3 |
---|
2866 | ENDIF |
---|
2867 | |
---|
2868 | ! compute fluxes, 5th or 6th order |
---|
2869 | |
---|
2870 | jp1 = 2 |
---|
2871 | jp0 = 1 |
---|
2872 | |
---|
2873 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
---|
2874 | |
---|
2875 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
2876 | |
---|
2877 | DO k=kts,ktf |
---|
2878 | DO i = i_start, i_end |
---|
2879 | vel = rv(i,k,j) |
---|
2880 | fqy( i, k, jp1 ) = vel*flux6( & |
---|
2881 | field(i,k,j-3), field(i,k,j-2), field(i,k,j-1), & |
---|
2882 | field(i,k,j ), field(i,k,j+1), field(i,k,j+2), vel ) |
---|
2883 | ENDDO |
---|
2884 | ENDDO |
---|
2885 | |
---|
2886 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
2887 | |
---|
2888 | DO k=kts,ktf |
---|
2889 | DO i = i_start, i_end |
---|
2890 | fqy(i,k, jp1) = 0.5*rv(i,k,j)* & |
---|
2891 | (field(i,k,j)+field(i,k,j-1)) |
---|
2892 | |
---|
2893 | ENDDO |
---|
2894 | ENDDO |
---|
2895 | |
---|
2896 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
2897 | |
---|
2898 | DO k=kts,ktf |
---|
2899 | DO i = i_start, i_end |
---|
2900 | vel = rv(i,k,j) |
---|
2901 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
2902 | field(i,k,j-2),field(i,k,j-1),field(i,k,j),field(i,k,j+1),vel ) |
---|
2903 | ENDDO |
---|
2904 | ENDDO |
---|
2905 | |
---|
2906 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
2907 | |
---|
2908 | DO k=kts,ktf |
---|
2909 | DO i = i_start, i_end |
---|
2910 | fqy(i, k, jp1) = 0.5*rv(i,k,j)* & |
---|
2911 | (field(i,k,j)+field(i,k,j-1)) |
---|
2912 | ENDDO |
---|
2913 | ENDDO |
---|
2914 | |
---|
2915 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
2916 | |
---|
2917 | DO k=kts,ktf |
---|
2918 | DO i = i_start, i_end |
---|
2919 | vel = rv(i,k,j) |
---|
2920 | fqy( i, k, jp1) = vel*flux4( & |
---|
2921 | field(i,k,j-2),field(i,k,j-1), & |
---|
2922 | field(i,k,j),field(i,k,j+1),vel ) |
---|
2923 | ENDDO |
---|
2924 | ENDDO |
---|
2925 | |
---|
2926 | ENDIF |
---|
2927 | |
---|
2928 | ! y flux-divergence into tendency |
---|
2929 | |
---|
2930 | IF(j > j_start) THEN |
---|
2931 | |
---|
2932 | DO k=kts,ktf |
---|
2933 | DO i = i_start, i_end |
---|
2934 | mrdy=msft(i,j-1)*rdy |
---|
2935 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
2936 | ENDDO |
---|
2937 | ENDDO |
---|
2938 | |
---|
2939 | ENDIF |
---|
2940 | |
---|
2941 | jtmp = jp1 |
---|
2942 | jp1 = jp0 |
---|
2943 | jp0 = jtmp |
---|
2944 | |
---|
2945 | ENDDO j_loop_y_flux_6 |
---|
2946 | |
---|
2947 | ! next, x - flux divergence |
---|
2948 | |
---|
2949 | i_start = its |
---|
2950 | i_end = MIN(ite,ide-1) |
---|
2951 | |
---|
2952 | j_start = jts |
---|
2953 | j_end = MIN(jte,jde-1) |
---|
2954 | |
---|
2955 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
2956 | ! bounds so we can switch to second order flux close to the boundary |
---|
2957 | |
---|
2958 | i_start_f = i_start |
---|
2959 | i_end_f = i_end+1 |
---|
2960 | |
---|
2961 | IF(degrade_xs) then |
---|
2962 | i_start = MAX(ids+1,its) |
---|
2963 | i_start_f = i_start+2 |
---|
2964 | ENDIF |
---|
2965 | |
---|
2966 | IF(degrade_xe) then |
---|
2967 | i_end = MIN(ide-2,ite) |
---|
2968 | i_end_f = ide-3 |
---|
2969 | ENDIF |
---|
2970 | |
---|
2971 | ! compute fluxes |
---|
2972 | |
---|
2973 | DO j = j_start, j_end |
---|
2974 | |
---|
2975 | ! 5th or 6th order flux |
---|
2976 | |
---|
2977 | DO k=kts,ktf |
---|
2978 | DO i = i_start_f, i_end_f |
---|
2979 | vel = ru(i,k,j) |
---|
2980 | fqx( i,k ) = vel*flux6( field(i-3,k,j), field(i-2,k,j), & |
---|
2981 | field(i-1,k,j), field(i ,k,j), & |
---|
2982 | field(i+1,k,j), field(i+2,k,j), & |
---|
2983 | vel ) |
---|
2984 | ENDDO |
---|
2985 | ENDDO |
---|
2986 | |
---|
2987 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
2988 | |
---|
2989 | IF( degrade_xs ) THEN |
---|
2990 | |
---|
2991 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
2992 | i = ids+1 |
---|
2993 | DO k=kts,ktf |
---|
2994 | fqx(i,k) = 0.5*(ru(i,k,j)) & |
---|
2995 | *(field(i,k,j)+field(i-1,k,j)) |
---|
2996 | |
---|
2997 | ENDDO |
---|
2998 | ENDIF |
---|
2999 | |
---|
3000 | i = ids+2 |
---|
3001 | DO k=kts,ktf |
---|
3002 | vel = ru(i,k,j) |
---|
3003 | fqx( i,k ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
3004 | field(i ,k,j), field(i+1,k,j), & |
---|
3005 | vel ) |
---|
3006 | ENDDO |
---|
3007 | |
---|
3008 | ENDIF |
---|
3009 | |
---|
3010 | IF( degrade_xe ) THEN |
---|
3011 | |
---|
3012 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
3013 | i = ide-1 |
---|
3014 | DO k=kts,ktf |
---|
3015 | fqx(i,k) = 0.5*(ru(i,k,j)) & |
---|
3016 | *(field(i,k,j)+field(i-1,k,j)) |
---|
3017 | ENDDO |
---|
3018 | ENDIF |
---|
3019 | |
---|
3020 | i = ide-2 |
---|
3021 | DO k=kts,ktf |
---|
3022 | vel = ru(i,k,j) |
---|
3023 | fqx( i,k ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
3024 | field(i ,k,j), field(i+1,k,j), & |
---|
3025 | vel ) |
---|
3026 | ENDDO |
---|
3027 | |
---|
3028 | ENDIF |
---|
3029 | |
---|
3030 | ! x flux-divergence into tendency |
---|
3031 | |
---|
3032 | DO k=kts,ktf |
---|
3033 | DO i = i_start, i_end |
---|
3034 | mrdx=msft(i,j)*rdx |
---|
3035 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
3036 | ENDDO |
---|
3037 | ENDDO |
---|
3038 | |
---|
3039 | ENDDO |
---|
3040 | |
---|
3041 | ELSE IF( horz_order == 5 ) THEN |
---|
3042 | |
---|
3043 | ! determine boundary mods for flux operators |
---|
3044 | ! We degrade the flux operators from 3rd/4th order |
---|
3045 | ! to second order one gridpoint in from the boundaries for |
---|
3046 | ! all boundary conditions except periodic and symmetry - these |
---|
3047 | ! conditions have boundary zone data fill for correct application |
---|
3048 | ! of the higher order flux stencils |
---|
3049 | |
---|
3050 | degrade_xs = .true. |
---|
3051 | degrade_xe = .true. |
---|
3052 | degrade_ys = .true. |
---|
3053 | degrade_ye = .true. |
---|
3054 | |
---|
3055 | IF( config_flags%periodic_x .or. & |
---|
3056 | config_flags%symmetric_xs .or. & |
---|
3057 | (its > ids+2) ) degrade_xs = .false. |
---|
3058 | IF( config_flags%periodic_x .or. & |
---|
3059 | config_flags%symmetric_xe .or. & |
---|
3060 | (ite < ide-3) ) degrade_xe = .false. |
---|
3061 | IF( config_flags%periodic_y .or. & |
---|
3062 | config_flags%symmetric_ys .or. & |
---|
3063 | (jts > jds+2) ) degrade_ys = .false. |
---|
3064 | IF( config_flags%periodic_y .or. & |
---|
3065 | config_flags%symmetric_ye .or. & |
---|
3066 | (jte < jde-3) ) degrade_ye = .false. |
---|
3067 | |
---|
3068 | !--------------- y - advection first |
---|
3069 | |
---|
3070 | ktf=MIN(kte,kde-1) |
---|
3071 | i_start = its |
---|
3072 | i_end = MIN(ite,ide-1) |
---|
3073 | j_start = jts |
---|
3074 | j_end = MIN(jte,jde-1) |
---|
3075 | |
---|
3076 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
3077 | ! bounds so we can switch to second order flux close to the boundary |
---|
3078 | |
---|
3079 | j_start_f = j_start |
---|
3080 | j_end_f = j_end+1 |
---|
3081 | |
---|
3082 | IF(degrade_ys) then |
---|
3083 | j_start = MAX(jts,jds+1) |
---|
3084 | j_start_f = jds+3 |
---|
3085 | ENDIF |
---|
3086 | |
---|
3087 | IF(degrade_ye) then |
---|
3088 | j_end = MIN(jte,jde-2) |
---|
3089 | j_end_f = jde-3 |
---|
3090 | ENDIF |
---|
3091 | |
---|
3092 | ! compute fluxes, 5th or 6th order |
---|
3093 | |
---|
3094 | jp1 = 2 |
---|
3095 | jp0 = 1 |
---|
3096 | |
---|
3097 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
---|
3098 | |
---|
3099 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
3100 | |
---|
3101 | DO k=kts,ktf |
---|
3102 | DO i = i_start, i_end |
---|
3103 | vel = rv(i,k,j) |
---|
3104 | fqy( i, k, jp1 ) = vel*flux5( & |
---|
3105 | field(i,k,j-3), field(i,k,j-2), field(i,k,j-1), & |
---|
3106 | field(i,k,j ), field(i,k,j+1), field(i,k,j+2), vel ) |
---|
3107 | ENDDO |
---|
3108 | ENDDO |
---|
3109 | |
---|
3110 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
3111 | |
---|
3112 | DO k=kts,ktf |
---|
3113 | DO i = i_start, i_end |
---|
3114 | fqy(i,k, jp1) = 0.5*rv(i,k,j)* & |
---|
3115 | (field(i,k,j)+field(i,k,j-1)) |
---|
3116 | |
---|
3117 | ENDDO |
---|
3118 | ENDDO |
---|
3119 | |
---|
3120 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
3121 | |
---|
3122 | DO k=kts,ktf |
---|
3123 | DO i = i_start, i_end |
---|
3124 | vel = rv(i,k,j) |
---|
3125 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
3126 | field(i,k,j-2),field(i,k,j-1),field(i,k,j),field(i,k,j+1),vel ) |
---|
3127 | ENDDO |
---|
3128 | ENDDO |
---|
3129 | |
---|
3130 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
3131 | |
---|
3132 | DO k=kts,ktf |
---|
3133 | DO i = i_start, i_end |
---|
3134 | fqy(i, k, jp1) = 0.5*rv(i,k,j)* & |
---|
3135 | (field(i,k,j)+field(i,k,j-1)) |
---|
3136 | ENDDO |
---|
3137 | ENDDO |
---|
3138 | |
---|
3139 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
3140 | |
---|
3141 | DO k=kts,ktf |
---|
3142 | DO i = i_start, i_end |
---|
3143 | vel = rv(i,k,j) |
---|
3144 | fqy( i, k, jp1) = vel*flux3( & |
---|
3145 | field(i,k,j-2),field(i,k,j-1), & |
---|
3146 | field(i,k,j),field(i,k,j+1),vel ) |
---|
3147 | ENDDO |
---|
3148 | ENDDO |
---|
3149 | |
---|
3150 | ENDIF |
---|
3151 | |
---|
3152 | ! y flux-divergence into tendency |
---|
3153 | |
---|
3154 | IF(j > j_start) THEN |
---|
3155 | |
---|
3156 | DO k=kts,ktf |
---|
3157 | DO i = i_start, i_end |
---|
3158 | mrdy=msft(i,j-1)*rdy |
---|
3159 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
3160 | ENDDO |
---|
3161 | ENDDO |
---|
3162 | |
---|
3163 | ENDIF |
---|
3164 | |
---|
3165 | |
---|
3166 | jtmp = jp1 |
---|
3167 | jp1 = jp0 |
---|
3168 | jp0 = jtmp |
---|
3169 | |
---|
3170 | ENDDO j_loop_y_flux_5 |
---|
3171 | |
---|
3172 | ! next, x - flux divergence |
---|
3173 | |
---|
3174 | i_start = its |
---|
3175 | i_end = MIN(ite,ide-1) |
---|
3176 | |
---|
3177 | j_start = jts |
---|
3178 | j_end = MIN(jte,jde-1) |
---|
3179 | |
---|
3180 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
3181 | ! bounds so we can switch to second order flux close to the boundary |
---|
3182 | |
---|
3183 | i_start_f = i_start |
---|
3184 | i_end_f = i_end+1 |
---|
3185 | |
---|
3186 | IF(degrade_xs) then |
---|
3187 | i_start = MAX(ids+1,its) |
---|
3188 | i_start_f = i_start+2 |
---|
3189 | ENDIF |
---|
3190 | |
---|
3191 | IF(degrade_xe) then |
---|
3192 | i_end = MIN(ide-2,ite) |
---|
3193 | i_end_f = ide-3 |
---|
3194 | ENDIF |
---|
3195 | |
---|
3196 | ! compute fluxes |
---|
3197 | |
---|
3198 | DO j = j_start, j_end |
---|
3199 | |
---|
3200 | ! 5th or 6th order flux |
---|
3201 | |
---|
3202 | DO k=kts,ktf |
---|
3203 | DO i = i_start_f, i_end_f |
---|
3204 | vel = ru(i,k,j) |
---|
3205 | fqx( i,k ) = vel*flux5( field(i-3,k,j), field(i-2,k,j), & |
---|
3206 | field(i-1,k,j), field(i ,k,j), & |
---|
3207 | field(i+1,k,j), field(i+2,k,j), & |
---|
3208 | vel ) |
---|
3209 | ENDDO |
---|
3210 | ENDDO |
---|
3211 | |
---|
3212 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
3213 | |
---|
3214 | IF( degrade_xs ) THEN |
---|
3215 | |
---|
3216 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
3217 | i = ids+1 |
---|
3218 | DO k=kts,ktf |
---|
3219 | fqx(i,k) = 0.5*(ru(i,k,j)) & |
---|
3220 | *(field(i,k,j)+field(i-1,k,j)) |
---|
3221 | |
---|
3222 | ENDDO |
---|
3223 | ENDIF |
---|
3224 | |
---|
3225 | i = ids+2 |
---|
3226 | DO k=kts,ktf |
---|
3227 | vel = ru(i,k,j) |
---|
3228 | fqx( i,k ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
3229 | field(i ,k,j), field(i+1,k,j), & |
---|
3230 | vel ) |
---|
3231 | ENDDO |
---|
3232 | |
---|
3233 | ENDIF |
---|
3234 | |
---|
3235 | IF( degrade_xe ) THEN |
---|
3236 | |
---|
3237 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
3238 | i = ide-1 |
---|
3239 | DO k=kts,ktf |
---|
3240 | fqx(i,k) = 0.5*(ru(i,k,j)) & |
---|
3241 | *(field(i,k,j)+field(i-1,k,j)) |
---|
3242 | ENDDO |
---|
3243 | ENDIF |
---|
3244 | |
---|
3245 | i = ide-2 |
---|
3246 | DO k=kts,ktf |
---|
3247 | vel = ru(i,k,j) |
---|
3248 | fqx( i,k ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
3249 | field(i ,k,j), field(i+1,k,j), & |
---|
3250 | vel ) |
---|
3251 | ENDDO |
---|
3252 | |
---|
3253 | ENDIF |
---|
3254 | |
---|
3255 | ! x flux-divergence into tendency |
---|
3256 | |
---|
3257 | DO k=kts,ktf |
---|
3258 | DO i = i_start, i_end |
---|
3259 | mrdx=msft(i,j)*rdx |
---|
3260 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
3261 | ENDDO |
---|
3262 | ENDDO |
---|
3263 | |
---|
3264 | ENDDO |
---|
3265 | |
---|
3266 | |
---|
3267 | ELSE IF( horz_order == 4 ) THEN |
---|
3268 | |
---|
3269 | degrade_xs = .true. |
---|
3270 | degrade_xe = .true. |
---|
3271 | degrade_ys = .true. |
---|
3272 | degrade_ye = .true. |
---|
3273 | |
---|
3274 | IF( config_flags%periodic_x .or. & |
---|
3275 | config_flags%symmetric_xs .or. & |
---|
3276 | (its > ids+1) ) degrade_xs = .false. |
---|
3277 | IF( config_flags%periodic_x .or. & |
---|
3278 | config_flags%symmetric_xe .or. & |
---|
3279 | (ite < ide-2) ) degrade_xe = .false. |
---|
3280 | IF( config_flags%periodic_y .or. & |
---|
3281 | config_flags%symmetric_ys .or. & |
---|
3282 | (jts > jds+1) ) degrade_ys = .false. |
---|
3283 | IF( config_flags%periodic_y .or. & |
---|
3284 | config_flags%symmetric_ye .or. & |
---|
3285 | (jte < jde-2) ) degrade_ye = .false. |
---|
3286 | |
---|
3287 | ! begin flux computations |
---|
3288 | ! start with x flux divergence |
---|
3289 | |
---|
3290 | ktf=MIN(kte,kde-1) |
---|
3291 | |
---|
3292 | i_start = its |
---|
3293 | i_end = MIN(ite,ide-1) |
---|
3294 | j_start = jts |
---|
3295 | j_end = MIN(jte,jde-1) |
---|
3296 | |
---|
3297 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
3298 | ! bounds so we can switch to second order flux close to the boundary |
---|
3299 | |
---|
3300 | i_start_f = i_start |
---|
3301 | i_end_f = i_end+1 |
---|
3302 | |
---|
3303 | IF(degrade_xs) then |
---|
3304 | i_start = ids+1 |
---|
3305 | i_start_f = i_start+1 |
---|
3306 | ENDIF |
---|
3307 | |
---|
3308 | IF(degrade_xe) then |
---|
3309 | i_end = ide-2 |
---|
3310 | i_end_f = ide-2 |
---|
3311 | ENDIF |
---|
3312 | |
---|
3313 | ! compute fluxes |
---|
3314 | |
---|
3315 | DO j = j_start, j_end |
---|
3316 | |
---|
3317 | ! 3rd or 4th order flux |
---|
3318 | |
---|
3319 | DO k=kts,ktf |
---|
3320 | DO i = i_start_f, i_end_f |
---|
3321 | |
---|
3322 | fqx( i, k) = ru(i,k,j)*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
3323 | field(i ,k,j), field(i+1,k,j), & |
---|
3324 | ru(i,k,j) ) |
---|
3325 | ENDDO |
---|
3326 | ENDDO |
---|
3327 | |
---|
3328 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
3329 | |
---|
3330 | IF( degrade_xs ) THEN |
---|
3331 | DO k=kts,ktf |
---|
3332 | fqx(i_start, k) = 0.5*ru(i_start,k,j) & |
---|
3333 | *(field(i_start,k,j)+field(i_start-1,k,j)) |
---|
3334 | ENDDO |
---|
3335 | ENDIF |
---|
3336 | |
---|
3337 | IF( degrade_xe ) THEN |
---|
3338 | DO k=kts,ktf |
---|
3339 | fqx(i_end+1,k ) = 0.5*ru(i_end+1,k,j) & |
---|
3340 | *(field(i_end+1,k,j)+field(i_end,k,j)) |
---|
3341 | ENDDO |
---|
3342 | ENDIF |
---|
3343 | |
---|
3344 | ! x flux-divergence into tendency |
---|
3345 | |
---|
3346 | DO k=kts,ktf |
---|
3347 | DO i = i_start, i_end |
---|
3348 | mrdx=msft(i,j)*rdx |
---|
3349 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
3350 | ENDDO |
---|
3351 | ENDDO |
---|
3352 | |
---|
3353 | ENDDO |
---|
3354 | |
---|
3355 | |
---|
3356 | ! next -> y flux divergence calculation |
---|
3357 | |
---|
3358 | i_start = its |
---|
3359 | i_end = MIN(ite,ide-1) |
---|
3360 | j_start = jts |
---|
3361 | j_end = MIN(jte,jde-1) |
---|
3362 | |
---|
3363 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
3364 | ! bounds so we can switch to second order flux close to the boundary |
---|
3365 | |
---|
3366 | j_start_f = j_start |
---|
3367 | j_end_f = j_end+1 |
---|
3368 | |
---|
3369 | IF(degrade_ys) then |
---|
3370 | j_start = jds+1 |
---|
3371 | j_start_f = j_start+1 |
---|
3372 | ENDIF |
---|
3373 | |
---|
3374 | IF(degrade_ye) then |
---|
3375 | j_end = jde-2 |
---|
3376 | j_end_f = jde-2 |
---|
3377 | ENDIF |
---|
3378 | |
---|
3379 | jp1 = 2 |
---|
3380 | jp0 = 1 |
---|
3381 | |
---|
3382 | DO j = j_start, j_end+1 |
---|
3383 | |
---|
3384 | IF ((j < j_start_f) .and. degrade_ys) THEN |
---|
3385 | DO k = kts, ktf |
---|
3386 | DO i = i_start, i_end |
---|
3387 | fqy(i,k,jp1) = 0.5*rv(i,k,j_start) & |
---|
3388 | *(field(i,k,j_start)+field(i,k,j_start-1)) |
---|
3389 | ENDDO |
---|
3390 | ENDDO |
---|
3391 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
3392 | DO k = kts, ktf |
---|
3393 | DO i = i_start, i_end |
---|
3394 | fqy(i,k,jp1) = 0.5*rv(i,k,j_end+1) & |
---|
3395 | *(field(i,k,j_end+1)+field(i,k,j_end)) |
---|
3396 | ENDDO |
---|
3397 | ENDDO |
---|
3398 | ELSE |
---|
3399 | ! 3rd or 4th order flux |
---|
3400 | DO k = kts, ktf |
---|
3401 | DO i = i_start, i_end |
---|
3402 | fqy( i, k, jp1 ) = rv(i,k,j)*flux4( field(i,k,j-2), field(i,k,j-1), & |
---|
3403 | field(i,k,j ), field(i,k,j+1), & |
---|
3404 | rv(i,k,j) ) |
---|
3405 | ENDDO |
---|
3406 | ENDDO |
---|
3407 | END IF |
---|
3408 | |
---|
3409 | IF ( j > j_start ) THEN |
---|
3410 | ! y flux-divergence into tendency |
---|
3411 | |
---|
3412 | DO k=kts,ktf |
---|
3413 | DO i = i_start, i_end |
---|
3414 | mrdy=msft(i,j-1)*rdy |
---|
3415 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
3416 | ENDDO |
---|
3417 | ENDDO |
---|
3418 | END IF |
---|
3419 | |
---|
3420 | jtmp = jp1 |
---|
3421 | jp1 = jp0 |
---|
3422 | jp0 = jtmp |
---|
3423 | |
---|
3424 | ENDDO |
---|
3425 | |
---|
3426 | |
---|
3427 | ELSE IF( horz_order == 3 ) THEN |
---|
3428 | |
---|
3429 | degrade_xs = .true. |
---|
3430 | degrade_xe = .true. |
---|
3431 | degrade_ys = .true. |
---|
3432 | degrade_ye = .true. |
---|
3433 | |
---|
3434 | IF( config_flags%periodic_x .or. & |
---|
3435 | config_flags%symmetric_xs .or. & |
---|
3436 | (its > ids+1) ) degrade_xs = .false. |
---|
3437 | IF( config_flags%periodic_x .or. & |
---|
3438 | config_flags%symmetric_xe .or. & |
---|
3439 | (ite < ide-2) ) degrade_xe = .false. |
---|
3440 | IF( config_flags%periodic_y .or. & |
---|
3441 | config_flags%symmetric_ys .or. & |
---|
3442 | (jts > jds+1) ) degrade_ys = .false. |
---|
3443 | IF( config_flags%periodic_y .or. & |
---|
3444 | config_flags%symmetric_ye .or. & |
---|
3445 | (jte < jde-2) ) degrade_ye = .false. |
---|
3446 | |
---|
3447 | ! begin flux computations |
---|
3448 | ! start with x flux divergence |
---|
3449 | |
---|
3450 | ktf=MIN(kte,kde-1) |
---|
3451 | |
---|
3452 | i_start = its |
---|
3453 | i_end = MIN(ite,ide-1) |
---|
3454 | j_start = jts |
---|
3455 | j_end = MIN(jte,jde-1) |
---|
3456 | |
---|
3457 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
3458 | ! bounds so we can switch to second order flux close to the boundary |
---|
3459 | |
---|
3460 | i_start_f = i_start |
---|
3461 | i_end_f = i_end+1 |
---|
3462 | |
---|
3463 | IF(degrade_xs) then |
---|
3464 | i_start = ids+1 |
---|
3465 | i_start_f = i_start+1 |
---|
3466 | ENDIF |
---|
3467 | |
---|
3468 | IF(degrade_xe) then |
---|
3469 | i_end = ide-2 |
---|
3470 | i_end_f = ide-2 |
---|
3471 | ENDIF |
---|
3472 | |
---|
3473 | ! compute fluxes |
---|
3474 | |
---|
3475 | DO j = j_start, j_end |
---|
3476 | |
---|
3477 | ! 3rd or 4th order flux |
---|
3478 | |
---|
3479 | DO k=kts,ktf |
---|
3480 | DO i = i_start_f, i_end_f |
---|
3481 | |
---|
3482 | fqx( i, k) = ru(i,k,j)*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
3483 | field(i ,k,j), field(i+1,k,j), & |
---|
3484 | ru(i,k,j) ) |
---|
3485 | ENDDO |
---|
3486 | ENDDO |
---|
3487 | |
---|
3488 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
3489 | |
---|
3490 | IF( degrade_xs ) THEN |
---|
3491 | DO k=kts,ktf |
---|
3492 | fqx(i_start, k) = 0.5*ru(i_start,k,j) & |
---|
3493 | *(field(i_start,k,j)+field(i_start-1,k,j)) |
---|
3494 | ENDDO |
---|
3495 | ENDIF |
---|
3496 | |
---|
3497 | IF( degrade_xe ) THEN |
---|
3498 | DO k=kts,ktf |
---|
3499 | fqx(i_end+1,k ) = 0.5*ru(i_end+1,k,j) & |
---|
3500 | *(field(i_end+1,k,j)+field(i_end,k,j)) |
---|
3501 | ENDDO |
---|
3502 | ENDIF |
---|
3503 | |
---|
3504 | ! x flux-divergence into tendency |
---|
3505 | |
---|
3506 | DO k=kts,ktf |
---|
3507 | DO i = i_start, i_end |
---|
3508 | mrdx=msft(i,j)*rdx |
---|
3509 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
3510 | ENDDO |
---|
3511 | ENDDO |
---|
3512 | |
---|
3513 | ENDDO |
---|
3514 | |
---|
3515 | |
---|
3516 | ! next -> y flux divergence calculation |
---|
3517 | |
---|
3518 | i_start = its |
---|
3519 | i_end = MIN(ite,ide-1) |
---|
3520 | j_start = jts |
---|
3521 | j_end = MIN(jte,jde-1) |
---|
3522 | |
---|
3523 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
3524 | ! bounds so we can switch to second order flux close to the boundary |
---|
3525 | |
---|
3526 | j_start_f = j_start |
---|
3527 | j_end_f = j_end+1 |
---|
3528 | |
---|
3529 | IF(degrade_ys) then |
---|
3530 | j_start = jds+1 |
---|
3531 | j_start_f = j_start+1 |
---|
3532 | ENDIF |
---|
3533 | |
---|
3534 | IF(degrade_ye) then |
---|
3535 | j_end = jde-2 |
---|
3536 | j_end_f = jde-2 |
---|
3537 | ENDIF |
---|
3538 | |
---|
3539 | jp1 = 2 |
---|
3540 | jp0 = 1 |
---|
3541 | |
---|
3542 | DO j = j_start, j_end+1 |
---|
3543 | |
---|
3544 | IF ((j < j_start_f) .and. degrade_ys) THEN |
---|
3545 | DO k = kts, ktf |
---|
3546 | DO i = i_start, i_end |
---|
3547 | fqy(i,k,jp1) = 0.5*rv(i,k,j_start) & |
---|
3548 | *(field(i,k,j_start)+field(i,k,j_start-1)) |
---|
3549 | ENDDO |
---|
3550 | ENDDO |
---|
3551 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
3552 | DO k = kts, ktf |
---|
3553 | DO i = i_start, i_end |
---|
3554 | fqy(i,k,jp1) = 0.5*rv(i,k,j_end+1) & |
---|
3555 | *(field(i,k,j_end+1)+field(i,k,j_end)) |
---|
3556 | ENDDO |
---|
3557 | ENDDO |
---|
3558 | ELSE |
---|
3559 | ! 3rd or 4th order flux |
---|
3560 | DO k = kts, ktf |
---|
3561 | DO i = i_start, i_end |
---|
3562 | fqy( i, k, jp1 ) = rv(i,k,j)*flux3( field(i,k,j-2), field(i,k,j-1), & |
---|
3563 | field(i,k,j ), field(i,k,j+1), & |
---|
3564 | rv(i,k,j) ) |
---|
3565 | ENDDO |
---|
3566 | ENDDO |
---|
3567 | END IF |
---|
3568 | |
---|
3569 | IF ( j > j_start ) THEN |
---|
3570 | ! y flux-divergence into tendency |
---|
3571 | |
---|
3572 | DO k=kts,ktf |
---|
3573 | DO i = i_start, i_end |
---|
3574 | mrdy=msft(i,j-1)*rdy |
---|
3575 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
3576 | ENDDO |
---|
3577 | ENDDO |
---|
3578 | END IF |
---|
3579 | |
---|
3580 | jtmp = jp1 |
---|
3581 | jp1 = jp0 |
---|
3582 | jp0 = jtmp |
---|
3583 | |
---|
3584 | ENDDO |
---|
3585 | |
---|
3586 | ELSE IF( horz_order == 2 ) THEN |
---|
3587 | |
---|
3588 | i_start = its |
---|
3589 | i_end = MIN(ite,ide-1) |
---|
3590 | j_start = jts |
---|
3591 | j_end = MIN(jte,jde-1) |
---|
3592 | |
---|
3593 | IF ( .NOT. config_flags%periodic_x ) THEN |
---|
3594 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
3595 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-2,ite) |
---|
3596 | ENDIF |
---|
3597 | |
---|
3598 | DO j = j_start, j_end |
---|
3599 | DO k = kts, ktf |
---|
3600 | DO i = i_start, i_end |
---|
3601 | mrdx=msft(i,j)*rdx |
---|
3602 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.5 & |
---|
3603 | *(ru(i+1,k,j)*(field(i+1,k,j)+field(i ,k,j)) & |
---|
3604 | -ru(i ,k,j)*(field(i ,k,j)+field(i-1,k,j))) |
---|
3605 | ENDDO |
---|
3606 | ENDDO |
---|
3607 | ENDDO |
---|
3608 | |
---|
3609 | i_start = its |
---|
3610 | i_end = MIN(ite,ide-1) |
---|
3611 | |
---|
3612 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
---|
3613 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-2,jte) |
---|
3614 | |
---|
3615 | DO j = j_start, j_end |
---|
3616 | DO k = kts, ktf |
---|
3617 | DO i = i_start, i_end |
---|
3618 | mrdy=msft(i,j)*rdy |
---|
3619 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.5 & |
---|
3620 | *(rv(i,k,j+1)*(field(i,k,j+1)+field(i,k,j )) & |
---|
3621 | -rv(i,k,j )*(field(i,k,j )+field(i,k,j-1))) |
---|
3622 | ENDDO |
---|
3623 | ENDDO |
---|
3624 | ENDDO |
---|
3625 | |
---|
3626 | ELSE |
---|
3627 | |
---|
3628 | WRITE ( wrf_err_message , * ) 'module_advect: advect_scalar_6a, h_order not known ',horz_order |
---|
3629 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
3630 | |
---|
3631 | ENDIF horizontal_order_test |
---|
3632 | |
---|
3633 | ! pick up the rest of the horizontal radiation boundary conditions. |
---|
3634 | ! (these are the computations that don't require 'cb'. |
---|
3635 | ! first, set to index ranges |
---|
3636 | |
---|
3637 | i_start = its |
---|
3638 | i_end = MIN(ite,ide-1) |
---|
3639 | j_start = jts |
---|
3640 | j_end = MIN(jte,jde-1) |
---|
3641 | |
---|
3642 | ! compute x (u) conditions for v, w, or scalar |
---|
3643 | |
---|
3644 | IF( (config_flags%open_xs) .and. (its == ids) ) THEN |
---|
3645 | |
---|
3646 | DO j = j_start, j_end |
---|
3647 | DO k = kts, ktf |
---|
3648 | ub = MIN( 0.5*(ru(its,k,j)+ru(its+1,k,j)), 0. ) |
---|
3649 | tendency(its,k,j) = tendency(its,k,j) & |
---|
3650 | - rdx*( & |
---|
3651 | ub*( field_old(its+1,k,j) & |
---|
3652 | - field_old(its ,k,j) ) + & |
---|
3653 | field(its,k,j)*(ru(its+1,k,j)-ru(its,k,j)) & |
---|
3654 | ) |
---|
3655 | ENDDO |
---|
3656 | ENDDO |
---|
3657 | |
---|
3658 | ENDIF |
---|
3659 | |
---|
3660 | IF( (config_flags%open_xe) .and. (ite == ide) ) THEN |
---|
3661 | |
---|
3662 | DO j = j_start, j_end |
---|
3663 | DO k = kts, ktf |
---|
3664 | ub = MAX( 0.5*(ru(ite-1,k,j)+ru(ite,k,j)), 0. ) |
---|
3665 | tendency(i_end,k,j) = tendency(i_end,k,j) & |
---|
3666 | - rdx*( & |
---|
3667 | ub*( field_old(i_end ,k,j) & |
---|
3668 | - field_old(i_end-1,k,j) ) + & |
---|
3669 | field(i_end,k,j)*(ru(ite,k,j)-ru(ite-1,k,j)) & |
---|
3670 | ) |
---|
3671 | ENDDO |
---|
3672 | ENDDO |
---|
3673 | |
---|
3674 | ENDIF |
---|
3675 | |
---|
3676 | IF( (config_flags%open_ys) .and. (jts == jds) ) THEN |
---|
3677 | |
---|
3678 | DO i = i_start, i_end |
---|
3679 | DO k = kts, ktf |
---|
3680 | vb = MIN( 0.5*(rv(i,k,jts)+rv(i,k,jts+1)), 0. ) |
---|
3681 | tendency(i,k,jts) = tendency(i,k,jts) & |
---|
3682 | - rdy*( & |
---|
3683 | vb*( field_old(i,k,jts+1) & |
---|
3684 | - field_old(i,k,jts ) ) + & |
---|
3685 | field(i,k,jts)*(rv(i,k,jts+1)-rv(i,k,jts)) & |
---|
3686 | ) |
---|
3687 | ENDDO |
---|
3688 | ENDDO |
---|
3689 | |
---|
3690 | ENDIF |
---|
3691 | |
---|
3692 | IF( (config_flags%open_ye) .and. (jte == jde)) THEN |
---|
3693 | |
---|
3694 | DO i = i_start, i_end |
---|
3695 | DO k = kts, ktf |
---|
3696 | vb = MAX( 0.5*(rv(i,k,jte-1)+rv(i,k,jte)), 0. ) |
---|
3697 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
---|
3698 | - rdy*( & |
---|
3699 | vb*( field_old(i,k,j_end ) & |
---|
3700 | - field_old(i,k,j_end-1) ) + & |
---|
3701 | field(i,k,j_end)*(rv(i,k,jte)-rv(i,k,jte-1)) & |
---|
3702 | ) |
---|
3703 | ENDDO |
---|
3704 | ENDDO |
---|
3705 | |
---|
3706 | ENDIF |
---|
3707 | |
---|
3708 | |
---|
3709 | !-------------------- vertical advection |
---|
3710 | |
---|
3711 | i_start = its |
---|
3712 | i_end = MIN(ite,ide-1) |
---|
3713 | j_start = jts |
---|
3714 | j_end = MIN(jte,jde-1) |
---|
3715 | |
---|
3716 | DO i = i_start, i_end |
---|
3717 | vflux(i,kts)=0. |
---|
3718 | vflux(i,kte)=0. |
---|
3719 | ENDDO |
---|
3720 | |
---|
3721 | vert_order_test : IF (vert_order == 6) THEN |
---|
3722 | |
---|
3723 | DO j = j_start, j_end |
---|
3724 | |
---|
3725 | DO k=kts+3,ktf-2 |
---|
3726 | DO i = i_start, i_end |
---|
3727 | vel=rom(i,k,j) |
---|
3728 | vflux(i,k) = vel*flux6( & |
---|
3729 | field(i,k-3,j), field(i,k-2,j), field(i,k-1,j), & |
---|
3730 | field(i,k ,j), field(i,k+1,j), field(i,k+2,j), -vel ) |
---|
3731 | ENDDO |
---|
3732 | ENDDO |
---|
3733 | |
---|
3734 | DO i = i_start, i_end |
---|
3735 | |
---|
3736 | k=kts+1 |
---|
3737 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3738 | |
---|
3739 | k = kts+2 |
---|
3740 | vel=rom(i,k,j) |
---|
3741 | vflux(i,k) = vel*flux4( & |
---|
3742 | field(i,k-2,j), field(i,k-1,j), & |
---|
3743 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
3744 | k = ktf-1 |
---|
3745 | vel=rom(i,k,j) |
---|
3746 | vflux(i,k) = vel*flux4( & |
---|
3747 | field(i,k-2,j), field(i,k-1,j), & |
---|
3748 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
3749 | |
---|
3750 | k=ktf |
---|
3751 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3752 | ENDDO |
---|
3753 | |
---|
3754 | DO k=kts,ktf |
---|
3755 | DO i = i_start, i_end |
---|
3756 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
3757 | ENDDO |
---|
3758 | ENDDO |
---|
3759 | |
---|
3760 | ENDDO |
---|
3761 | |
---|
3762 | ELSE IF (vert_order == 5) THEN |
---|
3763 | |
---|
3764 | DO j = j_start, j_end |
---|
3765 | |
---|
3766 | DO k=kts+3,ktf-2 |
---|
3767 | DO i = i_start, i_end |
---|
3768 | vel=rom(i,k,j) |
---|
3769 | vflux(i,k) = vel*flux5( & |
---|
3770 | field(i,k-3,j), field(i,k-2,j), field(i,k-1,j), & |
---|
3771 | field(i,k ,j), field(i,k+1,j), field(i,k+2,j), -vel ) |
---|
3772 | ENDDO |
---|
3773 | ENDDO |
---|
3774 | |
---|
3775 | DO i = i_start, i_end |
---|
3776 | |
---|
3777 | k=kts+1 |
---|
3778 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3779 | |
---|
3780 | k = kts+2 |
---|
3781 | vel=rom(i,k,j) |
---|
3782 | vflux(i,k) = vel*flux3( & |
---|
3783 | field(i,k-2,j), field(i,k-1,j), & |
---|
3784 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
3785 | k = ktf-1 |
---|
3786 | vel=rom(i,k,j) |
---|
3787 | vflux(i,k) = vel*flux3( & |
---|
3788 | field(i,k-2,j), field(i,k-1,j), & |
---|
3789 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
3790 | |
---|
3791 | k=ktf |
---|
3792 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3793 | ENDDO |
---|
3794 | |
---|
3795 | DO k=kts,ktf |
---|
3796 | DO i = i_start, i_end |
---|
3797 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
3798 | ENDDO |
---|
3799 | ENDDO |
---|
3800 | |
---|
3801 | ENDDO |
---|
3802 | |
---|
3803 | ELSE IF (vert_order == 4) THEN |
---|
3804 | |
---|
3805 | DO j = j_start, j_end |
---|
3806 | |
---|
3807 | DO k=kts+2,ktf-1 |
---|
3808 | DO i = i_start, i_end |
---|
3809 | vel=rom(i,k,j) |
---|
3810 | vflux(i,k) = vel*flux4( & |
---|
3811 | field(i,k-2,j), field(i,k-1,j), & |
---|
3812 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
3813 | ENDDO |
---|
3814 | ENDDO |
---|
3815 | |
---|
3816 | DO i = i_start, i_end |
---|
3817 | |
---|
3818 | k=kts+1 |
---|
3819 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3820 | k=ktf |
---|
3821 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3822 | ENDDO |
---|
3823 | |
---|
3824 | DO k=kts,ktf |
---|
3825 | DO i = i_start, i_end |
---|
3826 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
3827 | ENDDO |
---|
3828 | ENDDO |
---|
3829 | |
---|
3830 | ENDDO |
---|
3831 | |
---|
3832 | ELSE IF (vert_order == 3) THEN |
---|
3833 | |
---|
3834 | DO j = j_start, j_end |
---|
3835 | |
---|
3836 | DO k=kts+2,ktf-1 |
---|
3837 | DO i = i_start, i_end |
---|
3838 | vel=rom(i,k,j) |
---|
3839 | vflux(i,k) = vel*flux3( & |
---|
3840 | field(i,k-2,j), field(i,k-1,j), & |
---|
3841 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
3842 | ENDDO |
---|
3843 | ENDDO |
---|
3844 | |
---|
3845 | DO i = i_start, i_end |
---|
3846 | |
---|
3847 | k=kts+1 |
---|
3848 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3849 | k=ktf |
---|
3850 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3851 | ENDDO |
---|
3852 | |
---|
3853 | DO k=kts,ktf |
---|
3854 | DO i = i_start, i_end |
---|
3855 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
3856 | ENDDO |
---|
3857 | ENDDO |
---|
3858 | |
---|
3859 | ENDDO |
---|
3860 | |
---|
3861 | |
---|
3862 | ELSE IF (vert_order == 2) THEN |
---|
3863 | |
---|
3864 | DO j = j_start, j_end |
---|
3865 | DO k = kts+1, ktf |
---|
3866 | DO i = i_start, i_end |
---|
3867 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
3868 | ENDDO |
---|
3869 | ENDDO |
---|
3870 | |
---|
3871 | DO k = kts, ktf |
---|
3872 | DO i = i_start, i_end |
---|
3873 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
3874 | ENDDO |
---|
3875 | ENDDO |
---|
3876 | |
---|
3877 | ENDDO |
---|
3878 | |
---|
3879 | ELSE |
---|
3880 | |
---|
3881 | WRITE (wrf_err_message,*) ' advect_scalar_6a, v_order not known ',vert_order |
---|
3882 | CALL wrf_error_fatal ( wrf_err_message ) |
---|
3883 | |
---|
3884 | ENDIF vert_order_test |
---|
3885 | |
---|
3886 | END SUBROUTINE advect_scalar |
---|
3887 | |
---|
3888 | !--------------------------------------------------------------------------------- |
---|
3889 | |
---|
3890 | SUBROUTINE advect_w ( w, w_old, tendency, & |
---|
3891 | ru, rv, rom, & |
---|
3892 | mut, config_flags, & |
---|
3893 | msfu, msfv, msft, & |
---|
3894 | fzm, fzp, & |
---|
3895 | rdx, rdy, rdzu, & |
---|
3896 | ids, ide, jds, jde, kds, kde, & |
---|
3897 | ims, ime, jms, jme, kms, kme, & |
---|
3898 | its, ite, jts, jte, kts, kte ) |
---|
3899 | |
---|
3900 | IMPLICIT NONE |
---|
3901 | |
---|
3902 | ! Input data |
---|
3903 | |
---|
3904 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
3905 | |
---|
3906 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
3907 | ims, ime, jms, jme, kms, kme, & |
---|
3908 | its, ite, jts, jte, kts, kte |
---|
3909 | |
---|
3910 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: w, & |
---|
3911 | w_old, & |
---|
3912 | ru, & |
---|
3913 | rv, & |
---|
3914 | rom |
---|
3915 | |
---|
3916 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
---|
3917 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
3918 | |
---|
3919 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
---|
3920 | msfv, & |
---|
3921 | msft |
---|
3922 | |
---|
3923 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
3924 | fzp, & |
---|
3925 | rdzu |
---|
3926 | |
---|
3927 | REAL , INTENT(IN ) :: rdx, & |
---|
3928 | rdy |
---|
3929 | |
---|
3930 | ! Local data |
---|
3931 | |
---|
3932 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
3933 | INTEGER :: i_start, i_end, j_start, j_end |
---|
3934 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
---|
3935 | INTEGER :: jmin, jmax, jp, jm, imin, imax |
---|
3936 | |
---|
3937 | REAL :: mrdx, mrdy, ub, vb, uw, vw |
---|
3938 | REAL , DIMENSION(its:ite, kts:kte) :: vflux |
---|
3939 | |
---|
3940 | INTEGER :: horz_order, vert_order |
---|
3941 | |
---|
3942 | REAL, DIMENSION( its:ite+1, kts:kte ) :: fqx |
---|
3943 | REAL, DIMENSION( its:ite, kts:kte, 2 ) :: fqy |
---|
3944 | |
---|
3945 | LOGICAL :: degrade_xs, degrade_ys |
---|
3946 | LOGICAL :: degrade_xe, degrade_ye |
---|
3947 | |
---|
3948 | INTEGER :: jp1, jp0, jtmp |
---|
3949 | |
---|
3950 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
---|
3951 | |
---|
3952 | REAL :: flux3, flux4, flux5, flux6 |
---|
3953 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel |
---|
3954 | |
---|
3955 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
3956 | ( 7.*(q_i + q_im1) - (q_ip1 + q_im2) )/12.0 |
---|
3957 | |
---|
3958 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
3959 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
---|
3960 | sign(1.,ua)*((q_ip1 - q_im2)-3.*(q_i-q_im1))/12.0 |
---|
3961 | |
---|
3962 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
3963 | ( 37.*(q_i+q_im1) - 8.*(q_ip1+q_im2) & |
---|
3964 | +(q_ip2+q_im3) )/60.0 |
---|
3965 | |
---|
3966 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
3967 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
---|
3968 | -sign(1.,ua)*( & |
---|
3969 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) )/60.0 |
---|
3970 | |
---|
3971 | |
---|
3972 | LOGICAL :: specified |
---|
3973 | |
---|
3974 | specified = .false. |
---|
3975 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
---|
3976 | |
---|
3977 | ! set order for the advection scheme |
---|
3978 | |
---|
3979 | ktf=MIN(kte,kde-1) |
---|
3980 | horz_order = config_flags%h_sca_adv_order |
---|
3981 | vert_order = config_flags%v_sca_adv_order |
---|
3982 | |
---|
3983 | ! here is the choice of flux operators |
---|
3984 | |
---|
3985 | ! begin with horizontal flux divergence |
---|
3986 | |
---|
3987 | horizontal_order_test : IF( horz_order == 6 ) THEN |
---|
3988 | |
---|
3989 | ! determine boundary mods for flux operators |
---|
3990 | ! We degrade the flux operators from 3rd/4th order |
---|
3991 | ! to second order one gridpoint in from the boundaries for |
---|
3992 | ! all boundary conditions except periodic and symmetry - these |
---|
3993 | ! conditions have boundary zone data fill for correct application |
---|
3994 | ! of the higher order flux stencils |
---|
3995 | |
---|
3996 | degrade_xs = .true. |
---|
3997 | degrade_xe = .true. |
---|
3998 | degrade_ys = .true. |
---|
3999 | degrade_ye = .true. |
---|
4000 | |
---|
4001 | IF( config_flags%periodic_x .or. & |
---|
4002 | config_flags%symmetric_xs .or. & |
---|
4003 | (its > ids+2) ) degrade_xs = .false. |
---|
4004 | IF( config_flags%periodic_x .or. & |
---|
4005 | config_flags%symmetric_xe .or. & |
---|
4006 | (ite < ide-3) ) degrade_xe = .false. |
---|
4007 | IF( config_flags%periodic_y .or. & |
---|
4008 | config_flags%symmetric_ys .or. & |
---|
4009 | (jts > jds+2) ) degrade_ys = .false. |
---|
4010 | IF( config_flags%periodic_y .or. & |
---|
4011 | config_flags%symmetric_ye .or. & |
---|
4012 | (jte < jde-3) ) degrade_ye = .false. |
---|
4013 | |
---|
4014 | !--------------- y - advection first |
---|
4015 | |
---|
4016 | i_start = its |
---|
4017 | i_end = MIN(ite,ide-1) |
---|
4018 | j_start = jts |
---|
4019 | j_end = MIN(jte,jde-1) |
---|
4020 | |
---|
4021 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
4022 | ! bounds so we can switch to second order flux close to the boundary |
---|
4023 | |
---|
4024 | j_start_f = j_start |
---|
4025 | j_end_f = j_end+1 |
---|
4026 | |
---|
4027 | IF(degrade_ys) then |
---|
4028 | j_start = MAX(jts,jds+1) |
---|
4029 | j_start_f = jds+3 |
---|
4030 | ENDIF |
---|
4031 | |
---|
4032 | IF(degrade_ye) then |
---|
4033 | j_end = MIN(jte,jde-2) |
---|
4034 | j_end_f = jde-3 |
---|
4035 | ENDIF |
---|
4036 | |
---|
4037 | ! compute fluxes, 5th or 6th order |
---|
4038 | |
---|
4039 | jp1 = 2 |
---|
4040 | jp0 = 1 |
---|
4041 | |
---|
4042 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
---|
4043 | |
---|
4044 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN |
---|
4045 | |
---|
4046 | DO k=kts+1,ktf |
---|
4047 | DO i = i_start, i_end |
---|
4048 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
4049 | fqy( i, k, jp1 ) = vel*flux6( & |
---|
4050 | w(i,k,j-3), w(i,k,j-2), w(i,k,j-1), & |
---|
4051 | w(i,k,j ), w(i,k,j+1), w(i,k,j+2), vel ) |
---|
4052 | ENDDO |
---|
4053 | ENDDO |
---|
4054 | |
---|
4055 | k = ktf+1 |
---|
4056 | DO i = i_start, i_end |
---|
4057 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
4058 | fqy( i, k, jp1 ) = vel*flux6( & |
---|
4059 | w(i,k,j-3), w(i,k,j-2), w(i,k,j-1), & |
---|
4060 | w(i,k,j ), w(i,k,j+1), w(i,k,j+2), vel ) |
---|
4061 | ENDDO |
---|
4062 | |
---|
4063 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
4064 | |
---|
4065 | DO k=kts+1,ktf |
---|
4066 | DO i = i_start, i_end |
---|
4067 | fqy(i, k, jp1) = 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j))* & |
---|
4068 | (w(i,k,j)+w(i,k,j-1)) |
---|
4069 | ENDDO |
---|
4070 | ENDDO |
---|
4071 | |
---|
4072 | k = ktf+1 |
---|
4073 | DO i = i_start, i_end |
---|
4074 | fqy(i, k, jp1) = 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j))* & |
---|
4075 | (w(i,k,j)+w(i,k,j-1)) |
---|
4076 | ENDDO |
---|
4077 | |
---|
4078 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
4079 | |
---|
4080 | DO k=kts+1,ktf |
---|
4081 | DO i = i_start, i_end |
---|
4082 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
4083 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
4084 | w(i,k,j-2),w(i,k,j-1),w(i,k,j),w(i,k,j+1),vel ) |
---|
4085 | ENDDO |
---|
4086 | ENDDO |
---|
4087 | |
---|
4088 | k = ktf+1 |
---|
4089 | DO i = i_start, i_end |
---|
4090 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
4091 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
4092 | w(i,k,j-2),w(i,k,j-1),w(i,k,j),w(i,k,j+1),vel ) |
---|
4093 | ENDDO |
---|
4094 | |
---|
4095 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
4096 | |
---|
4097 | DO k=kts+1,ktf |
---|
4098 | DO i = i_start, i_end |
---|
4099 | fqy(i, k, jp1) = 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j))* & |
---|
4100 | (w(i,k,j)+w(i,k,j-1)) |
---|
4101 | ENDDO |
---|
4102 | ENDDO |
---|
4103 | |
---|
4104 | k = ktf+1 |
---|
4105 | DO i = i_start, i_end |
---|
4106 | fqy(i, k, jp1) = 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j))* & |
---|
4107 | (w(i,k,j)+w(i,k,j-1)) |
---|
4108 | ENDDO |
---|
4109 | |
---|
4110 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
4111 | |
---|
4112 | DO k=kts+1,ktf |
---|
4113 | DO i = i_start, i_end |
---|
4114 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
4115 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
4116 | w(i,k,j-2),w(i,k,j-1), & |
---|
4117 | w(i,k,j),w(i,k,j+1),vel ) |
---|
4118 | ENDDO |
---|
4119 | ENDDO |
---|
4120 | |
---|
4121 | k = ktf+1 |
---|
4122 | DO i = i_start, i_end |
---|
4123 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
4124 | fqy( i, k, jp1 ) = vel*flux4( & |
---|
4125 | w(i,k,j-2),w(i,k,j-1), & |
---|
4126 | w(i,k,j),w(i,k,j+1),vel ) |
---|
4127 | ENDDO |
---|
4128 | |
---|
4129 | ENDIF |
---|
4130 | |
---|
4131 | ! y flux-divergence into tendency |
---|
4132 | |
---|
4133 | IF(j > j_start) THEN |
---|
4134 | |
---|
4135 | DO k=kts+1,ktf+1 |
---|
4136 | DO i = i_start, i_end |
---|
4137 | mrdy=msft(i,j-1)*rdy |
---|
4138 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
4139 | ENDDO |
---|
4140 | ENDDO |
---|
4141 | |
---|
4142 | ENDIF |
---|
4143 | |
---|
4144 | jtmp = jp1 |
---|
4145 | jp1 = jp0 |
---|
4146 | jp0 = jtmp |
---|
4147 | |
---|
4148 | ENDDO j_loop_y_flux_6 |
---|
4149 | |
---|
4150 | ! next, x - flux divergence |
---|
4151 | |
---|
4152 | i_start = its |
---|
4153 | i_end = MIN(ite,ide-1) |
---|
4154 | |
---|
4155 | j_start = jts |
---|
4156 | j_end = MIN(jte,jde-1) |
---|
4157 | |
---|
4158 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
4159 | ! bounds so we can switch to second order flux close to the boundary |
---|
4160 | |
---|
4161 | i_start_f = i_start |
---|
4162 | i_end_f = i_end+1 |
---|
4163 | |
---|
4164 | IF(degrade_xs) then |
---|
4165 | i_start = MAX(ids+1,its) |
---|
4166 | i_start_f = i_start+2 |
---|
4167 | ENDIF |
---|
4168 | |
---|
4169 | IF(degrade_xe) then |
---|
4170 | i_end = MIN(ide-2,ite) |
---|
4171 | i_end_f = ide-3 |
---|
4172 | ENDIF |
---|
4173 | |
---|
4174 | ! compute fluxes |
---|
4175 | |
---|
4176 | DO j = j_start, j_end |
---|
4177 | |
---|
4178 | ! 5th or 6th order flux |
---|
4179 | |
---|
4180 | DO k=kts+1,ktf |
---|
4181 | DO i = i_start_f, i_end_f |
---|
4182 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
4183 | fqx( i,k ) = vel*flux6( w(i-3,k,j), w(i-2,k,j), & |
---|
4184 | w(i-1,k,j), w(i ,k,j), & |
---|
4185 | w(i+1,k,j), w(i+2,k,j), & |
---|
4186 | vel ) |
---|
4187 | ENDDO |
---|
4188 | ENDDO |
---|
4189 | |
---|
4190 | k = ktf+1 |
---|
4191 | DO i = i_start_f, i_end_f |
---|
4192 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
4193 | fqx( i,k ) = vel*flux6( w(i-3,k,j), w(i-2,k,j), & |
---|
4194 | w(i-1,k,j), w(i ,k,j), & |
---|
4195 | w(i+1,k,j), w(i+2,k,j), & |
---|
4196 | vel ) |
---|
4197 | ENDDO |
---|
4198 | |
---|
4199 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
4200 | |
---|
4201 | IF( degrade_xs ) THEN |
---|
4202 | |
---|
4203 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
4204 | i = ids+1 |
---|
4205 | DO k=kts+1,ktf |
---|
4206 | fqx(i,k) = 0.5*(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
---|
4207 | *(w(i,k,j)+w(i-1,k,j)) |
---|
4208 | ENDDO |
---|
4209 | k = ktf+1 |
---|
4210 | fqx(i,k) = 0.5*((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
---|
4211 | *(w(i,k,j)+w(i-1,k,j)) |
---|
4212 | ENDIF |
---|
4213 | |
---|
4214 | DO k=kts+1,ktf |
---|
4215 | i = i_start+1 |
---|
4216 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
4217 | fqx( i,k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
4218 | w(i ,k,j), w(i+1,k,j), & |
---|
4219 | vel ) |
---|
4220 | ENDDO |
---|
4221 | |
---|
4222 | k = ktf+1 |
---|
4223 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
4224 | fqx( i,k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
4225 | w(i ,k,j), w(i+1,k,j), & |
---|
4226 | vel ) |
---|
4227 | ENDIF |
---|
4228 | |
---|
4229 | IF( degrade_xe ) THEN |
---|
4230 | |
---|
4231 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
4232 | i = ide-1 |
---|
4233 | DO k=kts+1,ktf |
---|
4234 | fqx(i,k) = 0.5*(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
---|
4235 | *(w(i,k,j)+w(i-1,k,j)) |
---|
4236 | ENDDO |
---|
4237 | k = ktf+1 |
---|
4238 | fqx(i,k) = 0.5*((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
---|
4239 | *(w(i,k,j)+w(i-1,k,j)) |
---|
4240 | ENDIF |
---|
4241 | |
---|
4242 | i = ide-2 |
---|
4243 | DO k=kts+1,ktf |
---|
4244 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
4245 | fqx( i,k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
4246 | w(i ,k,j), w(i+1,k,j), & |
---|
4247 | vel ) |
---|
4248 | ENDDO |
---|
4249 | |
---|
4250 | k = ktf+1 |
---|
4251 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
4252 | fqx( i,k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
4253 | w(i ,k,j), w(i+1,k,j), & |
---|
4254 | vel ) |
---|
4255 | ENDIF |
---|
4256 | |
---|
4257 | ! x flux-divergence into tendency |
---|
4258 | |
---|
4259 | DO k=kts+1,ktf+1 |
---|
4260 | DO i = i_start, i_end |
---|
4261 | mrdx=msft(i,j)*rdx |
---|
4262 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
4263 | ENDDO |
---|
4264 | ENDDO |
---|
4265 | |
---|
4266 | ENDDO |
---|
4267 | |
---|
4268 | |
---|
4269 | ELSE IF (horz_order == 5 ) THEN |
---|
4270 | |
---|
4271 | ! determine boundary mods for flux operators |
---|
4272 | ! We degrade the flux operators from 3rd/4th order |
---|
4273 | ! to second order one gridpoint in from the boundaries for |
---|
4274 | ! all boundary conditions except periodic and symmetry - these |
---|
4275 | ! conditions have boundary zone data fill for correct application |
---|
4276 | ! of the higher order flux stencils |
---|
4277 | |
---|
4278 | degrade_xs = .true. |
---|
4279 | degrade_xe = .true. |
---|
4280 | degrade_ys = .true. |
---|
4281 | degrade_ye = .true. |
---|
4282 | |
---|
4283 | IF( config_flags%periodic_x .or. & |
---|
4284 | config_flags%symmetric_xs .or. & |
---|
4285 | (its > ids+2) ) degrade_xs = .false. |
---|
4286 | IF( config_flags%periodic_x .or. & |
---|
4287 | config_flags%symmetric_xe .or. & |
---|
4288 | (ite < ide-3) ) degrade_xe = .false. |
---|
4289 | IF( config_flags%periodic_y .or. & |
---|
4290 | config_flags%symmetric_ys .or. & |
---|
4291 | (jts > jds+2) ) degrade_ys = .false. |
---|
4292 | IF( config_flags%periodic_y .or. & |
---|
4293 | config_flags%symmetric_ye .or. & |
---|
4294 | (jte < jde-3) ) degrade_ye = .false. |
---|
4295 | |
---|
4296 | !--------------- y - advection first |
---|
4297 | |
---|
4298 | i_start = its |
---|
4299 | i_end = MIN(ite,ide-1) |
---|
4300 | j_start = jts |
---|
4301 | j_end = MIN(jte,jde-1) |
---|
4302 | |
---|
4303 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
4304 | ! bounds so we can switch to second order flux close to the boundary |
---|
4305 | |
---|
4306 | j_start_f = j_start |
---|
4307 | j_end_f = j_end+1 |
---|
4308 | |
---|
4309 | IF(degrade_ys) then |
---|
4310 | j_start = MAX(jts,jds+1) |
---|
4311 | j_start_f = jds+3 |
---|
4312 | ENDIF |
---|
4313 | |
---|
4314 | IF(degrade_ye) then |
---|
4315 | j_end = MIN(jte,jde-2) |
---|
4316 | j_end_f = jde-3 |
---|
4317 | ENDIF |
---|
4318 | |
---|
4319 | ! compute fluxes, 5th or 6th order |
---|
4320 | |
---|
4321 | jp1 = 2 |
---|
4322 | jp0 = 1 |
---|
4323 | |
---|
4324 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
---|
4325 | |
---|
4326 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN |
---|
4327 | |
---|
4328 | DO k=kts+1,ktf |
---|
4329 | DO i = i_start, i_end |
---|
4330 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
4331 | fqy( i, k, jp1 ) = vel*flux5( & |
---|
4332 | w(i,k,j-3), w(i,k,j-2), w(i,k,j-1), & |
---|
4333 | w(i,k,j ), w(i,k,j+1), w(i,k,j+2), vel ) |
---|
4334 | ENDDO |
---|
4335 | ENDDO |
---|
4336 | |
---|
4337 | k = ktf+1 |
---|
4338 | DO i = i_start, i_end |
---|
4339 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
4340 | fqy( i, k, jp1 ) = vel*flux5( & |
---|
4341 | w(i,k,j-3), w(i,k,j-2), w(i,k,j-1), & |
---|
4342 | w(i,k,j ), w(i,k,j+1), w(i,k,j+2), vel ) |
---|
4343 | ENDDO |
---|
4344 | |
---|
4345 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
4346 | |
---|
4347 | DO k=kts+1,ktf |
---|
4348 | DO i = i_start, i_end |
---|
4349 | fqy(i, k, jp1) = 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j))* & |
---|
4350 | (w(i,k,j)+w(i,k,j-1)) |
---|
4351 | ENDDO |
---|
4352 | ENDDO |
---|
4353 | |
---|
4354 | k = ktf+1 |
---|
4355 | DO i = i_start, i_end |
---|
4356 | fqy(i, k, jp1) = 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j))* & |
---|
4357 | (w(i,k,j)+w(i,k,j-1)) |
---|
4358 | ENDDO |
---|
4359 | |
---|
4360 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
4361 | |
---|
4362 | DO k=kts+1,ktf |
---|
4363 | DO i = i_start, i_end |
---|
4364 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
4365 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
4366 | w(i,k,j-2),w(i,k,j-1),w(i,k,j),w(i,k,j+1),vel ) |
---|
4367 | ENDDO |
---|
4368 | ENDDO |
---|
4369 | |
---|
4370 | k = ktf+1 |
---|
4371 | DO i = i_start, i_end |
---|
4372 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
4373 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
4374 | w(i,k,j-2),w(i,k,j-1),w(i,k,j),w(i,k,j+1),vel ) |
---|
4375 | ENDDO |
---|
4376 | |
---|
4377 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
4378 | |
---|
4379 | DO k=kts+1,ktf |
---|
4380 | DO i = i_start, i_end |
---|
4381 | fqy(i, k, jp1) = 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j))* & |
---|
4382 | (w(i,k,j)+w(i,k,j-1)) |
---|
4383 | ENDDO |
---|
4384 | ENDDO |
---|
4385 | |
---|
4386 | k = ktf+1 |
---|
4387 | DO i = i_start, i_end |
---|
4388 | fqy(i, k, jp1) = 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j))* & |
---|
4389 | (w(i,k,j)+w(i,k,j-1)) |
---|
4390 | ENDDO |
---|
4391 | |
---|
4392 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
4393 | |
---|
4394 | DO k=kts+1,ktf |
---|
4395 | DO i = i_start, i_end |
---|
4396 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
4397 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
4398 | w(i,k,j-2),w(i,k,j-1), & |
---|
4399 | w(i,k,j),w(i,k,j+1),vel ) |
---|
4400 | ENDDO |
---|
4401 | ENDDO |
---|
4402 | |
---|
4403 | k = ktf+1 |
---|
4404 | DO i = i_start, i_end |
---|
4405 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
4406 | fqy( i, k, jp1 ) = vel*flux3( & |
---|
4407 | w(i,k,j-2),w(i,k,j-1), & |
---|
4408 | w(i,k,j),w(i,k,j+1),vel ) |
---|
4409 | ENDDO |
---|
4410 | |
---|
4411 | ENDIF |
---|
4412 | |
---|
4413 | ! y flux-divergence into tendency |
---|
4414 | |
---|
4415 | IF(j > j_start) THEN |
---|
4416 | |
---|
4417 | DO k=kts+1,ktf+1 |
---|
4418 | DO i = i_start, i_end |
---|
4419 | mrdy=msft(i,j-1)*rdy |
---|
4420 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
4421 | ENDDO |
---|
4422 | ENDDO |
---|
4423 | |
---|
4424 | ENDIF |
---|
4425 | |
---|
4426 | jtmp = jp1 |
---|
4427 | jp1 = jp0 |
---|
4428 | jp0 = jtmp |
---|
4429 | |
---|
4430 | ENDDO j_loop_y_flux_5 |
---|
4431 | |
---|
4432 | ! next, x - flux divergence |
---|
4433 | |
---|
4434 | i_start = its |
---|
4435 | i_end = MIN(ite,ide-1) |
---|
4436 | |
---|
4437 | j_start = jts |
---|
4438 | j_end = MIN(jte,jde-1) |
---|
4439 | |
---|
4440 | ! higher order flux has a 5 or 7 point stencil, so compute |
---|
4441 | ! bounds so we can switch to second order flux close to the boundary |
---|
4442 | |
---|
4443 | i_start_f = i_start |
---|
4444 | i_end_f = i_end+1 |
---|
4445 | |
---|
4446 | IF(degrade_xs) then |
---|
4447 | i_start = MAX(ids+1,its) |
---|
4448 | i_start_f = i_start+2 |
---|
4449 | ENDIF |
---|
4450 | |
---|
4451 | IF(degrade_xe) then |
---|
4452 | i_end = MIN(ide-2,ite) |
---|
4453 | i_end_f = ide-3 |
---|
4454 | ENDIF |
---|
4455 | |
---|
4456 | ! compute fluxes |
---|
4457 | |
---|
4458 | DO j = j_start, j_end |
---|
4459 | |
---|
4460 | ! 5th or 6th order flux |
---|
4461 | |
---|
4462 | DO k=kts+1,ktf |
---|
4463 | DO i = i_start_f, i_end_f |
---|
4464 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
4465 | fqx( i,k ) = vel*flux5( w(i-3,k,j), w(i-2,k,j), & |
---|
4466 | w(i-1,k,j), w(i ,k,j), & |
---|
4467 | w(i+1,k,j), w(i+2,k,j), & |
---|
4468 | vel ) |
---|
4469 | ENDDO |
---|
4470 | ENDDO |
---|
4471 | |
---|
4472 | k = ktf+1 |
---|
4473 | DO i = i_start_f, i_end_f |
---|
4474 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
4475 | fqx( i,k ) = vel*flux5( w(i-3,k,j), w(i-2,k,j), & |
---|
4476 | w(i-1,k,j), w(i ,k,j), & |
---|
4477 | w(i+1,k,j), w(i+2,k,j), & |
---|
4478 | vel ) |
---|
4479 | ENDDO |
---|
4480 | |
---|
4481 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
4482 | |
---|
4483 | IF( degrade_xs ) THEN |
---|
4484 | |
---|
4485 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
4486 | i = ids+1 |
---|
4487 | DO k=kts+1,ktf |
---|
4488 | fqx(i,k) = 0.5*(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
---|
4489 | *(w(i,k,j)+w(i-1,k,j)) |
---|
4490 | ENDDO |
---|
4491 | k = ktf+1 |
---|
4492 | fqx(i,k) = 0.5*((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
---|
4493 | *(w(i,k,j)+w(i-1,k,j)) |
---|
4494 | ENDIF |
---|
4495 | |
---|
4496 | i = i_start+1 |
---|
4497 | DO k=kts+1,ktf |
---|
4498 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
4499 | fqx( i,k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
4500 | w(i ,k,j), w(i+1,k,j), & |
---|
4501 | vel ) |
---|
4502 | ENDDO |
---|
4503 | k = ktf+1 |
---|
4504 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
4505 | fqx( i,k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
4506 | w(i ,k,j), w(i+1,k,j), & |
---|
4507 | vel ) |
---|
4508 | |
---|
4509 | ENDIF |
---|
4510 | |
---|
4511 | IF( degrade_xe ) THEN |
---|
4512 | |
---|
4513 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
4514 | i = ide-1 |
---|
4515 | DO k=kts+1,ktf |
---|
4516 | fqx(i,k) = 0.5*(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
---|
4517 | *(w(i,k,j)+w(i-1,k,j)) |
---|
4518 | ENDDO |
---|
4519 | k = ktf+1 |
---|
4520 | fqx(i,k) = 0.5*((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
---|
4521 | *(w(i,k,j)+w(i-1,k,j)) |
---|
4522 | ENDIF |
---|
4523 | |
---|
4524 | i = ide-2 |
---|
4525 | DO k=kts+1,ktf |
---|
4526 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
4527 | fqx( i,k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
4528 | w(i ,k,j), w(i+1,k,j), & |
---|
4529 | vel ) |
---|
4530 | ENDDO |
---|
4531 | k = ktf+1 |
---|
4532 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
4533 | fqx( i,k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
4534 | w(i ,k,j), w(i+1,k,j), & |
---|
4535 | vel ) |
---|
4536 | ENDIF |
---|
4537 | |
---|
4538 | ! x flux-divergence into tendency |
---|
4539 | |
---|
4540 | DO k=kts+1,ktf+1 |
---|
4541 | DO i = i_start, i_end |
---|
4542 | mrdx=msft(i,j)*rdx |
---|
4543 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
4544 | ENDDO |
---|
4545 | ENDDO |
---|
4546 | |
---|
4547 | ENDDO |
---|
4548 | |
---|
4549 | ELSE IF ( horz_order == 4 ) THEN |
---|
4550 | |
---|
4551 | degrade_xs = .true. |
---|
4552 | degrade_xe = .true. |
---|
4553 | degrade_ys = .true. |
---|
4554 | degrade_ye = .true. |
---|
4555 | |
---|
4556 | IF( config_flags%periodic_x .or. & |
---|
4557 | config_flags%symmetric_xs .or. & |
---|
4558 | (its > ids+1) ) degrade_xs = .false. |
---|
4559 | IF( config_flags%periodic_x .or. & |
---|
4560 | config_flags%symmetric_xe .or. & |
---|
4561 | (ite < ide-2) ) degrade_xe = .false. |
---|
4562 | IF( config_flags%periodic_y .or. & |
---|
4563 | config_flags%symmetric_ys .or. & |
---|
4564 | (jts > jds+1) ) degrade_ys = .false. |
---|
4565 | IF( config_flags%periodic_y .or. & |
---|
4566 | config_flags%symmetric_ye .or. & |
---|
4567 | (jte < jde-2) ) degrade_ye = .false. |
---|
4568 | |
---|
4569 | ! begin flux computations |
---|
4570 | ! start with x flux divergence |
---|
4571 | |
---|
4572 | !--------------- |
---|
4573 | |
---|
4574 | ktf=MIN(kte,kde-1) |
---|
4575 | |
---|
4576 | i_start = its |
---|
4577 | i_end = MIN(ite,ide-1) |
---|
4578 | j_start = jts |
---|
4579 | j_end = MIN(jte,jde-1) |
---|
4580 | |
---|
4581 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
4582 | ! bounds so we can switch to second order flux close to the boundary |
---|
4583 | |
---|
4584 | i_start_f = i_start |
---|
4585 | i_end_f = i_end+1 |
---|
4586 | |
---|
4587 | IF(degrade_xs) then |
---|
4588 | i_start = ids+1 |
---|
4589 | i_start_f = i_start+1 |
---|
4590 | ENDIF |
---|
4591 | |
---|
4592 | IF(degrade_xe) then |
---|
4593 | i_end = ide-2 |
---|
4594 | i_end_f = ide-2 |
---|
4595 | ENDIF |
---|
4596 | |
---|
4597 | ! compute fluxes |
---|
4598 | |
---|
4599 | DO j = j_start, j_end |
---|
4600 | |
---|
4601 | DO k=kts+1,ktf |
---|
4602 | DO i = i_start_f, i_end_f |
---|
4603 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
4604 | fqx( i, k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
4605 | w(i ,k,j), w(i+1,k,j), & |
---|
4606 | vel ) |
---|
4607 | ENDDO |
---|
4608 | ENDDO |
---|
4609 | |
---|
4610 | k = ktf+1 |
---|
4611 | DO i = i_start_f, i_end_f |
---|
4612 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
4613 | fqx( i, k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
---|
4614 | w(i ,k,j), w(i+1,k,j), & |
---|
4615 | vel ) |
---|
4616 | ENDDO |
---|
4617 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
4618 | |
---|
4619 | IF( degrade_xs ) THEN |
---|
4620 | DO k=kts+1,ktf |
---|
4621 | fqx(i_start, k) = & |
---|
4622 | 0.5*(fzm(k)*ru(i_start,k,j)+fzp(k)*ru(i_start,k-1,j)) & |
---|
4623 | *(w(i_start,k,j)+w(i_start-1,k,j)) |
---|
4624 | ENDDO |
---|
4625 | k = ktf+1 |
---|
4626 | fqx(i_start, k) = & |
---|
4627 | 0.5*((2.-fzm(k-1))*ru(i_start,k-1,j)-fzp(k-1)*ru(i_start,k-2,j)) & |
---|
4628 | *(w(i_start,k,j)+w(i_start-1,k,j)) |
---|
4629 | ENDIF |
---|
4630 | |
---|
4631 | IF( degrade_xe ) THEN |
---|
4632 | DO k=kts+1,ktf |
---|
4633 | fqx(i_end+1, k) = & |
---|
4634 | 0.5*(fzm(k)*ru(i_end+1,k,j)+fzp(k)*ru(i_end+1,k-1,j)) & |
---|
4635 | *(w(i_end+1,k,j)+w(i_end,k,j)) |
---|
4636 | ENDDO |
---|
4637 | k = ktf+1 |
---|
4638 | fqx(i_end+1, k) = & |
---|
4639 | 0.5*((2.-fzm(k-1))*ru(i_end+1,k-1,j)-fzp(k-1)*ru(i_end+1,k-2,j)) & |
---|
4640 | *(w(i_end+1,k,j)+w(i_end,k,j)) |
---|
4641 | ENDIF |
---|
4642 | |
---|
4643 | ! x flux-divergence into tendency |
---|
4644 | |
---|
4645 | DO k=kts+1,ktf+1 |
---|
4646 | DO i = i_start, i_end |
---|
4647 | mrdx=msft(i,j)*rdx |
---|
4648 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
4649 | ENDDO |
---|
4650 | ENDDO |
---|
4651 | |
---|
4652 | ENDDO |
---|
4653 | |
---|
4654 | ! next -> y flux divergence calculation |
---|
4655 | |
---|
4656 | i_start = its |
---|
4657 | i_end = MIN(ite,ide-1) |
---|
4658 | j_start = jts |
---|
4659 | j_end = MIN(jte,jde-1) |
---|
4660 | |
---|
4661 | |
---|
4662 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
4663 | ! bounds so we can switch to second order flux close to the boundary |
---|
4664 | |
---|
4665 | j_start_f = j_start |
---|
4666 | j_end_f = j_end+1 |
---|
4667 | |
---|
4668 | IF(degrade_ys) then |
---|
4669 | j_start = jds+1 |
---|
4670 | j_start_f = j_start+1 |
---|
4671 | ENDIF |
---|
4672 | |
---|
4673 | IF(degrade_ye) then |
---|
4674 | j_end = jde-2 |
---|
4675 | j_end_f = jde-2 |
---|
4676 | ENDIF |
---|
4677 | |
---|
4678 | jp1 = 2 |
---|
4679 | jp0 = 1 |
---|
4680 | |
---|
4681 | DO j = j_start, j_end+1 |
---|
4682 | |
---|
4683 | IF ((j < j_start_f) .and. degrade_ys) THEN |
---|
4684 | DO k = kts+1, ktf |
---|
4685 | DO i = i_start, i_end |
---|
4686 | fqy(i, k, jp1) = & |
---|
4687 | 0.5*(fzm(k)*rv(i,k,j_start)+fzp(k)*rv(i,k-1,j_start)) & |
---|
4688 | *(w(i,k,j_start)+w(i,k,j_start-1)) |
---|
4689 | ENDDO |
---|
4690 | ENDDO |
---|
4691 | k = ktf+1 |
---|
4692 | DO i = i_start, i_end |
---|
4693 | fqy(i, k, jp1) = & |
---|
4694 | 0.5*((2.-fzm(k-1))*rv(i,k-1,j_start)-fzp(k-1)*rv(i,k-2,j_start)) & |
---|
4695 | *(w(i,k,j_start)+w(i,k,j_start-1)) |
---|
4696 | ENDDO |
---|
4697 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
4698 | DO k = kts+1, ktf |
---|
4699 | DO i = i_start, i_end |
---|
4700 | fqy(i, k, jp1) = & |
---|
4701 | 0.5*(fzm(k)*rv(i,k,j_end+1)+fzp(k)*rv(i,k-1,j_end+1)) & |
---|
4702 | *(w(i,k,j_end+1)+w(i,k,j_end)) |
---|
4703 | ENDDO |
---|
4704 | ENDDO |
---|
4705 | k = ktf+1 |
---|
4706 | DO i = i_start, i_end |
---|
4707 | fqy(i, k, jp1) = & |
---|
4708 | 0.5*((2.-fzm(k-1))*rv(i,k-1,j_end+1)-fzp(k-1)*rv(i,k-2,j_end+1)) & |
---|
4709 | *(w(i,k,j_end+1)+w(i,k,j_end)) |
---|
4710 | ENDDO |
---|
4711 | ELSE |
---|
4712 | ! 3rd or 4th order flux |
---|
4713 | DO k = kts+1, ktf |
---|
4714 | DO i = i_start, i_end |
---|
4715 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
4716 | fqy( i, k, jp1 ) = vel*flux4( w(i,k,j-2), w(i,k,j-1), & |
---|
4717 | w(i,k,j ), w(i,k,j+1), & |
---|
4718 | vel ) |
---|
4719 | ENDDO |
---|
4720 | ENDDO |
---|
4721 | k = ktf+1 |
---|
4722 | DO i = i_start, i_end |
---|
4723 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
4724 | fqy( i, k, jp1 ) = vel*flux4( w(i,k,j-2), w(i,k,j-1), & |
---|
4725 | w(i,k,j ), w(i,k,j+1), & |
---|
4726 | vel ) |
---|
4727 | ENDDO |
---|
4728 | END IF |
---|
4729 | |
---|
4730 | IF( j > j_start ) THEN |
---|
4731 | ! y flux-divergence into tendency |
---|
4732 | DO k = kts+1, ktf+1 |
---|
4733 | DO i = i_start, i_end |
---|
4734 | mrdy=msft(i,j-1)*rdy |
---|
4735 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
4736 | ENDDO |
---|
4737 | ENDDO |
---|
4738 | END IF |
---|
4739 | |
---|
4740 | jtmp = jp1 |
---|
4741 | jp1 = jp0 |
---|
4742 | jp0 = jtmp |
---|
4743 | |
---|
4744 | ENDDO |
---|
4745 | |
---|
4746 | ELSE IF ( horz_order == 3 ) THEN |
---|
4747 | |
---|
4748 | degrade_xs = .true. |
---|
4749 | degrade_xe = .true. |
---|
4750 | degrade_ys = .true. |
---|
4751 | degrade_ye = .true. |
---|
4752 | |
---|
4753 | IF( config_flags%periodic_x .or. & |
---|
4754 | config_flags%symmetric_xs .or. & |
---|
4755 | (its > ids+1) ) degrade_xs = .false. |
---|
4756 | IF( config_flags%periodic_x .or. & |
---|
4757 | config_flags%symmetric_xe .or. & |
---|
4758 | (ite < ide-2) ) degrade_xe = .false. |
---|
4759 | IF( config_flags%periodic_y .or. & |
---|
4760 | config_flags%symmetric_ys .or. & |
---|
4761 | (jts > jds+1) ) degrade_ys = .false. |
---|
4762 | IF( config_flags%periodic_y .or. & |
---|
4763 | config_flags%symmetric_ye .or. & |
---|
4764 | (jte < jde-2) ) degrade_ye = .false. |
---|
4765 | |
---|
4766 | ! begin flux computations |
---|
4767 | ! start with x flux divergence |
---|
4768 | |
---|
4769 | !--------------- |
---|
4770 | |
---|
4771 | ktf=MIN(kte,kde-1) |
---|
4772 | |
---|
4773 | i_start = its |
---|
4774 | i_end = MIN(ite,ide-1) |
---|
4775 | j_start = jts |
---|
4776 | j_end = MIN(jte,jde-1) |
---|
4777 | |
---|
4778 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
4779 | ! bounds so we can switch to second order flux close to the boundary |
---|
4780 | |
---|
4781 | i_start_f = i_start |
---|
4782 | i_end_f = i_end+1 |
---|
4783 | |
---|
4784 | IF(degrade_xs) then |
---|
4785 | i_start = ids+1 |
---|
4786 | i_start_f = i_start+1 |
---|
4787 | ENDIF |
---|
4788 | |
---|
4789 | IF(degrade_xe) then |
---|
4790 | i_end = ide-2 |
---|
4791 | i_end_f = ide-2 |
---|
4792 | ENDIF |
---|
4793 | |
---|
4794 | ! compute fluxes |
---|
4795 | |
---|
4796 | DO j = j_start, j_end |
---|
4797 | |
---|
4798 | DO k=kts+1,ktf |
---|
4799 | DO i = i_start_f, i_end_f |
---|
4800 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
---|
4801 | fqx( i, k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
4802 | w(i ,k,j), w(i+1,k,j), & |
---|
4803 | vel ) |
---|
4804 | ENDDO |
---|
4805 | ENDDO |
---|
4806 | k = ktf+1 |
---|
4807 | DO i = i_start_f, i_end_f |
---|
4808 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
---|
4809 | fqx( i, k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
---|
4810 | w(i ,k,j), w(i+1,k,j), & |
---|
4811 | vel ) |
---|
4812 | ENDDO |
---|
4813 | |
---|
4814 | ! second order flux close to boundaries (if not periodic or symmetric) |
---|
4815 | |
---|
4816 | IF( degrade_xs ) THEN |
---|
4817 | DO k=kts+1,ktf |
---|
4818 | fqx(i_start, k) = & |
---|
4819 | 0.5*(fzm(k)*ru(i_start,k,j)+fzp(k)*ru(i_start,k-1,j)) & |
---|
4820 | *(w(i_start,k,j)+w(i_start-1,k,j)) |
---|
4821 | ENDDO |
---|
4822 | k = ktf+1 |
---|
4823 | fqx(i_start, k) = & |
---|
4824 | 0.5*((2.-fzm(k-1))*ru(i_start,k-1,j)-fzp(k-1)*ru(i_start,k-2,j)) & |
---|
4825 | *(w(i_start,k,j)+w(i_start-1,k,j)) |
---|
4826 | ENDIF |
---|
4827 | |
---|
4828 | IF( degrade_xe ) THEN |
---|
4829 | DO k=kts+1,ktf |
---|
4830 | fqx(i_end+1, k) = & |
---|
4831 | 0.5*(fzm(k)*ru(i_end+1,k,j)+fzp(k)*ru(i_end+1,k-1,j)) & |
---|
4832 | *(w(i_end+1,k,j)+w(i_end,k,j)) |
---|
4833 | ENDDO |
---|
4834 | k = ktf+1 |
---|
4835 | fqx(i_end+1, k) = & |
---|
4836 | 0.5*((2.-fzm(k-1))*ru(i_end+1,k-1,j)-fzp(k-1)*ru(i_end+1,k-2,j)) & |
---|
4837 | *(w(i_end+1,k,j)+w(i_end,k,j)) |
---|
4838 | ENDIF |
---|
4839 | |
---|
4840 | ! x flux-divergence into tendency |
---|
4841 | |
---|
4842 | DO k=kts+1,ktf+1 |
---|
4843 | DO i = i_start, i_end |
---|
4844 | mrdx=msft(i,j)*rdx |
---|
4845 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
---|
4846 | ENDDO |
---|
4847 | ENDDO |
---|
4848 | |
---|
4849 | ENDDO |
---|
4850 | |
---|
4851 | ! next -> y flux divergence calculation |
---|
4852 | |
---|
4853 | i_start = its |
---|
4854 | i_end = MIN(ite,ide-1) |
---|
4855 | j_start = jts |
---|
4856 | j_end = MIN(jte,jde-1) |
---|
4857 | |
---|
4858 | |
---|
4859 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
---|
4860 | ! bounds so we can switch to second order flux close to the boundary |
---|
4861 | |
---|
4862 | j_start_f = j_start |
---|
4863 | j_end_f = j_end+1 |
---|
4864 | |
---|
4865 | IF(degrade_ys) then |
---|
4866 | j_start = jds+1 |
---|
4867 | j_start_f = j_start+1 |
---|
4868 | ENDIF |
---|
4869 | |
---|
4870 | IF(degrade_ye) then |
---|
4871 | j_end = jde-2 |
---|
4872 | j_end_f = jde-2 |
---|
4873 | ENDIF |
---|
4874 | |
---|
4875 | jp1 = 2 |
---|
4876 | jp0 = 1 |
---|
4877 | |
---|
4878 | DO j = j_start, j_end+1 |
---|
4879 | |
---|
4880 | IF ((j < j_start_f) .and. degrade_ys) THEN |
---|
4881 | DO k = kts+1, ktf |
---|
4882 | DO i = i_start, i_end |
---|
4883 | fqy(i, k, jp1) = & |
---|
4884 | 0.5*(fzm(k)*rv(i,k,j_start)+fzp(k)*rv(i,k-1,j_start)) & |
---|
4885 | *(w(i,k,j_start)+w(i,k,j_start-1)) |
---|
4886 | ENDDO |
---|
4887 | ENDDO |
---|
4888 | k = ktf+1 |
---|
4889 | DO i = i_start, i_end |
---|
4890 | fqy(i, k, jp1) = & |
---|
4891 | 0.5*((2.-fzm(k-1))*rv(i,k-1,j_start)-fzp(k-1)*rv(i,k-2,j_start)) & |
---|
4892 | *(w(i,k,j_start)+w(i,k,j_start-1)) |
---|
4893 | ENDDO |
---|
4894 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
---|
4895 | DO k = kts+1, ktf |
---|
4896 | DO i = i_start, i_end |
---|
4897 | fqy(i, k, jp1) = & |
---|
4898 | 0.5*(fzm(k)*rv(i,k,j_end+1)+fzp(k)*rv(i,k-1,j_end+1)) & |
---|
4899 | *(w(i,k,j_end+1)+w(i,k,j_end)) |
---|
4900 | ENDDO |
---|
4901 | ENDDO |
---|
4902 | k = ktf+1 |
---|
4903 | DO i = i_start, i_end |
---|
4904 | fqy(i, k, jp1) = & |
---|
4905 | 0.5*((2.-fzm(k-1))*rv(i,k-1,j_end+1)-fzp(k-1)*rv(i,k-2,j_end+1)) & |
---|
4906 | *(w(i,k,j_end+1)+w(i,k,j_end)) |
---|
4907 | ENDDO |
---|
4908 | ELSE |
---|
4909 | ! 3rd or 4th order flux |
---|
4910 | DO k = kts+1, ktf |
---|
4911 | DO i = i_start, i_end |
---|
4912 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
---|
4913 | fqy( i, k, jp1 ) = vel*flux3( w(i,k,j-2), w(i,k,j-1), & |
---|
4914 | w(i,k,j ), w(i,k,j+1), & |
---|
4915 | vel ) |
---|
4916 | ENDDO |
---|
4917 | ENDDO |
---|
4918 | k = ktf+1 |
---|
4919 | DO i = i_start, i_end |
---|
4920 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
---|
4921 | fqy( i, k, jp1 ) = vel*flux3( w(i,k,j-2), w(i,k,j-1), & |
---|
4922 | w(i,k,j ), w(i,k,j+1), & |
---|
4923 | vel ) |
---|
4924 | ENDDO |
---|
4925 | END IF |
---|
4926 | |
---|
4927 | IF( j > j_start ) THEN |
---|
4928 | ! y flux-divergence into tendency |
---|
4929 | DO k = kts+1, ktf+1 |
---|
4930 | DO i = i_start, i_end |
---|
4931 | mrdy=msft(i,j-1)*rdy |
---|
4932 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
---|
4933 | ENDDO |
---|
4934 | ENDDO |
---|
4935 | END IF |
---|
4936 | |
---|
4937 | jtmp = jp1 |
---|
4938 | jp1 = jp0 |
---|
4939 | jp0 = jtmp |
---|
4940 | |
---|
4941 | ENDDO |
---|
4942 | |
---|
4943 | ELSE IF (horz_order == 2 ) THEN |
---|
4944 | |
---|
4945 | i_start = its |
---|
4946 | i_end = MIN(ite,ide-1) |
---|
4947 | j_start = jts |
---|
4948 | j_end = MIN(jte,jde-1) |
---|
4949 | |
---|
4950 | IF ( .NOT. config_flags%periodic_x ) THEN |
---|
4951 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
---|
4952 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-2,ite) |
---|
4953 | ENDIF |
---|
4954 | |
---|
4955 | DO j = j_start, j_end |
---|
4956 | DO k=kts+1,ktf |
---|
4957 | DO i = i_start, i_end |
---|
4958 | |
---|
4959 | mrdx=msft(i,j)*rdx |
---|
4960 | |
---|
4961 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.5 & |
---|
4962 | *((fzm(k)*ru(i+1,k,j)+fzp(k)*ru(i+1,k-1,j)) & |
---|
4963 | *(w(i+1,k,j)+w(i,k,j)) & |
---|
4964 | -(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
---|
4965 | *(w(i,k,j)+w(i-1,k,j))) |
---|
4966 | |
---|
4967 | ENDDO |
---|
4968 | ENDDO |
---|
4969 | |
---|
4970 | k = ktf+1 |
---|
4971 | DO i = i_start, i_end |
---|
4972 | |
---|
4973 | mrdx=msft(i,j)*rdx |
---|
4974 | |
---|
4975 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.5 & |
---|
4976 | *(((2.-fzm(k-1))*ru(i+1,k-1,j)-fzp(k-1)*ru(i+1,k-2,j)) & |
---|
4977 | *(w(i+1,k,j)+w(i,k,j)) & |
---|
4978 | -((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
---|
4979 | *(w(i,k,j)+w(i-1,k,j))) |
---|
4980 | |
---|
4981 | ENDDO |
---|
4982 | |
---|
4983 | ENDDO |
---|
4984 | |
---|
4985 | i_start = its |
---|
4986 | i_end = MIN(ite,ide-1) |
---|
4987 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
---|
4988 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-2,jte) |
---|
4989 | |
---|
4990 | DO j = j_start, j_end |
---|
4991 | DO k=kts+1,ktf |
---|
4992 | DO i = i_start, i_end |
---|
4993 | |
---|
4994 | mrdy=msft(i,j)*rdy |
---|
4995 | |
---|
4996 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.5 & |
---|
4997 | *((fzm(k)*rv(i,k,j+1)+fzp(k)*rv(i,k-1,j+1))* & |
---|
4998 | (w(i,k,j+1)+w(i,k,j)) & |
---|
4999 | -(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j)) & |
---|
5000 | *(w(i,k,j)+w(i,k,j-1))) |
---|
5001 | |
---|
5002 | ENDDO |
---|
5003 | ENDDO |
---|
5004 | |
---|
5005 | k = ktf+1 |
---|
5006 | DO i = i_start, i_end |
---|
5007 | |
---|
5008 | mrdy=msft(i,j)*rdy |
---|
5009 | |
---|
5010 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.5 & |
---|
5011 | *(((2.-fzm(k-1))*rv(i,k-1,j+1)-fzp(k-1)*rv(i,k-2,j+1))* & |
---|
5012 | (w(i,k,j+1)+w(i,k,j)) & |
---|
5013 | -((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j)) & |
---|
5014 | *(w(i,k,j)+w(i,k,j-1))) |
---|
5015 | |
---|
5016 | ENDDO |
---|
5017 | |
---|
5018 | ENDDO |
---|
5019 | |
---|
5020 | ELSE |
---|
5021 | |
---|
5022 | WRITE ( wrf_err_message ,*) ' advect_w_6a, h_order not known ',horz_order |
---|
5023 | CALL wrf_error_fatal ( wrf_err_message ) |
---|
5024 | |
---|
5025 | ENDIF horizontal_order_test |
---|
5026 | |
---|
5027 | |
---|
5028 | ! pick up the the horizontal radiation boundary conditions. |
---|
5029 | ! (these are the computations that don't require 'cb'. |
---|
5030 | ! first, set to index ranges |
---|
5031 | |
---|
5032 | |
---|
5033 | i_start = its |
---|
5034 | i_end = MIN(ite,ide-1) |
---|
5035 | j_start = jts |
---|
5036 | j_end = MIN(jte,jde-1) |
---|
5037 | |
---|
5038 | IF( (config_flags%open_xs) .and. (its == ids)) THEN |
---|
5039 | |
---|
5040 | DO j = j_start, j_end |
---|
5041 | DO k = kts+1, ktf |
---|
5042 | |
---|
5043 | uw = 0.5*(fzm(k)*(ru(its,k ,j)+ru(its+1,k ,j)) + & |
---|
5044 | fzp(k)*(ru(its,k-1,j)+ru(its+1,k-1,j)) ) |
---|
5045 | ub = MIN( uw, 0. ) |
---|
5046 | |
---|
5047 | tendency(its,k,j) = tendency(its,k,j) & |
---|
5048 | - rdx*( & |
---|
5049 | ub*(w_old(its+1,k,j) - w_old(its,k,j)) + & |
---|
5050 | w(its,k,j)*( & |
---|
5051 | fzm(k)*(ru(its+1,k ,j)-ru(its,k ,j))+ & |
---|
5052 | fzp(k)*(ru(its+1,k-1,j)-ru(its,k-1,j))) & |
---|
5053 | ) |
---|
5054 | ENDDO |
---|
5055 | ENDDO |
---|
5056 | |
---|
5057 | k = ktf+1 |
---|
5058 | DO j = j_start, j_end |
---|
5059 | |
---|
5060 | uw = 0.5*( (2.-fzm(k-1))*(ru(its,k-1,j)+ru(its+1,k-1,j)) & |
---|
5061 | -fzp(k-1)*(ru(its,k-2,j)+ru(its+1,k-2,j)) ) |
---|
5062 | ub = MIN( uw, 0. ) |
---|
5063 | |
---|
5064 | tendency(its,k,j) = tendency(its,k,j) & |
---|
5065 | - rdx*( & |
---|
5066 | ub*(w_old(its+1,k,j) - w_old(its,k,j)) + & |
---|
5067 | w(its,k,j)*( & |
---|
5068 | (2.-fzm(k-1))*(ru(its+1,k-1,j)-ru(its,k-1,j))- & |
---|
5069 | fzp(k-1)*(ru(its+1,k-2,j)-ru(its,k-2,j))) & |
---|
5070 | ) |
---|
5071 | ENDDO |
---|
5072 | |
---|
5073 | ENDIF |
---|
5074 | |
---|
5075 | IF( (config_flags%open_xe) .and. (ite == ide)) THEN |
---|
5076 | |
---|
5077 | DO j = j_start, j_end |
---|
5078 | DO k = kts+1, ktf |
---|
5079 | |
---|
5080 | uw = 0.5*(fzm(k)*(ru(ite-1,k ,j)+ru(ite,k ,j)) + & |
---|
5081 | fzp(k)*(ru(ite-1,k-1,j)+ru(ite,k-1,j)) ) |
---|
5082 | ub = MAX( uw, 0. ) |
---|
5083 | |
---|
5084 | tendency(i_end,k,j) = tendency(i_end,k,j) & |
---|
5085 | - rdx*( & |
---|
5086 | ub*(w_old(i_end,k,j) - w_old(i_end-1,k,j)) + & |
---|
5087 | w(i_end,k,j)*( & |
---|
5088 | fzm(k)*(ru(ite,k ,j)-ru(ite-1,k ,j)) + & |
---|
5089 | fzp(k)*(ru(ite,k-1,j)-ru(ite-1,k-1,j))) & |
---|
5090 | ) |
---|
5091 | ENDDO |
---|
5092 | ENDDO |
---|
5093 | |
---|
5094 | k = ktf+1 |
---|
5095 | DO j = j_start, j_end |
---|
5096 | |
---|
5097 | uw = 0.5*( (2.-fzm(k-1))*(ru(ite-1,k-1,j)+ru(ite,k-1,j)) & |
---|
5098 | -fzp(k-1)*(ru(ite-1,k-2,j)+ru(ite,k-2,j)) ) |
---|
5099 | ub = MAX( uw, 0. ) |
---|
5100 | |
---|
5101 | tendency(i_end,k,j) = tendency(i_end,k,j) & |
---|
5102 | - rdx*( & |
---|
5103 | ub*(w_old(i_end,k,j) - w_old(i_end-1,k,j)) + & |
---|
5104 | w(i_end,k,j)*( & |
---|
5105 | (2.-fzm(k-1))*(ru(ite,k-1,j)-ru(ite-1,k-1,j)) - & |
---|
5106 | fzp(k-1)*(ru(ite,k-2,j)-ru(ite-1,k-2,j))) & |
---|
5107 | ) |
---|
5108 | ENDDO |
---|
5109 | |
---|
5110 | ENDIF |
---|
5111 | |
---|
5112 | |
---|
5113 | IF( (config_flags%open_ys) .and. (jts == jds)) THEN |
---|
5114 | |
---|
5115 | DO i = i_start, i_end |
---|
5116 | DO k = kts+1, ktf |
---|
5117 | |
---|
5118 | vw = 0.5*( fzm(k)*(rv(i,k ,jts)+rv(i,k ,jts+1)) + & |
---|
5119 | fzp(k)*(rv(i,k-1,jts)+rv(i,k-1,jts+1)) ) |
---|
5120 | vb = MIN( vw, 0. ) |
---|
5121 | |
---|
5122 | tendency(i,k,jts) = tendency(i,k,jts) & |
---|
5123 | - rdy*( & |
---|
5124 | vb*(w_old(i,k,jts+1) - w_old(i,k,jts)) + & |
---|
5125 | w(i,k,jts)*( & |
---|
5126 | fzm(k)*(rv(i,k ,jts+1)-rv(i,k ,jts))+ & |
---|
5127 | fzp(k)*(rv(i,k-1,jts+1)-rv(i,k-1,jts))) & |
---|
5128 | ) |
---|
5129 | ENDDO |
---|
5130 | ENDDO |
---|
5131 | |
---|
5132 | k = ktf+1 |
---|
5133 | DO i = i_start, i_end |
---|
5134 | vw = 0.5*( (2.-fzm(k-1))*(rv(i,k-1,jts)+rv(i,k-1,jts+1)) & |
---|
5135 | -fzp(k-1)*(rv(i,k-2,jts)+rv(i,k-2,jts+1)) ) |
---|
5136 | vb = MIN( vw, 0. ) |
---|
5137 | |
---|
5138 | tendency(i,k,jts) = tendency(i,k,jts) & |
---|
5139 | - rdy*( & |
---|
5140 | vb*(w_old(i,k,jts+1) - w_old(i,k,jts)) + & |
---|
5141 | w(i,k,jts)*( & |
---|
5142 | (2.-fzm(k-1))*(rv(i,k-1,jts+1)-rv(i,k-1,jts))- & |
---|
5143 | fzp(k-1)*(rv(i,k-2,jts+1)-rv(i,k-2,jts))) & |
---|
5144 | ) |
---|
5145 | ENDDO |
---|
5146 | |
---|
5147 | ENDIF |
---|
5148 | |
---|
5149 | IF( (config_flags%open_ye) .and. (jte == jde) ) THEN |
---|
5150 | |
---|
5151 | DO i = i_start, i_end |
---|
5152 | DO k = kts+1, ktf |
---|
5153 | |
---|
5154 | vw = 0.5*( fzm(k)*(rv(i,k ,jte-1)+rv(i,k ,jte)) + & |
---|
5155 | fzp(k)*(rv(i,k-1,jte-1)+rv(i,k-1,jte)) ) |
---|
5156 | vb = MAX( vw, 0. ) |
---|
5157 | |
---|
5158 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
---|
5159 | - rdy*( & |
---|
5160 | vb*(w_old(i,k,j_end) - w_old(i,k,j_end-1)) + & |
---|
5161 | w(i,k,j_end)*( & |
---|
5162 | fzm(k)*(rv(i,k ,jte)-rv(i,k ,jte-1))+ & |
---|
5163 | fzp(k)*(rv(i,k-1,jte)-rv(i,k-1,jte-1))) & |
---|
5164 | ) |
---|
5165 | ENDDO |
---|
5166 | ENDDO |
---|
5167 | |
---|
5168 | k = ktf+1 |
---|
5169 | DO i = i_start, i_end |
---|
5170 | |
---|
5171 | vw = 0.5*( (2.-fzm(k-1))*(rv(i,k-1,jte-1)+rv(i,k-1,jte)) & |
---|
5172 | -fzp(k-1)*(rv(i,k-2,jte-1)+rv(i,k-2,jte)) ) |
---|
5173 | vb = MAX( vw, 0. ) |
---|
5174 | |
---|
5175 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
---|
5176 | - rdy*( & |
---|
5177 | vb*(w_old(i,k,j_end) - w_old(i,k,j_end-1)) + & |
---|
5178 | w(i,k,j_end)*( & |
---|
5179 | (2.-fzm(k-1))*(rv(i,k-1,jte)-rv(i,k-1,jte-1))- & |
---|
5180 | fzp(k-1)*(rv(i,k-2,jte)-rv(i,k-2,jte-1))) & |
---|
5181 | ) |
---|
5182 | ENDDO |
---|
5183 | |
---|
5184 | ENDIF |
---|
5185 | |
---|
5186 | !-------------------- vertical advection |
---|
5187 | |
---|
5188 | i_start = its |
---|
5189 | i_end = MIN(ite,ide-1) |
---|
5190 | j_start = jts |
---|
5191 | j_end = MIN(jte,jde-1) |
---|
5192 | |
---|
5193 | DO i = i_start, i_end |
---|
5194 | vflux(i,kts)=0. |
---|
5195 | vflux(i,kte)=0. |
---|
5196 | ENDDO |
---|
5197 | |
---|
5198 | vert_order_test : IF (vert_order == 6) THEN |
---|
5199 | |
---|
5200 | DO j = j_start, j_end |
---|
5201 | |
---|
5202 | DO k=kts+3,ktf-1 |
---|
5203 | DO i = i_start, i_end |
---|
5204 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
5205 | vflux(i,k) = vel*flux6( & |
---|
5206 | w(i,k-3,j), w(i,k-2,j), w(i,k-1,j), & |
---|
5207 | w(i,k ,j), w(i,k+1,j), w(i,k+2,j), -vel ) |
---|
5208 | ENDDO |
---|
5209 | ENDDO |
---|
5210 | |
---|
5211 | DO i = i_start, i_end |
---|
5212 | |
---|
5213 | k=kts+1 |
---|
5214 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5215 | |
---|
5216 | k = kts+2 |
---|
5217 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
5218 | vflux(i,k) = vel*flux4( & |
---|
5219 | w(i,k-2,j), w(i,k-1,j), & |
---|
5220 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
5221 | |
---|
5222 | k = ktf |
---|
5223 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
5224 | vflux(i,k) = vel*flux4( & |
---|
5225 | w(i,k-2,j), w(i,k-1,j), & |
---|
5226 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
5227 | |
---|
5228 | k=ktf+1 |
---|
5229 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5230 | |
---|
5231 | ENDDO |
---|
5232 | |
---|
5233 | DO k=kts+1,ktf |
---|
5234 | DO i = i_start, i_end |
---|
5235 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
5236 | ENDDO |
---|
5237 | ENDDO |
---|
5238 | |
---|
5239 | ! pick up flux contribution for w at the lid. wcs, 13 march 2004 |
---|
5240 | k = ktf+1 |
---|
5241 | DO i = i_start, i_end |
---|
5242 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
---|
5243 | ENDDO |
---|
5244 | |
---|
5245 | ENDDO |
---|
5246 | |
---|
5247 | ELSE IF (vert_order == 5) THEN |
---|
5248 | |
---|
5249 | DO j = j_start, j_end |
---|
5250 | |
---|
5251 | DO k=kts+3,ktf-1 |
---|
5252 | DO i = i_start, i_end |
---|
5253 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
5254 | vflux(i,k) = vel*flux5( & |
---|
5255 | w(i,k-3,j), w(i,k-2,j), w(i,k-1,j), & |
---|
5256 | w(i,k ,j), w(i,k+1,j), w(i,k+2,j), -vel ) |
---|
5257 | ENDDO |
---|
5258 | ENDDO |
---|
5259 | |
---|
5260 | DO i = i_start, i_end |
---|
5261 | |
---|
5262 | k=kts+1 |
---|
5263 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5264 | |
---|
5265 | k = kts+2 |
---|
5266 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
5267 | vflux(i,k) = vel*flux3( & |
---|
5268 | w(i,k-2,j), w(i,k-1,j), & |
---|
5269 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
5270 | k = ktf |
---|
5271 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
5272 | vflux(i,k) = vel*flux3( & |
---|
5273 | w(i,k-2,j), w(i,k-1,j), & |
---|
5274 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
5275 | |
---|
5276 | k=ktf+1 |
---|
5277 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5278 | |
---|
5279 | ENDDO |
---|
5280 | |
---|
5281 | DO k=kts+1,ktf |
---|
5282 | DO i = i_start, i_end |
---|
5283 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
5284 | ENDDO |
---|
5285 | ENDDO |
---|
5286 | |
---|
5287 | ! pick up flux contribution for w at the lid, wcs. 13 march 2004 |
---|
5288 | k = ktf+1 |
---|
5289 | DO i = i_start, i_end |
---|
5290 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
---|
5291 | ENDDO |
---|
5292 | |
---|
5293 | ENDDO |
---|
5294 | |
---|
5295 | ELSE IF (vert_order == 4) THEN |
---|
5296 | |
---|
5297 | DO j = j_start, j_end |
---|
5298 | |
---|
5299 | DO k=kts+2,ktf |
---|
5300 | DO i = i_start, i_end |
---|
5301 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
5302 | vflux(i,k) = vel*flux4( & |
---|
5303 | w(i,k-2,j), w(i,k-1,j), & |
---|
5304 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
5305 | ENDDO |
---|
5306 | ENDDO |
---|
5307 | |
---|
5308 | DO i = i_start, i_end |
---|
5309 | |
---|
5310 | k=kts+1 |
---|
5311 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5312 | k=ktf+1 |
---|
5313 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5314 | |
---|
5315 | ENDDO |
---|
5316 | |
---|
5317 | DO k=kts+1,ktf |
---|
5318 | DO i = i_start, i_end |
---|
5319 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
5320 | ENDDO |
---|
5321 | ENDDO |
---|
5322 | |
---|
5323 | ! pick up flux contribution for w at the lid, wcs. 13 march 2004 |
---|
5324 | k = ktf+1 |
---|
5325 | DO i = i_start, i_end |
---|
5326 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
---|
5327 | ENDDO |
---|
5328 | |
---|
5329 | ENDDO |
---|
5330 | |
---|
5331 | ELSE IF (vert_order == 3) THEN |
---|
5332 | |
---|
5333 | DO j = j_start, j_end |
---|
5334 | |
---|
5335 | DO k=kts+2,ktf |
---|
5336 | DO i = i_start, i_end |
---|
5337 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
---|
5338 | vflux(i,k) = vel*flux3( & |
---|
5339 | w(i,k-2,j), w(i,k-1,j), & |
---|
5340 | w(i,k ,j), w(i,k+1,j), -vel ) |
---|
5341 | ENDDO |
---|
5342 | ENDDO |
---|
5343 | |
---|
5344 | DO i = i_start, i_end |
---|
5345 | |
---|
5346 | k=kts+1 |
---|
5347 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5348 | k=ktf+1 |
---|
5349 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5350 | |
---|
5351 | ENDDO |
---|
5352 | |
---|
5353 | DO k=kts+1,ktf |
---|
5354 | DO i = i_start, i_end |
---|
5355 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
5356 | ENDDO |
---|
5357 | ENDDO |
---|
5358 | |
---|
5359 | ! pick up flux contribution for w at the lid, wcs. 13 march 2004 |
---|
5360 | k = ktf+1 |
---|
5361 | DO i = i_start, i_end |
---|
5362 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
---|
5363 | ENDDO |
---|
5364 | |
---|
5365 | ENDDO |
---|
5366 | |
---|
5367 | ELSE IF (vert_order == 2) THEN |
---|
5368 | |
---|
5369 | DO j = j_start, j_end |
---|
5370 | DO k=kts+1,ktf+1 |
---|
5371 | DO i = i_start, i_end |
---|
5372 | |
---|
5373 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
---|
5374 | ENDDO |
---|
5375 | ENDDO |
---|
5376 | DO k=kts+1,ktf |
---|
5377 | DO i = i_start, i_end |
---|
5378 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
---|
5379 | |
---|
5380 | ENDDO |
---|
5381 | ENDDO |
---|
5382 | |
---|
5383 | ! pick up flux contribution for w at the lid, wcs. 13 march 2004 |
---|
5384 | k = ktf+1 |
---|
5385 | DO i = i_start, i_end |
---|
5386 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
---|
5387 | ENDDO |
---|
5388 | |
---|
5389 | ENDDO |
---|
5390 | |
---|
5391 | ELSE |
---|
5392 | |
---|
5393 | WRITE (wrf_err_message ,*) ' advect_w, v_order not known ',vert_order |
---|
5394 | CALL wrf_error_fatal ( wrf_err_message ) |
---|
5395 | |
---|
5396 | ENDIF vert_order_test |
---|
5397 | |
---|
5398 | END SUBROUTINE advect_w |
---|
5399 | |
---|
5400 | !---------------------------------------------------------------- |
---|
5401 | |
---|
5402 | SUBROUTINE advect_scalar_pd ( field, field_old, tendency, & |
---|
5403 | ru, rv, rom, & |
---|
5404 | mut, mub, mu_old, & |
---|
5405 | config_flags, & |
---|
5406 | msfu, msfv, msft, & |
---|
5407 | fzm, fzp, & |
---|
5408 | rdx, rdy, rdzw, dt, & |
---|
5409 | ids, ide, jds, jde, kds, kde, & |
---|
5410 | ims, ime, jms, jme, kms, kme, & |
---|
5411 | its, ite, jts, jte, kts, kte ) |
---|
5412 | |
---|
5413 | ! this is a first cut at a positive definite advection option |
---|
5414 | ! for scalars in WRF. This version is memory intensive -> |
---|
5415 | ! we save 3d arrays of x, y and z both high and low order fluxes |
---|
5416 | ! (six in all). Alternatively, we could sweep in a direction |
---|
5417 | ! and lower the cost considerably. |
---|
5418 | |
---|
5419 | ! uses the Smolarkiewicz MWR 1989 approach, with addition of first-order |
---|
5420 | ! fluxes initially |
---|
5421 | |
---|
5422 | ! WCS, 3 December 2002, 24 February 2003 |
---|
5423 | |
---|
5424 | IMPLICIT NONE |
---|
5425 | |
---|
5426 | ! Input data |
---|
5427 | |
---|
5428 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
---|
5429 | |
---|
5430 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
---|
5431 | ims, ime, jms, jme, kms, kme, & |
---|
5432 | its, ite, jts, jte, kts, kte |
---|
5433 | |
---|
5434 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: field, & |
---|
5435 | field_old, & |
---|
5436 | ru, & |
---|
5437 | rv, & |
---|
5438 | rom |
---|
5439 | |
---|
5440 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut, mub, mu_old |
---|
5441 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
---|
5442 | |
---|
5443 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
---|
5444 | msfv, & |
---|
5445 | msft |
---|
5446 | |
---|
5447 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
---|
5448 | fzp, & |
---|
5449 | rdzw |
---|
5450 | |
---|
5451 | REAL , INTENT(IN ) :: rdx, & |
---|
5452 | rdy, & |
---|
5453 | dt |
---|
5454 | |
---|
5455 | ! Local data |
---|
5456 | |
---|
5457 | INTEGER :: i, j, k, itf, jtf, ktf |
---|
5458 | INTEGER :: i_start, i_end, j_start, j_end |
---|
5459 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
---|
5460 | INTEGER :: jmin, jmax, jp, jm, imin, imax |
---|
5461 | |
---|
5462 | REAL :: mrdx, mrdy, ub, vb, uw, vw, mu |
---|
5463 | |
---|
5464 | ! storage for high and low order fluxes |
---|
5465 | |
---|
5466 | REAL, DIMENSION( its-1:ite+2, kts:kte, jts-1:jte+2 ) :: fqx, fqy, fqz |
---|
5467 | REAL, DIMENSION( its-1:ite+2, kts:kte, jts-1:jte+2 ) :: fqxl, fqyl, fqzl |
---|
5468 | |
---|
5469 | INTEGER :: horz_order, vert_order |
---|
5470 | |
---|
5471 | LOGICAL :: degrade_xs, degrade_ys |
---|
5472 | LOGICAL :: degrade_xe, degrade_ye |
---|
5473 | |
---|
5474 | INTEGER :: jp1, jp0, jtmp |
---|
5475 | |
---|
5476 | REAL :: flux_out, ph_low, scale |
---|
5477 | REAL, PARAMETER :: eps=1.e-20 |
---|
5478 | |
---|
5479 | |
---|
5480 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
---|
5481 | |
---|
5482 | REAL :: flux3, flux4, flux5, flux6, flux_upwind |
---|
5483 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel, cr |
---|
5484 | |
---|
5485 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
5486 | (7./12.)*(q_i + q_im1) - (1./12.)*(q_ip1 + q_im2) |
---|
5487 | |
---|
5488 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
---|
5489 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
---|
5490 | sign(1.,ua)*(1./12.)*((q_ip1 - q_im2)-3.*(q_i-q_im1)) |
---|
5491 | |
---|
5492 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
5493 | (37./60.)*(q_i+q_im1) - (2./15.)*(q_ip1+q_im2) & |
---|
5494 | +(1./60.)*(q_ip2+q_im3) |
---|
5495 | |
---|
5496 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
---|
5497 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
---|
5498 | -sign(1.,ua)*(1./60.)*( & |
---|
5499 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) ) |
---|
5500 | |
---|
5501 | flux_upwind(q_im1, q_i, cr ) = 0.5*min( 1.0,(cr+abs(cr)))*q_im1 & |
---|
5502 | +0.5*max(-1.0,(cr-abs(cr)))*q_i |
---|
5503 | ! flux_upwind(q_im1, q_i, cr ) = 0. |
---|
5504 | |
---|
5505 | REAL :: dx,dy,dz |
---|
5506 | |
---|
5507 | LOGICAL, PARAMETER :: pd_limit = .true. |
---|
5508 | |
---|
5509 | ! set order for the advection schemes |
---|
5510 | |
---|
5511 | ! write(6,*) ' in pd advection routine ' |
---|
5512 | |
---|
5513 | ktf=MIN(kte,kde-1) |
---|
5514 | horz_order = config_flags%h_sca_adv_order |
---|
5515 | vert_order = config_flags%v_sca_adv_order |
---|
5516 | |
---|
5517 | ! determine boundary mods for flux operators |
---|
5518 | ! We degrade the flux operators from 3rd/4th order |
---|
5519 | ! to second order one gridpoint in from the boundaries for |
---|
5520 | ! all boundary conditions except periodic and symmetry - these |
---|
5521 | ! conditions have boundary zone data fill for correct application |
---|
5522 | ! of the higher order flux stencils |
---|
5523 | |
---|
5524 | degrade_xs = .true. |
---|
5525 | degrade_xe = .true. |
---|
5526 | degrade_ys = .true. |
---|
5527 | degrade_ye = .true. |
---|
5528 | |
---|
5529 | ! begin with horizontal flux divergence |
---|
5530 | ! here is the choice of flux operators |
---|
5531 | |
---|
5532 | |
---|
5533 | horizontal_order_test : IF( horz_order == 6 ) THEN |
---|
5534 | |
---|
5535 | IF( config_flags%periodic_x .or. & |
---|
5536 | config_flags%symmetric_xs .or. & |
---|
5537 | (its > ids+2) ) degrade_xs = .false. |
---|
5538 | IF( config_flags%periodic_x .or. & |
---|
5539 | config_flags%symmetric_xe .or. & |
---|
5540 | (ite < ide-3) ) degrade_xe = .false. |
---|
5541 | IF( config_flags%periodic_y .or. & |
---|
5542 | config_flags%symmetric_ys .or. & |
---|
5543 | (jts > jds+2) ) degrade_ys = .false. |
---|
5544 | IF( config_flags%periodic_y .or. & |
---|
5545 | config_flags%symmetric_ye .or. & |
---|
5546 | (jte < jde-3) ) degrade_ye = .false. |
---|
5547 | |
---|
5548 | !--------------- y - advection first |
---|
5549 | |
---|
5550 | !-- y flux compute; these bounds are for periodic and sym b.c. |
---|
5551 | |
---|
5552 | ktf=MIN(kte,kde-1) |
---|
5553 | i_start = its-1 |
---|
5554 | i_end = MIN(ite,ide-1)+1 |
---|
5555 | j_start = jts-1 |
---|
5556 | j_end = MIN(jte,jde-1)+1 |
---|
5557 | j_start_f = j_start |
---|
5558 | j_end_f = j_end+1 |
---|
5559 | |
---|
5560 | !-- modify loop bounds if open or specified |
---|
5561 | |
---|
5562 | IF(degrade_xs) i_start = its |
---|
5563 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
5564 | |
---|
5565 | IF(degrade_ys) then |
---|
5566 | j_start = MAX(jts,jds+1) |
---|
5567 | j_start_f = jds+3 |
---|
5568 | ENDIF |
---|
5569 | |
---|
5570 | IF(degrade_ye) then |
---|
5571 | j_end = MIN(jte,jde-2) |
---|
5572 | j_end_f = jde-3 |
---|
5573 | ENDIF |
---|
5574 | |
---|
5575 | ! compute fluxes, 6th order |
---|
5576 | |
---|
5577 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
---|
5578 | |
---|
5579 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
5580 | |
---|
5581 | DO k=kts,ktf |
---|
5582 | DO i = i_start, i_end |
---|
5583 | |
---|
5584 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
5585 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
5586 | vel = rv(i,k,j) |
---|
5587 | cr = vel*dt/dy/mu |
---|
5588 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
5589 | |
---|
5590 | fqy( i, k, j ) = vel*flux6( & |
---|
5591 | field(i,k,j-3), field(i,k,j-2), field(i,k,j-1), & |
---|
5592 | field(i,k,j ), field(i,k,j+1), field(i,k,j+2), vel ) |
---|
5593 | |
---|
5594 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
5595 | |
---|
5596 | ENDDO |
---|
5597 | ENDDO |
---|
5598 | |
---|
5599 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
5600 | |
---|
5601 | DO k=kts,ktf |
---|
5602 | DO i = i_start, i_end |
---|
5603 | |
---|
5604 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
5605 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
5606 | vel = rv(i,k,j) |
---|
5607 | cr = vel*dt/dy/mu |
---|
5608 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
5609 | |
---|
5610 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
---|
5611 | (field(i,k,j)+field(i,k,j-1)) |
---|
5612 | |
---|
5613 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
5614 | |
---|
5615 | ENDDO |
---|
5616 | ENDDO |
---|
5617 | |
---|
5618 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
5619 | |
---|
5620 | DO k=kts,ktf |
---|
5621 | DO i = i_start, i_end |
---|
5622 | |
---|
5623 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
5624 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
5625 | vel = rv(i,k,j) |
---|
5626 | cr = vel*dt/dy/mu |
---|
5627 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
5628 | |
---|
5629 | fqy( i, k, j ) = vel*flux4( & |
---|
5630 | field(i,k,j-2),field(i,k,j-1),field(i,k,j),field(i,k,j+1),vel ) |
---|
5631 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
5632 | |
---|
5633 | ENDDO |
---|
5634 | ENDDO |
---|
5635 | |
---|
5636 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
5637 | |
---|
5638 | DO k=kts,ktf |
---|
5639 | DO i = i_start, i_end |
---|
5640 | |
---|
5641 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
5642 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
5643 | vel = rv(i,k,j) |
---|
5644 | cr = vel*dt/dy/mu |
---|
5645 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
5646 | |
---|
5647 | fqy(i, k, j ) = 0.5*rv(i,k,j)* & |
---|
5648 | (field(i,k,j)+field(i,k,j-1)) |
---|
5649 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
5650 | |
---|
5651 | ENDDO |
---|
5652 | ENDDO |
---|
5653 | |
---|
5654 | ELSE IF ( j == jde-2 ) THEN ! 4th order flux 2 in from north boundary |
---|
5655 | |
---|
5656 | DO k=kts,ktf |
---|
5657 | DO i = i_start, i_end |
---|
5658 | |
---|
5659 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
5660 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
5661 | vel = rv(i,k,j) |
---|
5662 | cr = vel*dt/dy/mu |
---|
5663 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
5664 | |
---|
5665 | fqy( i, k, j) = vel*flux4( & |
---|
5666 | field(i,k,j-2),field(i,k,j-1), & |
---|
5667 | field(i,k,j),field(i,k,j+1),vel ) |
---|
5668 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
5669 | |
---|
5670 | ENDDO |
---|
5671 | ENDDO |
---|
5672 | |
---|
5673 | ENDIF |
---|
5674 | |
---|
5675 | ENDDO j_loop_y_flux_6 |
---|
5676 | |
---|
5677 | ! next, x flux |
---|
5678 | |
---|
5679 | !-- these bounds are for periodic and sym conditions |
---|
5680 | |
---|
5681 | i_start = its-1 |
---|
5682 | i_end = MIN(ite,ide-1)+1 |
---|
5683 | i_start_f = i_start |
---|
5684 | i_end_f = i_end+1 |
---|
5685 | |
---|
5686 | j_start = jts-1 |
---|
5687 | j_end = MIN(jte,jde-1)+1 |
---|
5688 | |
---|
5689 | !-- modify loop bounds for open and specified b.c |
---|
5690 | |
---|
5691 | IF(degrade_ys) j_start = jts |
---|
5692 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
---|
5693 | |
---|
5694 | IF(degrade_xs) then |
---|
5695 | i_start = MAX(ids+1,its) |
---|
5696 | i_start_f = i_start+2 |
---|
5697 | ENDIF |
---|
5698 | |
---|
5699 | IF(degrade_xe) then |
---|
5700 | i_end = MIN(ide-2,ite) |
---|
5701 | i_end_f = ide-3 |
---|
5702 | ENDIF |
---|
5703 | |
---|
5704 | ! compute fluxes |
---|
5705 | |
---|
5706 | DO j = j_start, j_end |
---|
5707 | |
---|
5708 | ! 6th order flux |
---|
5709 | |
---|
5710 | DO k=kts,ktf |
---|
5711 | DO i = i_start_f, i_end_f |
---|
5712 | |
---|
5713 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
5714 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
5715 | vel = ru(i,k,j) |
---|
5716 | cr = vel*dt/dx/mu |
---|
5717 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
5718 | |
---|
5719 | fqx( i,k,j ) = vel*flux6( field(i-3,k,j), field(i-2,k,j), & |
---|
5720 | field(i-1,k,j), field(i ,k,j), & |
---|
5721 | field(i+1,k,j), field(i+2,k,j), & |
---|
5722 | vel ) |
---|
5723 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
5724 | |
---|
5725 | ENDDO |
---|
5726 | ENDDO |
---|
5727 | |
---|
5728 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
5729 | |
---|
5730 | IF( degrade_xs ) THEN |
---|
5731 | |
---|
5732 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
5733 | i = ids+1 |
---|
5734 | DO k=kts,ktf |
---|
5735 | |
---|
5736 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
5737 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
5738 | vel = ru(i,k,j)/mu |
---|
5739 | cr = vel*dt/dx |
---|
5740 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
5741 | |
---|
5742 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
5743 | *(field(i,k,j)+field(i-1,k,j)) |
---|
5744 | |
---|
5745 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
5746 | |
---|
5747 | ENDDO |
---|
5748 | ENDIF |
---|
5749 | |
---|
5750 | i = ids+2 |
---|
5751 | DO k=kts,ktf |
---|
5752 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
5753 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
5754 | vel = ru(i,k,j) |
---|
5755 | cr = vel*dt/dx/mu |
---|
5756 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
5757 | fqx( i,k,j ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
5758 | field(i ,k,j), field(i+1,k,j), & |
---|
5759 | vel ) |
---|
5760 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
5761 | |
---|
5762 | ENDDO |
---|
5763 | |
---|
5764 | ENDIF |
---|
5765 | |
---|
5766 | IF( degrade_xe ) THEN |
---|
5767 | |
---|
5768 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
5769 | i = ide-1 |
---|
5770 | DO k=kts,ktf |
---|
5771 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
5772 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
5773 | vel = ru(i,k,j) |
---|
5774 | cr = vel*dt/dx/mu |
---|
5775 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
5776 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
5777 | *(field(i,k,j)+field(i-1,k,j)) |
---|
5778 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
5779 | |
---|
5780 | ENDDO |
---|
5781 | ENDIF |
---|
5782 | |
---|
5783 | i = ide-2 |
---|
5784 | DO k=kts,ktf |
---|
5785 | |
---|
5786 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
5787 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
5788 | vel = ru(i,k,j) |
---|
5789 | cr = vel*dt/dx/mu |
---|
5790 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
5791 | fqx( i,k,j ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
5792 | field(i ,k,j), field(i+1,k,j), & |
---|
5793 | vel ) |
---|
5794 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
5795 | |
---|
5796 | ENDDO |
---|
5797 | |
---|
5798 | ENDIF |
---|
5799 | |
---|
5800 | ENDDO ! enddo for outer J loop |
---|
5801 | |
---|
5802 | !--- end of 6th order horizontal flux calculation |
---|
5803 | |
---|
5804 | ELSE IF( horz_order == 5 ) THEN |
---|
5805 | |
---|
5806 | IF( config_flags%periodic_x .or. & |
---|
5807 | config_flags%symmetric_xs .or. & |
---|
5808 | (its > ids+2) ) degrade_xs = .false. |
---|
5809 | IF( config_flags%periodic_x .or. & |
---|
5810 | config_flags%symmetric_xe .or. & |
---|
5811 | (ite < ide-3) ) degrade_xe = .false. |
---|
5812 | IF( config_flags%periodic_y .or. & |
---|
5813 | config_flags%symmetric_ys .or. & |
---|
5814 | (jts > jds+2) ) degrade_ys = .false. |
---|
5815 | IF( config_flags%periodic_y .or. & |
---|
5816 | config_flags%symmetric_ye .or. & |
---|
5817 | (jte < jde-3) ) degrade_ye = .false. |
---|
5818 | |
---|
5819 | !--------------- y - advection first |
---|
5820 | |
---|
5821 | !-- y flux compute; these bounds are for periodic and sym b.c. |
---|
5822 | |
---|
5823 | ktf=MIN(kte,kde-1) |
---|
5824 | i_start = its-1 |
---|
5825 | i_end = MIN(ite,ide-1)+1 |
---|
5826 | j_start = jts-1 |
---|
5827 | j_end = MIN(jte,jde-1)+1 |
---|
5828 | j_start_f = j_start |
---|
5829 | j_end_f = j_end+1 |
---|
5830 | |
---|
5831 | !-- modify loop bounds if open or specified |
---|
5832 | |
---|
5833 | IF(degrade_xs) i_start = its |
---|
5834 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
5835 | |
---|
5836 | IF(degrade_ys) then |
---|
5837 | j_start = MAX(jts,jds+1) |
---|
5838 | j_start_f = jds+3 |
---|
5839 | ENDIF |
---|
5840 | |
---|
5841 | IF(degrade_ye) then |
---|
5842 | j_end = MIN(jte,jde-2) |
---|
5843 | j_end_f = jde-3 |
---|
5844 | ENDIF |
---|
5845 | |
---|
5846 | ! compute fluxes, 5th order |
---|
5847 | |
---|
5848 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
---|
5849 | |
---|
5850 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
5851 | |
---|
5852 | DO k=kts,ktf |
---|
5853 | DO i = i_start, i_end |
---|
5854 | |
---|
5855 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
5856 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
5857 | vel = rv(i,k,j) |
---|
5858 | cr = vel*dt/dy/mu |
---|
5859 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
5860 | |
---|
5861 | fqy( i, k, j ) = vel*flux5( & |
---|
5862 | field(i,k,j-3), field(i,k,j-2), field(i,k,j-1), & |
---|
5863 | field(i,k,j ), field(i,k,j+1), field(i,k,j+2), vel ) |
---|
5864 | |
---|
5865 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
5866 | |
---|
5867 | ENDDO |
---|
5868 | ENDDO |
---|
5869 | |
---|
5870 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
5871 | |
---|
5872 | DO k=kts,ktf |
---|
5873 | DO i = i_start, i_end |
---|
5874 | |
---|
5875 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
5876 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
5877 | vel = rv(i,k,j) |
---|
5878 | cr = vel*dt/dy/mu |
---|
5879 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
5880 | |
---|
5881 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
---|
5882 | (field(i,k,j)+field(i,k,j-1)) |
---|
5883 | |
---|
5884 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
5885 | |
---|
5886 | ENDDO |
---|
5887 | ENDDO |
---|
5888 | |
---|
5889 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
---|
5890 | |
---|
5891 | DO k=kts,ktf |
---|
5892 | DO i = i_start, i_end |
---|
5893 | |
---|
5894 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
5895 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
5896 | vel = rv(i,k,j) |
---|
5897 | cr = vel*dt/dy/mu |
---|
5898 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
5899 | |
---|
5900 | fqy( i, k, j ) = vel*flux3( & |
---|
5901 | field(i,k,j-2),field(i,k,j-1),field(i,k,j),field(i,k,j+1),vel ) |
---|
5902 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
5903 | |
---|
5904 | ENDDO |
---|
5905 | ENDDO |
---|
5906 | |
---|
5907 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
5908 | |
---|
5909 | DO k=kts,ktf |
---|
5910 | DO i = i_start, i_end |
---|
5911 | |
---|
5912 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
5913 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
5914 | vel = rv(i,k,j) |
---|
5915 | cr = vel*dt/dy/mu |
---|
5916 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
5917 | |
---|
5918 | fqy(i, k, j ) = 0.5*rv(i,k,j)* & |
---|
5919 | (field(i,k,j)+field(i,k,j-1)) |
---|
5920 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
5921 | |
---|
5922 | ENDDO |
---|
5923 | ENDDO |
---|
5924 | |
---|
5925 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
---|
5926 | |
---|
5927 | DO k=kts,ktf |
---|
5928 | DO i = i_start, i_end |
---|
5929 | |
---|
5930 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
5931 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
5932 | vel = rv(i,k,j) |
---|
5933 | cr = vel*dt/dy/mu |
---|
5934 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
5935 | |
---|
5936 | fqy( i, k, j) = vel*flux3( & |
---|
5937 | field(i,k,j-2),field(i,k,j-1), & |
---|
5938 | field(i,k,j),field(i,k,j+1),vel ) |
---|
5939 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
5940 | |
---|
5941 | ENDDO |
---|
5942 | ENDDO |
---|
5943 | |
---|
5944 | ENDIF |
---|
5945 | |
---|
5946 | ENDDO j_loop_y_flux_5 |
---|
5947 | |
---|
5948 | ! next, x flux |
---|
5949 | |
---|
5950 | !-- these bounds are for periodic and sym conditions |
---|
5951 | |
---|
5952 | i_start = its-1 |
---|
5953 | i_end = MIN(ite,ide-1)+1 |
---|
5954 | i_start_f = i_start |
---|
5955 | i_end_f = i_end+1 |
---|
5956 | |
---|
5957 | j_start = jts-1 |
---|
5958 | j_end = MIN(jte,jde-1)+1 |
---|
5959 | |
---|
5960 | !-- modify loop bounds for open and specified b.c |
---|
5961 | |
---|
5962 | IF(degrade_ys) j_start = jts |
---|
5963 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
---|
5964 | |
---|
5965 | IF(degrade_xs) then |
---|
5966 | i_start = MAX(ids+1,its) |
---|
5967 | i_start_f = i_start+2 |
---|
5968 | ENDIF |
---|
5969 | |
---|
5970 | IF(degrade_xe) then |
---|
5971 | i_end = MIN(ide-2,ite) |
---|
5972 | i_end_f = ide-3 |
---|
5973 | ENDIF |
---|
5974 | |
---|
5975 | ! compute fluxes |
---|
5976 | |
---|
5977 | DO j = j_start, j_end |
---|
5978 | |
---|
5979 | ! 5th order flux |
---|
5980 | |
---|
5981 | DO k=kts,ktf |
---|
5982 | DO i = i_start_f, i_end_f |
---|
5983 | |
---|
5984 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
5985 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
5986 | vel = ru(i,k,j) |
---|
5987 | cr = vel*dt/dx/mu |
---|
5988 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
5989 | |
---|
5990 | fqx( i,k,j ) = vel*flux5( field(i-3,k,j), field(i-2,k,j), & |
---|
5991 | field(i-1,k,j), field(i ,k,j), & |
---|
5992 | field(i+1,k,j), field(i+2,k,j), & |
---|
5993 | vel ) |
---|
5994 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
5995 | |
---|
5996 | ENDDO |
---|
5997 | ENDDO |
---|
5998 | |
---|
5999 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
6000 | |
---|
6001 | IF( degrade_xs ) THEN |
---|
6002 | |
---|
6003 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
6004 | i = ids+1 |
---|
6005 | DO k=kts,ktf |
---|
6006 | |
---|
6007 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6008 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6009 | vel = ru(i,k,j)/mu |
---|
6010 | cr = vel*dt/dx |
---|
6011 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6012 | |
---|
6013 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
6014 | *(field(i,k,j)+field(i-1,k,j)) |
---|
6015 | |
---|
6016 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6017 | |
---|
6018 | ENDDO |
---|
6019 | ENDIF |
---|
6020 | |
---|
6021 | i = ids+2 |
---|
6022 | DO k=kts,ktf |
---|
6023 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6024 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6025 | vel = ru(i,k,j) |
---|
6026 | cr = vel*dt/dx/mu |
---|
6027 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6028 | fqx( i,k,j ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
6029 | field(i ,k,j), field(i+1,k,j), & |
---|
6030 | vel ) |
---|
6031 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6032 | |
---|
6033 | ENDDO |
---|
6034 | |
---|
6035 | ENDIF |
---|
6036 | |
---|
6037 | IF( degrade_xe ) THEN |
---|
6038 | |
---|
6039 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
6040 | i = ide-1 |
---|
6041 | DO k=kts,ktf |
---|
6042 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6043 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6044 | vel = ru(i,k,j) |
---|
6045 | cr = vel*dt/dx/mu |
---|
6046 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6047 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
6048 | *(field(i,k,j)+field(i-1,k,j)) |
---|
6049 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6050 | |
---|
6051 | ENDDO |
---|
6052 | ENDIF |
---|
6053 | |
---|
6054 | i = ide-2 |
---|
6055 | DO k=kts,ktf |
---|
6056 | |
---|
6057 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6058 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6059 | vel = ru(i,k,j) |
---|
6060 | cr = vel*dt/dx/mu |
---|
6061 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6062 | fqx( i,k,j ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
6063 | field(i ,k,j), field(i+1,k,j), & |
---|
6064 | vel ) |
---|
6065 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6066 | |
---|
6067 | ENDDO |
---|
6068 | |
---|
6069 | ENDIF |
---|
6070 | |
---|
6071 | ENDDO ! enddo for outer J loop |
---|
6072 | |
---|
6073 | !--- end of 5th order horizontal flux calculation |
---|
6074 | |
---|
6075 | ELSE IF( horz_order == 4 ) THEN |
---|
6076 | |
---|
6077 | IF( config_flags%periodic_x .or. & |
---|
6078 | config_flags%symmetric_xs .or. & |
---|
6079 | (its > ids+1) ) degrade_xs = .false. |
---|
6080 | IF( config_flags%periodic_x .or. & |
---|
6081 | config_flags%symmetric_xe .or. & |
---|
6082 | (ite < ide-2) ) degrade_xe = .false. |
---|
6083 | IF( config_flags%periodic_y .or. & |
---|
6084 | config_flags%symmetric_ys .or. & |
---|
6085 | (jts > jds+1) ) degrade_ys = .false. |
---|
6086 | IF( config_flags%periodic_y .or. & |
---|
6087 | config_flags%symmetric_ye .or. & |
---|
6088 | (jte < jde-2) ) degrade_ye = .false. |
---|
6089 | |
---|
6090 | !--------------- y - advection first |
---|
6091 | |
---|
6092 | !-- y flux compute; these bounds are for periodic and sym b.c. |
---|
6093 | |
---|
6094 | ktf=MIN(kte,kde-1) |
---|
6095 | i_start = its-1 |
---|
6096 | i_end = MIN(ite,ide-1)+1 |
---|
6097 | j_start = jts-1 |
---|
6098 | j_end = MIN(jte,jde-1)+1 |
---|
6099 | j_start_f = j_start |
---|
6100 | j_end_f = j_end+1 |
---|
6101 | |
---|
6102 | !-- modify loop bounds if open or specified |
---|
6103 | |
---|
6104 | IF(degrade_xs) i_start = its |
---|
6105 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
6106 | |
---|
6107 | IF(degrade_ys) then |
---|
6108 | j_start = MAX(jts,jds+1) |
---|
6109 | j_start_f = jds+2 |
---|
6110 | ENDIF |
---|
6111 | |
---|
6112 | IF(degrade_ye) then |
---|
6113 | j_end = MIN(jte,jde-2) |
---|
6114 | j_end_f = jde-2 |
---|
6115 | ENDIF |
---|
6116 | |
---|
6117 | ! compute fluxes, 4th order |
---|
6118 | |
---|
6119 | j_loop_y_flux_4 : DO j = j_start, j_end+1 |
---|
6120 | |
---|
6121 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
6122 | |
---|
6123 | DO k=kts,ktf |
---|
6124 | DO i = i_start, i_end |
---|
6125 | |
---|
6126 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6127 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6128 | vel = rv(i,k,j) |
---|
6129 | cr = vel*dt/dy/mu |
---|
6130 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6131 | |
---|
6132 | fqy( i, k, j ) = vel*flux4( field(i,k,j-2), field(i,k,j-1), & |
---|
6133 | field(i,k,j ), field(i,k,j+1), vel ) |
---|
6134 | |
---|
6135 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6136 | |
---|
6137 | ENDDO |
---|
6138 | ENDDO |
---|
6139 | |
---|
6140 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
6141 | |
---|
6142 | DO k=kts,ktf |
---|
6143 | DO i = i_start, i_end |
---|
6144 | |
---|
6145 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6146 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6147 | vel = rv(i,k,j) |
---|
6148 | cr = vel*dt/dy/mu |
---|
6149 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6150 | |
---|
6151 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
---|
6152 | (field(i,k,j)+field(i,k,j-1)) |
---|
6153 | |
---|
6154 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6155 | |
---|
6156 | ENDDO |
---|
6157 | ENDDO |
---|
6158 | |
---|
6159 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
6160 | |
---|
6161 | DO k=kts,ktf |
---|
6162 | DO i = i_start, i_end |
---|
6163 | |
---|
6164 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6165 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6166 | vel = rv(i,k,j) |
---|
6167 | cr = vel*dt/dy/mu |
---|
6168 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6169 | |
---|
6170 | fqy(i, k, j ) = 0.5*rv(i,k,j)* & |
---|
6171 | (field(i,k,j)+field(i,k,j-1)) |
---|
6172 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6173 | |
---|
6174 | ENDDO |
---|
6175 | ENDDO |
---|
6176 | |
---|
6177 | ENDIF |
---|
6178 | |
---|
6179 | ENDDO j_loop_y_flux_4 |
---|
6180 | |
---|
6181 | ! next, x flux |
---|
6182 | |
---|
6183 | !-- these bounds are for periodic and sym conditions |
---|
6184 | |
---|
6185 | i_start = its-1 |
---|
6186 | i_end = MIN(ite,ide-1)+1 |
---|
6187 | i_start_f = i_start |
---|
6188 | i_end_f = i_end+1 |
---|
6189 | |
---|
6190 | j_start = jts-1 |
---|
6191 | j_end = MIN(jte,jde-1)+1 |
---|
6192 | |
---|
6193 | !-- modify loop bounds for open and specified b.c |
---|
6194 | |
---|
6195 | IF(degrade_ys) j_start = jts |
---|
6196 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
---|
6197 | |
---|
6198 | IF(degrade_xs) then |
---|
6199 | i_start = MAX(ids+1,its) |
---|
6200 | i_start_f = i_start+1 |
---|
6201 | ENDIF |
---|
6202 | |
---|
6203 | IF(degrade_xe) then |
---|
6204 | i_end = MIN(ide-2,ite) |
---|
6205 | i_end_f = ide-2 |
---|
6206 | ENDIF |
---|
6207 | |
---|
6208 | ! compute fluxes |
---|
6209 | |
---|
6210 | DO j = j_start, j_end |
---|
6211 | |
---|
6212 | ! 4th order flux |
---|
6213 | |
---|
6214 | DO k=kts,ktf |
---|
6215 | DO i = i_start_f, i_end_f |
---|
6216 | |
---|
6217 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6218 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6219 | vel = ru(i,k,j) |
---|
6220 | cr = vel*dt/dx/mu |
---|
6221 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6222 | |
---|
6223 | fqx( i,k,j ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
---|
6224 | field(i ,k,j), field(i+1,k,j), vel ) |
---|
6225 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6226 | |
---|
6227 | ENDDO |
---|
6228 | ENDDO |
---|
6229 | |
---|
6230 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
6231 | |
---|
6232 | IF( degrade_xs ) THEN |
---|
6233 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
6234 | i = ids+1 |
---|
6235 | DO k=kts,ktf |
---|
6236 | |
---|
6237 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6238 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6239 | vel = ru(i,k,j)/mu |
---|
6240 | cr = vel*dt/dx |
---|
6241 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6242 | |
---|
6243 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
6244 | *(field(i,k,j)+field(i-1,k,j)) |
---|
6245 | |
---|
6246 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6247 | |
---|
6248 | ENDDO |
---|
6249 | ENDIF |
---|
6250 | ENDIF |
---|
6251 | |
---|
6252 | IF( degrade_xe ) THEN |
---|
6253 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
6254 | i = ide-1 |
---|
6255 | DO k=kts,ktf |
---|
6256 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6257 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6258 | vel = ru(i,k,j) |
---|
6259 | cr = vel*dt/dx/mu |
---|
6260 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6261 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
6262 | *(field(i,k,j)+field(i-1,k,j)) |
---|
6263 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6264 | |
---|
6265 | ENDDO |
---|
6266 | ENDIF |
---|
6267 | ENDIF |
---|
6268 | |
---|
6269 | ENDDO ! enddo for outer J loop |
---|
6270 | |
---|
6271 | !--- end of 4th order horizontal flux calculation |
---|
6272 | |
---|
6273 | ELSE IF( horz_order == 3 ) THEN |
---|
6274 | |
---|
6275 | IF( config_flags%periodic_x .or. & |
---|
6276 | config_flags%symmetric_xs .or. & |
---|
6277 | (its > ids+1) ) degrade_xs = .false. |
---|
6278 | IF( config_flags%periodic_x .or. & |
---|
6279 | config_flags%symmetric_xe .or. & |
---|
6280 | (ite < ide-2) ) degrade_xe = .false. |
---|
6281 | IF( config_flags%periodic_y .or. & |
---|
6282 | config_flags%symmetric_ys .or. & |
---|
6283 | (jts > jds+1) ) degrade_ys = .false. |
---|
6284 | IF( config_flags%periodic_y .or. & |
---|
6285 | config_flags%symmetric_ye .or. & |
---|
6286 | (jte < jde-2) ) degrade_ye = .false. |
---|
6287 | |
---|
6288 | !--------------- y - advection first |
---|
6289 | |
---|
6290 | !-- y flux compute; these bounds are for periodic and sym b.c. |
---|
6291 | |
---|
6292 | ktf=MIN(kte,kde-1) |
---|
6293 | i_start = its-1 |
---|
6294 | i_end = MIN(ite,ide-1)+1 |
---|
6295 | j_start = jts-1 |
---|
6296 | j_end = MIN(jte,jde-1)+1 |
---|
6297 | j_start_f = j_start |
---|
6298 | j_end_f = j_end+1 |
---|
6299 | |
---|
6300 | !-- modify loop bounds if open or specified |
---|
6301 | |
---|
6302 | IF(degrade_xs) i_start = its |
---|
6303 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
6304 | |
---|
6305 | IF(degrade_ys) then |
---|
6306 | j_start = MAX(jts,jds+1) |
---|
6307 | j_start_f = jds+2 |
---|
6308 | ENDIF |
---|
6309 | |
---|
6310 | IF(degrade_ye) then |
---|
6311 | j_end = MIN(jte,jde-2) |
---|
6312 | j_end_f = jde-2 |
---|
6313 | ENDIF |
---|
6314 | |
---|
6315 | ! compute fluxes, 3rd order |
---|
6316 | |
---|
6317 | j_loop_y_flux_3 : DO j = j_start, j_end+1 |
---|
6318 | |
---|
6319 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
---|
6320 | |
---|
6321 | DO k=kts,ktf |
---|
6322 | DO i = i_start, i_end |
---|
6323 | |
---|
6324 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6325 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6326 | vel = rv(i,k,j) |
---|
6327 | cr = vel*dt/dy/mu |
---|
6328 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6329 | |
---|
6330 | fqy( i, k, j ) = vel*flux3( field(i,k,j-2), field(i,k,j-1), & |
---|
6331 | field(i,k,j ), field(i,k,j+1), vel ) |
---|
6332 | |
---|
6333 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6334 | |
---|
6335 | ENDDO |
---|
6336 | ENDDO |
---|
6337 | |
---|
6338 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
---|
6339 | |
---|
6340 | DO k=kts,ktf |
---|
6341 | DO i = i_start, i_end |
---|
6342 | |
---|
6343 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6344 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6345 | vel = rv(i,k,j) |
---|
6346 | cr = vel*dt/dy/mu |
---|
6347 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6348 | |
---|
6349 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
---|
6350 | (field(i,k,j)+field(i,k,j-1)) |
---|
6351 | |
---|
6352 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6353 | |
---|
6354 | ENDDO |
---|
6355 | ENDDO |
---|
6356 | |
---|
6357 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
---|
6358 | |
---|
6359 | DO k=kts,ktf |
---|
6360 | DO i = i_start, i_end |
---|
6361 | |
---|
6362 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6363 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6364 | vel = rv(i,k,j) |
---|
6365 | cr = vel*dt/dy/mu |
---|
6366 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6367 | |
---|
6368 | fqy(i, k, j ) = 0.5*rv(i,k,j)* & |
---|
6369 | (field(i,k,j)+field(i,k,j-1)) |
---|
6370 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6371 | |
---|
6372 | ENDDO |
---|
6373 | ENDDO |
---|
6374 | |
---|
6375 | ENDIF |
---|
6376 | |
---|
6377 | ENDDO j_loop_y_flux_3 |
---|
6378 | |
---|
6379 | ! next, x flux |
---|
6380 | |
---|
6381 | !-- these bounds are for periodic and sym conditions |
---|
6382 | |
---|
6383 | i_start = its-1 |
---|
6384 | i_end = MIN(ite,ide-1)+1 |
---|
6385 | i_start_f = i_start |
---|
6386 | i_end_f = i_end+1 |
---|
6387 | |
---|
6388 | j_start = jts-1 |
---|
6389 | j_end = MIN(jte,jde-1)+1 |
---|
6390 | |
---|
6391 | !-- modify loop bounds for open and specified b.c |
---|
6392 | |
---|
6393 | IF(degrade_ys) j_start = jts |
---|
6394 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
---|
6395 | |
---|
6396 | IF(degrade_xs) then |
---|
6397 | i_start = MAX(ids+1,its) |
---|
6398 | i_start_f = i_start+1 |
---|
6399 | ENDIF |
---|
6400 | |
---|
6401 | IF(degrade_xe) then |
---|
6402 | i_end = MIN(ide-2,ite) |
---|
6403 | i_end_f = ide-2 |
---|
6404 | ENDIF |
---|
6405 | |
---|
6406 | ! compute fluxes |
---|
6407 | |
---|
6408 | DO j = j_start, j_end |
---|
6409 | |
---|
6410 | ! 4th order flux |
---|
6411 | |
---|
6412 | DO k=kts,ktf |
---|
6413 | DO i = i_start_f, i_end_f |
---|
6414 | |
---|
6415 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6416 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6417 | vel = ru(i,k,j) |
---|
6418 | cr = vel*dt/dx/mu |
---|
6419 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6420 | |
---|
6421 | fqx( i,k,j ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
6422 | field(i ,k,j), field(i+1,k,j), vel ) |
---|
6423 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6424 | |
---|
6425 | ENDDO |
---|
6426 | ENDDO |
---|
6427 | |
---|
6428 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
---|
6429 | |
---|
6430 | IF( degrade_xs ) THEN |
---|
6431 | |
---|
6432 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
---|
6433 | i = ids+1 |
---|
6434 | DO k=kts,ktf |
---|
6435 | |
---|
6436 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6437 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6438 | vel = ru(i,k,j)/mu |
---|
6439 | cr = vel*dt/dx |
---|
6440 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6441 | |
---|
6442 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
6443 | *(field(i,k,j)+field(i-1,k,j)) |
---|
6444 | |
---|
6445 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6446 | |
---|
6447 | ENDDO |
---|
6448 | ENDIF |
---|
6449 | ENDIF |
---|
6450 | |
---|
6451 | IF( degrade_xe ) THEN |
---|
6452 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
---|
6453 | i = ide-1 |
---|
6454 | DO k=kts,ktf |
---|
6455 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6456 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6457 | vel = ru(i,k,j) |
---|
6458 | cr = vel*dt/dx/mu |
---|
6459 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6460 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
---|
6461 | *(field(i,k,j)+field(i-1,k,j)) |
---|
6462 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6463 | |
---|
6464 | ENDDO |
---|
6465 | ENDIF |
---|
6466 | ENDIF |
---|
6467 | |
---|
6468 | ENDDO ! enddo for outer J loop |
---|
6469 | |
---|
6470 | !--- end of 3rd order horizontal flux calculation |
---|
6471 | |
---|
6472 | |
---|
6473 | ELSE IF( horz_order == 2 ) THEN |
---|
6474 | |
---|
6475 | IF( config_flags%periodic_x .or. & |
---|
6476 | config_flags%symmetric_xs .or. & |
---|
6477 | (its > ids) ) degrade_xs = .false. |
---|
6478 | IF( config_flags%periodic_x .or. & |
---|
6479 | config_flags%symmetric_xe .or. & |
---|
6480 | (ite < ide-1) ) degrade_xe = .false. |
---|
6481 | IF( config_flags%periodic_y .or. & |
---|
6482 | config_flags%symmetric_ys .or. & |
---|
6483 | (jts > jds) ) degrade_ys = .false. |
---|
6484 | IF( config_flags%periodic_y .or. & |
---|
6485 | config_flags%symmetric_ye .or. & |
---|
6486 | (jte < jde-1) ) degrade_ye = .false. |
---|
6487 | |
---|
6488 | !-- y flux compute; these bounds are for periodic and sym b.c. |
---|
6489 | |
---|
6490 | ktf=MIN(kte,kde-1) |
---|
6491 | i_start = its-1 |
---|
6492 | i_end = MIN(ite,ide-1)+1 |
---|
6493 | j_start = jts-1 |
---|
6494 | j_end = MIN(jte,jde-1)+1 |
---|
6495 | |
---|
6496 | !-- modify loop bounds if open or specified |
---|
6497 | |
---|
6498 | IF(degrade_xs) i_start = its |
---|
6499 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
6500 | IF(degrade_ys) j_start = MAX(jts,jds+1) |
---|
6501 | IF(degrade_ye) j_end = MIN(jte,jde-2) |
---|
6502 | |
---|
6503 | ! compute fluxes, 2nd order, y flux |
---|
6504 | |
---|
6505 | DO j = j_start, j_end+1 |
---|
6506 | DO k=kts,ktf |
---|
6507 | DO i = i_start, i_end |
---|
6508 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
---|
6509 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
---|
6510 | vel = rv(i,k,j) |
---|
6511 | cr = vel*dt/dy/mu |
---|
6512 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
---|
6513 | |
---|
6514 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
---|
6515 | (field(i,k,j)+field(i,k,j-1)) |
---|
6516 | |
---|
6517 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
---|
6518 | ENDDO |
---|
6519 | ENDDO |
---|
6520 | ENDDO |
---|
6521 | |
---|
6522 | ! next, x flux |
---|
6523 | |
---|
6524 | DO j = j_start, j_end |
---|
6525 | DO k=kts,ktf |
---|
6526 | DO i = i_start, i_end+1 |
---|
6527 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
---|
6528 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
---|
6529 | vel = ru(i,k,j) |
---|
6530 | cr = vel*dt/dx/mu |
---|
6531 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
---|
6532 | fqx( i,k,j ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
---|
6533 | field(i ,k,j), field(i+1,k,j), & |
---|
6534 | vel ) |
---|
6535 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
---|
6536 | ENDDO |
---|
6537 | ENDDO |
---|
6538 | ENDDO |
---|
6539 | |
---|
6540 | !--- end of 3nd order horizontal flux calculation |
---|
6541 | |
---|
6542 | ELSE |
---|
6543 | |
---|
6544 | WRITE ( wrf_err_message , * ) 'module_advect: advect_scalar_pd, h_order not known ',horz_order |
---|
6545 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
---|
6546 | |
---|
6547 | ENDIF horizontal_order_test |
---|
6548 | |
---|
6549 | ! pick up the rest of the horizontal radiation boundary conditions. |
---|
6550 | ! (these are the computations that don't require 'cb'. |
---|
6551 | ! first, set to index ranges |
---|
6552 | |
---|
6553 | i_start = its |
---|
6554 | i_end = MIN(ite,ide-1) |
---|
6555 | j_start = jts |
---|
6556 | j_end = MIN(jte,jde-1) |
---|
6557 | |
---|
6558 | ! compute x (u) conditions for v, w, or scalar |
---|
6559 | |
---|
6560 | IF( (config_flags%open_xs) .and. (its == ids) ) THEN |
---|
6561 | |
---|
6562 | DO j = j_start, j_end |
---|
6563 | DO k = kts, ktf |
---|
6564 | ub = MIN( 0.5*(ru(its,k,j)+ru(its+1,k,j)), 0. ) |
---|
6565 | tendency(its,k,j) = tendency(its,k,j) & |
---|
6566 | - rdx*( & |
---|
6567 | ub*( field_old(its+1,k,j) & |
---|
6568 | - field_old(its ,k,j) ) + & |
---|
6569 | field(its,k,j)*(ru(its+1,k,j)-ru(its,k,j)) & |
---|
6570 | ) |
---|
6571 | ENDDO |
---|
6572 | ENDDO |
---|
6573 | |
---|
6574 | ENDIF |
---|
6575 | |
---|
6576 | IF( (config_flags%open_xe) .and. (ite == ide) ) THEN |
---|
6577 | |
---|
6578 | DO j = j_start, j_end |
---|
6579 | DO k = kts, ktf |
---|
6580 | ub = MAX( 0.5*(ru(ite-1,k,j)+ru(ite,k,j)), 0. ) |
---|
6581 | tendency(i_end,k,j) = tendency(i_end,k,j) & |
---|
6582 | - rdx*( & |
---|
6583 | ub*( field_old(i_end ,k,j) & |
---|
6584 | - field_old(i_end-1,k,j) ) + & |
---|
6585 | field(i_end,k,j)*(ru(ite,k,j)-ru(ite-1,k,j)) & |
---|
6586 | ) |
---|
6587 | ENDDO |
---|
6588 | ENDDO |
---|
6589 | |
---|
6590 | ENDIF |
---|
6591 | |
---|
6592 | IF( (config_flags%open_ys) .and. (jts == jds) ) THEN |
---|
6593 | |
---|
6594 | DO i = i_start, i_end |
---|
6595 | DO k = kts, ktf |
---|
6596 | vb = MIN( 0.5*(rv(i,k,jts)+rv(i,k,jts+1)), 0. ) |
---|
6597 | tendency(i,k,jts) = tendency(i,k,jts) & |
---|
6598 | - rdy*( & |
---|
6599 | vb*( field_old(i,k,jts+1) & |
---|
6600 | - field_old(i,k,jts ) ) + & |
---|
6601 | field(i,k,jts)*(rv(i,k,jts+1)-rv(i,k,jts)) & |
---|
6602 | ) |
---|
6603 | ENDDO |
---|
6604 | ENDDO |
---|
6605 | |
---|
6606 | ENDIF |
---|
6607 | |
---|
6608 | IF( (config_flags%open_ye) .and. (jte == jde)) THEN |
---|
6609 | |
---|
6610 | DO i = i_start, i_end |
---|
6611 | DO k = kts, ktf |
---|
6612 | vb = MAX( 0.5*(rv(i,k,jte-1)+rv(i,k,jte)), 0. ) |
---|
6613 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
---|
6614 | - rdy*( & |
---|
6615 | vb*( field_old(i,k,j_end ) & |
---|
6616 | - field_old(i,k,j_end-1) ) + & |
---|
6617 | field(i,k,j_end)*(rv(i,k,jte)-rv(i,k,jte-1)) & |
---|
6618 | ) |
---|
6619 | ENDDO |
---|
6620 | ENDDO |
---|
6621 | |
---|
6622 | ENDIF |
---|
6623 | |
---|
6624 | !-------------------- vertical advection |
---|
6625 | |
---|
6626 | !-- loop bounds for periodic or sym conditions |
---|
6627 | |
---|
6628 | i_start = its-1 |
---|
6629 | i_end = MIN(ite,ide-1)+1 |
---|
6630 | j_start = jts-1 |
---|
6631 | j_end = MIN(jte,jde-1)+1 |
---|
6632 | |
---|
6633 | !-- loop bounds for open or specified conditions |
---|
6634 | |
---|
6635 | IF(degrade_xs) i_start = its |
---|
6636 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
6637 | IF(degrade_ys) j_start = jts |
---|
6638 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
---|
6639 | |
---|
6640 | vert_order_test : IF (vert_order == 6) THEN |
---|
6641 | |
---|
6642 | DO j = j_start, j_end |
---|
6643 | |
---|
6644 | DO i = i_start, i_end |
---|
6645 | fqz(i,1,j) = 0. |
---|
6646 | fqzl(i,1,j) = 0. |
---|
6647 | fqz(i,kde,j) = 0. |
---|
6648 | fqzl(i,kde,j) = 0. |
---|
6649 | ENDDO |
---|
6650 | |
---|
6651 | DO k=kts+3,ktf-2 |
---|
6652 | DO i = i_start, i_end |
---|
6653 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6654 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6655 | vel = rom(i,k,j) |
---|
6656 | cr = vel*dt/dz/mu |
---|
6657 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6658 | |
---|
6659 | fqz(i,k,j) = vel*flux6( field(i,k-3,j), field(i,k-2,j), field(i,k-1,j), & |
---|
6660 | field(i,k ,j), field(i,k+1,j), field(i,k+2,j), -vel ) |
---|
6661 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6662 | ENDDO |
---|
6663 | ENDDO |
---|
6664 | |
---|
6665 | DO i = i_start, i_end |
---|
6666 | |
---|
6667 | k=kts+1 |
---|
6668 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6669 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6670 | vel = rom(i,k,j) |
---|
6671 | cr = vel*dt/dz/mu |
---|
6672 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6673 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
6674 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6675 | |
---|
6676 | k=kts+2 |
---|
6677 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6678 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6679 | vel = rom(i,k,j) |
---|
6680 | cr = vel*dt/dz/mu |
---|
6681 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6682 | |
---|
6683 | fqz(i,k,j) = vel*flux4( & |
---|
6684 | field(i,k-2,j), field(i,k-1,j), & |
---|
6685 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
6686 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6687 | |
---|
6688 | k=ktf-1 |
---|
6689 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6690 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6691 | vel = rom(i,k,j) |
---|
6692 | cr = vel*dt/dz/mu |
---|
6693 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6694 | |
---|
6695 | fqz(i,k,j) = vel*flux4( & |
---|
6696 | field(i,k-2,j), field(i,k-1,j), & |
---|
6697 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
6698 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6699 | |
---|
6700 | k=ktf |
---|
6701 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6702 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6703 | vel = rom(i,k,j) |
---|
6704 | cr = vel*dt/dz/mu |
---|
6705 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6706 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
6707 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6708 | |
---|
6709 | ENDDO |
---|
6710 | |
---|
6711 | ENDDO |
---|
6712 | |
---|
6713 | ELSE IF (vert_order == 5) THEN |
---|
6714 | |
---|
6715 | DO j = j_start, j_end |
---|
6716 | |
---|
6717 | DO i = i_start, i_end |
---|
6718 | fqz(i,1,j) = 0. |
---|
6719 | fqzl(i,1,j) = 0. |
---|
6720 | fqz(i,kde,j) = 0. |
---|
6721 | fqzl(i,kde,j) = 0. |
---|
6722 | ENDDO |
---|
6723 | |
---|
6724 | DO k=kts+3,ktf-2 |
---|
6725 | DO i = i_start, i_end |
---|
6726 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6727 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6728 | vel = rom(i,k,j) |
---|
6729 | cr = vel*dt/dz/mu |
---|
6730 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6731 | |
---|
6732 | fqz(i,k,j) = vel*flux5( field(i,k-3,j), field(i,k-2,j), field(i,k-1,j), & |
---|
6733 | field(i,k ,j), field(i,k+1,j), field(i,k+2,j), -vel ) |
---|
6734 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6735 | ENDDO |
---|
6736 | ENDDO |
---|
6737 | |
---|
6738 | DO i = i_start, i_end |
---|
6739 | |
---|
6740 | k=kts+1 |
---|
6741 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6742 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6743 | vel = rom(i,k,j) |
---|
6744 | cr = vel*dt/dz/mu |
---|
6745 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6746 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
6747 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6748 | |
---|
6749 | k=kts+2 |
---|
6750 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6751 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6752 | vel = rom(i,k,j) |
---|
6753 | cr = vel*dt/dz/mu |
---|
6754 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6755 | |
---|
6756 | fqz(i,k,j) = vel*flux3( & |
---|
6757 | field(i,k-2,j), field(i,k-1,j), & |
---|
6758 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
6759 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6760 | |
---|
6761 | k=ktf-1 |
---|
6762 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6763 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6764 | vel = rom(i,k,j) |
---|
6765 | cr = vel*dt/dz/mu |
---|
6766 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6767 | |
---|
6768 | fqz(i,k,j) = vel*flux3( & |
---|
6769 | field(i,k-2,j), field(i,k-1,j), & |
---|
6770 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
6771 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6772 | |
---|
6773 | k=ktf |
---|
6774 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6775 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6776 | vel = rom(i,k,j) |
---|
6777 | cr = vel*dt/dz/mu |
---|
6778 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6779 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
6780 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6781 | |
---|
6782 | ENDDO |
---|
6783 | |
---|
6784 | ENDDO |
---|
6785 | |
---|
6786 | ELSE IF (vert_order == 4) THEN |
---|
6787 | |
---|
6788 | DO j = j_start, j_end |
---|
6789 | |
---|
6790 | DO i = i_start, i_end |
---|
6791 | fqz(i,1,j) = 0. |
---|
6792 | fqzl(i,1,j) = 0. |
---|
6793 | fqz(i,kde,j) = 0. |
---|
6794 | fqzl(i,kde,j) = 0. |
---|
6795 | ENDDO |
---|
6796 | |
---|
6797 | DO k=kts+2,ktf-1 |
---|
6798 | DO i = i_start, i_end |
---|
6799 | |
---|
6800 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6801 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6802 | vel = rom(i,k,j) |
---|
6803 | cr = vel*dt/dz/mu |
---|
6804 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6805 | |
---|
6806 | fqz(i,k,j) = vel*flux4( & |
---|
6807 | field(i,k-2,j), field(i,k-1,j), & |
---|
6808 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
6809 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6810 | ENDDO |
---|
6811 | ENDDO |
---|
6812 | |
---|
6813 | DO i = i_start, i_end |
---|
6814 | |
---|
6815 | k=kts+1 |
---|
6816 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6817 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6818 | vel = rom(i,k,j) |
---|
6819 | cr = vel*dt/dz/mu |
---|
6820 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6821 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
6822 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6823 | |
---|
6824 | k=ktf |
---|
6825 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6826 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6827 | vel = rom(i,k,j) |
---|
6828 | cr = vel*dt/dz/mu |
---|
6829 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6830 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
6831 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6832 | |
---|
6833 | ENDDO |
---|
6834 | |
---|
6835 | ENDDO |
---|
6836 | |
---|
6837 | ELSE IF (vert_order == 3) THEN |
---|
6838 | |
---|
6839 | DO j = j_start, j_end |
---|
6840 | |
---|
6841 | DO i = i_start, i_end |
---|
6842 | fqz(i,1,j) = 0. |
---|
6843 | fqzl(i,1,j) = 0. |
---|
6844 | fqz(i,kde,j) = 0. |
---|
6845 | fqzl(i,kde,j) = 0. |
---|
6846 | ENDDO |
---|
6847 | |
---|
6848 | DO k=kts+2,ktf-1 |
---|
6849 | DO i = i_start, i_end |
---|
6850 | |
---|
6851 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6852 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6853 | vel = rom(i,k,j) |
---|
6854 | cr = vel*dt/dz/mu |
---|
6855 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6856 | |
---|
6857 | fqz(i,k,j) = vel*flux3( & |
---|
6858 | field(i,k-2,j), field(i,k-1,j), & |
---|
6859 | field(i,k ,j), field(i,k+1,j), -vel ) |
---|
6860 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6861 | ENDDO |
---|
6862 | ENDDO |
---|
6863 | |
---|
6864 | DO i = i_start, i_end |
---|
6865 | |
---|
6866 | k=kts+1 |
---|
6867 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6868 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6869 | vel = rom(i,k,j) |
---|
6870 | cr = vel*dt/dz/mu |
---|
6871 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6872 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
6873 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6874 | |
---|
6875 | k=ktf |
---|
6876 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6877 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6878 | vel = rom(i,k,j) |
---|
6879 | cr = vel*dt/dz/mu |
---|
6880 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6881 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
6882 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6883 | |
---|
6884 | ENDDO |
---|
6885 | |
---|
6886 | ENDDO |
---|
6887 | |
---|
6888 | ELSE IF (vert_order == 2) THEN |
---|
6889 | |
---|
6890 | DO j = j_start, j_end |
---|
6891 | |
---|
6892 | DO i = i_start, i_end |
---|
6893 | fqz(i,1,j) = 0. |
---|
6894 | fqzl(i,1,j) = 0. |
---|
6895 | fqz(i,kde,j) = 0. |
---|
6896 | fqzl(i,kde,j) = 0. |
---|
6897 | ENDDO |
---|
6898 | |
---|
6899 | DO k=kts+1,ktf |
---|
6900 | DO i = i_start, i_end |
---|
6901 | |
---|
6902 | dz = 2./(rdzw(k)+rdzw(k-1)) |
---|
6903 | mu = 0.5*(mut(i,j)+mut(i,j)) |
---|
6904 | vel = rom(i,k,j) |
---|
6905 | cr = vel*dt/dz/mu |
---|
6906 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
---|
6907 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
---|
6908 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
---|
6909 | |
---|
6910 | ENDDO |
---|
6911 | ENDDO |
---|
6912 | |
---|
6913 | ENDDO |
---|
6914 | |
---|
6915 | ELSE |
---|
6916 | |
---|
6917 | WRITE (wrf_err_message,*) ' advect_scalar_pd, v_order not known ',vert_order |
---|
6918 | CALL wrf_error_fatal ( wrf_err_message ) |
---|
6919 | |
---|
6920 | ENDIF vert_order_test |
---|
6921 | |
---|
6922 | IF (pd_limit) THEN |
---|
6923 | |
---|
6924 | ! positive definite filter |
---|
6925 | |
---|
6926 | i_start = its-1 |
---|
6927 | i_end = MIN(ite,ide-1)+1 |
---|
6928 | j_start = jts-1 |
---|
6929 | j_end = MIN(jte,jde-1)+1 |
---|
6930 | |
---|
6931 | !-- loop bounds for open or specified conditions |
---|
6932 | |
---|
6933 | IF(degrade_xs) i_start = its |
---|
6934 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
---|
6935 | IF(degrade_ys) j_start = jts |
---|
6936 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
---|
6937 | |
---|
6938 | IF(config_flags%specified .or. config_flags%nested) THEN |
---|
6939 | IF (degrade_xs) i_start = MAX(its,ids+1) |
---|
6940 | IF (degrade_xe) i_end = MIN(ite,ide-2) |
---|
6941 | IF (degrade_ys) j_start = MAX(jts,jds+1) |
---|
6942 | IF (degrade_ye) j_end = MIN(jte,jde-2) |
---|
6943 | END IF |
---|
6944 | |
---|
6945 | IF(config_flags%open_xs) THEN |
---|
6946 | IF (degrade_xs) i_start = MAX(its,ids+1) |
---|
6947 | END IF |
---|
6948 | IF(config_flags%open_xe) THEN |
---|
6949 | IF (degrade_xe) i_end = MIN(ite,ide-2) |
---|
6950 | END IF |
---|
6951 | IF(config_flags%open_ys) THEN |
---|
6952 | IF (degrade_ys) j_start = MAX(jts,jds+1) |
---|
6953 | END IF |
---|
6954 | IF(config_flags%open_ye) THEN |
---|
6955 | IF (degrade_ye) j_end = MIN(jte,jde-2) |
---|
6956 | END IF |
---|
6957 | |
---|
6958 | !-- here is the limiter... |
---|
6959 | |
---|
6960 | DO j=j_start, j_end |
---|
6961 | DO k=kts, ktf |
---|
6962 | DO i=i_start, i_end |
---|
6963 | |
---|
6964 | ph_low = (mub(i,j)+mu_old(i,j))*field_old(i,k,j) & |
---|
6965 | - dt*( msft(i,j)*( rdx*(fqxl(i+1,k,j)-fqxl(i,k,j)) & |
---|
6966 | +rdy*(fqyl(i,k,j+1)-fqyl(i,k,j)) ) & |
---|
6967 | +rdzw(k)*(fqzl(i,k+1,j)-fqzl(i,k,j)) ) |
---|
6968 | |
---|
6969 | flux_out = dt*(msft(i,j)*( rdx*( max(0.,fqx (i+1,k,j)) & |
---|
6970 | -min(0.,fqx (i ,k,j)) ) & |
---|
6971 | +rdy*( max(0.,fqy (i,k,j+1)) & |
---|
6972 | -min(0.,fqy (i,k,j )) ) ) & |
---|
6973 | +rdzw(k)*( min(0.,fqz (i,k+1,j)) & |
---|
6974 | -max(0.,fqz (i,k ,j)) ) ) |
---|
6975 | |
---|
6976 | IF( flux_out .gt. ph_low ) THEN |
---|
6977 | |
---|
6978 | scale = max(0.,ph_low/(flux_out+eps)) |
---|
6979 | IF( fqx (i+1,k,j) .gt. 0.) fqx(i+1,k,j) = scale*fqx(i+1,k,j) |
---|
6980 | IF( fqx (i ,k,j) .lt. 0.) fqx(i ,k,j) = scale*fqx(i ,k,j) |
---|
6981 | IF( fqy (i,k,j+1) .gt. 0.) fqy(i,k,j+1) = scale*fqy(i,k,j+1) |
---|
6982 | IF( fqy (i,k,j ) .lt. 0.) fqy(i,k,j ) = scale*fqy(i,k,j ) |
---|
6983 | ! note: z flux is opposite sign in mass coordinate because |
---|
6984 | ! vertical coordinate decreases with increasing k |
---|
6985 | IF( fqz (i,k+1,j) .lt. 0.) fqz(i,k+1,j) = scale*fqz(i,k+1,j) |
---|
6986 | IF( fqz (i,k ,j) .gt. 0.) fqz(i,k ,j) = scale*fqz(i,k ,j) |
---|
6987 | |
---|
6988 | END IF |
---|
6989 | |
---|
6990 | ENDDO |
---|
6991 | ENDDO |
---|
6992 | ENDDO |
---|
6993 | |
---|
6994 | END IF |
---|
6995 | |
---|
6996 | ! add in the pd-limited flux divergence |
---|
6997 | |
---|
6998 | i_start = its |
---|
6999 | i_end = MIN(ite,ide-1) |
---|
7000 | j_start = jts |
---|
7001 | j_end = MIN(jte,jde-1) |
---|
7002 | |
---|
7003 | DO j = j_start, j_end |
---|
7004 | DO k = kts, ktf |
---|
7005 | DO i = i_start, i_end |
---|
7006 | |
---|
7007 | tendency (i,k,j) = tendency(i,k,j) & |
---|
7008 | -rdzw(k)*( fqz (i,k+1,j)-fqz (i,k,j) & |
---|
7009 | +fqzl(i,k+1,j)-fqzl(i,k,j)) |
---|
7010 | |
---|
7011 | ENDDO |
---|
7012 | ENDDO |
---|
7013 | ENDDO |
---|
7014 | |
---|
7015 | ! x flux divergence |
---|
7016 | ! |
---|
7017 | IF(degrade_xs) i_start = i_start + 1 |
---|
7018 | IF(degrade_xe) i_end = i_end - 1 |
---|
7019 | |
---|
7020 | DO j = j_start, j_end |
---|
7021 | DO k = kts, ktf |
---|
7022 | DO i = i_start, i_end |
---|
7023 | |
---|
7024 | tendency (i,k,j) = tendency(i,k,j) & |
---|
7025 | - msft(i,j)*( rdx*( fqx (i+1,k,j)-fqx (i,k,j) & |
---|
7026 | +fqxl(i+1,k,j)-fqxl(i,k,j)) ) |
---|
7027 | |
---|
7028 | ENDDO |
---|
7029 | ENDDO |
---|
7030 | ENDDO |
---|
7031 | |
---|
7032 | ! y flux divergence |
---|
7033 | ! |
---|
7034 | i_start = its |
---|
7035 | i_end = MIN(ite,ide-1) |
---|
7036 | IF(degrade_ys) j_start = j_start + 1 |
---|
7037 | IF(degrade_ye) j_end = j_end - 1 |
---|
7038 | |
---|
7039 | DO j = j_start, j_end |
---|
7040 | DO k = kts, ktf |
---|
7041 | DO i = i_start, i_end |
---|
7042 | |
---|
7043 | tendency (i,k,j) = tendency(i,k,j) & |
---|
7044 | - msft(i,j)*( rdy*( fqy (i,k,j+1)-fqy (i,k,j) & |
---|
7045 | +fqyl(i,k,j+1)-fqyl(i,k,j)) ) |
---|
7046 | |
---|
7047 | ENDDO |
---|
7048 | ENDDO |
---|
7049 | ENDDO |
---|
7050 | |
---|
7051 | END SUBROUTINE advect_scalar_pd |
---|
7052 | |
---|
7053 | !---------------------------------------------------------------- |
---|
7054 | |
---|
7055 | END MODULE module_advect_em |
---|
7056 | |
---|