1 | ************************************** |
---|
2 | ************************************** |
---|
3 | ************************************** |
---|
4 | PLANETOPLOT TUTORIAL EXAMPLES |
---|
5 | ************************************** |
---|
6 | Authors : AC + AS |
---|
7 | ************************************** |
---|
8 | DON'T FORGET YOUR BEST FRIEND IS |
---|
9 | pp.py -h [or] pp.py --help |
---|
10 | ************************************** |
---|
11 | ************************************** |
---|
12 | ************************************** |
---|
13 | |
---|
14 | ***************************************************************** |
---|
15 | MAPMODE 1... MAPPING MODE... SIMPLE EXAMPLES on a SAMPLE GCM FILE |
---|
16 | ***************************************************************** |
---|
17 | Goal: The simplest, most minimal example. Mapping topography. |
---|
18 | pp.py -f diagfired.nc |
---|
19 | |
---|
20 | Goal: I would like finer contours. |
---|
21 | pp.py -f diagfired.nc --div 30 |
---|
22 | |
---|
23 | Goal: I would like wind vectors. |
---|
24 | pp.py -f diagfired.nc -W |
---|
25 | |
---|
26 | Goal: I would like more vectors [i.e. lower the stride]. |
---|
27 | pp.py -f diagfired.nc -W -s 1 |
---|
28 | |
---|
29 | Goal: I want to map a given field (surface temperature). |
---|
30 | pp.py -f diagfired.nc -v tsurf |
---|
31 | |
---|
32 | Goal: I want to map two fields next to one another (topography and tauice). |
---|
33 | pp.py -f diagfired.nc -v phisinit,tauice |
---|
34 | |
---|
35 | Goal: I want to map two fields, tauice shaded, topography contoured, same plot. |
---|
36 | pp.py -f diagfired.nc -v tauice -w phisinit |
---|
37 | |
---|
38 | Goal: I want to map a field but projected on the sphere. |
---|
39 | pp.py -f diagfired.nc -v tauice -p ortho |
---|
40 | |
---|
41 | Goal: I want to redefine the minimum and maximum values shown. |
---|
42 | pp.py -f diagfired.nc -v tauice -m 0.2 -M 0.9 |
---|
43 | |
---|
44 | Goal: I want to insert holes wherever values are lower than 0.2 and higher than 0.9 |
---|
45 | pp.py -f diagfired.nc -v tauice -m 0.2 -M 0.9 -H |
---|
46 | |
---|
47 | Goal: I want to fill holes with an background image of Mars [you have to be connected to Internet] |
---|
48 | pp.py -f diagfired.nc -v tauice -m 0.2 -M 0.9 -H -b vishires |
---|
49 | |
---|
50 | Goal: I want the same map, but projected on the sphere |
---|
51 | pp.py -f diagfired.nc -v tauice -m 0.2 -M 0.9 -H -b vishires -p ortho |
---|
52 | |
---|
53 | Goal: I want the same map, but projected with north polar stereographic view |
---|
54 | pp.py -f diagfired.nc -v tauice -m 0.2 -M 0.9 -H -b vishires -p npstere |
---|
55 | |
---|
56 | Goal: I want the same map, but with a transparent field to see background image |
---|
57 | pp.py -f diagfired.nc -v tauice -m 0.2 -M 0.9 -H -b vishires -p npstere --trans 0.6 |
---|
58 | |
---|
59 | Goal: I want to save this in PNG format |
---|
60 | pp.py -f diagfired.nc -v tauice -m 0.2 -M 0.9 -H -b vishires -p ortho -S png |
---|
61 | |
---|
62 | Goal: I want to animate this along time axis with fps=12 |
---|
63 | pp.py -f diagfired.nc -v tauice -m 0.2 -M 0.9 -H -b vishires -p ortho --rate 12 |
---|
64 | |
---|
65 | Goal: I want to plot results from two simulation files next to one another |
---|
66 | pp.py -f diagfired.nc,diagfired.nc -v tsurf |
---|
67 | |
---|
68 | Goal: I want to plot results for two different times in the file next to one another |
---|
69 | pp.py -f diagfi.nc -v tsurf --time 4 --time 7 |
---|
70 | |
---|
71 | Goal: I want to plot averaged results in the file from one time to another time |
---|
72 | pp.py -f diagfi.nc -v tsurf --time 4,7 |
---|
73 | |
---|
74 | Goal: I want to plot a globally-averaged 1D temperature profile |
---|
75 | pp.py -f diagfi.nc -v temp --time 4 --lat -90,90 --lon -180,180 |
---|
76 | |
---|
77 | Goal: I want to overplot few globally-averaged 1D temperature profiles at different times |
---|
78 | pp.py -f diagfi.nc -v temp --time 4 --time 7 --lat -90,90 --lon -180,180 |
---|
79 | |
---|
80 | [only mesoscale for the moment] |
---|
81 | Goal: I want to plot results for two different LOCAL times in the file next to one another |
---|
82 | pp.py -f wrfout**** -v TSURF --time -4 -- time -7 |
---|
83 | |
---|
84 | *********************************************************************************** |
---|
85 | EXAMPLE : The classic mountain GW plot |
---|
86 | *********************************************************************************** |
---|
87 | pp.py -f wrfout_d01_9999-09-09_09:00:00 -v W,tpot --lat 60 --time 15 -i 4 -l 30,130,100 --div 50 |
---|
88 | *********************************************************************************** |
---|
89 | |
---|
90 | *********************************************************************************** |
---|
91 | COMMENTED EXAMPLE : The globe with surface temperature and winds |
---|
92 | *********************************************************************************** |
---|
93 | pp.py -f diagfired.nc -v tsurf -w phisinit -m 120 -M 320 --div 20 -W -s 1 --vert 0 -p ortho --blat 20 --blon -80 -S html -t $W |
---|
94 | *********************************************************************************** |
---|
95 | See results here: http://www.lmd.jussieu.fr/~aslmd/EXAMPLES/LMD_GCM_movie_tsurf_UV/anim.html |
---|
96 | *********************************************************************************** |
---|
97 | pp.py -f diagfired.nc |
---|
98 | OK. You probably get that one. |
---|
99 | -v tsurf -w phisinit |
---|
100 | Shade surface temperature. Contour topography. |
---|
101 | -m 120 -M 320 --div 20 |
---|
102 | Surface temperature is shown with bounds 120K to 320K. Use 20 levels for shading. |
---|
103 | -W -s 1 |
---|
104 | Include wind vectors. Prescribe a stride of 1: vectors are shown at every grid point. |
---|
105 | --vert 0 |
---|
106 | Show fields in the first (lowermost) level. |
---|
107 | -p ortho --blat 20 --blon -80 |
---|
108 | Use orthographic projection ('whole sphere' view). Center view on lon -80E and lat 20N. |
---|
109 | -S html |
---|
110 | Make nice webpage with animation and controls. |
---|
111 | -t /u/aslmd/WWW/EXAMPLES |
---|
112 | Move resulting plot files to the given folder. |
---|
113 | |
---|
114 | *********************************************************************************** |
---|
115 | COMMENTED EXAMPLE : The dust storm section movie |
---|
116 | *********************************************************************************** |
---|
117 | pp.py -f wrfout_d01_2024-05-30_12:00:00,wrfout_d01_2024-05-30_18:00:00,wrfout_d01_2024-05-31_00\:00\:00 --operation cat -v QDUST --lat -3. -i 3 -l -1,37,100 --div 30 -c Oranges_r -m 0. -M 5.e-5 -t $W --rate 12 --xmin=5 --xmax=115 |
---|
118 | *********************************************************************************** |
---|
119 | See results here: http://www.lmd.jussieu.fr/~aslmd/EXAMPLES/LMD_MMM_d1_10km_movie_QDUST_-1000m-AMR_lat_-3_Ls134.8/anim.html |
---|
120 | *********************************************************************************** |
---|
121 | pp.py |
---|
122 | OK. You probably get that one. |
---|
123 | -f wrfout_d01_2024-05-30_12:00:00,wrfout_d01_2024-05-30_18:00:00,wrfout_d01_2024-05-31_00\:00\:00 --operation cat |
---|
124 | Mesoscale outputs are splitted in several files. In that case, this was 1 file per 6 simulated hours. |
---|
125 | The above options allow to concatenate files along time axis for 1D time series or animated movies |
---|
126 | [if --operation cat is omitted, this is a multiplot call, with one subplot per files in -f]. |
---|
127 | -v QDUST |
---|
128 | Choose to plot dust mass mixing ratio. |
---|
129 | -i 3 -l -1,37,100 |
---|
130 | Set a call to vertical interpolator [compiled with f2py, thereby being embedded as a Python routine] for each of the files in the -f instance. |
---|
131 | -i sets the kind of interpolation, 3 means Above MOLA Reference Altitude. -l sets the range for altitude levels: from -1 km to 37 km with 100 levels. |
---|
132 | --div 30 |
---|
133 | The number of contours used for shaded plots. Higher value means smoother appearance. |
---|
134 | -c Oranges_r |
---|
135 | Choose a colorbar adapted to display a dust storm. |
---|
136 | -m 0. -M 5.e-5 |
---|
137 | Choose bounds for the plotted field. This one is adapted to show dust mass mixing ratio. |
---|
138 | -t $W |
---|
139 | Put resulting figure or movie in another destination folder. |
---|
140 | Personally I have an environnement variable W which is somewhere in my system where the file automatically appears on the web, |
---|
141 | hence is easy to see from a remote place. |
---|
142 | --rate 12 --lat -3. |
---|
143 | Define prescribed axis. A section in latitude -3°N. A time animation with 12 frame per seconds. |
---|
144 | So the displayed field will be an altitude/longitude section. Alternative: "-S avi" instead of "--rate 12" creates a default 8 fps movie. |
---|
145 | Alternative II: "-S html" instead of --rate 12 creates a nice webpage. |
---|
146 | --xmin=5 --xmax=115 |
---|
147 | Define limits for the displayed section. Here we just want to get rid of transition rows where atmospheric fields are |
---|
148 | relaxed towards prescribed GCM fields. |
---|
149 | |
---|
150 | *********************************************************************************** |
---|
151 | Simple 2D plot: Zonal mean. |
---|
152 | ********************************************************************************** |
---|
153 | |
---|
154 | Goal: |
---|
155 | |
---|
156 | Plot the zonal mean temperature from a netcdf fiel representing one month. |
---|
157 | |
---|
158 | Command: |
---|
159 | |
---|
160 | gcm.py -f POLAR_NIGHT_RUN/diagfi16.nc --var temp --lon 180,-180 --time 0,65 |
---|
161 | |
---|
162 | Note: |
---|
163 | |
---|
164 | The --time, --lat, --lon and --vert command takes in input values corresponding to the unit stored in the netcdf file, and not indices ! For example, if the "Time" unit is in sol (which is common for a gcm output), --time 2 means sol 2.0 and not index 2 along the time direction. Consequently, one can ask --time 2.5 for temperatures at 12:00 on sol 2. |
---|
165 | |
---|
166 | Means are easy to perform by specifying a range. Here: --time 0,65 and --lat -180,180. |
---|
167 | |
---|
168 | *********************************************************************************** |
---|
169 | Vertical interpolation of the field. |
---|
170 | *********************************************************************************** |
---|
171 | |
---|
172 | Goal: |
---|
173 | |
---|
174 | Calls to zrecast and api are built-in the python functions. One can call them using -i with the appropriate argument (see meso.py -h or gcm.py -h). Here is an example that re-interpolates data using zrecast before plotting it in a 2D contour. |
---|
175 | |
---|
176 | Command: |
---|
177 | |
---|
178 | gcm.py -f POLAR_NIGHT_RUN/diagfi16.nc --var temp --lon -180,180 --time 0,65 -i 4 |
---|
179 | |
---|
180 | Note: |
---|
181 | |
---|
182 | All interpolation modes available in zrecast and api (pressure, AGL, distance from planet center, etc...) are theoretically possible, but may not be coded yet in the routine. See gcm.py -h or meso.py -h. |
---|
183 | |
---|
184 | For this example, the default behavior of zrecast for -i 4 is to interpolate in (m) from the local surface, between 0 and 150 km. The command will generate a reinterpolated netcdf file "POLAR_NIGHT_RUN/diagfi16_S.nc" with only the requested field, which is not deleted afterward. |
---|
185 | |
---|
186 | |
---|
187 | *********************************************************************************** |
---|
188 | 2D plot of the difference between two files. |
---|
189 | *********************************************************************************** |
---|
190 | |
---|
191 | Goal: |
---|
192 | |
---|
193 | Comparing two .nc files with similar dimension axis can be done in a single command, by specifying which files to compare and the comparison operator (i.e. is it a difference, an addition, etc...). When comparing data along a vertical axis, it can be wise to also ask for an interpolation of the fields to make sure the comparison is correct. |
---|
194 | |
---|
195 | Command: |
---|
196 | |
---|
197 | gcm.py -f POLAR_NIGHT_RUN/stats16.nc --var temp --lon -180,180 --time 1 -i 4 --fref POLAR_NIGHT_REF/stats16.nc --operation - --mope -2 --Mope 2 --title "Polar temperatures with new parametrizations" --titleref "Reference run" |
---|
198 | |
---|
199 | Note: |
---|
200 | |
---|
201 | The command will output 3 plots: the field from file 1, the field from file 2, and the comparison between the two. One can specify specific names for the title of these plots by using --title and --titleref for the titles of file 1 and file 2, and can specify different plotting range for the normal field (-m -M) and the compared field (--mope --Mope). |
---|
202 | |
---|
203 | One can combine this command with projections and means, so that for example, to compare co2 depletion at the south pole: |
---|
204 | |
---|
205 | gcm.py -f POLAR_NIGHT_RUN/start16.nc --var co2 --vert 0,150 --proj spstere --time 1 -i 4 --fref POLAR_NIGHT_REF/start16.nc --operation - --mope -0.5 --Mope 0.5 --title "Polar co2 with new parametrizations" --titleref "Reference run" |
---|
206 | |
---|
207 | *********************************************************************************** |
---|
208 | 2D plot of data with missing values, along a pressure axis (decreasing with height). |
---|
209 | *********************************************************************************** |
---|
210 | |
---|
211 | Goal: |
---|
212 | |
---|
213 | By default, python will force the y-axis of a 2D plot to be ordered by increasing values. Here is how to force it otherwise. |
---|
214 | |
---|
215 | Command: |
---|
216 | |
---|
217 | gcm.py -f TES.MappedClimatology.nadir.MY25.nc --var T_nadir_day --lat -76. --time 90 --ymin 500 --ymax 1 -m 128 -M 148 -H |
---|
218 | |
---|
219 | Note: |
---|
220 | |
---|
221 | The axis reversal is done by specifying ymin and ymax in the right order. One can also simply use --inverty and not specify (ymin,ymax). Missing values (out of range values) are replaced by holes by the option "-H". |
---|