[910] | 1 | ############################################### |
---|
| 2 | ## PLANETOPLOT ## |
---|
| 3 | ## --> PPCOMPUTE ## |
---|
| 4 | ############################################### |
---|
| 5 | # python built-in librairies |
---|
| 6 | import os |
---|
| 7 | # added librairies |
---|
| 8 | import numpy as np |
---|
[934] | 9 | import math as m |
---|
[910] | 10 | import scipy.signal as sp_signal |
---|
| 11 | ############################################### |
---|
| 12 | |
---|
| 13 | ## first a useful function to find settings in a folder in PYTHONPATH |
---|
| 14 | def findset(whereset,string="planetoplot_v2"): |
---|
| 15 | # ... set a default whereset if it was set to None |
---|
| 16 | # ... default is in the planetoplot_v2 folder |
---|
| 17 | if whereset is None: |
---|
| 18 | for path in os.environ['PYTHONPATH'].split(os.pathsep): |
---|
| 19 | if string in path: whereset = path |
---|
| 20 | if whereset is None: |
---|
| 21 | print "!! ERROR !! "+ string + "not in $PYTHONPATH" |
---|
| 22 | print "--> either put it in $PYTHONPATH or change whereset" |
---|
| 23 | exit() |
---|
| 24 | # ... if the last / is missing put it |
---|
| 25 | if whereset[-1] != "/": whereset = whereset + "/" |
---|
| 26 | return whereset |
---|
| 27 | |
---|
| 28 | ########################## |
---|
| 29 | #### MAX MEAN MIN SUM #### |
---|
| 30 | ##################################### |
---|
| 31 | #### WITH SUPPORT FOR NaN VALUES #### |
---|
| 32 | ##################################### |
---|
| 33 | |
---|
| 34 | ## compute min |
---|
| 35 | ## author AS + AC |
---|
| 36 | def min (field,axis=None): |
---|
| 37 | if field is None: return None |
---|
| 38 | if type(field).__name__=='MaskedArray': |
---|
| 39 | field.set_fill_value(np.NaN) |
---|
| 40 | return np.ma.array(field).min(axis=axis) |
---|
| 41 | elif (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): |
---|
| 42 | return np.ma.masked_invalid(field).min(axis=axis) |
---|
| 43 | else: return np.array(field).min(axis=axis) |
---|
| 44 | |
---|
| 45 | ## compute max |
---|
| 46 | ## author AS + AC |
---|
| 47 | def max (field,axis=None): |
---|
| 48 | if field is None: return None |
---|
| 49 | if type(field).__name__=='MaskedArray': |
---|
| 50 | field.set_fill_value(np.NaN) |
---|
| 51 | return np.ma.array(field).max(axis=axis) |
---|
| 52 | elif (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): |
---|
| 53 | return np.ma.masked_invalid(field).max(axis=axis) |
---|
| 54 | else: return np.array(field).max(axis=axis) |
---|
| 55 | |
---|
| 56 | ## compute mean |
---|
| 57 | ## author AS + AC |
---|
| 58 | def mean (field,axis=None): |
---|
| 59 | if field is None: return None |
---|
| 60 | else: |
---|
| 61 | if type(field).__name__=='MaskedArray': |
---|
| 62 | field.set_fill_value(np.NaN) |
---|
| 63 | zout=np.ma.array(field).mean(axis=axis) |
---|
| 64 | if axis is not None: |
---|
| 65 | zout.set_fill_value(np.NaN) |
---|
| 66 | return zout.filled() |
---|
| 67 | else:return zout |
---|
| 68 | elif (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): |
---|
| 69 | zout=np.ma.masked_invalid(field).mean(axis=axis) |
---|
| 70 | if axis is not None: |
---|
| 71 | zout.set_fill_value([np.NaN]) |
---|
| 72 | return zout.filled() |
---|
| 73 | else:return zout |
---|
| 74 | else: |
---|
| 75 | return np.array(field).mean(axis=axis) |
---|
| 76 | |
---|
| 77 | ## compute sum |
---|
| 78 | ## author AS + AC |
---|
| 79 | def sum (field,axis=None): |
---|
| 80 | if field is None: return None |
---|
| 81 | else: |
---|
| 82 | if type(field).__name__=='MaskedArray': |
---|
| 83 | field.set_fill_value(np.NaN) |
---|
| 84 | zout=np.ma.array(field).sum(axis=axis) |
---|
| 85 | if axis is not None: |
---|
| 86 | zout.set_fill_value(np.NaN) |
---|
| 87 | return zout.filled() |
---|
| 88 | else:return zout |
---|
| 89 | elif (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): |
---|
| 90 | zout=np.ma.masked_invalid(field).sum(axis=axis) |
---|
| 91 | if axis is not None: |
---|
| 92 | zout.set_fill_value([np.NaN]) |
---|
| 93 | return zout.filled() |
---|
| 94 | else:return zout |
---|
| 95 | else: |
---|
| 96 | return np.array(field).sum(axis=axis) |
---|
| 97 | |
---|
[1007] | 98 | ## compute mean over bins |
---|
| 99 | ## author AS |
---|
| 100 | def meanbin(y,x,bins): |
---|
| 101 | bins.sort() # sorting is needed for binning |
---|
| 102 | meanvalues = [] |
---|
| 103 | for iii in range(len(bins)): |
---|
| 104 | ## GET VALUES OVER RELEVANT INTERVALS |
---|
| 105 | if iii == 0: |
---|
| 106 | ind = x<bins[iii+1] ; ys = y[ind] |
---|
| 107 | elif iii == len(bins)-1: |
---|
| 108 | ind = x>=bins[iii-1] ; ys = y[ind] |
---|
| 109 | else: |
---|
| 110 | ind = x>=bins[iii-1] ; interm = x[ind] ; intermf = y[ind] |
---|
| 111 | ind = interm<bins[iii+1] ; xs = interm[ind] ; ys = intermf[ind] |
---|
| 112 | ## COMPUTE MEAN and TREAT NAN CASE |
---|
| 113 | meanvalues.append(mean(ys)) |
---|
| 114 | ## RETURN A NUMPY ARRAY |
---|
| 115 | meanvalues = np.array(meanvalues) |
---|
| 116 | return meanvalues |
---|
| 117 | |
---|
[910] | 118 | ################ |
---|
| 119 | #### SMOOTH #### |
---|
| 120 | ################ |
---|
| 121 | ### TBD: works with missing values |
---|
| 122 | |
---|
[1002] | 123 | def smooth2diter(field,n=1): |
---|
| 124 | count = 0 |
---|
| 125 | result = field |
---|
| 126 | while count < n: |
---|
| 127 | result = smooth2d(result, window=2) |
---|
| 128 | count = count + 1 |
---|
| 129 | return result |
---|
| 130 | |
---|
[910] | 131 | ## Author: AS. uses gauss_kern and blur_image. |
---|
| 132 | def smooth2d(field, window=10): |
---|
| 133 | ## actually blur_image could work with different coeff on x and y |
---|
| 134 | if True in np.isnan(field): |
---|
| 135 | print "!! ERROR !! Smooth is a disaster with missing values. This will be fixed." |
---|
| 136 | exit() |
---|
| 137 | if window > 1: result = blur_image(field,int(window)) |
---|
| 138 | else: result = field |
---|
| 139 | return result |
---|
| 140 | |
---|
| 141 | ## FROM COOKBOOK http://www.scipy.org/Cookbook/SignalSmooth |
---|
| 142 | def gauss_kern(size, sizey=None): |
---|
| 143 | # Returns a normalized 2D gauss kernel array for convolutions |
---|
| 144 | size = int(size) |
---|
| 145 | if not sizey: |
---|
| 146 | sizey = size |
---|
| 147 | else: |
---|
| 148 | sizey = int(sizey) |
---|
| 149 | x, y = np.mgrid[-size:size+1, -sizey:sizey+1] |
---|
| 150 | g = np.exp(-(x**2/float(size)+y**2/float(sizey))) |
---|
| 151 | return g / g.sum() |
---|
| 152 | |
---|
| 153 | ## FROM COOKBOOK http://www.scipy.org/Cookbook/SignalSmooth |
---|
| 154 | def blur_image(im, n, ny=None) : |
---|
| 155 | # blurs the image by convolving with a gaussian kernel of typical size n. |
---|
| 156 | # The optional keyword argument ny allows for a different size in the y direction. |
---|
| 157 | g = gauss_kern(n, sizey=ny) |
---|
| 158 | improc = sp_signal.convolve(im, g, mode='same') |
---|
| 159 | return improc |
---|
| 160 | |
---|
| 161 | ## FROM COOKBOOK http://www.scipy.org/Cookbook/SignalSmooth |
---|
| 162 | def smooth1d(x,window=11,window_type='hanning'): |
---|
| 163 | """smooth the data using a window with requested size. |
---|
| 164 | This method is based on the convolution of a scaled window with the signal. |
---|
| 165 | The signal is prepared by introducing reflected copies of the signal |
---|
| 166 | (with the window size) in both ends so that transient parts are minimized |
---|
| 167 | in the begining and end part of the output signal. |
---|
| 168 | input: |
---|
| 169 | x: the input signal |
---|
| 170 | window: the dimension of the smoothing window; should be an odd integer |
---|
| 171 | window_type: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman' |
---|
| 172 | flat window will produce a moving average smoothing. |
---|
| 173 | output: |
---|
| 174 | the smoothed signal |
---|
| 175 | example: |
---|
| 176 | t=linspace(-2,2,0.1) |
---|
| 177 | x=sin(t)+randn(len(t))*0.1 |
---|
| 178 | y=smooth(x) |
---|
| 179 | see also: |
---|
| 180 | numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve |
---|
| 181 | scipy.signal.lfilter |
---|
| 182 | TODO: the window parameter could be the window itself if an array instead of a string |
---|
| 183 | """ |
---|
| 184 | if True in np.isnan(field): |
---|
| 185 | print "!! ERROR !! Smooth is a disaster with missing values. This will be fixed." |
---|
| 186 | exit() |
---|
| 187 | x = np.array(x) |
---|
| 188 | if x.ndim != 1: |
---|
| 189 | raise ValueError, "smooth only accepts 1 dimension arrays." |
---|
| 190 | if x.size < window: |
---|
| 191 | raise ValueError, "Input vector needs to be bigger than window size." |
---|
| 192 | if window<3: |
---|
| 193 | return x |
---|
| 194 | if not window_type in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: |
---|
| 195 | raise ValueError, "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'" |
---|
| 196 | s=np.r_[x[window-1:0:-1],x,x[-1:-window:-1]] |
---|
| 197 | #print(len(s)) |
---|
| 198 | if window == 'flat': #moving average |
---|
| 199 | w=np.ones(window,'d') |
---|
| 200 | else: |
---|
| 201 | w=eval('np.'+window_type+'(window)') |
---|
| 202 | y=np.convolve(w/w.sum(),s,mode='valid') |
---|
| 203 | return y |
---|
[934] | 204 | |
---|
| 205 | ######################## |
---|
| 206 | #### TIME CONVERTER #### |
---|
| 207 | ######################## |
---|
| 208 | |
---|
| 209 | # mars_sol2ls |
---|
| 210 | # author T. Navarro |
---|
| 211 | # ----------------- |
---|
| 212 | # convert a given martian day number (sol) |
---|
| 213 | # into corresponding solar longitude, Ls (in degr.), |
---|
| 214 | # where sol=0=Ls=0 is the |
---|
| 215 | # northern hemisphere spring equinox. |
---|
| 216 | # ----------------- |
---|
[938] | 217 | def mars_sol2ls(soltabin,forcecontinuity=True): |
---|
[934] | 218 | year_day = 668.6 |
---|
| 219 | peri_day = 485.35 |
---|
| 220 | e_elips = 0.09340 |
---|
| 221 | radtodeg = 57.2957795130823 |
---|
| 222 | timeperi = 1.90258341759902 |
---|
| 223 | if type(soltabin).__name__ in ['int','float','float32','float64']: |
---|
| 224 | soltab=[soltabin] |
---|
| 225 | solout=np.zeros([1]) |
---|
| 226 | else: |
---|
| 227 | soltab=soltabin |
---|
| 228 | solout=np.zeros([len(soltab)]) |
---|
| 229 | i=0 |
---|
| 230 | for sol in soltab: |
---|
| 231 | zz=(sol-peri_day)/year_day |
---|
| 232 | zanom=2.*np.pi*(zz-np.floor(zz)) |
---|
| 233 | xref=np.abs(zanom) |
---|
| 234 | # The equation zx0 - e * sin (zx0) = xref, solved by Newton |
---|
| 235 | zx0=xref+e_elips*m.sin(xref) |
---|
| 236 | iter=0 |
---|
| 237 | while iter <= 10: |
---|
| 238 | iter=iter+1 |
---|
| 239 | zdx=-(zx0-e_elips*m.sin(zx0)-xref)/(1.-e_elips*m.cos(zx0)) |
---|
| 240 | if(np.abs(zdx) <= (1.e-7)): |
---|
| 241 | continue |
---|
| 242 | zx0=zx0+zdx |
---|
| 243 | zx0=zx0+zdx |
---|
| 244 | if(zanom < 0.): zx0=-zx0 |
---|
| 245 | # compute true anomaly zteta, now that eccentric anomaly zx0 is known |
---|
| 246 | zteta=2.*m.atan(m.sqrt((1.+e_elips)/(1.-e_elips))*m.tan(zx0/2.)) |
---|
| 247 | # compute Ls |
---|
| 248 | ls=zteta-timeperi |
---|
| 249 | if(ls < 0.): ls=ls+2.*np.pi |
---|
| 250 | if(ls > 2.*np.pi): ls=ls-2.*np.pi |
---|
| 251 | # convert Ls in deg. |
---|
| 252 | ls=radtodeg*ls |
---|
| 253 | solout[i]=ls |
---|
| 254 | i=i+1 |
---|
[938] | 255 | if forcecontinuity: |
---|
| 256 | for iii in range(len(soltab)-1): |
---|
| 257 | while solout[iii+1] - solout[iii] > 180. : solout[iii+1] = solout[iii+1] - 360. |
---|
| 258 | while solout[iii] - solout[iii+1] > 180. : solout[iii+1] = solout[iii+1] + 360. |
---|
[934] | 259 | return solout |
---|
| 260 | |
---|
[942] | 261 | # mars_date |
---|
| 262 | # author A. Spiga |
---|
| 263 | # ------------------------------ |
---|
| 264 | # get Ls, sol, utc from a string with format yyyy-mm-dd_hh:00:00 |
---|
| 265 | # -- argument timechar is a vector of such strings indicating dates |
---|
| 266 | # -- example: timechar = nc.variables['Times'][:] in mesoscale files |
---|
| 267 | # NB: uses mars_sol2ls function above |
---|
| 268 | # ------------------------------ |
---|
| 269 | def mars_date(timechar): |
---|
| 270 | # some preliminary information |
---|
| 271 | days_in_month = [61, 66, 66, 65, 60, 54, 50, 46, 47, 47, 51, 56] |
---|
| 272 | plus_in_month = [ 0, 61,127,193,258,318,372,422,468,515,562,613] |
---|
| 273 | # get utc and sol from strings |
---|
| 274 | utc = [] ; sol = [] |
---|
| 275 | for zetime in timechar: |
---|
| 276 | dautc = float(zetime[11]+zetime[12]) + float(zetime[14]+zetime[15])/37. |
---|
| 277 | dasol = dautc / 24. |
---|
| 278 | dasol = dasol + plus_in_month[ int(zetime[5]+zetime[6])-1 ] + int(zetime[8]+zetime[9]) |
---|
| 279 | dasol = dasol - 1 ##les sols GCM commencent a 0 |
---|
| 280 | utc.append(dautc) |
---|
| 281 | sol.append(dasol) |
---|
| 282 | sol = np.array(sol) |
---|
| 283 | utc = np.array(utc) |
---|
| 284 | # get ls from sol |
---|
| 285 | ls = mars_sol2ls(sol) |
---|
| 286 | return ls, sol, utc |
---|
| 287 | |
---|
| 288 | # timecorrect |
---|
| 289 | # author A. Spiga |
---|
| 290 | # ----------------------------- |
---|
| 291 | # ensure time axis is monotonic |
---|
| 292 | # correct negative values |
---|
| 293 | # ----------------------------- |
---|
| 294 | def timecorrect(time): |
---|
| 295 | for ind in range(len(time)-1): |
---|
| 296 | if time[ind] < 0.: time[ind] = time[ind] + 24. |
---|
| 297 | if time[ind+1] < time[ind]: time[ind+1] = time[ind+1] + 24. |
---|
| 298 | return time |
---|
| 299 | |
---|