def min (field,axis=None): import numpy as np if field is None: return None if type(field).__name__=='MaskedArray': field.set_fill_value(np.NaN) return np.ma.array(field).min(axis=axis) elif (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): return np.ma.masked_invalid(field).min(axis=axis) else: return np.array(field).min(axis=axis) def max (field,axis=None): import numpy as np if field is None: return None if type(field).__name__=='MaskedArray': field.set_fill_value(np.NaN) return np.ma.array(field).max(axis=axis) elif (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): return np.ma.masked_invalid(field).max(axis=axis) else: return np.array(field).max(axis=axis) def mean (field,axis=None): import numpy as np if field is None: return None else: if type(field).__name__=='MaskedArray': field.set_fill_value(np.NaN) zout=np.ma.array(field).mean(axis=axis) if axis is not None: zout.set_fill_value(np.NaN) return zout.filled() else:return zout elif (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): zout=np.ma.masked_invalid(field).mean(axis=axis) if axis is not None: zout.set_fill_value([np.NaN]) return zout.filled() else:return zout else: return np.array(field).mean(axis=axis) def sum (field,axis=None): import numpy as np if field is None: return None else: if type(field).__name__=='MaskedArray': field.set_fill_value(np.NaN) zout=np.ma.array(field).sum(axis=axis) if axis is not None: zout.set_fill_value(np.NaN) return zout.filled() else:return zout elif (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): zout=np.ma.masked_invalid(field).sum(axis=axis) if axis is not None: zout.set_fill_value([np.NaN]) return zout.filled() else:return zout else: return np.array(field).sum(axis=axis) def getmask (field): import numpy as np if field is None: return None if type(field).__name__=='MaskedArray': return np.ma.getmask(field) else: return np.isnan(field) def deg (): return u'\u00b0' def writeascii ( tab, filename ): mydata = tab myfile = open(filename, 'w') for line in mydata: zeline = str(line) zeline = zeline.replace('[','') zeline = zeline.replace(']','') myfile.write(zeline + '\n') myfile.close() return # A.C. routine to compute saturation temperature # Be Carefull, when asking for tsat-t, this routine outputs a masked array. # To be correctly handled, this call to tsat must be done before the call to # reduce_field, which handles correctly masked array with the new mean() function. def get_tsat(pressure,temp=None,zlon=None,zlat=None,zalt=None,ztime=None): import math as mt import numpy as np acond=3.2403751E-04 bcond=7.3383721E-03 # if temp is not in input, the routine simply outputs the vertical profile # of Tsat if temp is None: # Identify dimensions in temperature field output=np.zeros(np.array(pressure).shape) if len(np.array(pressure).shape) is 1: #pressure field is a 1d column, (i.e. the altitude coordinate) #temperature has to have a z-axis i=0 for pp in pressure: output[i]=1./(bcond-acond*mt.log(.0095*pp)) i=i+1 else: #pressure field is a field present in the file. Unhandled #by this routine for now, which only loads unique variables. print "3D pressure field not handled for now, exiting in tsat" print "Use a vertical pressure coordinate if you want to compute Tsat" exit() # if temp is in input, the routine computes Tsat-T by detecting where the # vertical axis is in temp else: output=np.zeros(np.array(temp).shape) vardim=get_dim(zlon,zlat,zalt,ztime,temp) if 'altitude' not in vardim.keys(): print 'no altitude coordinate in temperature field for Tsat computation' exit() zdim=vardim['altitude'] ndim=len(np.array(temp).shape) print '--- in tsat(). vardim,zdim,ndim: ',vardim,zdim,ndim i=0 for pp in pressure: if ndim is 1: output[i]=1./(bcond-acond*mt.log(.0095*pp))-temp[i] elif ndim is 2: if zdim is 0: output[i,:]=1./(bcond-acond*mt.log(.0095*pp))-temp[i,:] elif zdim is 1: output[:,i]=1./(bcond-acond*mt.log(.0095*pp))-temp[:,i] else: print "stop in get_tsat: zdim: ",zdim exit() elif ndim is 3: if zdim is 0: output[i,:,:]=1./(bcond-acond*mt.log(.0095*pp))-temp[i,:,:] elif zdim is 1: output[:,i,:]=1./(bcond-acond*mt.log(.0095*pp))-temp[:,i,:] elif zdim is 2: output[:,:,i]=1./(bcond-acond*mt.log(.0095*pp))-temp[:,:,i] else: print "stop in get_tsat: zdim: ",zdim exit() elif ndim is 4: if zdim is 0: output[i,:,:,:]=1./(bcond-acond*mt.log(.0095*pp))-temp[i,:,:,:] elif zdim is 1: output[:,i,:,:]=1./(bcond-acond*mt.log(.0095*pp))-temp[:,i,:,:] elif zdim is 2: output[:,:,i,:]=1./(bcond-acond*mt.log(.0095*pp))-temp[:,:,i,:] elif zdim is 3: output[:,:,:,i]=1./(bcond-acond*mt.log(.0095*pp))-temp[:,:,:,i] else: print "stop in get_tsat: zdim: ", zdim exit() else: print "stop in get_tsat: ndim: ",ndim exit() i=i+1 m=np.ma.masked_invalid(temp,copy=False) zoutput=np.ma.array(output,mask=m.mask,fill_value=np.NaN) return zoutput # A.C. Dirty routine to determine where are the axis of a variable def get_dim(zlon,zlat,zalt,ztime,zvar): import numpy as np nx,ny,nz,nt=0,0,0,0 if zlon is not None: nx=len(zlon) if zlat is not None: ny=len(zlat) if zalt is not None: nz=len(zalt) if ztime is not None: nt=len(ztime) zdims={} zdims['longitude']=nx zdims['latitude']=ny zdims['altitude']=nz zdims['Time']=nt zvardim=np.array(zvar).shape ndim=len(zvardim) zzvardim=[[]]*ndim j=0 output={} for dim in zvardim: if dim not in zdims.values(): print "WARNING -----------------------------" print "Dimensions given to subroutine do not match variables dimensions :" exit() else: a=get_key(zdims,dim) if len(a) is not 1: if j is 0: ##this should solve most conflicts with Time zzvardim[j]=a[1] else: zzvardim[j]=a[0] else: zzvardim[j]=a[0] output[zzvardim[j]]=j j=j+1 return output # A.C. routine that gets keys from a dictionnary value def get_key(self, value): """find the key(s) as a list given a value""" return [item[0] for item in self.items() if item[1] == value] # A.C. routine that gets the nearest value index of array and value def find_nearest(arr,value,axis=None,strict=False): import numpy as np # Special case when the value is nan if value*0 != 0: return np.NaN # Check that the value we search is inside the array for the strict mode if strict: min=arr.min() max=arr.max() if ((value > max) or (value < min)): return np.NaN if type(arr).__name__=='MaskedArray': mask=np.ma.getmask(arr) idx=np.ma.argmin(np.abs(arr-value),axis=axis) # Special case when there are only missing values on the axis if mask[idx]: idx=np.NaN else: idx=(np.abs(arr-value)).argmin(axis=axis) return idx def fig2data ( fig ): import numpy """ @brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it @param fig a matplotlib figure @return a numpy 3D array of RGBA values """ # draw the renderer fig.canvas.draw ( ) # Get the RGBA buffer from the figure w,h = fig.canvas.get_width_height() buf = numpy.fromstring ( fig.canvas.tostring_argb(), dtype=numpy.uint8 ) buf.shape = ( w, h,4 ) # canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode buf = numpy.roll ( buf, 3, axis = 2 ) return buf def fig2img ( fig ): import Image import numpy """ @brief Convert a Matplotlib figure to a PIL Image in RGBA format and return it @param fig a matplotlib figure @return a Python Imaging Library ( PIL ) image """ # put the figure pixmap into a numpy array buf = fig2data ( fig ) w, h, d = buf.shape return Image.fromstring( "RGBA", ( w ,h ), buf.tostring( ) )