## Author: AS def errormess(text,printvar=None): print text if printvar is not None: print printvar exit() return ## Author: AS def adjust_length (tab, zelen): from numpy import ones if tab is None: outtab = ones(zelen) * -999999 else: if zelen != len(tab): print "not enough or too much values... setting same values all variables" outtab = ones(zelen) * tab[0] else: outtab = tab return outtab ## Author: AS def getname(var=False,var2=False,winds=False,anomaly=False): if var and winds: basename = var + '_UV' elif var: basename = var elif winds: basename = 'UV' else: errormess("please set at least winds or var",printvar=nc.variables) if anomaly: basename = 'd' + basename if var2: basename = basename + '_' + var2 return basename ## Author: AS + AC def localtime(time,lon,namefile): # lon is the mean longitude of the plot, not of the domain. central lon of domain is taken from cen_lon import numpy as np from netCDF4 import Dataset ## THIS IS FOR MESOSCALE nc = Dataset(namefile) ## get start date and intervals dt_hour=1. ; start=0. if hasattr(nc,'TITLE'): title=getattr(nc, 'TITLE') if hasattr(nc,'DT') and hasattr(nc,'START_DATE') and 'MRAMS' in title: ## we must adapt what is done in getlschar to MRAMS (outputs from ic.py) dt_hour=getattr(nc, 'DT')/60. start_date=getattr(nc, 'START_DATE') start_hour=np.float(start_date[11:13]) start_minute=np.float(start_date[14:16])/60. start=start_hour+start_minute # start is the local time of simu at longitude 0 #LMD MMM is 1 output/hour (and not 1 output/timestep) #MRAMS is 1 output/timestep, unless stride is added in ic.py elif 'WRF' in title: [dummy,start,dt_hour] = getlschar ( namefile ) # get start hour and interval hour ## get longitude if lon is not None: if lon[0,1]!=lon[0,0]: mean_lon_plot = 0.5*(lon[0,1]-lon[0,0]) else: mean_lon_plot=lon[0,0] elif hasattr(nc, 'CEN_LON'): mean_lon_plot=getattr(nc, 'CEN_LON') else: mean_lon_plot=0. ## calculate local time ltst = start + time*dt_hour + mean_lon_plot / 15. ltst = int (ltst * 10) / 10. ltst = ltst % 24 return ltst ## Author: AC def check_localtime(time): a=-1 for i in range(len(time)-1): if (time[i] > time[i+1]): a=i if a >= 0 and a < (len(time)-1)/2.: print "Sorry, time axis is not regular." print "Contourf needs regular axis... recasting" for i in range(a+1): time[i]=time[i]-24. if a >= 0 and a >= (len(time)-1)/2.: print "Sorry, time axis is not regular." print "Contourf needs regular axis... recasting" for i in range((len(time)-1) - a): time[a+1+i]=time[a+1+i]+24. return time ## Author: AS, AC, JL def whatkindfile (nc): typefile = 'gcm' # default if 'controle' in nc.variables: typefile = 'gcm' elif 'phisinit' in nc.variables: typefile = 'gcm' elif 'phis' in nc.variables: typefile = 'gcm' elif 'time_counter' in nc.variables: typefile = 'earthgcm' elif hasattr(nc,'START_DATE'): typefile = 'meso' elif 'HGT_M' in nc.variables: typefile = 'geo' elif hasattr(nc,'institution'): if "European Centre" in getattr(nc,'institution'): typefile = 'ecmwf' return typefile ## Author: AS def getfield (nc,var): ## this allows to get much faster (than simply referring to nc.variables[var]) import numpy as np dimension = len(nc.variables[var].dimensions) #print " Opening variable with", dimension, "dimensions ..." if dimension == 2: field = nc.variables[var][:,:] elif dimension == 3: field = nc.variables[var][:,:,:] elif dimension == 4: field = nc.variables[var][:,:,:,:] elif dimension == 1: field = nc.variables[var][:] # if there are NaNs in the ncdf, they should be loaded as a masked array which will be # recasted as a regular array later in reducefield if (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): print "Warning: netcdf as nan values but is not loaded as a Masked Array." print "recasting array type" out=np.ma.masked_invalid(field) out.set_fill_value([np.NaN]) else: # missing values from zrecast or hrecast are -1e-33 masked=np.ma.masked_where(field < -1e30,field) masked2=np.ma.masked_where(field > 1e35,field) masked.set_fill_value([np.NaN]) ; masked2.set_fill_value([np.NaN]) mask = np.ma.getmask(masked) ; mask2 = np.ma.getmask(masked2) if (True in np.array(mask)): out=masked print "Masked array... Missing value is NaN" elif (True in np.array(mask2)): out=masked2 print "Masked array... Missing value is NaN" # else: # # missing values from api are 1e36 # masked=np.ma.masked_where(field > 1e35,field) # masked.set_fill_value([np.NaN]) # mask = np.ma.getmask(masked) # if (True in np.array(mask)):out=masked # else:out=field else: # # missing values from MRAMS files are 0.100E+32 masked=np.ma.masked_where(field > 1e30,field) masked.set_fill_value([np.NaN]) mask = np.ma.getmask(masked) if (True in np.array(mask)):out=masked else:out=field # else:out=field return out ## Author: AC # Compute the norm of the winds or return an hodograph # The corresponding variable to call is UV or uvmet (to use api) def windamplitude (nc,mode): import numpy as np varinfile = nc.variables.keys() if "U" in varinfile: zu=getfield(nc,'U') elif "Um" in varinfile: zu=getfield(nc,'Um') else: errormess("you need slopex or U or Um in your file.") if "V" in varinfile: zv=getfield(nc,'V') elif "Vm" in varinfile: zv=getfield(nc,'Vm') else: errormess("you need V or Vm in your file.") znt,znz,zny,znx = np.array(zu).shape if hasattr(nc,'WEST-EAST_PATCH_END_UNSTAG'):znx=getattr(nc, 'WEST-EAST_PATCH_END_UNSTAG') zuint = np.zeros([znt,znz,zny,znx]) zvint = np.zeros([znt,znz,zny,znx]) if "U" in varinfile: if hasattr(nc,'SOUTH-NORTH_PATCH_END_STAG'): zny_stag=getattr(nc, 'SOUTH-NORTH_PATCH_END_STAG') if hasattr(nc,'WEST-EAST_PATCH_END_STAG'): znx_stag=getattr(nc, 'WEST-EAST_PATCH_END_STAG') if zny_stag == zny: zvint=zv else: for yy in np.arange(zny): zvint[:,:,yy,:] = (zv[:,:,yy,:] + zv[:,:,yy+1,:])/2. if znx_stag == znx: zuint=zu else: for xx in np.arange(znx): zuint[:,:,:,xx] = (zu[:,:,:,xx] + zu[:,:,:,xx+1])/2. else: zuint=zu zvint=zv if mode=='amplitude': return np.sqrt(zuint**2 + zvint**2) if mode=='hodograph': return zuint,zvint if mode=='hodograph_2': return None, 360.*np.arctan(zvint/zuint)/(2.*np.pi) ## Author: AC # Compute the enrichment factor of non condensible gases # The corresponding variable to call is enfact # enrichment factor is computed as in Yuan Lian et al. 2012 # i.e. you need to have VL2 site at LS 135 in your data # this only requires co2col so that you can concat.nc at low cost def enrichment_factor(nc,lon,lat,time): import numpy as np from myplot import reducefield varinfile = nc.variables.keys() if "co2col" in varinfile: co2col=getfield(nc,'co2col') else: print "error, you need co2col var in your file" if "ps" in varinfile: ps=getfield(nc,'ps') else: print "error, you need ps var in your file" dimension = len(nc.variables['co2col'].dimensions) if dimension == 2: zny,znx = np.array(co2col).shape znt=1 elif dimension == 3: znt,zny,znx = np.array(co2col).shape mmrarcol = np.zeros([znt,zny,znx]) enfact = np.zeros([znt,zny,znx]) grav=3.72 mmrarcol[:,:,:] = 1. - grav*co2col[:,:,:]/ps[:,:,:] # Computation with reference argon mmr at VL2 Ls 135 (as in Yuan Lian et al 2012) lonvl2=np.zeros([1,2]) latvl2=np.zeros([1,2]) timevl2=np.zeros([1,2]) lonvl2[0,0]=-180 lonvl2[0,1]=180 latvl2[:,:]=48.16 timevl2[:,:]=135. indexlon = getsindex(lonvl2,0,lon) indexlat = getsindex(latvl2,0,lat) indextime = getsindex(timevl2,0,time) mmrvl2, error = reducefield( mmrarcol, d4=indextime, d1=indexlon, d2=indexlat) print "VL2 Ls 135 mmr arcol:", mmrvl2 enfact[:,:,:] = mmrarcol[:,:,:]/mmrvl2 return enfact ## Author: AC # Compute the norm of the slope angles # The corresponding variable to call is SLOPEXY def slopeamplitude (nc): import numpy as np varinfile = nc.variables.keys() if "slopex" in varinfile: zu=getfield(nc,'slopex') elif "SLOPEX" in varinfile: zu=getfield(nc,'SLOPEX') else: errormess("you need slopex or SLOPEX in your file.") if "slopey" in varinfile: zv=getfield(nc,'slopey') elif "SLOPEY" in varinfile: zv=getfield(nc,'SLOPEY') else: errormess("you need slopey or SLOPEY in your file.") znt,zny,znx = np.array(zu).shape zuint = np.zeros([znt,zny,znx]) zvint = np.zeros([znt,zny,znx]) zuint=zu zvint=zv return np.sqrt(zuint**2 + zvint**2) ## Author: AC # Compute the temperature difference between surface and first level. # API is automatically called to get TSURF and TK. # The corresponding variable to call is DELTAT def deltat0t1 (nc): import numpy as np varinfile = nc.variables.keys() if "tsurf" in varinfile: zu=getfield(nc,'tsurf') elif "TSURF" in varinfile: zu=getfield(nc,'TSURF') else: errormess("You need tsurf or TSURF in your file") if "tk" in varinfile: zv=getfield(nc,'tk') elif "TK" in varinfile: zv=getfield(nc,'TK') else: errormess("You need tk or TK in your file. (might need to use API. try to add -i 4 -l XXX)") znt,zny,znx = np.array(zu).shape zuint = np.zeros([znt,zny,znx]) zuint=zu - zv[:,0,:,:] return zuint ## Author: AS + TN + AC def reducefield (input,d4=None,d3=None,d2=None,d1=None,yint=False,alt=None,anomaly=False,redope=None,mesharea=None,unidim=999): ### we do it the reverse way to be compliant with netcdf "t z y x" or "t y x" or "y x" ### it would be actually better to name d4 d3 d2 d1 as t z y x ### ... note, anomaly is only computed over d1 and d2 for the moment import numpy as np from mymath import max,mean,min,sum,getmask csmooth = 12 ## a fair amount of grid points (too high results in high computation time) if redope is not None: # if redope == "mint": input = min(input,axis=0) ; d1 = None # elif redope == "maxt": input = max(input,axis=0) ; d1 = None if redope == "edge_y1": input = input[:,:,0,:] ; d2 = None elif redope == "edge_y2": input = input[:,:,-1,:] ; d2 = None elif redope == "edge_x1": input = input[:,:,:,0] ; d1 = None elif redope == "edge_x2": input = input[:,:,:,-1] ; d1 = None # else: errormess("not supported. but try lines in reducefield beforehand.") #elif redope == "minz": input = min(input,axis=1) ; d2 = None #elif redope == "maxz": input = max(input,axis=1) ; d2 = None #elif redope == "miny": input = min(input,axis=2) ; d3 = None #elif redope == "maxy": input = max(input,axis=2) ; d3 = None #elif redope == "minx": input = min(input,axis=3) ; d4 = None #elif redope == "maxx": input = max(input,axis=3) ; d4 = None dimension = np.array(input).ndim shape = np.array(np.array(input).shape) #print 'd1,d2,d3,d4: ',d1,d2,d3,d4 if anomaly: print 'ANOMALY ANOMALY' output = input error = False #### this is needed to cope the case where d4,d3,d2,d1 are single integers and not arrays if d4 is not None and not isinstance(d4, np.ndarray): d4=[d4] if d3 is not None and not isinstance(d3, np.ndarray): d3=[d3] if d2 is not None and not isinstance(d2, np.ndarray): d2=[d2] if d1 is not None and not isinstance(d1, np.ndarray): d1=[d1] ### now the main part if dimension == 2: #### this is needed for 1d-type files (where dim=2 but axes are time-vert and not lat-lon) if unidim==1: d2=d4 ; d1=d3 ; d4 = None ; d3 = None if mesharea is None: mesharea=np.ones(shape) if max(d2) >= shape[0]: error = True elif max(d1) >= shape[1]: error = True elif d1 is not None and d2 is not None: try: totalarea = np.ma.masked_where(getmask(output),mesharea) totalarea = mean(totalarea[d2,:],axis=0);totalarea = mean(totalarea[d1]) except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. output = output*mesharea; output = mean(output[d2,:],axis=0); output = mean(output[d1])/totalarea elif d1 is not None: output = mean(input[:,d1],axis=1) elif d2 is not None: try: totalarea = np.ma.masked_where(getmask(output),mesharea) totalarea = mean(totalarea[d2,:],axis=0) except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. output = output*mesharea; output = mean(output[d2,:],axis=0)/totalarea elif dimension == 3: if mesharea is None: mesharea=np.ones(shape[[1,2]]) if max(d4) >= shape[0]: error = True elif max(d2) >= shape[1]: error = True elif max(d1) >= shape[2]: error = True elif d4 is not None and d2 is not None and d1 is not None: output = mean(input[d4,:,:],axis=0) try: totalarea = np.ma.masked_where(getmask(output),mesharea) totalarea = mean(totalarea[d2,:],axis=0);totalarea = mean(totalarea[d1]) except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. output = output*mesharea; output = mean(output[d2,:],axis=0); output = mean(output[d1])/totalarea elif d4 is not None and d2 is not None: output = mean(input[d4,:,:],axis=0) try: totalarea = np.ma.masked_where(getmask(output),mesharea) totalarea = mean(totalarea[d2,:],axis=0) except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. output = output*mesharea; output = mean(output[d2,:],axis=0)/totalarea elif d4 is not None and d1 is not None: output = mean(input[d4,:,:],axis=0); output=mean(output[:,d1],axis=1) elif d2 is not None and d1 is not None: try: totalarea = np.tile(mesharea,(output.shape[0],1,1)) totalarea = np.ma.masked_where(getmask(output),totalarea) totalarea = mean(totalarea[:,d2,:],axis=1);totalarea = mean(totalarea[:,d1],axis=1) except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. output = output*mesharea; output = mean(output[:,d2,:],axis=1); output = mean(output[:,d1],axis=1)/totalarea elif d1 is not None: output = mean(input[:,:,d1],axis=2) elif d2 is not None: try: totalarea = np.tile(mesharea,(output.shape[0],1,1)) totalarea = np.ma.masked_where(getmask(output),totalarea) totalarea = mean(totalarea[:,d2,:],axis=1) except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. output = output*mesharea; output = mean(output[:,d2,:],axis=1)/totalarea elif d4 is not None: output = mean(input[d4,:,:],axis=0) elif dimension == 4: if mesharea is None: mesharea=np.ones(shape[[2,3]]) # mesharea=np.random.random_sample(shape[[2,3]])*5. + 2. # pour tester if max(d4) >= shape[0]: error = True elif max(d3) >= shape[1]: error = True elif max(d2) >= shape[2]: error = True elif max(d1) >= shape[3]: error = True elif d4 is not None and d3 is not None and d2 is not None and d1 is not None: output = mean(input[d4,:,:,:],axis=0) output = reduce_zaxis(output[d3,:,:],ax=0,yint=yint,vert=alt,indice=d3) if anomaly: output = 100. * ((output / smooth(output,csmooth)) - 1.) try: totalarea = np.ma.masked_where(np.isnan(output),mesharea) totalarea = mean(totalarea[d2,:],axis=0); totalarea = mean(totalarea[d1]) except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. output = output*mesharea; output = mean(output[d2,:],axis=0); output = mean(output[d1])/totalarea elif d4 is not None and d3 is not None and d2 is not None: output = mean(input[d4,:,:,:],axis=0) output = reduce_zaxis(output[d3,:,:],ax=0,yint=yint,vert=alt,indice=d3) if anomaly: output = 100. * ((output / smooth(output,csmooth)) - 1.) try: totalarea = np.ma.masked_where(np.isnan(output),mesharea) totalarea = mean(totalarea[d2,:],axis=0) except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. output = output*mesharea; output = mean(output[d2,:],axis=0)/totalarea elif d4 is not None and d3 is not None and d1 is not None: output = mean(input[d4,:,:,:],axis=0) output = reduce_zaxis(output[d3,:,:],ax=0,yint=yint,vert=alt,indice=d3) if anomaly: output = 100. * ((output / smooth(output,csmooth)) - 1.) output = mean(output[:,d1],axis=1) elif d4 is not None and d2 is not None and d1 is not None: output = mean(input[d4,:,:,:],axis=0) if anomaly: for k in range(output.shape[0]): output[k,:,:] = 100. * ((output[k,:,:] / smooth(output[k,:,:],csmooth)) - 1.) try: totalarea = np.tile(mesharea,(output.shape[0],1,1)) totalarea = np.ma.masked_where(getmask(output),mesharea) totalarea = mean(totalarea[:,d2,:],axis=1); totalarea = mean(totalarea[:,d1],axis=1) except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. output = output*mesharea; output = mean(output[:,d2,:],axis=1); output = mean(output[:,d1],axis=1)/totalarea #noperturb = smooth1d(output,window_len=7) #lenlen = len(output) ; output = output[1:lenlen-7] ; yeye = noperturb[4:lenlen-4] #plot(output) ; plot(yeye) ; show() ; plot(output-yeye) ; show() elif d3 is not None and d2 is not None and d1 is not None: output = reduce_zaxis(input[:,d3,:,:],ax=1,yint=yint,vert=alt,indice=d3) if anomaly: for k in range(output.shape[0]): output[k,:,:] = 100. * ((output[k,:,:] / smooth(output[k,:,:],csmooth)) - 1.) try: totalarea = np.tile(mesharea,(output.shape[0],1,1)) totalarea = np.ma.masked_where(getmask(output),totalarea) totalarea = mean(totalarea[:,d2,:],axis=1); totalarea = mean(totalarea[:,d1],axis=1) except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. output = output*mesharea; output = mean(output[:,d2,:],axis=1); output = mean(output[:,d1],axis=1)/totalarea elif d4 is not None and d3 is not None: output = mean(input[d4,:,:,:],axis=0) output = reduce_zaxis(output[d3,:,:],ax=0,yint=yint,vert=alt,indice=d3) if anomaly: output = 100. * ((output / smooth(output,csmooth)) - 1.) elif d4 is not None and d2 is not None: output = mean(input[d4,:,:,:],axis=0) try: totalarea = np.tile(mesharea,(output.shape[0],1,1)) totalarea = np.ma.masked_where(getmask(output),mesharea) totalarea = mean(totalarea[:,d2,:],axis=1) except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. output = output*mesharea; output = mean(output[:,d2,:],axis=1)/totalarea elif d4 is not None and d1 is not None: output = mean(input[d4,:,:,:],axis=0) output = mean(output[:,:,d1],axis=2) elif d3 is not None and d2 is not None: output = reduce_zaxis(input[:,d3,:,:],ax=1,yint=yint,vert=alt,indice=d3) try: totalarea = np.tile(mesharea,(output.shape[0],1,1)) totalarea = np.ma.masked_where(getmask(output),mesharea) totalarea = mean(totalarea[:,d2,:],axis=1) except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. output = output*mesharea; output = mean(output[:,d2,:],axis=1)/totalarea elif d3 is not None and d1 is not None: output = reduce_zaxis(input[:,d3,:,:],ax=1,yint=yint,vert=alt,indice=d3) output = mean(output[:,:,d1],axis=2) elif d2 is not None and d1 is not None: try: totalarea = np.tile(mesharea,(output.shape[0],output.shape[1],1,1)) totalarea = np.ma.masked_where(getmask(output),totalarea) totalarea = mean(totalarea[:,:,d2,:],axis=2); totalarea = mean(totalarea[:,:,d1],axis=1) except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. output = output*mesharea; output = mean(output[:,:,d2,:],axis=2); output = mean(output[:,:,d1],axis=2)/totalarea elif d1 is not None: output = mean(input[:,:,:,d1],axis=3) elif d2 is not None: try: totalarea = np.tile(mesharea,(output.shape[0],output.shape[1],1,output.shape[3])) totalarea = np.ma.masked_where(getmask(output),totalarea) totalarea = mean(totalarea[:,:,d2,:],axis=2) except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. output = output*mesharea; output = mean(output[:,:,d2,:],axis=2)/totalarea elif d3 is not None: output = reduce_zaxis(input[:,d3,:,:],ax=1,yint=yint,vert=alt,indice=d3) elif d4 is not None: output = mean(input[d4,:,:,:],axis=0) if redope is not None: if redope == "mint": output = min(output,axis=0) elif redope == "maxt": output = max(output,axis=0) dimension2 = np.array(output).ndim shape2 = np.array(output).shape print 'REDUCEFIELD dim,shape: ',dimension,shape,' >>> ',dimension2,shape2 return output, error ## Author: AC + AS def reduce_zaxis (input,ax=None,yint=False,vert=None,indice=None): from mymath import max,mean from scipy import integrate import numpy as np if yint and vert is not None and indice is not None: if type(input).__name__=='MaskedArray': input.set_fill_value([np.NaN]) output = integrate.trapz(input.filled(),x=vert[indice],axis=ax) else: output = integrate.trapz(input,x=vert[indice],axis=ax) else: output = mean(input,axis=ax) return output ## Author: AS + TN def definesubplot ( numplot, fig, ipreferline=False): from matplotlib.pyplot import rcParams rcParams['font.size'] = 12. ## default (important for multiple calls) if numplot <= 0: subv = 99999 subh = 99999 elif numplot == 1: subv = 1 subh = 1 elif numplot == 2: subv = 1 #2 subh = 2 #1 fig.subplots_adjust(wspace = 0.35) rcParams['font.size'] = int( rcParams['font.size'] * 3. / 4. ) elif numplot == 3: subv = 3 subh = 1 fig.subplots_adjust(hspace = 0.5) if ipreferline: subv = 1 ; subh = 3 ; fig.subplots_adjust(wspace = 0.35) rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) elif numplot == 4: subv = 2 subh = 2 #fig.subplots_adjust(wspace = 0.4, hspace = 0.6) fig.subplots_adjust(wspace = 0.4, hspace = 0.3) rcParams['font.size'] = int( rcParams['font.size'] * 2. / 3. ) elif numplot <= 6: subv = 2 subh = 3 #fig.subplots_adjust(wspace = 0.4, hspace = 0.0) fig.subplots_adjust(wspace = 0.5, hspace = 0.3) rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) elif numplot <= 8: subv = 2 subh = 4 fig.subplots_adjust(wspace = 0.3, hspace = 0.3) rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) elif numplot <= 9: subv = 3 subh = 3 fig.subplots_adjust(wspace = 0.3, hspace = 0.3) rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) elif numplot <= 12: subv = 3 subh = 4 fig.subplots_adjust(wspace = 0, hspace = 0.1) rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) elif numplot <= 16: subv = 4 subh = 4 fig.subplots_adjust(wspace = 0.3, hspace = 0.3) rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) else: print "number of plot supported: 1 to 16" exit() return subv,subh ## Author: AS def getstralt(nc,nvert): varinfile = nc.variables.keys() if 'vert' not in varinfile: stralt = "_lvl" + str(nvert) else: zelevel = int(nc.variables['vert'][nvert]) if abs(zelevel) < 10000.: strheight=str(zelevel)+"m" else: strheight=str(int(zelevel/1000.))+"km" if 'altitude' in nc.dimensions: stralt = "_"+strheight+"-AMR" elif 'altitude_abg' in nc.dimensions: stralt = "_"+strheight+"-ALS" elif 'bottom_top' in nc.dimensions: stralt = "_"+strheight elif 'pressure' in nc.dimensions: stralt = "_"+str(zelevel)+"Pa" else: stralt = "" return stralt ## Author: AS def getlschar ( namefile, getaxis=False ): from netCDF4 import Dataset from timestuff import sol2ls from numpy import array from string import rstrip import os as daos namefiletest = rstrip( rstrip( rstrip( namefile, chars="_z"), chars="_zabg"), chars="_p") testexist = daos.path.isfile(namefiletest) zetime = None if testexist: namefile = namefiletest #### we assume that wrfout is next to wrfout_z and wrfout_zabg nc = Dataset(namefile) zetime = None days_in_month = [61, 66, 66, 65, 60, 54, 50, 46, 47, 47, 51, 56] plus_in_month = [ 0, 61,127,193,258,318,372,422,468,515,562,613] if 'Times' in nc.variables: zetime = nc.variables['Times'][0] shape = array(nc.variables['Times']).shape if shape[0] < 2: zetime = None if zetime is not None \ and 'vert' not in nc.variables: ##### strangely enough this does not work for api or ncrcat results! zesol = plus_in_month[ int(zetime[5]+zetime[6])-1 ] + int(zetime[8]+zetime[9]) - 1 ##les sols GCM commencent a 0 dals = int(sol2ls ( zesol )) #int( 10. * sol2ls ( zesol ) ) / 10. ### zetime2 = nc.variables['Times'][1] one = int(zetime[11]+zetime[12]) + int(zetime[14]+zetime[15])/37. next = int(zetime2[11]+zetime2[12]) + int(zetime2[14]+zetime2[15])/37. zehour = one zehourin = abs ( next - one ) if not getaxis: lschar = "_Ls"+str(dals) else: zelen = len(nc.variables['Times'][:]) yeye = range(zelen) ; lsaxis = range(zelen) ; solaxis = range(zelen) ; ltaxis = range(zelen) for iii in yeye: zetime = nc.variables['Times'][iii] ltaxis[iii] = int(zetime[11]+zetime[12]) + int(zetime[14]+zetime[15])/37. solaxis[iii] = ltaxis[iii] / 24. + plus_in_month[ int(zetime[5]+zetime[6])-1 ] + int(zetime[8]+zetime[9]) - 1 ##les sols GCM commencent a 0 lsaxis[iii] = sol2ls ( solaxis[iii] ) if ltaxis[iii] < ltaxis[iii-1]: ltaxis[iii] = ltaxis[iii] + 24. #print ltaxis[iii], solaxis[iii], lsaxis[iii], getattr( nc, 'JULDAY' ) lschar = lsaxis ; zehour = solaxis ; zehourin = ltaxis else: lschar="" zehour = 0 zehourin = 1 return lschar, zehour, zehourin ## Author: AS def getprefix (nc): prefix = 'LMD_MMM_' prefix = prefix + 'd'+str(getattr(nc,'GRID_ID'))+'_' prefix = prefix + str(int(getattr(nc,'DX')/1000.))+'km_' return prefix ## Author: AS def getproj (nc): typefile = whatkindfile(nc) if typefile in ['meso','geo']: ### (il faudrait passer CEN_LON dans la projection ?) map_proj = getattr(nc, 'MAP_PROJ') cen_lat = getattr(nc, 'CEN_LAT') if map_proj == 2: if cen_lat > 10.: proj="npstere" #print "NP stereographic polar domain" else: proj="spstere" #print "SP stereographic polar domain" elif map_proj == 1: #print "lambert projection domain" proj="lcc" elif map_proj == 3: #print "mercator projection" proj="merc" else: proj="merc" elif typefile in ['gcm']: proj="cyl" ## pb avec les autres (de trace derriere la sphere ?) else: proj="ortho" return proj ## Author: AS def ptitle (name): from matplotlib.pyplot import title title(name) print name ## Author: AS def polarinterv (lon2d,lat2d): import numpy as np wlon = [np.min(lon2d),np.max(lon2d)] ind = np.array(lat2d).shape[0] / 2 ## to get a good boundlat and to get the pole wlat = [np.min(lat2d[ind,:]),np.max(lat2d[ind,:])] return [wlon,wlat] ## Author: AS def simplinterv (lon2d,lat2d): import numpy as np return [[np.min(lon2d),np.max(lon2d)],[np.min(lat2d),np.max(lat2d)]] ## Author: AS def wrfinterv (lon2d,lat2d): nx = len(lon2d[0,:])-1 ny = len(lon2d[:,0])-1 lon1 = lon2d[0,0] lon2 = lon2d[nx,ny] lat1 = lat2d[0,0] lat2 = lat2d[nx,ny] if abs(0.5*(lat1+lat2)) > 60.: wider = 0.5 * (abs(lon1)+abs(lon2)) * 0.1 else: wider = 0. if lon1 < lon2: wlon = [lon1, lon2 + wider] else: wlon = [lon2, lon1 + wider] if lat1 < lat2: wlat = [lat1, lat2] else: wlat = [lat2, lat1] return [wlon,wlat] ## Author: AS def makeplotres (filename,res=None,pad_inches_value=0.25,folder='',disp=True,ext='png',erase=False): import matplotlib.pyplot as plt from os import system addstr = "" if res is not None: res = int(res) addstr = "_"+str(res) name = filename+addstr+"."+ext if folder != '': name = folder+'/'+name plt.savefig(name,dpi=res,bbox_inches='tight',pad_inches=pad_inches_value) if disp: display(name) if ext in ['eps','ps','svg']: system("tar czvf "+name+".tar.gz "+name+" ; rm -f "+name) if erase: system("mv "+name+" to_be_erased") return ## Author: AS + AC def dumpbdy (field,n,stag=None,condition=False,onlyx=False,onlyy=False): nx = len(field[0,:])-1 ny = len(field[:,0])-1 if condition: if stag == 'U': nx = nx-1 if stag == 'V': ny = ny-1 if stag == 'W': nx = nx+1 #special les case when we dump stag on W if onlyx: result = field[:,n:nx-n] elif onlyy: result = field[n:ny-n,:] else: result = field[n:ny-n,n:nx-n] return result ## Author: AS + AC def getcoorddef ( nc ): import numpy as np ## getcoord2d for predefined types typefile = whatkindfile(nc) if typefile in ['meso']: if '9999' not in getattr(nc,'START_DATE') : ## regular mesoscale [lon2d,lat2d] = getcoord2d(nc) else: ## idealized mesoscale nx=getattr(nc,'WEST-EAST_GRID_DIMENSION') ny=getattr(nc,'SOUTH-NORTH_GRID_DIMENSION') dlat=getattr(nc,'DX') ## this is dirty because Martian-specific # ... but this just intended to get "lat-lon" like info falselon = np.arange(-dlat*(nx-1)/2.,dlat*(nx-1)/2.,dlat)/60000. falselat = np.arange(-dlat*(ny-1)/2.,dlat*(ny-1)/2.,dlat)/60000. [lon2d,lat2d] = np.meshgrid(falselon,falselat) ## dummy coordinates print "WARNING: domain plot artificially centered on lat,lon 0,0" elif typefile in ['gcm','earthgcm','ecmwf']: #### n est ce pas nc.variables ? if "longitude" in nc.dimensions: dalon = "longitude" elif "lon" in nc.dimensions: dalon = "lon" else: dalon = "nothing" if "latitude" in nc.dimensions: dalat = "latitude" elif "lat" in nc.dimensions: dalat = "lat" else: dalat = "nothing" [lon2d,lat2d] = getcoord2d(nc,nlat=dalat,nlon=dalon,is1d=True) elif typefile in ['geo']: [lon2d,lat2d] = getcoord2d(nc,nlat='XLAT_M',nlon='XLONG_M') return lon2d,lat2d ## Author: AS def getcoord2d (nc,nlat='XLAT',nlon='XLONG',is1d=False): import numpy as np if nlon == "nothing" or nlat == "nothing": print "NO LAT LON FIELDS. I AM TRYING MY BEST. I ASSUME GLOBAL FIELD." lon = np.linspace(-180.,180.,getdimfromvar(nc)[-1]) lat = np.linspace(-90.,90.,getdimfromvar(nc)[-2]) [lon2d,lat2d] = np.meshgrid(lon,lat) else: if is1d: lat = nc.variables[nlat][:] lon = nc.variables[nlon][:] [lon2d,lat2d] = np.meshgrid(lon,lat) else: lat = nc.variables[nlat][0,:,:] lon = nc.variables[nlon][0,:,:] [lon2d,lat2d] = [lon,lat] return lon2d,lat2d ## Author: AS def getdimfromvar (nc): varinfile = nc.variables.keys() sav = [0.] for var in varinfile: dim = nc.variables[var].shape ## usually the last variable is 4D or 3D if len(dim) > len(sav): sav=dim return sav ## FROM COOKBOOK http://www.scipy.org/Cookbook/SignalSmooth def smooth1d(x,window_len=11,window='hanning'): import numpy """smooth the data using a window with requested size. This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are minimized in the begining and end part of the output signal. input: x: the input signal window_len: the dimension of the smoothing window; should be an odd integer window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman' flat window will produce a moving average smoothing. output: the smoothed signal example: t=linspace(-2,2,0.1) x=sin(t)+randn(len(t))*0.1 y=smooth(x) see also: numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve scipy.signal.lfilter TODO: the window parameter could be the window itself if an array instead of a string """ x = numpy.array(x) if x.ndim != 1: raise ValueError, "smooth only accepts 1 dimension arrays." if x.size < window_len: raise ValueError, "Input vector needs to be bigger than window size." if window_len<3: return x if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: raise ValueError, "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'" s=numpy.r_[x[window_len-1:0:-1],x,x[-1:-window_len:-1]] #print(len(s)) if window == 'flat': #moving average w=numpy.ones(window_len,'d') else: w=eval('numpy.'+window+'(window_len)') y=numpy.convolve(w/w.sum(),s,mode='valid') return y ## Author: AS def smooth (field, coeff): ## actually blur_image could work with different coeff on x and y if coeff > 1: result = blur_image(field,int(coeff)) else: result = field return result ## FROM COOKBOOK http://www.scipy.org/Cookbook/SignalSmooth def gauss_kern(size, sizey=None): import numpy as np # Returns a normalized 2D gauss kernel array for convolutions size = int(size) if not sizey: sizey = size else: sizey = int(sizey) x, y = np.mgrid[-size:size+1, -sizey:sizey+1] g = np.exp(-(x**2/float(size)+y**2/float(sizey))) return g / g.sum() ## FROM COOKBOOK http://www.scipy.org/Cookbook/SignalSmooth def blur_image(im, n, ny=None) : from scipy.signal import convolve # blurs the image by convolving with a gaussian kernel of typical size n. # The optional keyword argument ny allows for a different size in the y direction. g = gauss_kern(n, sizey=ny) improc = convolve(im, g, mode='same') return improc ## Author: AS def getwinddef (nc): ### varinfile = nc.variables.keys() if 'Um' in varinfile: [uchar,vchar] = ['Um','Vm'] #; print "this is API meso file" elif 'U' in varinfile: [uchar,vchar] = ['U','V'] #; print "this is RAW meso file" elif 'u' in varinfile: [uchar,vchar] = ['u','v'] #; print "this is GCM file" elif 'vitu' in varinfile: [uchar,vchar] = ['vitu','vitv'] #; print "this is GCM v5 file" elif 'ucomp' in varinfile: [uchar,vchar] = ['ucomp','vcomp'] ### you can add choices here ! else: [uchar,vchar] = ['not found','not found'] ### if uchar in ['U']: metwind = False ## geometrical (wrt grid) else: metwind = True ## meteorological (zon/mer) if metwind is False: print "Not using meteorological winds. You trust numerical grid as being (x,y)" ### return uchar,vchar,metwind ## Author: AS def vectorfield (u, v, x, y, stride=3, scale=15., factor=250., color='black', csmooth=1, key=True): ## scale regle la reference du vecteur ## factor regle toutes les longueurs (dont la reference). l'AUGMENTER pour raccourcir les vecteurs. import matplotlib.pyplot as plt import numpy as np #posx = np.min(x) - np.std(x) / 10. #posy = np.min(y) - np.std(y) / 10. #posx = np.min(x) #posy = np.min(y) - 4.*np.std(y) / 10. u = smooth(u,csmooth) v = smooth(v,csmooth) widthvec = 0.004 #0.003 #0.005 #0.003 q = plt.quiver( x[::stride,::stride],\ y[::stride,::stride],\ u[::stride,::stride],\ v[::stride,::stride],\ angles='xy',color=color,pivot='middle',\ scale=factor,width=widthvec ) if color in ['white','yellow']: kcolor='black' else: kcolor=color if key: p = plt.quiverkey(q,-0.06,0.98,scale,\ str(int(scale)),color=kcolor,labelpos='S',labelsep = 0.03) return ## Author: AS def display (name): from os import system system("display "+name+" > /dev/null 2> /dev/null &") return name ## Author: AS def findstep (wlon): steplon = int((wlon[1]-wlon[0])/4.) #3 step = 120. while step > steplon and step > 15. : step = step / 2. if step <= 15.: while step > steplon and step > 5. : step = step - 5. if step <= 5.: while step > steplon and step > 1. : step = step - 1. if step <= 1.: step = 1. return step ## Author: AS def define_proj (char,wlon,wlat,back=None,blat=None,blon=None): from mpl_toolkits.basemap import Basemap import numpy as np import matplotlib as mpl from mymath import max meanlon = 0.5*(wlon[0]+wlon[1]) meanlat = 0.5*(wlat[0]+wlat[1]) zewidth = np.abs(wlon[0]-wlon[1])*60000.*np.cos(3.14*meanlat/180.) zeheight = np.abs(wlat[0]-wlat[1])*60000. if blat is None: ortholat=meanlat if wlat[0] >= 80.: blat = -40. elif wlat[1] <= -80.: blat = -40. elif wlat[1] >= 0.: blat = wlat[0] elif wlat[0] <= 0.: blat = wlat[1] else: ortholat=blat if blon is None: ortholon=meanlon else: ortholon=blon h = 50. ## en km radius = 3397200. if char == "cyl": m = Basemap(rsphere=radius,projection='cyl',\ llcrnrlat=wlat[0],urcrnrlat=wlat[1],llcrnrlon=wlon[0],urcrnrlon=wlon[1]) elif char == "moll": m = Basemap(rsphere=radius,projection='moll',lon_0=meanlon) elif char == "ortho": m = Basemap(rsphere=radius,projection='ortho',lon_0=ortholon,lat_0=ortholat) elif char == "lcc": m = Basemap(rsphere=radius,projection='lcc',lat_1=meanlat,lat_0=meanlat,lon_0=meanlon,\ width=zewidth,height=zeheight) #llcrnrlat=wlat[0],urcrnrlat=wlat[1],llcrnrlon=wlon[0],urcrnrlon=wlon[1]) elif char == "npstere": m = Basemap(rsphere=radius,projection='npstere', boundinglat=blat, lon_0=0.) elif char == "spstere": m = Basemap(rsphere=radius,projection='spstere', boundinglat=blat, lon_0=180.) elif char == "nplaea": m = Basemap(rsphere=radius,projection='nplaea', boundinglat=wlat[0], lon_0=meanlon) elif char == "laea": m = Basemap(rsphere=radius,projection='laea',lon_0=meanlon,lat_0=meanlat,lat_ts=meanlat,\ width=zewidth,height=zeheight) #llcrnrlat=wlat[0],urcrnrlat=wlat[1],llcrnrlon=wlon[0],urcrnrlon=wlon[1]) elif char == "nsper": m = Basemap(rsphere=radius,projection='nsper',lon_0=meanlon,lat_0=meanlat,satellite_height=h*1000.) elif char == "merc": m = Basemap(rsphere=radius,projection='merc',lat_ts=0.,\ llcrnrlat=wlat[0],urcrnrlat=wlat[1],llcrnrlon=wlon[0],urcrnrlon=wlon[1]) elif char == "geos": m = Basemap(rsphere=radius,projection='geos',lon_0=meanlon) elif char == "robin": m = Basemap(rsphere=radius,projection='robin',lon_0=0) elif char == "cass": if zewidth > 60000.: ## approx. more than one degree m = Basemap(rsphere=radius,projection='cass',\ lon_0=meanlon,lat_0=meanlat,\ width=zewidth,height=zeheight) else: m = Basemap(rsphere=radius,projection='cass',\ lon_0=meanlon,lat_0=meanlat,\ llcrnrlat=wlat[0],urcrnrlat=wlat[1],llcrnrlon=wlon[0],urcrnrlon=wlon[1]) else: errormess("projection not supported.") fontsizemer = int(mpl.rcParams['font.size']*3./4.) if zewidth > 60000. or char in ["npstere","spstere","ortho"]: if char in ["cyl","lcc","merc","nsper","laea"]: step = findstep(wlon) else: step = 10. steplon = step*2. else: print "very small domain !" steplon = 0.5 step = 0.5 zecolor ='grey' zelinewidth = 1 zelatmax = 80. if meanlat > 75.: zelatmax = 90. ; step = step/2. ; steplon = steplon*2. # to show gcm grid: #zecolor = 'r' #zelinewidth = 1 #step = 180./48. #steplon = 360./64. #zelatmax = 90. - step/3 if char not in ["moll","robin"]: if wlon[1]-wlon[0] < 2.: ## LOCAL MODE m.drawmeridians(np.r_[-1.:1.:0.05], labels=[0,0,0,1], color=zecolor, linewidth=zelinewidth, fontsize=fontsizemer, fmt='%5.2f') m.drawparallels(np.r_[-1.:1.:0.05], labels=[1,0,0,0], color=zecolor, linewidth=zelinewidth, fontsize=fontsizemer, fmt='%5.2f') else: ## GLOBAL OR REGIONAL MODE m.drawmeridians(np.r_[-360.:360.:steplon], labels=[0,0,0,1], color=zecolor, linewidth=zelinewidth, fontsize=fontsizemer, latmax=zelatmax) m.drawparallels(np.r_[-180.:180.:step], labels=[1,0,0,0], color=zecolor, linewidth=zelinewidth, fontsize=fontsizemer, latmax=zelatmax) if back: if back not in ["coast","sea"]: m.warpimage(marsmap(back),scale=0.75) elif back == "coast": m.drawcoastlines() elif back == "sea": m.drawlsmask(land_color='white',ocean_color='aqua') #if not back: # if not var: back = "mola" ## if no var: draw mola # elif typefile in ['mesoapi','meso','geo'] \ # and proj not in ['merc','lcc','nsper','laea']: back = "molabw" ## if var but meso: draw molabw # else: pass ## else: draw None return m ## Author: AS #### test temporaire def putpoints (map,plot): #### from http://www.scipy.org/Cookbook/Matplotlib/Maps # lat/lon coordinates of five cities. lats = [18.4] lons = [-134.0] points=['Olympus Mons'] # compute the native map projection coordinates for cities. x,y = map(lons,lats) # plot filled circles at the locations of the cities. map.plot(x,y,'bo') # plot the names of those five cities. wherept = 0 #1000 #50000 for name,xpt,ypt in zip(points,x,y): plot.text(xpt+wherept,ypt+wherept,name) ## le nom ne s'affiche pas... return ## Author: AS def calculate_bounds(field,vmin=None,vmax=None): import numpy as np from mymath import max,min,mean ind = np.where(field < 9e+35) fieldcalc = field[ ind ] # la syntaxe compacte ne marche si field est un tuple ### dev = np.std(fieldcalc)*3.0 ### if vmin is None: zevmin = mean(fieldcalc) - dev else: zevmin = vmin ### if vmax is None: zevmax = mean(fieldcalc) + dev else: zevmax = vmax if vmin == vmax: zevmin = mean(fieldcalc) - dev ### for continuity zevmax = mean(fieldcalc) + dev ### for continuity ### if zevmin < 0. and min(fieldcalc) > 0.: zevmin = 0. print "BOUNDS field ", min(fieldcalc), max(fieldcalc), " //// adopted", zevmin, zevmax return zevmin, zevmax ## Author: AS def bounds(what_I_plot,zevmin,zevmax): from mymath import max,min,mean ### might be convenient to add the missing value in arguments #what_I_plot[ what_I_plot < zevmin ] = zevmin#*(1. + 1.e-7) if zevmin < 0: what_I_plot[ what_I_plot < zevmin*(1. - 1.e-7) ] = zevmin*(1. - 1.e-7) else: what_I_plot[ what_I_plot < zevmin*(1. + 1.e-7) ] = zevmin*(1. + 1.e-7) #print "NEW MIN ", min(what_I_plot) what_I_plot[ what_I_plot > 9e+35 ] = -9e+35 what_I_plot[ what_I_plot > zevmax ] = zevmax*(1. - 1.e-7) #print "NEW MAX ", max(what_I_plot) return what_I_plot ## Author: AS def nolow(what_I_plot): from mymath import max,min lim = 0.15*0.5*(abs(max(what_I_plot))+abs(min(what_I_plot))) print "NO PLOT BELOW VALUE ", lim what_I_plot [ abs(what_I_plot) < lim ] = 1.e40 return what_I_plot ## Author : AC def hole_bounds(what_I_plot,zevmin,zevmax): import numpy as np zi=0 for i in what_I_plot: zj=0 for j in i: if ((j < zevmin) or (j > zevmax)):what_I_plot[zi,zj]=np.NaN zj=zj+1 zi=zi+1 return what_I_plot ## Author: AS def zoomset (wlon,wlat,zoom): dlon = abs(wlon[1]-wlon[0])/2. dlat = abs(wlat[1]-wlat[0])/2. [wlon,wlat] = [ [wlon[0]+zoom*dlon/100.,wlon[1]-zoom*dlon/100.],\ [wlat[0]+zoom*dlat/100.,wlat[1]-zoom*dlat/100.] ] print "ZOOM %",zoom,wlon,wlat return wlon,wlat ## Author: AS def fmtvar (whichvar="def"): fmtvar = { \ "MIXED": "%.0f",\ "UPDRAFT": "%.0f",\ "DOWNDRAFT": "%.0f",\ "TK": "%.0f",\ "T": "%.0f",\ "MARS_TI": "%.0f",\ "THERMAL_INERTIA": "%.0f",\ #"ZMAX_TH": "%.0f",\ #"WSTAR": "%.0f",\ # Variables from TES ncdf format "T_NADIR_DAY": "%.0f",\ "T_NADIR_NIT": "%.0f",\ # Variables from tes.py ncdf format "TEMP_DAY": "%.0f",\ "TEMP_NIGHT": "%.0f",\ # Variables from MCS and mcs.py ncdf format "DTEMP": "%.0f",\ "NTEMP": "%.0f",\ "DNUMBINTEMP": "%.0f",\ "NNUMBINTEMP": "%.0f",\ # other stuff "TPOT": "%.0f",\ "TSURF": "%.0f",\ "TSK": "%.0f",\ "U_OUT1": "%.0f",\ "T_OUT1": "%.0f",\ "def": "%.1e",\ "PTOT": "%.0f",\ "PSFC": "%.1f",\ "HGT": "%.1e",\ "USTM": "%.2f",\ "HFX": "%.0f",\ "ICETOT": "%.1e",\ "TAU_ICE": "%.2f",\ "TAUICE": "%.2f",\ "VMR_ICE": "%.1e",\ "MTOT": "%.1f",\ "ANOMALY": "%.1f",\ "W": "%.2f",\ "WMAX_TH": "%.1f",\ "WSTAR": "%.1f",\ "QSURFICE": "%.0f",\ "UM": "%.0f",\ "WIND": "%.0f",\ "UVMET": "%.0f",\ "UV": "%.0f",\ "ALBBARE": "%.2f",\ "TAU": "%.1f",\ "CO2": "%.2f",\ "ENFACT": "%.1f",\ "QDUST": "%.6f",\ #### T.N. "TEMP": "%.0f",\ "VMR_H2OICE": "%.0f",\ "VMR_H2OVAP": "%.0f",\ "TAUTES": "%.2f",\ "TAUTESAP": "%.2f",\ } if "TSURF" in whichvar: whichvar = "TSURF" if whichvar not in fmtvar: whichvar = "def" return fmtvar[whichvar] ## Author: AS #################################################################################################################### ### Colorbars http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps?action=AttachFile&do=get&target=colormaps3.png def defcolorb (whichone="def"): whichcolorb = { \ "def": "spectral",\ "HGT": "spectral",\ "HGT_M": "spectral",\ "TK": "gist_heat",\ "TPOT": "Paired",\ "TSURF": "RdBu_r",\ "TSK": "RdBu_r",\ "QH2O": "PuBu",\ "PSFC": "RdYlBu_r",\ "USTM": "YlOrRd",\ "WIND": "YlOrRd",\ #"T_nadir_nit": "RdBu_r",\ #"T_nadir_day": "RdBu_r",\ "HFX": "RdYlBu",\ "ICETOT": "YlGnBu_r",\ #"MTOT": "PuBu",\ "CCNQ": "YlOrBr",\ "CCNN": "YlOrBr",\ "TEMP": "Jet",\ "TAU_ICE": "Blues",\ "TAUICE": "Blues",\ "VMR_ICE": "Blues",\ "W": "jet",\ "WMAX_TH": "spectral",\ "ANOMALY": "gist_ncar",\ #"ANOMALY": "RdBu_r",\ "QSURFICE": "hot_r",\ "ALBBARE": "spectral",\ "TAU": "YlOrBr_r",\ "CO2": "YlOrBr_r",\ "MIXED": "GnBu",\ #### T.N. "MTOT": "spectral",\ "H2O_ICE_S": "RdBu",\ "VMR_H2OICE": "PuBu",\ "VMR_H2OVAP": "PuBu",\ "WATERCAPTAG": "Blues",\ } #W --> spectral ou jet #spectral BrBG RdBu_r #print "predefined colorbars" if "TSURF" in whichone: whichone = "TSURF" if whichone not in whichcolorb: whichone = "def" return whichcolorb[whichone] ## Author: AS def definecolorvec (whichone="def"): whichcolor = { \ "def": "black",\ "vis": "yellow",\ "vishires": "blue",\ "molabw": "yellow",\ "mola": "black",\ "gist_heat": "white",\ "hot": "white",\ "gist_rainbow": "black",\ "spectral": "black",\ "gray": "red",\ "PuBu": "black",\ "titan": "red",\ } if whichone not in whichcolor: whichone = "def" return whichcolor[whichone] ## Author: AS def marsmap (whichone="vishires"): from os import uname mymachine = uname()[1] ### not sure about speed-up with this method... looks the same if "lmd.jussieu.fr" in mymachine: domain = "/u/aslmd/WWW/maps/" elif "aymeric-laptop" in mymachine: domain = "/home/aymeric/Dropbox/Public/" else: domain = "http://www.lmd.jussieu.fr/~aslmd/maps/" whichlink = { \ #"vis": "http://maps.jpl.nasa.gov/pix/mar0kuu2.jpg",\ #"vishires": "http://www.lmd.jussieu.fr/~aslmd/maps/MarsMap_2500x1250.jpg",\ #"geolocal": "http://dl.dropbox.com/u/11078310/geolocal.jpg",\ #"mola": "http://www.lns.cornell.edu/~seb/celestia/mars-mola-2k.jpg",\ #"molabw": "http://dl.dropbox.com/u/11078310/MarsElevation_2500x1250.jpg",\ "thermalday": domain+"thermalday.jpg",\ "thermalnight": domain+"thermalnight.jpg",\ "tesalbedo": domain+"tesalbedo.jpg",\ "vis": domain+"mar0kuu2.jpg",\ "vishires": domain+"MarsMap_2500x1250.jpg",\ "geolocal": domain+"geolocal.jpg",\ "mola": domain+"mars-mola-2k.jpg",\ "molabw": domain+"MarsElevation_2500x1250.jpg",\ "clouds": "http://www.johnstonsarchive.net/spaceart/marswcloudmap.jpg",\ "jupiter": "http://www.mmedia.is/~bjj/data/jupiter_css/jupiter_css.jpg",\ "jupiter_voy": "http://www.mmedia.is/~bjj/data/jupiter/jupiter_vgr2.jpg",\ #"bw": domain+"EarthElevation_2500x1250.jpg",\ "bw": "http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/EarthElevation_2500x1250.jpg",\ "contrast": "http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/EarthMapAtmos_2500x1250.jpg",\ "nice": "http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/earthmap1k.jpg",\ "blue": "http://eoimages.gsfc.nasa.gov/ve/2430/land_ocean_ice_2048.jpg",\ "blueclouds": "http://eoimages.gsfc.nasa.gov/ve/2431/land_ocean_ice_cloud_2048.jpg",\ "justclouds": "http://eoimages.gsfc.nasa.gov/ve/2432/cloud_combined_2048.jpg",\ "pluto": "http://www.boulder.swri.edu/~buie/pluto/pluto_all.png",\ "triton": "http://laps.noaa.gov/albers/sos/neptune/triton/triton_rgb_cyl_www.jpg",\ "titan": "http://laps.noaa.gov/albers/sos/saturn/titan/titan_rgb_cyl_www.jpg",\ #"titan": "http://laps.noaa.gov/albers/sos/celestia/titan_50.jpg",\ "titanuni": "http://maps.jpl.nasa.gov/pix/sat6fss1.jpg",\ "venus": "http://laps.noaa.gov/albers/sos/venus/venus4/venus4_rgb_cyl_www.jpg",\ "cosmic": "http://laps.noaa.gov/albers/sos/universe/wmap/wmap_rgb_cyl_www.jpg",\ } ### see http://www.mmedia.is/~bjj/planetary_maps.html if whichone not in whichlink: print "marsmap: choice not defined... you'll get the default one... " whichone = "vishires" return whichlink[whichone] #def earthmap (whichone): # if whichone == "contrast": whichlink="http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/EarthMapAtmos_2500x1250.jpg" # elif whichone == "bw": whichlink="http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/EarthElevation_2500x1250.jpg" # elif whichone == "nice": whichlink="http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/earthmap1k.jpg" # return whichlink ## Author: AS def latinterv (area="Whole"): list = { \ "Europe": [[ 20., 80.],[- 50., 50.]],\ "Central_America": [[-10., 40.],[ 230., 300.]],\ "Africa": [[-20., 50.],[- 50., 50.]],\ "Whole": [[-90., 90.],[-180., 180.]],\ "Southern_Hemisphere": [[-90., 60.],[-180., 180.]],\ "Northern_Hemisphere": [[-60., 90.],[-180., 180.]],\ "Tharsis_alt": [[-30., 60.],[ 190., 350.]],\ "Tharsis": [[-30., 60.],[-170.,- 10.]],\ "Whole_No_High": [[-60., 60.],[-180., 180.]],\ "Chryse": [[-60., 60.],[- 60., 60.]],\ "North_Pole": [[ 50., 90.],[-180., 180.]],\ "Close_North_Pole": [[ 75., 90.],[-180., 180.]],\ "Far_South_Pole": [[-90.,-40.],[-180., 180.]],\ "South_Pole": [[-90.,-50.],[-180., 180.]],\ "Close_South_Pole": [[-90.,-75.],[-180., 180.]],\ "Sirenum_Crater_large": [[-46.,-34.],[-166.,-151.]],\ "Sirenum_Crater_small": [[-36.,-26.],[-168.,-156.]],\ "Rupes": [[ 72., 90.],[-120.,- 20.]],\ "Rupes2": [[ 80., 85.],[- 90.,- 60.]],\ "Xanadu": [[-40., 20.],[ 40., 120.]],\ "Hyperboreae": [[ 80., 87.],[- 70.,- 10.]],\ "VM_alt": [[-15., 0.],[ 270., 300.]],\ } if area not in list: area = "Whole" [olat,olon] = list[area] return olon,olat ## Author: TN def separatenames (name): from numpy import concatenate # look for comas in the input name to separate different names (files, variables,etc ..) if name is None: names = None else: names = [] stop = 0 currentname = name while stop == 0: indexvir = currentname.find(',') if indexvir == -1: stop = 1 name1 = currentname else: name1 = currentname[0:indexvir] names = concatenate((names,[name1])) currentname = currentname[indexvir+1:len(currentname)] return names ## Author: TN def readslices(saxis): from numpy import empty if saxis == None: zesaxis = None else: zesaxis = empty((len(saxis),2)) for i in range(len(saxis)): a = separatenames(saxis[i]) if len(a) == 1: zesaxis[i,:] = float(a[0]) else: zesaxis[i,0] = float(a[0]) zesaxis[i,1] = float(a[1]) return zesaxis ## Author: TN def readdata(data,datatype,coord1,coord2): ## Read sparse data from numpy import empty if datatype == 'txt': if len(data[coord1].shape) == 1: return data[coord1][:] elif len(data[coord1].shape) == 2: return data[coord1][:,int(coord2)-1] else: errormess('error in readdata') elif datatype == 'sav': return data[coord1][coord2] else: errormess(datatype+' type is not supported!') ## Author: AS def bidimfind(lon2d,lat2d,vlon,vlat,file=None): import numpy as np import matplotlib.pyplot as mpl if vlat is None: array = (lon2d - vlon)**2 elif vlon is None: array = (lat2d - vlat)**2 else: array = (lon2d - vlon)**2 + (lat2d - vlat)**2 idy,idx = np.unravel_index( np.argmin(array), lon2d.shape ) if vlon is not None: if (np.abs(lon2d[idy,idx]-vlon)) > 5: errormess("longitude not found ",printvar=lon2d) if vlat is not None: if (np.abs(lat2d[idy,idx]-vlat)) > 5: errormess("latitude not found ",printvar=lat2d) if file is not None: print idx,idy,lon2d[idy,idx],vlon print idx,idy,lat2d[idy,idx],vlat var = file.variables["HGT"][:,:,:] mpl.contourf(var[0,:,:],30,cmap = mpl.get_cmap(name="Greys_r") ) ; mpl.axis('off') ; mpl.plot(idx,idy,'mx',mew=4.0,ms=20.0) mpl.show() return idy,idx ## Author: TN def getsindex(saxis,index,axis): # input : all the desired slices and the good index # output : all indexes to be taken into account for reducing field import numpy as np if ( np.array(axis).ndim == 2): axis = axis[:,0] if saxis is None: zeindex = None else: aaa = int(np.argmin(abs(saxis[index,0] - axis))) bbb = int(np.argmin(abs(saxis[index,1] - axis))) [imin,imax] = np.sort(np.array([aaa,bbb])) zeindex = np.array(range(imax-imin+1))+imin # because -180 and 180 are the same point in longitude, # we get rid of one for averaging purposes. if axis[imin] == -180 and axis[imax] == 180: zeindex = zeindex[0:len(zeindex)-1] print "INFO: whole longitude averaging asked, so last point is not taken into account." return zeindex ## Author: TN def define_axis(lon,lat,vert,time,indexlon,indexlat,indexvert,indextime,what_I_plot,dim0,vertmode,redope): # Purpose of define_axis is to find x and y axis scales in a smart way # x axis priority: 1/time 2/lon 3/lat 4/vertical # To be improved !!!... from numpy import array,swapaxes x = None y = None count = 0 what_I_plot = array(what_I_plot) shape = what_I_plot.shape if indextime is None and len(time) > 1: print "AXIS is time" x = time count = count+1 if indexlon is None and len(lon) > 1 and redope not in ['edge_x1','edge_x2']: print "AXIS is lon" if count == 0: x = lon else: y = lon count = count+1 if indexlat is None and len(lat) > 1 and redope not in ['edge_y1','edge_y2']: print "AXIS is lat" if count == 0: x = lat else: y = lat count = count+1 if indexvert is None and len(vert) > 1 and ((dim0 == 4) or (y is None)): print "AXIS is vert" if vertmode == 0: # vertical axis is as is (GCM grid) if count == 0: x=range(len(vert)) else: y=range(len(vert)) count = count+1 else: # vertical axis is in kms if count == 0: x = vert else: y = vert count = count+1 x = array(x) y = array(y) print "CHECK SHAPE: what_I_plot, x, y", what_I_plot.shape, x.shape, y.shape if len(shape) == 1: if shape[0] != len(x): print "WARNING: shape[0] != len(x). Correcting." ; what_I_plot = what_I_plot[0:len(x)] if len(y.shape) > 0: y = () elif len(shape) == 2: if shape[1] == len(y) and shape[0] == len(x) and shape[0] != shape[1]: print "INFO: swapaxes: ",what_I_plot.shape,shape ; what_I_plot = swapaxes(what_I_plot,0,1) else: if shape[0] != len(y): print "WARNING: shape[0] != len(y). Correcting." ; what_I_plot = what_I_plot[0:len(y),:] elif shape[1] != len(x): print "WARNING: shape[1] != len(x). Correcting." ; what_I_plot = what_I_plot[:,0:len(x)] elif len(shape) == 3: if vertmode < 0: print "not supported. must check array dimensions at some point. not difficult to implement though." return what_I_plot,x,y # Author: TN + AS + AC def determineplot(slon, slat, svert, stime, redope): nlon = 1 # number of longitudinal slices -- 1 is None nlat = 1 nvert = 1 ntime = 1 nslices = 1 if slon is not None: length=len(slon[:,0]) nslices = nslices*length nlon = len(slon) if slat is not None: length=len(slat[:,0]) nslices = nslices*length nlat = len(slat) if svert is not None: length=len(svert[:,0]) nslices = nslices*length nvert = len(svert) if stime is not None: length=len(stime[:,0]) nslices = nslices*length ntime = len(stime) #else: # nslices = 2 mapmode = 0 if slon is None and slat is None and redope not in ['edge_x1','edge_x2','edge_y1','edge_y2']: mapmode = 1 # in this case we plot a map, with the given projection return nlon, nlat, nvert, ntime, mapmode, nslices ## Author : AS def maplatlon( lon,lat,field,\ proj="cyl",colorb="jet",ndiv=10,zeback="molabw",trans=0.6,title="",\ vecx=None,vecy=None,stride=2 ): ### an easy way to map a field over lat/lon grid import numpy as np import matplotlib.pyplot as mpl from matplotlib.cm import get_cmap ## get lon and lat in 2D version. get lat/lon intervals numdim = len(np.array(lon).shape) if numdim == 2: [lon2d,lat2d] = [lon,lat] elif numdim == 1: [lon2d,lat2d] = np.meshgrid(lon,lat) else: errormess("lon and lat arrays must be 1D or 2D") #[wlon,wlat] = latinterv() [wlon,wlat] = simplinterv(lon2d,lat2d) ## define projection and background. define x and y given the projection m = define_proj(proj,wlon,wlat,back=zeback,blat=None,blon=None) x, y = m(lon2d, lat2d) ## define field. bound field. what_I_plot = np.transpose(field) zevmin, zevmax = calculate_bounds(what_I_plot) ## vmin=min(what_I_plot_frame), vmax=max(what_I_plot_frame)) what_I_plot = bounds(what_I_plot,zevmin,zevmax) ## define contour field levels. define color palette ticks = ndiv + 1 zelevels = np.linspace(zevmin,zevmax,ticks) palette = get_cmap(name=colorb) ## contour field m.contourf( x, y, what_I_plot, zelevels, cmap = palette, alpha = trans ) ## draw colorbar if proj in ['moll','cyl']: zeorientation="horizontal" ; zepad = 0.07 else: zeorientation="vertical" ; zepad = 0.03 #daformat = fmtvar(fvar.upper()) daformat = "%.0f" zecb = mpl.colorbar( fraction=0.05,pad=zepad,format=daformat,orientation=zeorientation,\ ticks=np.linspace(zevmin,zevmax,num=min([ticks/2+1,21])),extend='neither',spacing='proportional' ) ## give a title if zeorientation == "horizontal": zecb.ax.set_xlabel(title) else: ptitle(title) ## draw vector if vecx is not None and vecy is not None: [vecx_frame,vecy_frame] = m.rotate_vector( np.transpose(vecx), np.transpose(vecy), lon2d, lat2d ) ## for metwinds vectorfield(vecx_frame, vecy_frame, x, y, stride=stride, csmooth=2,\ scale=30., factor=500., color=definecolorvec(colorb), key=True) ## scale regle la reference du vecteur. factor regle toutes les longueurs (dont la reference). l'AUGMENTER pour raccourcir les vecteurs. return ## Author : AC ## Handles calls to specific computations (e.g. wind norm, enrichment factor...) def select_getfield(zvarname=None,znc=None,ztypefile=None,mode=None,ztsat=None,ylon=None,ylat=None,yalt=None,ytime=None,analysis=None): from mymath import get_tsat ## Specific variables are described here: # for the mesoscale: specificname_meso = ['UV','uv','uvmet','slopexy','SLOPEXY','deltat','DELTAT','hodograph','tk','hodograph_2'] # for the gcm: specificname_gcm = ['enfact'] ## Check for variable in file: if mode == 'check': varname = zvarname varinfile=znc.variables.keys() logical_novarname = zvarname not in znc.variables logical_nospecificname_meso = not ((ztypefile in ['meso']) and (zvarname in specificname_meso)) logical_nospecificname_gcm = not ((ztypefile in ['gcm']) and (zvarname in specificname_gcm)) if ( logical_novarname and logical_nospecificname_meso and logical_nospecificname_gcm ): if len(varinfile) == 1: varname = varinfile[0] else: varname = False ## Return the variable name: return varname ## Get the corresponding variable: if mode == 'getvar': plot_x = None ; plot_y = None ; ### ----------- 1. saturation temperature if zvarname in ["temp","t","T_nadir_nit","T_nadir_day","temp_day","temp_night"] and ztsat: tt=getfield(znc,zvarname) ; print "computing Tsat-T, I ASSUME Z-AXIS IS PRESSURE" if type(tt).__name__=='MaskedArray': tt.set_fill_value([np.NaN]) ; tinput=tt.filled() else: tinput=tt all_var=get_tsat(yalt,tinput,zlon=ylon,zlat=ylat,zalt=yalt,ztime=ytime) ### ----------- 2. wind amplitude elif ((zvarname in ['UV','uv','uvmet']) and (ztypefile in ['meso']) and (zvarname not in znc.variables)): all_var=windamplitude(znc,'amplitude') elif ((zvarname in ['hodograph','hodograph_2']) and (ztypefile in ['meso']) and (zvarname not in znc.variables)): plot_x, plot_y = windamplitude(znc,zvarname) if plot_x is not None: all_var=plot_x # dummy else: all_var=plot_y ; plot_x = None ; plot_y = None # Hodograph type 2 is not 'xy' mode elif ((zvarname in ['slopexy','SLOPEXY']) and (ztypefile in ['meso']) and (zvarname not in znc.variables)): all_var=slopeamplitude(znc) ### ------------ 3. Near surface instability elif ((zvarname in ['DELTAT','deltat']) and (ztypefile in ['meso']) and (zvarname not in znc.variables)): all_var=deltat0t1(znc) ### ------------ 4. Enrichment factor elif ((ztypefile in ['gcm']) and (zvarname in ['enfact'])): all_var=enrichment_factor(znc,ylon,ylat,ytime) ### ------------ 5. teta -> temp elif ((ztypefile in ['meso']) and (zvarname in ['tk']) and ('tk' not in znc.variables.keys())): all_var=teta_to_tk(znc) else: ### ----------- 999. Normal case all_var = getfield(znc,zvarname) if analysis is not None: if analysis in ['histo','density','histodensity']: plot_y=all_var ; plot_x = plot_y elif analysis == 'fft': plot_y, plot_x = spectrum(all_var,ytime,yalt,ylat,ylon) ; all_var = plot_y return all_var, plot_x, plot_y # Author : A.C # FFT is computed before reducefield voluntarily, because we dont want to compute # ffts on averaged fields (which would kill all waves). Instead, we take the fft everywhere # (which is not efficient but it is still ok) and then, make the average (if the user wants to) def spectrum(var,time,vert,lat,lon): import numpy as np fft=np.fft.fft(var,axis=1) N=len(vert) step=(vert[1]-vert[0])*1000. print "step is: ",step fftfreq=np.fft.fftfreq(N,d=step) fftfreq=np.fft.fftshift(fftfreq) # spatial FFT => this is the wavenumber fft=np.fft.fftshift(fft) fftfreq = 1./fftfreq # => wavelength (div by 0 expected, don't panic) fft=np.abs(fft) # => amplitude spectrum # fft=np.abs(fft)**2 # => power spectrum return fft,fftfreq # Author : A.C. # Computes temperature from potential temperature for mesoscale files, without the need to use API, i.e. using natural vertical grid def teta_to_tk(nc): import numpy as np varinfile = nc.variables.keys() p0=610. t0=220. r_cp=1./3.89419 if "T" in varinfile: zteta=getfield(nc,'T') else: errormess("you need T in your file.") if "PTOT" in varinfile: zptot=getfield(nc,'PTOT') else: errormess("you need PTOT in your file.") zt=(zteta+220.)*(zptot/p0)**(r_cp) return zt # Author : A.C. # Find the lon and lat index of the dust devil with the largest pressure gradient # Steps : # 1/ convert the chosen PSFC frame to an image of the PSFC anomaly with respect to the mean # 2/ apply the Sobel operator # (The Sobel operator performs a 2-D spatial gradient measurement on an image and so emphasizes regions of high spatial frequency that correspond to edges.) # 3/ find the maximum of the resulting field # 4/ find the points in a 5 pixel radius around the maximum for which the value of the Sobel transform is greater than half the maximum # 5/ define a slab of points encompassing the above selected points, including the potential points 'inside' them (if the above points are a hollow circle for example) # 6/ in this slab, find the point at which the surface pressure is minimum def find_devil(nc,indextime): import numpy as np from scipy import ndimage from mymath import array2image,image2array varinfile = nc.variables.keys() if "PSFC" not in varinfile: errormess("You need PSFC in your file to find dust devils") else: psfc_full=getfield(nc,'PSFC') psfc,error=reducefield( psfc_full, d4=indextime) psfcim=array2image(1000.*(psfc-psfc.mean())) sx = ndimage.sobel(psfcim, axis=0, mode='constant') ; sy = ndimage.sobel(psfcim, axis=1, mode='constant') sob = np.hypot(sx, sy) zemax=np.max(sob) goodvalues = sob[sob >= zemax/2] ix = np.in1d(sob.ravel(), goodvalues).reshape(sob.shape) idxs,idys=np.where(ix) maxvalue = sob[sob == zemax] ixmax = np.in1d(sob.ravel(), maxvalue[0]).reshape(sob.shape) idxmax,idymax=np.where(ixmax) valok=[] for i in np.arange(len(idxs)): a=np.sqrt((idxmax-idxs[i])**2 + (idymax-idys[i])**2) if 0 < a <= 5.*np.sqrt(2.): valok.append(goodvalues[i]) ix = np.in1d(sob.ravel(), valok).reshape(sob.shape) idxs,idys=np.where(ix) hyperslab=psfc[np.min(idxs):np.max(idxs),np.min(idys):np.max(idys)] idxsub,idysub=np.where(hyperslab==hyperslab.min()) idx=idxsub[0]+np.min(idxs) ; idy=idysub[0]+np.min(idys) return np.int(idx),np.int(idy)