| 1 | !WRF:MODEL_LAYER:DYNAMICS |
|---|
| 2 | ! |
|---|
| 3 | MODULE module_advect_em |
|---|
| 4 | |
|---|
| 5 | USE module_bc |
|---|
| 6 | USE module_model_constants |
|---|
| 7 | USE module_wrf_error |
|---|
| 8 | |
|---|
| 9 | CONTAINS |
|---|
| 10 | |
|---|
| 11 | |
|---|
| 12 | SUBROUTINE mass_flux_divergence ( field, field_old, tendency, & |
|---|
| 13 | ru, rv, rom, & |
|---|
| 14 | mut, config_flags, & |
|---|
| 15 | msfu, msfv, msft, & |
|---|
| 16 | fzm, fzp, & |
|---|
| 17 | rdx, rdy, rdzw, & |
|---|
| 18 | ids, ide, jds, jde, kds, kde, & |
|---|
| 19 | ims, ime, jms, jme, kms, kme, & |
|---|
| 20 | its, ite, jts, jte, kts, kte ) |
|---|
| 21 | |
|---|
| 22 | IMPLICIT NONE |
|---|
| 23 | |
|---|
| 24 | ! Input data |
|---|
| 25 | |
|---|
| 26 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
|---|
| 27 | |
|---|
| 28 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
|---|
| 29 | ims, ime, jms, jme, kms, kme, & |
|---|
| 30 | its, ite, jts, jte, kts, kte |
|---|
| 31 | |
|---|
| 32 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: field, & |
|---|
| 33 | field_old, & |
|---|
| 34 | ru, & |
|---|
| 35 | rv, & |
|---|
| 36 | rom |
|---|
| 37 | |
|---|
| 38 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
|---|
| 39 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
|---|
| 40 | |
|---|
| 41 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
|---|
| 42 | msfv, & |
|---|
| 43 | msft |
|---|
| 44 | |
|---|
| 45 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
|---|
| 46 | fzp, & |
|---|
| 47 | rdzw |
|---|
| 48 | |
|---|
| 49 | REAL , INTENT(IN ) :: rdx, & |
|---|
| 50 | rdy |
|---|
| 51 | |
|---|
| 52 | ! Local data |
|---|
| 53 | |
|---|
| 54 | INTEGER :: i, j, k, itf, jtf, ktf |
|---|
| 55 | INTEGER :: i_start, i_end, j_start, j_end |
|---|
| 56 | INTEGER :: imin, imax, jmin, jmax |
|---|
| 57 | |
|---|
| 58 | REAL :: mrdx, mrdy, ub, vb, uw, vw |
|---|
| 59 | REAL , DIMENSION(its:ite,kts:kte) :: vflux |
|---|
| 60 | |
|---|
| 61 | LOGICAL :: specified |
|---|
| 62 | |
|---|
| 63 | !--------------- horizontal flux |
|---|
| 64 | |
|---|
| 65 | specified = .false. |
|---|
| 66 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
|---|
| 67 | |
|---|
| 68 | ktf=MIN(kte,kde-1) |
|---|
| 69 | i_start = its |
|---|
| 70 | i_end = MIN(ite,ide-1) |
|---|
| 71 | j_start = jts |
|---|
| 72 | j_end = MIN(jte,jde-1) |
|---|
| 73 | |
|---|
| 74 | DO j = j_start, j_end |
|---|
| 75 | DO k = kts, ktf |
|---|
| 76 | DO i = i_start, i_end |
|---|
| 77 | mrdx=msft(i,j)*rdx |
|---|
| 78 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.5 & |
|---|
| 79 | *(ru(i+1,k,j)*(field(i+1,k,j)+field(i ,k,j)) & |
|---|
| 80 | -ru(i ,k,j)*(field(i ,k,j)+field(i-1,k,j))) |
|---|
| 81 | ENDDO |
|---|
| 82 | ENDDO |
|---|
| 83 | ENDDO |
|---|
| 84 | |
|---|
| 85 | DO j = j_start, j_end |
|---|
| 86 | DO k = kts, ktf |
|---|
| 87 | DO i = i_start, i_end |
|---|
| 88 | mrdy=msft(i,j)*rdy |
|---|
| 89 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.5 & |
|---|
| 90 | *(rv(i,k,j+1)*(field(i,k,j+1)+field(i,k,j )) & |
|---|
| 91 | -rv(i,k,j )*(field(i,k,j )+field(i,k,j-1))) |
|---|
| 92 | ENDDO |
|---|
| 93 | ENDDO |
|---|
| 94 | ENDDO |
|---|
| 95 | |
|---|
| 96 | !---------------- vertical flux divergence |
|---|
| 97 | |
|---|
| 98 | |
|---|
| 99 | DO i = i_start, i_end |
|---|
| 100 | vflux(i,kts)=0. |
|---|
| 101 | vflux(i,kte)=0. |
|---|
| 102 | ENDDO |
|---|
| 103 | |
|---|
| 104 | DO j = j_start, j_end |
|---|
| 105 | |
|---|
| 106 | DO k = kts+1, ktf |
|---|
| 107 | DO i = i_start, i_end |
|---|
| 108 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 109 | ENDDO |
|---|
| 110 | ENDDO |
|---|
| 111 | |
|---|
| 112 | DO k = kts, ktf |
|---|
| 113 | DO i = i_start, i_end |
|---|
| 114 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 115 | ENDDO |
|---|
| 116 | ENDDO |
|---|
| 117 | |
|---|
| 118 | ENDDO |
|---|
| 119 | |
|---|
| 120 | END SUBROUTINE mass_flux_divergence |
|---|
| 121 | |
|---|
| 122 | !------------------------------------------------------------------------------- |
|---|
| 123 | |
|---|
| 124 | SUBROUTINE advect_u ( u, u_old, tendency, & |
|---|
| 125 | ru, rv, rom, & |
|---|
| 126 | mut, config_flags, & |
|---|
| 127 | msfu, msfv, msft, & |
|---|
| 128 | fzm, fzp, & |
|---|
| 129 | rdx, rdy, rdzw, & |
|---|
| 130 | ids, ide, jds, jde, kds, kde, & |
|---|
| 131 | ims, ime, jms, jme, kms, kme, & |
|---|
| 132 | its, ite, jts, jte, kts, kte ) |
|---|
| 133 | |
|---|
| 134 | IMPLICIT NONE |
|---|
| 135 | |
|---|
| 136 | ! Input data |
|---|
| 137 | |
|---|
| 138 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
|---|
| 139 | |
|---|
| 140 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
|---|
| 141 | ims, ime, jms, jme, kms, kme, & |
|---|
| 142 | its, ite, jts, jte, kts, kte |
|---|
| 143 | |
|---|
| 144 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: u, & |
|---|
| 145 | u_old, & |
|---|
| 146 | ru, & |
|---|
| 147 | rv, & |
|---|
| 148 | rom |
|---|
| 149 | |
|---|
| 150 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
|---|
| 151 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
|---|
| 152 | |
|---|
| 153 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
|---|
| 154 | msfv, & |
|---|
| 155 | msft |
|---|
| 156 | |
|---|
| 157 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
|---|
| 158 | fzp, & |
|---|
| 159 | rdzw |
|---|
| 160 | |
|---|
| 161 | REAL , INTENT(IN ) :: rdx, & |
|---|
| 162 | rdy |
|---|
| 163 | |
|---|
| 164 | ! Local data |
|---|
| 165 | |
|---|
| 166 | INTEGER :: i, j, k, itf, jtf, ktf |
|---|
| 167 | INTEGER :: i_start, i_end, j_start, j_end |
|---|
| 168 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
|---|
| 169 | INTEGER :: jmin, jmax, jp, jm, imin, imax, im, ip |
|---|
| 170 | INTEGER :: jp1, jp0, jtmp |
|---|
| 171 | |
|---|
| 172 | INTEGER :: horz_order, vert_order |
|---|
| 173 | |
|---|
| 174 | REAL :: mrdx, mrdy, ub, vb, uw, vw, dvm, dvp |
|---|
| 175 | REAL , DIMENSION(its:ite, kts:kte) :: vflux |
|---|
| 176 | |
|---|
| 177 | |
|---|
| 178 | REAL, DIMENSION( its-1:ite+1, kts:kte ) :: fqx |
|---|
| 179 | REAL, DIMENSION( its:ite, kts:kte, 2) :: fqy |
|---|
| 180 | |
|---|
| 181 | LOGICAL :: degrade_xs, degrade_ys |
|---|
| 182 | LOGICAL :: degrade_xe, degrade_ye |
|---|
| 183 | |
|---|
| 184 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
|---|
| 185 | |
|---|
| 186 | REAL :: flux3, flux4, flux5, flux6 |
|---|
| 187 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel |
|---|
| 188 | |
|---|
| 189 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
|---|
| 190 | ( 7.*(q_i + q_im1) - (q_ip1 + q_im2) )/12.0 |
|---|
| 191 | |
|---|
| 192 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
|---|
| 193 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
|---|
| 194 | sign(1.,ua)*((q_ip1 - q_im2)-3.*(q_i-q_im1))/12.0 |
|---|
| 195 | |
|---|
| 196 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
|---|
| 197 | ( 37.*(q_i+q_im1) - 8.*(q_ip1+q_im2) & |
|---|
| 198 | +(q_ip2+q_im3) )/60.0 |
|---|
| 199 | |
|---|
| 200 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
|---|
| 201 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
|---|
| 202 | -sign(1.,ua)*( & |
|---|
| 203 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) )/60.0 |
|---|
| 204 | |
|---|
| 205 | |
|---|
| 206 | LOGICAL :: specified |
|---|
| 207 | |
|---|
| 208 | specified = .false. |
|---|
| 209 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
|---|
| 210 | |
|---|
| 211 | ! set order for vertical and horzontal flux operators |
|---|
| 212 | |
|---|
| 213 | horz_order = config_flags%h_mom_adv_order |
|---|
| 214 | vert_order = config_flags%v_mom_adv_order |
|---|
| 215 | |
|---|
| 216 | ktf=MIN(kte,kde-1) |
|---|
| 217 | |
|---|
| 218 | ! begin with horizontal flux divergence |
|---|
| 219 | |
|---|
| 220 | horizontal_order_test : IF( horz_order == 6 ) THEN |
|---|
| 221 | |
|---|
| 222 | ! determine boundary mods for flux operators |
|---|
| 223 | ! We degrade the flux operators from 3rd/4th order |
|---|
| 224 | ! to second order one gridpoint in from the boundaries for |
|---|
| 225 | ! all boundary conditions except periodic and symmetry - these |
|---|
| 226 | ! conditions have boundary zone data fill for correct application |
|---|
| 227 | ! of the higher order flux stencils |
|---|
| 228 | |
|---|
| 229 | degrade_xs = .true. |
|---|
| 230 | degrade_xe = .true. |
|---|
| 231 | degrade_ys = .true. |
|---|
| 232 | degrade_ye = .true. |
|---|
| 233 | |
|---|
| 234 | IF( config_flags%periodic_x .or. & |
|---|
| 235 | config_flags%symmetric_xs .or. & |
|---|
| 236 | (its > ids+2) ) degrade_xs = .false. |
|---|
| 237 | IF( config_flags%periodic_x .or. & |
|---|
| 238 | config_flags%symmetric_xe .or. & |
|---|
| 239 | (ite < ide-2) ) degrade_xe = .false. |
|---|
| 240 | IF( config_flags%periodic_y .or. & |
|---|
| 241 | config_flags%symmetric_ys .or. & |
|---|
| 242 | (jts > jds+2) ) degrade_ys = .false. |
|---|
| 243 | IF( config_flags%periodic_y .or. & |
|---|
| 244 | config_flags%symmetric_ye .or. & |
|---|
| 245 | (jte < jde-3) ) degrade_ye = .false. |
|---|
| 246 | |
|---|
| 247 | !--------------- y - advection first |
|---|
| 248 | |
|---|
| 249 | i_start = its |
|---|
| 250 | i_end = ite |
|---|
| 251 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
|---|
| 252 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-1,ite) |
|---|
| 253 | IF ( config_flags%periodic_x ) i_start = its |
|---|
| 254 | IF ( config_flags%periodic_x ) i_end = ite |
|---|
| 255 | |
|---|
| 256 | j_start = jts |
|---|
| 257 | j_end = MIN(jte,jde-1) |
|---|
| 258 | |
|---|
| 259 | ! higher order flux has a 5 or 7 point stencil, so compute |
|---|
| 260 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 261 | |
|---|
| 262 | j_start_f = j_start |
|---|
| 263 | j_end_f = j_end+1 |
|---|
| 264 | |
|---|
| 265 | IF(degrade_ys) then |
|---|
| 266 | j_start = MAX(jts,jds+1) |
|---|
| 267 | j_start_f = jds+3 |
|---|
| 268 | ENDIF |
|---|
| 269 | |
|---|
| 270 | IF(degrade_ye) then |
|---|
| 271 | j_end = MIN(jte,jde-2) |
|---|
| 272 | j_end_f = jde-3 |
|---|
| 273 | ENDIF |
|---|
| 274 | |
|---|
| 275 | ! compute fluxes, 5th or 6th order |
|---|
| 276 | |
|---|
| 277 | jp1 = 2 |
|---|
| 278 | jp0 = 1 |
|---|
| 279 | |
|---|
| 280 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
|---|
| 281 | |
|---|
| 282 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
|---|
| 283 | |
|---|
| 284 | DO k=kts,ktf |
|---|
| 285 | DO i = i_start, i_end |
|---|
| 286 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
|---|
| 287 | fqy( i, k, jp1 ) = vel*flux6( & |
|---|
| 288 | u(i,k,j-3), u(i,k,j-2), u(i,k,j-1), & |
|---|
| 289 | u(i,k,j ), u(i,k,j+1), u(i,k,j+2), vel ) |
|---|
| 290 | ENDDO |
|---|
| 291 | ENDDO |
|---|
| 292 | |
|---|
| 293 | ! we must be close to some boundary where we need to reduce the order of the stencil |
|---|
| 294 | |
|---|
| 295 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
|---|
| 296 | |
|---|
| 297 | DO k=kts,ktf |
|---|
| 298 | DO i = i_start, i_end |
|---|
| 299 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
|---|
| 300 | *(u(i,k,j)+u(i,k,j-1)) |
|---|
| 301 | ENDDO |
|---|
| 302 | ENDDO |
|---|
| 303 | |
|---|
| 304 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
|---|
| 305 | |
|---|
| 306 | DO k=kts,ktf |
|---|
| 307 | DO i = i_start, i_end |
|---|
| 308 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
|---|
| 309 | fqy( i, k, jp1 ) = vel*flux4( & |
|---|
| 310 | u(i,k,j-2),u(i,k,j-1), u(i,k,j),u(i,k,j+1),vel ) |
|---|
| 311 | ENDDO |
|---|
| 312 | ENDDO |
|---|
| 313 | |
|---|
| 314 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
|---|
| 315 | |
|---|
| 316 | DO k=kts,ktf |
|---|
| 317 | DO i = i_start, i_end |
|---|
| 318 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
|---|
| 319 | *(u(i,k,j)+u(i,k,j-1)) |
|---|
| 320 | ENDDO |
|---|
| 321 | ENDDO |
|---|
| 322 | |
|---|
| 323 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
|---|
| 324 | |
|---|
| 325 | DO k=kts,ktf |
|---|
| 326 | DO i = i_start, i_end |
|---|
| 327 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
|---|
| 328 | fqy( i, k, jp1 ) = vel*flux4( & |
|---|
| 329 | u(i,k,j-2),u(i,k,j-1), & |
|---|
| 330 | u(i,k,j),u(i,k,j+1),vel ) |
|---|
| 331 | ENDDO |
|---|
| 332 | ENDDO |
|---|
| 333 | |
|---|
| 334 | END IF |
|---|
| 335 | |
|---|
| 336 | !stopped |
|---|
| 337 | |
|---|
| 338 | ! y flux-divergence into tendency |
|---|
| 339 | |
|---|
| 340 | IF(j > j_start) THEN |
|---|
| 341 | |
|---|
| 342 | DO k=kts,ktf |
|---|
| 343 | DO i = i_start, i_end |
|---|
| 344 | mrdy=msfu(i,j-1)*rdy |
|---|
| 345 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
|---|
| 346 | ENDDO |
|---|
| 347 | ENDDO |
|---|
| 348 | |
|---|
| 349 | ENDIF |
|---|
| 350 | |
|---|
| 351 | |
|---|
| 352 | jtmp = jp1 |
|---|
| 353 | jp1 = jp0 |
|---|
| 354 | jp0 = jtmp |
|---|
| 355 | |
|---|
| 356 | ENDDO j_loop_y_flux_6 |
|---|
| 357 | |
|---|
| 358 | ! next, x - flux divergence |
|---|
| 359 | |
|---|
| 360 | i_start = its |
|---|
| 361 | i_end = ite |
|---|
| 362 | |
|---|
| 363 | j_start = jts |
|---|
| 364 | j_end = MIN(jte,jde-1) |
|---|
| 365 | |
|---|
| 366 | ! higher order flux has a 5 or 7 point stencil, so compute |
|---|
| 367 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 368 | |
|---|
| 369 | i_start_f = i_start |
|---|
| 370 | i_end_f = i_end+1 |
|---|
| 371 | |
|---|
| 372 | IF(degrade_xs) then |
|---|
| 373 | i_start = MAX(ids+1,its) |
|---|
| 374 | i_start_f = ids+3 |
|---|
| 375 | ENDIF |
|---|
| 376 | |
|---|
| 377 | IF(degrade_xe) then |
|---|
| 378 | i_end = MIN(ide-1,ite) |
|---|
| 379 | i_end_f = ide-2 |
|---|
| 380 | ENDIF |
|---|
| 381 | |
|---|
| 382 | ! compute fluxes |
|---|
| 383 | |
|---|
| 384 | DO j = j_start, j_end |
|---|
| 385 | |
|---|
| 386 | ! 5th or 6th order flux |
|---|
| 387 | |
|---|
| 388 | DO k=kts,ktf |
|---|
| 389 | DO i = i_start_f, i_end_f |
|---|
| 390 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
|---|
| 391 | fqx( i,k ) = vel*flux6( u(i-3,k,j), u(i-2,k,j), & |
|---|
| 392 | u(i-1,k,j), u(i ,k,j), & |
|---|
| 393 | u(i+1,k,j), u(i+2,k,j), & |
|---|
| 394 | vel ) |
|---|
| 395 | ENDDO |
|---|
| 396 | ENDDO |
|---|
| 397 | |
|---|
| 398 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
|---|
| 399 | ! specified uses upstream normal wind at boundaries |
|---|
| 400 | |
|---|
| 401 | IF( degrade_xs ) THEN |
|---|
| 402 | |
|---|
| 403 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
|---|
| 404 | i = ids+1 |
|---|
| 405 | DO k=kts,ktf |
|---|
| 406 | ub = u(i-1,k,j) |
|---|
| 407 | IF (specified .AND. u(i,k,j) .LT. 0.)ub = u(i,k,j) |
|---|
| 408 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
|---|
| 409 | *(u(i,k,j)+ub) |
|---|
| 410 | ENDDO |
|---|
| 411 | END IF |
|---|
| 412 | |
|---|
| 413 | i = ids+2 |
|---|
| 414 | DO k=kts,ktf |
|---|
| 415 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
|---|
| 416 | fqx( i, k ) = vel*flux4( u(i-2,k,j), u(i-1,k,j), & |
|---|
| 417 | u(i ,k,j), u(i+1,k,j), & |
|---|
| 418 | vel ) |
|---|
| 419 | ENDDO |
|---|
| 420 | |
|---|
| 421 | ENDIF |
|---|
| 422 | |
|---|
| 423 | IF( degrade_xe ) THEN |
|---|
| 424 | |
|---|
| 425 | IF( i_end == ide-1 ) THEN ! second order flux next to the boundary |
|---|
| 426 | i = ide |
|---|
| 427 | DO k=kts,ktf |
|---|
| 428 | ub = u(i,k,j) |
|---|
| 429 | IF (specified .AND. u(i-1,k,j) .GT. 0.)ub = u(i-1,k,j) |
|---|
| 430 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
|---|
| 431 | *(u(i-1,k,j)+ub) |
|---|
| 432 | ENDDO |
|---|
| 433 | ENDIF |
|---|
| 434 | |
|---|
| 435 | DO k=kts,ktf |
|---|
| 436 | i = ide-1 |
|---|
| 437 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
|---|
| 438 | fqx( i,k ) = vel*flux4( u(i-2,k,j), u(i-1,k,j), & |
|---|
| 439 | u(i ,k,j), u(i+1,k,j), & |
|---|
| 440 | vel ) |
|---|
| 441 | ENDDO |
|---|
| 442 | |
|---|
| 443 | ENDIF |
|---|
| 444 | |
|---|
| 445 | ! x flux-divergence into tendency |
|---|
| 446 | |
|---|
| 447 | DO k=kts,ktf |
|---|
| 448 | DO i = i_start, i_end |
|---|
| 449 | mrdx=msfu(i,j)*rdx |
|---|
| 450 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
|---|
| 451 | ENDDO |
|---|
| 452 | ENDDO |
|---|
| 453 | |
|---|
| 454 | ENDDO |
|---|
| 455 | |
|---|
| 456 | ELSE IF( horz_order == 5 ) THEN |
|---|
| 457 | |
|---|
| 458 | ! 5th order horizontal flux calculation |
|---|
| 459 | ! This code is EXACTLY the same as the 6th order code |
|---|
| 460 | ! EXCEPT the 5th order and 3rd operators are used in |
|---|
| 461 | ! place of the 6th and 4th order operators |
|---|
| 462 | |
|---|
| 463 | ! determine boundary mods for flux operators |
|---|
| 464 | ! We degrade the flux operators from 3rd/4th order |
|---|
| 465 | ! to second order one gridpoint in from the boundaries for |
|---|
| 466 | ! all boundary conditions except periodic and symmetry - these |
|---|
| 467 | ! conditions have boundary zone data fill for correct application |
|---|
| 468 | ! of the higher order flux stencils |
|---|
| 469 | |
|---|
| 470 | degrade_xs = .true. |
|---|
| 471 | degrade_xe = .true. |
|---|
| 472 | degrade_ys = .true. |
|---|
| 473 | degrade_ye = .true. |
|---|
| 474 | |
|---|
| 475 | IF( config_flags%periodic_x .or. & |
|---|
| 476 | config_flags%symmetric_xs .or. & |
|---|
| 477 | (its > ids+2) ) degrade_xs = .false. |
|---|
| 478 | IF( config_flags%periodic_x .or. & |
|---|
| 479 | config_flags%symmetric_xe .or. & |
|---|
| 480 | (ite < ide-2) ) degrade_xe = .false. |
|---|
| 481 | IF( config_flags%periodic_y .or. & |
|---|
| 482 | config_flags%symmetric_ys .or. & |
|---|
| 483 | (jts > jds+2) ) degrade_ys = .false. |
|---|
| 484 | IF( config_flags%periodic_y .or. & |
|---|
| 485 | config_flags%symmetric_ye .or. & |
|---|
| 486 | (jte < jde-3) ) degrade_ye = .false. |
|---|
| 487 | |
|---|
| 488 | !--------------- y - advection first |
|---|
| 489 | |
|---|
| 490 | i_start = its |
|---|
| 491 | i_end = ite |
|---|
| 492 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
|---|
| 493 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-1,ite) |
|---|
| 494 | IF ( config_flags%periodic_x ) i_start = its |
|---|
| 495 | IF ( config_flags%periodic_x ) i_end = ite |
|---|
| 496 | |
|---|
| 497 | j_start = jts |
|---|
| 498 | j_end = MIN(jte,jde-1) |
|---|
| 499 | |
|---|
| 500 | ! higher order flux has a 5 or 7 point stencil, so compute |
|---|
| 501 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 502 | |
|---|
| 503 | j_start_f = j_start |
|---|
| 504 | j_end_f = j_end+1 |
|---|
| 505 | |
|---|
| 506 | IF(degrade_ys) then |
|---|
| 507 | j_start = MAX(jts,jds+1) |
|---|
| 508 | j_start_f = jds+3 |
|---|
| 509 | ENDIF |
|---|
| 510 | |
|---|
| 511 | IF(degrade_ye) then |
|---|
| 512 | j_end = MIN(jte,jde-2) |
|---|
| 513 | j_end_f = jde-3 |
|---|
| 514 | ENDIF |
|---|
| 515 | |
|---|
| 516 | ! compute fluxes, 5th or 6th order |
|---|
| 517 | |
|---|
| 518 | jp1 = 2 |
|---|
| 519 | jp0 = 1 |
|---|
| 520 | |
|---|
| 521 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
|---|
| 522 | |
|---|
| 523 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
|---|
| 524 | |
|---|
| 525 | DO k=kts,ktf |
|---|
| 526 | DO i = i_start, i_end |
|---|
| 527 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
|---|
| 528 | fqy( i, k, jp1 ) = vel*flux5( & |
|---|
| 529 | u(i,k,j-3), u(i,k,j-2), u(i,k,j-1), & |
|---|
| 530 | u(i,k,j ), u(i,k,j+1), u(i,k,j+2), vel ) |
|---|
| 531 | ENDDO |
|---|
| 532 | ENDDO |
|---|
| 533 | |
|---|
| 534 | ! we must be close to some boundary where we need to reduce the order of the stencil |
|---|
| 535 | |
|---|
| 536 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
|---|
| 537 | |
|---|
| 538 | DO k=kts,ktf |
|---|
| 539 | DO i = i_start, i_end |
|---|
| 540 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
|---|
| 541 | *(u(i,k,j)+u(i,k,j-1)) |
|---|
| 542 | ENDDO |
|---|
| 543 | ENDDO |
|---|
| 544 | |
|---|
| 545 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
|---|
| 546 | |
|---|
| 547 | DO k=kts,ktf |
|---|
| 548 | DO i = i_start, i_end |
|---|
| 549 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
|---|
| 550 | fqy( i, k, jp1 ) = vel*flux3( & |
|---|
| 551 | u(i,k,j-2),u(i,k,j-1), u(i,k,j),u(i,k,j+1),vel ) |
|---|
| 552 | ENDDO |
|---|
| 553 | ENDDO |
|---|
| 554 | |
|---|
| 555 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
|---|
| 556 | |
|---|
| 557 | DO k=kts,ktf |
|---|
| 558 | DO i = i_start, i_end |
|---|
| 559 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i-1,k,j)) & |
|---|
| 560 | *(u(i,k,j)+u(i,k,j-1)) |
|---|
| 561 | ENDDO |
|---|
| 562 | ENDDO |
|---|
| 563 | |
|---|
| 564 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
|---|
| 565 | |
|---|
| 566 | DO k=kts,ktf |
|---|
| 567 | DO i = i_start, i_end |
|---|
| 568 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
|---|
| 569 | fqy( i, k, jp1 ) = vel*flux3( & |
|---|
| 570 | u(i,k,j-2),u(i,k,j-1), & |
|---|
| 571 | u(i,k,j),u(i,k,j+1),vel ) |
|---|
| 572 | ENDDO |
|---|
| 573 | ENDDO |
|---|
| 574 | |
|---|
| 575 | END IF |
|---|
| 576 | |
|---|
| 577 | ! y flux-divergence into tendency |
|---|
| 578 | |
|---|
| 579 | IF(j > j_start) THEN |
|---|
| 580 | |
|---|
| 581 | DO k=kts,ktf |
|---|
| 582 | DO i = i_start, i_end |
|---|
| 583 | mrdy=msfu(i,j-1)*rdy |
|---|
| 584 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
|---|
| 585 | ENDDO |
|---|
| 586 | ENDDO |
|---|
| 587 | |
|---|
| 588 | ENDIF |
|---|
| 589 | |
|---|
| 590 | |
|---|
| 591 | jtmp = jp1 |
|---|
| 592 | jp1 = jp0 |
|---|
| 593 | jp0 = jtmp |
|---|
| 594 | |
|---|
| 595 | ENDDO j_loop_y_flux_5 |
|---|
| 596 | |
|---|
| 597 | ! next, x - flux divergence |
|---|
| 598 | |
|---|
| 599 | i_start = its |
|---|
| 600 | i_end = ite |
|---|
| 601 | |
|---|
| 602 | j_start = jts |
|---|
| 603 | j_end = MIN(jte,jde-1) |
|---|
| 604 | |
|---|
| 605 | ! higher order flux has a 5 or 7 point stencil, so compute |
|---|
| 606 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 607 | |
|---|
| 608 | i_start_f = i_start |
|---|
| 609 | i_end_f = i_end+1 |
|---|
| 610 | |
|---|
| 611 | IF(degrade_xs) then |
|---|
| 612 | i_start = MAX(ids+1,its) |
|---|
| 613 | i_start_f = ids+3 |
|---|
| 614 | ENDIF |
|---|
| 615 | |
|---|
| 616 | IF(degrade_xe) then |
|---|
| 617 | i_end = MIN(ide-1,ite) |
|---|
| 618 | i_end_f = ide-2 |
|---|
| 619 | ENDIF |
|---|
| 620 | |
|---|
| 621 | ! compute fluxes |
|---|
| 622 | |
|---|
| 623 | DO j = j_start, j_end |
|---|
| 624 | |
|---|
| 625 | ! 5th or 6th order flux |
|---|
| 626 | |
|---|
| 627 | DO k=kts,ktf |
|---|
| 628 | DO i = i_start_f, i_end_f |
|---|
| 629 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
|---|
| 630 | fqx( i,k ) = vel*flux5( u(i-3,k,j), u(i-2,k,j), & |
|---|
| 631 | u(i-1,k,j), u(i ,k,j), & |
|---|
| 632 | u(i+1,k,j), u(i+2,k,j), & |
|---|
| 633 | vel ) |
|---|
| 634 | ENDDO |
|---|
| 635 | ENDDO |
|---|
| 636 | |
|---|
| 637 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
|---|
| 638 | ! specified uses upstream normal wind at boundaries |
|---|
| 639 | |
|---|
| 640 | IF( degrade_xs ) THEN |
|---|
| 641 | |
|---|
| 642 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
|---|
| 643 | i = ids+1 |
|---|
| 644 | DO k=kts,ktf |
|---|
| 645 | ub = u(i-1,k,j) |
|---|
| 646 | IF (specified .AND. u(i,k,j) .LT. 0.)ub = u(i,k,j) |
|---|
| 647 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
|---|
| 648 | *(u(i,k,j)+ub) |
|---|
| 649 | ENDDO |
|---|
| 650 | END IF |
|---|
| 651 | |
|---|
| 652 | i = ids+2 |
|---|
| 653 | DO k=kts,ktf |
|---|
| 654 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
|---|
| 655 | fqx( i, k ) = vel*flux3( u(i-2,k,j), u(i-1,k,j), & |
|---|
| 656 | u(i ,k,j), u(i+1,k,j), & |
|---|
| 657 | vel ) |
|---|
| 658 | ENDDO |
|---|
| 659 | |
|---|
| 660 | ENDIF |
|---|
| 661 | |
|---|
| 662 | IF( degrade_xe ) THEN |
|---|
| 663 | |
|---|
| 664 | IF( i_end == ide-1 ) THEN ! second order flux next to the boundary |
|---|
| 665 | i = ide |
|---|
| 666 | DO k=kts,ktf |
|---|
| 667 | ub = u(i,k,j) |
|---|
| 668 | IF (specified .AND. u(i-1,k,j) .GT. 0.)ub = u(i-1,k,j) |
|---|
| 669 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
|---|
| 670 | *(u(i-1,k,j)+ub) |
|---|
| 671 | ENDDO |
|---|
| 672 | ENDIF |
|---|
| 673 | |
|---|
| 674 | DO k=kts,ktf |
|---|
| 675 | i = ide-1 |
|---|
| 676 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
|---|
| 677 | fqx( i,k ) = vel*flux3( u(i-2,k,j), u(i-1,k,j), & |
|---|
| 678 | u(i ,k,j), u(i+1,k,j), & |
|---|
| 679 | vel ) |
|---|
| 680 | ENDDO |
|---|
| 681 | |
|---|
| 682 | ENDIF |
|---|
| 683 | |
|---|
| 684 | ! x flux-divergence into tendency |
|---|
| 685 | |
|---|
| 686 | DO k=kts,ktf |
|---|
| 687 | DO i = i_start, i_end |
|---|
| 688 | mrdx=msfu(i,j)*rdx |
|---|
| 689 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
|---|
| 690 | ENDDO |
|---|
| 691 | ENDDO |
|---|
| 692 | |
|---|
| 693 | ENDDO |
|---|
| 694 | |
|---|
| 695 | ELSE IF( horz_order == 4 ) THEN |
|---|
| 696 | |
|---|
| 697 | ! determine boundary mods for flux operators |
|---|
| 698 | ! We degrade the flux operators from 3rd/4th order |
|---|
| 699 | ! to second order one gridpoint in from the boundaries for |
|---|
| 700 | ! all boundary conditions except periodic and symmetry - these |
|---|
| 701 | ! conditions have boundary zone data fill for correct application |
|---|
| 702 | ! of the higher order flux stencils |
|---|
| 703 | |
|---|
| 704 | degrade_xs = .true. |
|---|
| 705 | degrade_xe = .true. |
|---|
| 706 | degrade_ys = .true. |
|---|
| 707 | degrade_ye = .true. |
|---|
| 708 | |
|---|
| 709 | IF( config_flags%periodic_x .or. & |
|---|
| 710 | config_flags%symmetric_xs .or. & |
|---|
| 711 | (its > ids+1) ) degrade_xs = .false. |
|---|
| 712 | IF( config_flags%periodic_x .or. & |
|---|
| 713 | config_flags%symmetric_xe .or. & |
|---|
| 714 | (ite < ide-1) ) degrade_xe = .false. |
|---|
| 715 | IF( config_flags%periodic_y .or. & |
|---|
| 716 | config_flags%symmetric_ys .or. & |
|---|
| 717 | (jts > jds+1) ) degrade_ys = .false. |
|---|
| 718 | IF( config_flags%periodic_y .or. & |
|---|
| 719 | config_flags%symmetric_ye .or. & |
|---|
| 720 | (jte < jde-2) ) degrade_ye = .false. |
|---|
| 721 | |
|---|
| 722 | !--------------- x - advection first |
|---|
| 723 | |
|---|
| 724 | i_start = its |
|---|
| 725 | i_end = ite |
|---|
| 726 | j_start = jts |
|---|
| 727 | j_end = MIN(jte,jde-1) |
|---|
| 728 | |
|---|
| 729 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
|---|
| 730 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 731 | |
|---|
| 732 | i_start_f = i_start |
|---|
| 733 | i_end_f = i_end+1 |
|---|
| 734 | |
|---|
| 735 | IF(degrade_xs) then |
|---|
| 736 | i_start = ids+1 |
|---|
| 737 | i_start_f = i_start+1 |
|---|
| 738 | ENDIF |
|---|
| 739 | |
|---|
| 740 | IF(degrade_xe) then |
|---|
| 741 | i_end = ide-1 |
|---|
| 742 | i_end_f = ide-1 |
|---|
| 743 | ENDIF |
|---|
| 744 | |
|---|
| 745 | ! compute fluxes |
|---|
| 746 | |
|---|
| 747 | DO j = j_start, j_end |
|---|
| 748 | |
|---|
| 749 | DO k=kts,ktf |
|---|
| 750 | DO i = i_start_f, i_end_f |
|---|
| 751 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
|---|
| 752 | fqx( i, k ) = vel*flux4( u(i-2,k,j), u(i-1,k,j), & |
|---|
| 753 | u(i ,k,j), u(i+1,k,j), vel ) |
|---|
| 754 | ENDDO |
|---|
| 755 | ENDDO |
|---|
| 756 | |
|---|
| 757 | ! second order flux close to boundaries (if not periodic or symmetric) |
|---|
| 758 | ! specified uses upstream normal wind at boundaries |
|---|
| 759 | |
|---|
| 760 | IF( degrade_xs ) THEN |
|---|
| 761 | i = i_start |
|---|
| 762 | DO k=kts,ktf |
|---|
| 763 | ub = u(i-1,k,j) |
|---|
| 764 | IF (specified .AND. u(i,k,j) .LT. 0.)ub = u(i,k,j) |
|---|
| 765 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
|---|
| 766 | *(u(i,k,j)+ub) |
|---|
| 767 | ENDDO |
|---|
| 768 | ENDIF |
|---|
| 769 | |
|---|
| 770 | IF( degrade_xe ) THEN |
|---|
| 771 | i = i_end+1 |
|---|
| 772 | DO k=kts,ktf |
|---|
| 773 | ub = u(i,k,j) |
|---|
| 774 | IF (specified .AND. u(i-1,k,j) .GT. 0.)ub = u(i-1,k,j) |
|---|
| 775 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
|---|
| 776 | *(u(i-1,k,j)+ub) |
|---|
| 777 | ENDDO |
|---|
| 778 | ENDIF |
|---|
| 779 | |
|---|
| 780 | ! x flux-divergence into tendency |
|---|
| 781 | |
|---|
| 782 | DO k=kts,ktf |
|---|
| 783 | DO i = i_start, i_end |
|---|
| 784 | mrdx=msfu(i,j)*rdx |
|---|
| 785 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
|---|
| 786 | ENDDO |
|---|
| 787 | ENDDO |
|---|
| 788 | |
|---|
| 789 | ENDDO |
|---|
| 790 | |
|---|
| 791 | ! y flux divergence |
|---|
| 792 | |
|---|
| 793 | i_start = its |
|---|
| 794 | i_end = ite |
|---|
| 795 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
|---|
| 796 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-1,ite) |
|---|
| 797 | IF ( config_flags%periodic_x ) i_start = its |
|---|
| 798 | IF ( config_flags%periodic_x ) i_end = ite |
|---|
| 799 | |
|---|
| 800 | j_start = jts |
|---|
| 801 | j_end = MIN(jte,jde-1) |
|---|
| 802 | |
|---|
| 803 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
|---|
| 804 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 805 | |
|---|
| 806 | j_start_f = j_start |
|---|
| 807 | j_end_f = j_end+1 |
|---|
| 808 | |
|---|
| 809 | !CJM these may not work with tiling because they define j_start and end in terms of domain dim |
|---|
| 810 | IF(degrade_ys) then |
|---|
| 811 | j_start = jds+1 |
|---|
| 812 | j_start_f = j_start+1 |
|---|
| 813 | ENDIF |
|---|
| 814 | |
|---|
| 815 | IF(degrade_ye) then |
|---|
| 816 | j_end = jde-2 |
|---|
| 817 | j_end_f = jde-2 |
|---|
| 818 | ENDIF |
|---|
| 819 | |
|---|
| 820 | ! j flux loop for v flux of u momentum |
|---|
| 821 | |
|---|
| 822 | jp1 = 2 |
|---|
| 823 | jp0 = 1 |
|---|
| 824 | |
|---|
| 825 | DO j = j_start, j_end+1 |
|---|
| 826 | |
|---|
| 827 | IF ( (j < j_start_f) .and. degrade_ys) THEN |
|---|
| 828 | DO k = kts, ktf |
|---|
| 829 | DO i = i_start, i_end |
|---|
| 830 | fqy(i, k, jp1) = 0.25*(rv(i,k,j_start)+rv(i-1,k,j_start)) & |
|---|
| 831 | *(u(i,k,j_start)+u(i,k,j_start-1)) |
|---|
| 832 | ENDDO |
|---|
| 833 | ENDDO |
|---|
| 834 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
|---|
| 835 | DO k = kts, ktf |
|---|
| 836 | DO i = i_start, i_end |
|---|
| 837 | fqy(i, k, jp1) = 0.25*(rv(i,k,j_end+1)+rv(i-1,k,j_end+1)) & |
|---|
| 838 | *(u(i,k,j_end+1)+u(i,k,j_end)) |
|---|
| 839 | ENDDO |
|---|
| 840 | ENDDO |
|---|
| 841 | ELSE |
|---|
| 842 | ! 3rd or 4th order flux |
|---|
| 843 | DO k = kts, ktf |
|---|
| 844 | DO i = i_start, i_end |
|---|
| 845 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
|---|
| 846 | fqy( i, k, jp1 ) = vel*flux4( u(i,k,j-2), u(i,k,j-1), & |
|---|
| 847 | u(i,k,j ), u(i,k,j+1), & |
|---|
| 848 | vel ) |
|---|
| 849 | ENDDO |
|---|
| 850 | ENDDO |
|---|
| 851 | |
|---|
| 852 | END IF |
|---|
| 853 | |
|---|
| 854 | IF (j > j_start) THEN |
|---|
| 855 | |
|---|
| 856 | ! y flux-divergence into tendency |
|---|
| 857 | |
|---|
| 858 | DO k=kts,ktf |
|---|
| 859 | DO i = i_start, i_end |
|---|
| 860 | mrdy=msfu(i,j-1)*rdy |
|---|
| 861 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
|---|
| 862 | ENDDO |
|---|
| 863 | ENDDO |
|---|
| 864 | |
|---|
| 865 | END IF |
|---|
| 866 | |
|---|
| 867 | jtmp = jp1 |
|---|
| 868 | jp1 = jp0 |
|---|
| 869 | jp0 = jtmp |
|---|
| 870 | |
|---|
| 871 | ENDDO |
|---|
| 872 | |
|---|
| 873 | ELSE IF ( horz_order == 3 ) THEN |
|---|
| 874 | |
|---|
| 875 | ! As with the 5th and 6th order flux chioces, the 3rd and 4th order |
|---|
| 876 | ! code is EXACTLY the same EXCEPT for the flux operator. |
|---|
| 877 | |
|---|
| 878 | ! determine boundary mods for flux operators |
|---|
| 879 | ! We degrade the flux operators from 3rd/4th order |
|---|
| 880 | ! to second order one gridpoint in from the boundaries for |
|---|
| 881 | ! all boundary conditions except periodic and symmetry - these |
|---|
| 882 | ! conditions have boundary zone data fill for correct application |
|---|
| 883 | ! of the higher order flux stencils |
|---|
| 884 | |
|---|
| 885 | degrade_xs = .true. |
|---|
| 886 | degrade_xe = .true. |
|---|
| 887 | degrade_ys = .true. |
|---|
| 888 | degrade_ye = .true. |
|---|
| 889 | |
|---|
| 890 | IF( config_flags%periodic_x .or. & |
|---|
| 891 | config_flags%symmetric_xs .or. & |
|---|
| 892 | (its > ids+1) ) degrade_xs = .false. |
|---|
| 893 | IF( config_flags%periodic_x .or. & |
|---|
| 894 | config_flags%symmetric_xe .or. & |
|---|
| 895 | (ite < ide-1) ) degrade_xe = .false. |
|---|
| 896 | IF( config_flags%periodic_y .or. & |
|---|
| 897 | config_flags%symmetric_ys .or. & |
|---|
| 898 | (jts > jds+1) ) degrade_ys = .false. |
|---|
| 899 | IF( config_flags%periodic_y .or. & |
|---|
| 900 | config_flags%symmetric_ye .or. & |
|---|
| 901 | (jte < jde-2) ) degrade_ye = .false. |
|---|
| 902 | |
|---|
| 903 | !--------------- x - advection first |
|---|
| 904 | |
|---|
| 905 | i_start = its |
|---|
| 906 | i_end = ite |
|---|
| 907 | j_start = jts |
|---|
| 908 | j_end = MIN(jte,jde-1) |
|---|
| 909 | |
|---|
| 910 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
|---|
| 911 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 912 | |
|---|
| 913 | i_start_f = i_start |
|---|
| 914 | i_end_f = i_end+1 |
|---|
| 915 | |
|---|
| 916 | IF(degrade_xs) then |
|---|
| 917 | i_start = ids+1 |
|---|
| 918 | i_start_f = i_start+1 |
|---|
| 919 | ENDIF |
|---|
| 920 | |
|---|
| 921 | IF(degrade_xe) then |
|---|
| 922 | i_end = ide-1 |
|---|
| 923 | i_end_f = ide-1 |
|---|
| 924 | ENDIF |
|---|
| 925 | |
|---|
| 926 | ! compute fluxes |
|---|
| 927 | |
|---|
| 928 | DO j = j_start, j_end |
|---|
| 929 | |
|---|
| 930 | DO k=kts,ktf |
|---|
| 931 | DO i = i_start_f, i_end_f |
|---|
| 932 | vel = 0.5*(ru(i,k,j)+ru(i-1,k,j)) |
|---|
| 933 | fqx( i, k ) = vel*flux3( u(i-2,k,j), u(i-1,k,j), & |
|---|
| 934 | u(i ,k,j), u(i+1,k,j), vel ) |
|---|
| 935 | ENDDO |
|---|
| 936 | ENDDO |
|---|
| 937 | |
|---|
| 938 | ! second order flux close to boundaries (if not periodic or symmetric) |
|---|
| 939 | ! specified uses upstream normal wind at boundaries |
|---|
| 940 | |
|---|
| 941 | IF( degrade_xs ) THEN |
|---|
| 942 | i = i_start |
|---|
| 943 | DO k=kts,ktf |
|---|
| 944 | ub = u(i-1,k,j) |
|---|
| 945 | IF (specified .AND. u(i,k,j) .LT. 0.)ub = u(i,k,j) |
|---|
| 946 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
|---|
| 947 | *(u(i,k,j)+ub) |
|---|
| 948 | ENDDO |
|---|
| 949 | ENDIF |
|---|
| 950 | |
|---|
| 951 | IF( degrade_xe ) THEN |
|---|
| 952 | i = i_end+1 |
|---|
| 953 | DO k=kts,ktf |
|---|
| 954 | ub = u(i,k,j) |
|---|
| 955 | IF (specified .AND. u(i-1,k,j) .GT. 0.)ub = u(i-1,k,j) |
|---|
| 956 | fqx(i, k) = 0.25*(ru(i,k,j)+ru(i-1,k,j)) & |
|---|
| 957 | *(u(i-1,k,j)+ub) |
|---|
| 958 | ENDDO |
|---|
| 959 | ENDIF |
|---|
| 960 | |
|---|
| 961 | ! x flux-divergence into tendency |
|---|
| 962 | |
|---|
| 963 | DO k=kts,ktf |
|---|
| 964 | DO i = i_start, i_end |
|---|
| 965 | mrdx=msfu(i,j)*rdx |
|---|
| 966 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
|---|
| 967 | ENDDO |
|---|
| 968 | ENDDO |
|---|
| 969 | ENDDO |
|---|
| 970 | |
|---|
| 971 | ! y flux divergence |
|---|
| 972 | |
|---|
| 973 | i_start = its |
|---|
| 974 | i_end = ite |
|---|
| 975 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
|---|
| 976 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-1,ite) |
|---|
| 977 | IF ( config_flags%periodic_x ) i_start = its |
|---|
| 978 | IF ( config_flags%periodic_x ) i_end = ite |
|---|
| 979 | |
|---|
| 980 | j_start = jts |
|---|
| 981 | j_end = MIN(jte,jde-1) |
|---|
| 982 | |
|---|
| 983 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
|---|
| 984 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 985 | |
|---|
| 986 | j_start_f = j_start |
|---|
| 987 | j_end_f = j_end+1 |
|---|
| 988 | |
|---|
| 989 | !CJM these may not work with tiling because they define j_start and end in terms of domain dim |
|---|
| 990 | IF(degrade_ys) then |
|---|
| 991 | j_start = jds+1 |
|---|
| 992 | j_start_f = j_start+1 |
|---|
| 993 | ENDIF |
|---|
| 994 | |
|---|
| 995 | IF(degrade_ye) then |
|---|
| 996 | j_end = jde-2 |
|---|
| 997 | j_end_f = jde-2 |
|---|
| 998 | ENDIF |
|---|
| 999 | |
|---|
| 1000 | ! j flux loop for v flux of u momentum |
|---|
| 1001 | |
|---|
| 1002 | jp1 = 2 |
|---|
| 1003 | jp0 = 1 |
|---|
| 1004 | |
|---|
| 1005 | DO j = j_start, j_end+1 |
|---|
| 1006 | |
|---|
| 1007 | IF ( (j < j_start_f) .and. degrade_ys) THEN |
|---|
| 1008 | DO k = kts, ktf |
|---|
| 1009 | DO i = i_start, i_end |
|---|
| 1010 | fqy(i, k, jp1) = 0.25*(rv(i,k,j_start)+rv(i-1,k,j_start)) & |
|---|
| 1011 | *(u(i,k,j_start)+u(i,k,j_start-1)) |
|---|
| 1012 | ENDDO |
|---|
| 1013 | ENDDO |
|---|
| 1014 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
|---|
| 1015 | DO k = kts, ktf |
|---|
| 1016 | DO i = i_start, i_end |
|---|
| 1017 | fqy(i, k, jp1) = 0.25*(rv(i,k,j_end+1)+rv(i-1,k,j_end+1)) & |
|---|
| 1018 | *(u(i,k,j_end+1)+u(i,k,j_end)) |
|---|
| 1019 | ENDDO |
|---|
| 1020 | ENDDO |
|---|
| 1021 | ELSE |
|---|
| 1022 | ! 3rd or 4th order flux |
|---|
| 1023 | DO k = kts, ktf |
|---|
| 1024 | DO i = i_start, i_end |
|---|
| 1025 | vel = 0.5*(rv(i,k,j)+rv(i-1,k,j)) |
|---|
| 1026 | fqy( i, k, jp1 ) = vel*flux3( u(i,k,j-2), u(i,k,j-1), & |
|---|
| 1027 | u(i,k,j ), u(i,k,j+1), & |
|---|
| 1028 | vel ) |
|---|
| 1029 | ENDDO |
|---|
| 1030 | ENDDO |
|---|
| 1031 | |
|---|
| 1032 | END IF |
|---|
| 1033 | |
|---|
| 1034 | IF (j > j_start) THEN |
|---|
| 1035 | |
|---|
| 1036 | ! y flux-divergence into tendency |
|---|
| 1037 | |
|---|
| 1038 | DO k=kts,ktf |
|---|
| 1039 | DO i = i_start, i_end |
|---|
| 1040 | mrdy=msfu(i,j-1)*rdy |
|---|
| 1041 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
|---|
| 1042 | ENDDO |
|---|
| 1043 | ENDDO |
|---|
| 1044 | |
|---|
| 1045 | END IF |
|---|
| 1046 | |
|---|
| 1047 | jtmp = jp1 |
|---|
| 1048 | jp1 = jp0 |
|---|
| 1049 | jp0 = jtmp |
|---|
| 1050 | |
|---|
| 1051 | ENDDO |
|---|
| 1052 | |
|---|
| 1053 | ELSE IF ( horz_order == 2 ) THEN |
|---|
| 1054 | |
|---|
| 1055 | i_start = its |
|---|
| 1056 | i_end = ite |
|---|
| 1057 | j_start = jts |
|---|
| 1058 | j_end = MIN(jte,jde-1) |
|---|
| 1059 | |
|---|
| 1060 | IF ( config_flags%open_xs ) i_start = MAX(ids+1,its) |
|---|
| 1061 | IF ( config_flags%open_xe ) i_end = MIN(ide-1,ite) |
|---|
| 1062 | IF ( specified ) i_start = MAX(ids+2,its) |
|---|
| 1063 | IF ( specified ) i_end = MIN(ide-2,ite) |
|---|
| 1064 | IF ( config_flags%periodic_x ) i_start = its |
|---|
| 1065 | IF ( config_flags%periodic_x ) i_end = ite |
|---|
| 1066 | |
|---|
| 1067 | DO j = j_start, j_end |
|---|
| 1068 | DO k=kts,ktf |
|---|
| 1069 | DO i = i_start, i_end |
|---|
| 1070 | mrdx=msfu(i,j)*rdx |
|---|
| 1071 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 & |
|---|
| 1072 | *((ru(i+1,k,j)+ru(i,k,j))*(u(i+1,k,j)+u(i,k,j)) & |
|---|
| 1073 | -(ru(i,k,j)+ru(i-1,k,j))*(u(i,k,j)+u(i-1,k,j))) |
|---|
| 1074 | ENDDO |
|---|
| 1075 | ENDDO |
|---|
| 1076 | ENDDO |
|---|
| 1077 | |
|---|
| 1078 | IF ( specified .AND. its .LE. ids+1 .AND. .NOT. config_flags%periodic_x ) THEN |
|---|
| 1079 | DO j = j_start, j_end |
|---|
| 1080 | DO k=kts,ktf |
|---|
| 1081 | i = ids+1 |
|---|
| 1082 | mrdx=msfu(i,j)*rdx |
|---|
| 1083 | ub = u(i-1,k,j) |
|---|
| 1084 | IF (u(i,k,j) .LT. 0.) ub = u(i,k,j) |
|---|
| 1085 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 & |
|---|
| 1086 | *((ru(i+1,k,j)+ru(i,k,j))*(u(i+1,k,j)+u(i,k,j)) & |
|---|
| 1087 | -(ru(i,k,j)+ru(i-1,k,j))*(u(i,k,j)+ub)) |
|---|
| 1088 | ENDDO |
|---|
| 1089 | ENDDO |
|---|
| 1090 | ENDIF |
|---|
| 1091 | IF ( specified .AND. ite .GE. ide-1 .AND. .NOT. config_flags%periodic_x ) THEN |
|---|
| 1092 | DO j = j_start, j_end |
|---|
| 1093 | DO k=kts,ktf |
|---|
| 1094 | i = ide-1 |
|---|
| 1095 | mrdx=msfu(i,j)*rdx |
|---|
| 1096 | ub = u(i+1,k,j) |
|---|
| 1097 | IF (u(i,k,j) .GT. 0.) ub = u(i,k,j) |
|---|
| 1098 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 & |
|---|
| 1099 | *((ru(i+1,k,j)+ru(i,k,j))*(ub+u(i,k,j)) & |
|---|
| 1100 | -(ru(i,k,j)+ru(i-1,k,j))*(u(i,k,j)+u(i-1,k,j))) |
|---|
| 1101 | ENDDO |
|---|
| 1102 | ENDDO |
|---|
| 1103 | ENDIF |
|---|
| 1104 | |
|---|
| 1105 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
|---|
| 1106 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-2,jte) |
|---|
| 1107 | |
|---|
| 1108 | DO j = j_start, j_end |
|---|
| 1109 | DO k=kts,ktf |
|---|
| 1110 | DO i = i_start, i_end |
|---|
| 1111 | mrdy=msfu(i,j)*rdy |
|---|
| 1112 | tendency(i,k,j)=tendency(i,k,j)-mrdy*0.25 & |
|---|
| 1113 | *((rv(i,k,j+1)+rv(i-1,k,j+1))*(u(i,k,j+1)+u(i,k,j)) & |
|---|
| 1114 | -(rv(i,k,j)+rv(i-1,k,j))*(u(i,k,j)+u(i,k,j-1))) |
|---|
| 1115 | ENDDO |
|---|
| 1116 | ENDDO |
|---|
| 1117 | ENDDO |
|---|
| 1118 | |
|---|
| 1119 | ELSE |
|---|
| 1120 | |
|---|
| 1121 | WRITE ( wrf_err_message , * ) 'module_advect: advect_u_6a: h_order not known ',horz_order |
|---|
| 1122 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
|---|
| 1123 | |
|---|
| 1124 | ENDIF horizontal_order_test |
|---|
| 1125 | |
|---|
| 1126 | ! radiative lateral boundary condition in x for normal velocity (u) |
|---|
| 1127 | |
|---|
| 1128 | IF ( (config_flags%open_xs) .and. its == ids ) THEN |
|---|
| 1129 | |
|---|
| 1130 | j_start = jts |
|---|
| 1131 | j_end = MIN(jte,jde-1) |
|---|
| 1132 | |
|---|
| 1133 | DO j = j_start, j_end |
|---|
| 1134 | DO k = kts, ktf |
|---|
| 1135 | ub = MIN(ru(its,k,j)-cb*mut(its,j), 0.) |
|---|
| 1136 | tendency(its,k,j) = tendency(its,k,j) & |
|---|
| 1137 | - rdx*ub*(u_old(its+1,k,j) - u_old(its,k,j)) |
|---|
| 1138 | ENDDO |
|---|
| 1139 | ENDDO |
|---|
| 1140 | |
|---|
| 1141 | ENDIF |
|---|
| 1142 | |
|---|
| 1143 | IF ( (config_flags%open_xe) .and. ite == ide ) THEN |
|---|
| 1144 | |
|---|
| 1145 | j_start = jts |
|---|
| 1146 | j_end = MIN(jte,jde-1) |
|---|
| 1147 | |
|---|
| 1148 | DO j = j_start, j_end |
|---|
| 1149 | DO k = kts, ktf |
|---|
| 1150 | ub = MAX(ru(ite,k,j)+cb*mut(ite-1,j), 0.) |
|---|
| 1151 | tendency(ite,k,j) = tendency(ite,k,j) & |
|---|
| 1152 | - rdx*ub*(u_old(ite,k,j) - u_old(ite-1,k,j)) |
|---|
| 1153 | ENDDO |
|---|
| 1154 | ENDDO |
|---|
| 1155 | |
|---|
| 1156 | ENDIF |
|---|
| 1157 | |
|---|
| 1158 | ! pick up the rest of the horizontal radiation boundary conditions. |
|---|
| 1159 | ! (these are the computations that don't require 'cb') |
|---|
| 1160 | ! first, set to index ranges |
|---|
| 1161 | |
|---|
| 1162 | i_start = its |
|---|
| 1163 | i_end = MIN(ite,ide) |
|---|
| 1164 | imin = ids |
|---|
| 1165 | imax = ide-1 |
|---|
| 1166 | |
|---|
| 1167 | IF (config_flags%open_xs) THEN |
|---|
| 1168 | i_start = MAX(ids+1, its) |
|---|
| 1169 | imin = ids |
|---|
| 1170 | ENDIF |
|---|
| 1171 | IF (config_flags%open_xe) THEN |
|---|
| 1172 | i_end = MIN(ite,ide-1) |
|---|
| 1173 | imax = ide-1 |
|---|
| 1174 | ENDIF |
|---|
| 1175 | |
|---|
| 1176 | IF( (config_flags%open_ys) .and. (jts == jds)) THEN |
|---|
| 1177 | |
|---|
| 1178 | DO i = i_start, i_end |
|---|
| 1179 | |
|---|
| 1180 | mrdy=msfu(i,jts)*rdy |
|---|
| 1181 | ip = MIN( imax, i ) |
|---|
| 1182 | im = MAX( imin, i-1 ) |
|---|
| 1183 | |
|---|
| 1184 | DO k=kts,ktf |
|---|
| 1185 | |
|---|
| 1186 | vw = 0.5*(rv(ip,k,jts)+rv(im,k,jts)) |
|---|
| 1187 | vb = MIN( vw, 0. ) |
|---|
| 1188 | dvm = rv(ip,k,jts+1)-rv(ip,k,jts) |
|---|
| 1189 | dvp = rv(im,k,jts+1)-rv(im,k,jts) |
|---|
| 1190 | tendency(i,k,jts)=tendency(i,k,jts)-mrdy*( & |
|---|
| 1191 | vb*(u_old(i,k,jts+1)-u_old(i,k,jts)) & |
|---|
| 1192 | +0.5*u(i,k,jts)*(dvm+dvp)) |
|---|
| 1193 | ENDDO |
|---|
| 1194 | ENDDO |
|---|
| 1195 | |
|---|
| 1196 | ENDIF |
|---|
| 1197 | |
|---|
| 1198 | IF( (config_flags%open_ye) .and. (jte == jde)) THEN |
|---|
| 1199 | |
|---|
| 1200 | DO i = i_start, i_end |
|---|
| 1201 | |
|---|
| 1202 | mrdy=msfu(i,jte-1)*rdy |
|---|
| 1203 | ip = MIN( imax, i ) |
|---|
| 1204 | im = MAX( imin, i-1 ) |
|---|
| 1205 | |
|---|
| 1206 | DO k=kts,ktf |
|---|
| 1207 | |
|---|
| 1208 | vw = 0.5*(rv(ip,k,jte)+rv(im,k,jte)) |
|---|
| 1209 | vb = MAX( vw, 0. ) |
|---|
| 1210 | dvm = rv(ip,k,jte)-rv(ip,k,jte-1) |
|---|
| 1211 | dvp = rv(im,k,jte)-rv(im,k,jte-1) |
|---|
| 1212 | tendency(i,k,jte-1)=tendency(i,k,jte-1)-mrdy*( & |
|---|
| 1213 | vb*(u_old(i,k,jte-1)-u_old(i,k,jte-2)) & |
|---|
| 1214 | +0.5*u(i,k,jte-1)*(dvm+dvp)) |
|---|
| 1215 | ENDDO |
|---|
| 1216 | ENDDO |
|---|
| 1217 | |
|---|
| 1218 | ENDIF |
|---|
| 1219 | |
|---|
| 1220 | !-------------------- vertical advection |
|---|
| 1221 | |
|---|
| 1222 | i_start = its |
|---|
| 1223 | i_end = ite |
|---|
| 1224 | j_start = jts |
|---|
| 1225 | j_end = min(jte,jde-1) |
|---|
| 1226 | |
|---|
| 1227 | ! IF ( config_flags%open_xs ) i_start = MAX(ids+1,its) |
|---|
| 1228 | ! IF ( config_flags%open_xe ) i_end = MIN(ide-1,ite) |
|---|
| 1229 | |
|---|
| 1230 | IF ( config_flags%open_ys .or. specified ) i_start = MAX(ids+1,its) |
|---|
| 1231 | IF ( config_flags%open_ye .or. specified ) i_end = MIN(ide-1,ite) |
|---|
| 1232 | IF ( config_flags%periodic_x ) i_start = its |
|---|
| 1233 | IF ( config_flags%periodic_x ) i_end = ite |
|---|
| 1234 | |
|---|
| 1235 | DO i = i_start, i_end |
|---|
| 1236 | vflux(i,kts)=0. |
|---|
| 1237 | vflux(i,kte)=0. |
|---|
| 1238 | ENDDO |
|---|
| 1239 | |
|---|
| 1240 | vert_order_test : IF (vert_order == 6) THEN |
|---|
| 1241 | |
|---|
| 1242 | DO j = j_start, j_end |
|---|
| 1243 | |
|---|
| 1244 | DO k=kts+3,ktf-2 |
|---|
| 1245 | DO i = i_start, i_end |
|---|
| 1246 | vel=0.5*(rom(i-1,k,j)+rom(i,k,j)) |
|---|
| 1247 | vflux(i,k) = vel*flux6( & |
|---|
| 1248 | u(i,k-3,j), u(i,k-2,j), u(i,k-1,j), & |
|---|
| 1249 | u(i,k ,j), u(i,k+1,j), u(i,k+2,j), -vel ) |
|---|
| 1250 | ENDDO |
|---|
| 1251 | ENDDO |
|---|
| 1252 | |
|---|
| 1253 | DO i = i_start, i_end |
|---|
| 1254 | |
|---|
| 1255 | k=kts+1 |
|---|
| 1256 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
|---|
| 1257 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
|---|
| 1258 | k = kts+2 |
|---|
| 1259 | vel=0.5*(rom(i,k,j)+rom(i-1,k,j)) |
|---|
| 1260 | vflux(i,k) = vel*flux4( & |
|---|
| 1261 | u(i,k-2,j), u(i,k-1,j), & |
|---|
| 1262 | u(i,k ,j), u(i,k+1,j), -vel ) |
|---|
| 1263 | k = ktf-1 |
|---|
| 1264 | vel=0.5*(rom(i,k,j)+rom(i-1,k,j)) |
|---|
| 1265 | vflux(i,k) = vel*flux4( & |
|---|
| 1266 | u(i,k-2,j), u(i,k-1,j), & |
|---|
| 1267 | u(i,k ,j), u(i,k+1,j), -vel ) |
|---|
| 1268 | k=ktf |
|---|
| 1269 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
|---|
| 1270 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
|---|
| 1271 | |
|---|
| 1272 | ENDDO |
|---|
| 1273 | DO k=kts,ktf |
|---|
| 1274 | DO i = i_start, i_end |
|---|
| 1275 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 1276 | ENDDO |
|---|
| 1277 | ENDDO |
|---|
| 1278 | ENDDO |
|---|
| 1279 | |
|---|
| 1280 | ELSE IF (vert_order == 5) THEN |
|---|
| 1281 | |
|---|
| 1282 | DO j = j_start, j_end |
|---|
| 1283 | |
|---|
| 1284 | DO k=kts+3,ktf-2 |
|---|
| 1285 | DO i = i_start, i_end |
|---|
| 1286 | vel=0.5*(rom(i-1,k,j)+rom(i,k,j)) |
|---|
| 1287 | vflux(i,k) = vel*flux5( & |
|---|
| 1288 | u(i,k-3,j), u(i,k-2,j), u(i,k-1,j), & |
|---|
| 1289 | u(i,k ,j), u(i,k+1,j), u(i,k+2,j), -vel ) |
|---|
| 1290 | ENDDO |
|---|
| 1291 | ENDDO |
|---|
| 1292 | |
|---|
| 1293 | DO i = i_start, i_end |
|---|
| 1294 | |
|---|
| 1295 | k=kts+1 |
|---|
| 1296 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
|---|
| 1297 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
|---|
| 1298 | k = kts+2 |
|---|
| 1299 | vel=0.5*(rom(i,k,j)+rom(i-1,k,j)) |
|---|
| 1300 | vflux(i,k) = vel*flux3( & |
|---|
| 1301 | u(i,k-2,j), u(i,k-1,j), & |
|---|
| 1302 | u(i,k ,j), u(i,k+1,j), -vel ) |
|---|
| 1303 | k = ktf-1 |
|---|
| 1304 | vel=0.5*(rom(i,k,j)+rom(i-1,k,j)) |
|---|
| 1305 | vflux(i,k) = vel*flux3( & |
|---|
| 1306 | u(i,k-2,j), u(i,k-1,j), & |
|---|
| 1307 | u(i,k ,j), u(i,k+1,j), -vel ) |
|---|
| 1308 | k=ktf |
|---|
| 1309 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
|---|
| 1310 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
|---|
| 1311 | |
|---|
| 1312 | ENDDO |
|---|
| 1313 | DO k=kts,ktf |
|---|
| 1314 | DO i = i_start, i_end |
|---|
| 1315 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 1316 | ENDDO |
|---|
| 1317 | ENDDO |
|---|
| 1318 | ENDDO |
|---|
| 1319 | |
|---|
| 1320 | ELSE IF (vert_order == 4) THEN |
|---|
| 1321 | |
|---|
| 1322 | DO j = j_start, j_end |
|---|
| 1323 | |
|---|
| 1324 | DO k=kts+2,ktf-1 |
|---|
| 1325 | DO i = i_start, i_end |
|---|
| 1326 | vel=0.5*(rom(i-1,k,j)+rom(i,k,j)) |
|---|
| 1327 | vflux(i,k) = vel*flux4( & |
|---|
| 1328 | u(i,k-2,j), u(i,k-1,j), & |
|---|
| 1329 | u(i,k ,j), u(i,k+1,j), -vel ) |
|---|
| 1330 | ENDDO |
|---|
| 1331 | ENDDO |
|---|
| 1332 | |
|---|
| 1333 | DO i = i_start, i_end |
|---|
| 1334 | |
|---|
| 1335 | k=kts+1 |
|---|
| 1336 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
|---|
| 1337 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
|---|
| 1338 | k=ktf |
|---|
| 1339 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
|---|
| 1340 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
|---|
| 1341 | |
|---|
| 1342 | ENDDO |
|---|
| 1343 | DO k=kts,ktf |
|---|
| 1344 | DO i = i_start, i_end |
|---|
| 1345 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 1346 | ENDDO |
|---|
| 1347 | ENDDO |
|---|
| 1348 | ENDDO |
|---|
| 1349 | |
|---|
| 1350 | ELSE IF (vert_order == 3) THEN |
|---|
| 1351 | |
|---|
| 1352 | DO j = j_start, j_end |
|---|
| 1353 | |
|---|
| 1354 | DO k=kts+2,ktf-1 |
|---|
| 1355 | DO i = i_start, i_end |
|---|
| 1356 | vel=0.5*(rom(i-1,k,j)+rom(i,k,j)) |
|---|
| 1357 | vflux(i,k) = vel*flux3( & |
|---|
| 1358 | u(i,k-2,j), u(i,k-1,j), & |
|---|
| 1359 | u(i,k ,j), u(i,k+1,j), -vel ) |
|---|
| 1360 | ENDDO |
|---|
| 1361 | ENDDO |
|---|
| 1362 | |
|---|
| 1363 | DO i = i_start, i_end |
|---|
| 1364 | |
|---|
| 1365 | k=kts+1 |
|---|
| 1366 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
|---|
| 1367 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
|---|
| 1368 | k=ktf |
|---|
| 1369 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
|---|
| 1370 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
|---|
| 1371 | |
|---|
| 1372 | ENDDO |
|---|
| 1373 | DO k=kts,ktf |
|---|
| 1374 | DO i = i_start, i_end |
|---|
| 1375 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 1376 | ENDDO |
|---|
| 1377 | ENDDO |
|---|
| 1378 | ENDDO |
|---|
| 1379 | |
|---|
| 1380 | ELSE IF (vert_order == 2) THEN |
|---|
| 1381 | |
|---|
| 1382 | DO j = j_start, j_end |
|---|
| 1383 | DO k=kts+1,ktf |
|---|
| 1384 | DO i = i_start, i_end |
|---|
| 1385 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i-1,k,j)) & |
|---|
| 1386 | *(fzm(k)*u(i,k,j)+fzp(k)*u(i,k-1,j)) |
|---|
| 1387 | ENDDO |
|---|
| 1388 | ENDDO |
|---|
| 1389 | |
|---|
| 1390 | |
|---|
| 1391 | DO k=kts,ktf |
|---|
| 1392 | DO i = i_start, i_end |
|---|
| 1393 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 1394 | ENDDO |
|---|
| 1395 | ENDDO |
|---|
| 1396 | |
|---|
| 1397 | ENDDO |
|---|
| 1398 | |
|---|
| 1399 | ELSE |
|---|
| 1400 | |
|---|
| 1401 | WRITE ( wrf_err_message , * ) 'module_advect: advect_u_6a: v_order not known ',vert_order |
|---|
| 1402 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
|---|
| 1403 | |
|---|
| 1404 | ENDIF vert_order_test |
|---|
| 1405 | |
|---|
| 1406 | END SUBROUTINE advect_u |
|---|
| 1407 | |
|---|
| 1408 | !------------------------------------------------------------------------------- |
|---|
| 1409 | |
|---|
| 1410 | SUBROUTINE advect_v ( v, v_old, tendency, & |
|---|
| 1411 | ru, rv, rom, & |
|---|
| 1412 | mut, config_flags, & |
|---|
| 1413 | msfu, msfv, msft, & |
|---|
| 1414 | fzm, fzp, & |
|---|
| 1415 | rdx, rdy, rdzw, & |
|---|
| 1416 | ids, ide, jds, jde, kds, kde, & |
|---|
| 1417 | ims, ime, jms, jme, kms, kme, & |
|---|
| 1418 | its, ite, jts, jte, kts, kte ) |
|---|
| 1419 | |
|---|
| 1420 | IMPLICIT NONE |
|---|
| 1421 | |
|---|
| 1422 | ! Input data |
|---|
| 1423 | |
|---|
| 1424 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
|---|
| 1425 | |
|---|
| 1426 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
|---|
| 1427 | ims, ime, jms, jme, kms, kme, & |
|---|
| 1428 | its, ite, jts, jte, kts, kte |
|---|
| 1429 | |
|---|
| 1430 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: v, & |
|---|
| 1431 | v_old, & |
|---|
| 1432 | ru, & |
|---|
| 1433 | rv, & |
|---|
| 1434 | rom |
|---|
| 1435 | |
|---|
| 1436 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
|---|
| 1437 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
|---|
| 1438 | |
|---|
| 1439 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
|---|
| 1440 | msfv, & |
|---|
| 1441 | msft |
|---|
| 1442 | |
|---|
| 1443 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
|---|
| 1444 | fzp, & |
|---|
| 1445 | rdzw |
|---|
| 1446 | |
|---|
| 1447 | REAL , INTENT(IN ) :: rdx, & |
|---|
| 1448 | rdy |
|---|
| 1449 | |
|---|
| 1450 | ! Local data |
|---|
| 1451 | |
|---|
| 1452 | INTEGER :: i, j, k, itf, jtf, ktf |
|---|
| 1453 | INTEGER :: i_start, i_end, j_start, j_end |
|---|
| 1454 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
|---|
| 1455 | INTEGER :: jmin, jmax, jp, jm, imin, imax |
|---|
| 1456 | |
|---|
| 1457 | REAL :: mrdx, mrdy, ub, vb, uw, vw, dup, dum |
|---|
| 1458 | REAL , DIMENSION(its:ite, kts:kte) :: vflux |
|---|
| 1459 | |
|---|
| 1460 | |
|---|
| 1461 | REAL, DIMENSION( its:ite+1, kts:kte ) :: fqx |
|---|
| 1462 | REAL, DIMENSION( its:ite, kts:kte, 2 ) :: fqy |
|---|
| 1463 | |
|---|
| 1464 | INTEGER :: horz_order |
|---|
| 1465 | INTEGER :: vert_order |
|---|
| 1466 | |
|---|
| 1467 | LOGICAL :: degrade_xs, degrade_ys |
|---|
| 1468 | LOGICAL :: degrade_xe, degrade_ye |
|---|
| 1469 | |
|---|
| 1470 | INTEGER :: jp1, jp0, jtmp |
|---|
| 1471 | |
|---|
| 1472 | |
|---|
| 1473 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
|---|
| 1474 | |
|---|
| 1475 | REAL :: flux3, flux4, flux5, flux6 |
|---|
| 1476 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel |
|---|
| 1477 | |
|---|
| 1478 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
|---|
| 1479 | ( 7.*(q_i + q_im1) - (q_ip1 + q_im2) )/12.0 |
|---|
| 1480 | |
|---|
| 1481 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
|---|
| 1482 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
|---|
| 1483 | sign(1.,ua)*((q_ip1 - q_im2)-3.*(q_i-q_im1))/12.0 |
|---|
| 1484 | |
|---|
| 1485 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
|---|
| 1486 | ( 37.*(q_i+q_im1) - 8.*(q_ip1+q_im2) & |
|---|
| 1487 | +(q_ip2+q_im3) )/60.0 |
|---|
| 1488 | |
|---|
| 1489 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
|---|
| 1490 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
|---|
| 1491 | -sign(1.,ua)*( & |
|---|
| 1492 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) )/60.0 |
|---|
| 1493 | |
|---|
| 1494 | |
|---|
| 1495 | |
|---|
| 1496 | LOGICAL :: specified |
|---|
| 1497 | |
|---|
| 1498 | specified = .false. |
|---|
| 1499 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
|---|
| 1500 | |
|---|
| 1501 | ! set order for the advection schemes |
|---|
| 1502 | |
|---|
| 1503 | ktf=MIN(kte,kde-1) |
|---|
| 1504 | horz_order = config_flags%h_mom_adv_order |
|---|
| 1505 | vert_order = config_flags%v_mom_adv_order |
|---|
| 1506 | |
|---|
| 1507 | |
|---|
| 1508 | ! here is the choice of flux operators |
|---|
| 1509 | |
|---|
| 1510 | |
|---|
| 1511 | horizontal_order_test : IF( horz_order == 6 ) THEN |
|---|
| 1512 | |
|---|
| 1513 | ! determine boundary mods for flux operators |
|---|
| 1514 | ! We degrade the flux operators from 3rd/4th order |
|---|
| 1515 | ! to second order one gridpoint in from the boundaries for |
|---|
| 1516 | ! all boundary conditions except periodic and symmetry - these |
|---|
| 1517 | ! conditions have boundary zone data fill for correct application |
|---|
| 1518 | ! of the higher order flux stencils |
|---|
| 1519 | |
|---|
| 1520 | degrade_xs = .true. |
|---|
| 1521 | degrade_xe = .true. |
|---|
| 1522 | degrade_ys = .true. |
|---|
| 1523 | degrade_ye = .true. |
|---|
| 1524 | |
|---|
| 1525 | IF( config_flags%periodic_x .or. & |
|---|
| 1526 | config_flags%symmetric_xs .or. & |
|---|
| 1527 | (its > ids+2) ) degrade_xs = .false. |
|---|
| 1528 | IF( config_flags%periodic_x .or. & |
|---|
| 1529 | config_flags%symmetric_xe .or. & |
|---|
| 1530 | (ite < ide-3) ) degrade_xe = .false. |
|---|
| 1531 | IF( config_flags%periodic_y .or. & |
|---|
| 1532 | config_flags%symmetric_ys .or. & |
|---|
| 1533 | (jts > jds+2) ) degrade_ys = .false. |
|---|
| 1534 | IF( config_flags%periodic_y .or. & |
|---|
| 1535 | config_flags%symmetric_ye .or. & |
|---|
| 1536 | (jte < jde-2) ) degrade_ye = .false. |
|---|
| 1537 | |
|---|
| 1538 | !--------------- y - advection first |
|---|
| 1539 | |
|---|
| 1540 | ktf=MIN(kte,kde-1) |
|---|
| 1541 | |
|---|
| 1542 | i_start = its |
|---|
| 1543 | i_end = MIN(ite,ide-1) |
|---|
| 1544 | j_start = jts |
|---|
| 1545 | j_end = jte |
|---|
| 1546 | |
|---|
| 1547 | ! higher order flux has a 5 or 7 point stencil, so compute |
|---|
| 1548 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 1549 | |
|---|
| 1550 | j_start_f = j_start |
|---|
| 1551 | j_end_f = j_end+1 |
|---|
| 1552 | |
|---|
| 1553 | IF(degrade_ys) then |
|---|
| 1554 | j_start = MAX(jts,jds+1) |
|---|
| 1555 | j_start_f = jds+3 |
|---|
| 1556 | ENDIF |
|---|
| 1557 | |
|---|
| 1558 | IF(degrade_ye) then |
|---|
| 1559 | j_end = MIN(jte,jde-1) |
|---|
| 1560 | j_end_f = jde-2 |
|---|
| 1561 | ENDIF |
|---|
| 1562 | |
|---|
| 1563 | ! compute fluxes, 5th or 6th order |
|---|
| 1564 | |
|---|
| 1565 | jp1 = 2 |
|---|
| 1566 | jp0 = 1 |
|---|
| 1567 | |
|---|
| 1568 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
|---|
| 1569 | |
|---|
| 1570 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN |
|---|
| 1571 | |
|---|
| 1572 | DO k=kts,ktf |
|---|
| 1573 | DO i = i_start, i_end |
|---|
| 1574 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
|---|
| 1575 | fqy( i, k, jp1 ) = vel*flux6( & |
|---|
| 1576 | v(i,k,j-3), v(i,k,j-2), v(i,k,j-1), & |
|---|
| 1577 | v(i,k,j ), v(i,k,j+1), v(i,k,j+2), vel ) |
|---|
| 1578 | ENDDO |
|---|
| 1579 | ENDDO |
|---|
| 1580 | |
|---|
| 1581 | ! we must be close to some boundary where we need to reduce the order of the stencil |
|---|
| 1582 | ! specified uses upstream normal wind at boundaries |
|---|
| 1583 | |
|---|
| 1584 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
|---|
| 1585 | |
|---|
| 1586 | DO k=kts,ktf |
|---|
| 1587 | DO i = i_start, i_end |
|---|
| 1588 | vb = v(i,k,j-1) |
|---|
| 1589 | IF (specified .AND. v(i,k,j) .LT. 0.)vb = v(i,k,j) |
|---|
| 1590 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
|---|
| 1591 | *(v(i,k,j)+vb) |
|---|
| 1592 | ENDDO |
|---|
| 1593 | ENDDO |
|---|
| 1594 | |
|---|
| 1595 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
|---|
| 1596 | |
|---|
| 1597 | DO k=kts,ktf |
|---|
| 1598 | DO i = i_start, i_end |
|---|
| 1599 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
|---|
| 1600 | fqy( i, k, jp1 ) = vel*flux4( & |
|---|
| 1601 | v(i,k,j-2),v(i,k,j-1),v(i,k,j),v(i,k,j+1),vel ) |
|---|
| 1602 | ENDDO |
|---|
| 1603 | ENDDO |
|---|
| 1604 | |
|---|
| 1605 | |
|---|
| 1606 | ELSE IF ( j == jde ) THEN ! 2nd order flux next to north boundary |
|---|
| 1607 | |
|---|
| 1608 | DO k=kts,ktf |
|---|
| 1609 | DO i = i_start, i_end |
|---|
| 1610 | vb = v(i,k,j) |
|---|
| 1611 | IF (specified .AND. v(i,k,j-1) .GT. 0.)vb = v(i,k,j-1) |
|---|
| 1612 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
|---|
| 1613 | *(vb+v(i,k,j-1)) |
|---|
| 1614 | ENDDO |
|---|
| 1615 | ENDDO |
|---|
| 1616 | |
|---|
| 1617 | ELSE IF ( j == jde-1 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
|---|
| 1618 | |
|---|
| 1619 | DO k=kts,ktf |
|---|
| 1620 | DO i = i_start, i_end |
|---|
| 1621 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
|---|
| 1622 | fqy( i, k, jp1 ) = vel*flux4( & |
|---|
| 1623 | v(i,k,j-2),v(i,k,j-1),v(i,k,j),v(i,k,j+1),vel ) |
|---|
| 1624 | ENDDO |
|---|
| 1625 | ENDDO |
|---|
| 1626 | |
|---|
| 1627 | END IF |
|---|
| 1628 | |
|---|
| 1629 | ! y flux-divergence into tendency |
|---|
| 1630 | |
|---|
| 1631 | IF(j > j_start) THEN |
|---|
| 1632 | |
|---|
| 1633 | DO k=kts,ktf |
|---|
| 1634 | DO i = i_start, i_end |
|---|
| 1635 | mrdy=msfv(i,j-1)*rdy |
|---|
| 1636 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
|---|
| 1637 | ENDDO |
|---|
| 1638 | ENDDO |
|---|
| 1639 | |
|---|
| 1640 | ENDIF |
|---|
| 1641 | |
|---|
| 1642 | jtmp = jp1 |
|---|
| 1643 | jp1 = jp0 |
|---|
| 1644 | jp0 = jtmp |
|---|
| 1645 | |
|---|
| 1646 | ENDDO j_loop_y_flux_6 |
|---|
| 1647 | |
|---|
| 1648 | ! next, x - flux divergence |
|---|
| 1649 | |
|---|
| 1650 | i_start = its |
|---|
| 1651 | i_end = MIN(ite,ide-1) |
|---|
| 1652 | |
|---|
| 1653 | j_start = jts |
|---|
| 1654 | j_end = jte |
|---|
| 1655 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
|---|
| 1656 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-1,jte) |
|---|
| 1657 | |
|---|
| 1658 | ! higher order flux has a 5 or 7 point stencil, so compute |
|---|
| 1659 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 1660 | |
|---|
| 1661 | i_start_f = i_start |
|---|
| 1662 | i_end_f = i_end+1 |
|---|
| 1663 | |
|---|
| 1664 | IF(degrade_xs) then |
|---|
| 1665 | i_start = MAX(ids+1,its) |
|---|
| 1666 | i_start_f = i_start+2 |
|---|
| 1667 | ENDIF |
|---|
| 1668 | |
|---|
| 1669 | IF(degrade_xe) then |
|---|
| 1670 | i_end = MIN(ide-2,ite) |
|---|
| 1671 | i_end_f = ide-3 |
|---|
| 1672 | ENDIF |
|---|
| 1673 | |
|---|
| 1674 | ! compute fluxes |
|---|
| 1675 | |
|---|
| 1676 | DO j = j_start, j_end |
|---|
| 1677 | |
|---|
| 1678 | ! 5th or 6th order flux |
|---|
| 1679 | |
|---|
| 1680 | DO k=kts,ktf |
|---|
| 1681 | DO i = i_start_f, i_end_f |
|---|
| 1682 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
|---|
| 1683 | fqx( i, k ) = vel*flux6( v(i-3,k,j), v(i-2,k,j), & |
|---|
| 1684 | v(i-1,k,j), v(i ,k,j), & |
|---|
| 1685 | v(i+1,k,j), v(i+2,k,j), & |
|---|
| 1686 | vel ) |
|---|
| 1687 | ENDDO |
|---|
| 1688 | ENDDO |
|---|
| 1689 | |
|---|
| 1690 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
|---|
| 1691 | |
|---|
| 1692 | IF( degrade_xs ) THEN |
|---|
| 1693 | |
|---|
| 1694 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
|---|
| 1695 | i = ids+1 |
|---|
| 1696 | DO k=kts,ktf |
|---|
| 1697 | fqx(i,k) = 0.25*(ru(i,k,j)+ru(i,k,j-1)) & |
|---|
| 1698 | *(v(i,k,j)+v(i-1,k,j)) |
|---|
| 1699 | ENDDO |
|---|
| 1700 | ENDIF |
|---|
| 1701 | |
|---|
| 1702 | i = ids+2 |
|---|
| 1703 | DO k=kts,ktf |
|---|
| 1704 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
|---|
| 1705 | fqx( i,k ) = vel*flux4( v(i-2,k,j), v(i-1,k,j), & |
|---|
| 1706 | v(i ,k,j), v(i+1,k,j), & |
|---|
| 1707 | vel ) |
|---|
| 1708 | ENDDO |
|---|
| 1709 | |
|---|
| 1710 | ENDIF |
|---|
| 1711 | |
|---|
| 1712 | IF( degrade_xe ) THEN |
|---|
| 1713 | |
|---|
| 1714 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
|---|
| 1715 | i = ide-1 |
|---|
| 1716 | DO k=kts,ktf |
|---|
| 1717 | fqx(i,k) = 0.25*(ru(i_end+1,k,j)+ru(i_end+1,k,j-1)) & |
|---|
| 1718 | *(v(i_end+1,k,j)+v(i_end,k,j)) |
|---|
| 1719 | ENDDO |
|---|
| 1720 | ENDIF |
|---|
| 1721 | |
|---|
| 1722 | i = ide-2 |
|---|
| 1723 | DO k=kts,ktf |
|---|
| 1724 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
|---|
| 1725 | fqx( i,k ) = vel*flux4( v(i-2,k,j), v(i-1,k,j), & |
|---|
| 1726 | v(i ,k,j), v(i+1,k,j), & |
|---|
| 1727 | vel ) |
|---|
| 1728 | ENDDO |
|---|
| 1729 | |
|---|
| 1730 | ENDIF |
|---|
| 1731 | |
|---|
| 1732 | ! x flux-divergence into tendency |
|---|
| 1733 | |
|---|
| 1734 | DO k=kts,ktf |
|---|
| 1735 | DO i = i_start, i_end |
|---|
| 1736 | mrdx=msfv(i,j)*rdx |
|---|
| 1737 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
|---|
| 1738 | ENDDO |
|---|
| 1739 | ENDDO |
|---|
| 1740 | |
|---|
| 1741 | ENDDO |
|---|
| 1742 | |
|---|
| 1743 | ELSE IF( horz_order == 5 ) THEN |
|---|
| 1744 | |
|---|
| 1745 | ! 5th order horizontal flux calculation |
|---|
| 1746 | ! This code is EXACTLY the same as the 6th order code |
|---|
| 1747 | ! EXCEPT the 5th order and 3rd operators are used in |
|---|
| 1748 | ! place of the 6th and 4th order operators |
|---|
| 1749 | |
|---|
| 1750 | ! determine boundary mods for flux operators |
|---|
| 1751 | ! We degrade the flux operators from 3rd/4th order |
|---|
| 1752 | ! to second order one gridpoint in from the boundaries for |
|---|
| 1753 | ! all boundary conditions except periodic and symmetry - these |
|---|
| 1754 | ! conditions have boundary zone data fill for correct application |
|---|
| 1755 | ! of the higher order flux stencils |
|---|
| 1756 | |
|---|
| 1757 | degrade_xs = .true. |
|---|
| 1758 | degrade_xe = .true. |
|---|
| 1759 | degrade_ys = .true. |
|---|
| 1760 | degrade_ye = .true. |
|---|
| 1761 | |
|---|
| 1762 | IF( config_flags%periodic_x .or. & |
|---|
| 1763 | config_flags%symmetric_xs .or. & |
|---|
| 1764 | (its > ids+2) ) degrade_xs = .false. |
|---|
| 1765 | IF( config_flags%periodic_x .or. & |
|---|
| 1766 | config_flags%symmetric_xe .or. & |
|---|
| 1767 | (ite < ide-3) ) degrade_xe = .false. |
|---|
| 1768 | IF( config_flags%periodic_y .or. & |
|---|
| 1769 | config_flags%symmetric_ys .or. & |
|---|
| 1770 | (jts > jds+2) ) degrade_ys = .false. |
|---|
| 1771 | IF( config_flags%periodic_y .or. & |
|---|
| 1772 | config_flags%symmetric_ye .or. & |
|---|
| 1773 | (jte < jde-2) ) degrade_ye = .false. |
|---|
| 1774 | |
|---|
| 1775 | !--------------- y - advection first |
|---|
| 1776 | |
|---|
| 1777 | i_start = its |
|---|
| 1778 | i_end = MIN(ite,ide-1) |
|---|
| 1779 | j_start = jts |
|---|
| 1780 | j_end = jte |
|---|
| 1781 | |
|---|
| 1782 | ! higher order flux has a 5 or 7 point stencil, so compute |
|---|
| 1783 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 1784 | |
|---|
| 1785 | j_start_f = j_start |
|---|
| 1786 | j_end_f = j_end+1 |
|---|
| 1787 | |
|---|
| 1788 | IF(degrade_ys) then |
|---|
| 1789 | j_start = MAX(jts,jds+1) |
|---|
| 1790 | j_start_f = jds+3 |
|---|
| 1791 | ENDIF |
|---|
| 1792 | |
|---|
| 1793 | IF(degrade_ye) then |
|---|
| 1794 | j_end = MIN(jte,jde-1) |
|---|
| 1795 | j_end_f = jde-2 |
|---|
| 1796 | ENDIF |
|---|
| 1797 | |
|---|
| 1798 | ! compute fluxes, 5th or 6th order |
|---|
| 1799 | |
|---|
| 1800 | jp1 = 2 |
|---|
| 1801 | jp0 = 1 |
|---|
| 1802 | |
|---|
| 1803 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
|---|
| 1804 | |
|---|
| 1805 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN |
|---|
| 1806 | |
|---|
| 1807 | DO k=kts,ktf |
|---|
| 1808 | DO i = i_start, i_end |
|---|
| 1809 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
|---|
| 1810 | fqy( i, k, jp1 ) = vel*flux5( & |
|---|
| 1811 | v(i,k,j-3), v(i,k,j-2), v(i,k,j-1), & |
|---|
| 1812 | v(i,k,j ), v(i,k,j+1), v(i,k,j+2), vel ) |
|---|
| 1813 | ENDDO |
|---|
| 1814 | ENDDO |
|---|
| 1815 | |
|---|
| 1816 | ! we must be close to some boundary where we need to reduce the order of the stencil |
|---|
| 1817 | ! specified uses upstream normal wind at boundaries |
|---|
| 1818 | |
|---|
| 1819 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
|---|
| 1820 | |
|---|
| 1821 | DO k=kts,ktf |
|---|
| 1822 | DO i = i_start, i_end |
|---|
| 1823 | vb = v(i,k,j-1) |
|---|
| 1824 | IF (specified .AND. v(i,k,j) .LT. 0.)vb = v(i,k,j) |
|---|
| 1825 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
|---|
| 1826 | *(v(i,k,j)+vb) |
|---|
| 1827 | ENDDO |
|---|
| 1828 | ENDDO |
|---|
| 1829 | |
|---|
| 1830 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
|---|
| 1831 | |
|---|
| 1832 | DO k=kts,ktf |
|---|
| 1833 | DO i = i_start, i_end |
|---|
| 1834 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
|---|
| 1835 | fqy( i, k, jp1 ) = vel*flux3( & |
|---|
| 1836 | v(i,k,j-2),v(i,k,j-1),v(i,k,j),v(i,k,j+1),vel ) |
|---|
| 1837 | ENDDO |
|---|
| 1838 | ENDDO |
|---|
| 1839 | |
|---|
| 1840 | |
|---|
| 1841 | ELSE IF ( j == jde ) THEN ! 2nd order flux next to north boundary |
|---|
| 1842 | |
|---|
| 1843 | DO k=kts,ktf |
|---|
| 1844 | DO i = i_start, i_end |
|---|
| 1845 | vb = v(i,k,j) |
|---|
| 1846 | IF (specified .AND. v(i,k,j-1) .GT. 0.)vb = v(i,k,j-1) |
|---|
| 1847 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
|---|
| 1848 | *(vb+v(i,k,j-1)) |
|---|
| 1849 | ENDDO |
|---|
| 1850 | ENDDO |
|---|
| 1851 | |
|---|
| 1852 | ELSE IF ( j == jde-1 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
|---|
| 1853 | |
|---|
| 1854 | DO k=kts,ktf |
|---|
| 1855 | DO i = i_start, i_end |
|---|
| 1856 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
|---|
| 1857 | fqy( i, k, jp1 ) = vel*flux3( & |
|---|
| 1858 | v(i,k,j-2),v(i,k,j-1),v(i,k,j),v(i,k,j+1),vel ) |
|---|
| 1859 | ENDDO |
|---|
| 1860 | ENDDO |
|---|
| 1861 | |
|---|
| 1862 | END IF |
|---|
| 1863 | |
|---|
| 1864 | ! y flux-divergence into tendency |
|---|
| 1865 | |
|---|
| 1866 | IF(j > j_start) THEN |
|---|
| 1867 | |
|---|
| 1868 | DO k=kts,ktf |
|---|
| 1869 | DO i = i_start, i_end |
|---|
| 1870 | mrdy=msfv(i,j-1)*rdy |
|---|
| 1871 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
|---|
| 1872 | ENDDO |
|---|
| 1873 | ENDDO |
|---|
| 1874 | |
|---|
| 1875 | ENDIF |
|---|
| 1876 | |
|---|
| 1877 | jtmp = jp1 |
|---|
| 1878 | jp1 = jp0 |
|---|
| 1879 | jp0 = jtmp |
|---|
| 1880 | |
|---|
| 1881 | ENDDO j_loop_y_flux_5 |
|---|
| 1882 | |
|---|
| 1883 | ! next, x - flux divergence |
|---|
| 1884 | |
|---|
| 1885 | i_start = its |
|---|
| 1886 | i_end = MIN(ite,ide-1) |
|---|
| 1887 | |
|---|
| 1888 | j_start = jts |
|---|
| 1889 | j_end = jte |
|---|
| 1890 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
|---|
| 1891 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-1,jte) |
|---|
| 1892 | |
|---|
| 1893 | ! higher order flux has a 5 or 7 point stencil, so compute |
|---|
| 1894 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 1895 | |
|---|
| 1896 | i_start_f = i_start |
|---|
| 1897 | i_end_f = i_end+1 |
|---|
| 1898 | |
|---|
| 1899 | IF(degrade_xs) then |
|---|
| 1900 | i_start = MAX(ids+1,its) |
|---|
| 1901 | i_start_f = i_start+2 |
|---|
| 1902 | ENDIF |
|---|
| 1903 | |
|---|
| 1904 | IF(degrade_xe) then |
|---|
| 1905 | i_end = MIN(ide-2,ite) |
|---|
| 1906 | i_end_f = ide-3 |
|---|
| 1907 | ENDIF |
|---|
| 1908 | |
|---|
| 1909 | ! compute fluxes |
|---|
| 1910 | |
|---|
| 1911 | DO j = j_start, j_end |
|---|
| 1912 | |
|---|
| 1913 | ! 5th or 6th order flux |
|---|
| 1914 | |
|---|
| 1915 | DO k=kts,ktf |
|---|
| 1916 | DO i = i_start_f, i_end_f |
|---|
| 1917 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
|---|
| 1918 | fqx( i, k ) = vel*flux5( v(i-3,k,j), v(i-2,k,j), & |
|---|
| 1919 | v(i-1,k,j), v(i ,k,j), & |
|---|
| 1920 | v(i+1,k,j), v(i+2,k,j), & |
|---|
| 1921 | vel ) |
|---|
| 1922 | ENDDO |
|---|
| 1923 | ENDDO |
|---|
| 1924 | |
|---|
| 1925 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
|---|
| 1926 | |
|---|
| 1927 | IF( degrade_xs ) THEN |
|---|
| 1928 | |
|---|
| 1929 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
|---|
| 1930 | i = ids+1 |
|---|
| 1931 | DO k=kts,ktf |
|---|
| 1932 | fqx(i,k) = 0.25*(ru(i,k,j)+ru(i,k,j-1)) & |
|---|
| 1933 | *(v(i,k,j)+v(i-1,k,j)) |
|---|
| 1934 | ENDDO |
|---|
| 1935 | ENDIF |
|---|
| 1936 | |
|---|
| 1937 | i = ids+2 |
|---|
| 1938 | DO k=kts,ktf |
|---|
| 1939 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
|---|
| 1940 | fqx( i,k ) = vel*flux3( v(i-2,k,j), v(i-1,k,j), & |
|---|
| 1941 | v(i ,k,j), v(i+1,k,j), & |
|---|
| 1942 | vel ) |
|---|
| 1943 | ENDDO |
|---|
| 1944 | |
|---|
| 1945 | ENDIF |
|---|
| 1946 | |
|---|
| 1947 | IF( degrade_xe ) THEN |
|---|
| 1948 | |
|---|
| 1949 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
|---|
| 1950 | i = ide-1 |
|---|
| 1951 | DO k=kts,ktf |
|---|
| 1952 | fqx(i,k) = 0.25*(ru(i_end+1,k,j)+ru(i_end+1,k,j-1)) & |
|---|
| 1953 | *(v(i_end+1,k,j)+v(i_end,k,j)) |
|---|
| 1954 | ENDDO |
|---|
| 1955 | ENDIF |
|---|
| 1956 | |
|---|
| 1957 | i = ide-2 |
|---|
| 1958 | DO k=kts,ktf |
|---|
| 1959 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
|---|
| 1960 | fqx( i,k ) = vel*flux3( v(i-2,k,j), v(i-1,k,j), & |
|---|
| 1961 | v(i ,k,j), v(i+1,k,j), & |
|---|
| 1962 | vel ) |
|---|
| 1963 | ENDDO |
|---|
| 1964 | |
|---|
| 1965 | ENDIF |
|---|
| 1966 | |
|---|
| 1967 | ! x flux-divergence into tendency |
|---|
| 1968 | |
|---|
| 1969 | DO k=kts,ktf |
|---|
| 1970 | DO i = i_start, i_end |
|---|
| 1971 | mrdx=msfv(i,j)*rdx |
|---|
| 1972 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
|---|
| 1973 | ENDDO |
|---|
| 1974 | ENDDO |
|---|
| 1975 | |
|---|
| 1976 | ENDDO |
|---|
| 1977 | |
|---|
| 1978 | ELSE IF( horz_order == 4 ) THEN |
|---|
| 1979 | |
|---|
| 1980 | ! determine boundary mods for flux operators |
|---|
| 1981 | ! We degrade the flux operators from 3rd/4th order |
|---|
| 1982 | ! to second order one gridpoint in from the boundaries for |
|---|
| 1983 | ! all boundary conditions except periodic and symmetry - these |
|---|
| 1984 | ! conditions have boundary zone data fill for correct application |
|---|
| 1985 | ! of the higher order flux stencils |
|---|
| 1986 | |
|---|
| 1987 | degrade_xs = .true. |
|---|
| 1988 | degrade_xe = .true. |
|---|
| 1989 | degrade_ys = .true. |
|---|
| 1990 | degrade_ye = .true. |
|---|
| 1991 | |
|---|
| 1992 | IF( config_flags%periodic_x .or. & |
|---|
| 1993 | config_flags%symmetric_xs .or. & |
|---|
| 1994 | (its > ids+1) ) degrade_xs = .false. |
|---|
| 1995 | IF( config_flags%periodic_x .or. & |
|---|
| 1996 | config_flags%symmetric_xe .or. & |
|---|
| 1997 | (ite < ide-2) ) degrade_xe = .false. |
|---|
| 1998 | IF( config_flags%periodic_y .or. & |
|---|
| 1999 | config_flags%symmetric_ys .or. & |
|---|
| 2000 | (jts > jds+1) ) degrade_ys = .false. |
|---|
| 2001 | IF( config_flags%periodic_y .or. & |
|---|
| 2002 | config_flags%symmetric_ye .or. & |
|---|
| 2003 | (jte < jde-1) ) degrade_ye = .false. |
|---|
| 2004 | |
|---|
| 2005 | !--------------- y - advection first |
|---|
| 2006 | |
|---|
| 2007 | |
|---|
| 2008 | ktf=MIN(kte,kde-1) |
|---|
| 2009 | |
|---|
| 2010 | i_start = its |
|---|
| 2011 | i_end = MIN(ite,ide-1) |
|---|
| 2012 | j_start = jts |
|---|
| 2013 | j_end = jte |
|---|
| 2014 | |
|---|
| 2015 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
|---|
| 2016 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 2017 | |
|---|
| 2018 | j_start_f = j_start |
|---|
| 2019 | j_end_f = j_end+1 |
|---|
| 2020 | |
|---|
| 2021 | !CJM May not work with tiling because defined in terms of domain dims |
|---|
| 2022 | IF(degrade_ys) then |
|---|
| 2023 | j_start = jds+1 |
|---|
| 2024 | j_start_f = j_start+1 |
|---|
| 2025 | ENDIF |
|---|
| 2026 | |
|---|
| 2027 | IF(degrade_ye) then |
|---|
| 2028 | j_end = jde-1 |
|---|
| 2029 | j_end_f = jde-1 |
|---|
| 2030 | ENDIF |
|---|
| 2031 | |
|---|
| 2032 | ! compute fluxes |
|---|
| 2033 | ! specified uses upstream normal wind at boundaries |
|---|
| 2034 | |
|---|
| 2035 | jp0 = 1 |
|---|
| 2036 | jp1 = 2 |
|---|
| 2037 | |
|---|
| 2038 | DO j = j_start, j_end+1 |
|---|
| 2039 | |
|---|
| 2040 | IF ((j == j_start) .and. degrade_ys) THEN |
|---|
| 2041 | DO k = kts,ktf |
|---|
| 2042 | DO i = i_start, i_end |
|---|
| 2043 | vb = v(i,k,j-1) |
|---|
| 2044 | IF (specified .AND. v(i,k,j) .LT. 0.)vb = v(i,k,j) |
|---|
| 2045 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
|---|
| 2046 | *(v(i,k,j)+vb) |
|---|
| 2047 | ENDDO |
|---|
| 2048 | ENDDO |
|---|
| 2049 | ELSE IF ((j == j_end+1) .and. degrade_ye) THEN |
|---|
| 2050 | DO k = kts, ktf |
|---|
| 2051 | DO i = i_start, i_end |
|---|
| 2052 | vb = v(i,k,j) |
|---|
| 2053 | IF (specified .AND. v(i,k,j-1) .GT. 0.)vb = v(i,k,j-1) |
|---|
| 2054 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
|---|
| 2055 | *(vb+v(i,k,j-1)) |
|---|
| 2056 | ENDDO |
|---|
| 2057 | ENDDO |
|---|
| 2058 | ELSE |
|---|
| 2059 | DO k = kts, ktf |
|---|
| 2060 | DO i = i_start, i_end |
|---|
| 2061 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
|---|
| 2062 | fqy( i,k,jp1 ) = vel*flux4( v(i,k,j-2), v(i,k,j-1), & |
|---|
| 2063 | v(i,k,j ), v(i,k,j+1), & |
|---|
| 2064 | vel ) |
|---|
| 2065 | ENDDO |
|---|
| 2066 | ENDDO |
|---|
| 2067 | END IF |
|---|
| 2068 | |
|---|
| 2069 | IF( j > j_start) THEN |
|---|
| 2070 | DO k = kts, ktf |
|---|
| 2071 | DO i = i_start, i_end |
|---|
| 2072 | mrdy=msfv(i,j-1)*rdy |
|---|
| 2073 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
|---|
| 2074 | ENDDO |
|---|
| 2075 | ENDDO |
|---|
| 2076 | END IF |
|---|
| 2077 | |
|---|
| 2078 | jtmp = jp1 |
|---|
| 2079 | jp1 = jp0 |
|---|
| 2080 | jp0 = jtmp |
|---|
| 2081 | |
|---|
| 2082 | ENDDO |
|---|
| 2083 | |
|---|
| 2084 | ! next, x - flux divergence |
|---|
| 2085 | |
|---|
| 2086 | |
|---|
| 2087 | i_start = its |
|---|
| 2088 | i_end = MIN(ite,ide-1) |
|---|
| 2089 | |
|---|
| 2090 | j_start = jts |
|---|
| 2091 | j_end = jte |
|---|
| 2092 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
|---|
| 2093 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-1,jte) |
|---|
| 2094 | |
|---|
| 2095 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
|---|
| 2096 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 2097 | |
|---|
| 2098 | i_start_f = i_start |
|---|
| 2099 | i_end_f = i_end+1 |
|---|
| 2100 | |
|---|
| 2101 | IF(degrade_xs) then |
|---|
| 2102 | i_start = ids+1 |
|---|
| 2103 | i_start_f = i_start+1 |
|---|
| 2104 | ENDIF |
|---|
| 2105 | |
|---|
| 2106 | IF(degrade_xe) then |
|---|
| 2107 | i_end = ide-2 |
|---|
| 2108 | i_end_f = ide-2 |
|---|
| 2109 | ENDIF |
|---|
| 2110 | |
|---|
| 2111 | ! compute fluxes |
|---|
| 2112 | |
|---|
| 2113 | DO j = j_start, j_end |
|---|
| 2114 | |
|---|
| 2115 | ! 3rd or 4th order flux |
|---|
| 2116 | |
|---|
| 2117 | DO k=kts,ktf |
|---|
| 2118 | DO i = i_start_f, i_end_f |
|---|
| 2119 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
|---|
| 2120 | fqx( i, k ) = vel*flux4( v(i-2,k,j), v(i-1,k,j), & |
|---|
| 2121 | v(i ,k,j), v(i+1,k,j), & |
|---|
| 2122 | vel ) |
|---|
| 2123 | ENDDO |
|---|
| 2124 | ENDDO |
|---|
| 2125 | |
|---|
| 2126 | ! second order flux close to boundaries (if not periodic or symmetric) |
|---|
| 2127 | |
|---|
| 2128 | IF( degrade_xs ) THEN |
|---|
| 2129 | DO k=kts,ktf |
|---|
| 2130 | fqx(i_start,k) = 0.25*(ru(i_start,k,j)+ru(i_start,k,j-1)) & |
|---|
| 2131 | *(v(i_start,k,j)+v(i_start-1,k,j)) |
|---|
| 2132 | ENDDO |
|---|
| 2133 | ENDIF |
|---|
| 2134 | |
|---|
| 2135 | IF( degrade_xe ) THEN |
|---|
| 2136 | DO k=kts,ktf |
|---|
| 2137 | fqx(i_end+1,k) = 0.25*(ru(i_end+1,k,j)+ru(i_end+1,k,j-1)) & |
|---|
| 2138 | *(v(i_end+1,k,j)+v(i_end,k,j)) |
|---|
| 2139 | ENDDO |
|---|
| 2140 | ENDIF |
|---|
| 2141 | |
|---|
| 2142 | ! x flux-divergence into tendency |
|---|
| 2143 | |
|---|
| 2144 | DO k=kts,ktf |
|---|
| 2145 | DO i = i_start, i_end |
|---|
| 2146 | mrdx=msfv(i,j)*rdx |
|---|
| 2147 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
|---|
| 2148 | ENDDO |
|---|
| 2149 | ENDDO |
|---|
| 2150 | |
|---|
| 2151 | ENDDO |
|---|
| 2152 | |
|---|
| 2153 | ELSE IF( horz_order == 3 ) THEN |
|---|
| 2154 | |
|---|
| 2155 | ! determine boundary mods for flux operators |
|---|
| 2156 | ! We degrade the flux operators from 3rd/4th order |
|---|
| 2157 | ! to second order one gridpoint in from the boundaries for |
|---|
| 2158 | ! all boundary conditions except periodic and symmetry - these |
|---|
| 2159 | ! conditions have boundary zone data fill for correct application |
|---|
| 2160 | ! of the higher order flux stencils |
|---|
| 2161 | |
|---|
| 2162 | degrade_xs = .true. |
|---|
| 2163 | degrade_xe = .true. |
|---|
| 2164 | degrade_ys = .true. |
|---|
| 2165 | degrade_ye = .true. |
|---|
| 2166 | |
|---|
| 2167 | IF( config_flags%periodic_x .or. & |
|---|
| 2168 | config_flags%symmetric_xs .or. & |
|---|
| 2169 | (its > ids+1) ) degrade_xs = .false. |
|---|
| 2170 | IF( config_flags%periodic_x .or. & |
|---|
| 2171 | config_flags%symmetric_xe .or. & |
|---|
| 2172 | (ite < ide-2) ) degrade_xe = .false. |
|---|
| 2173 | IF( config_flags%periodic_y .or. & |
|---|
| 2174 | config_flags%symmetric_ys .or. & |
|---|
| 2175 | (jts > jds+1) ) degrade_ys = .false. |
|---|
| 2176 | IF( config_flags%periodic_y .or. & |
|---|
| 2177 | config_flags%symmetric_ye .or. & |
|---|
| 2178 | (jte < jde-1) ) degrade_ye = .false. |
|---|
| 2179 | |
|---|
| 2180 | !--------------- y - advection first |
|---|
| 2181 | |
|---|
| 2182 | |
|---|
| 2183 | ktf=MIN(kte,kde-1) |
|---|
| 2184 | |
|---|
| 2185 | i_start = its |
|---|
| 2186 | i_end = MIN(ite,ide-1) |
|---|
| 2187 | j_start = jts |
|---|
| 2188 | j_end = jte |
|---|
| 2189 | |
|---|
| 2190 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
|---|
| 2191 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 2192 | |
|---|
| 2193 | j_start_f = j_start |
|---|
| 2194 | j_end_f = j_end+1 |
|---|
| 2195 | |
|---|
| 2196 | !CJM May not work with tiling because defined in terms of domain dims |
|---|
| 2197 | IF(degrade_ys) then |
|---|
| 2198 | j_start = jds+1 |
|---|
| 2199 | j_start_f = j_start+1 |
|---|
| 2200 | ENDIF |
|---|
| 2201 | |
|---|
| 2202 | IF(degrade_ye) then |
|---|
| 2203 | j_end = jde-1 |
|---|
| 2204 | j_end_f = jde-1 |
|---|
| 2205 | ENDIF |
|---|
| 2206 | |
|---|
| 2207 | ! compute fluxes |
|---|
| 2208 | ! specified uses upstream normal wind at boundaries |
|---|
| 2209 | |
|---|
| 2210 | jp0 = 1 |
|---|
| 2211 | jp1 = 2 |
|---|
| 2212 | |
|---|
| 2213 | DO j = j_start, j_end+1 |
|---|
| 2214 | |
|---|
| 2215 | IF ((j == j_start) .and. degrade_ys) THEN |
|---|
| 2216 | DO k = kts,ktf |
|---|
| 2217 | DO i = i_start, i_end |
|---|
| 2218 | vb = v(i,k,j-1) |
|---|
| 2219 | IF (specified .AND. v(i,k,j) .LT. 0.)vb = v(i,k,j) |
|---|
| 2220 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
|---|
| 2221 | *(v(i,k,j)+vb) |
|---|
| 2222 | ENDDO |
|---|
| 2223 | ENDDO |
|---|
| 2224 | ELSE IF ((j == j_end+1) .and. degrade_ye) THEN |
|---|
| 2225 | DO k = kts, ktf |
|---|
| 2226 | DO i = i_start, i_end |
|---|
| 2227 | vb = v(i,k,j) |
|---|
| 2228 | IF (specified .AND. v(i,k,j-1) .GT. 0.)vb = v(i,k,j-1) |
|---|
| 2229 | fqy(i, k, jp1) = 0.25*(rv(i,k,j)+rv(i,k,j-1)) & |
|---|
| 2230 | *(vb+v(i,k,j-1)) |
|---|
| 2231 | ENDDO |
|---|
| 2232 | ENDDO |
|---|
| 2233 | ELSE |
|---|
| 2234 | DO k = kts, ktf |
|---|
| 2235 | DO i = i_start, i_end |
|---|
| 2236 | vel = 0.5*(rv(i,k,j)+rv(i,k,j-1)) |
|---|
| 2237 | fqy( i,k,jp1 ) = vel*flux3( v(i,k,j-2), v(i,k,j-1), & |
|---|
| 2238 | v(i,k,j ), v(i,k,j+1), & |
|---|
| 2239 | vel ) |
|---|
| 2240 | ENDDO |
|---|
| 2241 | ENDDO |
|---|
| 2242 | END IF |
|---|
| 2243 | |
|---|
| 2244 | IF( j > j_start) THEN |
|---|
| 2245 | DO k = kts, ktf |
|---|
| 2246 | DO i = i_start, i_end |
|---|
| 2247 | mrdy=msfv(i,j-1)*rdy |
|---|
| 2248 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
|---|
| 2249 | ENDDO |
|---|
| 2250 | ENDDO |
|---|
| 2251 | END IF |
|---|
| 2252 | |
|---|
| 2253 | jtmp = jp1 |
|---|
| 2254 | jp1 = jp0 |
|---|
| 2255 | jp0 = jtmp |
|---|
| 2256 | |
|---|
| 2257 | ENDDO |
|---|
| 2258 | |
|---|
| 2259 | ! next, x - flux divergence |
|---|
| 2260 | |
|---|
| 2261 | |
|---|
| 2262 | i_start = its |
|---|
| 2263 | i_end = MIN(ite,ide-1) |
|---|
| 2264 | |
|---|
| 2265 | j_start = jts |
|---|
| 2266 | j_end = jte |
|---|
| 2267 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
|---|
| 2268 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-1,jte) |
|---|
| 2269 | |
|---|
| 2270 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
|---|
| 2271 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 2272 | |
|---|
| 2273 | i_start_f = i_start |
|---|
| 2274 | i_end_f = i_end+1 |
|---|
| 2275 | |
|---|
| 2276 | IF(degrade_xs) then |
|---|
| 2277 | i_start = ids+1 |
|---|
| 2278 | i_start_f = i_start+1 |
|---|
| 2279 | ENDIF |
|---|
| 2280 | |
|---|
| 2281 | IF(degrade_xe) then |
|---|
| 2282 | i_end = ide-2 |
|---|
| 2283 | i_end_f = ide-2 |
|---|
| 2284 | ENDIF |
|---|
| 2285 | |
|---|
| 2286 | ! compute fluxes |
|---|
| 2287 | |
|---|
| 2288 | DO j = j_start, j_end |
|---|
| 2289 | |
|---|
| 2290 | ! 3rd or 4th order flux |
|---|
| 2291 | |
|---|
| 2292 | DO k=kts,ktf |
|---|
| 2293 | DO i = i_start_f, i_end_f |
|---|
| 2294 | vel = 0.5*(ru(i,k,j)+ru(i,k,j-1)) |
|---|
| 2295 | fqx( i, k ) = vel*flux3( v(i-2,k,j), v(i-1,k,j), & |
|---|
| 2296 | v(i ,k,j), v(i+1,k,j), & |
|---|
| 2297 | vel ) |
|---|
| 2298 | ENDDO |
|---|
| 2299 | ENDDO |
|---|
| 2300 | |
|---|
| 2301 | ! second order flux close to boundaries (if not periodic or symmetric) |
|---|
| 2302 | |
|---|
| 2303 | IF( degrade_xs ) THEN |
|---|
| 2304 | DO k=kts,ktf |
|---|
| 2305 | fqx(i_start,k) = 0.25*(ru(i_start,k,j)+ru(i_start,k,j-1)) & |
|---|
| 2306 | *(v(i_start,k,j)+v(i_start-1,k,j)) |
|---|
| 2307 | ENDDO |
|---|
| 2308 | ENDIF |
|---|
| 2309 | |
|---|
| 2310 | IF( degrade_xe ) THEN |
|---|
| 2311 | DO k=kts,ktf |
|---|
| 2312 | fqx(i_end+1,k) = 0.25*(ru(i_end+1,k,j)+ru(i_end+1,k,j-1)) & |
|---|
| 2313 | *(v(i_end+1,k,j)+v(i_end,k,j)) |
|---|
| 2314 | ENDDO |
|---|
| 2315 | ENDIF |
|---|
| 2316 | |
|---|
| 2317 | ! x flux-divergence into tendency |
|---|
| 2318 | |
|---|
| 2319 | DO k=kts,ktf |
|---|
| 2320 | DO i = i_start, i_end |
|---|
| 2321 | mrdx=msfv(i,j)*rdx |
|---|
| 2322 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
|---|
| 2323 | ENDDO |
|---|
| 2324 | ENDDO |
|---|
| 2325 | |
|---|
| 2326 | ENDDO |
|---|
| 2327 | |
|---|
| 2328 | ELSE IF( horz_order == 2 ) THEN |
|---|
| 2329 | |
|---|
| 2330 | |
|---|
| 2331 | i_start = its |
|---|
| 2332 | i_end = MIN(ite,ide-1) |
|---|
| 2333 | j_start = jts |
|---|
| 2334 | j_end = jte |
|---|
| 2335 | |
|---|
| 2336 | IF ( config_flags%open_ys ) j_start = MAX(jds+1,jts) |
|---|
| 2337 | IF ( config_flags%open_ye ) j_end = MIN(jde-1,jte) |
|---|
| 2338 | IF ( specified ) j_start = MAX(jds+2,jts) |
|---|
| 2339 | IF ( specified ) j_end = MIN(jde-2,jte) |
|---|
| 2340 | |
|---|
| 2341 | DO j = j_start, j_end |
|---|
| 2342 | DO k=kts,ktf |
|---|
| 2343 | DO i = i_start, i_end |
|---|
| 2344 | |
|---|
| 2345 | mrdy=msfv(i,j)*rdy |
|---|
| 2346 | |
|---|
| 2347 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.25 & |
|---|
| 2348 | *((rv(i,k,j+1)+rv(i,k,j ))*(v(i,k,j+1)+v(i,k,j )) & |
|---|
| 2349 | -(rv(i,k,j )+rv(i,k,j-1))*(v(i,k,j )+v(i,k,j-1))) |
|---|
| 2350 | |
|---|
| 2351 | ENDDO |
|---|
| 2352 | ENDDO |
|---|
| 2353 | ENDDO |
|---|
| 2354 | ! specified uses upstream normal wind at boundaries |
|---|
| 2355 | |
|---|
| 2356 | IF ( specified .AND. jts .LE. jds+1 ) THEN |
|---|
| 2357 | j = jds+1 |
|---|
| 2358 | DO k=kts,ktf |
|---|
| 2359 | DO i = i_start, i_end |
|---|
| 2360 | mrdy=msfv(i,j)*rdy |
|---|
| 2361 | vb = v(i,k,j-1) |
|---|
| 2362 | IF (v(i,k,j) .LT. 0.) vb = v(i,k,j) |
|---|
| 2363 | |
|---|
| 2364 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.25 & |
|---|
| 2365 | *((rv(i,k,j+1)+rv(i,k,j ))*(v(i,k,j+1)+v(i,k,j )) & |
|---|
| 2366 | -(rv(i,k,j )+rv(i,k,j-1))*(v(i,k,j )+vb)) |
|---|
| 2367 | |
|---|
| 2368 | ENDDO |
|---|
| 2369 | ENDDO |
|---|
| 2370 | ENDIF |
|---|
| 2371 | |
|---|
| 2372 | IF ( specified .AND. jte .GE. jde-1 ) THEN |
|---|
| 2373 | j = jde-1 |
|---|
| 2374 | DO k=kts,ktf |
|---|
| 2375 | DO i = i_start, i_end |
|---|
| 2376 | |
|---|
| 2377 | mrdy=msfv(i,j)*rdy |
|---|
| 2378 | vb = v(i,k,j+1) |
|---|
| 2379 | IF (v(i,k,j) .GT. 0.) vb = v(i,k,j) |
|---|
| 2380 | |
|---|
| 2381 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.25 & |
|---|
| 2382 | *((rv(i,k,j+1)+rv(i,k,j ))*(vb+v(i,k,j )) & |
|---|
| 2383 | -(rv(i,k,j )+rv(i,k,j-1))*(v(i,k,j )+v(i,k,j-1))) |
|---|
| 2384 | |
|---|
| 2385 | ENDDO |
|---|
| 2386 | ENDDO |
|---|
| 2387 | ENDIF |
|---|
| 2388 | |
|---|
| 2389 | IF ( .NOT. config_flags%periodic_x ) THEN |
|---|
| 2390 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
|---|
| 2391 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-2,ite) |
|---|
| 2392 | ENDIF |
|---|
| 2393 | |
|---|
| 2394 | DO j = j_start, j_end |
|---|
| 2395 | DO k=kts,ktf |
|---|
| 2396 | DO i = i_start, i_end |
|---|
| 2397 | |
|---|
| 2398 | mrdx=msfv(i,j)*rdx |
|---|
| 2399 | |
|---|
| 2400 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 & |
|---|
| 2401 | *((ru(i+1,k,j)+ru(i+1,k,j-1))*(v(i+1,k,j)+v(i ,k,j)) & |
|---|
| 2402 | -(ru(i ,k,j)+ru(i ,k,j-1))*(v(i ,k,j)+v(i-1,k,j))) |
|---|
| 2403 | |
|---|
| 2404 | ENDDO |
|---|
| 2405 | ENDDO |
|---|
| 2406 | ENDDO |
|---|
| 2407 | |
|---|
| 2408 | ELSE |
|---|
| 2409 | |
|---|
| 2410 | |
|---|
| 2411 | WRITE ( wrf_err_message , * ) 'module_advect: advect_v_6a: h_order not known ',horz_order |
|---|
| 2412 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
|---|
| 2413 | |
|---|
| 2414 | ENDIF horizontal_order_test |
|---|
| 2415 | |
|---|
| 2416 | ! radiative lateral boundary condition in y for normal velocity (v) |
|---|
| 2417 | |
|---|
| 2418 | IF ( (config_flags%open_ys) .and. jts == jds ) THEN |
|---|
| 2419 | |
|---|
| 2420 | i_start = its |
|---|
| 2421 | i_end = MIN(ite,ide-1) |
|---|
| 2422 | |
|---|
| 2423 | DO i = i_start, i_end |
|---|
| 2424 | DO k = kts, ktf |
|---|
| 2425 | vb = MIN(rv(i,k,jts)-cb*mut(i,jts), 0.) |
|---|
| 2426 | tendency(i,k,jts) = tendency(i,k,jts) & |
|---|
| 2427 | - rdy*vb*(v_old(i,k,jts+1) - v_old(i,k,jts)) |
|---|
| 2428 | ENDDO |
|---|
| 2429 | ENDDO |
|---|
| 2430 | |
|---|
| 2431 | ENDIF |
|---|
| 2432 | |
|---|
| 2433 | IF ( (config_flags%open_ye) .and. jte == jde ) THEN |
|---|
| 2434 | |
|---|
| 2435 | i_start = its |
|---|
| 2436 | i_end = MIN(ite,ide-1) |
|---|
| 2437 | |
|---|
| 2438 | DO i = i_start, i_end |
|---|
| 2439 | DO k = kts, ktf |
|---|
| 2440 | vb = MAX(rv(i,k,jte)+cb*mut(i,jte-1), 0.) |
|---|
| 2441 | tendency(i,k,jte) = tendency(i,k,jte) & |
|---|
| 2442 | - rdy*vb*(v_old(i,k,jte) - v_old(i,k,jte-1)) |
|---|
| 2443 | ENDDO |
|---|
| 2444 | ENDDO |
|---|
| 2445 | |
|---|
| 2446 | ENDIF |
|---|
| 2447 | |
|---|
| 2448 | ! pick up the rest of the horizontal radiation boundary conditions. |
|---|
| 2449 | ! (these are the computations that don't require 'cb'. |
|---|
| 2450 | ! first, set to index ranges |
|---|
| 2451 | |
|---|
| 2452 | j_start = jts |
|---|
| 2453 | j_end = MIN(jte,jde) |
|---|
| 2454 | |
|---|
| 2455 | jmin = jds |
|---|
| 2456 | jmax = jde-1 |
|---|
| 2457 | |
|---|
| 2458 | IF (config_flags%open_ys) THEN |
|---|
| 2459 | j_start = MAX(jds+1, jts) |
|---|
| 2460 | jmin = jds |
|---|
| 2461 | ENDIF |
|---|
| 2462 | IF (config_flags%open_ye) THEN |
|---|
| 2463 | j_end = MIN(jte,jde-1) |
|---|
| 2464 | jmax = jde-1 |
|---|
| 2465 | ENDIF |
|---|
| 2466 | |
|---|
| 2467 | ! compute x (u) conditions for v, w, or scalar |
|---|
| 2468 | |
|---|
| 2469 | IF( (config_flags%open_xs) .and. (its == ids)) THEN |
|---|
| 2470 | |
|---|
| 2471 | DO j = j_start, j_end |
|---|
| 2472 | |
|---|
| 2473 | mrdx=msfv(its,j)*rdx |
|---|
| 2474 | jp = MIN( jmax, j ) |
|---|
| 2475 | jm = MAX( jmin, j-1 ) |
|---|
| 2476 | |
|---|
| 2477 | DO k=kts,ktf |
|---|
| 2478 | |
|---|
| 2479 | uw = 0.5*(ru(its,k,jp)+ru(its,k,jm)) |
|---|
| 2480 | ub = MIN( uw, 0. ) |
|---|
| 2481 | dup = ru(its+1,k,jp)-ru(its,k,jp) |
|---|
| 2482 | dum = ru(its+1,k,jm)-ru(its,k,jm) |
|---|
| 2483 | tendency(its,k,j)=tendency(its,k,j)-mrdx*( & |
|---|
| 2484 | ub*(v_old(its+1,k,j)-v_old(its,k,j)) & |
|---|
| 2485 | +0.5*v(its,k,j)*(dup+dum)) |
|---|
| 2486 | ENDDO |
|---|
| 2487 | ENDDO |
|---|
| 2488 | |
|---|
| 2489 | ENDIF |
|---|
| 2490 | |
|---|
| 2491 | IF( (config_flags%open_xe) .and. (ite == ide) ) THEN |
|---|
| 2492 | DO j = j_start, j_end |
|---|
| 2493 | |
|---|
| 2494 | mrdx=msfv(ite-1,j)*rdx |
|---|
| 2495 | jp = MIN( jmax, j ) |
|---|
| 2496 | jm = MAX( jmin, j-1 ) |
|---|
| 2497 | |
|---|
| 2498 | DO k=kts,ktf |
|---|
| 2499 | |
|---|
| 2500 | uw = 0.5*(ru(ite,k,jp)+ru(ite,k,jm)) |
|---|
| 2501 | ub = MAX( uw, 0. ) |
|---|
| 2502 | dup = ru(ite,k,jp)-ru(ite-1,k,jp) |
|---|
| 2503 | dum = ru(ite,k,jm)-ru(ite-1,k,jm) |
|---|
| 2504 | |
|---|
| 2505 | ! tendency(ite-1,k,j)=tendency(ite-1,k,j)-mrdx*( & |
|---|
| 2506 | ! ub*(v_old(ite-1,k,j)-v_old(ite-2,k,j)) & |
|---|
| 2507 | ! +0.5*v(ite-1,k,j)* & |
|---|
| 2508 | ! ( ru(ite,k,jp)-ru(ite-1,k,jp) & |
|---|
| 2509 | ! +ru(ite,k,jm)-ru(ite-1,k,jm)) ) |
|---|
| 2510 | tendency(ite-1,k,j)=tendency(ite-1,k,j)-mrdx*( & |
|---|
| 2511 | ub*(v_old(ite-1,k,j)-v_old(ite-2,k,j)) & |
|---|
| 2512 | +0.5*v(ite-1,k,j)*(dup+dum)) |
|---|
| 2513 | |
|---|
| 2514 | ENDDO |
|---|
| 2515 | ENDDO |
|---|
| 2516 | |
|---|
| 2517 | ENDIF |
|---|
| 2518 | |
|---|
| 2519 | !-------------------- vertical advection |
|---|
| 2520 | |
|---|
| 2521 | |
|---|
| 2522 | i_start = its |
|---|
| 2523 | i_end = MIN(ite,ide-1) |
|---|
| 2524 | j_start = jts |
|---|
| 2525 | j_end = jte |
|---|
| 2526 | |
|---|
| 2527 | DO i = i_start, i_end |
|---|
| 2528 | vflux(i,kts)=0. |
|---|
| 2529 | vflux(i,kte)=0. |
|---|
| 2530 | ENDDO |
|---|
| 2531 | |
|---|
| 2532 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
|---|
| 2533 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-1,jte) |
|---|
| 2534 | |
|---|
| 2535 | vert_order_test : IF (vert_order == 6) THEN |
|---|
| 2536 | |
|---|
| 2537 | DO j = j_start, j_end |
|---|
| 2538 | |
|---|
| 2539 | |
|---|
| 2540 | DO k=kts+3,ktf-2 |
|---|
| 2541 | DO i = i_start, i_end |
|---|
| 2542 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
|---|
| 2543 | vflux(i,k) = vel*flux6( & |
|---|
| 2544 | v(i,k-3,j), v(i,k-2,j), v(i,k-1,j), & |
|---|
| 2545 | v(i,k ,j), v(i,k+1,j), v(i,k+2,j), -vel ) |
|---|
| 2546 | ENDDO |
|---|
| 2547 | ENDDO |
|---|
| 2548 | |
|---|
| 2549 | DO i = i_start, i_end |
|---|
| 2550 | k=kts+1 |
|---|
| 2551 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
|---|
| 2552 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
|---|
| 2553 | k = kts+2 |
|---|
| 2554 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
|---|
| 2555 | vflux(i,k) = vel*flux4( & |
|---|
| 2556 | v(i,k-2,j), v(i,k-1,j), & |
|---|
| 2557 | v(i,k ,j), v(i,k+1,j), -vel ) |
|---|
| 2558 | k = ktf-1 |
|---|
| 2559 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
|---|
| 2560 | vflux(i,k) = vel*flux4( & |
|---|
| 2561 | v(i,k-2,j), v(i,k-1,j), & |
|---|
| 2562 | v(i,k ,j), v(i,k+1,j), -vel ) |
|---|
| 2563 | k=ktf |
|---|
| 2564 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
|---|
| 2565 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
|---|
| 2566 | |
|---|
| 2567 | ENDDO |
|---|
| 2568 | |
|---|
| 2569 | |
|---|
| 2570 | DO k=kts,ktf |
|---|
| 2571 | DO i = i_start, i_end |
|---|
| 2572 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 2573 | ENDDO |
|---|
| 2574 | ENDDO |
|---|
| 2575 | |
|---|
| 2576 | ENDDO |
|---|
| 2577 | |
|---|
| 2578 | ELSE IF (vert_order == 5) THEN |
|---|
| 2579 | |
|---|
| 2580 | DO j = j_start, j_end |
|---|
| 2581 | |
|---|
| 2582 | |
|---|
| 2583 | DO k=kts+3,ktf-2 |
|---|
| 2584 | DO i = i_start, i_end |
|---|
| 2585 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
|---|
| 2586 | vflux(i,k) = vel*flux5( & |
|---|
| 2587 | v(i,k-3,j), v(i,k-2,j), v(i,k-1,j), & |
|---|
| 2588 | v(i,k ,j), v(i,k+1,j), v(i,k+2,j), -vel ) |
|---|
| 2589 | ENDDO |
|---|
| 2590 | ENDDO |
|---|
| 2591 | |
|---|
| 2592 | DO i = i_start, i_end |
|---|
| 2593 | k=kts+1 |
|---|
| 2594 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
|---|
| 2595 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
|---|
| 2596 | k = kts+2 |
|---|
| 2597 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
|---|
| 2598 | vflux(i,k) = vel*flux3( & |
|---|
| 2599 | v(i,k-2,j), v(i,k-1,j), & |
|---|
| 2600 | v(i,k ,j), v(i,k+1,j), -vel ) |
|---|
| 2601 | k = ktf-1 |
|---|
| 2602 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
|---|
| 2603 | vflux(i,k) = vel*flux3( & |
|---|
| 2604 | v(i,k-2,j), v(i,k-1,j), & |
|---|
| 2605 | v(i,k ,j), v(i,k+1,j), -vel ) |
|---|
| 2606 | k=ktf |
|---|
| 2607 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
|---|
| 2608 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
|---|
| 2609 | |
|---|
| 2610 | ENDDO |
|---|
| 2611 | |
|---|
| 2612 | |
|---|
| 2613 | DO k=kts,ktf |
|---|
| 2614 | DO i = i_start, i_end |
|---|
| 2615 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 2616 | ENDDO |
|---|
| 2617 | ENDDO |
|---|
| 2618 | |
|---|
| 2619 | ENDDO |
|---|
| 2620 | |
|---|
| 2621 | ELSE IF (vert_order == 4) THEN |
|---|
| 2622 | |
|---|
| 2623 | DO j = j_start, j_end |
|---|
| 2624 | |
|---|
| 2625 | |
|---|
| 2626 | DO k=kts+2,ktf-1 |
|---|
| 2627 | DO i = i_start, i_end |
|---|
| 2628 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
|---|
| 2629 | vflux(i,k) = vel*flux4( & |
|---|
| 2630 | v(i,k-2,j), v(i,k-1,j), & |
|---|
| 2631 | v(i,k ,j), v(i,k+1,j), -vel ) |
|---|
| 2632 | ENDDO |
|---|
| 2633 | ENDDO |
|---|
| 2634 | |
|---|
| 2635 | DO i = i_start, i_end |
|---|
| 2636 | k=kts+1 |
|---|
| 2637 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
|---|
| 2638 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
|---|
| 2639 | k=ktf |
|---|
| 2640 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
|---|
| 2641 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
|---|
| 2642 | |
|---|
| 2643 | ENDDO |
|---|
| 2644 | |
|---|
| 2645 | |
|---|
| 2646 | DO k=kts,ktf |
|---|
| 2647 | DO i = i_start, i_end |
|---|
| 2648 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 2649 | ENDDO |
|---|
| 2650 | ENDDO |
|---|
| 2651 | |
|---|
| 2652 | ENDDO |
|---|
| 2653 | |
|---|
| 2654 | ELSE IF (vert_order == 3) THEN |
|---|
| 2655 | |
|---|
| 2656 | DO j = j_start, j_end |
|---|
| 2657 | |
|---|
| 2658 | |
|---|
| 2659 | DO k=kts+2,ktf-1 |
|---|
| 2660 | DO i = i_start, i_end |
|---|
| 2661 | vel=0.5*(rom(i,k,j)+rom(i,k,j-1)) |
|---|
| 2662 | vflux(i,k) = vel*flux3( & |
|---|
| 2663 | v(i,k-2,j), v(i,k-1,j), & |
|---|
| 2664 | v(i,k ,j), v(i,k+1,j), -vel ) |
|---|
| 2665 | ENDDO |
|---|
| 2666 | ENDDO |
|---|
| 2667 | |
|---|
| 2668 | DO i = i_start, i_end |
|---|
| 2669 | k=kts+1 |
|---|
| 2670 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
|---|
| 2671 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
|---|
| 2672 | k=ktf |
|---|
| 2673 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
|---|
| 2674 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
|---|
| 2675 | |
|---|
| 2676 | ENDDO |
|---|
| 2677 | |
|---|
| 2678 | |
|---|
| 2679 | DO k=kts,ktf |
|---|
| 2680 | DO i = i_start, i_end |
|---|
| 2681 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 2682 | ENDDO |
|---|
| 2683 | ENDDO |
|---|
| 2684 | |
|---|
| 2685 | ENDDO |
|---|
| 2686 | |
|---|
| 2687 | |
|---|
| 2688 | ELSE IF (vert_order == 2) THEN |
|---|
| 2689 | |
|---|
| 2690 | DO j = j_start, j_end |
|---|
| 2691 | DO k=kts+1,ktf |
|---|
| 2692 | DO i = i_start, i_end |
|---|
| 2693 | |
|---|
| 2694 | vflux(i,k)=0.5*(rom(i,k,j)+rom(i,k,j-1)) & |
|---|
| 2695 | *(fzm(k)*v(i,k,j)+fzp(k)*v(i,k-1,j)) |
|---|
| 2696 | ENDDO |
|---|
| 2697 | ENDDO |
|---|
| 2698 | |
|---|
| 2699 | DO k=kts,ktf |
|---|
| 2700 | DO i = i_start, i_end |
|---|
| 2701 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 2702 | |
|---|
| 2703 | ENDDO |
|---|
| 2704 | ENDDO |
|---|
| 2705 | ENDDO |
|---|
| 2706 | |
|---|
| 2707 | ELSE |
|---|
| 2708 | |
|---|
| 2709 | WRITE ( wrf_err_message , * ) 'module_advect: advect_v_6a: v_order not known ',vert_order |
|---|
| 2710 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
|---|
| 2711 | |
|---|
| 2712 | ENDIF vert_order_test |
|---|
| 2713 | |
|---|
| 2714 | END SUBROUTINE advect_v |
|---|
| 2715 | |
|---|
| 2716 | !------------------------------------------------------------------- |
|---|
| 2717 | |
|---|
| 2718 | SUBROUTINE advect_scalar ( field, field_old, tendency, & |
|---|
| 2719 | ru, rv, rom, & |
|---|
| 2720 | mut, config_flags, & |
|---|
| 2721 | msfu, msfv, msft, & |
|---|
| 2722 | fzm, fzp, & |
|---|
| 2723 | rdx, rdy, rdzw, & |
|---|
| 2724 | ids, ide, jds, jde, kds, kde, & |
|---|
| 2725 | ims, ime, jms, jme, kms, kme, & |
|---|
| 2726 | its, ite, jts, jte, kts, kte ) |
|---|
| 2727 | |
|---|
| 2728 | IMPLICIT NONE |
|---|
| 2729 | |
|---|
| 2730 | ! Input data |
|---|
| 2731 | |
|---|
| 2732 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
|---|
| 2733 | |
|---|
| 2734 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
|---|
| 2735 | ims, ime, jms, jme, kms, kme, & |
|---|
| 2736 | its, ite, jts, jte, kts, kte |
|---|
| 2737 | |
|---|
| 2738 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: field, & |
|---|
| 2739 | field_old, & |
|---|
| 2740 | ru, & |
|---|
| 2741 | rv, & |
|---|
| 2742 | rom |
|---|
| 2743 | |
|---|
| 2744 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
|---|
| 2745 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
|---|
| 2746 | |
|---|
| 2747 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
|---|
| 2748 | msfv, & |
|---|
| 2749 | msft |
|---|
| 2750 | |
|---|
| 2751 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
|---|
| 2752 | fzp, & |
|---|
| 2753 | rdzw |
|---|
| 2754 | |
|---|
| 2755 | REAL , INTENT(IN ) :: rdx, & |
|---|
| 2756 | rdy |
|---|
| 2757 | |
|---|
| 2758 | ! Local data |
|---|
| 2759 | |
|---|
| 2760 | INTEGER :: i, j, k, itf, jtf, ktf |
|---|
| 2761 | INTEGER :: i_start, i_end, j_start, j_end |
|---|
| 2762 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
|---|
| 2763 | INTEGER :: jmin, jmax, jp, jm, imin, imax |
|---|
| 2764 | |
|---|
| 2765 | REAL :: mrdx, mrdy, ub, vb, uw, vw |
|---|
| 2766 | REAL , DIMENSION(its:ite, kts:kte) :: vflux |
|---|
| 2767 | |
|---|
| 2768 | |
|---|
| 2769 | REAL, DIMENSION( its:ite+1, kts:kte ) :: fqx |
|---|
| 2770 | REAL, DIMENSION( its:ite, kts:kte, 2 ) :: fqy |
|---|
| 2771 | |
|---|
| 2772 | INTEGER :: horz_order, vert_order |
|---|
| 2773 | |
|---|
| 2774 | LOGICAL :: degrade_xs, degrade_ys |
|---|
| 2775 | LOGICAL :: degrade_xe, degrade_ye |
|---|
| 2776 | |
|---|
| 2777 | INTEGER :: jp1, jp0, jtmp |
|---|
| 2778 | |
|---|
| 2779 | |
|---|
| 2780 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
|---|
| 2781 | |
|---|
| 2782 | REAL :: flux3, flux4, flux5, flux6 |
|---|
| 2783 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel |
|---|
| 2784 | |
|---|
| 2785 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
|---|
| 2786 | ( 7.*(q_i + q_im1) - (q_ip1 + q_im2) )/12.0 |
|---|
| 2787 | |
|---|
| 2788 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
|---|
| 2789 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
|---|
| 2790 | sign(1.,ua)*((q_ip1 - q_im2)-3.*(q_i-q_im1))/12.0 |
|---|
| 2791 | |
|---|
| 2792 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
|---|
| 2793 | ( 37.*(q_i+q_im1) - 8.*(q_ip1+q_im2) & |
|---|
| 2794 | +(q_ip2+q_im3) )/60.0 |
|---|
| 2795 | |
|---|
| 2796 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
|---|
| 2797 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
|---|
| 2798 | -sign(1.,ua)*( & |
|---|
| 2799 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) )/60.0 |
|---|
| 2800 | |
|---|
| 2801 | |
|---|
| 2802 | LOGICAL :: specified |
|---|
| 2803 | |
|---|
| 2804 | specified = .false. |
|---|
| 2805 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
|---|
| 2806 | |
|---|
| 2807 | ! set order for the advection schemes |
|---|
| 2808 | |
|---|
| 2809 | ktf=MIN(kte,kde-1) |
|---|
| 2810 | horz_order = config_flags%h_sca_adv_order |
|---|
| 2811 | vert_order = config_flags%v_sca_adv_order |
|---|
| 2812 | |
|---|
| 2813 | ! begin with horizontal flux divergence |
|---|
| 2814 | ! here is the choice of flux operators |
|---|
| 2815 | |
|---|
| 2816 | |
|---|
| 2817 | horizontal_order_test : IF( horz_order == 6 ) THEN |
|---|
| 2818 | |
|---|
| 2819 | ! determine boundary mods for flux operators |
|---|
| 2820 | ! We degrade the flux operators from 3rd/4th order |
|---|
| 2821 | ! to second order one gridpoint in from the boundaries for |
|---|
| 2822 | ! all boundary conditions except periodic and symmetry - these |
|---|
| 2823 | ! conditions have boundary zone data fill for correct application |
|---|
| 2824 | ! of the higher order flux stencils |
|---|
| 2825 | |
|---|
| 2826 | degrade_xs = .true. |
|---|
| 2827 | degrade_xe = .true. |
|---|
| 2828 | degrade_ys = .true. |
|---|
| 2829 | degrade_ye = .true. |
|---|
| 2830 | |
|---|
| 2831 | IF( config_flags%periodic_x .or. & |
|---|
| 2832 | config_flags%symmetric_xs .or. & |
|---|
| 2833 | (its > ids+2) ) degrade_xs = .false. |
|---|
| 2834 | IF( config_flags%periodic_x .or. & |
|---|
| 2835 | config_flags%symmetric_xe .or. & |
|---|
| 2836 | (ite < ide-3) ) degrade_xe = .false. |
|---|
| 2837 | IF( config_flags%periodic_y .or. & |
|---|
| 2838 | config_flags%symmetric_ys .or. & |
|---|
| 2839 | (jts > jds+2) ) degrade_ys = .false. |
|---|
| 2840 | IF( config_flags%periodic_y .or. & |
|---|
| 2841 | config_flags%symmetric_ye .or. & |
|---|
| 2842 | (jte < jde-3) ) degrade_ye = .false. |
|---|
| 2843 | |
|---|
| 2844 | !--------------- y - advection first |
|---|
| 2845 | |
|---|
| 2846 | ktf=MIN(kte,kde-1) |
|---|
| 2847 | i_start = its |
|---|
| 2848 | i_end = MIN(ite,ide-1) |
|---|
| 2849 | j_start = jts |
|---|
| 2850 | j_end = MIN(jte,jde-1) |
|---|
| 2851 | |
|---|
| 2852 | ! higher order flux has a 5 or 7 point stencil, so compute |
|---|
| 2853 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 2854 | |
|---|
| 2855 | j_start_f = j_start |
|---|
| 2856 | j_end_f = j_end+1 |
|---|
| 2857 | |
|---|
| 2858 | IF(degrade_ys) then |
|---|
| 2859 | j_start = MAX(jts,jds+1) |
|---|
| 2860 | j_start_f = jds+3 |
|---|
| 2861 | ENDIF |
|---|
| 2862 | |
|---|
| 2863 | IF(degrade_ye) then |
|---|
| 2864 | j_end = MIN(jte,jde-2) |
|---|
| 2865 | j_end_f = jde-3 |
|---|
| 2866 | ENDIF |
|---|
| 2867 | |
|---|
| 2868 | ! compute fluxes, 5th or 6th order |
|---|
| 2869 | |
|---|
| 2870 | jp1 = 2 |
|---|
| 2871 | jp0 = 1 |
|---|
| 2872 | |
|---|
| 2873 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
|---|
| 2874 | |
|---|
| 2875 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
|---|
| 2876 | |
|---|
| 2877 | DO k=kts,ktf |
|---|
| 2878 | DO i = i_start, i_end |
|---|
| 2879 | vel = rv(i,k,j) |
|---|
| 2880 | fqy( i, k, jp1 ) = vel*flux6( & |
|---|
| 2881 | field(i,k,j-3), field(i,k,j-2), field(i,k,j-1), & |
|---|
| 2882 | field(i,k,j ), field(i,k,j+1), field(i,k,j+2), vel ) |
|---|
| 2883 | ENDDO |
|---|
| 2884 | ENDDO |
|---|
| 2885 | |
|---|
| 2886 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
|---|
| 2887 | |
|---|
| 2888 | DO k=kts,ktf |
|---|
| 2889 | DO i = i_start, i_end |
|---|
| 2890 | fqy(i,k, jp1) = 0.5*rv(i,k,j)* & |
|---|
| 2891 | (field(i,k,j)+field(i,k,j-1)) |
|---|
| 2892 | |
|---|
| 2893 | ENDDO |
|---|
| 2894 | ENDDO |
|---|
| 2895 | |
|---|
| 2896 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
|---|
| 2897 | |
|---|
| 2898 | DO k=kts,ktf |
|---|
| 2899 | DO i = i_start, i_end |
|---|
| 2900 | vel = rv(i,k,j) |
|---|
| 2901 | fqy( i, k, jp1 ) = vel*flux4( & |
|---|
| 2902 | field(i,k,j-2),field(i,k,j-1),field(i,k,j),field(i,k,j+1),vel ) |
|---|
| 2903 | ENDDO |
|---|
| 2904 | ENDDO |
|---|
| 2905 | |
|---|
| 2906 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
|---|
| 2907 | |
|---|
| 2908 | DO k=kts,ktf |
|---|
| 2909 | DO i = i_start, i_end |
|---|
| 2910 | fqy(i, k, jp1) = 0.5*rv(i,k,j)* & |
|---|
| 2911 | (field(i,k,j)+field(i,k,j-1)) |
|---|
| 2912 | ENDDO |
|---|
| 2913 | ENDDO |
|---|
| 2914 | |
|---|
| 2915 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
|---|
| 2916 | |
|---|
| 2917 | DO k=kts,ktf |
|---|
| 2918 | DO i = i_start, i_end |
|---|
| 2919 | vel = rv(i,k,j) |
|---|
| 2920 | fqy( i, k, jp1) = vel*flux4( & |
|---|
| 2921 | field(i,k,j-2),field(i,k,j-1), & |
|---|
| 2922 | field(i,k,j),field(i,k,j+1),vel ) |
|---|
| 2923 | ENDDO |
|---|
| 2924 | ENDDO |
|---|
| 2925 | |
|---|
| 2926 | ENDIF |
|---|
| 2927 | |
|---|
| 2928 | ! y flux-divergence into tendency |
|---|
| 2929 | |
|---|
| 2930 | IF(j > j_start) THEN |
|---|
| 2931 | |
|---|
| 2932 | DO k=kts,ktf |
|---|
| 2933 | DO i = i_start, i_end |
|---|
| 2934 | mrdy=msft(i,j-1)*rdy |
|---|
| 2935 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
|---|
| 2936 | ENDDO |
|---|
| 2937 | ENDDO |
|---|
| 2938 | |
|---|
| 2939 | ENDIF |
|---|
| 2940 | |
|---|
| 2941 | jtmp = jp1 |
|---|
| 2942 | jp1 = jp0 |
|---|
| 2943 | jp0 = jtmp |
|---|
| 2944 | |
|---|
| 2945 | ENDDO j_loop_y_flux_6 |
|---|
| 2946 | |
|---|
| 2947 | ! next, x - flux divergence |
|---|
| 2948 | |
|---|
| 2949 | i_start = its |
|---|
| 2950 | i_end = MIN(ite,ide-1) |
|---|
| 2951 | |
|---|
| 2952 | j_start = jts |
|---|
| 2953 | j_end = MIN(jte,jde-1) |
|---|
| 2954 | |
|---|
| 2955 | ! higher order flux has a 5 or 7 point stencil, so compute |
|---|
| 2956 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 2957 | |
|---|
| 2958 | i_start_f = i_start |
|---|
| 2959 | i_end_f = i_end+1 |
|---|
| 2960 | |
|---|
| 2961 | IF(degrade_xs) then |
|---|
| 2962 | i_start = MAX(ids+1,its) |
|---|
| 2963 | i_start_f = i_start+2 |
|---|
| 2964 | ENDIF |
|---|
| 2965 | |
|---|
| 2966 | IF(degrade_xe) then |
|---|
| 2967 | i_end = MIN(ide-2,ite) |
|---|
| 2968 | i_end_f = ide-3 |
|---|
| 2969 | ENDIF |
|---|
| 2970 | |
|---|
| 2971 | ! compute fluxes |
|---|
| 2972 | |
|---|
| 2973 | DO j = j_start, j_end |
|---|
| 2974 | |
|---|
| 2975 | ! 5th or 6th order flux |
|---|
| 2976 | |
|---|
| 2977 | DO k=kts,ktf |
|---|
| 2978 | DO i = i_start_f, i_end_f |
|---|
| 2979 | vel = ru(i,k,j) |
|---|
| 2980 | fqx( i,k ) = vel*flux6( field(i-3,k,j), field(i-2,k,j), & |
|---|
| 2981 | field(i-1,k,j), field(i ,k,j), & |
|---|
| 2982 | field(i+1,k,j), field(i+2,k,j), & |
|---|
| 2983 | vel ) |
|---|
| 2984 | ENDDO |
|---|
| 2985 | ENDDO |
|---|
| 2986 | |
|---|
| 2987 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
|---|
| 2988 | |
|---|
| 2989 | IF( degrade_xs ) THEN |
|---|
| 2990 | |
|---|
| 2991 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
|---|
| 2992 | i = ids+1 |
|---|
| 2993 | DO k=kts,ktf |
|---|
| 2994 | fqx(i,k) = 0.5*(ru(i,k,j)) & |
|---|
| 2995 | *(field(i,k,j)+field(i-1,k,j)) |
|---|
| 2996 | |
|---|
| 2997 | ENDDO |
|---|
| 2998 | ENDIF |
|---|
| 2999 | |
|---|
| 3000 | i = ids+2 |
|---|
| 3001 | DO k=kts,ktf |
|---|
| 3002 | vel = ru(i,k,j) |
|---|
| 3003 | fqx( i,k ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
|---|
| 3004 | field(i ,k,j), field(i+1,k,j), & |
|---|
| 3005 | vel ) |
|---|
| 3006 | ENDDO |
|---|
| 3007 | |
|---|
| 3008 | ENDIF |
|---|
| 3009 | |
|---|
| 3010 | IF( degrade_xe ) THEN |
|---|
| 3011 | |
|---|
| 3012 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
|---|
| 3013 | i = ide-1 |
|---|
| 3014 | DO k=kts,ktf |
|---|
| 3015 | fqx(i,k) = 0.5*(ru(i,k,j)) & |
|---|
| 3016 | *(field(i,k,j)+field(i-1,k,j)) |
|---|
| 3017 | ENDDO |
|---|
| 3018 | ENDIF |
|---|
| 3019 | |
|---|
| 3020 | i = ide-2 |
|---|
| 3021 | DO k=kts,ktf |
|---|
| 3022 | vel = ru(i,k,j) |
|---|
| 3023 | fqx( i,k ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
|---|
| 3024 | field(i ,k,j), field(i+1,k,j), & |
|---|
| 3025 | vel ) |
|---|
| 3026 | ENDDO |
|---|
| 3027 | |
|---|
| 3028 | ENDIF |
|---|
| 3029 | |
|---|
| 3030 | ! x flux-divergence into tendency |
|---|
| 3031 | |
|---|
| 3032 | DO k=kts,ktf |
|---|
| 3033 | DO i = i_start, i_end |
|---|
| 3034 | mrdx=msft(i,j)*rdx |
|---|
| 3035 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
|---|
| 3036 | ENDDO |
|---|
| 3037 | ENDDO |
|---|
| 3038 | |
|---|
| 3039 | ENDDO |
|---|
| 3040 | |
|---|
| 3041 | ELSE IF( horz_order == 5 ) THEN |
|---|
| 3042 | |
|---|
| 3043 | ! determine boundary mods for flux operators |
|---|
| 3044 | ! We degrade the flux operators from 3rd/4th order |
|---|
| 3045 | ! to second order one gridpoint in from the boundaries for |
|---|
| 3046 | ! all boundary conditions except periodic and symmetry - these |
|---|
| 3047 | ! conditions have boundary zone data fill for correct application |
|---|
| 3048 | ! of the higher order flux stencils |
|---|
| 3049 | |
|---|
| 3050 | degrade_xs = .true. |
|---|
| 3051 | degrade_xe = .true. |
|---|
| 3052 | degrade_ys = .true. |
|---|
| 3053 | degrade_ye = .true. |
|---|
| 3054 | |
|---|
| 3055 | IF( config_flags%periodic_x .or. & |
|---|
| 3056 | config_flags%symmetric_xs .or. & |
|---|
| 3057 | (its > ids+2) ) degrade_xs = .false. |
|---|
| 3058 | IF( config_flags%periodic_x .or. & |
|---|
| 3059 | config_flags%symmetric_xe .or. & |
|---|
| 3060 | (ite < ide-3) ) degrade_xe = .false. |
|---|
| 3061 | IF( config_flags%periodic_y .or. & |
|---|
| 3062 | config_flags%symmetric_ys .or. & |
|---|
| 3063 | (jts > jds+2) ) degrade_ys = .false. |
|---|
| 3064 | IF( config_flags%periodic_y .or. & |
|---|
| 3065 | config_flags%symmetric_ye .or. & |
|---|
| 3066 | (jte < jde-3) ) degrade_ye = .false. |
|---|
| 3067 | |
|---|
| 3068 | !--------------- y - advection first |
|---|
| 3069 | |
|---|
| 3070 | ktf=MIN(kte,kde-1) |
|---|
| 3071 | i_start = its |
|---|
| 3072 | i_end = MIN(ite,ide-1) |
|---|
| 3073 | j_start = jts |
|---|
| 3074 | j_end = MIN(jte,jde-1) |
|---|
| 3075 | |
|---|
| 3076 | ! higher order flux has a 5 or 7 point stencil, so compute |
|---|
| 3077 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 3078 | |
|---|
| 3079 | j_start_f = j_start |
|---|
| 3080 | j_end_f = j_end+1 |
|---|
| 3081 | |
|---|
| 3082 | IF(degrade_ys) then |
|---|
| 3083 | j_start = MAX(jts,jds+1) |
|---|
| 3084 | j_start_f = jds+3 |
|---|
| 3085 | ENDIF |
|---|
| 3086 | |
|---|
| 3087 | IF(degrade_ye) then |
|---|
| 3088 | j_end = MIN(jte,jde-2) |
|---|
| 3089 | j_end_f = jde-3 |
|---|
| 3090 | ENDIF |
|---|
| 3091 | |
|---|
| 3092 | ! compute fluxes, 5th or 6th order |
|---|
| 3093 | |
|---|
| 3094 | jp1 = 2 |
|---|
| 3095 | jp0 = 1 |
|---|
| 3096 | |
|---|
| 3097 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
|---|
| 3098 | |
|---|
| 3099 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
|---|
| 3100 | |
|---|
| 3101 | DO k=kts,ktf |
|---|
| 3102 | DO i = i_start, i_end |
|---|
| 3103 | vel = rv(i,k,j) |
|---|
| 3104 | fqy( i, k, jp1 ) = vel*flux5( & |
|---|
| 3105 | field(i,k,j-3), field(i,k,j-2), field(i,k,j-1), & |
|---|
| 3106 | field(i,k,j ), field(i,k,j+1), field(i,k,j+2), vel ) |
|---|
| 3107 | ENDDO |
|---|
| 3108 | ENDDO |
|---|
| 3109 | |
|---|
| 3110 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
|---|
| 3111 | |
|---|
| 3112 | DO k=kts,ktf |
|---|
| 3113 | DO i = i_start, i_end |
|---|
| 3114 | fqy(i,k, jp1) = 0.5*rv(i,k,j)* & |
|---|
| 3115 | (field(i,k,j)+field(i,k,j-1)) |
|---|
| 3116 | |
|---|
| 3117 | ENDDO |
|---|
| 3118 | ENDDO |
|---|
| 3119 | |
|---|
| 3120 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
|---|
| 3121 | |
|---|
| 3122 | DO k=kts,ktf |
|---|
| 3123 | DO i = i_start, i_end |
|---|
| 3124 | vel = rv(i,k,j) |
|---|
| 3125 | fqy( i, k, jp1 ) = vel*flux3( & |
|---|
| 3126 | field(i,k,j-2),field(i,k,j-1),field(i,k,j),field(i,k,j+1),vel ) |
|---|
| 3127 | ENDDO |
|---|
| 3128 | ENDDO |
|---|
| 3129 | |
|---|
| 3130 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
|---|
| 3131 | |
|---|
| 3132 | DO k=kts,ktf |
|---|
| 3133 | DO i = i_start, i_end |
|---|
| 3134 | fqy(i, k, jp1) = 0.5*rv(i,k,j)* & |
|---|
| 3135 | (field(i,k,j)+field(i,k,j-1)) |
|---|
| 3136 | ENDDO |
|---|
| 3137 | ENDDO |
|---|
| 3138 | |
|---|
| 3139 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
|---|
| 3140 | |
|---|
| 3141 | DO k=kts,ktf |
|---|
| 3142 | DO i = i_start, i_end |
|---|
| 3143 | vel = rv(i,k,j) |
|---|
| 3144 | fqy( i, k, jp1) = vel*flux3( & |
|---|
| 3145 | field(i,k,j-2),field(i,k,j-1), & |
|---|
| 3146 | field(i,k,j),field(i,k,j+1),vel ) |
|---|
| 3147 | ENDDO |
|---|
| 3148 | ENDDO |
|---|
| 3149 | |
|---|
| 3150 | ENDIF |
|---|
| 3151 | |
|---|
| 3152 | ! y flux-divergence into tendency |
|---|
| 3153 | |
|---|
| 3154 | IF(j > j_start) THEN |
|---|
| 3155 | |
|---|
| 3156 | DO k=kts,ktf |
|---|
| 3157 | DO i = i_start, i_end |
|---|
| 3158 | mrdy=msft(i,j-1)*rdy |
|---|
| 3159 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
|---|
| 3160 | ENDDO |
|---|
| 3161 | ENDDO |
|---|
| 3162 | |
|---|
| 3163 | ENDIF |
|---|
| 3164 | |
|---|
| 3165 | |
|---|
| 3166 | jtmp = jp1 |
|---|
| 3167 | jp1 = jp0 |
|---|
| 3168 | jp0 = jtmp |
|---|
| 3169 | |
|---|
| 3170 | ENDDO j_loop_y_flux_5 |
|---|
| 3171 | |
|---|
| 3172 | ! next, x - flux divergence |
|---|
| 3173 | |
|---|
| 3174 | i_start = its |
|---|
| 3175 | i_end = MIN(ite,ide-1) |
|---|
| 3176 | |
|---|
| 3177 | j_start = jts |
|---|
| 3178 | j_end = MIN(jte,jde-1) |
|---|
| 3179 | |
|---|
| 3180 | ! higher order flux has a 5 or 7 point stencil, so compute |
|---|
| 3181 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 3182 | |
|---|
| 3183 | i_start_f = i_start |
|---|
| 3184 | i_end_f = i_end+1 |
|---|
| 3185 | |
|---|
| 3186 | IF(degrade_xs) then |
|---|
| 3187 | i_start = MAX(ids+1,its) |
|---|
| 3188 | i_start_f = i_start+2 |
|---|
| 3189 | ENDIF |
|---|
| 3190 | |
|---|
| 3191 | IF(degrade_xe) then |
|---|
| 3192 | i_end = MIN(ide-2,ite) |
|---|
| 3193 | i_end_f = ide-3 |
|---|
| 3194 | ENDIF |
|---|
| 3195 | |
|---|
| 3196 | ! compute fluxes |
|---|
| 3197 | |
|---|
| 3198 | DO j = j_start, j_end |
|---|
| 3199 | |
|---|
| 3200 | ! 5th or 6th order flux |
|---|
| 3201 | |
|---|
| 3202 | DO k=kts,ktf |
|---|
| 3203 | DO i = i_start_f, i_end_f |
|---|
| 3204 | vel = ru(i,k,j) |
|---|
| 3205 | fqx( i,k ) = vel*flux5( field(i-3,k,j), field(i-2,k,j), & |
|---|
| 3206 | field(i-1,k,j), field(i ,k,j), & |
|---|
| 3207 | field(i+1,k,j), field(i+2,k,j), & |
|---|
| 3208 | vel ) |
|---|
| 3209 | ENDDO |
|---|
| 3210 | ENDDO |
|---|
| 3211 | |
|---|
| 3212 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
|---|
| 3213 | |
|---|
| 3214 | IF( degrade_xs ) THEN |
|---|
| 3215 | |
|---|
| 3216 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
|---|
| 3217 | i = ids+1 |
|---|
| 3218 | DO k=kts,ktf |
|---|
| 3219 | fqx(i,k) = 0.5*(ru(i,k,j)) & |
|---|
| 3220 | *(field(i,k,j)+field(i-1,k,j)) |
|---|
| 3221 | |
|---|
| 3222 | ENDDO |
|---|
| 3223 | ENDIF |
|---|
| 3224 | |
|---|
| 3225 | i = ids+2 |
|---|
| 3226 | DO k=kts,ktf |
|---|
| 3227 | vel = ru(i,k,j) |
|---|
| 3228 | fqx( i,k ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
|---|
| 3229 | field(i ,k,j), field(i+1,k,j), & |
|---|
| 3230 | vel ) |
|---|
| 3231 | ENDDO |
|---|
| 3232 | |
|---|
| 3233 | ENDIF |
|---|
| 3234 | |
|---|
| 3235 | IF( degrade_xe ) THEN |
|---|
| 3236 | |
|---|
| 3237 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
|---|
| 3238 | i = ide-1 |
|---|
| 3239 | DO k=kts,ktf |
|---|
| 3240 | fqx(i,k) = 0.5*(ru(i,k,j)) & |
|---|
| 3241 | *(field(i,k,j)+field(i-1,k,j)) |
|---|
| 3242 | ENDDO |
|---|
| 3243 | ENDIF |
|---|
| 3244 | |
|---|
| 3245 | i = ide-2 |
|---|
| 3246 | DO k=kts,ktf |
|---|
| 3247 | vel = ru(i,k,j) |
|---|
| 3248 | fqx( i,k ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
|---|
| 3249 | field(i ,k,j), field(i+1,k,j), & |
|---|
| 3250 | vel ) |
|---|
| 3251 | ENDDO |
|---|
| 3252 | |
|---|
| 3253 | ENDIF |
|---|
| 3254 | |
|---|
| 3255 | ! x flux-divergence into tendency |
|---|
| 3256 | |
|---|
| 3257 | DO k=kts,ktf |
|---|
| 3258 | DO i = i_start, i_end |
|---|
| 3259 | mrdx=msft(i,j)*rdx |
|---|
| 3260 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
|---|
| 3261 | ENDDO |
|---|
| 3262 | ENDDO |
|---|
| 3263 | |
|---|
| 3264 | ENDDO |
|---|
| 3265 | |
|---|
| 3266 | |
|---|
| 3267 | ELSE IF( horz_order == 4 ) THEN |
|---|
| 3268 | |
|---|
| 3269 | degrade_xs = .true. |
|---|
| 3270 | degrade_xe = .true. |
|---|
| 3271 | degrade_ys = .true. |
|---|
| 3272 | degrade_ye = .true. |
|---|
| 3273 | |
|---|
| 3274 | IF( config_flags%periodic_x .or. & |
|---|
| 3275 | config_flags%symmetric_xs .or. & |
|---|
| 3276 | (its > ids+1) ) degrade_xs = .false. |
|---|
| 3277 | IF( config_flags%periodic_x .or. & |
|---|
| 3278 | config_flags%symmetric_xe .or. & |
|---|
| 3279 | (ite < ide-2) ) degrade_xe = .false. |
|---|
| 3280 | IF( config_flags%periodic_y .or. & |
|---|
| 3281 | config_flags%symmetric_ys .or. & |
|---|
| 3282 | (jts > jds+1) ) degrade_ys = .false. |
|---|
| 3283 | IF( config_flags%periodic_y .or. & |
|---|
| 3284 | config_flags%symmetric_ye .or. & |
|---|
| 3285 | (jte < jde-2) ) degrade_ye = .false. |
|---|
| 3286 | |
|---|
| 3287 | ! begin flux computations |
|---|
| 3288 | ! start with x flux divergence |
|---|
| 3289 | |
|---|
| 3290 | ktf=MIN(kte,kde-1) |
|---|
| 3291 | |
|---|
| 3292 | i_start = its |
|---|
| 3293 | i_end = MIN(ite,ide-1) |
|---|
| 3294 | j_start = jts |
|---|
| 3295 | j_end = MIN(jte,jde-1) |
|---|
| 3296 | |
|---|
| 3297 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
|---|
| 3298 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 3299 | |
|---|
| 3300 | i_start_f = i_start |
|---|
| 3301 | i_end_f = i_end+1 |
|---|
| 3302 | |
|---|
| 3303 | IF(degrade_xs) then |
|---|
| 3304 | i_start = ids+1 |
|---|
| 3305 | i_start_f = i_start+1 |
|---|
| 3306 | ENDIF |
|---|
| 3307 | |
|---|
| 3308 | IF(degrade_xe) then |
|---|
| 3309 | i_end = ide-2 |
|---|
| 3310 | i_end_f = ide-2 |
|---|
| 3311 | ENDIF |
|---|
| 3312 | |
|---|
| 3313 | ! compute fluxes |
|---|
| 3314 | |
|---|
| 3315 | DO j = j_start, j_end |
|---|
| 3316 | |
|---|
| 3317 | ! 3rd or 4th order flux |
|---|
| 3318 | |
|---|
| 3319 | DO k=kts,ktf |
|---|
| 3320 | DO i = i_start_f, i_end_f |
|---|
| 3321 | |
|---|
| 3322 | fqx( i, k) = ru(i,k,j)*flux4( field(i-2,k,j), field(i-1,k,j), & |
|---|
| 3323 | field(i ,k,j), field(i+1,k,j), & |
|---|
| 3324 | ru(i,k,j) ) |
|---|
| 3325 | ENDDO |
|---|
| 3326 | ENDDO |
|---|
| 3327 | |
|---|
| 3328 | ! second order flux close to boundaries (if not periodic or symmetric) |
|---|
| 3329 | |
|---|
| 3330 | IF( degrade_xs ) THEN |
|---|
| 3331 | DO k=kts,ktf |
|---|
| 3332 | fqx(i_start, k) = 0.5*ru(i_start,k,j) & |
|---|
| 3333 | *(field(i_start,k,j)+field(i_start-1,k,j)) |
|---|
| 3334 | ENDDO |
|---|
| 3335 | ENDIF |
|---|
| 3336 | |
|---|
| 3337 | IF( degrade_xe ) THEN |
|---|
| 3338 | DO k=kts,ktf |
|---|
| 3339 | fqx(i_end+1,k ) = 0.5*ru(i_end+1,k,j) & |
|---|
| 3340 | *(field(i_end+1,k,j)+field(i_end,k,j)) |
|---|
| 3341 | ENDDO |
|---|
| 3342 | ENDIF |
|---|
| 3343 | |
|---|
| 3344 | ! x flux-divergence into tendency |
|---|
| 3345 | |
|---|
| 3346 | DO k=kts,ktf |
|---|
| 3347 | DO i = i_start, i_end |
|---|
| 3348 | mrdx=msft(i,j)*rdx |
|---|
| 3349 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
|---|
| 3350 | ENDDO |
|---|
| 3351 | ENDDO |
|---|
| 3352 | |
|---|
| 3353 | ENDDO |
|---|
| 3354 | |
|---|
| 3355 | |
|---|
| 3356 | ! next -> y flux divergence calculation |
|---|
| 3357 | |
|---|
| 3358 | i_start = its |
|---|
| 3359 | i_end = MIN(ite,ide-1) |
|---|
| 3360 | j_start = jts |
|---|
| 3361 | j_end = MIN(jte,jde-1) |
|---|
| 3362 | |
|---|
| 3363 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
|---|
| 3364 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 3365 | |
|---|
| 3366 | j_start_f = j_start |
|---|
| 3367 | j_end_f = j_end+1 |
|---|
| 3368 | |
|---|
| 3369 | IF(degrade_ys) then |
|---|
| 3370 | j_start = jds+1 |
|---|
| 3371 | j_start_f = j_start+1 |
|---|
| 3372 | ENDIF |
|---|
| 3373 | |
|---|
| 3374 | IF(degrade_ye) then |
|---|
| 3375 | j_end = jde-2 |
|---|
| 3376 | j_end_f = jde-2 |
|---|
| 3377 | ENDIF |
|---|
| 3378 | |
|---|
| 3379 | jp1 = 2 |
|---|
| 3380 | jp0 = 1 |
|---|
| 3381 | |
|---|
| 3382 | DO j = j_start, j_end+1 |
|---|
| 3383 | |
|---|
| 3384 | IF ((j < j_start_f) .and. degrade_ys) THEN |
|---|
| 3385 | DO k = kts, ktf |
|---|
| 3386 | DO i = i_start, i_end |
|---|
| 3387 | fqy(i,k,jp1) = 0.5*rv(i,k,j_start) & |
|---|
| 3388 | *(field(i,k,j_start)+field(i,k,j_start-1)) |
|---|
| 3389 | ENDDO |
|---|
| 3390 | ENDDO |
|---|
| 3391 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
|---|
| 3392 | DO k = kts, ktf |
|---|
| 3393 | DO i = i_start, i_end |
|---|
| 3394 | fqy(i,k,jp1) = 0.5*rv(i,k,j_end+1) & |
|---|
| 3395 | *(field(i,k,j_end+1)+field(i,k,j_end)) |
|---|
| 3396 | ENDDO |
|---|
| 3397 | ENDDO |
|---|
| 3398 | ELSE |
|---|
| 3399 | ! 3rd or 4th order flux |
|---|
| 3400 | DO k = kts, ktf |
|---|
| 3401 | DO i = i_start, i_end |
|---|
| 3402 | fqy( i, k, jp1 ) = rv(i,k,j)*flux4( field(i,k,j-2), field(i,k,j-1), & |
|---|
| 3403 | field(i,k,j ), field(i,k,j+1), & |
|---|
| 3404 | rv(i,k,j) ) |
|---|
| 3405 | ENDDO |
|---|
| 3406 | ENDDO |
|---|
| 3407 | END IF |
|---|
| 3408 | |
|---|
| 3409 | IF ( j > j_start ) THEN |
|---|
| 3410 | ! y flux-divergence into tendency |
|---|
| 3411 | |
|---|
| 3412 | DO k=kts,ktf |
|---|
| 3413 | DO i = i_start, i_end |
|---|
| 3414 | mrdy=msft(i,j-1)*rdy |
|---|
| 3415 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
|---|
| 3416 | ENDDO |
|---|
| 3417 | ENDDO |
|---|
| 3418 | END IF |
|---|
| 3419 | |
|---|
| 3420 | jtmp = jp1 |
|---|
| 3421 | jp1 = jp0 |
|---|
| 3422 | jp0 = jtmp |
|---|
| 3423 | |
|---|
| 3424 | ENDDO |
|---|
| 3425 | |
|---|
| 3426 | |
|---|
| 3427 | ELSE IF( horz_order == 3 ) THEN |
|---|
| 3428 | |
|---|
| 3429 | degrade_xs = .true. |
|---|
| 3430 | degrade_xe = .true. |
|---|
| 3431 | degrade_ys = .true. |
|---|
| 3432 | degrade_ye = .true. |
|---|
| 3433 | |
|---|
| 3434 | IF( config_flags%periodic_x .or. & |
|---|
| 3435 | config_flags%symmetric_xs .or. & |
|---|
| 3436 | (its > ids+1) ) degrade_xs = .false. |
|---|
| 3437 | IF( config_flags%periodic_x .or. & |
|---|
| 3438 | config_flags%symmetric_xe .or. & |
|---|
| 3439 | (ite < ide-2) ) degrade_xe = .false. |
|---|
| 3440 | IF( config_flags%periodic_y .or. & |
|---|
| 3441 | config_flags%symmetric_ys .or. & |
|---|
| 3442 | (jts > jds+1) ) degrade_ys = .false. |
|---|
| 3443 | IF( config_flags%periodic_y .or. & |
|---|
| 3444 | config_flags%symmetric_ye .or. & |
|---|
| 3445 | (jte < jde-2) ) degrade_ye = .false. |
|---|
| 3446 | |
|---|
| 3447 | ! begin flux computations |
|---|
| 3448 | ! start with x flux divergence |
|---|
| 3449 | |
|---|
| 3450 | ktf=MIN(kte,kde-1) |
|---|
| 3451 | |
|---|
| 3452 | i_start = its |
|---|
| 3453 | i_end = MIN(ite,ide-1) |
|---|
| 3454 | j_start = jts |
|---|
| 3455 | j_end = MIN(jte,jde-1) |
|---|
| 3456 | |
|---|
| 3457 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
|---|
| 3458 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 3459 | |
|---|
| 3460 | i_start_f = i_start |
|---|
| 3461 | i_end_f = i_end+1 |
|---|
| 3462 | |
|---|
| 3463 | IF(degrade_xs) then |
|---|
| 3464 | i_start = ids+1 |
|---|
| 3465 | i_start_f = i_start+1 |
|---|
| 3466 | ENDIF |
|---|
| 3467 | |
|---|
| 3468 | IF(degrade_xe) then |
|---|
| 3469 | i_end = ide-2 |
|---|
| 3470 | i_end_f = ide-2 |
|---|
| 3471 | ENDIF |
|---|
| 3472 | |
|---|
| 3473 | ! compute fluxes |
|---|
| 3474 | |
|---|
| 3475 | DO j = j_start, j_end |
|---|
| 3476 | |
|---|
| 3477 | ! 3rd or 4th order flux |
|---|
| 3478 | |
|---|
| 3479 | DO k=kts,ktf |
|---|
| 3480 | DO i = i_start_f, i_end_f |
|---|
| 3481 | |
|---|
| 3482 | fqx( i, k) = ru(i,k,j)*flux3( field(i-2,k,j), field(i-1,k,j), & |
|---|
| 3483 | field(i ,k,j), field(i+1,k,j), & |
|---|
| 3484 | ru(i,k,j) ) |
|---|
| 3485 | ENDDO |
|---|
| 3486 | ENDDO |
|---|
| 3487 | |
|---|
| 3488 | ! second order flux close to boundaries (if not periodic or symmetric) |
|---|
| 3489 | |
|---|
| 3490 | IF( degrade_xs ) THEN |
|---|
| 3491 | DO k=kts,ktf |
|---|
| 3492 | fqx(i_start, k) = 0.5*ru(i_start,k,j) & |
|---|
| 3493 | *(field(i_start,k,j)+field(i_start-1,k,j)) |
|---|
| 3494 | ENDDO |
|---|
| 3495 | ENDIF |
|---|
| 3496 | |
|---|
| 3497 | IF( degrade_xe ) THEN |
|---|
| 3498 | DO k=kts,ktf |
|---|
| 3499 | fqx(i_end+1,k ) = 0.5*ru(i_end+1,k,j) & |
|---|
| 3500 | *(field(i_end+1,k,j)+field(i_end,k,j)) |
|---|
| 3501 | ENDDO |
|---|
| 3502 | ENDIF |
|---|
| 3503 | |
|---|
| 3504 | ! x flux-divergence into tendency |
|---|
| 3505 | |
|---|
| 3506 | DO k=kts,ktf |
|---|
| 3507 | DO i = i_start, i_end |
|---|
| 3508 | mrdx=msft(i,j)*rdx |
|---|
| 3509 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
|---|
| 3510 | ENDDO |
|---|
| 3511 | ENDDO |
|---|
| 3512 | |
|---|
| 3513 | ENDDO |
|---|
| 3514 | |
|---|
| 3515 | |
|---|
| 3516 | ! next -> y flux divergence calculation |
|---|
| 3517 | |
|---|
| 3518 | i_start = its |
|---|
| 3519 | i_end = MIN(ite,ide-1) |
|---|
| 3520 | j_start = jts |
|---|
| 3521 | j_end = MIN(jte,jde-1) |
|---|
| 3522 | |
|---|
| 3523 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
|---|
| 3524 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 3525 | |
|---|
| 3526 | j_start_f = j_start |
|---|
| 3527 | j_end_f = j_end+1 |
|---|
| 3528 | |
|---|
| 3529 | IF(degrade_ys) then |
|---|
| 3530 | j_start = jds+1 |
|---|
| 3531 | j_start_f = j_start+1 |
|---|
| 3532 | ENDIF |
|---|
| 3533 | |
|---|
| 3534 | IF(degrade_ye) then |
|---|
| 3535 | j_end = jde-2 |
|---|
| 3536 | j_end_f = jde-2 |
|---|
| 3537 | ENDIF |
|---|
| 3538 | |
|---|
| 3539 | jp1 = 2 |
|---|
| 3540 | jp0 = 1 |
|---|
| 3541 | |
|---|
| 3542 | DO j = j_start, j_end+1 |
|---|
| 3543 | |
|---|
| 3544 | IF ((j < j_start_f) .and. degrade_ys) THEN |
|---|
| 3545 | DO k = kts, ktf |
|---|
| 3546 | DO i = i_start, i_end |
|---|
| 3547 | fqy(i,k,jp1) = 0.5*rv(i,k,j_start) & |
|---|
| 3548 | *(field(i,k,j_start)+field(i,k,j_start-1)) |
|---|
| 3549 | ENDDO |
|---|
| 3550 | ENDDO |
|---|
| 3551 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
|---|
| 3552 | DO k = kts, ktf |
|---|
| 3553 | DO i = i_start, i_end |
|---|
| 3554 | fqy(i,k,jp1) = 0.5*rv(i,k,j_end+1) & |
|---|
| 3555 | *(field(i,k,j_end+1)+field(i,k,j_end)) |
|---|
| 3556 | ENDDO |
|---|
| 3557 | ENDDO |
|---|
| 3558 | ELSE |
|---|
| 3559 | ! 3rd or 4th order flux |
|---|
| 3560 | DO k = kts, ktf |
|---|
| 3561 | DO i = i_start, i_end |
|---|
| 3562 | fqy( i, k, jp1 ) = rv(i,k,j)*flux3( field(i,k,j-2), field(i,k,j-1), & |
|---|
| 3563 | field(i,k,j ), field(i,k,j+1), & |
|---|
| 3564 | rv(i,k,j) ) |
|---|
| 3565 | ENDDO |
|---|
| 3566 | ENDDO |
|---|
| 3567 | END IF |
|---|
| 3568 | |
|---|
| 3569 | IF ( j > j_start ) THEN |
|---|
| 3570 | ! y flux-divergence into tendency |
|---|
| 3571 | |
|---|
| 3572 | DO k=kts,ktf |
|---|
| 3573 | DO i = i_start, i_end |
|---|
| 3574 | mrdy=msft(i,j-1)*rdy |
|---|
| 3575 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
|---|
| 3576 | ENDDO |
|---|
| 3577 | ENDDO |
|---|
| 3578 | END IF |
|---|
| 3579 | |
|---|
| 3580 | jtmp = jp1 |
|---|
| 3581 | jp1 = jp0 |
|---|
| 3582 | jp0 = jtmp |
|---|
| 3583 | |
|---|
| 3584 | ENDDO |
|---|
| 3585 | |
|---|
| 3586 | ELSE IF( horz_order == 2 ) THEN |
|---|
| 3587 | |
|---|
| 3588 | i_start = its |
|---|
| 3589 | i_end = MIN(ite,ide-1) |
|---|
| 3590 | j_start = jts |
|---|
| 3591 | j_end = MIN(jte,jde-1) |
|---|
| 3592 | |
|---|
| 3593 | IF ( .NOT. config_flags%periodic_x ) THEN |
|---|
| 3594 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
|---|
| 3595 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-2,ite) |
|---|
| 3596 | ENDIF |
|---|
| 3597 | |
|---|
| 3598 | DO j = j_start, j_end |
|---|
| 3599 | DO k = kts, ktf |
|---|
| 3600 | DO i = i_start, i_end |
|---|
| 3601 | mrdx=msft(i,j)*rdx |
|---|
| 3602 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.5 & |
|---|
| 3603 | *(ru(i+1,k,j)*(field(i+1,k,j)+field(i ,k,j)) & |
|---|
| 3604 | -ru(i ,k,j)*(field(i ,k,j)+field(i-1,k,j))) |
|---|
| 3605 | ENDDO |
|---|
| 3606 | ENDDO |
|---|
| 3607 | ENDDO |
|---|
| 3608 | |
|---|
| 3609 | i_start = its |
|---|
| 3610 | i_end = MIN(ite,ide-1) |
|---|
| 3611 | |
|---|
| 3612 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
|---|
| 3613 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-2,jte) |
|---|
| 3614 | |
|---|
| 3615 | DO j = j_start, j_end |
|---|
| 3616 | DO k = kts, ktf |
|---|
| 3617 | DO i = i_start, i_end |
|---|
| 3618 | mrdy=msft(i,j)*rdy |
|---|
| 3619 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.5 & |
|---|
| 3620 | *(rv(i,k,j+1)*(field(i,k,j+1)+field(i,k,j )) & |
|---|
| 3621 | -rv(i,k,j )*(field(i,k,j )+field(i,k,j-1))) |
|---|
| 3622 | ENDDO |
|---|
| 3623 | ENDDO |
|---|
| 3624 | ENDDO |
|---|
| 3625 | |
|---|
| 3626 | ELSE |
|---|
| 3627 | |
|---|
| 3628 | WRITE ( wrf_err_message , * ) 'module_advect: advect_scalar_6a, h_order not known ',horz_order |
|---|
| 3629 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
|---|
| 3630 | |
|---|
| 3631 | ENDIF horizontal_order_test |
|---|
| 3632 | |
|---|
| 3633 | ! pick up the rest of the horizontal radiation boundary conditions. |
|---|
| 3634 | ! (these are the computations that don't require 'cb'. |
|---|
| 3635 | ! first, set to index ranges |
|---|
| 3636 | |
|---|
| 3637 | i_start = its |
|---|
| 3638 | i_end = MIN(ite,ide-1) |
|---|
| 3639 | j_start = jts |
|---|
| 3640 | j_end = MIN(jte,jde-1) |
|---|
| 3641 | |
|---|
| 3642 | ! compute x (u) conditions for v, w, or scalar |
|---|
| 3643 | |
|---|
| 3644 | IF( (config_flags%open_xs) .and. (its == ids) ) THEN |
|---|
| 3645 | |
|---|
| 3646 | DO j = j_start, j_end |
|---|
| 3647 | DO k = kts, ktf |
|---|
| 3648 | ub = MIN( 0.5*(ru(its,k,j)+ru(its+1,k,j)), 0. ) |
|---|
| 3649 | tendency(its,k,j) = tendency(its,k,j) & |
|---|
| 3650 | - rdx*( & |
|---|
| 3651 | ub*( field_old(its+1,k,j) & |
|---|
| 3652 | - field_old(its ,k,j) ) + & |
|---|
| 3653 | field(its,k,j)*(ru(its+1,k,j)-ru(its,k,j)) & |
|---|
| 3654 | ) |
|---|
| 3655 | ENDDO |
|---|
| 3656 | ENDDO |
|---|
| 3657 | |
|---|
| 3658 | ENDIF |
|---|
| 3659 | |
|---|
| 3660 | IF( (config_flags%open_xe) .and. (ite == ide) ) THEN |
|---|
| 3661 | |
|---|
| 3662 | DO j = j_start, j_end |
|---|
| 3663 | DO k = kts, ktf |
|---|
| 3664 | ub = MAX( 0.5*(ru(ite-1,k,j)+ru(ite,k,j)), 0. ) |
|---|
| 3665 | tendency(i_end,k,j) = tendency(i_end,k,j) & |
|---|
| 3666 | - rdx*( & |
|---|
| 3667 | ub*( field_old(i_end ,k,j) & |
|---|
| 3668 | - field_old(i_end-1,k,j) ) + & |
|---|
| 3669 | field(i_end,k,j)*(ru(ite,k,j)-ru(ite-1,k,j)) & |
|---|
| 3670 | ) |
|---|
| 3671 | ENDDO |
|---|
| 3672 | ENDDO |
|---|
| 3673 | |
|---|
| 3674 | ENDIF |
|---|
| 3675 | |
|---|
| 3676 | IF( (config_flags%open_ys) .and. (jts == jds) ) THEN |
|---|
| 3677 | |
|---|
| 3678 | DO i = i_start, i_end |
|---|
| 3679 | DO k = kts, ktf |
|---|
| 3680 | vb = MIN( 0.5*(rv(i,k,jts)+rv(i,k,jts+1)), 0. ) |
|---|
| 3681 | tendency(i,k,jts) = tendency(i,k,jts) & |
|---|
| 3682 | - rdy*( & |
|---|
| 3683 | vb*( field_old(i,k,jts+1) & |
|---|
| 3684 | - field_old(i,k,jts ) ) + & |
|---|
| 3685 | field(i,k,jts)*(rv(i,k,jts+1)-rv(i,k,jts)) & |
|---|
| 3686 | ) |
|---|
| 3687 | ENDDO |
|---|
| 3688 | ENDDO |
|---|
| 3689 | |
|---|
| 3690 | ENDIF |
|---|
| 3691 | |
|---|
| 3692 | IF( (config_flags%open_ye) .and. (jte == jde)) THEN |
|---|
| 3693 | |
|---|
| 3694 | DO i = i_start, i_end |
|---|
| 3695 | DO k = kts, ktf |
|---|
| 3696 | vb = MAX( 0.5*(rv(i,k,jte-1)+rv(i,k,jte)), 0. ) |
|---|
| 3697 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
|---|
| 3698 | - rdy*( & |
|---|
| 3699 | vb*( field_old(i,k,j_end ) & |
|---|
| 3700 | - field_old(i,k,j_end-1) ) + & |
|---|
| 3701 | field(i,k,j_end)*(rv(i,k,jte)-rv(i,k,jte-1)) & |
|---|
| 3702 | ) |
|---|
| 3703 | ENDDO |
|---|
| 3704 | ENDDO |
|---|
| 3705 | |
|---|
| 3706 | ENDIF |
|---|
| 3707 | |
|---|
| 3708 | |
|---|
| 3709 | !-------------------- vertical advection |
|---|
| 3710 | |
|---|
| 3711 | i_start = its |
|---|
| 3712 | i_end = MIN(ite,ide-1) |
|---|
| 3713 | j_start = jts |
|---|
| 3714 | j_end = MIN(jte,jde-1) |
|---|
| 3715 | |
|---|
| 3716 | DO i = i_start, i_end |
|---|
| 3717 | vflux(i,kts)=0. |
|---|
| 3718 | vflux(i,kte)=0. |
|---|
| 3719 | ENDDO |
|---|
| 3720 | |
|---|
| 3721 | vert_order_test : IF (vert_order == 6) THEN |
|---|
| 3722 | |
|---|
| 3723 | DO j = j_start, j_end |
|---|
| 3724 | |
|---|
| 3725 | DO k=kts+3,ktf-2 |
|---|
| 3726 | DO i = i_start, i_end |
|---|
| 3727 | vel=rom(i,k,j) |
|---|
| 3728 | vflux(i,k) = vel*flux6( & |
|---|
| 3729 | field(i,k-3,j), field(i,k-2,j), field(i,k-1,j), & |
|---|
| 3730 | field(i,k ,j), field(i,k+1,j), field(i,k+2,j), -vel ) |
|---|
| 3731 | ENDDO |
|---|
| 3732 | ENDDO |
|---|
| 3733 | |
|---|
| 3734 | DO i = i_start, i_end |
|---|
| 3735 | |
|---|
| 3736 | k=kts+1 |
|---|
| 3737 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 3738 | |
|---|
| 3739 | k = kts+2 |
|---|
| 3740 | vel=rom(i,k,j) |
|---|
| 3741 | vflux(i,k) = vel*flux4( & |
|---|
| 3742 | field(i,k-2,j), field(i,k-1,j), & |
|---|
| 3743 | field(i,k ,j), field(i,k+1,j), -vel ) |
|---|
| 3744 | k = ktf-1 |
|---|
| 3745 | vel=rom(i,k,j) |
|---|
| 3746 | vflux(i,k) = vel*flux4( & |
|---|
| 3747 | field(i,k-2,j), field(i,k-1,j), & |
|---|
| 3748 | field(i,k ,j), field(i,k+1,j), -vel ) |
|---|
| 3749 | |
|---|
| 3750 | k=ktf |
|---|
| 3751 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 3752 | ENDDO |
|---|
| 3753 | |
|---|
| 3754 | DO k=kts,ktf |
|---|
| 3755 | DO i = i_start, i_end |
|---|
| 3756 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 3757 | ENDDO |
|---|
| 3758 | ENDDO |
|---|
| 3759 | |
|---|
| 3760 | ENDDO |
|---|
| 3761 | |
|---|
| 3762 | ELSE IF (vert_order == 5) THEN |
|---|
| 3763 | |
|---|
| 3764 | DO j = j_start, j_end |
|---|
| 3765 | |
|---|
| 3766 | DO k=kts+3,ktf-2 |
|---|
| 3767 | DO i = i_start, i_end |
|---|
| 3768 | vel=rom(i,k,j) |
|---|
| 3769 | vflux(i,k) = vel*flux5( & |
|---|
| 3770 | field(i,k-3,j), field(i,k-2,j), field(i,k-1,j), & |
|---|
| 3771 | field(i,k ,j), field(i,k+1,j), field(i,k+2,j), -vel ) |
|---|
| 3772 | ENDDO |
|---|
| 3773 | ENDDO |
|---|
| 3774 | |
|---|
| 3775 | DO i = i_start, i_end |
|---|
| 3776 | |
|---|
| 3777 | k=kts+1 |
|---|
| 3778 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 3779 | |
|---|
| 3780 | k = kts+2 |
|---|
| 3781 | vel=rom(i,k,j) |
|---|
| 3782 | vflux(i,k) = vel*flux3( & |
|---|
| 3783 | field(i,k-2,j), field(i,k-1,j), & |
|---|
| 3784 | field(i,k ,j), field(i,k+1,j), -vel ) |
|---|
| 3785 | k = ktf-1 |
|---|
| 3786 | vel=rom(i,k,j) |
|---|
| 3787 | vflux(i,k) = vel*flux3( & |
|---|
| 3788 | field(i,k-2,j), field(i,k-1,j), & |
|---|
| 3789 | field(i,k ,j), field(i,k+1,j), -vel ) |
|---|
| 3790 | |
|---|
| 3791 | k=ktf |
|---|
| 3792 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 3793 | ENDDO |
|---|
| 3794 | |
|---|
| 3795 | DO k=kts,ktf |
|---|
| 3796 | DO i = i_start, i_end |
|---|
| 3797 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 3798 | ENDDO |
|---|
| 3799 | ENDDO |
|---|
| 3800 | |
|---|
| 3801 | ENDDO |
|---|
| 3802 | |
|---|
| 3803 | ELSE IF (vert_order == 4) THEN |
|---|
| 3804 | |
|---|
| 3805 | DO j = j_start, j_end |
|---|
| 3806 | |
|---|
| 3807 | DO k=kts+2,ktf-1 |
|---|
| 3808 | DO i = i_start, i_end |
|---|
| 3809 | vel=rom(i,k,j) |
|---|
| 3810 | vflux(i,k) = vel*flux4( & |
|---|
| 3811 | field(i,k-2,j), field(i,k-1,j), & |
|---|
| 3812 | field(i,k ,j), field(i,k+1,j), -vel ) |
|---|
| 3813 | ENDDO |
|---|
| 3814 | ENDDO |
|---|
| 3815 | |
|---|
| 3816 | DO i = i_start, i_end |
|---|
| 3817 | |
|---|
| 3818 | k=kts+1 |
|---|
| 3819 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 3820 | k=ktf |
|---|
| 3821 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 3822 | ENDDO |
|---|
| 3823 | |
|---|
| 3824 | DO k=kts,ktf |
|---|
| 3825 | DO i = i_start, i_end |
|---|
| 3826 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 3827 | ENDDO |
|---|
| 3828 | ENDDO |
|---|
| 3829 | |
|---|
| 3830 | ENDDO |
|---|
| 3831 | |
|---|
| 3832 | ELSE IF (vert_order == 3) THEN |
|---|
| 3833 | |
|---|
| 3834 | DO j = j_start, j_end |
|---|
| 3835 | |
|---|
| 3836 | DO k=kts+2,ktf-1 |
|---|
| 3837 | DO i = i_start, i_end |
|---|
| 3838 | vel=rom(i,k,j) |
|---|
| 3839 | vflux(i,k) = vel*flux3( & |
|---|
| 3840 | field(i,k-2,j), field(i,k-1,j), & |
|---|
| 3841 | field(i,k ,j), field(i,k+1,j), -vel ) |
|---|
| 3842 | ENDDO |
|---|
| 3843 | ENDDO |
|---|
| 3844 | |
|---|
| 3845 | DO i = i_start, i_end |
|---|
| 3846 | |
|---|
| 3847 | k=kts+1 |
|---|
| 3848 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 3849 | k=ktf |
|---|
| 3850 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 3851 | ENDDO |
|---|
| 3852 | |
|---|
| 3853 | DO k=kts,ktf |
|---|
| 3854 | DO i = i_start, i_end |
|---|
| 3855 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 3856 | ENDDO |
|---|
| 3857 | ENDDO |
|---|
| 3858 | |
|---|
| 3859 | ENDDO |
|---|
| 3860 | |
|---|
| 3861 | |
|---|
| 3862 | ELSE IF (vert_order == 2) THEN |
|---|
| 3863 | |
|---|
| 3864 | DO j = j_start, j_end |
|---|
| 3865 | DO k = kts+1, ktf |
|---|
| 3866 | DO i = i_start, i_end |
|---|
| 3867 | vflux(i,k)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 3868 | ENDDO |
|---|
| 3869 | ENDDO |
|---|
| 3870 | |
|---|
| 3871 | DO k = kts, ktf |
|---|
| 3872 | DO i = i_start, i_end |
|---|
| 3873 | tendency(i,k,j)=tendency(i,k,j)-rdzw(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 3874 | ENDDO |
|---|
| 3875 | ENDDO |
|---|
| 3876 | |
|---|
| 3877 | ENDDO |
|---|
| 3878 | |
|---|
| 3879 | ELSE |
|---|
| 3880 | |
|---|
| 3881 | WRITE (wrf_err_message,*) ' advect_scalar_6a, v_order not known ',vert_order |
|---|
| 3882 | CALL wrf_error_fatal ( wrf_err_message ) |
|---|
| 3883 | |
|---|
| 3884 | ENDIF vert_order_test |
|---|
| 3885 | |
|---|
| 3886 | END SUBROUTINE advect_scalar |
|---|
| 3887 | |
|---|
| 3888 | !--------------------------------------------------------------------------------- |
|---|
| 3889 | |
|---|
| 3890 | SUBROUTINE advect_w ( w, w_old, tendency, & |
|---|
| 3891 | ru, rv, rom, & |
|---|
| 3892 | mut, config_flags, & |
|---|
| 3893 | msfu, msfv, msft, & |
|---|
| 3894 | fzm, fzp, & |
|---|
| 3895 | rdx, rdy, rdzu, & |
|---|
| 3896 | ids, ide, jds, jde, kds, kde, & |
|---|
| 3897 | ims, ime, jms, jme, kms, kme, & |
|---|
| 3898 | its, ite, jts, jte, kts, kte ) |
|---|
| 3899 | |
|---|
| 3900 | IMPLICIT NONE |
|---|
| 3901 | |
|---|
| 3902 | ! Input data |
|---|
| 3903 | |
|---|
| 3904 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
|---|
| 3905 | |
|---|
| 3906 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
|---|
| 3907 | ims, ime, jms, jme, kms, kme, & |
|---|
| 3908 | its, ite, jts, jte, kts, kte |
|---|
| 3909 | |
|---|
| 3910 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: w, & |
|---|
| 3911 | w_old, & |
|---|
| 3912 | ru, & |
|---|
| 3913 | rv, & |
|---|
| 3914 | rom |
|---|
| 3915 | |
|---|
| 3916 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut |
|---|
| 3917 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
|---|
| 3918 | |
|---|
| 3919 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
|---|
| 3920 | msfv, & |
|---|
| 3921 | msft |
|---|
| 3922 | |
|---|
| 3923 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
|---|
| 3924 | fzp, & |
|---|
| 3925 | rdzu |
|---|
| 3926 | |
|---|
| 3927 | REAL , INTENT(IN ) :: rdx, & |
|---|
| 3928 | rdy |
|---|
| 3929 | |
|---|
| 3930 | ! Local data |
|---|
| 3931 | |
|---|
| 3932 | INTEGER :: i, j, k, itf, jtf, ktf |
|---|
| 3933 | INTEGER :: i_start, i_end, j_start, j_end |
|---|
| 3934 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
|---|
| 3935 | INTEGER :: jmin, jmax, jp, jm, imin, imax |
|---|
| 3936 | |
|---|
| 3937 | REAL :: mrdx, mrdy, ub, vb, uw, vw |
|---|
| 3938 | REAL , DIMENSION(its:ite, kts:kte) :: vflux |
|---|
| 3939 | |
|---|
| 3940 | INTEGER :: horz_order, vert_order |
|---|
| 3941 | |
|---|
| 3942 | REAL, DIMENSION( its:ite+1, kts:kte ) :: fqx |
|---|
| 3943 | REAL, DIMENSION( its:ite, kts:kte, 2 ) :: fqy |
|---|
| 3944 | |
|---|
| 3945 | LOGICAL :: degrade_xs, degrade_ys |
|---|
| 3946 | LOGICAL :: degrade_xe, degrade_ye |
|---|
| 3947 | |
|---|
| 3948 | INTEGER :: jp1, jp0, jtmp |
|---|
| 3949 | |
|---|
| 3950 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
|---|
| 3951 | |
|---|
| 3952 | REAL :: flux3, flux4, flux5, flux6 |
|---|
| 3953 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel |
|---|
| 3954 | |
|---|
| 3955 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
|---|
| 3956 | ( 7.*(q_i + q_im1) - (q_ip1 + q_im2) )/12.0 |
|---|
| 3957 | |
|---|
| 3958 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
|---|
| 3959 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
|---|
| 3960 | sign(1.,ua)*((q_ip1 - q_im2)-3.*(q_i-q_im1))/12.0 |
|---|
| 3961 | |
|---|
| 3962 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
|---|
| 3963 | ( 37.*(q_i+q_im1) - 8.*(q_ip1+q_im2) & |
|---|
| 3964 | +(q_ip2+q_im3) )/60.0 |
|---|
| 3965 | |
|---|
| 3966 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
|---|
| 3967 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
|---|
| 3968 | -sign(1.,ua)*( & |
|---|
| 3969 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) )/60.0 |
|---|
| 3970 | |
|---|
| 3971 | |
|---|
| 3972 | LOGICAL :: specified |
|---|
| 3973 | |
|---|
| 3974 | specified = .false. |
|---|
| 3975 | if(config_flags%specified .or. config_flags%nested) specified = .true. |
|---|
| 3976 | |
|---|
| 3977 | ! set order for the advection scheme |
|---|
| 3978 | |
|---|
| 3979 | ktf=MIN(kte,kde-1) |
|---|
| 3980 | horz_order = config_flags%h_sca_adv_order |
|---|
| 3981 | vert_order = config_flags%v_sca_adv_order |
|---|
| 3982 | |
|---|
| 3983 | ! here is the choice of flux operators |
|---|
| 3984 | |
|---|
| 3985 | ! begin with horizontal flux divergence |
|---|
| 3986 | |
|---|
| 3987 | horizontal_order_test : IF( horz_order == 6 ) THEN |
|---|
| 3988 | |
|---|
| 3989 | ! determine boundary mods for flux operators |
|---|
| 3990 | ! We degrade the flux operators from 3rd/4th order |
|---|
| 3991 | ! to second order one gridpoint in from the boundaries for |
|---|
| 3992 | ! all boundary conditions except periodic and symmetry - these |
|---|
| 3993 | ! conditions have boundary zone data fill for correct application |
|---|
| 3994 | ! of the higher order flux stencils |
|---|
| 3995 | |
|---|
| 3996 | degrade_xs = .true. |
|---|
| 3997 | degrade_xe = .true. |
|---|
| 3998 | degrade_ys = .true. |
|---|
| 3999 | degrade_ye = .true. |
|---|
| 4000 | |
|---|
| 4001 | IF( config_flags%periodic_x .or. & |
|---|
| 4002 | config_flags%symmetric_xs .or. & |
|---|
| 4003 | (its > ids+2) ) degrade_xs = .false. |
|---|
| 4004 | IF( config_flags%periodic_x .or. & |
|---|
| 4005 | config_flags%symmetric_xe .or. & |
|---|
| 4006 | (ite < ide-3) ) degrade_xe = .false. |
|---|
| 4007 | IF( config_flags%periodic_y .or. & |
|---|
| 4008 | config_flags%symmetric_ys .or. & |
|---|
| 4009 | (jts > jds+2) ) degrade_ys = .false. |
|---|
| 4010 | IF( config_flags%periodic_y .or. & |
|---|
| 4011 | config_flags%symmetric_ye .or. & |
|---|
| 4012 | (jte < jde-3) ) degrade_ye = .false. |
|---|
| 4013 | |
|---|
| 4014 | !--------------- y - advection first |
|---|
| 4015 | |
|---|
| 4016 | i_start = its |
|---|
| 4017 | i_end = MIN(ite,ide-1) |
|---|
| 4018 | j_start = jts |
|---|
| 4019 | j_end = MIN(jte,jde-1) |
|---|
| 4020 | |
|---|
| 4021 | ! higher order flux has a 5 or 7 point stencil, so compute |
|---|
| 4022 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 4023 | |
|---|
| 4024 | j_start_f = j_start |
|---|
| 4025 | j_end_f = j_end+1 |
|---|
| 4026 | |
|---|
| 4027 | IF(degrade_ys) then |
|---|
| 4028 | j_start = MAX(jts,jds+1) |
|---|
| 4029 | j_start_f = jds+3 |
|---|
| 4030 | ENDIF |
|---|
| 4031 | |
|---|
| 4032 | IF(degrade_ye) then |
|---|
| 4033 | j_end = MIN(jte,jde-2) |
|---|
| 4034 | j_end_f = jde-3 |
|---|
| 4035 | ENDIF |
|---|
| 4036 | |
|---|
| 4037 | ! compute fluxes, 5th or 6th order |
|---|
| 4038 | |
|---|
| 4039 | jp1 = 2 |
|---|
| 4040 | jp0 = 1 |
|---|
| 4041 | |
|---|
| 4042 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
|---|
| 4043 | |
|---|
| 4044 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN |
|---|
| 4045 | |
|---|
| 4046 | DO k=kts+1,ktf |
|---|
| 4047 | DO i = i_start, i_end |
|---|
| 4048 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
|---|
| 4049 | fqy( i, k, jp1 ) = vel*flux6( & |
|---|
| 4050 | w(i,k,j-3), w(i,k,j-2), w(i,k,j-1), & |
|---|
| 4051 | w(i,k,j ), w(i,k,j+1), w(i,k,j+2), vel ) |
|---|
| 4052 | ENDDO |
|---|
| 4053 | ENDDO |
|---|
| 4054 | |
|---|
| 4055 | k = ktf+1 |
|---|
| 4056 | DO i = i_start, i_end |
|---|
| 4057 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
|---|
| 4058 | fqy( i, k, jp1 ) = vel*flux6( & |
|---|
| 4059 | w(i,k,j-3), w(i,k,j-2), w(i,k,j-1), & |
|---|
| 4060 | w(i,k,j ), w(i,k,j+1), w(i,k,j+2), vel ) |
|---|
| 4061 | ENDDO |
|---|
| 4062 | |
|---|
| 4063 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
|---|
| 4064 | |
|---|
| 4065 | DO k=kts+1,ktf |
|---|
| 4066 | DO i = i_start, i_end |
|---|
| 4067 | fqy(i, k, jp1) = 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j))* & |
|---|
| 4068 | (w(i,k,j)+w(i,k,j-1)) |
|---|
| 4069 | ENDDO |
|---|
| 4070 | ENDDO |
|---|
| 4071 | |
|---|
| 4072 | k = ktf+1 |
|---|
| 4073 | DO i = i_start, i_end |
|---|
| 4074 | fqy(i, k, jp1) = 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j))* & |
|---|
| 4075 | (w(i,k,j)+w(i,k,j-1)) |
|---|
| 4076 | ENDDO |
|---|
| 4077 | |
|---|
| 4078 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
|---|
| 4079 | |
|---|
| 4080 | DO k=kts+1,ktf |
|---|
| 4081 | DO i = i_start, i_end |
|---|
| 4082 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
|---|
| 4083 | fqy( i, k, jp1 ) = vel*flux4( & |
|---|
| 4084 | w(i,k,j-2),w(i,k,j-1),w(i,k,j),w(i,k,j+1),vel ) |
|---|
| 4085 | ENDDO |
|---|
| 4086 | ENDDO |
|---|
| 4087 | |
|---|
| 4088 | k = ktf+1 |
|---|
| 4089 | DO i = i_start, i_end |
|---|
| 4090 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
|---|
| 4091 | fqy( i, k, jp1 ) = vel*flux4( & |
|---|
| 4092 | w(i,k,j-2),w(i,k,j-1),w(i,k,j),w(i,k,j+1),vel ) |
|---|
| 4093 | ENDDO |
|---|
| 4094 | |
|---|
| 4095 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
|---|
| 4096 | |
|---|
| 4097 | DO k=kts+1,ktf |
|---|
| 4098 | DO i = i_start, i_end |
|---|
| 4099 | fqy(i, k, jp1) = 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j))* & |
|---|
| 4100 | (w(i,k,j)+w(i,k,j-1)) |
|---|
| 4101 | ENDDO |
|---|
| 4102 | ENDDO |
|---|
| 4103 | |
|---|
| 4104 | k = ktf+1 |
|---|
| 4105 | DO i = i_start, i_end |
|---|
| 4106 | fqy(i, k, jp1) = 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j))* & |
|---|
| 4107 | (w(i,k,j)+w(i,k,j-1)) |
|---|
| 4108 | ENDDO |
|---|
| 4109 | |
|---|
| 4110 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
|---|
| 4111 | |
|---|
| 4112 | DO k=kts+1,ktf |
|---|
| 4113 | DO i = i_start, i_end |
|---|
| 4114 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
|---|
| 4115 | fqy( i, k, jp1 ) = vel*flux4( & |
|---|
| 4116 | w(i,k,j-2),w(i,k,j-1), & |
|---|
| 4117 | w(i,k,j),w(i,k,j+1),vel ) |
|---|
| 4118 | ENDDO |
|---|
| 4119 | ENDDO |
|---|
| 4120 | |
|---|
| 4121 | k = ktf+1 |
|---|
| 4122 | DO i = i_start, i_end |
|---|
| 4123 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
|---|
| 4124 | fqy( i, k, jp1 ) = vel*flux4( & |
|---|
| 4125 | w(i,k,j-2),w(i,k,j-1), & |
|---|
| 4126 | w(i,k,j),w(i,k,j+1),vel ) |
|---|
| 4127 | ENDDO |
|---|
| 4128 | |
|---|
| 4129 | ENDIF |
|---|
| 4130 | |
|---|
| 4131 | ! y flux-divergence into tendency |
|---|
| 4132 | |
|---|
| 4133 | IF(j > j_start) THEN |
|---|
| 4134 | |
|---|
| 4135 | DO k=kts+1,ktf+1 |
|---|
| 4136 | DO i = i_start, i_end |
|---|
| 4137 | mrdy=msft(i,j-1)*rdy |
|---|
| 4138 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
|---|
| 4139 | ENDDO |
|---|
| 4140 | ENDDO |
|---|
| 4141 | |
|---|
| 4142 | ENDIF |
|---|
| 4143 | |
|---|
| 4144 | jtmp = jp1 |
|---|
| 4145 | jp1 = jp0 |
|---|
| 4146 | jp0 = jtmp |
|---|
| 4147 | |
|---|
| 4148 | ENDDO j_loop_y_flux_6 |
|---|
| 4149 | |
|---|
| 4150 | ! next, x - flux divergence |
|---|
| 4151 | |
|---|
| 4152 | i_start = its |
|---|
| 4153 | i_end = MIN(ite,ide-1) |
|---|
| 4154 | |
|---|
| 4155 | j_start = jts |
|---|
| 4156 | j_end = MIN(jte,jde-1) |
|---|
| 4157 | |
|---|
| 4158 | ! higher order flux has a 5 or 7 point stencil, so compute |
|---|
| 4159 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 4160 | |
|---|
| 4161 | i_start_f = i_start |
|---|
| 4162 | i_end_f = i_end+1 |
|---|
| 4163 | |
|---|
| 4164 | IF(degrade_xs) then |
|---|
| 4165 | i_start = MAX(ids+1,its) |
|---|
| 4166 | i_start_f = i_start+2 |
|---|
| 4167 | ENDIF |
|---|
| 4168 | |
|---|
| 4169 | IF(degrade_xe) then |
|---|
| 4170 | i_end = MIN(ide-2,ite) |
|---|
| 4171 | i_end_f = ide-3 |
|---|
| 4172 | ENDIF |
|---|
| 4173 | |
|---|
| 4174 | ! compute fluxes |
|---|
| 4175 | |
|---|
| 4176 | DO j = j_start, j_end |
|---|
| 4177 | |
|---|
| 4178 | ! 5th or 6th order flux |
|---|
| 4179 | |
|---|
| 4180 | DO k=kts+1,ktf |
|---|
| 4181 | DO i = i_start_f, i_end_f |
|---|
| 4182 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
|---|
| 4183 | fqx( i,k ) = vel*flux6( w(i-3,k,j), w(i-2,k,j), & |
|---|
| 4184 | w(i-1,k,j), w(i ,k,j), & |
|---|
| 4185 | w(i+1,k,j), w(i+2,k,j), & |
|---|
| 4186 | vel ) |
|---|
| 4187 | ENDDO |
|---|
| 4188 | ENDDO |
|---|
| 4189 | |
|---|
| 4190 | k = ktf+1 |
|---|
| 4191 | DO i = i_start_f, i_end_f |
|---|
| 4192 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
|---|
| 4193 | fqx( i,k ) = vel*flux6( w(i-3,k,j), w(i-2,k,j), & |
|---|
| 4194 | w(i-1,k,j), w(i ,k,j), & |
|---|
| 4195 | w(i+1,k,j), w(i+2,k,j), & |
|---|
| 4196 | vel ) |
|---|
| 4197 | ENDDO |
|---|
| 4198 | |
|---|
| 4199 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
|---|
| 4200 | |
|---|
| 4201 | IF( degrade_xs ) THEN |
|---|
| 4202 | |
|---|
| 4203 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
|---|
| 4204 | i = ids+1 |
|---|
| 4205 | DO k=kts+1,ktf |
|---|
| 4206 | fqx(i,k) = 0.5*(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
|---|
| 4207 | *(w(i,k,j)+w(i-1,k,j)) |
|---|
| 4208 | ENDDO |
|---|
| 4209 | k = ktf+1 |
|---|
| 4210 | fqx(i,k) = 0.5*((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
|---|
| 4211 | *(w(i,k,j)+w(i-1,k,j)) |
|---|
| 4212 | ENDIF |
|---|
| 4213 | |
|---|
| 4214 | DO k=kts+1,ktf |
|---|
| 4215 | i = i_start+1 |
|---|
| 4216 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
|---|
| 4217 | fqx( i,k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
|---|
| 4218 | w(i ,k,j), w(i+1,k,j), & |
|---|
| 4219 | vel ) |
|---|
| 4220 | ENDDO |
|---|
| 4221 | |
|---|
| 4222 | k = ktf+1 |
|---|
| 4223 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
|---|
| 4224 | fqx( i,k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
|---|
| 4225 | w(i ,k,j), w(i+1,k,j), & |
|---|
| 4226 | vel ) |
|---|
| 4227 | ENDIF |
|---|
| 4228 | |
|---|
| 4229 | IF( degrade_xe ) THEN |
|---|
| 4230 | |
|---|
| 4231 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
|---|
| 4232 | i = ide-1 |
|---|
| 4233 | DO k=kts+1,ktf |
|---|
| 4234 | fqx(i,k) = 0.5*(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
|---|
| 4235 | *(w(i,k,j)+w(i-1,k,j)) |
|---|
| 4236 | ENDDO |
|---|
| 4237 | k = ktf+1 |
|---|
| 4238 | fqx(i,k) = 0.5*((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
|---|
| 4239 | *(w(i,k,j)+w(i-1,k,j)) |
|---|
| 4240 | ENDIF |
|---|
| 4241 | |
|---|
| 4242 | i = ide-2 |
|---|
| 4243 | DO k=kts+1,ktf |
|---|
| 4244 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
|---|
| 4245 | fqx( i,k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
|---|
| 4246 | w(i ,k,j), w(i+1,k,j), & |
|---|
| 4247 | vel ) |
|---|
| 4248 | ENDDO |
|---|
| 4249 | |
|---|
| 4250 | k = ktf+1 |
|---|
| 4251 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
|---|
| 4252 | fqx( i,k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
|---|
| 4253 | w(i ,k,j), w(i+1,k,j), & |
|---|
| 4254 | vel ) |
|---|
| 4255 | ENDIF |
|---|
| 4256 | |
|---|
| 4257 | ! x flux-divergence into tendency |
|---|
| 4258 | |
|---|
| 4259 | DO k=kts+1,ktf+1 |
|---|
| 4260 | DO i = i_start, i_end |
|---|
| 4261 | mrdx=msft(i,j)*rdx |
|---|
| 4262 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
|---|
| 4263 | ENDDO |
|---|
| 4264 | ENDDO |
|---|
| 4265 | |
|---|
| 4266 | ENDDO |
|---|
| 4267 | |
|---|
| 4268 | |
|---|
| 4269 | ELSE IF (horz_order == 5 ) THEN |
|---|
| 4270 | |
|---|
| 4271 | ! determine boundary mods for flux operators |
|---|
| 4272 | ! We degrade the flux operators from 3rd/4th order |
|---|
| 4273 | ! to second order one gridpoint in from the boundaries for |
|---|
| 4274 | ! all boundary conditions except periodic and symmetry - these |
|---|
| 4275 | ! conditions have boundary zone data fill for correct application |
|---|
| 4276 | ! of the higher order flux stencils |
|---|
| 4277 | |
|---|
| 4278 | degrade_xs = .true. |
|---|
| 4279 | degrade_xe = .true. |
|---|
| 4280 | degrade_ys = .true. |
|---|
| 4281 | degrade_ye = .true. |
|---|
| 4282 | |
|---|
| 4283 | IF( config_flags%periodic_x .or. & |
|---|
| 4284 | config_flags%symmetric_xs .or. & |
|---|
| 4285 | (its > ids+2) ) degrade_xs = .false. |
|---|
| 4286 | IF( config_flags%periodic_x .or. & |
|---|
| 4287 | config_flags%symmetric_xe .or. & |
|---|
| 4288 | (ite < ide-3) ) degrade_xe = .false. |
|---|
| 4289 | IF( config_flags%periodic_y .or. & |
|---|
| 4290 | config_flags%symmetric_ys .or. & |
|---|
| 4291 | (jts > jds+2) ) degrade_ys = .false. |
|---|
| 4292 | IF( config_flags%periodic_y .or. & |
|---|
| 4293 | config_flags%symmetric_ye .or. & |
|---|
| 4294 | (jte < jde-3) ) degrade_ye = .false. |
|---|
| 4295 | |
|---|
| 4296 | !--------------- y - advection first |
|---|
| 4297 | |
|---|
| 4298 | i_start = its |
|---|
| 4299 | i_end = MIN(ite,ide-1) |
|---|
| 4300 | j_start = jts |
|---|
| 4301 | j_end = MIN(jte,jde-1) |
|---|
| 4302 | |
|---|
| 4303 | ! higher order flux has a 5 or 7 point stencil, so compute |
|---|
| 4304 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 4305 | |
|---|
| 4306 | j_start_f = j_start |
|---|
| 4307 | j_end_f = j_end+1 |
|---|
| 4308 | |
|---|
| 4309 | IF(degrade_ys) then |
|---|
| 4310 | j_start = MAX(jts,jds+1) |
|---|
| 4311 | j_start_f = jds+3 |
|---|
| 4312 | ENDIF |
|---|
| 4313 | |
|---|
| 4314 | IF(degrade_ye) then |
|---|
| 4315 | j_end = MIN(jte,jde-2) |
|---|
| 4316 | j_end_f = jde-3 |
|---|
| 4317 | ENDIF |
|---|
| 4318 | |
|---|
| 4319 | ! compute fluxes, 5th or 6th order |
|---|
| 4320 | |
|---|
| 4321 | jp1 = 2 |
|---|
| 4322 | jp0 = 1 |
|---|
| 4323 | |
|---|
| 4324 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
|---|
| 4325 | |
|---|
| 4326 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN |
|---|
| 4327 | |
|---|
| 4328 | DO k=kts+1,ktf |
|---|
| 4329 | DO i = i_start, i_end |
|---|
| 4330 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
|---|
| 4331 | fqy( i, k, jp1 ) = vel*flux5( & |
|---|
| 4332 | w(i,k,j-3), w(i,k,j-2), w(i,k,j-1), & |
|---|
| 4333 | w(i,k,j ), w(i,k,j+1), w(i,k,j+2), vel ) |
|---|
| 4334 | ENDDO |
|---|
| 4335 | ENDDO |
|---|
| 4336 | |
|---|
| 4337 | k = ktf+1 |
|---|
| 4338 | DO i = i_start, i_end |
|---|
| 4339 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
|---|
| 4340 | fqy( i, k, jp1 ) = vel*flux5( & |
|---|
| 4341 | w(i,k,j-3), w(i,k,j-2), w(i,k,j-1), & |
|---|
| 4342 | w(i,k,j ), w(i,k,j+1), w(i,k,j+2), vel ) |
|---|
| 4343 | ENDDO |
|---|
| 4344 | |
|---|
| 4345 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
|---|
| 4346 | |
|---|
| 4347 | DO k=kts+1,ktf |
|---|
| 4348 | DO i = i_start, i_end |
|---|
| 4349 | fqy(i, k, jp1) = 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j))* & |
|---|
| 4350 | (w(i,k,j)+w(i,k,j-1)) |
|---|
| 4351 | ENDDO |
|---|
| 4352 | ENDDO |
|---|
| 4353 | |
|---|
| 4354 | k = ktf+1 |
|---|
| 4355 | DO i = i_start, i_end |
|---|
| 4356 | fqy(i, k, jp1) = 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j))* & |
|---|
| 4357 | (w(i,k,j)+w(i,k,j-1)) |
|---|
| 4358 | ENDDO |
|---|
| 4359 | |
|---|
| 4360 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
|---|
| 4361 | |
|---|
| 4362 | DO k=kts+1,ktf |
|---|
| 4363 | DO i = i_start, i_end |
|---|
| 4364 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
|---|
| 4365 | fqy( i, k, jp1 ) = vel*flux3( & |
|---|
| 4366 | w(i,k,j-2),w(i,k,j-1),w(i,k,j),w(i,k,j+1),vel ) |
|---|
| 4367 | ENDDO |
|---|
| 4368 | ENDDO |
|---|
| 4369 | |
|---|
| 4370 | k = ktf+1 |
|---|
| 4371 | DO i = i_start, i_end |
|---|
| 4372 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
|---|
| 4373 | fqy( i, k, jp1 ) = vel*flux3( & |
|---|
| 4374 | w(i,k,j-2),w(i,k,j-1),w(i,k,j),w(i,k,j+1),vel ) |
|---|
| 4375 | ENDDO |
|---|
| 4376 | |
|---|
| 4377 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
|---|
| 4378 | |
|---|
| 4379 | DO k=kts+1,ktf |
|---|
| 4380 | DO i = i_start, i_end |
|---|
| 4381 | fqy(i, k, jp1) = 0.5*(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j))* & |
|---|
| 4382 | (w(i,k,j)+w(i,k,j-1)) |
|---|
| 4383 | ENDDO |
|---|
| 4384 | ENDDO |
|---|
| 4385 | |
|---|
| 4386 | k = ktf+1 |
|---|
| 4387 | DO i = i_start, i_end |
|---|
| 4388 | fqy(i, k, jp1) = 0.5*((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j))* & |
|---|
| 4389 | (w(i,k,j)+w(i,k,j-1)) |
|---|
| 4390 | ENDDO |
|---|
| 4391 | |
|---|
| 4392 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
|---|
| 4393 | |
|---|
| 4394 | DO k=kts+1,ktf |
|---|
| 4395 | DO i = i_start, i_end |
|---|
| 4396 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
|---|
| 4397 | fqy( i, k, jp1 ) = vel*flux3( & |
|---|
| 4398 | w(i,k,j-2),w(i,k,j-1), & |
|---|
| 4399 | w(i,k,j),w(i,k,j+1),vel ) |
|---|
| 4400 | ENDDO |
|---|
| 4401 | ENDDO |
|---|
| 4402 | |
|---|
| 4403 | k = ktf+1 |
|---|
| 4404 | DO i = i_start, i_end |
|---|
| 4405 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
|---|
| 4406 | fqy( i, k, jp1 ) = vel*flux3( & |
|---|
| 4407 | w(i,k,j-2),w(i,k,j-1), & |
|---|
| 4408 | w(i,k,j),w(i,k,j+1),vel ) |
|---|
| 4409 | ENDDO |
|---|
| 4410 | |
|---|
| 4411 | ENDIF |
|---|
| 4412 | |
|---|
| 4413 | ! y flux-divergence into tendency |
|---|
| 4414 | |
|---|
| 4415 | IF(j > j_start) THEN |
|---|
| 4416 | |
|---|
| 4417 | DO k=kts+1,ktf+1 |
|---|
| 4418 | DO i = i_start, i_end |
|---|
| 4419 | mrdy=msft(i,j-1)*rdy |
|---|
| 4420 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
|---|
| 4421 | ENDDO |
|---|
| 4422 | ENDDO |
|---|
| 4423 | |
|---|
| 4424 | ENDIF |
|---|
| 4425 | |
|---|
| 4426 | jtmp = jp1 |
|---|
| 4427 | jp1 = jp0 |
|---|
| 4428 | jp0 = jtmp |
|---|
| 4429 | |
|---|
| 4430 | ENDDO j_loop_y_flux_5 |
|---|
| 4431 | |
|---|
| 4432 | ! next, x - flux divergence |
|---|
| 4433 | |
|---|
| 4434 | i_start = its |
|---|
| 4435 | i_end = MIN(ite,ide-1) |
|---|
| 4436 | |
|---|
| 4437 | j_start = jts |
|---|
| 4438 | j_end = MIN(jte,jde-1) |
|---|
| 4439 | |
|---|
| 4440 | ! higher order flux has a 5 or 7 point stencil, so compute |
|---|
| 4441 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 4442 | |
|---|
| 4443 | i_start_f = i_start |
|---|
| 4444 | i_end_f = i_end+1 |
|---|
| 4445 | |
|---|
| 4446 | IF(degrade_xs) then |
|---|
| 4447 | i_start = MAX(ids+1,its) |
|---|
| 4448 | i_start_f = i_start+2 |
|---|
| 4449 | ENDIF |
|---|
| 4450 | |
|---|
| 4451 | IF(degrade_xe) then |
|---|
| 4452 | i_end = MIN(ide-2,ite) |
|---|
| 4453 | i_end_f = ide-3 |
|---|
| 4454 | ENDIF |
|---|
| 4455 | |
|---|
| 4456 | ! compute fluxes |
|---|
| 4457 | |
|---|
| 4458 | DO j = j_start, j_end |
|---|
| 4459 | |
|---|
| 4460 | ! 5th or 6th order flux |
|---|
| 4461 | |
|---|
| 4462 | DO k=kts+1,ktf |
|---|
| 4463 | DO i = i_start_f, i_end_f |
|---|
| 4464 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
|---|
| 4465 | fqx( i,k ) = vel*flux5( w(i-3,k,j), w(i-2,k,j), & |
|---|
| 4466 | w(i-1,k,j), w(i ,k,j), & |
|---|
| 4467 | w(i+1,k,j), w(i+2,k,j), & |
|---|
| 4468 | vel ) |
|---|
| 4469 | ENDDO |
|---|
| 4470 | ENDDO |
|---|
| 4471 | |
|---|
| 4472 | k = ktf+1 |
|---|
| 4473 | DO i = i_start_f, i_end_f |
|---|
| 4474 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
|---|
| 4475 | fqx( i,k ) = vel*flux5( w(i-3,k,j), w(i-2,k,j), & |
|---|
| 4476 | w(i-1,k,j), w(i ,k,j), & |
|---|
| 4477 | w(i+1,k,j), w(i+2,k,j), & |
|---|
| 4478 | vel ) |
|---|
| 4479 | ENDDO |
|---|
| 4480 | |
|---|
| 4481 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
|---|
| 4482 | |
|---|
| 4483 | IF( degrade_xs ) THEN |
|---|
| 4484 | |
|---|
| 4485 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
|---|
| 4486 | i = ids+1 |
|---|
| 4487 | DO k=kts+1,ktf |
|---|
| 4488 | fqx(i,k) = 0.5*(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
|---|
| 4489 | *(w(i,k,j)+w(i-1,k,j)) |
|---|
| 4490 | ENDDO |
|---|
| 4491 | k = ktf+1 |
|---|
| 4492 | fqx(i,k) = 0.5*((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
|---|
| 4493 | *(w(i,k,j)+w(i-1,k,j)) |
|---|
| 4494 | ENDIF |
|---|
| 4495 | |
|---|
| 4496 | i = i_start+1 |
|---|
| 4497 | DO k=kts+1,ktf |
|---|
| 4498 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
|---|
| 4499 | fqx( i,k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
|---|
| 4500 | w(i ,k,j), w(i+1,k,j), & |
|---|
| 4501 | vel ) |
|---|
| 4502 | ENDDO |
|---|
| 4503 | k = ktf+1 |
|---|
| 4504 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
|---|
| 4505 | fqx( i,k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
|---|
| 4506 | w(i ,k,j), w(i+1,k,j), & |
|---|
| 4507 | vel ) |
|---|
| 4508 | |
|---|
| 4509 | ENDIF |
|---|
| 4510 | |
|---|
| 4511 | IF( degrade_xe ) THEN |
|---|
| 4512 | |
|---|
| 4513 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
|---|
| 4514 | i = ide-1 |
|---|
| 4515 | DO k=kts+1,ktf |
|---|
| 4516 | fqx(i,k) = 0.5*(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
|---|
| 4517 | *(w(i,k,j)+w(i-1,k,j)) |
|---|
| 4518 | ENDDO |
|---|
| 4519 | k = ktf+1 |
|---|
| 4520 | fqx(i,k) = 0.5*((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
|---|
| 4521 | *(w(i,k,j)+w(i-1,k,j)) |
|---|
| 4522 | ENDIF |
|---|
| 4523 | |
|---|
| 4524 | i = ide-2 |
|---|
| 4525 | DO k=kts+1,ktf |
|---|
| 4526 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
|---|
| 4527 | fqx( i,k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
|---|
| 4528 | w(i ,k,j), w(i+1,k,j), & |
|---|
| 4529 | vel ) |
|---|
| 4530 | ENDDO |
|---|
| 4531 | k = ktf+1 |
|---|
| 4532 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
|---|
| 4533 | fqx( i,k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
|---|
| 4534 | w(i ,k,j), w(i+1,k,j), & |
|---|
| 4535 | vel ) |
|---|
| 4536 | ENDIF |
|---|
| 4537 | |
|---|
| 4538 | ! x flux-divergence into tendency |
|---|
| 4539 | |
|---|
| 4540 | DO k=kts+1,ktf+1 |
|---|
| 4541 | DO i = i_start, i_end |
|---|
| 4542 | mrdx=msft(i,j)*rdx |
|---|
| 4543 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
|---|
| 4544 | ENDDO |
|---|
| 4545 | ENDDO |
|---|
| 4546 | |
|---|
| 4547 | ENDDO |
|---|
| 4548 | |
|---|
| 4549 | ELSE IF ( horz_order == 4 ) THEN |
|---|
| 4550 | |
|---|
| 4551 | degrade_xs = .true. |
|---|
| 4552 | degrade_xe = .true. |
|---|
| 4553 | degrade_ys = .true. |
|---|
| 4554 | degrade_ye = .true. |
|---|
| 4555 | |
|---|
| 4556 | IF( config_flags%periodic_x .or. & |
|---|
| 4557 | config_flags%symmetric_xs .or. & |
|---|
| 4558 | (its > ids+1) ) degrade_xs = .false. |
|---|
| 4559 | IF( config_flags%periodic_x .or. & |
|---|
| 4560 | config_flags%symmetric_xe .or. & |
|---|
| 4561 | (ite < ide-2) ) degrade_xe = .false. |
|---|
| 4562 | IF( config_flags%periodic_y .or. & |
|---|
| 4563 | config_flags%symmetric_ys .or. & |
|---|
| 4564 | (jts > jds+1) ) degrade_ys = .false. |
|---|
| 4565 | IF( config_flags%periodic_y .or. & |
|---|
| 4566 | config_flags%symmetric_ye .or. & |
|---|
| 4567 | (jte < jde-2) ) degrade_ye = .false. |
|---|
| 4568 | |
|---|
| 4569 | ! begin flux computations |
|---|
| 4570 | ! start with x flux divergence |
|---|
| 4571 | |
|---|
| 4572 | !--------------- |
|---|
| 4573 | |
|---|
| 4574 | ktf=MIN(kte,kde-1) |
|---|
| 4575 | |
|---|
| 4576 | i_start = its |
|---|
| 4577 | i_end = MIN(ite,ide-1) |
|---|
| 4578 | j_start = jts |
|---|
| 4579 | j_end = MIN(jte,jde-1) |
|---|
| 4580 | |
|---|
| 4581 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
|---|
| 4582 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 4583 | |
|---|
| 4584 | i_start_f = i_start |
|---|
| 4585 | i_end_f = i_end+1 |
|---|
| 4586 | |
|---|
| 4587 | IF(degrade_xs) then |
|---|
| 4588 | i_start = ids+1 |
|---|
| 4589 | i_start_f = i_start+1 |
|---|
| 4590 | ENDIF |
|---|
| 4591 | |
|---|
| 4592 | IF(degrade_xe) then |
|---|
| 4593 | i_end = ide-2 |
|---|
| 4594 | i_end_f = ide-2 |
|---|
| 4595 | ENDIF |
|---|
| 4596 | |
|---|
| 4597 | ! compute fluxes |
|---|
| 4598 | |
|---|
| 4599 | DO j = j_start, j_end |
|---|
| 4600 | |
|---|
| 4601 | DO k=kts+1,ktf |
|---|
| 4602 | DO i = i_start_f, i_end_f |
|---|
| 4603 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
|---|
| 4604 | fqx( i, k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
|---|
| 4605 | w(i ,k,j), w(i+1,k,j), & |
|---|
| 4606 | vel ) |
|---|
| 4607 | ENDDO |
|---|
| 4608 | ENDDO |
|---|
| 4609 | |
|---|
| 4610 | k = ktf+1 |
|---|
| 4611 | DO i = i_start_f, i_end_f |
|---|
| 4612 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
|---|
| 4613 | fqx( i, k ) = vel*flux4( w(i-2,k,j), w(i-1,k,j), & |
|---|
| 4614 | w(i ,k,j), w(i+1,k,j), & |
|---|
| 4615 | vel ) |
|---|
| 4616 | ENDDO |
|---|
| 4617 | ! second order flux close to boundaries (if not periodic or symmetric) |
|---|
| 4618 | |
|---|
| 4619 | IF( degrade_xs ) THEN |
|---|
| 4620 | DO k=kts+1,ktf |
|---|
| 4621 | fqx(i_start, k) = & |
|---|
| 4622 | 0.5*(fzm(k)*ru(i_start,k,j)+fzp(k)*ru(i_start,k-1,j)) & |
|---|
| 4623 | *(w(i_start,k,j)+w(i_start-1,k,j)) |
|---|
| 4624 | ENDDO |
|---|
| 4625 | k = ktf+1 |
|---|
| 4626 | fqx(i_start, k) = & |
|---|
| 4627 | 0.5*((2.-fzm(k-1))*ru(i_start,k-1,j)-fzp(k-1)*ru(i_start,k-2,j)) & |
|---|
| 4628 | *(w(i_start,k,j)+w(i_start-1,k,j)) |
|---|
| 4629 | ENDIF |
|---|
| 4630 | |
|---|
| 4631 | IF( degrade_xe ) THEN |
|---|
| 4632 | DO k=kts+1,ktf |
|---|
| 4633 | fqx(i_end+1, k) = & |
|---|
| 4634 | 0.5*(fzm(k)*ru(i_end+1,k,j)+fzp(k)*ru(i_end+1,k-1,j)) & |
|---|
| 4635 | *(w(i_end+1,k,j)+w(i_end,k,j)) |
|---|
| 4636 | ENDDO |
|---|
| 4637 | k = ktf+1 |
|---|
| 4638 | fqx(i_end+1, k) = & |
|---|
| 4639 | 0.5*((2.-fzm(k-1))*ru(i_end+1,k-1,j)-fzp(k-1)*ru(i_end+1,k-2,j)) & |
|---|
| 4640 | *(w(i_end+1,k,j)+w(i_end,k,j)) |
|---|
| 4641 | ENDIF |
|---|
| 4642 | |
|---|
| 4643 | ! x flux-divergence into tendency |
|---|
| 4644 | |
|---|
| 4645 | DO k=kts+1,ktf+1 |
|---|
| 4646 | DO i = i_start, i_end |
|---|
| 4647 | mrdx=msft(i,j)*rdx |
|---|
| 4648 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
|---|
| 4649 | ENDDO |
|---|
| 4650 | ENDDO |
|---|
| 4651 | |
|---|
| 4652 | ENDDO |
|---|
| 4653 | |
|---|
| 4654 | ! next -> y flux divergence calculation |
|---|
| 4655 | |
|---|
| 4656 | i_start = its |
|---|
| 4657 | i_end = MIN(ite,ide-1) |
|---|
| 4658 | j_start = jts |
|---|
| 4659 | j_end = MIN(jte,jde-1) |
|---|
| 4660 | |
|---|
| 4661 | |
|---|
| 4662 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
|---|
| 4663 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 4664 | |
|---|
| 4665 | j_start_f = j_start |
|---|
| 4666 | j_end_f = j_end+1 |
|---|
| 4667 | |
|---|
| 4668 | IF(degrade_ys) then |
|---|
| 4669 | j_start = jds+1 |
|---|
| 4670 | j_start_f = j_start+1 |
|---|
| 4671 | ENDIF |
|---|
| 4672 | |
|---|
| 4673 | IF(degrade_ye) then |
|---|
| 4674 | j_end = jde-2 |
|---|
| 4675 | j_end_f = jde-2 |
|---|
| 4676 | ENDIF |
|---|
| 4677 | |
|---|
| 4678 | jp1 = 2 |
|---|
| 4679 | jp0 = 1 |
|---|
| 4680 | |
|---|
| 4681 | DO j = j_start, j_end+1 |
|---|
| 4682 | |
|---|
| 4683 | IF ((j < j_start_f) .and. degrade_ys) THEN |
|---|
| 4684 | DO k = kts+1, ktf |
|---|
| 4685 | DO i = i_start, i_end |
|---|
| 4686 | fqy(i, k, jp1) = & |
|---|
| 4687 | 0.5*(fzm(k)*rv(i,k,j_start)+fzp(k)*rv(i,k-1,j_start)) & |
|---|
| 4688 | *(w(i,k,j_start)+w(i,k,j_start-1)) |
|---|
| 4689 | ENDDO |
|---|
| 4690 | ENDDO |
|---|
| 4691 | k = ktf+1 |
|---|
| 4692 | DO i = i_start, i_end |
|---|
| 4693 | fqy(i, k, jp1) = & |
|---|
| 4694 | 0.5*((2.-fzm(k-1))*rv(i,k-1,j_start)-fzp(k-1)*rv(i,k-2,j_start)) & |
|---|
| 4695 | *(w(i,k,j_start)+w(i,k,j_start-1)) |
|---|
| 4696 | ENDDO |
|---|
| 4697 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
|---|
| 4698 | DO k = kts+1, ktf |
|---|
| 4699 | DO i = i_start, i_end |
|---|
| 4700 | fqy(i, k, jp1) = & |
|---|
| 4701 | 0.5*(fzm(k)*rv(i,k,j_end+1)+fzp(k)*rv(i,k-1,j_end+1)) & |
|---|
| 4702 | *(w(i,k,j_end+1)+w(i,k,j_end)) |
|---|
| 4703 | ENDDO |
|---|
| 4704 | ENDDO |
|---|
| 4705 | k = ktf+1 |
|---|
| 4706 | DO i = i_start, i_end |
|---|
| 4707 | fqy(i, k, jp1) = & |
|---|
| 4708 | 0.5*((2.-fzm(k-1))*rv(i,k-1,j_end+1)-fzp(k-1)*rv(i,k-2,j_end+1)) & |
|---|
| 4709 | *(w(i,k,j_end+1)+w(i,k,j_end)) |
|---|
| 4710 | ENDDO |
|---|
| 4711 | ELSE |
|---|
| 4712 | ! 3rd or 4th order flux |
|---|
| 4713 | DO k = kts+1, ktf |
|---|
| 4714 | DO i = i_start, i_end |
|---|
| 4715 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
|---|
| 4716 | fqy( i, k, jp1 ) = vel*flux4( w(i,k,j-2), w(i,k,j-1), & |
|---|
| 4717 | w(i,k,j ), w(i,k,j+1), & |
|---|
| 4718 | vel ) |
|---|
| 4719 | ENDDO |
|---|
| 4720 | ENDDO |
|---|
| 4721 | k = ktf+1 |
|---|
| 4722 | DO i = i_start, i_end |
|---|
| 4723 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
|---|
| 4724 | fqy( i, k, jp1 ) = vel*flux4( w(i,k,j-2), w(i,k,j-1), & |
|---|
| 4725 | w(i,k,j ), w(i,k,j+1), & |
|---|
| 4726 | vel ) |
|---|
| 4727 | ENDDO |
|---|
| 4728 | END IF |
|---|
| 4729 | |
|---|
| 4730 | IF( j > j_start ) THEN |
|---|
| 4731 | ! y flux-divergence into tendency |
|---|
| 4732 | DO k = kts+1, ktf+1 |
|---|
| 4733 | DO i = i_start, i_end |
|---|
| 4734 | mrdy=msft(i,j-1)*rdy |
|---|
| 4735 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
|---|
| 4736 | ENDDO |
|---|
| 4737 | ENDDO |
|---|
| 4738 | END IF |
|---|
| 4739 | |
|---|
| 4740 | jtmp = jp1 |
|---|
| 4741 | jp1 = jp0 |
|---|
| 4742 | jp0 = jtmp |
|---|
| 4743 | |
|---|
| 4744 | ENDDO |
|---|
| 4745 | |
|---|
| 4746 | ELSE IF ( horz_order == 3 ) THEN |
|---|
| 4747 | |
|---|
| 4748 | degrade_xs = .true. |
|---|
| 4749 | degrade_xe = .true. |
|---|
| 4750 | degrade_ys = .true. |
|---|
| 4751 | degrade_ye = .true. |
|---|
| 4752 | |
|---|
| 4753 | IF( config_flags%periodic_x .or. & |
|---|
| 4754 | config_flags%symmetric_xs .or. & |
|---|
| 4755 | (its > ids+1) ) degrade_xs = .false. |
|---|
| 4756 | IF( config_flags%periodic_x .or. & |
|---|
| 4757 | config_flags%symmetric_xe .or. & |
|---|
| 4758 | (ite < ide-2) ) degrade_xe = .false. |
|---|
| 4759 | IF( config_flags%periodic_y .or. & |
|---|
| 4760 | config_flags%symmetric_ys .or. & |
|---|
| 4761 | (jts > jds+1) ) degrade_ys = .false. |
|---|
| 4762 | IF( config_flags%periodic_y .or. & |
|---|
| 4763 | config_flags%symmetric_ye .or. & |
|---|
| 4764 | (jte < jde-2) ) degrade_ye = .false. |
|---|
| 4765 | |
|---|
| 4766 | ! begin flux computations |
|---|
| 4767 | ! start with x flux divergence |
|---|
| 4768 | |
|---|
| 4769 | !--------------- |
|---|
| 4770 | |
|---|
| 4771 | ktf=MIN(kte,kde-1) |
|---|
| 4772 | |
|---|
| 4773 | i_start = its |
|---|
| 4774 | i_end = MIN(ite,ide-1) |
|---|
| 4775 | j_start = jts |
|---|
| 4776 | j_end = MIN(jte,jde-1) |
|---|
| 4777 | |
|---|
| 4778 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
|---|
| 4779 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 4780 | |
|---|
| 4781 | i_start_f = i_start |
|---|
| 4782 | i_end_f = i_end+1 |
|---|
| 4783 | |
|---|
| 4784 | IF(degrade_xs) then |
|---|
| 4785 | i_start = ids+1 |
|---|
| 4786 | i_start_f = i_start+1 |
|---|
| 4787 | ENDIF |
|---|
| 4788 | |
|---|
| 4789 | IF(degrade_xe) then |
|---|
| 4790 | i_end = ide-2 |
|---|
| 4791 | i_end_f = ide-2 |
|---|
| 4792 | ENDIF |
|---|
| 4793 | |
|---|
| 4794 | ! compute fluxes |
|---|
| 4795 | |
|---|
| 4796 | DO j = j_start, j_end |
|---|
| 4797 | |
|---|
| 4798 | DO k=kts+1,ktf |
|---|
| 4799 | DO i = i_start_f, i_end_f |
|---|
| 4800 | vel = fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j) |
|---|
| 4801 | fqx( i, k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
|---|
| 4802 | w(i ,k,j), w(i+1,k,j), & |
|---|
| 4803 | vel ) |
|---|
| 4804 | ENDDO |
|---|
| 4805 | ENDDO |
|---|
| 4806 | k = ktf+1 |
|---|
| 4807 | DO i = i_start_f, i_end_f |
|---|
| 4808 | vel = (2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j) |
|---|
| 4809 | fqx( i, k ) = vel*flux3( w(i-2,k,j), w(i-1,k,j), & |
|---|
| 4810 | w(i ,k,j), w(i+1,k,j), & |
|---|
| 4811 | vel ) |
|---|
| 4812 | ENDDO |
|---|
| 4813 | |
|---|
| 4814 | ! second order flux close to boundaries (if not periodic or symmetric) |
|---|
| 4815 | |
|---|
| 4816 | IF( degrade_xs ) THEN |
|---|
| 4817 | DO k=kts+1,ktf |
|---|
| 4818 | fqx(i_start, k) = & |
|---|
| 4819 | 0.5*(fzm(k)*ru(i_start,k,j)+fzp(k)*ru(i_start,k-1,j)) & |
|---|
| 4820 | *(w(i_start,k,j)+w(i_start-1,k,j)) |
|---|
| 4821 | ENDDO |
|---|
| 4822 | k = ktf+1 |
|---|
| 4823 | fqx(i_start, k) = & |
|---|
| 4824 | 0.5*((2.-fzm(k-1))*ru(i_start,k-1,j)-fzp(k-1)*ru(i_start,k-2,j)) & |
|---|
| 4825 | *(w(i_start,k,j)+w(i_start-1,k,j)) |
|---|
| 4826 | ENDIF |
|---|
| 4827 | |
|---|
| 4828 | IF( degrade_xe ) THEN |
|---|
| 4829 | DO k=kts+1,ktf |
|---|
| 4830 | fqx(i_end+1, k) = & |
|---|
| 4831 | 0.5*(fzm(k)*ru(i_end+1,k,j)+fzp(k)*ru(i_end+1,k-1,j)) & |
|---|
| 4832 | *(w(i_end+1,k,j)+w(i_end,k,j)) |
|---|
| 4833 | ENDDO |
|---|
| 4834 | k = ktf+1 |
|---|
| 4835 | fqx(i_end+1, k) = & |
|---|
| 4836 | 0.5*((2.-fzm(k-1))*ru(i_end+1,k-1,j)-fzp(k-1)*ru(i_end+1,k-2,j)) & |
|---|
| 4837 | *(w(i_end+1,k,j)+w(i_end,k,j)) |
|---|
| 4838 | ENDIF |
|---|
| 4839 | |
|---|
| 4840 | ! x flux-divergence into tendency |
|---|
| 4841 | |
|---|
| 4842 | DO k=kts+1,ktf+1 |
|---|
| 4843 | DO i = i_start, i_end |
|---|
| 4844 | mrdx=msft(i,j)*rdx |
|---|
| 4845 | tendency(i,k,j) = tendency(i,k,j) - mrdx*(fqx(i+1,k)-fqx(i,k)) |
|---|
| 4846 | ENDDO |
|---|
| 4847 | ENDDO |
|---|
| 4848 | |
|---|
| 4849 | ENDDO |
|---|
| 4850 | |
|---|
| 4851 | ! next -> y flux divergence calculation |
|---|
| 4852 | |
|---|
| 4853 | i_start = its |
|---|
| 4854 | i_end = MIN(ite,ide-1) |
|---|
| 4855 | j_start = jts |
|---|
| 4856 | j_end = MIN(jte,jde-1) |
|---|
| 4857 | |
|---|
| 4858 | |
|---|
| 4859 | ! 3rd or 4th order flux has a 5 point stencil, so compute |
|---|
| 4860 | ! bounds so we can switch to second order flux close to the boundary |
|---|
| 4861 | |
|---|
| 4862 | j_start_f = j_start |
|---|
| 4863 | j_end_f = j_end+1 |
|---|
| 4864 | |
|---|
| 4865 | IF(degrade_ys) then |
|---|
| 4866 | j_start = jds+1 |
|---|
| 4867 | j_start_f = j_start+1 |
|---|
| 4868 | ENDIF |
|---|
| 4869 | |
|---|
| 4870 | IF(degrade_ye) then |
|---|
| 4871 | j_end = jde-2 |
|---|
| 4872 | j_end_f = jde-2 |
|---|
| 4873 | ENDIF |
|---|
| 4874 | |
|---|
| 4875 | jp1 = 2 |
|---|
| 4876 | jp0 = 1 |
|---|
| 4877 | |
|---|
| 4878 | DO j = j_start, j_end+1 |
|---|
| 4879 | |
|---|
| 4880 | IF ((j < j_start_f) .and. degrade_ys) THEN |
|---|
| 4881 | DO k = kts+1, ktf |
|---|
| 4882 | DO i = i_start, i_end |
|---|
| 4883 | fqy(i, k, jp1) = & |
|---|
| 4884 | 0.5*(fzm(k)*rv(i,k,j_start)+fzp(k)*rv(i,k-1,j_start)) & |
|---|
| 4885 | *(w(i,k,j_start)+w(i,k,j_start-1)) |
|---|
| 4886 | ENDDO |
|---|
| 4887 | ENDDO |
|---|
| 4888 | k = ktf+1 |
|---|
| 4889 | DO i = i_start, i_end |
|---|
| 4890 | fqy(i, k, jp1) = & |
|---|
| 4891 | 0.5*((2.-fzm(k-1))*rv(i,k-1,j_start)-fzp(k-1)*rv(i,k-2,j_start)) & |
|---|
| 4892 | *(w(i,k,j_start)+w(i,k,j_start-1)) |
|---|
| 4893 | ENDDO |
|---|
| 4894 | ELSE IF ((j > j_end_f) .and. degrade_ye) THEN |
|---|
| 4895 | DO k = kts+1, ktf |
|---|
| 4896 | DO i = i_start, i_end |
|---|
| 4897 | fqy(i, k, jp1) = & |
|---|
| 4898 | 0.5*(fzm(k)*rv(i,k,j_end+1)+fzp(k)*rv(i,k-1,j_end+1)) & |
|---|
| 4899 | *(w(i,k,j_end+1)+w(i,k,j_end)) |
|---|
| 4900 | ENDDO |
|---|
| 4901 | ENDDO |
|---|
| 4902 | k = ktf+1 |
|---|
| 4903 | DO i = i_start, i_end |
|---|
| 4904 | fqy(i, k, jp1) = & |
|---|
| 4905 | 0.5*((2.-fzm(k-1))*rv(i,k-1,j_end+1)-fzp(k-1)*rv(i,k-2,j_end+1)) & |
|---|
| 4906 | *(w(i,k,j_end+1)+w(i,k,j_end)) |
|---|
| 4907 | ENDDO |
|---|
| 4908 | ELSE |
|---|
| 4909 | ! 3rd or 4th order flux |
|---|
| 4910 | DO k = kts+1, ktf |
|---|
| 4911 | DO i = i_start, i_end |
|---|
| 4912 | vel = fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j) |
|---|
| 4913 | fqy( i, k, jp1 ) = vel*flux3( w(i,k,j-2), w(i,k,j-1), & |
|---|
| 4914 | w(i,k,j ), w(i,k,j+1), & |
|---|
| 4915 | vel ) |
|---|
| 4916 | ENDDO |
|---|
| 4917 | ENDDO |
|---|
| 4918 | k = ktf+1 |
|---|
| 4919 | DO i = i_start, i_end |
|---|
| 4920 | vel = (2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j) |
|---|
| 4921 | fqy( i, k, jp1 ) = vel*flux3( w(i,k,j-2), w(i,k,j-1), & |
|---|
| 4922 | w(i,k,j ), w(i,k,j+1), & |
|---|
| 4923 | vel ) |
|---|
| 4924 | ENDDO |
|---|
| 4925 | END IF |
|---|
| 4926 | |
|---|
| 4927 | IF( j > j_start ) THEN |
|---|
| 4928 | ! y flux-divergence into tendency |
|---|
| 4929 | DO k = kts+1, ktf+1 |
|---|
| 4930 | DO i = i_start, i_end |
|---|
| 4931 | mrdy=msft(i,j-1)*rdy |
|---|
| 4932 | tendency(i,k,j-1) = tendency(i,k,j-1) - mrdy*(fqy(i,k,jp1)-fqy(i,k,jp0)) |
|---|
| 4933 | ENDDO |
|---|
| 4934 | ENDDO |
|---|
| 4935 | END IF |
|---|
| 4936 | |
|---|
| 4937 | jtmp = jp1 |
|---|
| 4938 | jp1 = jp0 |
|---|
| 4939 | jp0 = jtmp |
|---|
| 4940 | |
|---|
| 4941 | ENDDO |
|---|
| 4942 | |
|---|
| 4943 | ELSE IF (horz_order == 2 ) THEN |
|---|
| 4944 | |
|---|
| 4945 | i_start = its |
|---|
| 4946 | i_end = MIN(ite,ide-1) |
|---|
| 4947 | j_start = jts |
|---|
| 4948 | j_end = MIN(jte,jde-1) |
|---|
| 4949 | |
|---|
| 4950 | IF ( .NOT. config_flags%periodic_x ) THEN |
|---|
| 4951 | IF ( config_flags%open_xs .or. specified ) i_start = MAX(ids+1,its) |
|---|
| 4952 | IF ( config_flags%open_xe .or. specified ) i_end = MIN(ide-2,ite) |
|---|
| 4953 | ENDIF |
|---|
| 4954 | |
|---|
| 4955 | DO j = j_start, j_end |
|---|
| 4956 | DO k=kts+1,ktf |
|---|
| 4957 | DO i = i_start, i_end |
|---|
| 4958 | |
|---|
| 4959 | mrdx=msft(i,j)*rdx |
|---|
| 4960 | |
|---|
| 4961 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.5 & |
|---|
| 4962 | *((fzm(k)*ru(i+1,k,j)+fzp(k)*ru(i+1,k-1,j)) & |
|---|
| 4963 | *(w(i+1,k,j)+w(i,k,j)) & |
|---|
| 4964 | -(fzm(k)*ru(i,k,j)+fzp(k)*ru(i,k-1,j)) & |
|---|
| 4965 | *(w(i,k,j)+w(i-1,k,j))) |
|---|
| 4966 | |
|---|
| 4967 | ENDDO |
|---|
| 4968 | ENDDO |
|---|
| 4969 | |
|---|
| 4970 | k = ktf+1 |
|---|
| 4971 | DO i = i_start, i_end |
|---|
| 4972 | |
|---|
| 4973 | mrdx=msft(i,j)*rdx |
|---|
| 4974 | |
|---|
| 4975 | tendency(i,k,j)=tendency(i,k,j)-mrdx*0.5 & |
|---|
| 4976 | *(((2.-fzm(k-1))*ru(i+1,k-1,j)-fzp(k-1)*ru(i+1,k-2,j)) & |
|---|
| 4977 | *(w(i+1,k,j)+w(i,k,j)) & |
|---|
| 4978 | -((2.-fzm(k-1))*ru(i,k-1,j)-fzp(k-1)*ru(i,k-2,j)) & |
|---|
| 4979 | *(w(i,k,j)+w(i-1,k,j))) |
|---|
| 4980 | |
|---|
| 4981 | ENDDO |
|---|
| 4982 | |
|---|
| 4983 | ENDDO |
|---|
| 4984 | |
|---|
| 4985 | i_start = its |
|---|
| 4986 | i_end = MIN(ite,ide-1) |
|---|
| 4987 | IF ( config_flags%open_ys .or. specified ) j_start = MAX(jds+1,jts) |
|---|
| 4988 | IF ( config_flags%open_ye .or. specified ) j_end = MIN(jde-2,jte) |
|---|
| 4989 | |
|---|
| 4990 | DO j = j_start, j_end |
|---|
| 4991 | DO k=kts+1,ktf |
|---|
| 4992 | DO i = i_start, i_end |
|---|
| 4993 | |
|---|
| 4994 | mrdy=msft(i,j)*rdy |
|---|
| 4995 | |
|---|
| 4996 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.5 & |
|---|
| 4997 | *((fzm(k)*rv(i,k,j+1)+fzp(k)*rv(i,k-1,j+1))* & |
|---|
| 4998 | (w(i,k,j+1)+w(i,k,j)) & |
|---|
| 4999 | -(fzm(k)*rv(i,k,j)+fzp(k)*rv(i,k-1,j)) & |
|---|
| 5000 | *(w(i,k,j)+w(i,k,j-1))) |
|---|
| 5001 | |
|---|
| 5002 | ENDDO |
|---|
| 5003 | ENDDO |
|---|
| 5004 | |
|---|
| 5005 | k = ktf+1 |
|---|
| 5006 | DO i = i_start, i_end |
|---|
| 5007 | |
|---|
| 5008 | mrdy=msft(i,j)*rdy |
|---|
| 5009 | |
|---|
| 5010 | tendency(i,k,j)=tendency(i,k,j) -mrdy*0.5 & |
|---|
| 5011 | *(((2.-fzm(k-1))*rv(i,k-1,j+1)-fzp(k-1)*rv(i,k-2,j+1))* & |
|---|
| 5012 | (w(i,k,j+1)+w(i,k,j)) & |
|---|
| 5013 | -((2.-fzm(k-1))*rv(i,k-1,j)-fzp(k-1)*rv(i,k-2,j)) & |
|---|
| 5014 | *(w(i,k,j)+w(i,k,j-1))) |
|---|
| 5015 | |
|---|
| 5016 | ENDDO |
|---|
| 5017 | |
|---|
| 5018 | ENDDO |
|---|
| 5019 | |
|---|
| 5020 | ELSE |
|---|
| 5021 | |
|---|
| 5022 | WRITE ( wrf_err_message ,*) ' advect_w_6a, h_order not known ',horz_order |
|---|
| 5023 | CALL wrf_error_fatal ( wrf_err_message ) |
|---|
| 5024 | |
|---|
| 5025 | ENDIF horizontal_order_test |
|---|
| 5026 | |
|---|
| 5027 | |
|---|
| 5028 | ! pick up the the horizontal radiation boundary conditions. |
|---|
| 5029 | ! (these are the computations that don't require 'cb'. |
|---|
| 5030 | ! first, set to index ranges |
|---|
| 5031 | |
|---|
| 5032 | |
|---|
| 5033 | i_start = its |
|---|
| 5034 | i_end = MIN(ite,ide-1) |
|---|
| 5035 | j_start = jts |
|---|
| 5036 | j_end = MIN(jte,jde-1) |
|---|
| 5037 | |
|---|
| 5038 | IF( (config_flags%open_xs) .and. (its == ids)) THEN |
|---|
| 5039 | |
|---|
| 5040 | DO j = j_start, j_end |
|---|
| 5041 | DO k = kts+1, ktf |
|---|
| 5042 | |
|---|
| 5043 | uw = 0.5*(fzm(k)*(ru(its,k ,j)+ru(its+1,k ,j)) + & |
|---|
| 5044 | fzp(k)*(ru(its,k-1,j)+ru(its+1,k-1,j)) ) |
|---|
| 5045 | ub = MIN( uw, 0. ) |
|---|
| 5046 | |
|---|
| 5047 | tendency(its,k,j) = tendency(its,k,j) & |
|---|
| 5048 | - rdx*( & |
|---|
| 5049 | ub*(w_old(its+1,k,j) - w_old(its,k,j)) + & |
|---|
| 5050 | w(its,k,j)*( & |
|---|
| 5051 | fzm(k)*(ru(its+1,k ,j)-ru(its,k ,j))+ & |
|---|
| 5052 | fzp(k)*(ru(its+1,k-1,j)-ru(its,k-1,j))) & |
|---|
| 5053 | ) |
|---|
| 5054 | ENDDO |
|---|
| 5055 | ENDDO |
|---|
| 5056 | |
|---|
| 5057 | k = ktf+1 |
|---|
| 5058 | DO j = j_start, j_end |
|---|
| 5059 | |
|---|
| 5060 | uw = 0.5*( (2.-fzm(k-1))*(ru(its,k-1,j)+ru(its+1,k-1,j)) & |
|---|
| 5061 | -fzp(k-1)*(ru(its,k-2,j)+ru(its+1,k-2,j)) ) |
|---|
| 5062 | ub = MIN( uw, 0. ) |
|---|
| 5063 | |
|---|
| 5064 | tendency(its,k,j) = tendency(its,k,j) & |
|---|
| 5065 | - rdx*( & |
|---|
| 5066 | ub*(w_old(its+1,k,j) - w_old(its,k,j)) + & |
|---|
| 5067 | w(its,k,j)*( & |
|---|
| 5068 | (2.-fzm(k-1))*(ru(its+1,k-1,j)-ru(its,k-1,j))- & |
|---|
| 5069 | fzp(k-1)*(ru(its+1,k-2,j)-ru(its,k-2,j))) & |
|---|
| 5070 | ) |
|---|
| 5071 | ENDDO |
|---|
| 5072 | |
|---|
| 5073 | ENDIF |
|---|
| 5074 | |
|---|
| 5075 | IF( (config_flags%open_xe) .and. (ite == ide)) THEN |
|---|
| 5076 | |
|---|
| 5077 | DO j = j_start, j_end |
|---|
| 5078 | DO k = kts+1, ktf |
|---|
| 5079 | |
|---|
| 5080 | uw = 0.5*(fzm(k)*(ru(ite-1,k ,j)+ru(ite,k ,j)) + & |
|---|
| 5081 | fzp(k)*(ru(ite-1,k-1,j)+ru(ite,k-1,j)) ) |
|---|
| 5082 | ub = MAX( uw, 0. ) |
|---|
| 5083 | |
|---|
| 5084 | tendency(i_end,k,j) = tendency(i_end,k,j) & |
|---|
| 5085 | - rdx*( & |
|---|
| 5086 | ub*(w_old(i_end,k,j) - w_old(i_end-1,k,j)) + & |
|---|
| 5087 | w(i_end,k,j)*( & |
|---|
| 5088 | fzm(k)*(ru(ite,k ,j)-ru(ite-1,k ,j)) + & |
|---|
| 5089 | fzp(k)*(ru(ite,k-1,j)-ru(ite-1,k-1,j))) & |
|---|
| 5090 | ) |
|---|
| 5091 | ENDDO |
|---|
| 5092 | ENDDO |
|---|
| 5093 | |
|---|
| 5094 | k = ktf+1 |
|---|
| 5095 | DO j = j_start, j_end |
|---|
| 5096 | |
|---|
| 5097 | uw = 0.5*( (2.-fzm(k-1))*(ru(ite-1,k-1,j)+ru(ite,k-1,j)) & |
|---|
| 5098 | -fzp(k-1)*(ru(ite-1,k-2,j)+ru(ite,k-2,j)) ) |
|---|
| 5099 | ub = MAX( uw, 0. ) |
|---|
| 5100 | |
|---|
| 5101 | tendency(i_end,k,j) = tendency(i_end,k,j) & |
|---|
| 5102 | - rdx*( & |
|---|
| 5103 | ub*(w_old(i_end,k,j) - w_old(i_end-1,k,j)) + & |
|---|
| 5104 | w(i_end,k,j)*( & |
|---|
| 5105 | (2.-fzm(k-1))*(ru(ite,k-1,j)-ru(ite-1,k-1,j)) - & |
|---|
| 5106 | fzp(k-1)*(ru(ite,k-2,j)-ru(ite-1,k-2,j))) & |
|---|
| 5107 | ) |
|---|
| 5108 | ENDDO |
|---|
| 5109 | |
|---|
| 5110 | ENDIF |
|---|
| 5111 | |
|---|
| 5112 | |
|---|
| 5113 | IF( (config_flags%open_ys) .and. (jts == jds)) THEN |
|---|
| 5114 | |
|---|
| 5115 | DO i = i_start, i_end |
|---|
| 5116 | DO k = kts+1, ktf |
|---|
| 5117 | |
|---|
| 5118 | vw = 0.5*( fzm(k)*(rv(i,k ,jts)+rv(i,k ,jts+1)) + & |
|---|
| 5119 | fzp(k)*(rv(i,k-1,jts)+rv(i,k-1,jts+1)) ) |
|---|
| 5120 | vb = MIN( vw, 0. ) |
|---|
| 5121 | |
|---|
| 5122 | tendency(i,k,jts) = tendency(i,k,jts) & |
|---|
| 5123 | - rdy*( & |
|---|
| 5124 | vb*(w_old(i,k,jts+1) - w_old(i,k,jts)) + & |
|---|
| 5125 | w(i,k,jts)*( & |
|---|
| 5126 | fzm(k)*(rv(i,k ,jts+1)-rv(i,k ,jts))+ & |
|---|
| 5127 | fzp(k)*(rv(i,k-1,jts+1)-rv(i,k-1,jts))) & |
|---|
| 5128 | ) |
|---|
| 5129 | ENDDO |
|---|
| 5130 | ENDDO |
|---|
| 5131 | |
|---|
| 5132 | k = ktf+1 |
|---|
| 5133 | DO i = i_start, i_end |
|---|
| 5134 | vw = 0.5*( (2.-fzm(k-1))*(rv(i,k-1,jts)+rv(i,k-1,jts+1)) & |
|---|
| 5135 | -fzp(k-1)*(rv(i,k-2,jts)+rv(i,k-2,jts+1)) ) |
|---|
| 5136 | vb = MIN( vw, 0. ) |
|---|
| 5137 | |
|---|
| 5138 | tendency(i,k,jts) = tendency(i,k,jts) & |
|---|
| 5139 | - rdy*( & |
|---|
| 5140 | vb*(w_old(i,k,jts+1) - w_old(i,k,jts)) + & |
|---|
| 5141 | w(i,k,jts)*( & |
|---|
| 5142 | (2.-fzm(k-1))*(rv(i,k-1,jts+1)-rv(i,k-1,jts))- & |
|---|
| 5143 | fzp(k-1)*(rv(i,k-2,jts+1)-rv(i,k-2,jts))) & |
|---|
| 5144 | ) |
|---|
| 5145 | ENDDO |
|---|
| 5146 | |
|---|
| 5147 | ENDIF |
|---|
| 5148 | |
|---|
| 5149 | IF( (config_flags%open_ye) .and. (jte == jde) ) THEN |
|---|
| 5150 | |
|---|
| 5151 | DO i = i_start, i_end |
|---|
| 5152 | DO k = kts+1, ktf |
|---|
| 5153 | |
|---|
| 5154 | vw = 0.5*( fzm(k)*(rv(i,k ,jte-1)+rv(i,k ,jte)) + & |
|---|
| 5155 | fzp(k)*(rv(i,k-1,jte-1)+rv(i,k-1,jte)) ) |
|---|
| 5156 | vb = MAX( vw, 0. ) |
|---|
| 5157 | |
|---|
| 5158 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
|---|
| 5159 | - rdy*( & |
|---|
| 5160 | vb*(w_old(i,k,j_end) - w_old(i,k,j_end-1)) + & |
|---|
| 5161 | w(i,k,j_end)*( & |
|---|
| 5162 | fzm(k)*(rv(i,k ,jte)-rv(i,k ,jte-1))+ & |
|---|
| 5163 | fzp(k)*(rv(i,k-1,jte)-rv(i,k-1,jte-1))) & |
|---|
| 5164 | ) |
|---|
| 5165 | ENDDO |
|---|
| 5166 | ENDDO |
|---|
| 5167 | |
|---|
| 5168 | k = ktf+1 |
|---|
| 5169 | DO i = i_start, i_end |
|---|
| 5170 | |
|---|
| 5171 | vw = 0.5*( (2.-fzm(k-1))*(rv(i,k-1,jte-1)+rv(i,k-1,jte)) & |
|---|
| 5172 | -fzp(k-1)*(rv(i,k-2,jte-1)+rv(i,k-2,jte)) ) |
|---|
| 5173 | vb = MAX( vw, 0. ) |
|---|
| 5174 | |
|---|
| 5175 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
|---|
| 5176 | - rdy*( & |
|---|
| 5177 | vb*(w_old(i,k,j_end) - w_old(i,k,j_end-1)) + & |
|---|
| 5178 | w(i,k,j_end)*( & |
|---|
| 5179 | (2.-fzm(k-1))*(rv(i,k-1,jte)-rv(i,k-1,jte-1))- & |
|---|
| 5180 | fzp(k-1)*(rv(i,k-2,jte)-rv(i,k-2,jte-1))) & |
|---|
| 5181 | ) |
|---|
| 5182 | ENDDO |
|---|
| 5183 | |
|---|
| 5184 | ENDIF |
|---|
| 5185 | |
|---|
| 5186 | !-------------------- vertical advection |
|---|
| 5187 | |
|---|
| 5188 | i_start = its |
|---|
| 5189 | i_end = MIN(ite,ide-1) |
|---|
| 5190 | j_start = jts |
|---|
| 5191 | j_end = MIN(jte,jde-1) |
|---|
| 5192 | |
|---|
| 5193 | DO i = i_start, i_end |
|---|
| 5194 | vflux(i,kts)=0. |
|---|
| 5195 | vflux(i,kte)=0. |
|---|
| 5196 | ENDDO |
|---|
| 5197 | |
|---|
| 5198 | vert_order_test : IF (vert_order == 6) THEN |
|---|
| 5199 | |
|---|
| 5200 | DO j = j_start, j_end |
|---|
| 5201 | |
|---|
| 5202 | DO k=kts+3,ktf-1 |
|---|
| 5203 | DO i = i_start, i_end |
|---|
| 5204 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
|---|
| 5205 | vflux(i,k) = vel*flux6( & |
|---|
| 5206 | w(i,k-3,j), w(i,k-2,j), w(i,k-1,j), & |
|---|
| 5207 | w(i,k ,j), w(i,k+1,j), w(i,k+2,j), -vel ) |
|---|
| 5208 | ENDDO |
|---|
| 5209 | ENDDO |
|---|
| 5210 | |
|---|
| 5211 | DO i = i_start, i_end |
|---|
| 5212 | |
|---|
| 5213 | k=kts+1 |
|---|
| 5214 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
|---|
| 5215 | |
|---|
| 5216 | k = kts+2 |
|---|
| 5217 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
|---|
| 5218 | vflux(i,k) = vel*flux4( & |
|---|
| 5219 | w(i,k-2,j), w(i,k-1,j), & |
|---|
| 5220 | w(i,k ,j), w(i,k+1,j), -vel ) |
|---|
| 5221 | |
|---|
| 5222 | k = ktf |
|---|
| 5223 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
|---|
| 5224 | vflux(i,k) = vel*flux4( & |
|---|
| 5225 | w(i,k-2,j), w(i,k-1,j), & |
|---|
| 5226 | w(i,k ,j), w(i,k+1,j), -vel ) |
|---|
| 5227 | |
|---|
| 5228 | k=ktf+1 |
|---|
| 5229 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
|---|
| 5230 | |
|---|
| 5231 | ENDDO |
|---|
| 5232 | |
|---|
| 5233 | DO k=kts+1,ktf |
|---|
| 5234 | DO i = i_start, i_end |
|---|
| 5235 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 5236 | ENDDO |
|---|
| 5237 | ENDDO |
|---|
| 5238 | |
|---|
| 5239 | ! pick up flux contribution for w at the lid. wcs, 13 march 2004 |
|---|
| 5240 | k = ktf+1 |
|---|
| 5241 | DO i = i_start, i_end |
|---|
| 5242 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
|---|
| 5243 | ENDDO |
|---|
| 5244 | |
|---|
| 5245 | ENDDO |
|---|
| 5246 | |
|---|
| 5247 | ELSE IF (vert_order == 5) THEN |
|---|
| 5248 | |
|---|
| 5249 | DO j = j_start, j_end |
|---|
| 5250 | |
|---|
| 5251 | DO k=kts+3,ktf-1 |
|---|
| 5252 | DO i = i_start, i_end |
|---|
| 5253 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
|---|
| 5254 | vflux(i,k) = vel*flux5( & |
|---|
| 5255 | w(i,k-3,j), w(i,k-2,j), w(i,k-1,j), & |
|---|
| 5256 | w(i,k ,j), w(i,k+1,j), w(i,k+2,j), -vel ) |
|---|
| 5257 | ENDDO |
|---|
| 5258 | ENDDO |
|---|
| 5259 | |
|---|
| 5260 | DO i = i_start, i_end |
|---|
| 5261 | |
|---|
| 5262 | k=kts+1 |
|---|
| 5263 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
|---|
| 5264 | |
|---|
| 5265 | k = kts+2 |
|---|
| 5266 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
|---|
| 5267 | vflux(i,k) = vel*flux3( & |
|---|
| 5268 | w(i,k-2,j), w(i,k-1,j), & |
|---|
| 5269 | w(i,k ,j), w(i,k+1,j), -vel ) |
|---|
| 5270 | k = ktf |
|---|
| 5271 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
|---|
| 5272 | vflux(i,k) = vel*flux3( & |
|---|
| 5273 | w(i,k-2,j), w(i,k-1,j), & |
|---|
| 5274 | w(i,k ,j), w(i,k+1,j), -vel ) |
|---|
| 5275 | |
|---|
| 5276 | k=ktf+1 |
|---|
| 5277 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
|---|
| 5278 | |
|---|
| 5279 | ENDDO |
|---|
| 5280 | |
|---|
| 5281 | DO k=kts+1,ktf |
|---|
| 5282 | DO i = i_start, i_end |
|---|
| 5283 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 5284 | ENDDO |
|---|
| 5285 | ENDDO |
|---|
| 5286 | |
|---|
| 5287 | ! pick up flux contribution for w at the lid, wcs. 13 march 2004 |
|---|
| 5288 | k = ktf+1 |
|---|
| 5289 | DO i = i_start, i_end |
|---|
| 5290 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
|---|
| 5291 | ENDDO |
|---|
| 5292 | |
|---|
| 5293 | ENDDO |
|---|
| 5294 | |
|---|
| 5295 | ELSE IF (vert_order == 4) THEN |
|---|
| 5296 | |
|---|
| 5297 | DO j = j_start, j_end |
|---|
| 5298 | |
|---|
| 5299 | DO k=kts+2,ktf |
|---|
| 5300 | DO i = i_start, i_end |
|---|
| 5301 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
|---|
| 5302 | vflux(i,k) = vel*flux4( & |
|---|
| 5303 | w(i,k-2,j), w(i,k-1,j), & |
|---|
| 5304 | w(i,k ,j), w(i,k+1,j), -vel ) |
|---|
| 5305 | ENDDO |
|---|
| 5306 | ENDDO |
|---|
| 5307 | |
|---|
| 5308 | DO i = i_start, i_end |
|---|
| 5309 | |
|---|
| 5310 | k=kts+1 |
|---|
| 5311 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
|---|
| 5312 | k=ktf+1 |
|---|
| 5313 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
|---|
| 5314 | |
|---|
| 5315 | ENDDO |
|---|
| 5316 | |
|---|
| 5317 | DO k=kts+1,ktf |
|---|
| 5318 | DO i = i_start, i_end |
|---|
| 5319 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 5320 | ENDDO |
|---|
| 5321 | ENDDO |
|---|
| 5322 | |
|---|
| 5323 | ! pick up flux contribution for w at the lid, wcs. 13 march 2004 |
|---|
| 5324 | k = ktf+1 |
|---|
| 5325 | DO i = i_start, i_end |
|---|
| 5326 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
|---|
| 5327 | ENDDO |
|---|
| 5328 | |
|---|
| 5329 | ENDDO |
|---|
| 5330 | |
|---|
| 5331 | ELSE IF (vert_order == 3) THEN |
|---|
| 5332 | |
|---|
| 5333 | DO j = j_start, j_end |
|---|
| 5334 | |
|---|
| 5335 | DO k=kts+2,ktf |
|---|
| 5336 | DO i = i_start, i_end |
|---|
| 5337 | vel=0.5*(rom(i,k,j)+rom(i,k-1,j)) |
|---|
| 5338 | vflux(i,k) = vel*flux3( & |
|---|
| 5339 | w(i,k-2,j), w(i,k-1,j), & |
|---|
| 5340 | w(i,k ,j), w(i,k+1,j), -vel ) |
|---|
| 5341 | ENDDO |
|---|
| 5342 | ENDDO |
|---|
| 5343 | |
|---|
| 5344 | DO i = i_start, i_end |
|---|
| 5345 | |
|---|
| 5346 | k=kts+1 |
|---|
| 5347 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
|---|
| 5348 | k=ktf+1 |
|---|
| 5349 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
|---|
| 5350 | |
|---|
| 5351 | ENDDO |
|---|
| 5352 | |
|---|
| 5353 | DO k=kts+1,ktf |
|---|
| 5354 | DO i = i_start, i_end |
|---|
| 5355 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 5356 | ENDDO |
|---|
| 5357 | ENDDO |
|---|
| 5358 | |
|---|
| 5359 | ! pick up flux contribution for w at the lid, wcs. 13 march 2004 |
|---|
| 5360 | k = ktf+1 |
|---|
| 5361 | DO i = i_start, i_end |
|---|
| 5362 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
|---|
| 5363 | ENDDO |
|---|
| 5364 | |
|---|
| 5365 | ENDDO |
|---|
| 5366 | |
|---|
| 5367 | ELSE IF (vert_order == 2) THEN |
|---|
| 5368 | |
|---|
| 5369 | DO j = j_start, j_end |
|---|
| 5370 | DO k=kts+1,ktf+1 |
|---|
| 5371 | DO i = i_start, i_end |
|---|
| 5372 | |
|---|
| 5373 | vflux(i,k)=0.25*(rom(i,k,j)+rom(i,k-1,j))*(w(i,k,j)+w(i,k-1,j)) |
|---|
| 5374 | ENDDO |
|---|
| 5375 | ENDDO |
|---|
| 5376 | DO k=kts+1,ktf |
|---|
| 5377 | DO i = i_start, i_end |
|---|
| 5378 | tendency(i,k,j)=tendency(i,k,j)-rdzu(k)*(vflux(i,k+1)-vflux(i,k)) |
|---|
| 5379 | |
|---|
| 5380 | ENDDO |
|---|
| 5381 | ENDDO |
|---|
| 5382 | |
|---|
| 5383 | ! pick up flux contribution for w at the lid, wcs. 13 march 2004 |
|---|
| 5384 | k = ktf+1 |
|---|
| 5385 | DO i = i_start, i_end |
|---|
| 5386 | tendency(i,k,j)=tendency(i,k,j)+2.*rdzu(k-1)*(vflux(i,k)) |
|---|
| 5387 | ENDDO |
|---|
| 5388 | |
|---|
| 5389 | ENDDO |
|---|
| 5390 | |
|---|
| 5391 | ELSE |
|---|
| 5392 | |
|---|
| 5393 | WRITE (wrf_err_message ,*) ' advect_w, v_order not known ',vert_order |
|---|
| 5394 | CALL wrf_error_fatal ( wrf_err_message ) |
|---|
| 5395 | |
|---|
| 5396 | ENDIF vert_order_test |
|---|
| 5397 | |
|---|
| 5398 | END SUBROUTINE advect_w |
|---|
| 5399 | |
|---|
| 5400 | !---------------------------------------------------------------- |
|---|
| 5401 | |
|---|
| 5402 | SUBROUTINE advect_scalar_pd ( field, field_old, tendency, & |
|---|
| 5403 | ru, rv, rom, & |
|---|
| 5404 | mut, mub, mu_old, & |
|---|
| 5405 | config_flags, & |
|---|
| 5406 | msfu, msfv, msft, & |
|---|
| 5407 | fzm, fzp, & |
|---|
| 5408 | rdx, rdy, rdzw, dt, & |
|---|
| 5409 | ids, ide, jds, jde, kds, kde, & |
|---|
| 5410 | ims, ime, jms, jme, kms, kme, & |
|---|
| 5411 | its, ite, jts, jte, kts, kte ) |
|---|
| 5412 | |
|---|
| 5413 | ! this is a first cut at a positive definite advection option |
|---|
| 5414 | ! for scalars in WRF. This version is memory intensive -> |
|---|
| 5415 | ! we save 3d arrays of x, y and z both high and low order fluxes |
|---|
| 5416 | ! (six in all). Alternatively, we could sweep in a direction |
|---|
| 5417 | ! and lower the cost considerably. |
|---|
| 5418 | |
|---|
| 5419 | ! uses the Smolarkiewicz MWR 1989 approach, with addition of first-order |
|---|
| 5420 | ! fluxes initially |
|---|
| 5421 | |
|---|
| 5422 | ! WCS, 3 December 2002, 24 February 2003 |
|---|
| 5423 | |
|---|
| 5424 | IMPLICIT NONE |
|---|
| 5425 | |
|---|
| 5426 | ! Input data |
|---|
| 5427 | |
|---|
| 5428 | TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags |
|---|
| 5429 | |
|---|
| 5430 | INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & |
|---|
| 5431 | ims, ime, jms, jme, kms, kme, & |
|---|
| 5432 | its, ite, jts, jte, kts, kte |
|---|
| 5433 | |
|---|
| 5434 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(IN ) :: field, & |
|---|
| 5435 | field_old, & |
|---|
| 5436 | ru, & |
|---|
| 5437 | rv, & |
|---|
| 5438 | rom |
|---|
| 5439 | |
|---|
| 5440 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut, mub, mu_old |
|---|
| 5441 | REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(INOUT) :: tendency |
|---|
| 5442 | |
|---|
| 5443 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & |
|---|
| 5444 | msfv, & |
|---|
| 5445 | msft |
|---|
| 5446 | |
|---|
| 5447 | REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fzm, & |
|---|
| 5448 | fzp, & |
|---|
| 5449 | rdzw |
|---|
| 5450 | |
|---|
| 5451 | REAL , INTENT(IN ) :: rdx, & |
|---|
| 5452 | rdy, & |
|---|
| 5453 | dt |
|---|
| 5454 | |
|---|
| 5455 | ! Local data |
|---|
| 5456 | |
|---|
| 5457 | INTEGER :: i, j, k, itf, jtf, ktf |
|---|
| 5458 | INTEGER :: i_start, i_end, j_start, j_end |
|---|
| 5459 | INTEGER :: i_start_f, i_end_f, j_start_f, j_end_f |
|---|
| 5460 | INTEGER :: jmin, jmax, jp, jm, imin, imax |
|---|
| 5461 | |
|---|
| 5462 | REAL :: mrdx, mrdy, ub, vb, uw, vw, mu |
|---|
| 5463 | |
|---|
| 5464 | ! storage for high and low order fluxes |
|---|
| 5465 | |
|---|
| 5466 | REAL, DIMENSION( its-1:ite+2, kts:kte, jts-1:jte+2 ) :: fqx, fqy, fqz |
|---|
| 5467 | REAL, DIMENSION( its-1:ite+2, kts:kte, jts-1:jte+2 ) :: fqxl, fqyl, fqzl |
|---|
| 5468 | |
|---|
| 5469 | INTEGER :: horz_order, vert_order |
|---|
| 5470 | |
|---|
| 5471 | LOGICAL :: degrade_xs, degrade_ys |
|---|
| 5472 | LOGICAL :: degrade_xe, degrade_ye |
|---|
| 5473 | |
|---|
| 5474 | INTEGER :: jp1, jp0, jtmp |
|---|
| 5475 | |
|---|
| 5476 | REAL :: flux_out, ph_low, scale |
|---|
| 5477 | REAL, PARAMETER :: eps=1.e-20 |
|---|
| 5478 | |
|---|
| 5479 | |
|---|
| 5480 | ! definition of flux operators, 3rd, 4th, 5th or 6th order |
|---|
| 5481 | |
|---|
| 5482 | REAL :: flux3, flux4, flux5, flux6, flux_upwind |
|---|
| 5483 | REAL :: q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua, vel, cr |
|---|
| 5484 | |
|---|
| 5485 | flux4(q_im2, q_im1, q_i, q_ip1, ua) = & |
|---|
| 5486 | (7./12.)*(q_i + q_im1) - (1./12.)*(q_ip1 + q_im2) |
|---|
| 5487 | |
|---|
| 5488 | flux3(q_im2, q_im1, q_i, q_ip1, ua) = & |
|---|
| 5489 | flux4(q_im2, q_im1, q_i, q_ip1, ua) + & |
|---|
| 5490 | sign(1.,ua)*(1./12.)*((q_ip1 - q_im2)-3.*(q_i-q_im1)) |
|---|
| 5491 | |
|---|
| 5492 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
|---|
| 5493 | (37./60.)*(q_i+q_im1) - (2./15.)*(q_ip1+q_im2) & |
|---|
| 5494 | +(1./60.)*(q_ip2+q_im3) |
|---|
| 5495 | |
|---|
| 5496 | flux5(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) = & |
|---|
| 5497 | flux6(q_im3, q_im2, q_im1, q_i, q_ip1, q_ip2, ua) & |
|---|
| 5498 | -sign(1.,ua)*(1./60.)*( & |
|---|
| 5499 | (q_ip2-q_im3)-5.*(q_ip1-q_im2)+10.*(q_i-q_im1) ) |
|---|
| 5500 | |
|---|
| 5501 | flux_upwind(q_im1, q_i, cr ) = 0.5*min( 1.0,(cr+abs(cr)))*q_im1 & |
|---|
| 5502 | +0.5*max(-1.0,(cr-abs(cr)))*q_i |
|---|
| 5503 | ! flux_upwind(q_im1, q_i, cr ) = 0. |
|---|
| 5504 | |
|---|
| 5505 | REAL :: dx,dy,dz |
|---|
| 5506 | |
|---|
| 5507 | LOGICAL, PARAMETER :: pd_limit = .true. |
|---|
| 5508 | |
|---|
| 5509 | ! set order for the advection schemes |
|---|
| 5510 | |
|---|
| 5511 | ! write(6,*) ' in pd advection routine ' |
|---|
| 5512 | |
|---|
| 5513 | ktf=MIN(kte,kde-1) |
|---|
| 5514 | horz_order = config_flags%h_sca_adv_order |
|---|
| 5515 | vert_order = config_flags%v_sca_adv_order |
|---|
| 5516 | |
|---|
| 5517 | ! determine boundary mods for flux operators |
|---|
| 5518 | ! We degrade the flux operators from 3rd/4th order |
|---|
| 5519 | ! to second order one gridpoint in from the boundaries for |
|---|
| 5520 | ! all boundary conditions except periodic and symmetry - these |
|---|
| 5521 | ! conditions have boundary zone data fill for correct application |
|---|
| 5522 | ! of the higher order flux stencils |
|---|
| 5523 | |
|---|
| 5524 | degrade_xs = .true. |
|---|
| 5525 | degrade_xe = .true. |
|---|
| 5526 | degrade_ys = .true. |
|---|
| 5527 | degrade_ye = .true. |
|---|
| 5528 | |
|---|
| 5529 | ! begin with horizontal flux divergence |
|---|
| 5530 | ! here is the choice of flux operators |
|---|
| 5531 | |
|---|
| 5532 | |
|---|
| 5533 | horizontal_order_test : IF( horz_order == 6 ) THEN |
|---|
| 5534 | |
|---|
| 5535 | IF( config_flags%periodic_x .or. & |
|---|
| 5536 | config_flags%symmetric_xs .or. & |
|---|
| 5537 | (its > ids+2) ) degrade_xs = .false. |
|---|
| 5538 | IF( config_flags%periodic_x .or. & |
|---|
| 5539 | config_flags%symmetric_xe .or. & |
|---|
| 5540 | (ite < ide-3) ) degrade_xe = .false. |
|---|
| 5541 | IF( config_flags%periodic_y .or. & |
|---|
| 5542 | config_flags%symmetric_ys .or. & |
|---|
| 5543 | (jts > jds+2) ) degrade_ys = .false. |
|---|
| 5544 | IF( config_flags%periodic_y .or. & |
|---|
| 5545 | config_flags%symmetric_ye .or. & |
|---|
| 5546 | (jte < jde-3) ) degrade_ye = .false. |
|---|
| 5547 | |
|---|
| 5548 | !--------------- y - advection first |
|---|
| 5549 | |
|---|
| 5550 | !-- y flux compute; these bounds are for periodic and sym b.c. |
|---|
| 5551 | |
|---|
| 5552 | ktf=MIN(kte,kde-1) |
|---|
| 5553 | i_start = its-1 |
|---|
| 5554 | i_end = MIN(ite,ide-1)+1 |
|---|
| 5555 | j_start = jts-1 |
|---|
| 5556 | j_end = MIN(jte,jde-1)+1 |
|---|
| 5557 | j_start_f = j_start |
|---|
| 5558 | j_end_f = j_end+1 |
|---|
| 5559 | |
|---|
| 5560 | !-- modify loop bounds if open or specified |
|---|
| 5561 | |
|---|
| 5562 | IF(degrade_xs) i_start = its |
|---|
| 5563 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
|---|
| 5564 | |
|---|
| 5565 | IF(degrade_ys) then |
|---|
| 5566 | j_start = MAX(jts,jds+1) |
|---|
| 5567 | j_start_f = jds+3 |
|---|
| 5568 | ENDIF |
|---|
| 5569 | |
|---|
| 5570 | IF(degrade_ye) then |
|---|
| 5571 | j_end = MIN(jte,jde-2) |
|---|
| 5572 | j_end_f = jde-3 |
|---|
| 5573 | ENDIF |
|---|
| 5574 | |
|---|
| 5575 | ! compute fluxes, 6th order |
|---|
| 5576 | |
|---|
| 5577 | j_loop_y_flux_6 : DO j = j_start, j_end+1 |
|---|
| 5578 | |
|---|
| 5579 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
|---|
| 5580 | |
|---|
| 5581 | DO k=kts,ktf |
|---|
| 5582 | DO i = i_start, i_end |
|---|
| 5583 | |
|---|
| 5584 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
|---|
| 5585 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
|---|
| 5586 | vel = rv(i,k,j) |
|---|
| 5587 | cr = vel*dt/dy/mu |
|---|
| 5588 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
|---|
| 5589 | |
|---|
| 5590 | fqy( i, k, j ) = vel*flux6( & |
|---|
| 5591 | field(i,k,j-3), field(i,k,j-2), field(i,k,j-1), & |
|---|
| 5592 | field(i,k,j ), field(i,k,j+1), field(i,k,j+2), vel ) |
|---|
| 5593 | |
|---|
| 5594 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
|---|
| 5595 | |
|---|
| 5596 | ENDDO |
|---|
| 5597 | ENDDO |
|---|
| 5598 | |
|---|
| 5599 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
|---|
| 5600 | |
|---|
| 5601 | DO k=kts,ktf |
|---|
| 5602 | DO i = i_start, i_end |
|---|
| 5603 | |
|---|
| 5604 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
|---|
| 5605 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
|---|
| 5606 | vel = rv(i,k,j) |
|---|
| 5607 | cr = vel*dt/dy/mu |
|---|
| 5608 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
|---|
| 5609 | |
|---|
| 5610 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
|---|
| 5611 | (field(i,k,j)+field(i,k,j-1)) |
|---|
| 5612 | |
|---|
| 5613 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
|---|
| 5614 | |
|---|
| 5615 | ENDDO |
|---|
| 5616 | ENDDO |
|---|
| 5617 | |
|---|
| 5618 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
|---|
| 5619 | |
|---|
| 5620 | DO k=kts,ktf |
|---|
| 5621 | DO i = i_start, i_end |
|---|
| 5622 | |
|---|
| 5623 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
|---|
| 5624 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
|---|
| 5625 | vel = rv(i,k,j) |
|---|
| 5626 | cr = vel*dt/dy/mu |
|---|
| 5627 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
|---|
| 5628 | |
|---|
| 5629 | fqy( i, k, j ) = vel*flux4( & |
|---|
| 5630 | field(i,k,j-2),field(i,k,j-1),field(i,k,j),field(i,k,j+1),vel ) |
|---|
| 5631 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
|---|
| 5632 | |
|---|
| 5633 | ENDDO |
|---|
| 5634 | ENDDO |
|---|
| 5635 | |
|---|
| 5636 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
|---|
| 5637 | |
|---|
| 5638 | DO k=kts,ktf |
|---|
| 5639 | DO i = i_start, i_end |
|---|
| 5640 | |
|---|
| 5641 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
|---|
| 5642 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
|---|
| 5643 | vel = rv(i,k,j) |
|---|
| 5644 | cr = vel*dt/dy/mu |
|---|
| 5645 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
|---|
| 5646 | |
|---|
| 5647 | fqy(i, k, j ) = 0.5*rv(i,k,j)* & |
|---|
| 5648 | (field(i,k,j)+field(i,k,j-1)) |
|---|
| 5649 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
|---|
| 5650 | |
|---|
| 5651 | ENDDO |
|---|
| 5652 | ENDDO |
|---|
| 5653 | |
|---|
| 5654 | ELSE IF ( j == jde-2 ) THEN ! 4th order flux 2 in from north boundary |
|---|
| 5655 | |
|---|
| 5656 | DO k=kts,ktf |
|---|
| 5657 | DO i = i_start, i_end |
|---|
| 5658 | |
|---|
| 5659 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
|---|
| 5660 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
|---|
| 5661 | vel = rv(i,k,j) |
|---|
| 5662 | cr = vel*dt/dy/mu |
|---|
| 5663 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
|---|
| 5664 | |
|---|
| 5665 | fqy( i, k, j) = vel*flux4( & |
|---|
| 5666 | field(i,k,j-2),field(i,k,j-1), & |
|---|
| 5667 | field(i,k,j),field(i,k,j+1),vel ) |
|---|
| 5668 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
|---|
| 5669 | |
|---|
| 5670 | ENDDO |
|---|
| 5671 | ENDDO |
|---|
| 5672 | |
|---|
| 5673 | ENDIF |
|---|
| 5674 | |
|---|
| 5675 | ENDDO j_loop_y_flux_6 |
|---|
| 5676 | |
|---|
| 5677 | ! next, x flux |
|---|
| 5678 | |
|---|
| 5679 | !-- these bounds are for periodic and sym conditions |
|---|
| 5680 | |
|---|
| 5681 | i_start = its-1 |
|---|
| 5682 | i_end = MIN(ite,ide-1)+1 |
|---|
| 5683 | i_start_f = i_start |
|---|
| 5684 | i_end_f = i_end+1 |
|---|
| 5685 | |
|---|
| 5686 | j_start = jts-1 |
|---|
| 5687 | j_end = MIN(jte,jde-1)+1 |
|---|
| 5688 | |
|---|
| 5689 | !-- modify loop bounds for open and specified b.c |
|---|
| 5690 | |
|---|
| 5691 | IF(degrade_ys) j_start = jts |
|---|
| 5692 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
|---|
| 5693 | |
|---|
| 5694 | IF(degrade_xs) then |
|---|
| 5695 | i_start = MAX(ids+1,its) |
|---|
| 5696 | i_start_f = i_start+2 |
|---|
| 5697 | ENDIF |
|---|
| 5698 | |
|---|
| 5699 | IF(degrade_xe) then |
|---|
| 5700 | i_end = MIN(ide-2,ite) |
|---|
| 5701 | i_end_f = ide-3 |
|---|
| 5702 | ENDIF |
|---|
| 5703 | |
|---|
| 5704 | ! compute fluxes |
|---|
| 5705 | |
|---|
| 5706 | DO j = j_start, j_end |
|---|
| 5707 | |
|---|
| 5708 | ! 6th order flux |
|---|
| 5709 | |
|---|
| 5710 | DO k=kts,ktf |
|---|
| 5711 | DO i = i_start_f, i_end_f |
|---|
| 5712 | |
|---|
| 5713 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
|---|
| 5714 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
|---|
| 5715 | vel = ru(i,k,j) |
|---|
| 5716 | cr = vel*dt/dx/mu |
|---|
| 5717 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
|---|
| 5718 | |
|---|
| 5719 | fqx( i,k,j ) = vel*flux6( field(i-3,k,j), field(i-2,k,j), & |
|---|
| 5720 | field(i-1,k,j), field(i ,k,j), & |
|---|
| 5721 | field(i+1,k,j), field(i+2,k,j), & |
|---|
| 5722 | vel ) |
|---|
| 5723 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
|---|
| 5724 | |
|---|
| 5725 | ENDDO |
|---|
| 5726 | ENDDO |
|---|
| 5727 | |
|---|
| 5728 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
|---|
| 5729 | |
|---|
| 5730 | IF( degrade_xs ) THEN |
|---|
| 5731 | |
|---|
| 5732 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
|---|
| 5733 | i = ids+1 |
|---|
| 5734 | DO k=kts,ktf |
|---|
| 5735 | |
|---|
| 5736 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
|---|
| 5737 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
|---|
| 5738 | vel = ru(i,k,j)/mu |
|---|
| 5739 | cr = vel*dt/dx |
|---|
| 5740 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
|---|
| 5741 | |
|---|
| 5742 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
|---|
| 5743 | *(field(i,k,j)+field(i-1,k,j)) |
|---|
| 5744 | |
|---|
| 5745 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
|---|
| 5746 | |
|---|
| 5747 | ENDDO |
|---|
| 5748 | ENDIF |
|---|
| 5749 | |
|---|
| 5750 | i = ids+2 |
|---|
| 5751 | DO k=kts,ktf |
|---|
| 5752 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
|---|
| 5753 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
|---|
| 5754 | vel = ru(i,k,j) |
|---|
| 5755 | cr = vel*dt/dx/mu |
|---|
| 5756 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
|---|
| 5757 | fqx( i,k,j ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
|---|
| 5758 | field(i ,k,j), field(i+1,k,j), & |
|---|
| 5759 | vel ) |
|---|
| 5760 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
|---|
| 5761 | |
|---|
| 5762 | ENDDO |
|---|
| 5763 | |
|---|
| 5764 | ENDIF |
|---|
| 5765 | |
|---|
| 5766 | IF( degrade_xe ) THEN |
|---|
| 5767 | |
|---|
| 5768 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
|---|
| 5769 | i = ide-1 |
|---|
| 5770 | DO k=kts,ktf |
|---|
| 5771 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
|---|
| 5772 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
|---|
| 5773 | vel = ru(i,k,j) |
|---|
| 5774 | cr = vel*dt/dx/mu |
|---|
| 5775 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
|---|
| 5776 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
|---|
| 5777 | *(field(i,k,j)+field(i-1,k,j)) |
|---|
| 5778 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
|---|
| 5779 | |
|---|
| 5780 | ENDDO |
|---|
| 5781 | ENDIF |
|---|
| 5782 | |
|---|
| 5783 | i = ide-2 |
|---|
| 5784 | DO k=kts,ktf |
|---|
| 5785 | |
|---|
| 5786 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
|---|
| 5787 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
|---|
| 5788 | vel = ru(i,k,j) |
|---|
| 5789 | cr = vel*dt/dx/mu |
|---|
| 5790 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
|---|
| 5791 | fqx( i,k,j ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
|---|
| 5792 | field(i ,k,j), field(i+1,k,j), & |
|---|
| 5793 | vel ) |
|---|
| 5794 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
|---|
| 5795 | |
|---|
| 5796 | ENDDO |
|---|
| 5797 | |
|---|
| 5798 | ENDIF |
|---|
| 5799 | |
|---|
| 5800 | ENDDO ! enddo for outer J loop |
|---|
| 5801 | |
|---|
| 5802 | !--- end of 6th order horizontal flux calculation |
|---|
| 5803 | |
|---|
| 5804 | ELSE IF( horz_order == 5 ) THEN |
|---|
| 5805 | |
|---|
| 5806 | IF( config_flags%periodic_x .or. & |
|---|
| 5807 | config_flags%symmetric_xs .or. & |
|---|
| 5808 | (its > ids+2) ) degrade_xs = .false. |
|---|
| 5809 | IF( config_flags%periodic_x .or. & |
|---|
| 5810 | config_flags%symmetric_xe .or. & |
|---|
| 5811 | (ite < ide-3) ) degrade_xe = .false. |
|---|
| 5812 | IF( config_flags%periodic_y .or. & |
|---|
| 5813 | config_flags%symmetric_ys .or. & |
|---|
| 5814 | (jts > jds+2) ) degrade_ys = .false. |
|---|
| 5815 | IF( config_flags%periodic_y .or. & |
|---|
| 5816 | config_flags%symmetric_ye .or. & |
|---|
| 5817 | (jte < jde-3) ) degrade_ye = .false. |
|---|
| 5818 | |
|---|
| 5819 | !--------------- y - advection first |
|---|
| 5820 | |
|---|
| 5821 | !-- y flux compute; these bounds are for periodic and sym b.c. |
|---|
| 5822 | |
|---|
| 5823 | ktf=MIN(kte,kde-1) |
|---|
| 5824 | i_start = its-1 |
|---|
| 5825 | i_end = MIN(ite,ide-1)+1 |
|---|
| 5826 | j_start = jts-1 |
|---|
| 5827 | j_end = MIN(jte,jde-1)+1 |
|---|
| 5828 | j_start_f = j_start |
|---|
| 5829 | j_end_f = j_end+1 |
|---|
| 5830 | |
|---|
| 5831 | !-- modify loop bounds if open or specified |
|---|
| 5832 | |
|---|
| 5833 | IF(degrade_xs) i_start = its |
|---|
| 5834 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
|---|
| 5835 | |
|---|
| 5836 | IF(degrade_ys) then |
|---|
| 5837 | j_start = MAX(jts,jds+1) |
|---|
| 5838 | j_start_f = jds+3 |
|---|
| 5839 | ENDIF |
|---|
| 5840 | |
|---|
| 5841 | IF(degrade_ye) then |
|---|
| 5842 | j_end = MIN(jte,jde-2) |
|---|
| 5843 | j_end_f = jde-3 |
|---|
| 5844 | ENDIF |
|---|
| 5845 | |
|---|
| 5846 | ! compute fluxes, 5th order |
|---|
| 5847 | |
|---|
| 5848 | j_loop_y_flux_5 : DO j = j_start, j_end+1 |
|---|
| 5849 | |
|---|
| 5850 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
|---|
| 5851 | |
|---|
| 5852 | DO k=kts,ktf |
|---|
| 5853 | DO i = i_start, i_end |
|---|
| 5854 | |
|---|
| 5855 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
|---|
| 5856 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
|---|
| 5857 | vel = rv(i,k,j) |
|---|
| 5858 | cr = vel*dt/dy/mu |
|---|
| 5859 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
|---|
| 5860 | |
|---|
| 5861 | fqy( i, k, j ) = vel*flux5( & |
|---|
| 5862 | field(i,k,j-3), field(i,k,j-2), field(i,k,j-1), & |
|---|
| 5863 | field(i,k,j ), field(i,k,j+1), field(i,k,j+2), vel ) |
|---|
| 5864 | |
|---|
| 5865 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
|---|
| 5866 | |
|---|
| 5867 | ENDDO |
|---|
| 5868 | ENDDO |
|---|
| 5869 | |
|---|
| 5870 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
|---|
| 5871 | |
|---|
| 5872 | DO k=kts,ktf |
|---|
| 5873 | DO i = i_start, i_end |
|---|
| 5874 | |
|---|
| 5875 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
|---|
| 5876 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
|---|
| 5877 | vel = rv(i,k,j) |
|---|
| 5878 | cr = vel*dt/dy/mu |
|---|
| 5879 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
|---|
| 5880 | |
|---|
| 5881 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
|---|
| 5882 | (field(i,k,j)+field(i,k,j-1)) |
|---|
| 5883 | |
|---|
| 5884 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
|---|
| 5885 | |
|---|
| 5886 | ENDDO |
|---|
| 5887 | ENDDO |
|---|
| 5888 | |
|---|
| 5889 | ELSE IF ( j == jds+2 ) THEN ! third of 4th order flux 2 in from south boundary |
|---|
| 5890 | |
|---|
| 5891 | DO k=kts,ktf |
|---|
| 5892 | DO i = i_start, i_end |
|---|
| 5893 | |
|---|
| 5894 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
|---|
| 5895 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
|---|
| 5896 | vel = rv(i,k,j) |
|---|
| 5897 | cr = vel*dt/dy/mu |
|---|
| 5898 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
|---|
| 5899 | |
|---|
| 5900 | fqy( i, k, j ) = vel*flux3( & |
|---|
| 5901 | field(i,k,j-2),field(i,k,j-1),field(i,k,j),field(i,k,j+1),vel ) |
|---|
| 5902 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
|---|
| 5903 | |
|---|
| 5904 | ENDDO |
|---|
| 5905 | ENDDO |
|---|
| 5906 | |
|---|
| 5907 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
|---|
| 5908 | |
|---|
| 5909 | DO k=kts,ktf |
|---|
| 5910 | DO i = i_start, i_end |
|---|
| 5911 | |
|---|
| 5912 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
|---|
| 5913 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
|---|
| 5914 | vel = rv(i,k,j) |
|---|
| 5915 | cr = vel*dt/dy/mu |
|---|
| 5916 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
|---|
| 5917 | |
|---|
| 5918 | fqy(i, k, j ) = 0.5*rv(i,k,j)* & |
|---|
| 5919 | (field(i,k,j)+field(i,k,j-1)) |
|---|
| 5920 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
|---|
| 5921 | |
|---|
| 5922 | ENDDO |
|---|
| 5923 | ENDDO |
|---|
| 5924 | |
|---|
| 5925 | ELSE IF ( j == jde-2 ) THEN ! 3rd or 4th order flux 2 in from north boundary |
|---|
| 5926 | |
|---|
| 5927 | DO k=kts,ktf |
|---|
| 5928 | DO i = i_start, i_end |
|---|
| 5929 | |
|---|
| 5930 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
|---|
| 5931 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
|---|
| 5932 | vel = rv(i,k,j) |
|---|
| 5933 | cr = vel*dt/dy/mu |
|---|
| 5934 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
|---|
| 5935 | |
|---|
| 5936 | fqy( i, k, j) = vel*flux3( & |
|---|
| 5937 | field(i,k,j-2),field(i,k,j-1), & |
|---|
| 5938 | field(i,k,j),field(i,k,j+1),vel ) |
|---|
| 5939 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
|---|
| 5940 | |
|---|
| 5941 | ENDDO |
|---|
| 5942 | ENDDO |
|---|
| 5943 | |
|---|
| 5944 | ENDIF |
|---|
| 5945 | |
|---|
| 5946 | ENDDO j_loop_y_flux_5 |
|---|
| 5947 | |
|---|
| 5948 | ! next, x flux |
|---|
| 5949 | |
|---|
| 5950 | !-- these bounds are for periodic and sym conditions |
|---|
| 5951 | |
|---|
| 5952 | i_start = its-1 |
|---|
| 5953 | i_end = MIN(ite,ide-1)+1 |
|---|
| 5954 | i_start_f = i_start |
|---|
| 5955 | i_end_f = i_end+1 |
|---|
| 5956 | |
|---|
| 5957 | j_start = jts-1 |
|---|
| 5958 | j_end = MIN(jte,jde-1)+1 |
|---|
| 5959 | |
|---|
| 5960 | !-- modify loop bounds for open and specified b.c |
|---|
| 5961 | |
|---|
| 5962 | IF(degrade_ys) j_start = jts |
|---|
| 5963 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
|---|
| 5964 | |
|---|
| 5965 | IF(degrade_xs) then |
|---|
| 5966 | i_start = MAX(ids+1,its) |
|---|
| 5967 | i_start_f = i_start+2 |
|---|
| 5968 | ENDIF |
|---|
| 5969 | |
|---|
| 5970 | IF(degrade_xe) then |
|---|
| 5971 | i_end = MIN(ide-2,ite) |
|---|
| 5972 | i_end_f = ide-3 |
|---|
| 5973 | ENDIF |
|---|
| 5974 | |
|---|
| 5975 | ! compute fluxes |
|---|
| 5976 | |
|---|
| 5977 | DO j = j_start, j_end |
|---|
| 5978 | |
|---|
| 5979 | ! 5th order flux |
|---|
| 5980 | |
|---|
| 5981 | DO k=kts,ktf |
|---|
| 5982 | DO i = i_start_f, i_end_f |
|---|
| 5983 | |
|---|
| 5984 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
|---|
| 5985 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
|---|
| 5986 | vel = ru(i,k,j) |
|---|
| 5987 | cr = vel*dt/dx/mu |
|---|
| 5988 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
|---|
| 5989 | |
|---|
| 5990 | fqx( i,k,j ) = vel*flux5( field(i-3,k,j), field(i-2,k,j), & |
|---|
| 5991 | field(i-1,k,j), field(i ,k,j), & |
|---|
| 5992 | field(i+1,k,j), field(i+2,k,j), & |
|---|
| 5993 | vel ) |
|---|
| 5994 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
|---|
| 5995 | |
|---|
| 5996 | ENDDO |
|---|
| 5997 | ENDDO |
|---|
| 5998 | |
|---|
| 5999 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
|---|
| 6000 | |
|---|
| 6001 | IF( degrade_xs ) THEN |
|---|
| 6002 | |
|---|
| 6003 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
|---|
| 6004 | i = ids+1 |
|---|
| 6005 | DO k=kts,ktf |
|---|
| 6006 | |
|---|
| 6007 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
|---|
| 6008 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
|---|
| 6009 | vel = ru(i,k,j)/mu |
|---|
| 6010 | cr = vel*dt/dx |
|---|
| 6011 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
|---|
| 6012 | |
|---|
| 6013 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
|---|
| 6014 | *(field(i,k,j)+field(i-1,k,j)) |
|---|
| 6015 | |
|---|
| 6016 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
|---|
| 6017 | |
|---|
| 6018 | ENDDO |
|---|
| 6019 | ENDIF |
|---|
| 6020 | |
|---|
| 6021 | i = ids+2 |
|---|
| 6022 | DO k=kts,ktf |
|---|
| 6023 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
|---|
| 6024 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
|---|
| 6025 | vel = ru(i,k,j) |
|---|
| 6026 | cr = vel*dt/dx/mu |
|---|
| 6027 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
|---|
| 6028 | fqx( i,k,j ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
|---|
| 6029 | field(i ,k,j), field(i+1,k,j), & |
|---|
| 6030 | vel ) |
|---|
| 6031 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
|---|
| 6032 | |
|---|
| 6033 | ENDDO |
|---|
| 6034 | |
|---|
| 6035 | ENDIF |
|---|
| 6036 | |
|---|
| 6037 | IF( degrade_xe ) THEN |
|---|
| 6038 | |
|---|
| 6039 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
|---|
| 6040 | i = ide-1 |
|---|
| 6041 | DO k=kts,ktf |
|---|
| 6042 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
|---|
| 6043 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
|---|
| 6044 | vel = ru(i,k,j) |
|---|
| 6045 | cr = vel*dt/dx/mu |
|---|
| 6046 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
|---|
| 6047 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
|---|
| 6048 | *(field(i,k,j)+field(i-1,k,j)) |
|---|
| 6049 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
|---|
| 6050 | |
|---|
| 6051 | ENDDO |
|---|
| 6052 | ENDIF |
|---|
| 6053 | |
|---|
| 6054 | i = ide-2 |
|---|
| 6055 | DO k=kts,ktf |
|---|
| 6056 | |
|---|
| 6057 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
|---|
| 6058 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
|---|
| 6059 | vel = ru(i,k,j) |
|---|
| 6060 | cr = vel*dt/dx/mu |
|---|
| 6061 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
|---|
| 6062 | fqx( i,k,j ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
|---|
| 6063 | field(i ,k,j), field(i+1,k,j), & |
|---|
| 6064 | vel ) |
|---|
| 6065 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
|---|
| 6066 | |
|---|
| 6067 | ENDDO |
|---|
| 6068 | |
|---|
| 6069 | ENDIF |
|---|
| 6070 | |
|---|
| 6071 | ENDDO ! enddo for outer J loop |
|---|
| 6072 | |
|---|
| 6073 | !--- end of 5th order horizontal flux calculation |
|---|
| 6074 | |
|---|
| 6075 | ELSE IF( horz_order == 4 ) THEN |
|---|
| 6076 | |
|---|
| 6077 | IF( config_flags%periodic_x .or. & |
|---|
| 6078 | config_flags%symmetric_xs .or. & |
|---|
| 6079 | (its > ids+1) ) degrade_xs = .false. |
|---|
| 6080 | IF( config_flags%periodic_x .or. & |
|---|
| 6081 | config_flags%symmetric_xe .or. & |
|---|
| 6082 | (ite < ide-2) ) degrade_xe = .false. |
|---|
| 6083 | IF( config_flags%periodic_y .or. & |
|---|
| 6084 | config_flags%symmetric_ys .or. & |
|---|
| 6085 | (jts > jds+1) ) degrade_ys = .false. |
|---|
| 6086 | IF( config_flags%periodic_y .or. & |
|---|
| 6087 | config_flags%symmetric_ye .or. & |
|---|
| 6088 | (jte < jde-2) ) degrade_ye = .false. |
|---|
| 6089 | |
|---|
| 6090 | !--------------- y - advection first |
|---|
| 6091 | |
|---|
| 6092 | !-- y flux compute; these bounds are for periodic and sym b.c. |
|---|
| 6093 | |
|---|
| 6094 | ktf=MIN(kte,kde-1) |
|---|
| 6095 | i_start = its-1 |
|---|
| 6096 | i_end = MIN(ite,ide-1)+1 |
|---|
| 6097 | j_start = jts-1 |
|---|
| 6098 | j_end = MIN(jte,jde-1)+1 |
|---|
| 6099 | j_start_f = j_start |
|---|
| 6100 | j_end_f = j_end+1 |
|---|
| 6101 | |
|---|
| 6102 | !-- modify loop bounds if open or specified |
|---|
| 6103 | |
|---|
| 6104 | IF(degrade_xs) i_start = its |
|---|
| 6105 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
|---|
| 6106 | |
|---|
| 6107 | IF(degrade_ys) then |
|---|
| 6108 | j_start = MAX(jts,jds+1) |
|---|
| 6109 | j_start_f = jds+2 |
|---|
| 6110 | ENDIF |
|---|
| 6111 | |
|---|
| 6112 | IF(degrade_ye) then |
|---|
| 6113 | j_end = MIN(jte,jde-2) |
|---|
| 6114 | j_end_f = jde-2 |
|---|
| 6115 | ENDIF |
|---|
| 6116 | |
|---|
| 6117 | ! compute fluxes, 4th order |
|---|
| 6118 | |
|---|
| 6119 | j_loop_y_flux_4 : DO j = j_start, j_end+1 |
|---|
| 6120 | |
|---|
| 6121 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
|---|
| 6122 | |
|---|
| 6123 | DO k=kts,ktf |
|---|
| 6124 | DO i = i_start, i_end |
|---|
| 6125 | |
|---|
| 6126 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
|---|
| 6127 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
|---|
| 6128 | vel = rv(i,k,j) |
|---|
| 6129 | cr = vel*dt/dy/mu |
|---|
| 6130 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
|---|
| 6131 | |
|---|
| 6132 | fqy( i, k, j ) = vel*flux4( field(i,k,j-2), field(i,k,j-1), & |
|---|
| 6133 | field(i,k,j ), field(i,k,j+1), vel ) |
|---|
| 6134 | |
|---|
| 6135 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
|---|
| 6136 | |
|---|
| 6137 | ENDDO |
|---|
| 6138 | ENDDO |
|---|
| 6139 | |
|---|
| 6140 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
|---|
| 6141 | |
|---|
| 6142 | DO k=kts,ktf |
|---|
| 6143 | DO i = i_start, i_end |
|---|
| 6144 | |
|---|
| 6145 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
|---|
| 6146 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
|---|
| 6147 | vel = rv(i,k,j) |
|---|
| 6148 | cr = vel*dt/dy/mu |
|---|
| 6149 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
|---|
| 6150 | |
|---|
| 6151 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
|---|
| 6152 | (field(i,k,j)+field(i,k,j-1)) |
|---|
| 6153 | |
|---|
| 6154 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
|---|
| 6155 | |
|---|
| 6156 | ENDDO |
|---|
| 6157 | ENDDO |
|---|
| 6158 | |
|---|
| 6159 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
|---|
| 6160 | |
|---|
| 6161 | DO k=kts,ktf |
|---|
| 6162 | DO i = i_start, i_end |
|---|
| 6163 | |
|---|
| 6164 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
|---|
| 6165 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
|---|
| 6166 | vel = rv(i,k,j) |
|---|
| 6167 | cr = vel*dt/dy/mu |
|---|
| 6168 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
|---|
| 6169 | |
|---|
| 6170 | fqy(i, k, j ) = 0.5*rv(i,k,j)* & |
|---|
| 6171 | (field(i,k,j)+field(i,k,j-1)) |
|---|
| 6172 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
|---|
| 6173 | |
|---|
| 6174 | ENDDO |
|---|
| 6175 | ENDDO |
|---|
| 6176 | |
|---|
| 6177 | ENDIF |
|---|
| 6178 | |
|---|
| 6179 | ENDDO j_loop_y_flux_4 |
|---|
| 6180 | |
|---|
| 6181 | ! next, x flux |
|---|
| 6182 | |
|---|
| 6183 | !-- these bounds are for periodic and sym conditions |
|---|
| 6184 | |
|---|
| 6185 | i_start = its-1 |
|---|
| 6186 | i_end = MIN(ite,ide-1)+1 |
|---|
| 6187 | i_start_f = i_start |
|---|
| 6188 | i_end_f = i_end+1 |
|---|
| 6189 | |
|---|
| 6190 | j_start = jts-1 |
|---|
| 6191 | j_end = MIN(jte,jde-1)+1 |
|---|
| 6192 | |
|---|
| 6193 | !-- modify loop bounds for open and specified b.c |
|---|
| 6194 | |
|---|
| 6195 | IF(degrade_ys) j_start = jts |
|---|
| 6196 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
|---|
| 6197 | |
|---|
| 6198 | IF(degrade_xs) then |
|---|
| 6199 | i_start = MAX(ids+1,its) |
|---|
| 6200 | i_start_f = i_start+1 |
|---|
| 6201 | ENDIF |
|---|
| 6202 | |
|---|
| 6203 | IF(degrade_xe) then |
|---|
| 6204 | i_end = MIN(ide-2,ite) |
|---|
| 6205 | i_end_f = ide-2 |
|---|
| 6206 | ENDIF |
|---|
| 6207 | |
|---|
| 6208 | ! compute fluxes |
|---|
| 6209 | |
|---|
| 6210 | DO j = j_start, j_end |
|---|
| 6211 | |
|---|
| 6212 | ! 4th order flux |
|---|
| 6213 | |
|---|
| 6214 | DO k=kts,ktf |
|---|
| 6215 | DO i = i_start_f, i_end_f |
|---|
| 6216 | |
|---|
| 6217 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
|---|
| 6218 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
|---|
| 6219 | vel = ru(i,k,j) |
|---|
| 6220 | cr = vel*dt/dx/mu |
|---|
| 6221 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
|---|
| 6222 | |
|---|
| 6223 | fqx( i,k,j ) = vel*flux4( field(i-2,k,j), field(i-1,k,j), & |
|---|
| 6224 | field(i ,k,j), field(i+1,k,j), vel ) |
|---|
| 6225 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
|---|
| 6226 | |
|---|
| 6227 | ENDDO |
|---|
| 6228 | ENDDO |
|---|
| 6229 | |
|---|
| 6230 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
|---|
| 6231 | |
|---|
| 6232 | IF( degrade_xs ) THEN |
|---|
| 6233 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
|---|
| 6234 | i = ids+1 |
|---|
| 6235 | DO k=kts,ktf |
|---|
| 6236 | |
|---|
| 6237 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
|---|
| 6238 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
|---|
| 6239 | vel = ru(i,k,j)/mu |
|---|
| 6240 | cr = vel*dt/dx |
|---|
| 6241 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
|---|
| 6242 | |
|---|
| 6243 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
|---|
| 6244 | *(field(i,k,j)+field(i-1,k,j)) |
|---|
| 6245 | |
|---|
| 6246 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
|---|
| 6247 | |
|---|
| 6248 | ENDDO |
|---|
| 6249 | ENDIF |
|---|
| 6250 | ENDIF |
|---|
| 6251 | |
|---|
| 6252 | IF( degrade_xe ) THEN |
|---|
| 6253 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
|---|
| 6254 | i = ide-1 |
|---|
| 6255 | DO k=kts,ktf |
|---|
| 6256 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
|---|
| 6257 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
|---|
| 6258 | vel = ru(i,k,j) |
|---|
| 6259 | cr = vel*dt/dx/mu |
|---|
| 6260 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
|---|
| 6261 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
|---|
| 6262 | *(field(i,k,j)+field(i-1,k,j)) |
|---|
| 6263 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
|---|
| 6264 | |
|---|
| 6265 | ENDDO |
|---|
| 6266 | ENDIF |
|---|
| 6267 | ENDIF |
|---|
| 6268 | |
|---|
| 6269 | ENDDO ! enddo for outer J loop |
|---|
| 6270 | |
|---|
| 6271 | !--- end of 4th order horizontal flux calculation |
|---|
| 6272 | |
|---|
| 6273 | ELSE IF( horz_order == 3 ) THEN |
|---|
| 6274 | |
|---|
| 6275 | IF( config_flags%periodic_x .or. & |
|---|
| 6276 | config_flags%symmetric_xs .or. & |
|---|
| 6277 | (its > ids+1) ) degrade_xs = .false. |
|---|
| 6278 | IF( config_flags%periodic_x .or. & |
|---|
| 6279 | config_flags%symmetric_xe .or. & |
|---|
| 6280 | (ite < ide-2) ) degrade_xe = .false. |
|---|
| 6281 | IF( config_flags%periodic_y .or. & |
|---|
| 6282 | config_flags%symmetric_ys .or. & |
|---|
| 6283 | (jts > jds+1) ) degrade_ys = .false. |
|---|
| 6284 | IF( config_flags%periodic_y .or. & |
|---|
| 6285 | config_flags%symmetric_ye .or. & |
|---|
| 6286 | (jte < jde-2) ) degrade_ye = .false. |
|---|
| 6287 | |
|---|
| 6288 | !--------------- y - advection first |
|---|
| 6289 | |
|---|
| 6290 | !-- y flux compute; these bounds are for periodic and sym b.c. |
|---|
| 6291 | |
|---|
| 6292 | ktf=MIN(kte,kde-1) |
|---|
| 6293 | i_start = its-1 |
|---|
| 6294 | i_end = MIN(ite,ide-1)+1 |
|---|
| 6295 | j_start = jts-1 |
|---|
| 6296 | j_end = MIN(jte,jde-1)+1 |
|---|
| 6297 | j_start_f = j_start |
|---|
| 6298 | j_end_f = j_end+1 |
|---|
| 6299 | |
|---|
| 6300 | !-- modify loop bounds if open or specified |
|---|
| 6301 | |
|---|
| 6302 | IF(degrade_xs) i_start = its |
|---|
| 6303 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
|---|
| 6304 | |
|---|
| 6305 | IF(degrade_ys) then |
|---|
| 6306 | j_start = MAX(jts,jds+1) |
|---|
| 6307 | j_start_f = jds+2 |
|---|
| 6308 | ENDIF |
|---|
| 6309 | |
|---|
| 6310 | IF(degrade_ye) then |
|---|
| 6311 | j_end = MIN(jte,jde-2) |
|---|
| 6312 | j_end_f = jde-2 |
|---|
| 6313 | ENDIF |
|---|
| 6314 | |
|---|
| 6315 | ! compute fluxes, 3rd order |
|---|
| 6316 | |
|---|
| 6317 | j_loop_y_flux_3 : DO j = j_start, j_end+1 |
|---|
| 6318 | |
|---|
| 6319 | IF( (j >= j_start_f ) .and. (j <= j_end_f) ) THEN ! use full stencil |
|---|
| 6320 | |
|---|
| 6321 | DO k=kts,ktf |
|---|
| 6322 | DO i = i_start, i_end |
|---|
| 6323 | |
|---|
| 6324 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
|---|
| 6325 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
|---|
| 6326 | vel = rv(i,k,j) |
|---|
| 6327 | cr = vel*dt/dy/mu |
|---|
| 6328 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
|---|
| 6329 | |
|---|
| 6330 | fqy( i, k, j ) = vel*flux3( field(i,k,j-2), field(i,k,j-1), & |
|---|
| 6331 | field(i,k,j ), field(i,k,j+1), vel ) |
|---|
| 6332 | |
|---|
| 6333 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
|---|
| 6334 | |
|---|
| 6335 | ENDDO |
|---|
| 6336 | ENDDO |
|---|
| 6337 | |
|---|
| 6338 | ELSE IF ( j == jds+1 ) THEN ! 2nd order flux next to south boundary |
|---|
| 6339 | |
|---|
| 6340 | DO k=kts,ktf |
|---|
| 6341 | DO i = i_start, i_end |
|---|
| 6342 | |
|---|
| 6343 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
|---|
| 6344 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
|---|
| 6345 | vel = rv(i,k,j) |
|---|
| 6346 | cr = vel*dt/dy/mu |
|---|
| 6347 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
|---|
| 6348 | |
|---|
| 6349 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
|---|
| 6350 | (field(i,k,j)+field(i,k,j-1)) |
|---|
| 6351 | |
|---|
| 6352 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
|---|
| 6353 | |
|---|
| 6354 | ENDDO |
|---|
| 6355 | ENDDO |
|---|
| 6356 | |
|---|
| 6357 | ELSE IF ( j == jde-1 ) THEN ! 2nd order flux next to north boundary |
|---|
| 6358 | |
|---|
| 6359 | DO k=kts,ktf |
|---|
| 6360 | DO i = i_start, i_end |
|---|
| 6361 | |
|---|
| 6362 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
|---|
| 6363 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
|---|
| 6364 | vel = rv(i,k,j) |
|---|
| 6365 | cr = vel*dt/dy/mu |
|---|
| 6366 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
|---|
| 6367 | |
|---|
| 6368 | fqy(i, k, j ) = 0.5*rv(i,k,j)* & |
|---|
| 6369 | (field(i,k,j)+field(i,k,j-1)) |
|---|
| 6370 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
|---|
| 6371 | |
|---|
| 6372 | ENDDO |
|---|
| 6373 | ENDDO |
|---|
| 6374 | |
|---|
| 6375 | ENDIF |
|---|
| 6376 | |
|---|
| 6377 | ENDDO j_loop_y_flux_3 |
|---|
| 6378 | |
|---|
| 6379 | ! next, x flux |
|---|
| 6380 | |
|---|
| 6381 | !-- these bounds are for periodic and sym conditions |
|---|
| 6382 | |
|---|
| 6383 | i_start = its-1 |
|---|
| 6384 | i_end = MIN(ite,ide-1)+1 |
|---|
| 6385 | i_start_f = i_start |
|---|
| 6386 | i_end_f = i_end+1 |
|---|
| 6387 | |
|---|
| 6388 | j_start = jts-1 |
|---|
| 6389 | j_end = MIN(jte,jde-1)+1 |
|---|
| 6390 | |
|---|
| 6391 | !-- modify loop bounds for open and specified b.c |
|---|
| 6392 | |
|---|
| 6393 | IF(degrade_ys) j_start = jts |
|---|
| 6394 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
|---|
| 6395 | |
|---|
| 6396 | IF(degrade_xs) then |
|---|
| 6397 | i_start = MAX(ids+1,its) |
|---|
| 6398 | i_start_f = i_start+1 |
|---|
| 6399 | ENDIF |
|---|
| 6400 | |
|---|
| 6401 | IF(degrade_xe) then |
|---|
| 6402 | i_end = MIN(ide-2,ite) |
|---|
| 6403 | i_end_f = ide-2 |
|---|
| 6404 | ENDIF |
|---|
| 6405 | |
|---|
| 6406 | ! compute fluxes |
|---|
| 6407 | |
|---|
| 6408 | DO j = j_start, j_end |
|---|
| 6409 | |
|---|
| 6410 | ! 4th order flux |
|---|
| 6411 | |
|---|
| 6412 | DO k=kts,ktf |
|---|
| 6413 | DO i = i_start_f, i_end_f |
|---|
| 6414 | |
|---|
| 6415 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
|---|
| 6416 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
|---|
| 6417 | vel = ru(i,k,j) |
|---|
| 6418 | cr = vel*dt/dx/mu |
|---|
| 6419 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
|---|
| 6420 | |
|---|
| 6421 | fqx( i,k,j ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
|---|
| 6422 | field(i ,k,j), field(i+1,k,j), vel ) |
|---|
| 6423 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
|---|
| 6424 | |
|---|
| 6425 | ENDDO |
|---|
| 6426 | ENDDO |
|---|
| 6427 | |
|---|
| 6428 | ! lower order fluxes close to boundaries (if not periodic or symmetric) |
|---|
| 6429 | |
|---|
| 6430 | IF( degrade_xs ) THEN |
|---|
| 6431 | |
|---|
| 6432 | IF( i_start == ids+1 ) THEN ! second order flux next to the boundary |
|---|
| 6433 | i = ids+1 |
|---|
| 6434 | DO k=kts,ktf |
|---|
| 6435 | |
|---|
| 6436 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
|---|
| 6437 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
|---|
| 6438 | vel = ru(i,k,j)/mu |
|---|
| 6439 | cr = vel*dt/dx |
|---|
| 6440 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
|---|
| 6441 | |
|---|
| 6442 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
|---|
| 6443 | *(field(i,k,j)+field(i-1,k,j)) |
|---|
| 6444 | |
|---|
| 6445 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
|---|
| 6446 | |
|---|
| 6447 | ENDDO |
|---|
| 6448 | ENDIF |
|---|
| 6449 | ENDIF |
|---|
| 6450 | |
|---|
| 6451 | IF( degrade_xe ) THEN |
|---|
| 6452 | IF( i_end == ide-2 ) THEN ! second order flux next to the boundary |
|---|
| 6453 | i = ide-1 |
|---|
| 6454 | DO k=kts,ktf |
|---|
| 6455 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
|---|
| 6456 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
|---|
| 6457 | vel = ru(i,k,j) |
|---|
| 6458 | cr = vel*dt/dx/mu |
|---|
| 6459 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
|---|
| 6460 | fqx(i,k,j) = 0.5*(ru(i,k,j)) & |
|---|
| 6461 | *(field(i,k,j)+field(i-1,k,j)) |
|---|
| 6462 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
|---|
| 6463 | |
|---|
| 6464 | ENDDO |
|---|
| 6465 | ENDIF |
|---|
| 6466 | ENDIF |
|---|
| 6467 | |
|---|
| 6468 | ENDDO ! enddo for outer J loop |
|---|
| 6469 | |
|---|
| 6470 | !--- end of 3rd order horizontal flux calculation |
|---|
| 6471 | |
|---|
| 6472 | |
|---|
| 6473 | ELSE IF( horz_order == 2 ) THEN |
|---|
| 6474 | |
|---|
| 6475 | IF( config_flags%periodic_x .or. & |
|---|
| 6476 | config_flags%symmetric_xs .or. & |
|---|
| 6477 | (its > ids) ) degrade_xs = .false. |
|---|
| 6478 | IF( config_flags%periodic_x .or. & |
|---|
| 6479 | config_flags%symmetric_xe .or. & |
|---|
| 6480 | (ite < ide-1) ) degrade_xe = .false. |
|---|
| 6481 | IF( config_flags%periodic_y .or. & |
|---|
| 6482 | config_flags%symmetric_ys .or. & |
|---|
| 6483 | (jts > jds) ) degrade_ys = .false. |
|---|
| 6484 | IF( config_flags%periodic_y .or. & |
|---|
| 6485 | config_flags%symmetric_ye .or. & |
|---|
| 6486 | (jte < jde-1) ) degrade_ye = .false. |
|---|
| 6487 | |
|---|
| 6488 | !-- y flux compute; these bounds are for periodic and sym b.c. |
|---|
| 6489 | |
|---|
| 6490 | ktf=MIN(kte,kde-1) |
|---|
| 6491 | i_start = its-1 |
|---|
| 6492 | i_end = MIN(ite,ide-1)+1 |
|---|
| 6493 | j_start = jts-1 |
|---|
| 6494 | j_end = MIN(jte,jde-1)+1 |
|---|
| 6495 | |
|---|
| 6496 | !-- modify loop bounds if open or specified |
|---|
| 6497 | |
|---|
| 6498 | IF(degrade_xs) i_start = its |
|---|
| 6499 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
|---|
| 6500 | IF(degrade_ys) j_start = MAX(jts,jds+1) |
|---|
| 6501 | IF(degrade_ye) j_end = MIN(jte,jde-2) |
|---|
| 6502 | |
|---|
| 6503 | ! compute fluxes, 2nd order, y flux |
|---|
| 6504 | |
|---|
| 6505 | DO j = j_start, j_end+1 |
|---|
| 6506 | DO k=kts,ktf |
|---|
| 6507 | DO i = i_start, i_end |
|---|
| 6508 | dy = 2./(msft(i,j)+msft(i,j-1))/rdy |
|---|
| 6509 | mu = 0.5*(mut(i,j)+mut(i,j-1)) |
|---|
| 6510 | vel = rv(i,k,j) |
|---|
| 6511 | cr = vel*dt/dy/mu |
|---|
| 6512 | fqyl(i,k,j) = mu*(dy/dt)*flux_upwind(field_old(i,k,j-1), field_old(i,k,j ), cr) |
|---|
| 6513 | |
|---|
| 6514 | fqy(i,k, j) = 0.5*rv(i,k,j)* & |
|---|
| 6515 | (field(i,k,j)+field(i,k,j-1)) |
|---|
| 6516 | |
|---|
| 6517 | fqy(i,k,j) = fqy(i,k,j) - fqyl(i,k,j) |
|---|
| 6518 | ENDDO |
|---|
| 6519 | ENDDO |
|---|
| 6520 | ENDDO |
|---|
| 6521 | |
|---|
| 6522 | ! next, x flux |
|---|
| 6523 | |
|---|
| 6524 | DO j = j_start, j_end |
|---|
| 6525 | DO k=kts,ktf |
|---|
| 6526 | DO i = i_start, i_end+1 |
|---|
| 6527 | dx = 2./(msft(i,j)+msft(i-1,j))/rdx |
|---|
| 6528 | mu = 0.5*(mut(i,j)+mut(i-1,j)) |
|---|
| 6529 | vel = ru(i,k,j) |
|---|
| 6530 | cr = vel*dt/dx/mu |
|---|
| 6531 | fqxl(i,k,j) = mu*(dx/dt)*flux_upwind(field_old(i-1,k,j), field_old(i,k,j ), cr) |
|---|
| 6532 | fqx( i,k,j ) = vel*flux3( field(i-2,k,j), field(i-1,k,j), & |
|---|
| 6533 | field(i ,k,j), field(i+1,k,j), & |
|---|
| 6534 | vel ) |
|---|
| 6535 | fqx(i,k,j) = fqx(i,k,j) - fqxl(i,k,j) |
|---|
| 6536 | ENDDO |
|---|
| 6537 | ENDDO |
|---|
| 6538 | ENDDO |
|---|
| 6539 | |
|---|
| 6540 | !--- end of 3nd order horizontal flux calculation |
|---|
| 6541 | |
|---|
| 6542 | ELSE |
|---|
| 6543 | |
|---|
| 6544 | WRITE ( wrf_err_message , * ) 'module_advect: advect_scalar_pd, h_order not known ',horz_order |
|---|
| 6545 | CALL wrf_error_fatal ( TRIM( wrf_err_message ) ) |
|---|
| 6546 | |
|---|
| 6547 | ENDIF horizontal_order_test |
|---|
| 6548 | |
|---|
| 6549 | ! pick up the rest of the horizontal radiation boundary conditions. |
|---|
| 6550 | ! (these are the computations that don't require 'cb'. |
|---|
| 6551 | ! first, set to index ranges |
|---|
| 6552 | |
|---|
| 6553 | i_start = its |
|---|
| 6554 | i_end = MIN(ite,ide-1) |
|---|
| 6555 | j_start = jts |
|---|
| 6556 | j_end = MIN(jte,jde-1) |
|---|
| 6557 | |
|---|
| 6558 | ! compute x (u) conditions for v, w, or scalar |
|---|
| 6559 | |
|---|
| 6560 | IF( (config_flags%open_xs) .and. (its == ids) ) THEN |
|---|
| 6561 | |
|---|
| 6562 | DO j = j_start, j_end |
|---|
| 6563 | DO k = kts, ktf |
|---|
| 6564 | ub = MIN( 0.5*(ru(its,k,j)+ru(its+1,k,j)), 0. ) |
|---|
| 6565 | tendency(its,k,j) = tendency(its,k,j) & |
|---|
| 6566 | - rdx*( & |
|---|
| 6567 | ub*( field_old(its+1,k,j) & |
|---|
| 6568 | - field_old(its ,k,j) ) + & |
|---|
| 6569 | field(its,k,j)*(ru(its+1,k,j)-ru(its,k,j)) & |
|---|
| 6570 | ) |
|---|
| 6571 | ENDDO |
|---|
| 6572 | ENDDO |
|---|
| 6573 | |
|---|
| 6574 | ENDIF |
|---|
| 6575 | |
|---|
| 6576 | IF( (config_flags%open_xe) .and. (ite == ide) ) THEN |
|---|
| 6577 | |
|---|
| 6578 | DO j = j_start, j_end |
|---|
| 6579 | DO k = kts, ktf |
|---|
| 6580 | ub = MAX( 0.5*(ru(ite-1,k,j)+ru(ite,k,j)), 0. ) |
|---|
| 6581 | tendency(i_end,k,j) = tendency(i_end,k,j) & |
|---|
| 6582 | - rdx*( & |
|---|
| 6583 | ub*( field_old(i_end ,k,j) & |
|---|
| 6584 | - field_old(i_end-1,k,j) ) + & |
|---|
| 6585 | field(i_end,k,j)*(ru(ite,k,j)-ru(ite-1,k,j)) & |
|---|
| 6586 | ) |
|---|
| 6587 | ENDDO |
|---|
| 6588 | ENDDO |
|---|
| 6589 | |
|---|
| 6590 | ENDIF |
|---|
| 6591 | |
|---|
| 6592 | IF( (config_flags%open_ys) .and. (jts == jds) ) THEN |
|---|
| 6593 | |
|---|
| 6594 | DO i = i_start, i_end |
|---|
| 6595 | DO k = kts, ktf |
|---|
| 6596 | vb = MIN( 0.5*(rv(i,k,jts)+rv(i,k,jts+1)), 0. ) |
|---|
| 6597 | tendency(i,k,jts) = tendency(i,k,jts) & |
|---|
| 6598 | - rdy*( & |
|---|
| 6599 | vb*( field_old(i,k,jts+1) & |
|---|
| 6600 | - field_old(i,k,jts ) ) + & |
|---|
| 6601 | field(i,k,jts)*(rv(i,k,jts+1)-rv(i,k,jts)) & |
|---|
| 6602 | ) |
|---|
| 6603 | ENDDO |
|---|
| 6604 | ENDDO |
|---|
| 6605 | |
|---|
| 6606 | ENDIF |
|---|
| 6607 | |
|---|
| 6608 | IF( (config_flags%open_ye) .and. (jte == jde)) THEN |
|---|
| 6609 | |
|---|
| 6610 | DO i = i_start, i_end |
|---|
| 6611 | DO k = kts, ktf |
|---|
| 6612 | vb = MAX( 0.5*(rv(i,k,jte-1)+rv(i,k,jte)), 0. ) |
|---|
| 6613 | tendency(i,k,j_end) = tendency(i,k,j_end) & |
|---|
| 6614 | - rdy*( & |
|---|
| 6615 | vb*( field_old(i,k,j_end ) & |
|---|
| 6616 | - field_old(i,k,j_end-1) ) + & |
|---|
| 6617 | field(i,k,j_end)*(rv(i,k,jte)-rv(i,k,jte-1)) & |
|---|
| 6618 | ) |
|---|
| 6619 | ENDDO |
|---|
| 6620 | ENDDO |
|---|
| 6621 | |
|---|
| 6622 | ENDIF |
|---|
| 6623 | |
|---|
| 6624 | !-------------------- vertical advection |
|---|
| 6625 | |
|---|
| 6626 | !-- loop bounds for periodic or sym conditions |
|---|
| 6627 | |
|---|
| 6628 | i_start = its-1 |
|---|
| 6629 | i_end = MIN(ite,ide-1)+1 |
|---|
| 6630 | j_start = jts-1 |
|---|
| 6631 | j_end = MIN(jte,jde-1)+1 |
|---|
| 6632 | |
|---|
| 6633 | !-- loop bounds for open or specified conditions |
|---|
| 6634 | |
|---|
| 6635 | IF(degrade_xs) i_start = its |
|---|
| 6636 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
|---|
| 6637 | IF(degrade_ys) j_start = jts |
|---|
| 6638 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
|---|
| 6639 | |
|---|
| 6640 | vert_order_test : IF (vert_order == 6) THEN |
|---|
| 6641 | |
|---|
| 6642 | DO j = j_start, j_end |
|---|
| 6643 | |
|---|
| 6644 | DO i = i_start, i_end |
|---|
| 6645 | fqz(i,1,j) = 0. |
|---|
| 6646 | fqzl(i,1,j) = 0. |
|---|
| 6647 | fqz(i,kde,j) = 0. |
|---|
| 6648 | fqzl(i,kde,j) = 0. |
|---|
| 6649 | ENDDO |
|---|
| 6650 | |
|---|
| 6651 | DO k=kts+3,ktf-2 |
|---|
| 6652 | DO i = i_start, i_end |
|---|
| 6653 | dz = 2./(rdzw(k)+rdzw(k-1)) |
|---|
| 6654 | mu = 0.5*(mut(i,j)+mut(i,j)) |
|---|
| 6655 | vel = rom(i,k,j) |
|---|
| 6656 | cr = vel*dt/dz/mu |
|---|
| 6657 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
|---|
| 6658 | |
|---|
| 6659 | fqz(i,k,j) = vel*flux6( field(i,k-3,j), field(i,k-2,j), field(i,k-1,j), & |
|---|
| 6660 | field(i,k ,j), field(i,k+1,j), field(i,k+2,j), -vel ) |
|---|
| 6661 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
|---|
| 6662 | ENDDO |
|---|
| 6663 | ENDDO |
|---|
| 6664 | |
|---|
| 6665 | DO i = i_start, i_end |
|---|
| 6666 | |
|---|
| 6667 | k=kts+1 |
|---|
| 6668 | dz = 2./(rdzw(k)+rdzw(k-1)) |
|---|
| 6669 | mu = 0.5*(mut(i,j)+mut(i,j)) |
|---|
| 6670 | vel = rom(i,k,j) |
|---|
| 6671 | cr = vel*dt/dz/mu |
|---|
| 6672 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
|---|
| 6673 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 6674 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
|---|
| 6675 | |
|---|
| 6676 | k=kts+2 |
|---|
| 6677 | dz = 2./(rdzw(k)+rdzw(k-1)) |
|---|
| 6678 | mu = 0.5*(mut(i,j)+mut(i,j)) |
|---|
| 6679 | vel = rom(i,k,j) |
|---|
| 6680 | cr = vel*dt/dz/mu |
|---|
| 6681 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
|---|
| 6682 | |
|---|
| 6683 | fqz(i,k,j) = vel*flux4( & |
|---|
| 6684 | field(i,k-2,j), field(i,k-1,j), & |
|---|
| 6685 | field(i,k ,j), field(i,k+1,j), -vel ) |
|---|
| 6686 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
|---|
| 6687 | |
|---|
| 6688 | k=ktf-1 |
|---|
| 6689 | dz = 2./(rdzw(k)+rdzw(k-1)) |
|---|
| 6690 | mu = 0.5*(mut(i,j)+mut(i,j)) |
|---|
| 6691 | vel = rom(i,k,j) |
|---|
| 6692 | cr = vel*dt/dz/mu |
|---|
| 6693 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
|---|
| 6694 | |
|---|
| 6695 | fqz(i,k,j) = vel*flux4( & |
|---|
| 6696 | field(i,k-2,j), field(i,k-1,j), & |
|---|
| 6697 | field(i,k ,j), field(i,k+1,j), -vel ) |
|---|
| 6698 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
|---|
| 6699 | |
|---|
| 6700 | k=ktf |
|---|
| 6701 | dz = 2./(rdzw(k)+rdzw(k-1)) |
|---|
| 6702 | mu = 0.5*(mut(i,j)+mut(i,j)) |
|---|
| 6703 | vel = rom(i,k,j) |
|---|
| 6704 | cr = vel*dt/dz/mu |
|---|
| 6705 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
|---|
| 6706 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 6707 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
|---|
| 6708 | |
|---|
| 6709 | ENDDO |
|---|
| 6710 | |
|---|
| 6711 | ENDDO |
|---|
| 6712 | |
|---|
| 6713 | ELSE IF (vert_order == 5) THEN |
|---|
| 6714 | |
|---|
| 6715 | DO j = j_start, j_end |
|---|
| 6716 | |
|---|
| 6717 | DO i = i_start, i_end |
|---|
| 6718 | fqz(i,1,j) = 0. |
|---|
| 6719 | fqzl(i,1,j) = 0. |
|---|
| 6720 | fqz(i,kde,j) = 0. |
|---|
| 6721 | fqzl(i,kde,j) = 0. |
|---|
| 6722 | ENDDO |
|---|
| 6723 | |
|---|
| 6724 | DO k=kts+3,ktf-2 |
|---|
| 6725 | DO i = i_start, i_end |
|---|
| 6726 | dz = 2./(rdzw(k)+rdzw(k-1)) |
|---|
| 6727 | mu = 0.5*(mut(i,j)+mut(i,j)) |
|---|
| 6728 | vel = rom(i,k,j) |
|---|
| 6729 | cr = vel*dt/dz/mu |
|---|
| 6730 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
|---|
| 6731 | |
|---|
| 6732 | fqz(i,k,j) = vel*flux5( field(i,k-3,j), field(i,k-2,j), field(i,k-1,j), & |
|---|
| 6733 | field(i,k ,j), field(i,k+1,j), field(i,k+2,j), -vel ) |
|---|
| 6734 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
|---|
| 6735 | ENDDO |
|---|
| 6736 | ENDDO |
|---|
| 6737 | |
|---|
| 6738 | DO i = i_start, i_end |
|---|
| 6739 | |
|---|
| 6740 | k=kts+1 |
|---|
| 6741 | dz = 2./(rdzw(k)+rdzw(k-1)) |
|---|
| 6742 | mu = 0.5*(mut(i,j)+mut(i,j)) |
|---|
| 6743 | vel = rom(i,k,j) |
|---|
| 6744 | cr = vel*dt/dz/mu |
|---|
| 6745 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
|---|
| 6746 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 6747 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
|---|
| 6748 | |
|---|
| 6749 | k=kts+2 |
|---|
| 6750 | dz = 2./(rdzw(k)+rdzw(k-1)) |
|---|
| 6751 | mu = 0.5*(mut(i,j)+mut(i,j)) |
|---|
| 6752 | vel = rom(i,k,j) |
|---|
| 6753 | cr = vel*dt/dz/mu |
|---|
| 6754 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
|---|
| 6755 | |
|---|
| 6756 | fqz(i,k,j) = vel*flux3( & |
|---|
| 6757 | field(i,k-2,j), field(i,k-1,j), & |
|---|
| 6758 | field(i,k ,j), field(i,k+1,j), -vel ) |
|---|
| 6759 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
|---|
| 6760 | |
|---|
| 6761 | k=ktf-1 |
|---|
| 6762 | dz = 2./(rdzw(k)+rdzw(k-1)) |
|---|
| 6763 | mu = 0.5*(mut(i,j)+mut(i,j)) |
|---|
| 6764 | vel = rom(i,k,j) |
|---|
| 6765 | cr = vel*dt/dz/mu |
|---|
| 6766 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
|---|
| 6767 | |
|---|
| 6768 | fqz(i,k,j) = vel*flux3( & |
|---|
| 6769 | field(i,k-2,j), field(i,k-1,j), & |
|---|
| 6770 | field(i,k ,j), field(i,k+1,j), -vel ) |
|---|
| 6771 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
|---|
| 6772 | |
|---|
| 6773 | k=ktf |
|---|
| 6774 | dz = 2./(rdzw(k)+rdzw(k-1)) |
|---|
| 6775 | mu = 0.5*(mut(i,j)+mut(i,j)) |
|---|
| 6776 | vel = rom(i,k,j) |
|---|
| 6777 | cr = vel*dt/dz/mu |
|---|
| 6778 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
|---|
| 6779 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 6780 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
|---|
| 6781 | |
|---|
| 6782 | ENDDO |
|---|
| 6783 | |
|---|
| 6784 | ENDDO |
|---|
| 6785 | |
|---|
| 6786 | ELSE IF (vert_order == 4) THEN |
|---|
| 6787 | |
|---|
| 6788 | DO j = j_start, j_end |
|---|
| 6789 | |
|---|
| 6790 | DO i = i_start, i_end |
|---|
| 6791 | fqz(i,1,j) = 0. |
|---|
| 6792 | fqzl(i,1,j) = 0. |
|---|
| 6793 | fqz(i,kde,j) = 0. |
|---|
| 6794 | fqzl(i,kde,j) = 0. |
|---|
| 6795 | ENDDO |
|---|
| 6796 | |
|---|
| 6797 | DO k=kts+2,ktf-1 |
|---|
| 6798 | DO i = i_start, i_end |
|---|
| 6799 | |
|---|
| 6800 | dz = 2./(rdzw(k)+rdzw(k-1)) |
|---|
| 6801 | mu = 0.5*(mut(i,j)+mut(i,j)) |
|---|
| 6802 | vel = rom(i,k,j) |
|---|
| 6803 | cr = vel*dt/dz/mu |
|---|
| 6804 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
|---|
| 6805 | |
|---|
| 6806 | fqz(i,k,j) = vel*flux4( & |
|---|
| 6807 | field(i,k-2,j), field(i,k-1,j), & |
|---|
| 6808 | field(i,k ,j), field(i,k+1,j), -vel ) |
|---|
| 6809 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
|---|
| 6810 | ENDDO |
|---|
| 6811 | ENDDO |
|---|
| 6812 | |
|---|
| 6813 | DO i = i_start, i_end |
|---|
| 6814 | |
|---|
| 6815 | k=kts+1 |
|---|
| 6816 | dz = 2./(rdzw(k)+rdzw(k-1)) |
|---|
| 6817 | mu = 0.5*(mut(i,j)+mut(i,j)) |
|---|
| 6818 | vel = rom(i,k,j) |
|---|
| 6819 | cr = vel*dt/dz/mu |
|---|
| 6820 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
|---|
| 6821 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 6822 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
|---|
| 6823 | |
|---|
| 6824 | k=ktf |
|---|
| 6825 | dz = 2./(rdzw(k)+rdzw(k-1)) |
|---|
| 6826 | mu = 0.5*(mut(i,j)+mut(i,j)) |
|---|
| 6827 | vel = rom(i,k,j) |
|---|
| 6828 | cr = vel*dt/dz/mu |
|---|
| 6829 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
|---|
| 6830 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 6831 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
|---|
| 6832 | |
|---|
| 6833 | ENDDO |
|---|
| 6834 | |
|---|
| 6835 | ENDDO |
|---|
| 6836 | |
|---|
| 6837 | ELSE IF (vert_order == 3) THEN |
|---|
| 6838 | |
|---|
| 6839 | DO j = j_start, j_end |
|---|
| 6840 | |
|---|
| 6841 | DO i = i_start, i_end |
|---|
| 6842 | fqz(i,1,j) = 0. |
|---|
| 6843 | fqzl(i,1,j) = 0. |
|---|
| 6844 | fqz(i,kde,j) = 0. |
|---|
| 6845 | fqzl(i,kde,j) = 0. |
|---|
| 6846 | ENDDO |
|---|
| 6847 | |
|---|
| 6848 | DO k=kts+2,ktf-1 |
|---|
| 6849 | DO i = i_start, i_end |
|---|
| 6850 | |
|---|
| 6851 | dz = 2./(rdzw(k)+rdzw(k-1)) |
|---|
| 6852 | mu = 0.5*(mut(i,j)+mut(i,j)) |
|---|
| 6853 | vel = rom(i,k,j) |
|---|
| 6854 | cr = vel*dt/dz/mu |
|---|
| 6855 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
|---|
| 6856 | |
|---|
| 6857 | fqz(i,k,j) = vel*flux3( & |
|---|
| 6858 | field(i,k-2,j), field(i,k-1,j), & |
|---|
| 6859 | field(i,k ,j), field(i,k+1,j), -vel ) |
|---|
| 6860 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
|---|
| 6861 | ENDDO |
|---|
| 6862 | ENDDO |
|---|
| 6863 | |
|---|
| 6864 | DO i = i_start, i_end |
|---|
| 6865 | |
|---|
| 6866 | k=kts+1 |
|---|
| 6867 | dz = 2./(rdzw(k)+rdzw(k-1)) |
|---|
| 6868 | mu = 0.5*(mut(i,j)+mut(i,j)) |
|---|
| 6869 | vel = rom(i,k,j) |
|---|
| 6870 | cr = vel*dt/dz/mu |
|---|
| 6871 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
|---|
| 6872 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 6873 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
|---|
| 6874 | |
|---|
| 6875 | k=ktf |
|---|
| 6876 | dz = 2./(rdzw(k)+rdzw(k-1)) |
|---|
| 6877 | mu = 0.5*(mut(i,j)+mut(i,j)) |
|---|
| 6878 | vel = rom(i,k,j) |
|---|
| 6879 | cr = vel*dt/dz/mu |
|---|
| 6880 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
|---|
| 6881 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 6882 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
|---|
| 6883 | |
|---|
| 6884 | ENDDO |
|---|
| 6885 | |
|---|
| 6886 | ENDDO |
|---|
| 6887 | |
|---|
| 6888 | ELSE IF (vert_order == 2) THEN |
|---|
| 6889 | |
|---|
| 6890 | DO j = j_start, j_end |
|---|
| 6891 | |
|---|
| 6892 | DO i = i_start, i_end |
|---|
| 6893 | fqz(i,1,j) = 0. |
|---|
| 6894 | fqzl(i,1,j) = 0. |
|---|
| 6895 | fqz(i,kde,j) = 0. |
|---|
| 6896 | fqzl(i,kde,j) = 0. |
|---|
| 6897 | ENDDO |
|---|
| 6898 | |
|---|
| 6899 | DO k=kts+1,ktf |
|---|
| 6900 | DO i = i_start, i_end |
|---|
| 6901 | |
|---|
| 6902 | dz = 2./(rdzw(k)+rdzw(k-1)) |
|---|
| 6903 | mu = 0.5*(mut(i,j)+mut(i,j)) |
|---|
| 6904 | vel = rom(i,k,j) |
|---|
| 6905 | cr = vel*dt/dz/mu |
|---|
| 6906 | fqzl(i,k,j) = mu*(dz/dt)*flux_upwind(field_old(i,k-1,j), field_old(i,k,j ), cr) |
|---|
| 6907 | fqz(i,k,j)=rom(i,k,j)*(fzm(k)*field(i,k,j)+fzp(k)*field(i,k-1,j)) |
|---|
| 6908 | fqz(i,k,j) = fqz(i,k,j) - fqzl(i,k,j) |
|---|
| 6909 | |
|---|
| 6910 | ENDDO |
|---|
| 6911 | ENDDO |
|---|
| 6912 | |
|---|
| 6913 | ENDDO |
|---|
| 6914 | |
|---|
| 6915 | ELSE |
|---|
| 6916 | |
|---|
| 6917 | WRITE (wrf_err_message,*) ' advect_scalar_pd, v_order not known ',vert_order |
|---|
| 6918 | CALL wrf_error_fatal ( wrf_err_message ) |
|---|
| 6919 | |
|---|
| 6920 | ENDIF vert_order_test |
|---|
| 6921 | |
|---|
| 6922 | IF (pd_limit) THEN |
|---|
| 6923 | |
|---|
| 6924 | ! positive definite filter |
|---|
| 6925 | |
|---|
| 6926 | i_start = its-1 |
|---|
| 6927 | i_end = MIN(ite,ide-1)+1 |
|---|
| 6928 | j_start = jts-1 |
|---|
| 6929 | j_end = MIN(jte,jde-1)+1 |
|---|
| 6930 | |
|---|
| 6931 | !-- loop bounds for open or specified conditions |
|---|
| 6932 | |
|---|
| 6933 | IF(degrade_xs) i_start = its |
|---|
| 6934 | IF(degrade_xe) i_end = MIN(ite,ide-1) |
|---|
| 6935 | IF(degrade_ys) j_start = jts |
|---|
| 6936 | IF(degrade_ye) j_end = MIN(jte,jde-1) |
|---|
| 6937 | |
|---|
| 6938 | IF(config_flags%specified .or. config_flags%nested) THEN |
|---|
| 6939 | IF (degrade_xs) i_start = MAX(its,ids+1) |
|---|
| 6940 | IF (degrade_xe) i_end = MIN(ite,ide-2) |
|---|
| 6941 | IF (degrade_ys) j_start = MAX(jts,jds+1) |
|---|
| 6942 | IF (degrade_ye) j_end = MIN(jte,jde-2) |
|---|
| 6943 | END IF |
|---|
| 6944 | |
|---|
| 6945 | IF(config_flags%open_xs) THEN |
|---|
| 6946 | IF (degrade_xs) i_start = MAX(its,ids+1) |
|---|
| 6947 | END IF |
|---|
| 6948 | IF(config_flags%open_xe) THEN |
|---|
| 6949 | IF (degrade_xe) i_end = MIN(ite,ide-2) |
|---|
| 6950 | END IF |
|---|
| 6951 | IF(config_flags%open_ys) THEN |
|---|
| 6952 | IF (degrade_ys) j_start = MAX(jts,jds+1) |
|---|
| 6953 | END IF |
|---|
| 6954 | IF(config_flags%open_ye) THEN |
|---|
| 6955 | IF (degrade_ye) j_end = MIN(jte,jde-2) |
|---|
| 6956 | END IF |
|---|
| 6957 | |
|---|
| 6958 | !-- here is the limiter... |
|---|
| 6959 | |
|---|
| 6960 | DO j=j_start, j_end |
|---|
| 6961 | DO k=kts, ktf |
|---|
| 6962 | DO i=i_start, i_end |
|---|
| 6963 | |
|---|
| 6964 | ph_low = (mub(i,j)+mu_old(i,j))*field_old(i,k,j) & |
|---|
| 6965 | - dt*( msft(i,j)*( rdx*(fqxl(i+1,k,j)-fqxl(i,k,j)) & |
|---|
| 6966 | +rdy*(fqyl(i,k,j+1)-fqyl(i,k,j)) ) & |
|---|
| 6967 | +rdzw(k)*(fqzl(i,k+1,j)-fqzl(i,k,j)) ) |
|---|
| 6968 | |
|---|
| 6969 | flux_out = dt*(msft(i,j)*( rdx*( max(0.,fqx (i+1,k,j)) & |
|---|
| 6970 | -min(0.,fqx (i ,k,j)) ) & |
|---|
| 6971 | +rdy*( max(0.,fqy (i,k,j+1)) & |
|---|
| 6972 | -min(0.,fqy (i,k,j )) ) ) & |
|---|
| 6973 | +rdzw(k)*( min(0.,fqz (i,k+1,j)) & |
|---|
| 6974 | -max(0.,fqz (i,k ,j)) ) ) |
|---|
| 6975 | |
|---|
| 6976 | IF( flux_out .gt. ph_low ) THEN |
|---|
| 6977 | |
|---|
| 6978 | scale = max(0.,ph_low/(flux_out+eps)) |
|---|
| 6979 | IF( fqx (i+1,k,j) .gt. 0.) fqx(i+1,k,j) = scale*fqx(i+1,k,j) |
|---|
| 6980 | IF( fqx (i ,k,j) .lt. 0.) fqx(i ,k,j) = scale*fqx(i ,k,j) |
|---|
| 6981 | IF( fqy (i,k,j+1) .gt. 0.) fqy(i,k,j+1) = scale*fqy(i,k,j+1) |
|---|
| 6982 | IF( fqy (i,k,j ) .lt. 0.) fqy(i,k,j ) = scale*fqy(i,k,j ) |
|---|
| 6983 | ! note: z flux is opposite sign in mass coordinate because |
|---|
| 6984 | ! vertical coordinate decreases with increasing k |
|---|
| 6985 | IF( fqz (i,k+1,j) .lt. 0.) fqz(i,k+1,j) = scale*fqz(i,k+1,j) |
|---|
| 6986 | IF( fqz (i,k ,j) .gt. 0.) fqz(i,k ,j) = scale*fqz(i,k ,j) |
|---|
| 6987 | |
|---|
| 6988 | END IF |
|---|
| 6989 | |
|---|
| 6990 | ENDDO |
|---|
| 6991 | ENDDO |
|---|
| 6992 | ENDDO |
|---|
| 6993 | |
|---|
| 6994 | END IF |
|---|
| 6995 | |
|---|
| 6996 | ! add in the pd-limited flux divergence |
|---|
| 6997 | |
|---|
| 6998 | i_start = its |
|---|
| 6999 | i_end = MIN(ite,ide-1) |
|---|
| 7000 | j_start = jts |
|---|
| 7001 | j_end = MIN(jte,jde-1) |
|---|
| 7002 | |
|---|
| 7003 | DO j = j_start, j_end |
|---|
| 7004 | DO k = kts, ktf |
|---|
| 7005 | DO i = i_start, i_end |
|---|
| 7006 | |
|---|
| 7007 | tendency (i,k,j) = tendency(i,k,j) & |
|---|
| 7008 | -rdzw(k)*( fqz (i,k+1,j)-fqz (i,k,j) & |
|---|
| 7009 | +fqzl(i,k+1,j)-fqzl(i,k,j)) |
|---|
| 7010 | |
|---|
| 7011 | ENDDO |
|---|
| 7012 | ENDDO |
|---|
| 7013 | ENDDO |
|---|
| 7014 | |
|---|
| 7015 | ! x flux divergence |
|---|
| 7016 | ! |
|---|
| 7017 | IF(degrade_xs) i_start = i_start + 1 |
|---|
| 7018 | IF(degrade_xe) i_end = i_end - 1 |
|---|
| 7019 | |
|---|
| 7020 | DO j = j_start, j_end |
|---|
| 7021 | DO k = kts, ktf |
|---|
| 7022 | DO i = i_start, i_end |
|---|
| 7023 | |
|---|
| 7024 | tendency (i,k,j) = tendency(i,k,j) & |
|---|
| 7025 | - msft(i,j)*( rdx*( fqx (i+1,k,j)-fqx (i,k,j) & |
|---|
| 7026 | +fqxl(i+1,k,j)-fqxl(i,k,j)) ) |
|---|
| 7027 | |
|---|
| 7028 | ENDDO |
|---|
| 7029 | ENDDO |
|---|
| 7030 | ENDDO |
|---|
| 7031 | |
|---|
| 7032 | ! y flux divergence |
|---|
| 7033 | ! |
|---|
| 7034 | i_start = its |
|---|
| 7035 | i_end = MIN(ite,ide-1) |
|---|
| 7036 | IF(degrade_ys) j_start = j_start + 1 |
|---|
| 7037 | IF(degrade_ye) j_end = j_end - 1 |
|---|
| 7038 | |
|---|
| 7039 | DO j = j_start, j_end |
|---|
| 7040 | DO k = kts, ktf |
|---|
| 7041 | DO i = i_start, i_end |
|---|
| 7042 | |
|---|
| 7043 | tendency (i,k,j) = tendency(i,k,j) & |
|---|
| 7044 | - msft(i,j)*( rdy*( fqy (i,k,j+1)-fqy (i,k,j) & |
|---|
| 7045 | +fqyl(i,k,j+1)-fqyl(i,k,j)) ) |
|---|
| 7046 | |
|---|
| 7047 | ENDDO |
|---|
| 7048 | ENDDO |
|---|
| 7049 | ENDDO |
|---|
| 7050 | |
|---|
| 7051 | END SUBROUTINE advect_scalar_pd |
|---|
| 7052 | |
|---|
| 7053 | !---------------------------------------------------------------- |
|---|
| 7054 | |
|---|
| 7055 | END MODULE module_advect_em |
|---|
| 7056 | |
|---|