1 | ############################################### |
---|
2 | ## PLANETOPLOT ## |
---|
3 | ## --> PPCOMPUTE ## |
---|
4 | ############################################### |
---|
5 | # python built-in librairies |
---|
6 | import os |
---|
7 | # added librairies |
---|
8 | import numpy as np |
---|
9 | import math as m |
---|
10 | import scipy.signal as sp_signal |
---|
11 | ############################################### |
---|
12 | |
---|
13 | ## first a useful function to find settings in a folder in PYTHONPATH |
---|
14 | def findset(whereset,string="planetoplot_v2"): |
---|
15 | # ... set a default whereset if it was set to None |
---|
16 | # ... default is in the planetoplot_v2 folder |
---|
17 | if whereset is None: |
---|
18 | for path in os.environ['PYTHONPATH'].split(os.pathsep): |
---|
19 | if string in path: whereset = path |
---|
20 | if whereset is None: |
---|
21 | print "!! ERROR !! "+ string + "not in $PYTHONPATH" |
---|
22 | print "--> either put it in $PYTHONPATH or change whereset" |
---|
23 | exit() |
---|
24 | # ... if the last / is missing put it |
---|
25 | if whereset[-1] != "/": whereset = whereset + "/" |
---|
26 | return whereset |
---|
27 | |
---|
28 | ########################## |
---|
29 | #### MAX MEAN MIN SUM #### |
---|
30 | ##################################### |
---|
31 | #### WITH SUPPORT FOR NaN VALUES #### |
---|
32 | ##################################### |
---|
33 | |
---|
34 | ## compute min |
---|
35 | ## author AS + AC |
---|
36 | def min(field,axis=None): |
---|
37 | if field is None: return None |
---|
38 | if type(field).__name__=='MaskedArray': |
---|
39 | field.set_fill_value(np.NaN) |
---|
40 | return np.ma.array(field).min(axis=axis) |
---|
41 | elif (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): |
---|
42 | return np.ma.masked_invalid(field).min(axis=axis) |
---|
43 | else: return np.array(field).min(axis=axis) |
---|
44 | |
---|
45 | ## compute max |
---|
46 | ## author AS + AC |
---|
47 | def max(field,axis=None): |
---|
48 | if field is None: return None |
---|
49 | if type(field).__name__=='MaskedArray': |
---|
50 | field.set_fill_value(np.NaN) |
---|
51 | return np.ma.array(field).max(axis=axis) |
---|
52 | elif (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): |
---|
53 | return np.ma.masked_invalid(field).max(axis=axis) |
---|
54 | else: return np.array(field).max(axis=axis) |
---|
55 | |
---|
56 | ## compute mean |
---|
57 | ## author AS + AC |
---|
58 | def mean(field,axis=None): |
---|
59 | if field is None: return None |
---|
60 | else: |
---|
61 | if type(field).__name__=='MaskedArray': |
---|
62 | field.set_fill_value(np.NaN) |
---|
63 | zout=np.ma.array(field).mean(axis=axis) |
---|
64 | if axis is not None: |
---|
65 | zout.set_fill_value(np.NaN) |
---|
66 | return zout.filled() |
---|
67 | else:return zout |
---|
68 | elif (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): |
---|
69 | zout=np.ma.masked_invalid(field).mean(axis=axis) |
---|
70 | if axis is not None: |
---|
71 | zout.set_fill_value([np.NaN]) |
---|
72 | return zout.filled() |
---|
73 | else:return zout |
---|
74 | else: |
---|
75 | return np.array(field).mean(axis=axis) |
---|
76 | |
---|
77 | ## compute sum |
---|
78 | ## author AS + AC |
---|
79 | def sum(field,axis=None): |
---|
80 | if field is None: return None |
---|
81 | else: |
---|
82 | if type(field).__name__=='MaskedArray': |
---|
83 | field.set_fill_value(np.NaN) |
---|
84 | zout=np.ma.array(field).sum(axis=axis) |
---|
85 | if axis is not None: |
---|
86 | zout.set_fill_value(np.NaN) |
---|
87 | return zout.filled() |
---|
88 | else:return zout |
---|
89 | elif (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): |
---|
90 | zout=np.ma.masked_invalid(field).sum(axis=axis) |
---|
91 | if axis is not None: |
---|
92 | zout.set_fill_value([np.NaN]) |
---|
93 | return zout.filled() |
---|
94 | else:return zout |
---|
95 | else: |
---|
96 | return np.array(field).sum(axis=axis) |
---|
97 | |
---|
98 | ## compute mean over bins |
---|
99 | ## author AS |
---|
100 | def meanbin(y,x,bins): |
---|
101 | bins.sort() # sorting is needed for binning |
---|
102 | meanvalues = [] |
---|
103 | for iii in range(len(bins)): |
---|
104 | ## GET VALUES OVER RELEVANT INTERVALS |
---|
105 | if iii == 0: |
---|
106 | ind = x<bins[iii+1] ; ys = y[ind] |
---|
107 | elif iii == len(bins)-1: |
---|
108 | ind = x>=bins[iii-1] ; ys = y[ind] |
---|
109 | else: |
---|
110 | ind = x>=bins[iii-1] ; interm = x[ind] ; intermf = y[ind] |
---|
111 | ind = interm<bins[iii+1] ; xs = interm[ind] ; ys = intermf[ind] |
---|
112 | ## COMPUTE MEAN and TREAT NAN CASE |
---|
113 | meanvalues.append(mean(ys)) |
---|
114 | ## RETURN A NUMPY ARRAY |
---|
115 | meanvalues = np.array(meanvalues) |
---|
116 | return meanvalues |
---|
117 | |
---|
118 | ## compute perturbation to mean |
---|
119 | ## -- the whole dimension must exist! |
---|
120 | ## author AS |
---|
121 | def perturbation(field,axis=None): |
---|
122 | # calculate mean (averaged dim is reduced) |
---|
123 | mm = mean(field,axis=axis) |
---|
124 | # include back the reduced dim |
---|
125 | if field.ndim == 4: mm = np.tile(mm,(field.shape[axis],1,1,1)) |
---|
126 | elif field.ndim == 3: mm = np.tile(mm,(field.shape[axis],1,1)) |
---|
127 | elif field.ndim == 2: mm = np.tile(mm,(field.shape[axis],1)) |
---|
128 | # array has right shape but not in good order: fix this. |
---|
129 | mm = np.reshape(mm,field.shape) |
---|
130 | # compute perturbations |
---|
131 | field = field - mm |
---|
132 | return field |
---|
133 | |
---|
134 | ################ |
---|
135 | #### SMOOTH #### |
---|
136 | ################ |
---|
137 | ### TBD: works with missing values |
---|
138 | |
---|
139 | def smooth2diter(field,n=1): |
---|
140 | count = 0 |
---|
141 | result = field |
---|
142 | while count < n: |
---|
143 | result = smooth2d(result, window=2) |
---|
144 | count = count + 1 |
---|
145 | return result |
---|
146 | |
---|
147 | ## Author: AS. uses gauss_kern and blur_image. |
---|
148 | def smooth2d(field, window=10): |
---|
149 | ## actually blur_image could work with different coeff on x and y |
---|
150 | if True in np.isnan(field): |
---|
151 | print "!! ERROR !! Smooth is a disaster with missing values. This will be fixed." |
---|
152 | exit() |
---|
153 | if window > 1: result = blur_image(field,int(window)) |
---|
154 | else: result = field |
---|
155 | return result |
---|
156 | |
---|
157 | ## FROM COOKBOOK http://www.scipy.org/Cookbook/SignalSmooth |
---|
158 | def gauss_kern(size, sizey=None): |
---|
159 | # Returns a normalized 2D gauss kernel array for convolutions |
---|
160 | size = int(size) |
---|
161 | if not sizey: |
---|
162 | sizey = size |
---|
163 | else: |
---|
164 | sizey = int(sizey) |
---|
165 | x, y = np.mgrid[-size:size+1, -sizey:sizey+1] |
---|
166 | g = np.exp(-(x**2/float(size)+y**2/float(sizey))) |
---|
167 | return g / g.sum() |
---|
168 | |
---|
169 | ## FROM COOKBOOK http://www.scipy.org/Cookbook/SignalSmooth |
---|
170 | def blur_image(im, n, ny=None) : |
---|
171 | # blurs the image by convolving with a gaussian kernel of typical size n. |
---|
172 | # The optional keyword argument ny allows for a different size in the y direction. |
---|
173 | g = gauss_kern(n, sizey=ny) |
---|
174 | improc = sp_signal.convolve(im, g, mode='same') |
---|
175 | return improc |
---|
176 | |
---|
177 | ## FROM COOKBOOK http://www.scipy.org/Cookbook/SignalSmooth |
---|
178 | def smooth1d(x,window=11,window_type='hanning'): |
---|
179 | """smooth the data using a window with requested size. |
---|
180 | This method is based on the convolution of a scaled window with the signal. |
---|
181 | The signal is prepared by introducing reflected copies of the signal |
---|
182 | (with the window size) in both ends so that transient parts are minimized |
---|
183 | in the begining and end part of the output signal. |
---|
184 | input: |
---|
185 | x: the input signal |
---|
186 | window: the dimension of the smoothing window; should be an odd integer |
---|
187 | window_type: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman' |
---|
188 | flat window will produce a moving average smoothing. |
---|
189 | output: |
---|
190 | the smoothed signal |
---|
191 | example: |
---|
192 | t=linspace(-2,2,0.1) |
---|
193 | x=sin(t)+randn(len(t))*0.1 |
---|
194 | y=smooth(x) |
---|
195 | see also: |
---|
196 | numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve |
---|
197 | scipy.signal.lfilter |
---|
198 | TODO: the window parameter could be the window itself if an array instead of a string |
---|
199 | """ |
---|
200 | if True in np.isnan(field): |
---|
201 | print "!! ERROR !! Smooth is a disaster with missing values. This will be fixed." |
---|
202 | exit() |
---|
203 | x = np.array(x) |
---|
204 | if x.ndim != 1: |
---|
205 | raise ValueError, "smooth only accepts 1 dimension arrays." |
---|
206 | if x.size < window: |
---|
207 | raise ValueError, "Input vector needs to be bigger than window size." |
---|
208 | if window<3: |
---|
209 | return x |
---|
210 | if not window_type in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: |
---|
211 | raise ValueError, "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'" |
---|
212 | s=np.r_[x[window-1:0:-1],x,x[-1:-window:-1]] |
---|
213 | #print(len(s)) |
---|
214 | if window == 'flat': #moving average |
---|
215 | w=np.ones(window,'d') |
---|
216 | else: |
---|
217 | w=eval('np.'+window_type+'(window)') |
---|
218 | y=np.convolve(w/w.sum(),s,mode='valid') |
---|
219 | return y |
---|
220 | |
---|
221 | ######################## |
---|
222 | #### TIME CONVERTER #### |
---|
223 | ######################## |
---|
224 | |
---|
225 | # mars_sol2ls |
---|
226 | # author T. Navarro |
---|
227 | # ----------------- |
---|
228 | # convert a given martian day number (sol) |
---|
229 | # into corresponding solar longitude, Ls (in degr.), |
---|
230 | # where sol=0=Ls=0 is the |
---|
231 | # northern hemisphere spring equinox. |
---|
232 | # ----------------- |
---|
233 | def mars_sol2ls(soltabin,forcecontinuity=True): |
---|
234 | year_day = 668.6 |
---|
235 | peri_day = 485.35 |
---|
236 | e_elips = 0.09340 |
---|
237 | radtodeg = 57.2957795130823 |
---|
238 | timeperi = 1.90258341759902 |
---|
239 | if type(soltabin).__name__ in ['int','float','float32','float64']: |
---|
240 | soltab=[soltabin] |
---|
241 | solout=np.zeros([1]) |
---|
242 | else: |
---|
243 | soltab=soltabin |
---|
244 | solout=np.zeros([len(soltab)]) |
---|
245 | i=0 |
---|
246 | for sol in soltab: |
---|
247 | zz=(sol-peri_day)/year_day |
---|
248 | zanom=2.*np.pi*(zz-np.floor(zz)) |
---|
249 | xref=np.abs(zanom) |
---|
250 | # The equation zx0 - e * sin (zx0) = xref, solved by Newton |
---|
251 | zx0=xref+e_elips*m.sin(xref) |
---|
252 | iter=0 |
---|
253 | while iter <= 10: |
---|
254 | iter=iter+1 |
---|
255 | zdx=-(zx0-e_elips*m.sin(zx0)-xref)/(1.-e_elips*m.cos(zx0)) |
---|
256 | if(np.abs(zdx) <= (1.e-7)): |
---|
257 | continue |
---|
258 | zx0=zx0+zdx |
---|
259 | zx0=zx0+zdx |
---|
260 | if(zanom < 0.): zx0=-zx0 |
---|
261 | # compute true anomaly zteta, now that eccentric anomaly zx0 is known |
---|
262 | zteta=2.*m.atan(m.sqrt((1.+e_elips)/(1.-e_elips))*m.tan(zx0/2.)) |
---|
263 | # compute Ls |
---|
264 | ls=zteta-timeperi |
---|
265 | if(ls < 0.): ls=ls+2.*np.pi |
---|
266 | if(ls > 2.*np.pi): ls=ls-2.*np.pi |
---|
267 | # convert Ls in deg. |
---|
268 | ls=radtodeg*ls |
---|
269 | solout[i]=ls |
---|
270 | i=i+1 |
---|
271 | if forcecontinuity: |
---|
272 | for iii in range(len(soltab)-1): |
---|
273 | while solout[iii+1] - solout[iii] > 180. : solout[iii+1] = solout[iii+1] - 360. |
---|
274 | while solout[iii] - solout[iii+1] > 180. : solout[iii+1] = solout[iii+1] + 360. |
---|
275 | return solout |
---|
276 | |
---|
277 | # mars_date |
---|
278 | # author A. Spiga |
---|
279 | # ------------------------------ |
---|
280 | # get Ls, sol, utc from a string with format yyyy-mm-dd_hh:00:00 |
---|
281 | # -- argument timechar is a vector of such strings indicating dates |
---|
282 | # -- example: timechar = nc.variables['Times'][:] in mesoscale files |
---|
283 | # NB: uses mars_sol2ls function above |
---|
284 | # ------------------------------ |
---|
285 | def mars_date(timechar): |
---|
286 | # some preliminary information |
---|
287 | days_in_month = [61, 66, 66, 65, 60, 54, 50, 46, 47, 47, 51, 56] |
---|
288 | plus_in_month = [ 0, 61,127,193,258,318,372,422,468,515,562,613] |
---|
289 | # get utc and sol from strings |
---|
290 | utc = [] ; sol = [] |
---|
291 | for zetime in timechar: |
---|
292 | dautc = float(zetime[11]+zetime[12]) + float(zetime[14]+zetime[15])/37. |
---|
293 | dasol = dautc / 24. |
---|
294 | dasol = dasol + plus_in_month[ int(zetime[5]+zetime[6])-1 ] + int(zetime[8]+zetime[9]) |
---|
295 | dasol = dasol - 1 ##les sols GCM commencent a 0 |
---|
296 | utc.append(dautc) |
---|
297 | sol.append(dasol) |
---|
298 | sol = np.array(sol) |
---|
299 | utc = np.array(utc) |
---|
300 | # get ls from sol |
---|
301 | ls = mars_sol2ls(sol) |
---|
302 | return ls, sol, utc |
---|
303 | |
---|
304 | # timecorrect |
---|
305 | # author A. Spiga |
---|
306 | # ----------------------------- |
---|
307 | # ensure time axis is monotonic |
---|
308 | # correct negative values |
---|
309 | # ----------------------------- |
---|
310 | def timecorrect(time): |
---|
311 | for ind in range(len(time)-1): |
---|
312 | if time[ind] < 0.: time[ind] = time[ind] + 24. |
---|
313 | if time[ind+1] < time[ind]: time[ind+1] = time[ind+1] + 24. |
---|
314 | return time |
---|
315 | |
---|