#################################################### ### A Python Class for the Mars Climate Database ### ### ---------------------------------------------### ### Aymeric SPIGA 17-21/04/2012 ### ### ---------------------------------------------### ### (see mcdtest.py for examples of use) ### #################################################### import numpy as np import matplotlib.pyplot as mpl import frozen_myplot as myplot class mcd(): def __repr__(self): # print out a help string when help is invoked on the object whatprint = 'MCD object. \"help(mcd)\" for more information\n' return whatprint ######################## ### Default settings ### ######################## def __init__(self): # default settings ## 0. general stuff self.name = "MCD v4.3" self.ack = "Mars Climate Database (c) LMD/OU/IAA/ESA/CNES" self.dset = '/home/aymeric/Science/MCD_v4.3/data/' #self.dset = '/home/marshttp/MCD_v4.3/data/' ## 1. spatio-temporal coordinates self.lat = 0. self.lats = None self.late = None self.lon = 0. self.lons = None self.lone = None self.loct = 0. self.locts = None self.locte = None self.xdate = 0. # see datekey self.xdates = None self.xdatee = None self.xz = 10. # see zkey self.xzs = None self.xze = None ## 1bis. related settings self.zkey = 3 # specify that xz is the altitude above surface (m) # zkey : type of vertical coordinate xz # 1 = radius from centre of planet (m) # 2 = height above areoid (m) (MOLA zero datum) # 3 = height above surface (m) # 4 = pressure level (Pa) # 5 = altitude above mean Mars Radius(=3396000m) (m) self.datekey = 1 # 0 = "Earth time": xdate is given in Julian days (localtime must be set to zero) # 1 = "Mars date": xdate is the value of Ls ## 2. climatological options self.dust = 2 #our best guess MY24 scenario, with solar average conditions self.hrkey = 1 #set high resolution mode on (hrkey=0 to set high resolution off) ## 3. additional settings for advanced use self.extvarkey = 1 #extra output variables (1: yes, 0: no) self.perturkey = 0 #integer perturkey ! perturbation type (0: none) self.seedin = 1 #random number generator seed (unused if perturkey=0) self.gwlength = 0. #gravity Wave wavelength (unused if perturkey=0) ## outputs. just to define attributes. ## --> in update self.pres = None ; self.dens = None ; self.temp = None ; self.zonwind = None ; self.merwind = None ; self.meanvar = None ; self.extvar = None self.seedout = None ; self.ierr = None ## --> in prepare self.xcoord = None ; self.ycoord = None self.prestab = None ; self.denstab = None ; self.temptab = None self.zonwindtab = None ; self.merwindtab = None ; self.meanvartab = None ; self.extvartab = None ## plot stuff self.xlabel = None ; self.ylabel = None ; self.title = "" self.vertplot = False self.fmt = "%.2e" self.colorm = "jet" self.fixedlt = False self.zonmean = False self.min2d = None self.max2d = None self.dpi = 80. def toversion5(self): self.name = "MCD v5.0" self.dset = '/home/marshttp/MCD_v5.0/data/' self.extvarkey = np.ones(100) def viking1(self): self.name = "Viking 1 site. MCD v4.3 output" ; self.lat = 22.48 ; self.lon = -49.97 ; self.xdate = 97. def viking2(self): self.name = "Viking 2 site. MCD v4.3 output" ; self.lat = 47.97 ; self.lon = -225.74 ; self.xdate = 117.6 def getdustlabel(self): if self.dust == 1: self.dustlabel = "MY24 minimum solar scenario" if "v5" in self.name: self.dustlabel = "climatology average solar scenario" elif self.dust == 2: self.dustlabel = "MY24 average solar scenario" if "v5" in self.name: self.dustlabel = "climatology minimum solar scenario" elif self.dust == 3: self.dustlabel = "MY24 maximum solar scenario" if "v5" in self.name: self.dustlabel = "climatology maximum solar scenario" elif self.dust == 4: self.dustlabel = "dust storm minimum solar scenario" elif self.dust == 5: self.dustlabel = "dust storm average solar scenario" elif self.dust == 6: self.dustlabel = "dust storm maximum solar scenario" elif self.dust == 7: self.dustlabel = "warm scenario (dusty, maximum solar)" elif self.dust == 8: self.dustlabel = "cold scenario (low dust, minimum solar)" def gettitle(self,oneline=False): self.getdustlabel() self.title = self.name + " with " + self.dustlabel + "." if self.datekey == 1: self.title = self.title + " Ls " + str(self.xdate) + "deg." elif self.datekey == 0: self.title = self.title + " JD " + str(self.xdate) + "." if not oneline: self.title = self.title + "\n" if self.lats is None: self.title = self.title + " Latitude " + str(self.lat) + "N" if self.zonmean and self.lats is not None and self.xzs is not None: self.title = self.title + "Zonal mean over all longitudes." elif self.lons is None: self.title = self.title + " Longitude " + str(self.lon) + "E" if self.xzs is None: self.vertunits() self.title = self.title + " Altitude " + str(self.xz) + " " + self.vunits if self.locts is None: self.title = self.title + " Local time " + str(self.loct) + "h" if not self.fixedlt: self.title = self.title + " (at longitude 0) " def getextvarlab(self,num): whichfield = { \ 91: "Pressure (Pa)", \ 92: "Density (kg/m3)", \ 93: "Temperature (K)", \ 94: "W-E wind component (m/s)", \ 95: "S-N wind component (m/s)", \ 1: "Radial distance from planet center (m)",\ 2: "Altitude above areoid (Mars geoid) (m)",\ 3: "Altitude above local surface (m)",\ 4: "orographic height (m) (surf alt above areoid)",\ 5: "Ls, solar longitude of Mars (deg)",\ 6: "LST local true solar time (hrs)",\ 7: "Universal solar time (LST at lon=0) (hrs)",\ 8: "Air heat capacity Cp (J kg-1 K-1)",\ 9: "gamma=Cp/Cv Ratio of specific heats",\ 10: "density RMS day to day variations (kg/m^3)",\ 11: "[not defined]",\ 12: "[not defined]",\ 13: "scale height H(p) (m)",\ 14: "GCM orography (m)",\ 15: "surface temperature (K)",\ 16: "daily max mean surface temperature (K)",\ 17: "daily min mean surface temperature (K)",\ 18: "surf. temperature RMS day to day variations (K)",\ 19: "surface pressure (Pa)",\ 20: "GCM surface pressure (Pa)",\ 21: "atmospheric pressure RMS day to day variations (Pa)",\ 22: "surface pressure RMS day to day variations (Pa)",\ 23: "temperature RMS day to day variations (K)",\ 24: "zonal wind RMS day to day variations (m/s)",\ 25: "meridional wind RMS day to day variations (m/s)",\ 26: "vertical wind component (m/s) >0 when downwards!",\ 27: "vertical wind RMS day to day variations (m/s)",\ 28: "small scale perturbation (gravity wave) (kg/m^3)",\ 29: "q2: turbulent kinetic energy (m2/s2)",\ 30: "[not defined]",\ 31: "thermal IR flux to surface (W/m2)",\ 32: "solar flux to surface (W/m2)",\ 33: "thermal IR flux to space (W/m2)",\ 34: "solar flux reflected to space (W/m2)",\ 35: "surface CO2 ice layer (kg/m2)",\ 36: "DOD: Dust column visible optical depth",\ 37: "Dust mass mixing ratio (kg/kg)",\ 38: "DOD RMS day to day variations",\ 39: "DOD total standard deviation over season",\ 40: "Water vapor column (kg/m2)",\ 41: "Water vapor vol. mixing ratio (mol/mol)",\ 42: "Water ice column (kg/m2)",\ 43: "Water ice mixing ratio (mol/mol)",\ 44: "O3 ozone vol. mixing ratio (mol/mol)",\ 45: "[CO2] vol. mixing ratio (mol/mol)",\ 46: "[O] vol. mixing ratio (mol/mol)",\ 47: "[N2] vol. mixing ratio (mol/mol)",\ 48: "[CO] vol. mixing ratio (mol/mol)",\ 49: "R: Molecular gas constant (J K-1 kg-1)",\ 50: "Air viscosity estimation (N s m-2)" } ### MCD version 5 new variables. AS 12/2012. if "v5" in self.name: whichfield[29] = "not used (set to zero)" whichfield[30] = "Surface roughness length z0 (m)" whichfield[37] = "DOD RMS day to day variations" whichfield[38] = "Dust mass mixing ratio (kg/kg)" whichfield[39] = "Dust effective radius (m)" whichfield[44] = whichfield[43] whichfield[43] = whichfield[42] whichfield[42] = whichfield[41] whichfield[41] = whichfield[40] whichfield[40] = "Dust deposition on flat surface (kg m-2 s-1)" whichfield[45] = "Water ice effective radius (m)" whichfield[46] = "Convective PBL height (m)" whichfield[47] = "Max. upward convective wind within the PBL (m/s)" whichfield[48] = "Max. downward convective wind within the PBL (m/s)" whichfield[49] = "Convective vertical wind variance at level z (m2/s2)" whichfield[50] = "Convective eddy vertical heat flux at level z (m/s/K)" whichfield[51] = "Surface wind stress (Kg/m/s2)" whichfield[52] = "Surface sensible heat flux (W/m2) (<0 when flux from surf to atm.)" whichfield[53] = "R: Molecular gas constant (J K-1 kg-1)" whichfield[54] = "Air viscosity estimation (N s m-2)" whichfield[55] = "not used (set to zero)" whichfield[56] = "not used (set to zero)" whichfield[57] = "[CO2] vol. mixing ratio (mol/mol)" whichfield[58] = "[N2] vol. mixing ratio (mol/mol)" whichfield[59] = "[Ar] vol. mixing ratio (mol/mol)" whichfield[60] = "[CO] vol. mixing ratio (mol/mol)" whichfield[61] = "[O] vol. mixing ratio (mol/mol)" whichfield[62] = "[O2] vol. mixing ratio (mol/mol)" whichfield[63] = "[O3] vol. mixing ratio (mol/mol)" whichfield[64] = "[H] vol. mixing ratio (mol/mol)" whichfield[65] = "[H2] vol. mixing ratio (mol/mol)" whichfield[66] = "[electron] vol. mixing ratio (mol/mol)" whichfield[67] = "CO2 column (kg/m2)" whichfield[68] = "N2 column (kg/m2)" whichfield[69] = "Ar column (kg/m2)" whichfield[70] = "CO column (kg/m2)" whichfield[71] = "O column (kg/m2)" whichfield[72] = "O2 column (kg/m2)" whichfield[73] = "O3 column (kg/m2)" whichfield[74] = "H column (kg/m2)" whichfield[75] = "H2 column (kg/m2)" whichfield[76] = "electron column (kg/m2)" if num not in whichfield: myplot.errormess("Incorrect subscript in extvar.") dastuff = whichfield[num] if "(K)" in dastuff: self.fmt="%.0f" elif "effective radius" in dastuff: self.fmt="%.2e" elif "(Pa)" in dastuff: self.fmt="%.1f" elif "(W/m2)" in dastuff: self.fmt="%.0f" elif "(m/s)" in dastuff: self.fmt="%.1f" elif "(m)" in dastuff: self.fmt="%.0f" else: self.fmt="%.2e" return dastuff def convertlab(self,num): ## a conversion from text inquiries to extvar numbers. to be completed. if num == "p": num = 91 elif num == "rho": num = 92 elif num == "t": num = 93 elif num == "u": num = 94 elif num == "v": num = 95 elif num == "tsurf": num = 15 elif num == "topo": num = 4 elif num == "h": num = 13 elif num == "ps": num = 19 elif num == "tau": num = 36 elif num == "mtot": if "v5" in self.name: num = 41 else: num = 40 elif num == "icetot": if "v5" in self.name: num = 43 else: num = 42 elif num == "h2ovap": if "v5" in self.name: num = 42 else: num = 41 elif num == "h2oice": if "v5" in self.name: num = 44 else: num = 43 elif num == "cp": num = 8 elif num == "rho_ddv": num = 10 elif num == "ps_ddv": num = 22 elif num == "p_ddv": num = 21 elif num == "t_ddv": num = 23 elif num == "w": num = 26 elif num == "tsurfmx": num = 16 elif num == "tsurfmn": num = 17 elif num == "lwdown": num = 31 elif num == "swdown": num = 32 elif num == "lwup": num = 33 elif num == "swup": num = 34 elif num == "tau": num = 36 elif num == "tau_ddv": if "v5" in self.name: num = 37 else: num = 38 elif num == "qdust": if "v5" in self.name: num = 38 else: num = 37 elif num == "co2": if "v5" in self.name: num = 57 else: num = 45 elif num == "o3": if "v5" in self.name: num = 63 else: num = 44 elif num == "o": if "v5" in self.name: num = 61 else: num = 46 elif num == "co": if "v5" in self.name: num = 60 else: num = 48 elif num == "visc": if "v5" in self.name: num = 54 else: num = 50 elif num == "co2ice": num = 35 elif num == "rdust": if "v5" in self.name: num = 39 else: num = 30 # an undefined variable to avoid misleading output elif num == "sdust": if "v5" in self.name: num = 40 else: num = 30 # an undefined variable to avoid misleading output elif num == "pbl": if "v5" in self.name: num = 46 else: num = 30 # an undefined variable to avoid misleading output elif num == "updraft": if "v5" in self.name: num = 47 else: num = 30 # an undefined variable to avoid misleading output elif num == "downdraft": if "v5" in self.name: num = 48 else: num = 30 # an undefined variable to avoid misleading output elif num == "pblwvar": if "v5" in self.name: num = 49 else: num = 30 # an undefined variable to avoid misleading output elif num == "pblhvar": if "v5" in self.name: num = 50 else: num = 30 # an undefined variable to avoid misleading output elif num == "stress": if "v5" in self.name: num = 51 else: num = 30 # an undefined variable to avoid misleading output elif num == "ar": if "v5" in self.name: num = 59 else: num = 30 # an undefined variable to avoid misleading output elif num == "o2": if "v5" in self.name: num = 62 else: num = 30 # an undefined variable to avoid misleading output elif num == "co2col": if "v5" in self.name: num = 67 else: num = 30 # an undefined variable to avoid misleading output elif num == "arcol": if "v5" in self.name: num = 69 else: num = 30 # an undefined variable to avoid misleading output elif num == "cocol": if "v5" in self.name: num = 70 else: num = 30 # an undefined variable to avoid misleading output elif num == "o3col": if "v5" in self.name: num = 73 else: num = 30 # an undefined variable to avoid misleading output elif num == "hydro": if "v5" in self.name: num = 64 else: num = 30 # an undefined variable to avoid misleading output elif num == "hydro2": if "v5" in self.name: num = 65 else: num = 30 # an undefined variable to avoid misleading output elif num == "e": if "v5" in self.name: num = 66 else: num = 30 # an undefined variable to avoid misleading output elif num == "ecol": if "v5" in self.name: num = 76 else: num = 30 # an undefined variable to avoid misleading output elif not isinstance(num, np.int): myplot.errormess("field reference not found.") return num ################### ### One request ### ################### def update(self): # retrieve fields from MCD (call_mcd). more info in fmcd.call_mcd.__doc__ ## sanity first self.loct = abs(self.loct)%24 if self.locts is not None and self.locte is not None: self.locts = abs(self.locts)%24 self.locte = abs(self.locte)%24 if self.locts == self.locte: self.locte = self.locts + 24 ## now MCD request if "v5" in self.name: from fmcd5 import call_mcd else: from fmcd import call_mcd (self.pres, self.dens, self.temp, self.zonwind, self.merwind, \ self.meanvar, self.extvar, self.seedout, self.ierr) \ = \ call_mcd(self.zkey,self.xz,self.lon,self.lat,self.hrkey, \ self.datekey,self.xdate,self.loct,self.dset,self.dust, \ self.perturkey,self.seedin,self.gwlength,self.extvarkey ) ## we use the end of extvar (unused) to store meanvar. this is convenient for getextvar(lab) self.extvar[90] = self.pres ; self.extvar[91] = self.dens self.extvar[92] = self.temp ; self.extvar[93] = self.zonwind ; self.extvar[94] = self.merwind ## treat missing values if self.temp == -999: self.extvar[:] = np.NaN ; self.meanvar[:] = np.NaN def printset(self): # print main settings print "zkey",self.zkey,"xz",self.xz,"lon",self.lon,"lat",self.lat,"hrkey",self.hrkey, \ "xdate",self.xdate,"loct",self.loct,"dust",self.dust def getnameset(self): # set a name referring to settings [convenient for databases] strlat = str(self.lat)+str(self.lats)+str(self.late) strlon = str(self.lon)+str(self.lons)+str(self.lone) strxz = str(self.xz)+str(self.xzs)+str(self.xze) strloct = str(self.loct)+str(self.locts)+str(self.locte) name = str(self.zkey)+strxz+strlon+strlat+str(self.hrkey)+str(self.datekey)+str(self.xdate)+strloct+str(self.dust) if "v5" in self.name: name = "v5_" + name return name def printcoord(self): # print requested space-time coordinates print "LAT",self.lat,"LON",self.lon,"LOCT",self.loct,"XDATE",self.xdate def printmeanvar(self): # print mean MCD variables print "Pressure = %5.3f pascals. " % (self.pres) print "Density = %5.3f kilograms per cubic meter. " % (self.dens) print "Temperature = %3.0f kelvins (%4.0f degrees celsius)." % (self.temp,self.temp-273.15) print "Zonal wind = %5.3f meters per second." % (self.zonwind) print "Meridional wind = %5.3f meters per second." % (self.merwind) print "Total horizontal wind = %5.3f meters per second." % ( np.sqrt(self.zonwind**2 + self.merwind**2) ) def printextvar(self,num): # print extra MCD variables num = self.convertlab(num) dastr = str(self.extvar[num-1]) if dastr == "nan": print "!!!! There is a problem, probably a value is requested below the surface !!!!" else: print self.getextvarlab(num) + " ..... " + dastr def printallextvar(self): # print all extra MCD variables if "v5" in self.name: limit=76 else: limit=50 for i in range(limit): self.printextvar(i+1) def htmlprinttabextvar(self,tabtodo): self.fixedlt = True ## local time is real local time self.gettitle() print "
" print self.title print "
" print "" print "
" print self.ack print "
" #print "SETTINGS
" #self.printcoord() #self.printset() def printmcd(self): # 1. call MCD 2. print settings 3. print mean vars self.update() self.printcoord() print "-------------------------------------------" self.printmeanvar() ######################## ### Several requests ### ######################## def prepare(self,ndx=None,ndy=None): ### prepare I/O arrays for 1d slices if ndx is None: print "No dimension in prepare. Exit. Set at least ndx." ; exit() else: self.xcoord = np.ones(ndx) if ndy is None: dashape = (ndx) ; dashapemean = (ndx,6) ; dashapeext = (ndx,101) ; self.ycoord = None else: dashape = (ndx,ndy) ; dashapemean = (ndx,ndy,6) ; dashapeext = (ndx,ndy,101) ; self.ycoord = np.ones(ndy) self.prestab = np.ones(dashape) ; self.denstab = np.ones(dashape) ; self.temptab = np.ones(dashape) self.zonwindtab = np.ones(dashape) ; self.merwindtab = np.ones(dashape) self.meanvartab = np.ones(dashapemean) ; self.extvartab = np.ones(dashapeext) def getextvar(self,num): ### get a given var in extvartab try: field=self.extvartab[:,:,num] except: field=self.extvartab[:,num] return field def definefield(self,choice): ### for analysis or plot purposes, set field and field label from user-defined choice choice = self.convertlab(choice) field = self.getextvar(choice); fieldlab = self.getextvarlab(choice) ## fix for possibly slightly negative tracers if "(mol/mol)" in fieldlab or "(kg/kg)" in fieldlab or "(kg/m2)" in fieldlab or "(W/m2)" in fieldlab: ind = np.where(field < 1.e-30) if ind != -1: field[ind] = 1.e-30 ## 0 does not work everywhere. return field,fieldlab def ininterv(self,dstart,dend,nd,start=None,end=None,yaxis=False,vertcoord=False): ### user-defined start and end are used to create xcoord (or ycoord) vector if start is not None and end is not None: first, second = self.correctbounds(start,end,vertcoord) else: first, second = self.correctbounds(dstart,dend,vertcoord) if self.zkey != 4 or not vertcoord: tabtab = np.linspace(first,second,nd) else: tabtab = np.logspace(first,second,nd) if not yaxis: self.xcoord = tabtab else: self.ycoord = tabtab def correctbounds(self,start,end,vertcoord): if self.zkey != 4 or not vertcoord: # regular altitudes if start > end: first = end ; second = start else: first = start ; second = end else: # pressure: reversed avis if start < end: first = np.log10(end) ; second = np.log10(start) else: first = np.log10(start) ; second = np.log10(end) return first, second def vertlabel(self): if self.zkey == 1: self.xlabel = "radius from centre of planet (m)" elif self.zkey == 2: self.xlabel = "height above areoid (m) (MOLA zero datum)" elif self.zkey == 3: self.xlabel = "height above surface (m)" elif self.zkey == 4: self.xlabel = "pressure level (Pa)" elif self.zkey == 5: self.xlabel = "altitude above mean Mars Radius(=3396000m) (m)" def vertunits(self): if self.zkey == 1: self.vunits = "m CP" elif self.zkey == 2: self.vunits = "m AMR" elif self.zkey == 3: self.vunits = "m ALS" elif self.zkey == 4: self.vunits = "Pa" elif self.zkey == 5: self.vunits = "m AMMRad" def vertaxis(self,number,yaxis=False): if self.zkey == 2: self.ininterv(-5000.,100000.,number,start=self.xzs,end=self.xze,yaxis=yaxis,vertcoord=True) elif self.zkey == 3: self.ininterv(0.,120000.,number,start=self.xzs,end=self.xze,yaxis=yaxis,vertcoord=True) elif self.zkey == 5: self.ininterv(-5000.,100000.,number,start=self.xzs,end=self.xze,yaxis=yaxis,vertcoord=True) elif self.zkey == 4: self.ininterv(1000.,0.001,number,start=self.xzs,end=self.xze,yaxis=yaxis,vertcoord=True) elif self.zkey == 1: self.ininterv(3396000,3596000,number,start=self.xzs,end=self.xze,yaxis=yaxis,vertcoord=True) ################### ### 1D analysis ### ################### def put1d(self,i): ## fill in subscript i in output arrays ## (arrays must have been correctly defined through prepare) if self.prestab is None: myplot.errormess("arrays must be prepared first through self.prepare") self.prestab[i] = self.pres ; self.denstab[i] = self.dens ; self.temptab[i] = self.temp self.zonwindtab[i] = self.zonwind ; self.merwindtab[i] = self.merwind self.meanvartab[i,1:5] = self.meanvar[0:4] ## note: var numbering according to MCD manual is kept self.extvartab[i,1:100] = self.extvar[0:99] ## note: var numbering according to MCD manual is kept def diurnal(self,nd=13): ### retrieve a local time slice self.fixedlt = True ## local time is real local time save = self.loct self.xlabel = "Local time (Martian hour)" self.prepare(ndx=nd) ; self.ininterv(0.,24.,nd,start=self.locts,end=self.locte) for i in range(nd): self.loct = self.xcoord[i] ; self.update() ; self.put1d(i) self.loct = save def zonal(self,nd=37): ### retrieve a longitude slice save = self.lon self.xlabel = "East longitude (degrees)" self.prepare(ndx=nd) ; self.ininterv(-180.,180.,nd,start=self.lons,end=self.lone) if not self.fixedlt: umst = self.loct for i in range(nd): self.lon = self.xcoord[i] if not self.fixedlt: self.loct = (umst + self.lon/15.) % 24 self.update() ; self.put1d(i) self.lon = save def meridional(self,nd=19): ### retrieve a latitude slice self.fixedlt = True ## local time is real local time save = self.lat self.xlabel = "North latitude (degrees)" self.prepare(ndx=nd) ; self.ininterv(-90.,90.,nd,start=self.lats,end=self.late) for i in range(nd): self.lat = self.xcoord[i] ; self.update() ; self.put1d(i) self.lat = save def profile(self,nd=20,tabperso=None): ### retrieve an altitude slice (profile) self.fixedlt = True ## local time is real local time save = self.xz self.vertlabel() self.vertplot = True if tabperso is not None: nd = len(tabperso) correct = False self.prepare(ndx=nd) ; self.vertaxis(nd) if tabperso is not None: self.xcoord = tabperso for i in range(nd): self.xz = self.xcoord[i] ; self.update() ; self.put1d(i) self.xz = save def seasonal(self,nd=12): ### retrieve a seasonal slice save = self.xdate self.xlabel = "Areocentric longitude (degrees)" self.prepare(ndx=nd) ; self.ininterv(0.,360.,nd,start=self.xdates,end=self.xdatee) for i in range(nd): self.xdate = self.xcoord[i] ; self.update() ; self.put1d(i) self.xdate = save def getascii(self,tabtodo,filename="output.txt"): ### print out values in an ascii file if isinstance(tabtodo,np.str): tabtodo=[tabtodo] ## so that asking one element without [] is possible. if isinstance(tabtodo,np.int): tabtodo=[tabtodo] ## so that asking one element without [] is possible. asciifile = open(filename, "w") for i in range(len(tabtodo)): (field, fieldlab) = self.definefield(tabtodo[i]) self.gettitle(oneline=True) asciifile.write("### " + self.title + "\n") asciifile.write("### " + self.ack + "\n") asciifile.write("### Column 1 is " + self.xlabel + "\n") asciifile.write("### Column 2 is " + fieldlab + "\n") for ix in range(len(self.xcoord)): asciifile.write("%15.5e%15.5e\n" % ( self.xcoord[ix], field[ix] ) ) asciifile.close() return def makeplot1d(self,choice): ### one 1D plot is created for the user-defined variable in choice. (field, fieldlab) = self.definefield(choice) if not self.vertplot: absc = self.xcoord ; ordo = field ; ordolab = fieldlab ; absclab = self.xlabel else: ordo = self.xcoord ; absc = field ; absclab = fieldlab ; ordolab = self.xlabel mpl.plot(absc,ordo,'-bo') ; mpl.ylabel(ordolab) ; mpl.xlabel(absclab) #; mpl.xticks(query.xcoord) if self.zkey == 4: mpl.semilogy() ; ax = mpl.gca() ; ax.set_ylim(ax.get_ylim()[::-1]) mpl.figtext(0.5, 0.01, self.ack, ha='center') def plot1d(self,tabtodo): ### complete 1D figure with possible multiplots if isinstance(tabtodo,np.str): tabtodo=[tabtodo] ## so that asking one element without [] is possible. if isinstance(tabtodo,np.int): tabtodo=[tabtodo] ## so that asking one element without [] is possible. fig = mpl.figure() ; subv,subh = myplot.definesubplot( len(tabtodo) , fig ) for i in range(len(tabtodo)): mpl.subplot(subv,subh,i+1).grid(True, linestyle=':', color='grey') ; self.makeplot1d(tabtodo[i]) def htmlplot1d(self,tabtodo,figname="temp.png",title=""): ### complete 1D figure with possible multiplots ### added in 09/2012 for online MCD ### see http://www.dalkescientific.com/writings/diary/archive/2005/04/23/matplotlib_without_gui.html from matplotlib.figure import Figure from matplotlib.backends.backend_agg import FigureCanvasAgg if isinstance(tabtodo,np.str): tabtodo=[tabtodo] ## so that asking one element without [] is possible. if isinstance(tabtodo,np.int): tabtodo=[tabtodo] ## so that asking one element without [] is possible. howmanyplots = len(tabtodo) if howmanyplots == 1: fig = Figure(figsize=(16,8)) elif howmanyplots == 2: fig = Figure(figsize=(8,8)) elif howmanyplots == 3: fig = Figure(figsize=(8,16)) elif howmanyplots == 4: fig = Figure(figsize=(16,8)) subv,subh = myplot.definesubplot( len(tabtodo) , fig ) for i in range(len(tabtodo)): yeah = fig.add_subplot(subv,subh,i+1) #.grid(True, linestyle=':', color='grey') choice = tabtodo[i] (field, fieldlab) = self.definefield(choice) if not self.vertplot: absc = self.xcoord ; ordo = field ; ordolab = fieldlab ; absclab = self.xlabel else: ordo = self.xcoord ; absc = field ; absclab = fieldlab ; ordolab = self.xlabel yeah.plot(absc,ordo,'-bo') #; mpl.xticks(query.xcoord) ax = fig.gca() ; ax.set_ylabel(ordolab) ; ax.set_xlabel(absclab) if self.xzs is not None and self.zkey == 4: ax.set_yscale('log') ; ax.set_ylim(ax.get_ylim()[::-1]) if self.lats is not None: ax.set_xticks(np.arange(-90,91,15)) ; ax.set_xbound(lower=self.lats, upper=self.late) elif self.lons is not None: ax.set_xticks(np.arange(-360,361,30)) ; ax.set_xbound(lower=self.lons, upper=self.lone) elif self.locts is not None: ax.set_xticks(np.arange(0,26,2)) ; ax.set_xbound(lower=self.locts, upper=self.locte) ax.grid(True, linestyle=':', color='grey') self.gettitle() fig.text(0.5, 0.95, self.title, ha='center') fig.text(0.5, 0.01, self.ack, ha='center') canvas = FigureCanvasAgg(fig) # The size * the dpi gives the final image size # a4"x4" image * 80 dpi ==> 320x320 pixel image canvas.print_figure(figname, dpi=self.dpi) ################### ### 2D analysis ### ################### def latlon(self,ndx=37,ndy=19): ### retrieve a latitude/longitude slice ### default is: local time is not fixed. user-defined local time is at longitude 0. save1 = self.lon ; save2 = self.lat ; save3 = self.loct self.xlabel = "East longitude (degrees)" ; self.ylabel = "North latitude (degrees)" self.prepare(ndx=ndx,ndy=ndy) self.ininterv(-180.,180.,ndx,start=self.lons,end=self.lone) self.ininterv(-90., 90.,ndy,start=self.lats,end=self.late,yaxis=True) if not self.fixedlt: umst = self.loct for i in range(ndx): for j in range(ndy): self.lon = self.xcoord[i] ; self.lat = self.ycoord[j] if not self.fixedlt: self.loct = (umst + self.lon/15.) % 24 self.update() ; self.put2d(i,j) if not self.fixedlt: self.loct = umst self.lon = save1 ; self.lat = save2 ; self.loct = save3 def secalt(self,ndx=37,ndy=20,typex="lat"): ### retrieve a coordinate/altitude slice save1 = self.lon ; save2 = self.xz ; save3 = self.loct ; save4 = self.lat self.prepare(ndx=ndx,ndy=ndy) self.vertlabel() ; self.ylabel = self.xlabel self.vertaxis(ndy,yaxis=True) if "lat" in typex: self.xlabel = "North latitude (degrees)" self.ininterv(-90.,90.,ndx,start=self.lats,end=self.late) elif typex == "lon": self.xlabel = "East longitude (degrees)" self.ininterv(-180.,180.,ndx,start=self.lons,end=self.lone) if not self.fixedlt: umst = self.loct for i in range(ndx): for j in range(ndy): if typex == "lat": self.lat = self.xcoord[i] elif typex == "lon": self.lon = self.xcoord[i] self.xz = self.ycoord[j] if not self.fixedlt: self.loct = (umst + self.lon/15.) % 24 self.update() ; self.put2d(i,j) if not self.fixedlt: self.loct = umst self.lon = save1 ; self.xz = save2 ; self.loct = save3 ; self.lat = save4 def zonalmean(self,ndx=37,ndy=20,ndmean=32): ### retrieve a zonalmean lat/altitude slice self.fixedlt = False save1 = self.lon ; save2 = self.xz ; save3 = self.loct ; save4 = self.lat self.prepare(ndx=ndx,ndy=ndy) self.vertlabel() ; self.ylabel = self.xlabel self.vertaxis(ndy,yaxis=True) self.xlabel = "North latitude (degrees)" self.ininterv(-180.,180.,ndmean) coordmean = self.xcoord self.ininterv(-90.,90.,ndx,start=self.lats,end=self.late) umst = self.loct #fixedlt false for this case for i in range(ndx): self.lat = self.xcoord[i] for j in range(ndy): self.xz = self.ycoord[j] meanpres = 0. ; meandens = 0. ; meantemp = 0. ; meanzonwind = 0. ; meanmerwind = 0. ; meanmeanvar = np.zeros(5) ; meanextvar = np.zeros(100) for m in range(ndmean): self.lon = coordmean[m] self.loct = (umst + self.lon/15.) % 24 #fixedlt false for this case self.update() meanpres = meanpres + self.pres/float(ndmean) ; meandens = meandens + self.dens/float(ndmean) ; meantemp = meantemp + self.temp/float(ndmean) meanzonwind = meanzonwind + self.zonwind/float(ndmean) ; meanmerwind = meanmerwind + self.merwind/float(ndmean) meanmeanvar = meanmeanvar + self.meanvar/float(ndmean) ; meanextvar = meanextvar + self.extvar/float(ndmean) self.pres=meanpres ; self.dens=meandens ; self.temp=meantemp ; self.zonwind=meanzonwind ; self.merwind=meanmerwind self.meanvar=meanmeanvar ; self.extvar=meanextvar self.put2d(i,j) self.loct = umst #fixedlt false for this case self.lon = save1 ; self.xz = save2 ; self.loct = save3 ; self.lat = save4 def hovmoller(self,ndtime=25,ndcoord=20,typex="lat"): ### retrieve a time/other coordinate slice save1 = self.lat ; save2 = self.xz ; save3 = self.loct ; save4 = self.lon if typex == "lat": ndx = ndcoord ; self.xlabel = "North latitude (degrees)" ndy = ndtime ; self.ylabel = "Local time (Martian hour)" self.prepare(ndx=ndx,ndy=ndy) self.ininterv(-90.,90.,ndx,start=self.lats,end=self.late) self.ininterv(0.,24.,ndy,start=self.locts,end=self.locte,yaxis=True) elif typex == "lon": ndx = ndcoord ; self.xlabel = "East longitude (degrees)" ndy = ndtime ; self.ylabel = "Local time (Martian hour)" self.prepare(ndx=ndx,ndy=ndy) self.ininterv(-180.,180.,ndx,start=self.lons,end=self.lone) self.ininterv(0.,24.,ndy,start=self.locts,end=self.locte,yaxis=True) elif typex == "alt": ndy = ndcoord ; self.vertlabel() ; self.ylabel = self.xlabel ndx = ndtime ; self.xlabel = "Local time (Martian hour)" self.prepare(ndx=ndx,ndy=ndy) self.vertaxis(ndy,yaxis=True) self.ininterv(0.,24.,ndx,start=self.locts,end=self.locte) for i in range(ndx): for j in range(ndy): if typex == "lat": self.lat = self.xcoord[i] ; self.loct = self.ycoord[j] elif typex == "lon": self.lon = self.xcoord[i] ; self.loct = self.ycoord[j] elif typex == "alt": self.xz = self.ycoord[j] ; self.loct = self.xcoord[i] self.update() ; self.put2d(i,j) self.lat = save1 ; self.xz = save2 ; self.loct = save3 ; self.lon = save4 def put2d(self,i,j): ## fill in subscript i,j in output arrays ## (arrays must have been correctly defined through prepare) if self.prestab is None: myplot.errormess("arrays must be prepared first through self.prepare") self.prestab[i,j] = self.pres ; self.denstab[i,j] = self.dens ; self.temptab[i,j] = self.temp self.zonwindtab[i,j] = self.zonwind ; self.merwindtab[i,j] = self.merwind self.meanvartab[i,j,1:5] = self.meanvar[0:4] ## note: var numbering according to MCD manual is kept self.extvartab[i,j,1:100] = self.extvar[0:99] ## note: var numbering according to MCD manual is kept def makemap2d(self,choice,incwind=False,proj="cyl"): ### one 2D map is created for the user-defined variable in choice. self.latlon() ## a map is implicitely a lat-lon plot. otherwise it is a plot (cf. makeplot2d) if choice == "wind" or incwind: (windx, fieldlabwx) = self.definefield("u") (windy, fieldlabwy) = self.definefield("v") if choice == "wind": field = np.sqrt(windx*windx + windy*windy) fieldlab = "Horizontal wind speed (m/s)" else: (field, fieldlab) = self.definefield(choice) if incwind: myplot.maplatlon(self.xcoord,self.ycoord,field,title=fieldlab,proj=proj,vecx=windx,vecy=windy) #,stride=1) else: myplot.maplatlon(self.xcoord,self.ycoord,field,title=fieldlab,proj=proj) mpl.figtext(0.5, 0.0, self.ack, ha='center') def map2d(self,tabtodo,incwind=False,proj="cyl"): ### complete 2D figure with possible multiplots if isinstance(tabtodo,np.str): tabtodo=[tabtodo] ## so that asking one element without [] is possible. if isinstance(tabtodo,np.int): tabtodo=[tabtodo] ## so that asking one element without [] is possible. fig = mpl.figure() subv,subh = myplot.definesubplot( len(tabtodo) , fig ) for i in range(len(tabtodo)): mpl.subplot(subv,subh,i+1) ; self.makemap2d(tabtodo[i],incwind=incwind,proj=proj) def htmlmap2d(self,tabtodo,incwind=False,figname="temp.png",back="zMOL"): ### complete 2D figure with possible multiplots ### added in 09/2012 for online MCD ### see http://www.dalkescientific.com/writings/diary/archive/2005/04/23/matplotlib_without_gui.html from matplotlib.figure import Figure from matplotlib.backends.backend_agg import FigureCanvasAgg from matplotlib.cm import get_cmap from matplotlib import rcParams #from mpl_toolkits.basemap import Basemap # does not work from Scientific.IO import NetCDF filename = "/home/marshttp/surface.nc" zefile = NetCDF.NetCDFFile(filename, 'r') fieldc = zefile.variables[back] yc = zefile.variables['latitude'] xc = zefile.variables['longitude'] if isinstance(tabtodo,np.str): tabtodo=[tabtodo] ## so that asking one element without [] is possible. if isinstance(tabtodo,np.int): tabtodo=[tabtodo] ## so that asking one element without [] is possible. howmanyplots = len(tabtodo) if howmanyplots == 1: fig = Figure(figsize=(16,8)) elif howmanyplots == 2: fig = Figure(figsize=(8,8)) elif howmanyplots == 3: fig = Figure(figsize=(8,16)) elif howmanyplots == 4: fig = Figure(figsize=(16,8)) subv,subh = myplot.definesubplot( len(tabtodo) , fig ) for i in range(len(tabtodo)): yeah = fig.add_subplot(subv,subh,i+1) choice = tabtodo[i] self.latlon(ndx=64,ndy=48) ## a map is implicitely a lat-lon plot. otherwise it is a plot (cf. makeplot2d) (field, fieldlab) = self.definefield(choice) if incwind: (windx, fieldlabwx) = self.definefield("u") ; (windy, fieldlabwy) = self.definefield("v") proj="moll" ; colorb= self.colorm ; ndiv=20 ; zeback="molabw" ; trans=1.0 #0.6 vecx=None ; vecy=None ; stride=2 lon = self.xcoord lat = self.ycoord #[lon2d,lat2d] = np.meshgrid(lon,lat) ##### define projection and background. define x and y given the projection ##[wlon,wlat] = myplot.latinterv() ##yeahm = myplot.define_proj(proj,wlon,wlat,back=zeback,blat=None,blon=None) ##x, y = yeahm(lon2d, lat2d) #map = Basemap(projection='ortho',lat_0=45,lon_0=-100) #x, y = map(lon2d, lat2d) #### TEMP x = lon ; y = lat ## define field. bound field. what_I_plot = np.transpose(field) zevmin, zevmax = myplot.calculate_bounds(what_I_plot,vmin=self.min2d,vmax=self.max2d) what_I_plot = myplot.bounds(what_I_plot,zevmin,zevmax) ## define contour field levels. define color palette ticks = ndiv + 1 zelevels = np.linspace(zevmin,zevmax,ticks) palette = get_cmap(name=colorb) # You can set negative contours to be solid instead of dashed: rcParams['contour.negative_linestyle'] = 'solid' ## contours topo zelevc = np.linspace(-9.,20.,11) yeah.contour( xc, yc, fieldc, zelevc, colors='black',linewidths = 0.4) yeah.contour( np.array(xc) + 360., yc, fieldc, zelevc, colors='black',linewidths = 0.4) yeah.contour( np.array(xc) - 360., yc, fieldc, zelevc, colors='black',linewidths = 0.4) # contour field c = yeah.contourf( x, y, what_I_plot, zelevels, cmap = palette, alpha = trans ) clb = Figure.colorbar(fig,c,orientation='vertical',format=self.fmt,ticks=np.linspace(zevmin,zevmax,num=min([ticks/2+1,21]))) clb.set_label(fieldlab) if incwind: [x2d,y2d] = np.meshgrid(x,y) yeah.quiver(x2d,y2d,np.transpose(windx),np.transpose(windy)) ax = fig.gca() ; ax.set_ylabel("Latitude") ; ax.set_xlabel("Longitude") ax.set_xticks(np.arange(-360,361,45)) ; ax.set_xbound(lower=self.lons, upper=self.lone) ax.set_yticks(np.arange(-90,91,30)) ; ax.set_ybound(lower=self.lats, upper=self.late) self.gettitle() fig.text(0.5, 0.95, self.title, ha='center') fig.text(0.5, 0.01, self.ack, ha='center') canvas = FigureCanvasAgg(fig) # The size * the dpi gives the final image size # a4"x4" image * 80 dpi ==> 320x320 pixel image canvas.print_figure(figname, dpi=self.dpi) def htmlplot2d(self,tabtodo,figname="temp.png"): ### complete 2D figure with possible multiplots ### added in 10/2012 for online MCD ### see http://www.dalkescientific.com/writings/diary/archive/2005/04/23/matplotlib_without_gui.html from matplotlib.figure import Figure from matplotlib.backends.backend_agg import FigureCanvasAgg from matplotlib.cm import get_cmap if isinstance(tabtodo,np.str): tabtodo=[tabtodo] ## so that asking one element without [] is possible. if isinstance(tabtodo,np.int): tabtodo=[tabtodo] ## so that asking one element without [] is possible. howmanyplots = len(tabtodo) if howmanyplots == 1: fig = Figure(figsize=(16,8)) elif howmanyplots == 2: fig = Figure(figsize=(8,8)) elif howmanyplots == 3: fig = Figure(figsize=(8,16)) elif howmanyplots == 4: fig = Figure(figsize=(16,8)) subv,subh = myplot.definesubplot( len(tabtodo) , fig ) for i in range(len(tabtodo)): yeah = fig.add_subplot(subv,subh,i+1) choice = tabtodo[i] if self.lons is not None: if self.locts is None: self.secalt(ndx=64,ndy=35,typex="lon") else: self.hovmoller(ndcoord=64,typex="lon") elif self.lats is not None: if self.locts is None: if self.zonmean: self.zonalmean() else: self.secalt(ndx=48,ndy=35,typex="lat") else: self.hovmoller(ndcoord=48,typex="lat") else: self.hovmoller(ndcoord=35,typex="alt") (field, fieldlab) = self.definefield(choice) colorb=self.colorm ; ndiv=20 ## define field. bound field. what_I_plot = np.transpose(field) zevmin, zevmax = myplot.calculate_bounds(what_I_plot,vmin=self.min2d,vmax=self.max2d) what_I_plot = myplot.bounds(what_I_plot,zevmin,zevmax) ## define contour field levels. define color palette ticks = ndiv + 1 zelevels = np.linspace(zevmin,zevmax,ticks) palette = get_cmap(name=colorb) # contour field c = yeah.contourf( self.xcoord, self.ycoord, what_I_plot, zelevels, cmap = palette ) clb = Figure.colorbar(fig,c,orientation='vertical',format=self.fmt,ticks=np.linspace(zevmin,zevmax,num=min([ticks/2+1,21]))) clb.set_label(fieldlab) ax = fig.gca() ; ax.set_ylabel(self.ylabel) ; ax.set_xlabel(self.xlabel) if self.lons is not None: ax.set_xticks(np.arange(-360,361,45)) ; ax.set_xbound(lower=self.lons, upper=self.lone) elif self.lats is not None: ax.set_xticks(np.arange(-90,91,30)) ; ax.set_xbound(lower=self.lats, upper=self.late) if self.locts is not None: if self.xzs is not None: ax.set_xticks(np.arange(0,26,2)) ; ax.set_xbound(lower=self.locts, upper=self.locte) else: ax.set_yticks(np.arange(0,26,2)) ; ax.set_ybound(lower=self.locts, upper=self.locte) if self.zkey == 4 and self.xzs is not None: ax.set_yscale('log') ; ax.set_ylim(ax.get_ylim()[::-1]) else: #ax.set_yticks(np.arange(self.xzs,self.xze,10000.)) ; ax.set_ybound(lower=self.xzs, upper=self.xze) self.gettitle() fig.text(0.5, 0.95, self.title, ha='center') fig.text(0.5, 0.01, self.ack, ha='center') canvas = FigureCanvasAgg(fig) # The size * the dpi gives the final image size # a4"x4" image * 80 dpi ==> 320x320 pixel image canvas.print_figure(figname, dpi=self.dpi) ### TODO: makeplot2d, plot2d, passer plot settings