| 1 | def min (field,axis=None): |
|---|
| 2 | import numpy as np |
|---|
| 3 | if field is None: return None |
|---|
| 4 | if type(field).__name__=='MaskedArray': |
|---|
| 5 | field.set_fill_value(np.NaN) |
|---|
| 6 | return np.ma.array(field).min(axis=axis) |
|---|
| 7 | elif (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): |
|---|
| 8 | return np.ma.masked_invalid(field).min(axis=axis) |
|---|
| 9 | else: return np.array(field).min(axis=axis) |
|---|
| 10 | |
|---|
| 11 | def max (field,axis=None): |
|---|
| 12 | import numpy as np |
|---|
| 13 | if field is None: return None |
|---|
| 14 | if type(field).__name__=='MaskedArray': |
|---|
| 15 | field.set_fill_value(np.NaN) |
|---|
| 16 | return np.ma.array(field).max(axis=axis) |
|---|
| 17 | elif (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): |
|---|
| 18 | return np.ma.masked_invalid(field).max(axis=axis) |
|---|
| 19 | else: return np.array(field).max(axis=axis) |
|---|
| 20 | |
|---|
| 21 | def mean (field,axis=None): |
|---|
| 22 | import numpy as np |
|---|
| 23 | if field is None: return None |
|---|
| 24 | else: |
|---|
| 25 | if type(field).__name__=='MaskedArray': |
|---|
| 26 | field.set_fill_value(np.NaN) |
|---|
| 27 | zout=np.ma.array(field).mean(axis=axis) |
|---|
| 28 | zout.set_fill_value(np.NaN) |
|---|
| 29 | return zout.filled() |
|---|
| 30 | elif (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): |
|---|
| 31 | zout=np.ma.masked_invalid(field).mean(axis=axis) |
|---|
| 32 | zout.set_fill_value([np.NaN]) |
|---|
| 33 | return zout.filled() |
|---|
| 34 | else: |
|---|
| 35 | return np.array(field).mean(axis=axis) |
|---|
| 36 | |
|---|
| 37 | def deg (): |
|---|
| 38 | return u'\u00b0' |
|---|
| 39 | |
|---|
| 40 | def writeascii ( tab, filename ): |
|---|
| 41 | mydata = tab |
|---|
| 42 | myfile = open(filename, 'w') |
|---|
| 43 | for line in mydata: |
|---|
| 44 | myfile.write(str(line) + '\n') |
|---|
| 45 | myfile.close() |
|---|
| 46 | return |
|---|
| 47 | |
|---|
| 48 | |
|---|
| 49 | # A.C. routine to compute saturation temperature |
|---|
| 50 | # Be Carefull, when asking for tsat-t, this routine outputs a masked array. |
|---|
| 51 | # To be correctly handled, this call to tsat must be done before the call to |
|---|
| 52 | # reduce_field, which handles correctly masked array with the new mean() function. |
|---|
| 53 | def get_tsat(pressure,temp=None,zlon=None,zlat=None,zalt=None,ztime=None): |
|---|
| 54 | import math as mt |
|---|
| 55 | import numpy as np |
|---|
| 56 | acond=3.2403751E-04 |
|---|
| 57 | bcond=7.3383721E-03 |
|---|
| 58 | # if temp is not in input, the routine simply outputs the vertical profile |
|---|
| 59 | # of Tsat |
|---|
| 60 | if temp is None: |
|---|
| 61 | # Identify dimensions in temperature field |
|---|
| 62 | output=np.zeros(np.array(pressure).shape) |
|---|
| 63 | if len(np.array(pressure).shape) is 1: |
|---|
| 64 | #pressure field is a 1d column, (i.e. the altitude coordinate) |
|---|
| 65 | #temperature has to have a z-axis |
|---|
| 66 | i=0 |
|---|
| 67 | for pp in pressure: |
|---|
| 68 | output[i]=1./(bcond-acond*mt.log(.0095*pp)) |
|---|
| 69 | i=i+1 |
|---|
| 70 | else: |
|---|
| 71 | #pressure field is a field present in the file. Unhandled |
|---|
| 72 | #by this routine for now, which only loads unique variables. |
|---|
| 73 | print "3D pressure field not handled for now, exiting in tsat" |
|---|
| 74 | print "Use a vertical pressure coordinate if you want to compute Tsat" |
|---|
| 75 | exit() |
|---|
| 76 | # if temp is in input, the routine computes Tsat-T by detecting where the |
|---|
| 77 | # vertical axis is in temp |
|---|
| 78 | else: |
|---|
| 79 | output=np.zeros(np.array(temp).shape) |
|---|
| 80 | vardim=get_dim(zlon,zlat,zalt,ztime,temp) |
|---|
| 81 | if 'altitude' not in vardim.keys(): |
|---|
| 82 | print 'no altitude coordinate in temperature field for Tsat computation' |
|---|
| 83 | exit() |
|---|
| 84 | zdim=vardim['altitude'] |
|---|
| 85 | ndim=len(np.array(temp).shape) |
|---|
| 86 | print '--- in tsat(). vardim,zdim,ndim: ',vardim,zdim,ndim |
|---|
| 87 | i=0 |
|---|
| 88 | for pp in pressure: |
|---|
| 89 | if ndim is 1: |
|---|
| 90 | output[i]=1./(bcond-acond*mt.log(.0095*pp))-temp[i] |
|---|
| 91 | elif ndim is 2: |
|---|
| 92 | if zdim is 0: |
|---|
| 93 | output[i,:]=1./(bcond-acond*mt.log(.0095*pp))-temp[i,:] |
|---|
| 94 | elif zdim is 1: |
|---|
| 95 | output[:,i]=1./(bcond-acond*mt.log(.0095*pp))-temp[:,i] |
|---|
| 96 | else: |
|---|
| 97 | print "stop in get_tsat: zdim: ",zdim |
|---|
| 98 | exit() |
|---|
| 99 | elif ndim is 3: |
|---|
| 100 | if zdim is 0: |
|---|
| 101 | output[i,:,:]=1./(bcond-acond*mt.log(.0095*pp))-temp[i,:,:] |
|---|
| 102 | elif zdim is 1: |
|---|
| 103 | output[:,i,:]=1./(bcond-acond*mt.log(.0095*pp))-temp[:,i,:] |
|---|
| 104 | elif zdim is 2: |
|---|
| 105 | output[:,:,i]=1./(bcond-acond*mt.log(.0095*pp))-temp[:,:,i] |
|---|
| 106 | else: |
|---|
| 107 | print "stop in get_tsat: zdim: ",zdim |
|---|
| 108 | exit() |
|---|
| 109 | elif ndim is 4: |
|---|
| 110 | if zdim is 0: |
|---|
| 111 | output[i,:,:,:]=1./(bcond-acond*mt.log(.0095*pp))-temp[i,:,:,:] |
|---|
| 112 | elif zdim is 1: |
|---|
| 113 | output[:,i,:,:]=1./(bcond-acond*mt.log(.0095*pp))-temp[:,i,:,:] |
|---|
| 114 | elif zdim is 2: |
|---|
| 115 | output[:,:,i,:]=1./(bcond-acond*mt.log(.0095*pp))-temp[:,:,i,:] |
|---|
| 116 | elif zdim is 3: |
|---|
| 117 | output[:,:,:,i]=1./(bcond-acond*mt.log(.0095*pp))-temp[:,:,:,i] |
|---|
| 118 | else: |
|---|
| 119 | print "stop in get_tsat: zdim: ", zdim |
|---|
| 120 | exit() |
|---|
| 121 | else: |
|---|
| 122 | print "stop in get_tsat: ndim: ",ndim |
|---|
| 123 | exit() |
|---|
| 124 | i=i+1 |
|---|
| 125 | m=np.ma.masked_invalid(temp,copy=False) |
|---|
| 126 | zoutput=np.ma.array(output,mask=m.mask,fill_value=np.NaN) |
|---|
| 127 | return zoutput |
|---|
| 128 | |
|---|
| 129 | # A.C. Dirty routine to determine where are the axis of a variable |
|---|
| 130 | def get_dim(zlon,zlat,zalt,ztime,zvar): |
|---|
| 131 | import numpy as np |
|---|
| 132 | nx,ny,nz,nt=0,0,0,0 |
|---|
| 133 | if zlon is not None: |
|---|
| 134 | nx=len(zlon) |
|---|
| 135 | if zlat is not None: |
|---|
| 136 | ny=len(zlat) |
|---|
| 137 | if zalt is not None: |
|---|
| 138 | nz=len(zalt) |
|---|
| 139 | if ztime is not None: |
|---|
| 140 | nt=len(ztime) |
|---|
| 141 | zdims={} |
|---|
| 142 | zdims['longitude']=nx |
|---|
| 143 | zdims['latitude']=ny |
|---|
| 144 | zdims['altitude']=nz |
|---|
| 145 | zdims['Time']=nt |
|---|
| 146 | zvardim=np.array(zvar).shape |
|---|
| 147 | ndim=len(zvardim) |
|---|
| 148 | zzvardim=[[]]*ndim |
|---|
| 149 | j=0 |
|---|
| 150 | output={} |
|---|
| 151 | for dim in zvardim: |
|---|
| 152 | if dim not in zdims.values(): |
|---|
| 153 | print "WARNING -----------------------------" |
|---|
| 154 | print "Dimensions given to subroutine do not match variables dimensions :" |
|---|
| 155 | exit() |
|---|
| 156 | else: |
|---|
| 157 | a=get_key(zdims,dim) |
|---|
| 158 | if len(a) is not 1: |
|---|
| 159 | if j is 0: ##this should solve most conflicts with Time |
|---|
| 160 | zzvardim[j]=a[1] |
|---|
| 161 | else: |
|---|
| 162 | zzvardim[j]=a[0] |
|---|
| 163 | else: |
|---|
| 164 | zzvardim[j]=a[0] |
|---|
| 165 | output[zzvardim[j]]=j |
|---|
| 166 | j=j+1 |
|---|
| 167 | return output |
|---|
| 168 | |
|---|
| 169 | # A.C. routine that gets keys from a dictionnary value |
|---|
| 170 | def get_key(self, value): |
|---|
| 171 | """find the key(s) as a list given a value""" |
|---|
| 172 | return [item[0] for item in self.items() if item[1] == value] |
|---|
| 173 | |
|---|
| 174 | # A.C. routine that gets the nearest value index of array and value |
|---|
| 175 | def find_nearest(arr,value,axis=None,strict=False): |
|---|
| 176 | import numpy as np |
|---|
| 177 | # Special case when the value is nan |
|---|
| 178 | if value*0 != 0: return np.NaN |
|---|
| 179 | # Check that the value we search is inside the array for the strict mode |
|---|
| 180 | if strict: |
|---|
| 181 | min=arr.min() |
|---|
| 182 | max=arr.max() |
|---|
| 183 | if ((value > max) or (value < min)): return np.NaN |
|---|
| 184 | |
|---|
| 185 | if type(arr).__name__=='MaskedArray': |
|---|
| 186 | mask=np.ma.getmask(arr) |
|---|
| 187 | idx=np.ma.argmin(np.abs(arr-value),axis=axis) |
|---|
| 188 | # Special case when there are only missing values on the axis |
|---|
| 189 | if mask[idx]: |
|---|
| 190 | idx=np.NaN |
|---|
| 191 | else: |
|---|
| 192 | idx=(np.abs(arr-value)).argmin(axis=axis) |
|---|
| 193 | return idx |
|---|
| 194 | |
|---|