1 | |
---|
2 | import numpy as np |
---|
3 | import netCDF4 |
---|
4 | |
---|
5 | ## Author: AS |
---|
6 | def errormess(text,printvar=None): |
---|
7 | print text |
---|
8 | if printvar is not None: print printvar |
---|
9 | exit() |
---|
10 | return |
---|
11 | |
---|
12 | ## Author: AS |
---|
13 | def adjust_length (tab, zelen): |
---|
14 | if tab is None: |
---|
15 | outtab = np.ones(zelen) * -999999 |
---|
16 | else: |
---|
17 | if zelen != len(tab): |
---|
18 | print "not enough or too much values... setting same values all variables" |
---|
19 | outtab = np.ones(zelen) * tab[0] |
---|
20 | else: |
---|
21 | outtab = tab |
---|
22 | return outtab |
---|
23 | |
---|
24 | ## Author: AS |
---|
25 | def getname(var=False,var2=False,winds=False,anomaly=False): |
---|
26 | if var and winds: basename = var + '_UV' |
---|
27 | elif var: basename = var |
---|
28 | elif winds: basename = 'UV' |
---|
29 | else: errormess("please set at least winds or var",printvar=nc.variables) |
---|
30 | if anomaly: basename = 'd' + basename |
---|
31 | if var2: basename = basename + '_' + var2 |
---|
32 | return basename |
---|
33 | |
---|
34 | ## Author: AS + AC |
---|
35 | def localtime(time,lon,namefile): # lon is the mean longitude of the plot, not of the domain. central lon of domain is taken from cen_lon |
---|
36 | ## THIS IS FOR MESOSCALE |
---|
37 | nc = netCDF4.Dataset(namefile) |
---|
38 | ## get start date and intervals |
---|
39 | dt_hour=1. ; start=0. |
---|
40 | if hasattr(nc,'TITLE'): |
---|
41 | title=getattr(nc, 'TITLE') |
---|
42 | if hasattr(nc,'DT') and hasattr(nc,'START_DATE') and 'MRAMS' in title: |
---|
43 | ## we must adapt what is done in getlschar to MRAMS (outputs from ic.py) |
---|
44 | dt_hour=getattr(nc, 'DT')/60. |
---|
45 | start_date=getattr(nc, 'START_DATE') |
---|
46 | start_hour=np.float(start_date[11:13]) |
---|
47 | start_minute=np.float(start_date[14:16])/60. |
---|
48 | start=start_hour+start_minute # start is the local time of simu at longitude 0 |
---|
49 | #LMD MMM is 1 output/hour (and not 1 output/timestep) |
---|
50 | #MRAMS is 1 output/timestep, unless stride is added in ic.py |
---|
51 | elif 'WRF' in title: |
---|
52 | [dummy,start,dt_hour] = getlschar ( namefile ) # get start hour and interval hour |
---|
53 | ## get longitude |
---|
54 | if lon is not None: |
---|
55 | if lon[0,1]!=lon[0,0]: mean_lon_plot = 0.5*(lon[0,1]-lon[0,0]) |
---|
56 | else: mean_lon_plot=lon[0,0] |
---|
57 | elif hasattr(nc, 'CEN_LON'): mean_lon_plot=getattr(nc, 'CEN_LON') |
---|
58 | else: mean_lon_plot=0. |
---|
59 | ## calculate local time |
---|
60 | ltst = start + time*dt_hour + mean_lon_plot / 15. |
---|
61 | ltst = int (ltst * 10) / 10. |
---|
62 | ltst = ltst % 24 |
---|
63 | return ltst |
---|
64 | |
---|
65 | ## Author: AC |
---|
66 | def check_localtime(time): |
---|
67 | a=-1 |
---|
68 | for i in range(len(time)-1): |
---|
69 | if (time[i] > time[i+1]): a=i |
---|
70 | if a >= 0 and a < (len(time)-1)/2.: |
---|
71 | print "Sorry, time axis is not regular." |
---|
72 | print "Contourf needs regular axis... recasting" |
---|
73 | for i in range(a+1): |
---|
74 | time[i]=time[i]-24. |
---|
75 | if a >= 0 and a >= (len(time)-1)/2.: |
---|
76 | print "Sorry, time axis is not regular." |
---|
77 | print "Contourf needs regular axis... recasting" |
---|
78 | for i in range((len(time)-1) - a): |
---|
79 | time[a+1+i]=time[a+1+i]+24. |
---|
80 | return time |
---|
81 | |
---|
82 | ## Author: AS, AC, JL |
---|
83 | def whatkindfile (nc): |
---|
84 | typefile = 'gcm' # default |
---|
85 | if 'controle' in nc.variables: typefile = 'gcm' |
---|
86 | elif 'phisinit' in nc.variables: typefile = 'gcm' |
---|
87 | elif 'phis' in nc.variables: typefile = 'gcm' |
---|
88 | elif 'time_counter' in nc.variables: typefile = 'earthgcm' |
---|
89 | elif hasattr(nc,'START_DATE'): typefile = 'meso' |
---|
90 | elif 'HGT_M' in nc.variables: typefile = 'geo' |
---|
91 | elif hasattr(nc,'institution'): |
---|
92 | if "European Centre" in getattr(nc,'institution'): typefile = 'ecmwf' |
---|
93 | return typefile |
---|
94 | |
---|
95 | ## Author: AS |
---|
96 | def getfieldred (nc,var,indexlon,indexlat,indexvert,indextime): |
---|
97 | dimension = len(nc.variables[var].dimensions) |
---|
98 | ## this allows to get much faster and use much less memory esp. with large datasets |
---|
99 | print " Opening variable",var," with", dimension, "dimensions ..." |
---|
100 | print indextime, indexlon, indexlat, indexvert |
---|
101 | if dimension == 2: |
---|
102 | field = nc.variables[var][indextime,indexlon] |
---|
103 | field = np.reshape(field,(len(indextime),len(indexlon))) |
---|
104 | elif dimension == 3: |
---|
105 | field = nc.variables[var][indextime,indexlat,indexlon] |
---|
106 | field = np.reshape(field,(len(indextime),len(indexlat),len(indexlon))) |
---|
107 | elif dimension == 4: |
---|
108 | field = nc.variables[var][indextime,indexvert,indexlat,indexlon] |
---|
109 | field = np.reshape(field,(len(indextime),len(indexvert),len(indexlat),len(indexlon))) |
---|
110 | elif dimension == 1: |
---|
111 | field = nc.variables[var][indextime] |
---|
112 | field = np.reshape(field,(len(indextime))) |
---|
113 | return field |
---|
114 | |
---|
115 | ## Author: AS |
---|
116 | def getfield (nc,var): |
---|
117 | dimension = len(nc.variables[var].dimensions) |
---|
118 | ## this allows to get much faster (than simply referring to nc.variables[var]) |
---|
119 | print " Opening variable",var," with", dimension, "dimensions ..." |
---|
120 | if dimension == 2: field = nc.variables[var][:,:] |
---|
121 | elif dimension == 3: field = nc.variables[var][:,:,:] |
---|
122 | elif dimension == 4: field = nc.variables[var][:,:,:,:] |
---|
123 | elif dimension == 1: field = nc.variables[var][:] |
---|
124 | # if there are NaNs in the ncdf, they should be loaded as a masked array which will be |
---|
125 | # recasted as a regular array later in reducefield |
---|
126 | if (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): |
---|
127 | print "Warning: netcdf as nan values but is not loaded as a Masked Array." |
---|
128 | print "recasting array type" |
---|
129 | out=np.ma.masked_invalid(field) |
---|
130 | out.set_fill_value([np.NaN]) |
---|
131 | else: |
---|
132 | # missing values from zrecast or hrecast are -1e-33 |
---|
133 | masked=np.ma.masked_where(field < -1e30,field) |
---|
134 | masked2=np.ma.masked_where(field > 1e35,field) |
---|
135 | masked.set_fill_value([np.NaN]) ; masked2.set_fill_value([np.NaN]) |
---|
136 | mask = np.ma.getmask(masked) ; mask2 = np.ma.getmask(masked2) |
---|
137 | if (True in np.array(mask)): |
---|
138 | out=masked |
---|
139 | print "Masked array... Missing value is NaN" |
---|
140 | elif (True in np.array(mask2)): |
---|
141 | out=masked2 |
---|
142 | print "Masked array... Missing value is NaN" |
---|
143 | # else: |
---|
144 | # # missing values from api are 1e36 |
---|
145 | # masked=np.ma.masked_where(field > 1e35,field) |
---|
146 | # masked.set_fill_value([np.NaN]) |
---|
147 | # mask = np.ma.getmask(masked) |
---|
148 | # if (True in np.array(mask)):out=masked |
---|
149 | # else:out=field |
---|
150 | else: |
---|
151 | # # missing values from MRAMS files are 0.100E+32 |
---|
152 | masked=np.ma.masked_where(field > 1e30,field) |
---|
153 | masked.set_fill_value([np.NaN]) |
---|
154 | mask = np.ma.getmask(masked) |
---|
155 | if (True in np.array(mask)):out=masked |
---|
156 | else:out=field |
---|
157 | # else:out=field |
---|
158 | return out |
---|
159 | |
---|
160 | ## Author: AC |
---|
161 | # Compute the norm of the winds or return an hodograph |
---|
162 | # The corresponding variable to call is UV or uvmet (to use api) |
---|
163 | def windamplitude (nc,mode): |
---|
164 | varinfile = nc.variables.keys() |
---|
165 | if "U" in varinfile: zu=getfield(nc,'U') |
---|
166 | elif "Um" in varinfile: zu=getfield(nc,'Um') |
---|
167 | else: errormess("you need slopex or U or Um in your file.") |
---|
168 | if "V" in varinfile: zv=getfield(nc,'V') |
---|
169 | elif "Vm" in varinfile: zv=getfield(nc,'Vm') |
---|
170 | else: errormess("you need V or Vm in your file.") |
---|
171 | znt,znz,zny,znx = np.array(zu).shape |
---|
172 | if hasattr(nc,'WEST-EAST_PATCH_END_UNSTAG'):znx=getattr(nc, 'WEST-EAST_PATCH_END_UNSTAG') |
---|
173 | zuint = np.zeros([znt,znz,zny,znx]) |
---|
174 | zvint = np.zeros([znt,znz,zny,znx]) |
---|
175 | if "U" in varinfile: |
---|
176 | if hasattr(nc,'SOUTH-NORTH_PATCH_END_STAG'): zny_stag=getattr(nc, 'SOUTH-NORTH_PATCH_END_STAG') |
---|
177 | if hasattr(nc,'WEST-EAST_PATCH_END_STAG'): znx_stag=getattr(nc, 'WEST-EAST_PATCH_END_STAG') |
---|
178 | if zny_stag == zny: zvint=zv |
---|
179 | else: |
---|
180 | for yy in np.arange(zny): zvint[:,:,yy,:] = (zv[:,:,yy,:] + zv[:,:,yy+1,:])/2. |
---|
181 | if znx_stag == znx: zuint=zu |
---|
182 | else: |
---|
183 | for xx in np.arange(znx): zuint[:,:,:,xx] = (zu[:,:,:,xx] + zu[:,:,:,xx+1])/2. |
---|
184 | else: |
---|
185 | zuint=zu |
---|
186 | zvint=zv |
---|
187 | if mode=='amplitude': return np.sqrt(zuint**2 + zvint**2) |
---|
188 | if mode=='hodograph': return zuint,zvint |
---|
189 | if mode=='hodograph_2': return None, 360.*np.arctan(zvint/zuint)/(2.*np.pi) |
---|
190 | |
---|
191 | ## Author: AC |
---|
192 | # Compute the enrichment factor of non condensible gases |
---|
193 | # The corresponding variable to call is enfact |
---|
194 | # enrichment factor is computed as in Yuan Lian et al. 2012 |
---|
195 | # i.e. you need to have VL2 site at LS 135 in your data |
---|
196 | # this only requires co2col so that you can concat.nc at low cost |
---|
197 | def enrichment_factor(nc,lon,lat,time): |
---|
198 | from myplot import reducefield |
---|
199 | varinfile = nc.variables.keys() |
---|
200 | if "co2col" in varinfile: co2col=getfield(nc,'co2col') |
---|
201 | else: print "error, you need co2col var in your file" |
---|
202 | if "ps" in varinfile: ps=getfield(nc,'ps') |
---|
203 | else: print "error, you need ps var in your file" |
---|
204 | dimension = len(nc.variables['co2col'].dimensions) |
---|
205 | if dimension == 2: |
---|
206 | zny,znx = np.array(co2col).shape |
---|
207 | znt=1 |
---|
208 | elif dimension == 3: znt,zny,znx = np.array(co2col).shape |
---|
209 | mmrarcol = np.zeros([znt,zny,znx]) |
---|
210 | enfact = np.zeros([znt,zny,znx]) |
---|
211 | grav=3.72 |
---|
212 | mmrarcol[:,:,:] = 1. - grav*co2col[:,:,:]/ps[:,:,:] |
---|
213 | # Computation with reference argon mmr at VL2 Ls 135 (as in Yuan Lian et al 2012) |
---|
214 | lonvl2=np.zeros([1,2]) |
---|
215 | latvl2=np.zeros([1,2]) |
---|
216 | timevl2=np.zeros([1,2]) |
---|
217 | lonvl2[0,0]=-180 |
---|
218 | lonvl2[0,1]=180 |
---|
219 | latvl2[:,:]=48.16 |
---|
220 | timevl2[:,:]=135. |
---|
221 | indexlon = getsindex(lonvl2,0,lon) |
---|
222 | indexlat = getsindex(latvl2,0,lat) |
---|
223 | indextime = getsindex(timevl2,0,time) |
---|
224 | mmrvl2, error = reducefield( mmrarcol, d4=indextime, d1=indexlon, d2=indexlat) |
---|
225 | print "VL2 Ls 135 mmr arcol:", mmrvl2 |
---|
226 | enfact[:,:,:] = mmrarcol[:,:,:]/mmrvl2 |
---|
227 | return enfact |
---|
228 | |
---|
229 | ## Author: AC |
---|
230 | # Compute the norm of the slope angles |
---|
231 | # The corresponding variable to call is SLOPEXY |
---|
232 | def slopeamplitude (nc): |
---|
233 | varinfile = nc.variables.keys() |
---|
234 | if "slopex" in varinfile: zu=getfield(nc,'slopex') |
---|
235 | elif "SLOPEX" in varinfile: zu=getfield(nc,'SLOPEX') |
---|
236 | else: errormess("you need slopex or SLOPEX in your file.") |
---|
237 | if "slopey" in varinfile: zv=getfield(nc,'slopey') |
---|
238 | elif "SLOPEY" in varinfile: zv=getfield(nc,'SLOPEY') |
---|
239 | else: errormess("you need slopey or SLOPEY in your file.") |
---|
240 | znt,zny,znx = np.array(zu).shape |
---|
241 | zuint = np.zeros([znt,zny,znx]) |
---|
242 | zvint = np.zeros([znt,zny,znx]) |
---|
243 | zuint=zu |
---|
244 | zvint=zv |
---|
245 | return np.sqrt(zuint**2 + zvint**2) |
---|
246 | |
---|
247 | ## Author: AC |
---|
248 | # Compute the temperature difference between surface and first level. |
---|
249 | # API is automatically called to get TSURF and TK. |
---|
250 | # The corresponding variable to call is DELTAT |
---|
251 | def deltat0t1 (nc): |
---|
252 | varinfile = nc.variables.keys() |
---|
253 | if "tsurf" in varinfile: zu=getfield(nc,'tsurf') |
---|
254 | elif "TSURF" in varinfile: zu=getfield(nc,'TSURF') |
---|
255 | else: errormess("You need tsurf or TSURF in your file") |
---|
256 | if "tk" in varinfile: zv=getfield(nc,'tk') |
---|
257 | elif "TK" in varinfile: zv=getfield(nc,'TK') |
---|
258 | else: errormess("You need tk or TK in your file. (might need to use API. try to add -i 4 -l XXX)") |
---|
259 | znt,zny,znx = np.array(zu).shape |
---|
260 | zuint = np.zeros([znt,zny,znx]) |
---|
261 | zuint=zu - zv[:,0,:,:] |
---|
262 | return zuint |
---|
263 | |
---|
264 | ## Author: AS + TN + AC |
---|
265 | def reducefield (input,d4=None,d3=None,d2=None,d1=None,yint=False,alt=None,anomaly=False,redope=None,mesharea=None,unidim=999): |
---|
266 | ### we do it the reverse way to be compliant with netcdf "t z y x" or "t y x" or "y x" |
---|
267 | ### it would be actually better to name d4 d3 d2 d1 as t z y x |
---|
268 | ### ... note, anomaly is only computed over d1 and d2 for the moment |
---|
269 | from mymath import max,mean,min,sum,getmask |
---|
270 | csmooth = 12 ## a fair amount of grid points (too high results in high computation time) |
---|
271 | if redope is not None: |
---|
272 | # if redope == "mint": input = min(input,axis=0) ; d1 = None |
---|
273 | # elif redope == "maxt": input = max(input,axis=0) ; d1 = None |
---|
274 | if redope == "edge_y1": input = input[:,:,0,:] ; d2 = None |
---|
275 | elif redope == "edge_y2": input = input[:,:,-1,:] ; d2 = None |
---|
276 | elif redope == "edge_x1": input = input[:,:,:,0] ; d1 = None |
---|
277 | elif redope == "edge_x2": input = input[:,:,:,-1] ; d1 = None |
---|
278 | # else: errormess("not supported. but try lines in reducefield beforehand.") |
---|
279 | #elif redope == "minz": input = min(input,axis=1) ; d2 = None |
---|
280 | #elif redope == "maxz": input = max(input,axis=1) ; d2 = None |
---|
281 | #elif redope == "miny": input = min(input,axis=2) ; d3 = None |
---|
282 | #elif redope == "maxy": input = max(input,axis=2) ; d3 = None |
---|
283 | #elif redope == "minx": input = min(input,axis=3) ; d4 = None |
---|
284 | #elif redope == "maxx": input = max(input,axis=3) ; d4 = None |
---|
285 | dimension = np.array(input).ndim |
---|
286 | shape = np.array(np.array(input).shape) |
---|
287 | #print 'd1,d2,d3,d4: ',d1,d2,d3,d4 |
---|
288 | if anomaly: print 'ANOMALY ANOMALY' |
---|
289 | output = input |
---|
290 | error = False |
---|
291 | #### this is needed to cope the case where d4,d3,d2,d1 are single integers and not arrays |
---|
292 | if d4 is not None and not isinstance(d4, np.ndarray): d4=[d4] |
---|
293 | if d3 is not None and not isinstance(d3, np.ndarray): d3=[d3] |
---|
294 | if d2 is not None and not isinstance(d2, np.ndarray): d2=[d2] |
---|
295 | if d1 is not None and not isinstance(d1, np.ndarray): d1=[d1] |
---|
296 | ### now the main part |
---|
297 | if dimension == 2: |
---|
298 | #### this is needed for 1d-type files (where dim=2 but axes are time-vert and not lat-lon) |
---|
299 | if unidim==1: d2=d4 ; d1=d3 ; d4 = None ; d3 = None |
---|
300 | if mesharea is None: mesharea=np.ones(shape) |
---|
301 | if max(d2) >= shape[0]: error = True |
---|
302 | elif max(d1) >= shape[1]: error = True |
---|
303 | elif d1 is not None and d2 is not None: |
---|
304 | try: |
---|
305 | totalarea = np.ma.masked_where(getmask(output),mesharea) |
---|
306 | totalarea = mean(totalarea[d2,:],axis=0);totalarea = mean(totalarea[d1]) |
---|
307 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
308 | output = output*mesharea; output = mean(output[d2,:],axis=0); output = mean(output[d1])/totalarea |
---|
309 | elif d1 is not None: output = mean(input[:,d1],axis=1) |
---|
310 | elif d2 is not None: |
---|
311 | try: |
---|
312 | totalarea = np.ma.masked_where(getmask(output),mesharea) |
---|
313 | totalarea = mean(totalarea[d2,:],axis=0) |
---|
314 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
315 | output = output*mesharea; output = mean(output[d2,:],axis=0)/totalarea |
---|
316 | elif dimension == 3: |
---|
317 | if mesharea is None: mesharea=np.ones(shape[[1,2]]) |
---|
318 | if max(d4) >= shape[0]: error = True |
---|
319 | elif max(d2) >= shape[1]: error = True |
---|
320 | elif max(d1) >= shape[2]: error = True |
---|
321 | elif d4 is not None and d2 is not None and d1 is not None: |
---|
322 | output = mean(input[d4,:,:],axis=0) |
---|
323 | try: |
---|
324 | totalarea = np.ma.masked_where(getmask(output),mesharea) |
---|
325 | totalarea = mean(totalarea[d2,:],axis=0);totalarea = mean(totalarea[d1]) |
---|
326 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
327 | output = output*mesharea; output = mean(output[d2,:],axis=0); output = mean(output[d1])/totalarea |
---|
328 | elif d4 is not None and d2 is not None: |
---|
329 | output = mean(input[d4,:,:],axis=0) |
---|
330 | try: |
---|
331 | totalarea = np.ma.masked_where(getmask(output),mesharea) |
---|
332 | totalarea = mean(totalarea[d2,:],axis=0) |
---|
333 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
334 | output = output*mesharea; output = mean(output[d2,:],axis=0)/totalarea |
---|
335 | elif d4 is not None and d1 is not None: output = mean(input[d4,:,:],axis=0); output=mean(output[:,d1],axis=1) |
---|
336 | elif d2 is not None and d1 is not None: |
---|
337 | try: |
---|
338 | totalarea = np.tile(mesharea,(output.shape[0],1,1)) |
---|
339 | totalarea = np.ma.masked_where(getmask(output),totalarea) |
---|
340 | totalarea = mean(totalarea[:,d2,:],axis=1);totalarea = mean(totalarea[:,d1],axis=1) |
---|
341 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
342 | output = output*mesharea; output = mean(output[:,d2,:],axis=1); output = mean(output[:,d1],axis=1)/totalarea |
---|
343 | elif d1 is not None: output = mean(input[:,:,d1],axis=2) |
---|
344 | elif d2 is not None: |
---|
345 | try: |
---|
346 | totalarea = np.tile(mesharea,(output.shape[0],1,1)) |
---|
347 | totalarea = np.ma.masked_where(getmask(output),totalarea) |
---|
348 | totalarea = mean(totalarea[:,d2,:],axis=1) |
---|
349 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
350 | output = output*mesharea; output = mean(output[:,d2,:],axis=1)/totalarea |
---|
351 | elif d4 is not None: output = mean(input[d4,:,:],axis=0) |
---|
352 | elif dimension == 4: |
---|
353 | if mesharea is None: mesharea=np.ones(shape[[2,3]]) # mesharea=np.random.random_sample(shape[[2,3]])*5. + 2. # pour tester |
---|
354 | if max(d4) >= shape[0]: error = True |
---|
355 | elif max(d3) >= shape[1]: error = True |
---|
356 | elif max(d2) >= shape[2]: error = True |
---|
357 | elif max(d1) >= shape[3]: error = True |
---|
358 | elif d4 is not None and d3 is not None and d2 is not None and d1 is not None: |
---|
359 | output = mean(input[d4,:,:,:],axis=0) |
---|
360 | output = reduce_zaxis(output[d3,:,:],ax=0,yint=yint,vert=alt,indice=d3) |
---|
361 | if anomaly: output = 100. * ((output / smooth(output,csmooth)) - 1.) |
---|
362 | try: |
---|
363 | totalarea = np.ma.masked_where(np.isnan(output),mesharea) |
---|
364 | totalarea = mean(totalarea[d2,:],axis=0); totalarea = mean(totalarea[d1]) |
---|
365 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
366 | output = output*mesharea; output = mean(output[d2,:],axis=0); output = mean(output[d1])/totalarea |
---|
367 | elif d4 is not None and d3 is not None and d2 is not None: |
---|
368 | output = mean(input[d4,:,:,:],axis=0) |
---|
369 | output = reduce_zaxis(output[d3,:,:],ax=0,yint=yint,vert=alt,indice=d3) |
---|
370 | if anomaly: output = 100. * ((output / smooth(output,csmooth)) - 1.) |
---|
371 | try: |
---|
372 | totalarea = np.ma.masked_where(np.isnan(output),mesharea) |
---|
373 | totalarea = mean(totalarea[d2,:],axis=0) |
---|
374 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
375 | output = output*mesharea; output = mean(output[d2,:],axis=0)/totalarea |
---|
376 | elif d4 is not None and d3 is not None and d1 is not None: |
---|
377 | output = mean(input[d4,:,:,:],axis=0) |
---|
378 | output = reduce_zaxis(output[d3,:,:],ax=0,yint=yint,vert=alt,indice=d3) |
---|
379 | if anomaly: output = 100. * ((output / smooth(output,csmooth)) - 1.) |
---|
380 | output = mean(output[:,d1],axis=1) |
---|
381 | elif d4 is not None and d2 is not None and d1 is not None: |
---|
382 | output = mean(input[d4,:,:,:],axis=0) |
---|
383 | if anomaly: |
---|
384 | for k in range(output.shape[0]): output[k,:,:] = 100. * ((output[k,:,:] / smooth(output[k,:,:],csmooth)) - 1.) |
---|
385 | try: |
---|
386 | totalarea = np.tile(mesharea,(output.shape[0],1,1)) |
---|
387 | totalarea = np.ma.masked_where(getmask(output),mesharea) |
---|
388 | totalarea = mean(totalarea[:,d2,:],axis=1); totalarea = mean(totalarea[:,d1],axis=1) |
---|
389 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
390 | output = output*mesharea; output = mean(output[:,d2,:],axis=1); output = mean(output[:,d1],axis=1)/totalarea |
---|
391 | #noperturb = smooth1d(output,window_len=7) |
---|
392 | #lenlen = len(output) ; output = output[1:lenlen-7] ; yeye = noperturb[4:lenlen-4] |
---|
393 | #plot(output) ; plot(yeye) ; show() ; plot(output-yeye) ; show() |
---|
394 | elif d3 is not None and d2 is not None and d1 is not None: |
---|
395 | output = reduce_zaxis(input[:,d3,:,:],ax=1,yint=yint,vert=alt,indice=d3) |
---|
396 | if anomaly: |
---|
397 | for k in range(output.shape[0]): output[k,:,:] = 100. * ((output[k,:,:] / smooth(output[k,:,:],csmooth)) - 1.) |
---|
398 | try: |
---|
399 | totalarea = np.tile(mesharea,(output.shape[0],1,1)) |
---|
400 | totalarea = np.ma.masked_where(getmask(output),totalarea) |
---|
401 | totalarea = mean(totalarea[:,d2,:],axis=1); totalarea = mean(totalarea[:,d1],axis=1) |
---|
402 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
403 | output = output*mesharea; output = mean(output[:,d2,:],axis=1); output = mean(output[:,d1],axis=1)/totalarea |
---|
404 | elif d4 is not None and d3 is not None: |
---|
405 | output = mean(input[d4,:,:,:],axis=0) |
---|
406 | output = reduce_zaxis(output[d3,:,:],ax=0,yint=yint,vert=alt,indice=d3) |
---|
407 | if anomaly: output = 100. * ((output / smooth(output,csmooth)) - 1.) |
---|
408 | elif d4 is not None and d2 is not None: |
---|
409 | output = mean(input[d4,:,:,:],axis=0) |
---|
410 | try: |
---|
411 | totalarea = np.tile(mesharea,(output.shape[0],1,1)) |
---|
412 | totalarea = np.ma.masked_where(getmask(output),mesharea) |
---|
413 | totalarea = mean(totalarea[:,d2,:],axis=1) |
---|
414 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
415 | output = output*mesharea; output = mean(output[:,d2,:],axis=1)/totalarea |
---|
416 | elif d4 is not None and d1 is not None: |
---|
417 | output = mean(input[d4,:,:,:],axis=0) |
---|
418 | output = mean(output[:,:,d1],axis=2) |
---|
419 | elif d3 is not None and d2 is not None: |
---|
420 | output = reduce_zaxis(input[:,d3,:,:],ax=1,yint=yint,vert=alt,indice=d3) |
---|
421 | try: |
---|
422 | totalarea = np.tile(mesharea,(output.shape[0],1,1)) |
---|
423 | totalarea = np.ma.masked_where(getmask(output),mesharea) |
---|
424 | totalarea = mean(totalarea[:,d2,:],axis=1) |
---|
425 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
426 | output = output*mesharea; output = mean(output[:,d2,:],axis=1)/totalarea |
---|
427 | elif d3 is not None and d1 is not None: |
---|
428 | output = reduce_zaxis(input[:,d3,:,:],ax=1,yint=yint,vert=alt,indice=d3) |
---|
429 | output = mean(output[:,:,d1],axis=2) |
---|
430 | elif d2 is not None and d1 is not None: |
---|
431 | try: |
---|
432 | totalarea = np.tile(mesharea,(output.shape[0],output.shape[1],1,1)) |
---|
433 | totalarea = np.ma.masked_where(getmask(output),totalarea) |
---|
434 | totalarea = mean(totalarea[:,:,d2,:],axis=2); totalarea = mean(totalarea[:,:,d1],axis=1) |
---|
435 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
436 | output = output*mesharea; output = mean(output[:,:,d2,:],axis=2); output = mean(output[:,:,d1],axis=2)/totalarea |
---|
437 | elif d1 is not None: output = mean(input[:,:,:,d1],axis=3) |
---|
438 | elif d2 is not None: |
---|
439 | try: |
---|
440 | totalarea = np.tile(mesharea,(output.shape[0],output.shape[1],1,output.shape[3])) |
---|
441 | totalarea = np.ma.masked_where(getmask(output),totalarea) |
---|
442 | totalarea = mean(totalarea[:,:,d2,:],axis=2) |
---|
443 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
444 | output = output*mesharea; output = mean(output[:,:,d2,:],axis=2)/totalarea |
---|
445 | elif d3 is not None: output = reduce_zaxis(input[:,d3,:,:],ax=1,yint=yint,vert=alt,indice=d3) |
---|
446 | elif d4 is not None: output = mean(input[d4,:,:,:],axis=0) |
---|
447 | |
---|
448 | if redope is not None: |
---|
449 | if redope == "mint": output = min(output,axis=0) |
---|
450 | elif redope == "maxt": output = max(output,axis=0) |
---|
451 | |
---|
452 | dimension2 = np.array(output).ndim |
---|
453 | shape2 = np.array(output).shape |
---|
454 | print 'REDUCEFIELD dim,shape: ',dimension,shape,' >>> ',dimension2,shape2 |
---|
455 | return output, error |
---|
456 | |
---|
457 | ## Author: AC + AS |
---|
458 | def reduce_zaxis (input,ax=None,yint=False,vert=None,indice=None): |
---|
459 | from mymath import max,mean |
---|
460 | from scipy import integrate |
---|
461 | if yint and vert is not None and indice is not None: |
---|
462 | if type(input).__name__=='MaskedArray': |
---|
463 | input.set_fill_value([np.NaN]) |
---|
464 | output = integrate.trapz(input.filled(),x=vert[indice],axis=ax) |
---|
465 | else: |
---|
466 | output = integrate.trapz(input,x=vert[indice],axis=ax) |
---|
467 | else: |
---|
468 | output = mean(input,axis=ax) |
---|
469 | return output |
---|
470 | |
---|
471 | ## Author: AS + TN |
---|
472 | def definesubplot ( numplot, fig, ipreferline=False): |
---|
473 | from matplotlib.pyplot import rcParams |
---|
474 | rcParams['font.size'] = 12. ## default (important for multiple calls) |
---|
475 | if numplot <= 0: |
---|
476 | subv = 99999 |
---|
477 | subh = 99999 |
---|
478 | elif numplot == 1: |
---|
479 | subv = 1 |
---|
480 | subh = 1 |
---|
481 | elif numplot == 2: |
---|
482 | subv = 1 #2 |
---|
483 | subh = 2 #1 |
---|
484 | fig.subplots_adjust(wspace = 0.35) |
---|
485 | rcParams['font.size'] = int( rcParams['font.size'] * 3. / 4. ) |
---|
486 | elif numplot == 3: |
---|
487 | subv = 3 |
---|
488 | subh = 1 |
---|
489 | fig.subplots_adjust(hspace = 0.5) |
---|
490 | if ipreferline: subv = 1 ; subh = 3 ; fig.subplots_adjust(wspace = 0.35) |
---|
491 | rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) |
---|
492 | elif numplot == 4: |
---|
493 | subv = 2 |
---|
494 | subh = 2 |
---|
495 | #fig.subplots_adjust(wspace = 0.4, hspace = 0.6) |
---|
496 | fig.subplots_adjust(wspace = 0.4, hspace = 0.3) |
---|
497 | rcParams['font.size'] = int( rcParams['font.size'] * 2. / 3. ) |
---|
498 | elif numplot <= 6: |
---|
499 | subv = 3#2 |
---|
500 | subh = 2#3 |
---|
501 | ##fig.subplots_adjust(wspace = 0.4, hspace = 0.0) |
---|
502 | #fig.subplots_adjust(wspace = 0.5, hspace = 0.3) |
---|
503 | fig.subplots_adjust(wspace = 0.3, hspace = 0.5) |
---|
504 | rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) |
---|
505 | elif numplot <= 8: |
---|
506 | subv = 2 |
---|
507 | subh = 4 |
---|
508 | fig.subplots_adjust(wspace = 0.3, hspace = 0.3) |
---|
509 | rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) |
---|
510 | elif numplot <= 9: |
---|
511 | subv = 3 |
---|
512 | subh = 3 |
---|
513 | fig.subplots_adjust(wspace = 0.3, hspace = 0.3) |
---|
514 | rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) |
---|
515 | elif numplot <= 12: |
---|
516 | subv = 3 |
---|
517 | subh = 4 |
---|
518 | fig.subplots_adjust(wspace = 0, hspace = 0.1) |
---|
519 | rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) |
---|
520 | elif numplot <= 16: |
---|
521 | subv = 4 |
---|
522 | subh = 4 |
---|
523 | fig.subplots_adjust(wspace = 0.3, hspace = 0.3) |
---|
524 | rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) |
---|
525 | else: |
---|
526 | print "number of plot supported: 1 to 16" |
---|
527 | exit() |
---|
528 | return subv,subh |
---|
529 | |
---|
530 | ## Author: AS |
---|
531 | def getstralt(nc,nvert): |
---|
532 | varinfile = nc.variables.keys() |
---|
533 | if 'vert' not in varinfile: |
---|
534 | stralt = "_lvl" + str(nvert) |
---|
535 | else: |
---|
536 | zelevel = int(nc.variables['vert'][nvert]) |
---|
537 | if abs(zelevel) < 10000.: strheight=str(zelevel)+"m" |
---|
538 | else: strheight=str(int(zelevel/1000.))+"km" |
---|
539 | if 'altitude' in nc.dimensions: stralt = "_"+strheight+"-AMR" |
---|
540 | elif 'altitude_abg' in nc.dimensions: stralt = "_"+strheight+"-ALS" |
---|
541 | elif 'bottom_top' in nc.dimensions: stralt = "_"+strheight |
---|
542 | elif 'pressure' in nc.dimensions: stralt = "_"+str(zelevel)+"Pa" |
---|
543 | else: stralt = "" |
---|
544 | return stralt |
---|
545 | |
---|
546 | ## Author: AS |
---|
547 | def getlschar ( namefile, getaxis=False ): |
---|
548 | from timestuff import sol2ls |
---|
549 | from string import rstrip |
---|
550 | import os as daos |
---|
551 | namefiletest = rstrip( rstrip( rstrip( namefile, chars="_z"), chars="_zabg"), chars="_p") |
---|
552 | testexist = daos.path.isfile(namefiletest) |
---|
553 | zetime = None |
---|
554 | if testexist: |
---|
555 | namefile = namefiletest |
---|
556 | #### we assume that wrfout is next to wrfout_z and wrfout_zabg |
---|
557 | nc = netCDF4.Dataset(namefile) |
---|
558 | zetime = None |
---|
559 | days_in_month = [61, 66, 66, 65, 60, 54, 50, 46, 47, 47, 51, 56] |
---|
560 | plus_in_month = [ 0, 61,127,193,258,318,372,422,468,515,562,613] |
---|
561 | if 'Times' in nc.variables: |
---|
562 | zetime = nc.variables['Times'][0] |
---|
563 | shape = np.array(nc.variables['Times']).shape |
---|
564 | if shape[0] < 2: zetime = None |
---|
565 | if zetime is not None \ |
---|
566 | and 'vert' not in nc.variables: |
---|
567 | ##### strangely enough this does not work for api or ncrcat results! |
---|
568 | zesol = plus_in_month[ int(zetime[5]+zetime[6])-1 ] + int(zetime[8]+zetime[9]) - 1 ##les sols GCM commencent a 0 |
---|
569 | dals = int(sol2ls ( zesol )) #int( 10. * sol2ls ( zesol ) ) / 10. |
---|
570 | ### |
---|
571 | zetime2 = nc.variables['Times'][1] |
---|
572 | one = int(zetime[11]+zetime[12]) + int(zetime[14]+zetime[15])/37. |
---|
573 | next = int(zetime2[11]+zetime2[12]) + int(zetime2[14]+zetime2[15])/37. |
---|
574 | zehour = one |
---|
575 | zehourin = abs ( next - one ) |
---|
576 | if not getaxis: |
---|
577 | lschar = "_Ls"+str(dals) |
---|
578 | else: |
---|
579 | zelen = len(nc.variables['Times'][:]) |
---|
580 | yeye = range(zelen) ; lsaxis = range(zelen) ; solaxis = range(zelen) ; ltaxis = range(zelen) |
---|
581 | for iii in yeye: |
---|
582 | zetime = nc.variables['Times'][iii] |
---|
583 | ltaxis[iii] = int(zetime[11]+zetime[12]) + int(zetime[14]+zetime[15])/37. |
---|
584 | solaxis[iii] = ltaxis[iii] / 24. + plus_in_month[ int(zetime[5]+zetime[6])-1 ] + int(zetime[8]+zetime[9]) - 1 ##les sols GCM commencent a 0 |
---|
585 | lsaxis[iii] = sol2ls ( solaxis[iii] ) |
---|
586 | if ltaxis[iii] < ltaxis[iii-1]: ltaxis[iii] = ltaxis[iii] + 24. |
---|
587 | #print ltaxis[iii], solaxis[iii], lsaxis[iii], getattr( nc, 'JULDAY' ) |
---|
588 | lschar = lsaxis ; zehour = solaxis ; zehourin = ltaxis |
---|
589 | else: |
---|
590 | lschar="" |
---|
591 | zehour = 0 |
---|
592 | zehourin = 1 |
---|
593 | return lschar, zehour, zehourin |
---|
594 | |
---|
595 | ## Author: AS |
---|
596 | def getprefix (nc): |
---|
597 | prefix = 'LMD_MMM_' |
---|
598 | prefix = prefix + 'd'+str(getattr(nc,'GRID_ID'))+'_' |
---|
599 | prefix = prefix + str(int(getattr(nc,'DX')/1000.))+'km_' |
---|
600 | return prefix |
---|
601 | |
---|
602 | ## Author: AS |
---|
603 | def getproj (nc): |
---|
604 | typefile = whatkindfile(nc) |
---|
605 | if typefile in ['meso','geo']: |
---|
606 | ### (il faudrait passer CEN_LON dans la projection ?) |
---|
607 | map_proj = getattr(nc, 'MAP_PROJ') |
---|
608 | cen_lat = getattr(nc, 'CEN_LAT') |
---|
609 | if map_proj == 2: |
---|
610 | if cen_lat > 10.: |
---|
611 | proj="npstere" |
---|
612 | #print "NP stereographic polar domain" |
---|
613 | else: |
---|
614 | proj="spstere" |
---|
615 | #print "SP stereographic polar domain" |
---|
616 | elif map_proj == 1: |
---|
617 | #print "lambert projection domain" |
---|
618 | proj="lcc" |
---|
619 | elif map_proj == 3: |
---|
620 | #print "mercator projection" |
---|
621 | proj="merc" |
---|
622 | else: |
---|
623 | proj="merc" |
---|
624 | elif typefile in ['gcm']: proj="cyl" ## pb avec les autres (de trace derriere la sphere ?) |
---|
625 | else: proj="ortho" |
---|
626 | return proj |
---|
627 | |
---|
628 | ## Author: AS |
---|
629 | def ptitle (name): |
---|
630 | from matplotlib.pyplot import title |
---|
631 | title(name) |
---|
632 | print name |
---|
633 | |
---|
634 | ## Author: AS |
---|
635 | def polarinterv (lon2d,lat2d): |
---|
636 | wlon = [np.min(lon2d),np.max(lon2d)] |
---|
637 | ind = np.array(lat2d).shape[0] / 2 ## to get a good boundlat and to get the pole |
---|
638 | wlat = [np.min(lat2d[ind,:]),np.max(lat2d[ind,:])] |
---|
639 | return [wlon,wlat] |
---|
640 | |
---|
641 | ## Author: AS |
---|
642 | def simplinterv (lon2d,lat2d): |
---|
643 | return [[np.min(lon2d),np.max(lon2d)],[np.min(lat2d),np.max(lat2d)]] |
---|
644 | |
---|
645 | ## Author: AS |
---|
646 | def wrfinterv (lon2d,lat2d): |
---|
647 | nx = len(lon2d[0,:])-1 |
---|
648 | ny = len(lon2d[:,0])-1 |
---|
649 | lon1 = lon2d[0,0] |
---|
650 | lon2 = lon2d[nx,ny] |
---|
651 | lat1 = lat2d[0,0] |
---|
652 | lat2 = lat2d[nx,ny] |
---|
653 | if abs(0.5*(lat1+lat2)) > 60.: wider = 0.5 * (abs(lon1)+abs(lon2)) * 0.1 |
---|
654 | else: wider = 0. |
---|
655 | if lon1 < lon2: wlon = [lon1, lon2 + wider] |
---|
656 | else: wlon = [lon2, lon1 + wider] |
---|
657 | if lat1 < lat2: wlat = [lat1, lat2] |
---|
658 | else: wlat = [lat2, lat1] |
---|
659 | return [wlon,wlat] |
---|
660 | |
---|
661 | ## Author: AS |
---|
662 | def makeplotres (filename,res=None,pad_inches_value=0.25,folder='',disp=True,ext='png',erase=False): |
---|
663 | import matplotlib.pyplot as plt |
---|
664 | from os import system |
---|
665 | addstr = "" |
---|
666 | if res is not None and disp: |
---|
667 | res = int(res) |
---|
668 | addstr = "_"+str(res) |
---|
669 | name = filename+addstr+"."+ext |
---|
670 | if folder != '': name = folder+'/'+name |
---|
671 | plt.savefig(name,dpi=res,bbox_inches='tight',pad_inches=pad_inches_value) |
---|
672 | if disp: display(name) |
---|
673 | if ext in ['eps','ps','svg']: system("tar czvf "+name+".tar.gz "+name+" ; rm -f "+name) |
---|
674 | if erase: system("mv "+name+" to_be_erased") |
---|
675 | return |
---|
676 | |
---|
677 | ## Author: AS + AC |
---|
678 | def dumpbdy (field,n,stag=None,condition=False,onlyx=False,onlyy=False): |
---|
679 | nx = len(field[0,:])-1 |
---|
680 | ny = len(field[:,0])-1 |
---|
681 | if condition: |
---|
682 | if stag == 'U': nx = nx-1 |
---|
683 | if stag == 'V': ny = ny-1 |
---|
684 | if stag == 'W': nx = nx+1 #special les case when we dump stag on W |
---|
685 | if onlyx: result = field[:,n:nx-n] |
---|
686 | elif onlyy: result = field[n:ny-n,:] |
---|
687 | else: result = field[n:ny-n,n:nx-n] |
---|
688 | return result |
---|
689 | |
---|
690 | ## Author: AS + AC |
---|
691 | def getcoorddef ( nc ): |
---|
692 | ## getcoord2d for predefined types |
---|
693 | typefile = whatkindfile(nc) |
---|
694 | if typefile in ['meso']: |
---|
695 | if '9999' not in getattr(nc,'START_DATE') : |
---|
696 | ## regular mesoscale |
---|
697 | [lon2d,lat2d] = getcoord2d(nc) |
---|
698 | else: |
---|
699 | ## idealized mesoscale |
---|
700 | nx=getattr(nc,'WEST-EAST_GRID_DIMENSION') |
---|
701 | ny=getattr(nc,'SOUTH-NORTH_GRID_DIMENSION') |
---|
702 | dlat=getattr(nc,'DX') |
---|
703 | ## this is dirty because Martian-specific |
---|
704 | # ... but this just intended to get "lat-lon" like info |
---|
705 | falselon = np.arange(-dlat*(nx-1)/2.,dlat*(nx-1)/2.,dlat)/60000. |
---|
706 | falselat = np.arange(-dlat*(ny-1)/2.,dlat*(ny-1)/2.,dlat)/60000. |
---|
707 | [lon2d,lat2d] = np.meshgrid(falselon,falselat) ## dummy coordinates |
---|
708 | print "WARNING: domain plot artificially centered on lat,lon 0,0" |
---|
709 | elif typefile in ['gcm','earthgcm','ecmwf']: |
---|
710 | #### n est ce pas nc.variables ? |
---|
711 | if "longitude" in nc.dimensions: dalon = "longitude" |
---|
712 | elif "lon" in nc.dimensions: dalon = "lon" |
---|
713 | else: dalon = "nothing" |
---|
714 | if "latitude" in nc.dimensions: dalat = "latitude" |
---|
715 | elif "lat" in nc.dimensions: dalat = "lat" |
---|
716 | else: dalat = "nothing" |
---|
717 | [lon2d,lat2d] = getcoord2d(nc,nlat=dalat,nlon=dalon,is1d=True) |
---|
718 | elif typefile in ['geo']: |
---|
719 | [lon2d,lat2d] = getcoord2d(nc,nlat='XLAT_M',nlon='XLONG_M') |
---|
720 | return lon2d,lat2d |
---|
721 | |
---|
722 | ## Author: AS |
---|
723 | def getcoord2d (nc,nlat='XLAT',nlon='XLONG',is1d=False): |
---|
724 | if nlon == "nothing" or nlat == "nothing": |
---|
725 | print "NO LAT LON FIELDS. I AM TRYING MY BEST. I ASSUME GLOBAL FIELD." |
---|
726 | lon = np.linspace(-180.,180.,getdimfromvar(nc)[-1]) |
---|
727 | lat = np.linspace(-90.,90.,getdimfromvar(nc)[-2]) |
---|
728 | [lon2d,lat2d] = np.meshgrid(lon,lat) |
---|
729 | else: |
---|
730 | if is1d: |
---|
731 | lat = nc.variables[nlat][:] |
---|
732 | lon = nc.variables[nlon][:] |
---|
733 | [lon2d,lat2d] = np.meshgrid(lon,lat) |
---|
734 | else: |
---|
735 | lat = nc.variables[nlat][0,:,:] |
---|
736 | lon = nc.variables[nlon][0,:,:] |
---|
737 | [lon2d,lat2d] = [lon,lat] |
---|
738 | return lon2d,lat2d |
---|
739 | |
---|
740 | ## Author: AS |
---|
741 | def getdimfromvar (nc): |
---|
742 | varinfile = nc.variables.keys() |
---|
743 | sav = [0.] |
---|
744 | for var in varinfile: |
---|
745 | dim = nc.variables[var].shape ## usually the last variable is 4D or 3D |
---|
746 | if len(dim) > len(sav): sav=dim |
---|
747 | return sav |
---|
748 | |
---|
749 | ## FROM COOKBOOK http://www.scipy.org/Cookbook/SignalSmooth |
---|
750 | def smooth1d(x,window_len=11,window='hanning'): |
---|
751 | """smooth the data using a window with requested size. |
---|
752 | This method is based on the convolution of a scaled window with the signal. |
---|
753 | The signal is prepared by introducing reflected copies of the signal |
---|
754 | (with the window size) in both ends so that transient parts are minimized |
---|
755 | in the begining and end part of the output signal. |
---|
756 | input: |
---|
757 | x: the input signal |
---|
758 | window_len: the dimension of the smoothing window; should be an odd integer |
---|
759 | window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman' |
---|
760 | flat window will produce a moving average smoothing. |
---|
761 | output: |
---|
762 | the smoothed signal |
---|
763 | example: |
---|
764 | t=linspace(-2,2,0.1) |
---|
765 | x=sin(t)+randn(len(t))*0.1 |
---|
766 | y=smooth(x) |
---|
767 | see also: |
---|
768 | numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve |
---|
769 | scipy.signal.lfilter |
---|
770 | TODO: the window parameter could be the window itself if an array instead of a string |
---|
771 | """ |
---|
772 | x = np.array(x) |
---|
773 | if x.ndim != 1: |
---|
774 | raise ValueError, "smooth only accepts 1 dimension arrays." |
---|
775 | if x.size < window_len: |
---|
776 | raise ValueError, "Input vector needs to be bigger than window size." |
---|
777 | if window_len<3: |
---|
778 | return x |
---|
779 | if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: |
---|
780 | raise ValueError, "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'" |
---|
781 | s=np.r_[x[window_len-1:0:-1],x,x[-1:-window_len:-1]] |
---|
782 | #print(len(s)) |
---|
783 | if window == 'flat': #moving average |
---|
784 | w=np.ones(window_len,'d') |
---|
785 | else: |
---|
786 | w=eval('numpy.'+window+'(window_len)') |
---|
787 | y=np.convolve(w/w.sum(),s,mode='valid') |
---|
788 | return y |
---|
789 | |
---|
790 | ## Author: AS |
---|
791 | def smooth (field, coeff): |
---|
792 | ## actually blur_image could work with different coeff on x and y |
---|
793 | if coeff > 1: result = blur_image(field,int(coeff)) |
---|
794 | else: result = field |
---|
795 | return result |
---|
796 | |
---|
797 | ## FROM COOKBOOK http://www.scipy.org/Cookbook/SignalSmooth |
---|
798 | def gauss_kern(size, sizey=None): |
---|
799 | # Returns a normalized 2D gauss kernel array for convolutions |
---|
800 | size = int(size) |
---|
801 | if not sizey: |
---|
802 | sizey = size |
---|
803 | else: |
---|
804 | sizey = int(sizey) |
---|
805 | x, y = np.mgrid[-size:size+1, -sizey:sizey+1] |
---|
806 | g = np.exp(-(x**2/float(size)+y**2/float(sizey))) |
---|
807 | return g / g.sum() |
---|
808 | |
---|
809 | ## FROM COOKBOOK http://www.scipy.org/Cookbook/SignalSmooth |
---|
810 | def blur_image(im, n, ny=None) : |
---|
811 | from scipy.signal import convolve |
---|
812 | # blurs the image by convolving with a gaussian kernel of typical size n. |
---|
813 | # The optional keyword argument ny allows for a different size in the y direction. |
---|
814 | g = gauss_kern(n, sizey=ny) |
---|
815 | improc = convolve(im, g, mode='same') |
---|
816 | return improc |
---|
817 | |
---|
818 | ## Author: AS |
---|
819 | def getwinddef (nc): |
---|
820 | ### |
---|
821 | varinfile = nc.variables.keys() |
---|
822 | if 'Um' in varinfile: [uchar,vchar] = ['Um','Vm'] #; print "this is API meso file" |
---|
823 | elif 'U' in varinfile: [uchar,vchar] = ['U','V'] #; print "this is RAW meso file" |
---|
824 | elif 'u' in varinfile: [uchar,vchar] = ['u','v'] #; print "this is GCM file" |
---|
825 | elif 'vitu' in varinfile: [uchar,vchar] = ['vitu','vitv'] #; print "this is GCM v5 file" |
---|
826 | elif 'ucomp' in varinfile: [uchar,vchar] = ['ucomp','vcomp'] |
---|
827 | ### you can add choices here ! |
---|
828 | else: [uchar,vchar] = ['not found','not found'] |
---|
829 | ### |
---|
830 | if uchar in ['U']: metwind = False ## geometrical (wrt grid) |
---|
831 | else: metwind = True ## meteorological (zon/mer) |
---|
832 | if metwind is False: print "Not using meteorological winds. You trust numerical grid as being (x,y)" |
---|
833 | ### |
---|
834 | return uchar,vchar,metwind |
---|
835 | |
---|
836 | ## Author: AS |
---|
837 | def vectorfield (u, v, x, y, stride=3, scale=15., factor=250., color='black', csmooth=1, key=True): |
---|
838 | ## scale regle la reference du vecteur |
---|
839 | ## factor regle toutes les longueurs (dont la reference). l'AUGMENTER pour raccourcir les vecteurs. |
---|
840 | import matplotlib.pyplot as plt |
---|
841 | #posx = np.min(x) - np.std(x) / 10. |
---|
842 | #posy = np.min(y) - np.std(y) / 10. |
---|
843 | #posx = np.min(x) |
---|
844 | #posy = np.min(y) - 4.*np.std(y) / 10. |
---|
845 | u = smooth(u,csmooth) |
---|
846 | v = smooth(v,csmooth) |
---|
847 | widthvec = 0.004 #0.003 #0.005 #0.003 |
---|
848 | q = plt.quiver( x[::stride,::stride],\ |
---|
849 | y[::stride,::stride],\ |
---|
850 | u[::stride,::stride],\ |
---|
851 | v[::stride,::stride],\ |
---|
852 | angles='xy',color=color,pivot='middle',\ |
---|
853 | scale=factor,width=widthvec ) |
---|
854 | if color in ['white','yellow']: kcolor='black' |
---|
855 | else: kcolor=color |
---|
856 | if key: p = plt.quiverkey(q,-0.06,0.98,scale,\ |
---|
857 | str(int(scale)),color=kcolor,labelpos='S',labelsep = 0.03) |
---|
858 | return |
---|
859 | |
---|
860 | ## Author: AS |
---|
861 | def display (name): |
---|
862 | from os import system |
---|
863 | system("display "+name+" > /dev/null 2> /dev/null &") |
---|
864 | return name |
---|
865 | |
---|
866 | ## Author: AS |
---|
867 | def findstep (wlon): |
---|
868 | steplon = int((wlon[1]-wlon[0])/4.) #3 |
---|
869 | step = 120. |
---|
870 | while step > steplon and step > 15. : step = step / 2. |
---|
871 | if step <= 15.: |
---|
872 | while step > steplon and step > 5. : step = step - 5. |
---|
873 | if step <= 5.: |
---|
874 | while step > steplon and step > 1. : step = step - 1. |
---|
875 | if step <= 1.: |
---|
876 | step = 1. |
---|
877 | return step |
---|
878 | |
---|
879 | ## Author: AS |
---|
880 | def define_proj (char,wlon,wlat,back=None,blat=None,blon=None): |
---|
881 | from mpl_toolkits.basemap import Basemap |
---|
882 | import matplotlib as mpl |
---|
883 | from mymath import max |
---|
884 | meanlon = 0.5*(wlon[0]+wlon[1]) |
---|
885 | meanlat = 0.5*(wlat[0]+wlat[1]) |
---|
886 | zewidth = np.abs(wlon[0]-wlon[1])*60000.*np.cos(3.14*meanlat/180.) |
---|
887 | zeheight = np.abs(wlat[0]-wlat[1])*60000. |
---|
888 | if blat is None: |
---|
889 | ortholat=meanlat |
---|
890 | if wlat[0] >= 80.: blat = -40. |
---|
891 | elif wlat[1] <= -80.: blat = -40. |
---|
892 | elif wlat[1] >= 0.: blat = wlat[0] |
---|
893 | elif wlat[0] <= 0.: blat = wlat[1] |
---|
894 | else: ortholat=blat |
---|
895 | if blon is None: ortholon=meanlon |
---|
896 | else: ortholon=blon |
---|
897 | h = 50. ## en km |
---|
898 | radius = 3397200. |
---|
899 | if char == "cyl": m = Basemap(rsphere=radius,projection='cyl',\ |
---|
900 | llcrnrlat=wlat[0],urcrnrlat=wlat[1],llcrnrlon=wlon[0],urcrnrlon=wlon[1]) |
---|
901 | elif char == "moll": m = Basemap(rsphere=radius,projection='moll',lon_0=meanlon) |
---|
902 | elif char == "ortho": m = Basemap(rsphere=radius,projection='ortho',lon_0=ortholon,lat_0=ortholat) |
---|
903 | elif char == "lcc": m = Basemap(rsphere=radius,projection='lcc',lat_1=meanlat,lat_0=meanlat,lon_0=meanlon,\ |
---|
904 | width=zewidth,height=zeheight) |
---|
905 | #llcrnrlat=wlat[0],urcrnrlat=wlat[1],llcrnrlon=wlon[0],urcrnrlon=wlon[1]) |
---|
906 | elif char == "npstere": m = Basemap(rsphere=radius,projection='npstere', boundinglat=blat, lon_0=0.) |
---|
907 | elif char == "spstere": m = Basemap(rsphere=radius,projection='spstere', boundinglat=blat, lon_0=180.) |
---|
908 | elif char == "nplaea": m = Basemap(rsphere=radius,projection='nplaea', boundinglat=wlat[0], lon_0=meanlon) |
---|
909 | elif char == "laea": m = Basemap(rsphere=radius,projection='laea',lon_0=meanlon,lat_0=meanlat,lat_ts=meanlat,\ |
---|
910 | width=zewidth,height=zeheight) |
---|
911 | #llcrnrlat=wlat[0],urcrnrlat=wlat[1],llcrnrlon=wlon[0],urcrnrlon=wlon[1]) |
---|
912 | elif char == "nsper": m = Basemap(rsphere=radius,projection='nsper',lon_0=meanlon,lat_0=meanlat,satellite_height=h*1000.) |
---|
913 | elif char == "merc": m = Basemap(rsphere=radius,projection='merc',lat_ts=0.,\ |
---|
914 | llcrnrlat=wlat[0],urcrnrlat=wlat[1],llcrnrlon=wlon[0],urcrnrlon=wlon[1]) |
---|
915 | elif char == "geos": m = Basemap(rsphere=radius,projection='geos',lon_0=meanlon) |
---|
916 | elif char == "robin": m = Basemap(rsphere=radius,projection='robin',lon_0=0) |
---|
917 | elif char == "cass": |
---|
918 | if zewidth > 60000.: ## approx. more than one degree |
---|
919 | m = Basemap(rsphere=radius,projection='cass',\ |
---|
920 | lon_0=meanlon,lat_0=meanlat,\ |
---|
921 | width=zewidth,height=zeheight) |
---|
922 | else: |
---|
923 | m = Basemap(rsphere=radius,projection='cass',\ |
---|
924 | lon_0=meanlon,lat_0=meanlat,\ |
---|
925 | llcrnrlat=wlat[0],urcrnrlat=wlat[1],llcrnrlon=wlon[0],urcrnrlon=wlon[1]) |
---|
926 | else: errormess("projection not supported.") |
---|
927 | fontsizemer = int(mpl.rcParams['font.size']*3./4.) |
---|
928 | if zewidth > 60000. or char in ["npstere","spstere","ortho"]: |
---|
929 | if char in ["cyl","lcc","merc","nsper","laea"]: step = findstep(wlon) |
---|
930 | else: step = 10. |
---|
931 | steplon = step*2. |
---|
932 | else: |
---|
933 | print "very small domain !" |
---|
934 | steplon = 0.5 |
---|
935 | step = 0.5 |
---|
936 | zecolor ='grey' |
---|
937 | zelinewidth = 1 |
---|
938 | zelatmax = 80. |
---|
939 | if meanlat > 75.: zelatmax = 90. ; step = step/2. ; steplon = steplon*2. |
---|
940 | # to show gcm grid: |
---|
941 | #zecolor = 'r' |
---|
942 | #zelinewidth = 1 |
---|
943 | #step = 180./48. |
---|
944 | #steplon = 360./64. |
---|
945 | #zelatmax = 90. - step/3 |
---|
946 | if char not in ["moll","robin"]: |
---|
947 | if wlon[1]-wlon[0] < 2.: ## LOCAL MODE |
---|
948 | m.drawmeridians(np.r_[-1.:1.:0.05], labels=[0,0,0,1], color=zecolor, linewidth=zelinewidth, fontsize=fontsizemer, fmt='%5.2f') |
---|
949 | m.drawparallels(np.r_[-1.:1.:0.05], labels=[1,0,0,0], color=zecolor, linewidth=zelinewidth, fontsize=fontsizemer, fmt='%5.2f') |
---|
950 | else: ## GLOBAL OR REGIONAL MODE |
---|
951 | m.drawmeridians(np.r_[-360.:360.:steplon], labels=[0,0,0,1], color=zecolor, linewidth=zelinewidth, fontsize=fontsizemer, latmax=zelatmax) |
---|
952 | m.drawparallels(np.r_[-180.:180.:step], labels=[1,0,0,0], color=zecolor, linewidth=zelinewidth, fontsize=fontsizemer, latmax=zelatmax) |
---|
953 | if back: |
---|
954 | if back not in ["coast","sea"]: m.warpimage(marsmap(back),scale=0.75) |
---|
955 | elif back == "coast": m.drawcoastlines() |
---|
956 | elif back == "sea": m.drawlsmask(land_color='white',ocean_color='aqua') |
---|
957 | #if not back: |
---|
958 | # if not var: back = "mola" ## if no var: draw mola |
---|
959 | # elif typefile in ['mesoapi','meso','geo'] \ |
---|
960 | # and proj not in ['merc','lcc','nsper','laea']: back = "molabw" ## if var but meso: draw molabw |
---|
961 | # else: pass ## else: draw None |
---|
962 | return m |
---|
963 | |
---|
964 | ## Author: AS |
---|
965 | #### test temporaire |
---|
966 | def putpoints (map,plot): |
---|
967 | #### from http://www.scipy.org/Cookbook/Matplotlib/Maps |
---|
968 | # lat/lon coordinates of five cities. |
---|
969 | lats = [18.4] |
---|
970 | lons = [-134.0] |
---|
971 | points=['Olympus Mons'] |
---|
972 | # compute the native map projection coordinates for cities. |
---|
973 | x,y = map(lons,lats) |
---|
974 | # plot filled circles at the locations of the cities. |
---|
975 | map.plot(x,y,'bo') |
---|
976 | # plot the names of those five cities. |
---|
977 | wherept = 0 #1000 #50000 |
---|
978 | for name,xpt,ypt in zip(points,x,y): |
---|
979 | plot.text(xpt+wherept,ypt+wherept,name) |
---|
980 | ## le nom ne s'affiche pas... |
---|
981 | return |
---|
982 | |
---|
983 | ## Author: AS |
---|
984 | def calculate_bounds(field,vmin=None,vmax=None): |
---|
985 | from mymath import max,min,mean |
---|
986 | ind = np.where(field < 9e+35) |
---|
987 | fieldcalc = field[ ind ] # la syntaxe compacte ne marche si field est un tuple |
---|
988 | ### |
---|
989 | dev = np.std(fieldcalc)*3.0 |
---|
990 | ### |
---|
991 | if vmin is None: zevmin = mean(fieldcalc) - dev |
---|
992 | else: zevmin = vmin |
---|
993 | ### |
---|
994 | if vmax is None: zevmax = mean(fieldcalc) + dev |
---|
995 | else: zevmax = vmax |
---|
996 | if vmin == vmax: |
---|
997 | zevmin = mean(fieldcalc) - dev ### for continuity |
---|
998 | zevmax = mean(fieldcalc) + dev ### for continuity |
---|
999 | ### |
---|
1000 | if zevmin < 0. and min(fieldcalc) > 0.: zevmin = 0. |
---|
1001 | print "BOUNDS field ", min(fieldcalc), max(fieldcalc), " //// adopted", zevmin, zevmax |
---|
1002 | return zevmin, zevmax |
---|
1003 | |
---|
1004 | ## Author: AS |
---|
1005 | def bounds(what_I_plot,zevmin,zevmax): |
---|
1006 | from mymath import max,min,mean |
---|
1007 | ### might be convenient to add the missing value in arguments |
---|
1008 | #what_I_plot[ what_I_plot < zevmin ] = zevmin#*(1. + 1.e-7) |
---|
1009 | if zevmin < 0: what_I_plot[ what_I_plot < zevmin*(1. - 1.e-7) ] = zevmin*(1. - 1.e-7) |
---|
1010 | else: what_I_plot[ what_I_plot < zevmin*(1. + 1.e-7) ] = zevmin*(1. + 1.e-7) |
---|
1011 | #print "NEW MIN ", min(what_I_plot) |
---|
1012 | what_I_plot[ what_I_plot > 9e+35 ] = -9e+35 |
---|
1013 | what_I_plot[ what_I_plot > zevmax ] = zevmax*(1. - 1.e-7) |
---|
1014 | #print "NEW MAX ", max(what_I_plot) |
---|
1015 | return what_I_plot |
---|
1016 | |
---|
1017 | ## Author: AS |
---|
1018 | def nolow(what_I_plot): |
---|
1019 | from mymath import max,min |
---|
1020 | lim = 0.15*0.5*(abs(max(what_I_plot))+abs(min(what_I_plot))) |
---|
1021 | print "NO PLOT BELOW VALUE ", lim |
---|
1022 | what_I_plot [ abs(what_I_plot) < lim ] = 1.e40 |
---|
1023 | return what_I_plot |
---|
1024 | |
---|
1025 | |
---|
1026 | ## Author : AC |
---|
1027 | def hole_bounds(what_I_plot,zevmin,zevmax): |
---|
1028 | zi=0 |
---|
1029 | for i in what_I_plot: |
---|
1030 | zj=0 |
---|
1031 | for j in i: |
---|
1032 | if ((j < zevmin) or (j > zevmax)):what_I_plot[zi,zj]=np.NaN |
---|
1033 | zj=zj+1 |
---|
1034 | zi=zi+1 |
---|
1035 | |
---|
1036 | return what_I_plot |
---|
1037 | |
---|
1038 | ## Author: AS |
---|
1039 | def zoomset (wlon,wlat,zoom): |
---|
1040 | dlon = abs(wlon[1]-wlon[0])/2. |
---|
1041 | dlat = abs(wlat[1]-wlat[0])/2. |
---|
1042 | [wlon,wlat] = [ [wlon[0]+zoom*dlon/100.,wlon[1]-zoom*dlon/100.],\ |
---|
1043 | [wlat[0]+zoom*dlat/100.,wlat[1]-zoom*dlat/100.] ] |
---|
1044 | print "ZOOM %",zoom,wlon,wlat |
---|
1045 | return wlon,wlat |
---|
1046 | |
---|
1047 | ## Author: AS |
---|
1048 | def fmtvar (whichvar="def"): |
---|
1049 | fmtvar = { \ |
---|
1050 | "MIXED": "%.0f",\ |
---|
1051 | "UPDRAFT": "%.0f",\ |
---|
1052 | "DOWNDRAFT": "%.0f",\ |
---|
1053 | "TK": "%.0f",\ |
---|
1054 | "T": "%.0f",\ |
---|
1055 | "MARS_TI": "%.0f",\ |
---|
1056 | "THERMAL_INERTIA": "%.0f",\ |
---|
1057 | #"ZMAX_TH": "%.0f",\ |
---|
1058 | #"WSTAR": "%.0f",\ |
---|
1059 | # Variables from TES ncdf format |
---|
1060 | "T_NADIR_DAY": "%.0f",\ |
---|
1061 | "T_NADIR_NIT": "%.0f",\ |
---|
1062 | # Variables from tes.py ncdf format |
---|
1063 | "TEMP_DAY": "%.0f",\ |
---|
1064 | "TEMP_NIGHT": "%.0f",\ |
---|
1065 | # Variables from MCS and mcs.py ncdf format |
---|
1066 | "DTEMP": "%.0f",\ |
---|
1067 | "NTEMP": "%.0f",\ |
---|
1068 | "DNUMBINTEMP": "%.0f",\ |
---|
1069 | "NNUMBINTEMP": "%.0f",\ |
---|
1070 | # other stuff |
---|
1071 | "TPOT": "%.0f",\ |
---|
1072 | "TSURF": "%.0f",\ |
---|
1073 | "TSK": "%.0f",\ |
---|
1074 | "U_OUT1": "%.0f",\ |
---|
1075 | "T_OUT1": "%.0f",\ |
---|
1076 | "def": "%.1e",\ |
---|
1077 | "PTOT": "%.0f",\ |
---|
1078 | "PSFC": "%.1f",\ |
---|
1079 | "HGT": "%.1e",\ |
---|
1080 | "USTM": "%.2f",\ |
---|
1081 | "HFX": "%.0f",\ |
---|
1082 | "ICETOT": "%.1e",\ |
---|
1083 | "TAU_ICE": "%.2f",\ |
---|
1084 | "TAUICE": "%.2f",\ |
---|
1085 | "VMR_ICE": "%.1e",\ |
---|
1086 | "MTOT": "%.1f",\ |
---|
1087 | "ANOMALY": "%.1f",\ |
---|
1088 | "W": "%.2f",\ |
---|
1089 | "WMAX_TH": "%.1f",\ |
---|
1090 | "WSTAR": "%.1f",\ |
---|
1091 | "QSURFICE": "%.0f",\ |
---|
1092 | "UM": "%.0f",\ |
---|
1093 | "WIND": "%.0f",\ |
---|
1094 | "UVMET": "%.0f",\ |
---|
1095 | "UV": "%.0f",\ |
---|
1096 | "ALBBARE": "%.2f",\ |
---|
1097 | "TAU": "%.1f",\ |
---|
1098 | "CO2": "%.2f",\ |
---|
1099 | "ENFACT": "%.1f",\ |
---|
1100 | "QDUST": "%.6f",\ |
---|
1101 | #### T.N. |
---|
1102 | "TEMP": "%.0f",\ |
---|
1103 | "VMR_H2OICE": "%.0f",\ |
---|
1104 | "VMR_H2OVAP": "%.0f",\ |
---|
1105 | "TAUTES": "%.2f",\ |
---|
1106 | "TAUTESAP": "%.2f",\ |
---|
1107 | |
---|
1108 | } |
---|
1109 | if "TSURF" in whichvar: whichvar = "TSURF" |
---|
1110 | if whichvar not in fmtvar: |
---|
1111 | whichvar = "def" |
---|
1112 | return fmtvar[whichvar] |
---|
1113 | |
---|
1114 | ## Author: AS |
---|
1115 | #################################################################################################################### |
---|
1116 | ### Colorbars http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps?action=AttachFile&do=get&target=colormaps3.png |
---|
1117 | def defcolorb (whichone="def"): |
---|
1118 | whichcolorb = { \ |
---|
1119 | "def": "spectral",\ |
---|
1120 | "HGT": "spectral",\ |
---|
1121 | "HGT_M": "spectral",\ |
---|
1122 | "TK": "gist_heat",\ |
---|
1123 | "TPOT": "Paired",\ |
---|
1124 | "TSURF": "RdBu_r",\ |
---|
1125 | "TSK": "RdBu_r",\ |
---|
1126 | "QH2O": "PuBu",\ |
---|
1127 | "PSFC": "RdYlBu_r",\ |
---|
1128 | "USTM": "YlOrRd",\ |
---|
1129 | "WIND": "YlOrRd",\ |
---|
1130 | #"T_nadir_nit": "RdBu_r",\ |
---|
1131 | #"T_nadir_day": "RdBu_r",\ |
---|
1132 | "HFX": "RdYlBu",\ |
---|
1133 | "ICETOT": "YlGnBu_r",\ |
---|
1134 | #"MTOT": "PuBu",\ |
---|
1135 | "CCNQ": "YlOrBr",\ |
---|
1136 | "CCNN": "YlOrBr",\ |
---|
1137 | "TEMP": "Jet",\ |
---|
1138 | "TAU_ICE": "Blues",\ |
---|
1139 | "TAUICE": "Blues",\ |
---|
1140 | "VMR_ICE": "Blues",\ |
---|
1141 | "W": "jet",\ |
---|
1142 | "WMAX_TH": "spectral",\ |
---|
1143 | "ANOMALY": "gist_ncar",\ |
---|
1144 | #"ANOMALY": "RdBu_r",\ |
---|
1145 | "QSURFICE": "hot_r",\ |
---|
1146 | "ALBBARE": "spectral",\ |
---|
1147 | "TAU": "YlOrBr_r",\ |
---|
1148 | "CO2": "YlOrBr_r",\ |
---|
1149 | "MIXED": "GnBu",\ |
---|
1150 | #### T.N. |
---|
1151 | "MTOT": "spectral",\ |
---|
1152 | "H2O_ICE_S": "RdBu",\ |
---|
1153 | "VMR_H2OICE": "PuBu",\ |
---|
1154 | "VMR_H2OVAP": "PuBu",\ |
---|
1155 | "WATERCAPTAG": "Blues",\ |
---|
1156 | } |
---|
1157 | #W --> spectral ou jet |
---|
1158 | #spectral BrBG RdBu_r |
---|
1159 | #print "predefined colorbars" |
---|
1160 | if "TSURF" in whichone: whichone = "TSURF" |
---|
1161 | if whichone not in whichcolorb: |
---|
1162 | whichone = "def" |
---|
1163 | return whichcolorb[whichone] |
---|
1164 | |
---|
1165 | ## Author: AS |
---|
1166 | def definecolorvec (whichone="def"): |
---|
1167 | whichcolor = { \ |
---|
1168 | "def": "black",\ |
---|
1169 | "vis": "yellow",\ |
---|
1170 | "vishires": "blue",\ |
---|
1171 | "molabw": "yellow",\ |
---|
1172 | "mola": "black",\ |
---|
1173 | "gist_heat": "white",\ |
---|
1174 | "hot": "white",\ |
---|
1175 | "gist_rainbow": "black",\ |
---|
1176 | "spectral": "black",\ |
---|
1177 | "gray": "red",\ |
---|
1178 | "PuBu": "black",\ |
---|
1179 | "titan": "red",\ |
---|
1180 | } |
---|
1181 | if whichone not in whichcolor: |
---|
1182 | whichone = "def" |
---|
1183 | return whichcolor[whichone] |
---|
1184 | |
---|
1185 | ## Author: AS |
---|
1186 | def marsmap (whichone="vishires"): |
---|
1187 | from os import uname |
---|
1188 | mymachine = uname()[1] |
---|
1189 | ### not sure about speed-up with this method... looks the same |
---|
1190 | if "lmd.jussieu.fr" in mymachine: domain = "/u/aslmd/WWW/maps/" |
---|
1191 | elif "aymeric-laptop" in mymachine: domain = "/home/aymeric/Dropbox/Public/" |
---|
1192 | else: domain = "http://www.lmd.jussieu.fr/~aslmd/maps/" |
---|
1193 | whichlink = { \ |
---|
1194 | #"vis": "http://maps.jpl.nasa.gov/pix/mar0kuu2.jpg",\ |
---|
1195 | #"vishires": "http://www.lmd.jussieu.fr/~aslmd/maps/MarsMap_2500x1250.jpg",\ |
---|
1196 | #"geolocal": "http://dl.dropbox.com/u/11078310/geolocal.jpg",\ |
---|
1197 | #"mola": "http://www.lns.cornell.edu/~seb/celestia/mars-mola-2k.jpg",\ |
---|
1198 | #"molabw": "http://dl.dropbox.com/u/11078310/MarsElevation_2500x1250.jpg",\ |
---|
1199 | "thermalday": domain+"thermalday.jpg",\ |
---|
1200 | "thermalnight": domain+"thermalnight.jpg",\ |
---|
1201 | "tesalbedo": domain+"tesalbedo.jpg",\ |
---|
1202 | "vis": domain+"mar0kuu2.jpg",\ |
---|
1203 | "vishires": domain+"MarsMap_2500x1250.jpg",\ |
---|
1204 | "geolocal": domain+"geolocal.jpg",\ |
---|
1205 | "mola": domain+"mars-mola-2k.jpg",\ |
---|
1206 | "molabw": domain+"MarsElevation_2500x1250.jpg",\ |
---|
1207 | "clouds": "http://www.johnstonsarchive.net/spaceart/marswcloudmap.jpg",\ |
---|
1208 | "jupiter": "http://www.mmedia.is/~bjj/data/jupiter_css/jupiter_css.jpg",\ |
---|
1209 | "jupiter_voy": "http://www.mmedia.is/~bjj/data/jupiter/jupiter_vgr2.jpg",\ |
---|
1210 | #"bw": domain+"EarthElevation_2500x1250.jpg",\ |
---|
1211 | "bw": "http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/EarthElevation_2500x1250.jpg",\ |
---|
1212 | "contrast": "http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/EarthMapAtmos_2500x1250.jpg",\ |
---|
1213 | "nice": "http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/earthmap1k.jpg",\ |
---|
1214 | "blue": "http://eoimages.gsfc.nasa.gov/ve/2430/land_ocean_ice_2048.jpg",\ |
---|
1215 | "blueclouds": "http://eoimages.gsfc.nasa.gov/ve/2431/land_ocean_ice_cloud_2048.jpg",\ |
---|
1216 | "justclouds": "http://eoimages.gsfc.nasa.gov/ve/2432/cloud_combined_2048.jpg",\ |
---|
1217 | "pluto": "http://www.boulder.swri.edu/~buie/pluto/pluto_all.png",\ |
---|
1218 | "triton": "http://laps.noaa.gov/albers/sos/neptune/triton/triton_rgb_cyl_www.jpg",\ |
---|
1219 | "titan": "http://laps.noaa.gov/albers/sos/saturn/titan/titan_rgb_cyl_www.jpg",\ |
---|
1220 | #"titan": "http://laps.noaa.gov/albers/sos/celestia/titan_50.jpg",\ |
---|
1221 | "titanuni": "http://maps.jpl.nasa.gov/pix/sat6fss1.jpg",\ |
---|
1222 | "venus": "http://laps.noaa.gov/albers/sos/venus/venus4/venus4_rgb_cyl_www.jpg",\ |
---|
1223 | "cosmic": "http://laps.noaa.gov/albers/sos/universe/wmap/wmap_rgb_cyl_www.jpg",\ |
---|
1224 | } |
---|
1225 | ### see http://www.mmedia.is/~bjj/planetary_maps.html |
---|
1226 | if whichone not in whichlink: |
---|
1227 | print "marsmap: choice not defined... you'll get the default one... " |
---|
1228 | whichone = "vishires" |
---|
1229 | return whichlink[whichone] |
---|
1230 | |
---|
1231 | #def earthmap (whichone): |
---|
1232 | # if whichone == "contrast": whichlink="http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/EarthMapAtmos_2500x1250.jpg" |
---|
1233 | # elif whichone == "bw": whichlink="http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/EarthElevation_2500x1250.jpg" |
---|
1234 | # elif whichone == "nice": whichlink="http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/earthmap1k.jpg" |
---|
1235 | # return whichlink |
---|
1236 | |
---|
1237 | ## Author: AS |
---|
1238 | def latinterv (area="Whole"): |
---|
1239 | list = { \ |
---|
1240 | "Europe": [[ 20., 80.],[- 50., 50.]],\ |
---|
1241 | "Central_America": [[-10., 40.],[ 230., 300.]],\ |
---|
1242 | "Africa": [[-20., 50.],[- 50., 50.]],\ |
---|
1243 | "Whole": [[-90., 90.],[-180., 180.]],\ |
---|
1244 | "Southern_Hemisphere": [[-90., 60.],[-180., 180.]],\ |
---|
1245 | "Northern_Hemisphere": [[-60., 90.],[-180., 180.]],\ |
---|
1246 | "Tharsis_alt": [[-30., 60.],[ 190., 350.]],\ |
---|
1247 | "Tharsis": [[-30., 60.],[-170.,- 10.]],\ |
---|
1248 | "Whole_No_High": [[-60., 60.],[-180., 180.]],\ |
---|
1249 | "Chryse": [[-60., 60.],[- 60., 60.]],\ |
---|
1250 | "North_Pole": [[ 50., 90.],[-180., 180.]],\ |
---|
1251 | "Close_North_Pole": [[ 75., 90.],[-180., 180.]],\ |
---|
1252 | "Far_South_Pole": [[-90.,-40.],[-180., 180.]],\ |
---|
1253 | "South_Pole": [[-90.,-50.],[-180., 180.]],\ |
---|
1254 | "Close_South_Pole": [[-90.,-75.],[-180., 180.]],\ |
---|
1255 | "Sirenum_Crater_large": [[-46.,-34.],[-166.,-151.]],\ |
---|
1256 | "Sirenum_Crater_small": [[-36.,-26.],[-168.,-156.]],\ |
---|
1257 | "Rupes": [[ 72., 90.],[-120.,- 20.]],\ |
---|
1258 | "Rupes2": [[ 80., 85.],[- 90.,- 60.]],\ |
---|
1259 | "Xanadu": [[-40., 20.],[ 40., 120.]],\ |
---|
1260 | "Hyperboreae": [[ 80., 87.],[- 70.,- 10.]],\ |
---|
1261 | "VM_alt": [[-15., 0.],[ 270., 300.]],\ |
---|
1262 | } |
---|
1263 | if area not in list: area = "Whole" |
---|
1264 | [olat,olon] = list[area] |
---|
1265 | return olon,olat |
---|
1266 | |
---|
1267 | ## Author: TN |
---|
1268 | def separatenames (name): |
---|
1269 | # look for comas in the input name to separate different names (files, variables,etc ..) |
---|
1270 | if name is None: |
---|
1271 | names = None |
---|
1272 | else: |
---|
1273 | names = [] |
---|
1274 | stop = 0 |
---|
1275 | currentname = name |
---|
1276 | while stop == 0: |
---|
1277 | indexvir = currentname.find(',') |
---|
1278 | if indexvir == -1: |
---|
1279 | stop = 1 |
---|
1280 | name1 = currentname |
---|
1281 | else: |
---|
1282 | name1 = currentname[0:indexvir] |
---|
1283 | names = np.concatenate((names,[name1])) |
---|
1284 | currentname = currentname[indexvir+1:len(currentname)] |
---|
1285 | return names |
---|
1286 | |
---|
1287 | |
---|
1288 | ## Author: TN |
---|
1289 | def readslices(saxis): |
---|
1290 | if saxis == None: |
---|
1291 | zesaxis = None |
---|
1292 | else: |
---|
1293 | zesaxis = np.empty((len(saxis),2)) |
---|
1294 | for i in range(len(saxis)): |
---|
1295 | a = separatenames(saxis[i]) |
---|
1296 | if len(a) == 1: |
---|
1297 | zesaxis[i,:] = float(a[0]) |
---|
1298 | else: |
---|
1299 | zesaxis[i,0] = float(a[0]) |
---|
1300 | zesaxis[i,1] = float(a[1]) |
---|
1301 | |
---|
1302 | return zesaxis |
---|
1303 | |
---|
1304 | ## Author: TN |
---|
1305 | def readdata(data,datatype,coord1,coord2): |
---|
1306 | ## Read sparse data |
---|
1307 | if datatype == 'txt': |
---|
1308 | if len(data[coord1].shape) == 1: |
---|
1309 | return data[coord1][:] |
---|
1310 | elif len(data[coord1].shape) == 2: |
---|
1311 | return data[coord1][:,int(coord2)-1] |
---|
1312 | else: |
---|
1313 | errormess('error in readdata') |
---|
1314 | elif datatype == 'sav': |
---|
1315 | return data[coord1][coord2] |
---|
1316 | else: |
---|
1317 | errormess(datatype+' type is not supported!') |
---|
1318 | |
---|
1319 | |
---|
1320 | ## Author: AS |
---|
1321 | def bidimfind(lon2d,lat2d,vlon,vlat,file=None): |
---|
1322 | import matplotlib.pyplot as mpl |
---|
1323 | if vlat is None: array = (lon2d - vlon)**2 |
---|
1324 | elif vlon is None: array = (lat2d - vlat)**2 |
---|
1325 | else: array = (lon2d - vlon)**2 + (lat2d - vlat)**2 |
---|
1326 | idy,idx = np.unravel_index( np.argmin(array), lon2d.shape ) |
---|
1327 | if vlon is not None: |
---|
1328 | if (np.abs(lon2d[idy,idx]-vlon)) > 5: errormess("longitude not found ",printvar=lon2d) |
---|
1329 | if vlat is not None: |
---|
1330 | if (np.abs(lat2d[idy,idx]-vlat)) > 5: errormess("latitude not found ",printvar=lat2d) |
---|
1331 | if file is not None: |
---|
1332 | print idx,idy,lon2d[idy,idx],vlon |
---|
1333 | print idx,idy,lat2d[idy,idx],vlat |
---|
1334 | var = file.variables["HGT"][:,:,:] |
---|
1335 | mpl.contourf(var[0,:,:],30,cmap = mpl.get_cmap(name="Greys_r") ) ; mpl.axis('off') ; mpl.plot(idx,idy,'mx',mew=4.0,ms=20.0) |
---|
1336 | mpl.show() |
---|
1337 | return idy,idx |
---|
1338 | |
---|
1339 | ## Author: TN |
---|
1340 | def getsindex(saxis,index,axis): |
---|
1341 | # input : all the desired slices and the good index |
---|
1342 | # output : all indexes to be taken into account for reducing field |
---|
1343 | if ( np.array(axis).ndim == 2): |
---|
1344 | axis = axis[:,0] |
---|
1345 | if saxis is None: |
---|
1346 | zeindex = None |
---|
1347 | else: |
---|
1348 | aaa = int(np.argmin(abs(saxis[index,0] - axis))) |
---|
1349 | bbb = int(np.argmin(abs(saxis[index,1] - axis))) |
---|
1350 | [imin,imax] = np.sort(np.array([aaa,bbb])) |
---|
1351 | zeindex = np.array(range(imax-imin+1))+imin |
---|
1352 | # because -180 and 180 are the same point in longitude, |
---|
1353 | # we get rid of one for averaging purposes. |
---|
1354 | if axis[imin] == -180 and axis[imax] == 180: |
---|
1355 | zeindex = zeindex[0:len(zeindex)-1] |
---|
1356 | print "INFO: whole longitude averaging asked, so last point is not taken into account." |
---|
1357 | return zeindex |
---|
1358 | |
---|
1359 | ## Author: TN |
---|
1360 | def define_axis(lon,lat,vert,time,indexlon,indexlat,indexvert,indextime,what_I_plot,dim0,vertmode,redope): |
---|
1361 | # Purpose of define_axis is to find x and y axis scales in a smart way |
---|
1362 | # x axis priority: 1/time 2/lon 3/lat 4/vertical |
---|
1363 | # To be improved !!!... |
---|
1364 | x = None |
---|
1365 | y = None |
---|
1366 | count = 0 |
---|
1367 | what_I_plot = np.array(what_I_plot) |
---|
1368 | shape = what_I_plot.shape |
---|
1369 | if indextime is None and len(time) > 1: |
---|
1370 | #print "AXIS is time" |
---|
1371 | x = time |
---|
1372 | count = count+1 |
---|
1373 | if indexlon is None and len(lon) > 1 and redope not in ['edge_x1','edge_x2']: |
---|
1374 | #print "AXIS is lon" |
---|
1375 | if count == 0: x = lon |
---|
1376 | else: y = lon |
---|
1377 | count = count+1 |
---|
1378 | if indexlat is None and len(lat) > 1 and redope not in ['edge_y1','edge_y2']: |
---|
1379 | #print "AXIS is lat" |
---|
1380 | if count == 0: x = lat |
---|
1381 | else: y = lat |
---|
1382 | count = count+1 |
---|
1383 | if indexvert is None and len(vert) > 1 and ((dim0 == 4) or (y is None)): |
---|
1384 | #print "AXIS is vert" |
---|
1385 | if vertmode == 0: # vertical axis is as is (GCM grid) |
---|
1386 | if count == 0: x=range(len(vert)) |
---|
1387 | else: y=range(len(vert)) |
---|
1388 | count = count+1 |
---|
1389 | else: # vertical axis is in kms |
---|
1390 | if count == 0: x = vert |
---|
1391 | else: y = vert |
---|
1392 | count = count+1 |
---|
1393 | x = np.array(x) |
---|
1394 | y = np.array(y) |
---|
1395 | print "CHECK SHAPE: what_I_plot, x, y", what_I_plot.shape, x.shape, y.shape |
---|
1396 | if len(shape) == 1: |
---|
1397 | if shape[0] != len(x): print "WARNING: shape[0] != len(x). Correcting." ; what_I_plot = what_I_plot[0:len(x)] |
---|
1398 | if len(y.shape) > 0: y = () |
---|
1399 | elif len(shape) == 2: |
---|
1400 | if shape[1] == len(y) and shape[0] == len(x) and shape[0] != shape[1]: |
---|
1401 | print "INFO: swapaxes: ",what_I_plot.shape,shape ; what_I_plot = np.swapaxes(what_I_plot,0,1) |
---|
1402 | else: |
---|
1403 | if shape[0] != len(y): print "WARNING: shape[0] != len(y). Correcting." ; what_I_plot = what_I_plot[0:len(y),:] |
---|
1404 | elif shape[1] != len(x): print "WARNING: shape[1] != len(x). Correcting." ; what_I_plot = what_I_plot[:,0:len(x)] |
---|
1405 | elif len(shape) == 3: |
---|
1406 | if vertmode < 0: print "not supported. must check array dimensions at some point. not difficult to implement though." |
---|
1407 | return what_I_plot,x,y |
---|
1408 | |
---|
1409 | # Author: TN + AS + AC |
---|
1410 | def determineplot(slon, slat, svert, stime, redope): |
---|
1411 | nlon = 1 # number of longitudinal slices -- 1 is None |
---|
1412 | nlat = 1 |
---|
1413 | nvert = 1 |
---|
1414 | ntime = 1 |
---|
1415 | nslices = 1 |
---|
1416 | if slon is not None: |
---|
1417 | length=len(slon[:,0]) |
---|
1418 | nslices = nslices*length |
---|
1419 | nlon = len(slon) |
---|
1420 | if slat is not None: |
---|
1421 | length=len(slat[:,0]) |
---|
1422 | nslices = nslices*length |
---|
1423 | nlat = len(slat) |
---|
1424 | if svert is not None: |
---|
1425 | length=len(svert[:,0]) |
---|
1426 | nslices = nslices*length |
---|
1427 | nvert = len(svert) |
---|
1428 | if stime is not None: |
---|
1429 | length=len(stime[:,0]) |
---|
1430 | nslices = nslices*length |
---|
1431 | ntime = len(stime) |
---|
1432 | #else: |
---|
1433 | # nslices = 2 |
---|
1434 | mapmode = 0 |
---|
1435 | if slon is None and slat is None and redope not in ['edge_x1','edge_x2','edge_y1','edge_y2']: |
---|
1436 | mapmode = 1 # in this case we plot a map, with the given projection |
---|
1437 | return nlon, nlat, nvert, ntime, mapmode, nslices |
---|
1438 | |
---|
1439 | ## Author : AS |
---|
1440 | def maplatlon( lon,lat,field,\ |
---|
1441 | proj="cyl",colorb="jet",ndiv=10,zeback="molabw",trans=0.6,title="",\ |
---|
1442 | vecx=None,vecy=None,stride=2 ): |
---|
1443 | ### an easy way to map a field over lat/lon grid |
---|
1444 | import matplotlib.pyplot as mpl |
---|
1445 | from matplotlib.cm import get_cmap |
---|
1446 | ## get lon and lat in 2D version. get lat/lon intervals |
---|
1447 | numdim = len(np.array(lon).shape) |
---|
1448 | if numdim == 2: [lon2d,lat2d] = [lon,lat] |
---|
1449 | elif numdim == 1: [lon2d,lat2d] = np.meshgrid(lon,lat) |
---|
1450 | else: errormess("lon and lat arrays must be 1D or 2D") |
---|
1451 | #[wlon,wlat] = latinterv() |
---|
1452 | [wlon,wlat] = simplinterv(lon2d,lat2d) |
---|
1453 | ## define projection and background. define x and y given the projection |
---|
1454 | m = define_proj(proj,wlon,wlat,back=zeback,blat=None,blon=None) |
---|
1455 | x, y = m(lon2d, lat2d) |
---|
1456 | ## define field. bound field. |
---|
1457 | what_I_plot = np.transpose(field) |
---|
1458 | zevmin, zevmax = calculate_bounds(what_I_plot) ## vmin=min(what_I_plot_frame), vmax=max(what_I_plot_frame)) |
---|
1459 | what_I_plot = bounds(what_I_plot,zevmin,zevmax) |
---|
1460 | ## define contour field levels. define color palette |
---|
1461 | ticks = ndiv + 1 |
---|
1462 | zelevels = np.linspace(zevmin,zevmax,ticks) |
---|
1463 | palette = get_cmap(name=colorb) |
---|
1464 | ## contour field |
---|
1465 | m.contourf( x, y, what_I_plot, zelevels, cmap = palette, alpha = trans ) |
---|
1466 | ## draw colorbar |
---|
1467 | if proj in ['moll','cyl']: zeorientation="horizontal" ; zepad = 0.07 |
---|
1468 | else: zeorientation="vertical" ; zepad = 0.03 |
---|
1469 | #daformat = fmtvar(fvar.upper()) |
---|
1470 | daformat = "%.0f" |
---|
1471 | zecb = mpl.colorbar( fraction=0.05,pad=zepad,format=daformat,orientation=zeorientation,\ |
---|
1472 | ticks=np.linspace(zevmin,zevmax,num=min([ticks/2+1,21])),extend='neither',spacing='proportional' ) |
---|
1473 | ## give a title |
---|
1474 | if zeorientation == "horizontal": zecb.ax.set_xlabel(title) |
---|
1475 | else: ptitle(title) |
---|
1476 | ## draw vector |
---|
1477 | if vecx is not None and vecy is not None: |
---|
1478 | [vecx_frame,vecy_frame] = m.rotate_vector( np.transpose(vecx), np.transpose(vecy), lon2d, lat2d ) ## for metwinds |
---|
1479 | vectorfield(vecx_frame, vecy_frame, x, y, stride=stride, csmooth=2,\ |
---|
1480 | scale=30., factor=500., color=definecolorvec(colorb), key=True) |
---|
1481 | ## scale regle la reference du vecteur. factor regle toutes les longueurs (dont la reference). l'AUGMENTER pour raccourcir les vecteurs. |
---|
1482 | return |
---|
1483 | ## Author : AC |
---|
1484 | ## Handles calls to specific computations (e.g. wind norm, enrichment factor...) |
---|
1485 | def select_getfield(zvarname=None,znc=None,ztypefile=None,mode=None,ztsat=None,ylon=None,ylat=None,yalt=None,ytime=None,analysis=None): |
---|
1486 | from mymath import get_tsat |
---|
1487 | |
---|
1488 | ## Specific variables are described here: |
---|
1489 | # for the mesoscale: |
---|
1490 | specificname_meso = ['UV','uv','uvmet','slopexy','SLOPEXY','deltat','DELTAT','hodograph','tk','hodograph_2'] |
---|
1491 | # for the gcm: |
---|
1492 | specificname_gcm = ['enfact'] |
---|
1493 | |
---|
1494 | zncvar = znc.variables |
---|
1495 | |
---|
1496 | ## Check for variable in file: |
---|
1497 | if mode == 'check': |
---|
1498 | varname = zvarname |
---|
1499 | varinfile=zncvar.keys() |
---|
1500 | logical_novarname = zvarname not in zncvar |
---|
1501 | logical_nospecificname_meso = not ((ztypefile in ['meso']) and (zvarname in specificname_meso)) |
---|
1502 | logical_nospecificname_gcm = not ((ztypefile in ['gcm']) and (zvarname in specificname_gcm)) |
---|
1503 | if ( logical_novarname and logical_nospecificname_meso and logical_nospecificname_gcm ): |
---|
1504 | if len(varinfile) == 1: varname = varinfile[0] |
---|
1505 | else: varname = False |
---|
1506 | ## Return the variable name: |
---|
1507 | return varname |
---|
1508 | |
---|
1509 | ## Get the corresponding variable: |
---|
1510 | if mode == 'getvar': |
---|
1511 | plot_x = None ; plot_y = None ; |
---|
1512 | ### ----------- 1. saturation temperature |
---|
1513 | if zvarname in ["temp","t","T_nadir_nit","T_nadir_day","temp_day","temp_night"] and ztsat: |
---|
1514 | tt=getfield(znc,zvarname) ; print "computing Tsat-T, I ASSUME Z-AXIS IS PRESSURE" |
---|
1515 | if type(tt).__name__=='MaskedArray': tt.set_fill_value([np.NaN]) ; tinput=tt.filled() |
---|
1516 | else: tinput=tt |
---|
1517 | all_var=get_tsat(yalt,tinput,zlon=ylon,zlat=ylat,zalt=yalt,ztime=ytime) |
---|
1518 | ### ----------- 2. wind amplitude |
---|
1519 | elif ((zvarname in ['UV','uv','uvmet']) and (ztypefile in ['meso']) and (zvarname not in zncvar)): |
---|
1520 | all_var=windamplitude(znc,'amplitude') |
---|
1521 | elif ((zvarname in ['hodograph','hodograph_2']) and (ztypefile in ['meso']) and (zvarname not in zncvar)): |
---|
1522 | plot_x, plot_y = windamplitude(znc,zvarname) |
---|
1523 | if plot_x is not None: all_var=plot_x # dummy |
---|
1524 | else: all_var=plot_y ; plot_x = None ; plot_y = None # Hodograph type 2 is not 'xy' mode |
---|
1525 | elif ((zvarname in ['slopexy','SLOPEXY']) and (ztypefile in ['meso']) and (zvarname not in zncvar)): |
---|
1526 | all_var=slopeamplitude(znc) |
---|
1527 | ### ------------ 3. Near surface instability |
---|
1528 | elif ((zvarname in ['DELTAT','deltat']) and (ztypefile in ['meso']) and (zvarname not in zncvar)): |
---|
1529 | all_var=deltat0t1(znc) |
---|
1530 | ### ------------ 4. Enrichment factor |
---|
1531 | elif ((ztypefile in ['gcm']) and (zvarname in ['enfact'])): |
---|
1532 | all_var=enrichment_factor(znc,ylon,ylat,ytime) |
---|
1533 | ### ------------ 5. teta -> temp |
---|
1534 | elif ((ztypefile in ['meso']) and (zvarname in ['tk']) and ('tk' not in zncvar.keys())): |
---|
1535 | all_var=teta_to_tk(znc) |
---|
1536 | else: |
---|
1537 | ### ----------- 999. Normal case |
---|
1538 | all_var = getfield(znc,zvarname) |
---|
1539 | if analysis is not None: |
---|
1540 | if analysis in ['histo','density','histodensity']: plot_y=all_var ; plot_x = plot_y |
---|
1541 | elif analysis == 'fft': plot_y, plot_x = spectrum(all_var,ytime,yalt,ylat,ylon) ; all_var = plot_y |
---|
1542 | return all_var, plot_x, plot_y |
---|
1543 | |
---|
1544 | # Author : A.C |
---|
1545 | # FFT is computed before reducefield voluntarily, because we dont want to compute |
---|
1546 | # ffts on averaged fields (which would kill all waves). Instead, we take the fft everywhere |
---|
1547 | # (which is not efficient but it is still ok) and then, make the average (if the user wants to) |
---|
1548 | def spectrum(var,time,vert,lat,lon): |
---|
1549 | fft=np.fft.fft(var,axis=1) |
---|
1550 | N=len(vert) |
---|
1551 | step=(vert[1]-vert[0])*1000. |
---|
1552 | print "step is: ",step |
---|
1553 | fftfreq=np.fft.fftfreq(N,d=step) |
---|
1554 | fftfreq=np.fft.fftshift(fftfreq) # spatial FFT => this is the wavenumber |
---|
1555 | fft=np.fft.fftshift(fft) |
---|
1556 | fftfreq = 1./fftfreq # => wavelength (div by 0 expected, don't panic) |
---|
1557 | fft=np.abs(fft) # => amplitude spectrum |
---|
1558 | # fft=np.abs(fft)**2 # => power spectrum |
---|
1559 | return fft,fftfreq |
---|
1560 | |
---|
1561 | # Author : A.C. |
---|
1562 | # Computes temperature from potential temperature for mesoscale files, without the need to use API, i.e. using natural vertical grid |
---|
1563 | def teta_to_tk(nc): |
---|
1564 | varinfile = nc.variables.keys() |
---|
1565 | p0=610. |
---|
1566 | t0=220. |
---|
1567 | r_cp=1./3.89419 |
---|
1568 | if "T" in varinfile: zteta=getfield(nc,'T') |
---|
1569 | else: errormess("you need T in your file.") |
---|
1570 | if "PTOT" in varinfile: zptot=getfield(nc,'PTOT') |
---|
1571 | else: errormess("you need PTOT in your file.") |
---|
1572 | zt=(zteta+220.)*(zptot/p0)**(r_cp) |
---|
1573 | return zt |
---|
1574 | |
---|
1575 | # Author : A.C. |
---|
1576 | # Find the lon and lat index of the dust devil with the largest pressure gradient |
---|
1577 | # Steps : |
---|
1578 | # 1/ convert the chosen PSFC frame to an image of the PSFC anomaly with respect to the mean |
---|
1579 | # 2/ apply the Sobel operator |
---|
1580 | # (The Sobel operator performs a 2-D spatial gradient measurement on an image and so emphasizes regions of high spatial frequency that correspond to edges.) |
---|
1581 | # 3/ find the maximum of the resulting field |
---|
1582 | # 4/ find the points in a 5 pixel radius around the maximum for which the value of the Sobel transform is greater than half the maximum |
---|
1583 | # 5/ define a slab of points encompassing the above selected points, including the potential points 'inside' them (if the above points are a hollow circle for example) |
---|
1584 | # 6/ in this slab, find the point at which the surface pressure is minimum |
---|
1585 | def find_devil(nc,indextime): |
---|
1586 | from scipy import ndimage |
---|
1587 | from mymath import array2image,image2array |
---|
1588 | |
---|
1589 | varinfile = nc.variables.keys() |
---|
1590 | if "PSFC" not in varinfile: errormess("You need PSFC in your file to find dust devils") |
---|
1591 | else: psfc_full=getfield(nc,'PSFC') |
---|
1592 | psfc,error=reducefield( psfc_full, d4=indextime) |
---|
1593 | psfcim=array2image(1000.*(psfc-psfc.mean())) |
---|
1594 | sx = ndimage.sobel(psfcim, axis=0, mode='constant') ; sy = ndimage.sobel(psfcim, axis=1, mode='constant') |
---|
1595 | sob = np.hypot(sx, sy) |
---|
1596 | zemax=np.max(sob) |
---|
1597 | goodvalues = sob[sob >= zemax/2] |
---|
1598 | ix = np.in1d(sob.ravel(), goodvalues).reshape(sob.shape) |
---|
1599 | idxs,idys=np.where(ix) |
---|
1600 | maxvalue = sob[sob == zemax] |
---|
1601 | ixmax = np.in1d(sob.ravel(), maxvalue[0]).reshape(sob.shape) |
---|
1602 | idxmax,idymax=np.where(ixmax) |
---|
1603 | valok=[] |
---|
1604 | for i in np.arange(len(idxs)): |
---|
1605 | a=np.sqrt((idxmax-idxs[i])**2 + (idymax-idys[i])**2) |
---|
1606 | if 0 < a <= 5.*np.sqrt(2.): valok.append(goodvalues[i]) |
---|
1607 | ix = np.in1d(sob.ravel(), valok).reshape(sob.shape) |
---|
1608 | idxs,idys=np.where(ix) |
---|
1609 | hyperslab=psfc[np.min(idxs):np.max(idxs),np.min(idys):np.max(idys)] |
---|
1610 | idxsub,idysub=np.where(hyperslab==hyperslab.min()) |
---|
1611 | idx=idxsub[0]+np.min(idxs) ; idy=idysub[0]+np.min(idys) |
---|
1612 | return np.int(idx),np.int(idy) |
---|
1613 | |
---|
1614 | # Author : A.S. |
---|
1615 | # This is temporary. An object formulation would solve this kind of inelegant approach. |
---|
1616 | def alltransfer(zeto,zefrom,all_varname,all_time,all_vert,all_lat,all_lon,all_namefile,all_var2,all_colorb,all_var): |
---|
1617 | all_varname[zeto] = all_varname[zefrom] |
---|
1618 | all_time[zeto] = all_time[zefrom] |
---|
1619 | all_vert[zeto] = all_vert[zefrom] |
---|
1620 | all_lat[zeto] = all_lat[zefrom] |
---|
1621 | all_lon[zeto] = all_lon[zefrom] |
---|
1622 | all_namefile[zeto] = all_namefile[zefrom] |
---|
1623 | all_var2[zeto] = all_var2[zefrom] |
---|
1624 | all_colorb[zeto] = all_colorb[zefrom] |
---|
1625 | all_var[zeto] = all_var[zefrom] |
---|