#################################################### ### A Python Class for the Mars Climate Database ### ### ---------------------------------------------### ### Aymeric SPIGA 17-21/04/2012 ### ### ---------------------------------------------### ### (see mcdtest.py for examples of use) ### #################################################### import numpy as np import fmcd import matplotlib.pyplot as mpl import myplot class mcd: def __repr__(self): # print out a help string when help is invoked on the object whatprint = 'MCD object. \"help(mcd)\" for more information\n' return whatprint ######################## ### Default settings ### ######################## def __init__(self): # default settings ## 0. general stuff self.name = "MCD v4.3 output" self.dset = '/home/aymeric/Science/MCD_v4.3/data/' ## 1. spatio-temporal coordinates self.lat = 0. self.lon = 0. self.loct = 0. self.xdate = 0. # see datekey self.xz = 10. # see zkey ## 1bis. related settings self.zkey = 3 # specify that xz is the altitude above surface (m) self.datekey = 1 # 0 = "Earth time": xdate is given in Julian days (localtime must be set to zero) # 1 = "Mars date": xdate is the value of Ls ## 2. climatological options self.dust = 2 #our best guess MY24 scenario, with solar average conditions self.hrkey = 1 #set high resolution mode on (hrkey=0 to set high resolution off) ## 3. additional settings for advanced use self.extvarkey = 1 #extra output variables (1: yes, 0: no) self.perturkey = 0 #integer perturkey ! perturbation type (0: none) self.seedin = 1 #random number generator seed (unused if perturkey=0) self.gwlength = 0. #gravity Wave wavelength (unused if perturkey=0) ## outputs. just to define attributes. ## --> in update self.pres = None ; self.dens = None ; self.temp = None ; self.zonwind = None ; self.merwind = None ; self.meanvar = None ; self.extvar = None self.seedout = None ; self.ierr = None ## --> in prepare self.xcoord = None ; self.ycoord = None self.prestab = None ; self.denstab = None ; self.temptab = None self.zonwindtab = None ; self.merwindtab = None ; self.meanvartab = None ; self.extvartab = None def viking1(self): self.name = "Viking 1 site. MCD v4.3 output" ; self.lat = 22.48 ; self.lon = -49.97 ; self.xdate = 97. def viking2(self): self.name = "Viking 2 site. MCD v4.3 output" ; self.lat = 47.97 ; self.lon = -225.74 ; self.xdate = 117.6 def getextvarlab(self,num): whichfield = { \ 1: "Radial distance from planet center (m)",\ 2: "Altitude above areoid (Mars geoid) (m)",\ 3: "Altitude above local surface (m)",\ 4: "orographic height (m) (surface altitude above areoid)",\ 5: "Ls, solar longitude of Mars (deg)",\ 6: "LST local true solar time (hrs)",\ 7: "Universal solar time (LST at lon=0) (hrs)",\ 8: "Air heat capacity Cp (J kg-1 K-1)",\ 9: "gamma=Cp/Cv Ratio of specific heats",\ 10: "density RMS day to day variations (kg/m^3)",\ 11: "[not defined]",\ 12: "[not defined]",\ 13: "scale height H(p) (m)",\ 14: "GCM orography (m)",\ 15: "surface temperature (K)",\ 16: "daily maximum mean surface temperature (K)",\ 17: "daily minimum mean surface temperature (K)",\ 18: "surf. temperature RMS day to day variations (K)",\ 19: "surface pressure (high resolution if hireskey=1)",\ 20: "GCM surface pressure (Pa)",\ 21: "atmospheric pressure RMS day to day variations (Pa)",\ 22: "surface pressure RMS day to day variations (Pa)",\ 23: "temperature RMS day to day variations (K)",\ 24: "zonal wind RMS day to day variations (m/s)",\ 25: "meridional wind RMS day to day variations (m/s)",\ 26: "vertical wind component (m/s) >0 when downwards!",\ 27: "vertical wind RMS day to day variations (m/s)",\ 28: "small scale perturbation (gravity wave) (kg/m^3)",\ 29: "q2: turbulent kinetic energy (m2/s2)",\ 30: "[not defined]",\ 31: "thermal IR flux to surface (W/m2)",\ 32: "solar flux to surface (W/m2)",\ 33: "thermal IR flux to space (W/m2)",\ 34: "solar flux reflected to space (W/m2)",\ 35: "surface CO2 ice layer (kg/m2)",\ 36: "DOD: Dust column visible optical depth",\ 37: "Dust mass mixing ratio (kg/kg)",\ 38: "DOD RMS day to day variations",\ 39: "DOD total standard deviation over season",\ 40: "Water vapor column (kg/m2)",\ 41: "Water vapor vol. mixing ratio (mol/mol)",\ 42: "Water ice column (kg/m2)",\ 43: "Water ice mixing ratio (mol/mol)",\ 44: "O3 ozone vol. mixing ratio (mol/mol)",\ 45: "[CO2] vol. mixing ratio (mol/mol)",\ 46: "[O] vol. mixing ratio (mol/mol)",\ 47: "[N2] vol. mixing ratio (mol/mol)",\ 48: "[CO] vol. mixing ratio (mol/mol)",\ 49: "R: Molecular gas constant (J K-1 kg-1)",\ 50: "Air viscosity estimation (N s m-2)" } if num not in whichfield: errormess("Incorrect subscript in extvar.") return whichfield[num] ################### ### One request ### ################### def update(self): # retrieve fields from MCD (call_mcd). more info in fmcd.call_mcd.__doc__ (self.pres, self.dens, self.temp, self.zonwind, self.merwind, \ self.meanvar, self.extvar, self.seedout, self.ierr) \ = \ fmcd.call_mcd(self.zkey,self.xz,self.lon,self.lat,self.hrkey, \ self.datekey,self.xdate,self.loct,self.dset,self.dust, \ self.perturkey,self.seedin,self.gwlength,self.extvarkey ) def printset(self): # print main settings print "zkey",self.zkey,"xz",self.xz,"lon",self.lon,"lat",self.lat,"hrkey",self.hrkey, \ "xdate",self.xdate,"loct",self.loct,"dust",self.dust def getnameset(self): # set a name referring to settings [convenient for databases] name = str(self.zkey)+str(self.xz)+str(self.lon)+str(self.lat)+str(self.hrkey)+str(self.datekey)+str(self.xdate)+str(self.loct)+str(self.dust) return name def printcoord(self): # print requested space-time coordinates print "----------------------------------------------------------------" print "LAT",self.lat,"LON",self.lon,"LOCT",self.loct,"XDATE",self.xdate print "----------------------------------------------------------------" def printmeanvar(self): # print mean MCD variables print "Pressure = %5.3f pascals. " % (self.pres) print "Density = %5.3f kilograms per cubic meter. " % (self.dens) print "Temperature = %3.0f kelvins (%4.0f degrees celsius)." % (self.temp,self.temp-273.15) print "Zonal wind = %5.3f meters per second." % (self.zonwind) print "Meridional wind = %5.3f meters per second." % (self.merwind) def printextvar(self,num): # print extra MCD variables print self.getextvarlab(num) + " ---> " + str(self.extvar[num-1]) def printallextvar(self): # print all extra MCD variables for i in range(50): self.printextvar(i+1) def printmcd(self): # 1. call MCD 2. print settings 3. print mean vars self.update() self.printcoord() self.printmeanvar() ######################## ### Several requests ### ######################## def prepare(self,ndx=None,ndy=None): ### prepare I/O arrays for 1d slices if ndx is None: print "No dimension in prepare. Exit. Set at least ndx." ; exit() else: self.xcoord = np.ones(ndx) if ndy is None: dashape = (ndx) ; dashapemean = (ndx,6) ; dashapeext = (ndx,101) ; self.ycoord = None else: dashape = (ndx,ndy) ; dashapemean = (ndx,ndy,6) ; dashapeext = (ndx,ndy,101) ; self.ycoord = np.ones(ndy) self.prestab = np.ones(dashape) ; self.denstab = np.ones(dashape) ; self.temptab = np.ones(dashape) self.zonwindtab = np.ones(dashape) ; self.merwindtab = np.ones(dashape) self.meanvartab = np.ones(dashapemean) ; self.extvartab = np.ones(dashapeext) def getextvar(self,num): ### get a given var in extvartab try: field=self.extvartab[:,:,num] except: field=self.extvartab[:,num] return field def definefield(self,choice): ### for analysis or plot purposes, set field and field label from user-defined choice ### --- choice can be a MCD number for extvar if isinstance(choice, np.int): field = self.getextvar(choice); fieldlab = self.getextvarlab(choice) else: if choice == "t": field = self.temptab ; fieldlab="Temperature (K)" elif choice == "p": field = self.prestab ; fieldlab="Pressure (Pa)" elif choice == "rho": field = self.denstab ; fieldlab="Density (kg/m3)" elif choice == "u": field = self.zonwindtab ; fieldlab="W-E wind component (m/s)" elif choice == "v": field = self.merwindtab ; fieldlab="S-N wind component (m/s)" elif choice == "tsurf": field = self.getextvar(15); fieldlab="Surface temperature (K)" elif choice == "topo": field = self.getextvar(4) ; fieldlab="Topography (m)" elif choice == "h": field = self.getextvar(13); fieldlab = "Scale height (m)" elif choice == "ps": field = self.getextvar(19); fieldlab = "Surface pressure (Pa)" elif choice == "olr": field = self.getextvar(33); fieldlab = "Outgoing longwave radiation (W/m2)" elif choice == "tau": field = self.getextvar(36); fieldlab = "Dust optical depth" elif choice == "mtot": field = self.getextvar(40); fieldlab = "Water vapor column (kg/m2)" elif choice == "icetot": field = self.getextvar(42); fieldlab = "Water ice column (kg/m2)" elif choice == "ps_ddv": field = self.getextvar(22); fieldlab = "Surface pressure RMS day to day variations (Pa)" else: errormess("field reference not found.") return field,fieldlab ################### ### 1D analysis ### ################### def put1d(self,i): ## fill in subscript i in output arrays ## (arrays must have been correctly defined through prepare) if self.prestab is None: errormess("arrays must be prepared first through self.prepare") self.prestab[i] = self.pres ; self.denstab[i] = self.dens ; self.temptab[i] = self.temp self.zonwindtab[i] = self.zonwind ; self.merwindtab[i] = self.merwind self.meanvartab[i,1:5] = self.meanvar[0:4] ## note: var numbering according to MCD manual is kept self.extvartab[i,1:100] = self.extvar[0:99] ## note: var numbering according to MCD manual is kept def diurnal(self,nd=13,start=0.,end=24.): ### retrieve a local time slice self.xlabel = "Local time (Martian hour)" self.prepare(ndx=nd) ; self.xcoord = np.linspace(start,end,nd) for i in range(nd): self.loct = self.xcoord[i] ; self.update() ; self.put1d(i) def zonal(self,nd=37,start=-180.,end=180.): ### retrieve a longitude slice self.xlabel = "East longitude (degrees)" self.prepare(ndx=nd) ; self.xcoord = np.linspace(start,end,nd) for i in range(nd): self.lon = self.xcoord[i] ; self.update() ; self.put1d(i) def meridional(self,nd=19,start=-90.,end=90.): ### retrieve a latitude slice self.xlabel = "North latitude (degrees)" self.prepare(ndx=nd) ; self.xcoord = np.linspace(start,end,nd) for i in range(nd): self.lat = self.xcoord[i] ; self.update() ; self.put1d(i) def profile(self,nd=20,start=0.,end=100000.,tabperso=None): ### retrieve an altitude slice (profile) self.xlabel = "Altitude (m)" if tabperso is not None: nd = len(tabperso) self.prepare(ndx=nd) if tabperso is None: self.xcoord = np.linspace(start,end,nd) else: self.xcoord = tabperso for i in range(nd): self.xz = self.xcoord[i] ; self.update() ; self.put1d(i) def seasonal(self,nd=12,start=0.,end=360.): ### retrieve a seasonal slice self.xlabel = "Areocentric longitude (degrees)" self.prepare(ndx=nd) ; self.xcoord = np.linspace(start,end,nd) for i in range(nd): self.xdate = self.xcoord[i] ; self.update() ; self.put1d(i) def latlon(self,ndx=37,startx=-180.,endx=180.,ndy=19,starty=-90.,endy=90.): ### retrieve a latitude/longitude slice self.xlabel = "East longitude (degrees)" ; self.ylabel = "North latitude (degrees)" self.prepare(ndx=ndx,ndy=ndy) self.xcoord = np.linspace(startx,endx,ndx) ; self.ycoord = np.linspace(starty,endy,ndy) for i in range(ndx): for j in range(ndy): self.lon = self.xcoord[i] ; self.lat = self.ycoord[j] ; self.update() ; self.put2d(i,j) def makeplot1d(self,choice,vertplot=0): ### one 1D plot is created for the user-defined variable in choice. (field, fieldlab) = self.definefield(choice) if vertplot != 1: absc = self.xcoord ; ordo = field ; ordolab = fieldlab ; absclab = self.xlabel else: ordo = self.xcoord ; absc = field ; absclab = fieldlab ; ordolab = self.xlabel mpl.plot(absc,ordo,'-bo') ; mpl.ylabel(ordolab) ; mpl.xlabel(absclab) #; mpl.xticks(query.xcoord) def plot1d(self,tabtodo,vertplot=0): ### complete 1D figure with possible multiplots if isinstance(tabtodo,np.str): tabtodo=[tabtodo] ## so that asking one element without [] is possible. if isinstance(tabtodo,np.int): tabtodo=[tabtodo] ## so that asking one element without [] is possible. fig = mpl.figure() ; subv,subh = myplot.definesubplot( len(tabtodo) , fig ) for i in range(len(tabtodo)): mpl.subplot(subv,subh,i+1).grid(True, linestyle=':', color='grey') ; self.makeplot1d(tabtodo[i],vertplot) ################### ### 2D analysis ### ################### def put2d(self,i,j): ## fill in subscript i,j in output arrays ## (arrays must have been correctly defined through prepare) if self.prestab is None: errormess("arrays must be prepared first through self.prepare") self.prestab[i,j] = self.pres ; self.denstab[i,j] = self.dens ; self.temptab[i,j] = self.temp self.zonwindtab[i,j] = self.zonwind ; self.merwindtab[i,j] = self.merwind self.meanvartab[i,j,1:5] = self.meanvar[0:4] ## note: var numbering according to MCD manual is kept self.extvartab[i,j,1:100] = self.extvar[0:99] ## note: var numbering according to MCD manual is kept def makemap2d(self,choice,incwind=False): ### one 2D map is created for the user-defined variable in choice. self.latlon() ## a map is implicitely a lat-lon plot. otherwise it is a plot (cf. makeplot2d) (field, fieldlab) = self.definefield(choice) if incwind: (windx, fieldlabwx) = self.definefield("u") (windy, fieldlabwy) = self.definefield("v") myplot.maplatlon(self.xcoord,self.ycoord,field,title=fieldlab,proj="cyl",vecx=windx,vecy=windy) else: myplot.maplatlon(self.xcoord,self.ycoord,field,title=fieldlab,proj="moll") def map2d(self,tabtodo,incwind=False): ### complete 2D figure with possible multiplots if isinstance(tabtodo,np.str): tabtodo=[tabtodo] ## so that asking one element without [] is possible. if isinstance(tabtodo,np.int): tabtodo=[tabtodo] ## so that asking one element without [] is possible. fig = mpl.figure() ; subv,subh = myplot.definesubplot( len(tabtodo) , fig ) for i in range(len(tabtodo)): mpl.subplot(subv,subh,i+1) ; self.makemap2d(tabtodo[i],incwind=incwind) ### TODO: makeplot2d, plot2d, passer plot settings, vecteurs, plot loct pas fixe