[3651] | 1 | #!/usr/bin/python3 |
---|
| 2 | from numpy import * |
---|
| 3 | import numpy as np |
---|
| 4 | import matplotlib.pyplot as mpl |
---|
| 5 | from matplotlib.cm import get_cmap |
---|
| 6 | import pylab |
---|
| 7 | from matplotlib import ticker |
---|
| 8 | import matplotlib.colors as colors |
---|
| 9 | import datetime |
---|
| 10 | from matplotlib import pyplot |
---|
| 11 | |
---|
[3664] | 12 | |
---|
[3651] | 13 | ###################################################################### |
---|
[3664] | 14 | # Input Parameters |
---|
| 15 | ###################################################################### |
---|
| 16 | input_file = 'z2sig.def_47' |
---|
| 17 | ps=1.1 # in Pa |
---|
| 18 | pa=0.5 |
---|
| 19 | preff=2 |
---|
| 20 | |
---|
[3677] | 21 | # first and last level difference in m |
---|
| 22 | l0=0.0025 |
---|
| 23 | ln=4.6 |
---|
| 24 | |
---|
[3664] | 25 | # New levels |
---|
| 26 | mynbl=201 |
---|
| 27 | n=float(mynbl) |
---|
| 28 | |
---|
| 29 | plot = True |
---|
| 30 | # plot = False |
---|
| 31 | |
---|
| 32 | |
---|
| 33 | ###################################################################### |
---|
[3651] | 34 | # Fonction read file |
---|
| 35 | ###################################################################### |
---|
| 36 | def readfile(name): |
---|
| 37 | # test reading lire texte txt |
---|
| 38 | myfile = open(name, 'r') |
---|
| 39 | mylines=myfile.readlines() |
---|
| 40 | nbline=size(mylines) |
---|
| 41 | nbcolumn=len(mylines[0].split()) |
---|
| 42 | print('nbline, nbcol:',nbline, nbcolumn) |
---|
| 43 | data=np.zeros(nbline-1,dtype='f') |
---|
| 44 | i=0 |
---|
[3664] | 45 | nbl = 0 |
---|
[3651] | 46 | for line in mylines: |
---|
| 47 | s=str.split(line) |
---|
| 48 | if i==0: |
---|
| 49 | hh=float(s[0]) |
---|
| 50 | else: |
---|
| 51 | data[i-1]=float(s[0]) |
---|
[3664] | 52 | nbl = nbl+1 |
---|
[3651] | 53 | i=i+1 |
---|
[3664] | 54 | return data,hh,nbl |
---|
[3651] | 55 | |
---|
[3664] | 56 | data,hh,nbl = readfile(input_file) |
---|
[3651] | 57 | |
---|
| 58 | ##################### |
---|
| 59 | # Get sigma levels |
---|
| 60 | ##################### |
---|
| 61 | sig=np.ones(nbl,dtype='f') |
---|
| 62 | for i in range(nbl-1): |
---|
| 63 | sig[i+1]=0.5*(exp(-data[i+1]/hh)+exp(-data[i]/hh)) |
---|
| 64 | |
---|
| 65 | ##################### |
---|
| 66 | # Get non-hybrid pressure levels |
---|
| 67 | ##################### |
---|
| 68 | ap=0 |
---|
| 69 | bp=sig |
---|
| 70 | pp=ap+bp*1.1 |
---|
| 71 | |
---|
| 72 | ##################### |
---|
| 73 | # Get hybrid pressure levels |
---|
| 74 | ##################### |
---|
| 75 | def sig_hybrid(sig,pa,preff): |
---|
| 76 | #c Subroutine utilisee pour calculer des valeurs de sigma modifie |
---|
| 77 | #c pour conserver les coordonnees verticales decrites dans |
---|
| 78 | #c esasig.def/z2sig.def lors du passage en coordonnees hybrides |
---|
| 79 | #c F. Forget 2002 |
---|
| 80 | #c Connaissant sig (niveaux "sigma" ou on veut mettre les couches) |
---|
| 81 | #c L'objectif est de calculer newsig telle que |
---|
| 82 | #c (1 -pa/preff)*exp(1-1./newsig**2)+(pa/preff)*newsig = sig |
---|
| 83 | #c Cela ne se resoud pas analytiquement: |
---|
| 84 | #c => on resoud par iterration bourrine |
---|
| 85 | #c ---------------------------------------------- |
---|
| 86 | #c Information : where exp(1-1./x**2) become << x |
---|
| 87 | #c x exp(1-1./x**2) /x |
---|
| 88 | #c 1 1 |
---|
| 89 | #c 0.68 0.5 |
---|
| 90 | #c 0.391 1.E-2 |
---|
| 91 | #c => on peut utiliser newsig = sig*preff/pa si sig*preff/pa < 0.25 |
---|
| 92 | |
---|
| 93 | newsig = sig |
---|
| 94 | x1=0 |
---|
| 95 | x2=1 |
---|
| 96 | if (sig>=1): |
---|
| 97 | newsig = sig |
---|
| 98 | elif (sig*preff/pa>=0.25): |
---|
| 99 | for j in range(9999): # nombre d'iteration max |
---|
| 100 | F=((1-pa/preff)*exp(1-1./newsig**2)+(pa/preff)*newsig)/sig |
---|
| 101 | if (F>1): |
---|
| 102 | x2 = newsig |
---|
| 103 | newsig=(x1+newsig)*0.5 |
---|
| 104 | else: |
---|
| 105 | x1=newsig |
---|
| 106 | newsig=(x2+newsig)*0.5 |
---|
| 107 | #Test : on arete lorsque on approxime sig a moins de 0.01 m pres |
---|
| 108 | #(en pseudo altiude) : |
---|
| 109 | #if (abs(10.*log(F))<1.e-5): |
---|
| 110 | # break |
---|
| 111 | |
---|
| 112 | else: # if (sig*preff/pa.le.0.25) |
---|
| 113 | newsig= sig*preff/pa |
---|
| 114 | |
---|
| 115 | return newsig |
---|
| 116 | #---------------------------------- |
---|
| 117 | |
---|
| 118 | # hybrid pressure: |
---|
| 119 | nsig=np.zeros(nbl,dtype='f') |
---|
| 120 | for i in range(nbl): |
---|
| 121 | nsig[i]=sig_hybrid(sig[i],pa,preff) |
---|
| 122 | |
---|
| 123 | bps=exp(1-1/(nsig)**2) |
---|
| 124 | aps=pa*(nsig-bps) |
---|
| 125 | |
---|
| 126 | pps=aps+bps*ps |
---|
| 127 | |
---|
| 128 | ##################### |
---|
| 129 | # Get Pseudo altitude |
---|
| 130 | ##################### |
---|
| 131 | # non hybrid |
---|
| 132 | ph=-hh*log(pp/ps) |
---|
| 133 | dzph=-(ph[0:-1]-ph[1:]) |
---|
| 134 | # hybrid |
---|
| 135 | phs=-hh*log(pps/ps) |
---|
| 136 | dzphs=-(phs[0:-1]-phs[1:]) |
---|
| 137 | |
---|
| 138 | ##################### |
---|
| 139 | # New choice delta-zh |
---|
| 140 | ##################### |
---|
| 141 | myclev=np.linspace(1,mynbl,mynbl) |
---|
| 142 | xx=myclev[0:mynbl-1] # xaxis for layer thickness |
---|
| 143 | xx1=myclev[0:mynbl] |
---|
| 144 | # Coefficient for the exp function |
---|
| 145 | c=0.11 |
---|
| 146 | a=1/n*(np.log(ln/c)-np.log(l0/c)) |
---|
| 147 | b=-1/a*np.log(l0/c) |
---|
| 148 | # Dz difference altitude between 2 layers : |
---|
| 149 | mydz=exp(a*(xx-b))*c |
---|
| 150 | |
---|
| 151 | # New pseudo altitude myph |
---|
| 152 | myph=np.zeros(mynbl,dtype='f') |
---|
| 153 | myph[0]=mydz[0] |
---|
| 154 | print(myph[0]) |
---|
| 155 | for i in range(mynbl-1): |
---|
| 156 | myph[i+1]=mydz[i]+myph[i] |
---|
| 157 | print(myph[i+1]) |
---|
| 158 | |
---|
| 159 | to_file = np.concatenate([[hh], myph]) |
---|
| 160 | output = f"z2sig.def_{mynbl}" |
---|
| 161 | np.savetxt(output,to_file, fmt="%g") |
---|
| 162 | print(f"Saved to {output}") |
---|
| 163 | |
---|
| 164 | # New Ps levels |
---|
| 165 | mypp=ps*exp(-myph/hh) |
---|
| 166 | |
---|
| 167 | |
---|
| 168 | if plot: |
---|
[3664] | 169 | clev=np.linspace(1,nbl,nbl) |
---|
[3651] | 170 | ### Plot pressure levels |
---|
| 171 | mpl.figure(figsize=(50/2.54, 30/2.54),facecolor='w') |
---|
| 172 | ax=mpl.subplot(131) |
---|
| 173 | mpl.plot(clev,pp,'k-',marker='*',label='P ini') |
---|
| 174 | mpl.plot(clev,pps,'r-',marker='*',label='P ini hybrid') |
---|
| 175 | mpl.plot(myclev,mypp,'b-',marker='*',label='P new') |
---|
| 176 | mpl.gca().invert_yaxis() |
---|
| 177 | pyplot.yscale('log') |
---|
| 178 | mpl.grid() |
---|
| 179 | |
---|
| 180 | ### Plot difference altitude between 2 layers |
---|
| 181 | ax=mpl.subplot(132) |
---|
| 182 | mpl.plot(clev[0:nbl-1],dzph,'k-',marker='*',label='dz ini') |
---|
| 183 | mpl.plot(clev[0:nbl-1],dzphs,'r-',marker='*',label='dz ini hybrid') |
---|
| 184 | mpl.plot(xx,mydz,'b-',marker='*',label='dz new') |
---|
| 185 | pyplot.yscale('log') |
---|
| 186 | mpl.grid() |
---|
| 187 | |
---|
| 188 | ### pseudo altitude |
---|
| 189 | ax=mpl.subplot(133) |
---|
| 190 | mpl.plot(clev[0:nbl],ph,'k-',marker='*',label='sig ini') |
---|
| 191 | mpl.plot(clev[0:nbl],phs,'r-',marker='*',label='sig ini hybrid') |
---|
| 192 | mpl.plot(xx1,myph,'b-',marker='*',label='sig new') |
---|
| 193 | #pyplot.yscale('log') |
---|
| 194 | mpl.grid() |
---|
| 195 | |
---|
| 196 | mpl.show() |
---|
| 197 | |
---|
| 198 | |
---|
| 199 | |
---|
| 200 | |
---|