1 | !REAL:MODEL_LAYER:INITIALIZATION |
---|
2 | |
---|
3 | #ifndef VERT_UNIT |
---|
4 | ! This MODULE holds the routines which are used to perform various initializations |
---|
5 | ! for the individual domains, specifically for the Eulerian, mass-based coordinate. |
---|
6 | |
---|
7 | !----------------------------------------------------------------------- |
---|
8 | |
---|
9 | !****MARS: modified May 2007 |
---|
10 | |
---|
11 | |
---|
12 | MODULE module_initialize |
---|
13 | |
---|
14 | USE module_bc |
---|
15 | USE module_configure |
---|
16 | USE module_domain |
---|
17 | USE module_io_domain |
---|
18 | USE module_model_constants |
---|
19 | USE module_state_description |
---|
20 | USE module_timing |
---|
21 | USE module_soil_pre |
---|
22 | USE module_date_time |
---|
23 | #ifdef DM_PARALLEL |
---|
24 | USE module_dm |
---|
25 | #endif |
---|
26 | |
---|
27 | REAL , SAVE :: p_top_save |
---|
28 | INTEGER :: internal_time_loop |
---|
29 | |
---|
30 | CONTAINS |
---|
31 | |
---|
32 | !------------------------------------------------------------------- |
---|
33 | |
---|
34 | SUBROUTINE init_domain ( grid ) |
---|
35 | |
---|
36 | IMPLICIT NONE |
---|
37 | |
---|
38 | ! Input space and data. No gridded meteorological data has been stored, though. |
---|
39 | |
---|
40 | ! TYPE (domain), POINTER :: grid |
---|
41 | TYPE (domain) :: grid |
---|
42 | |
---|
43 | ! Local data. |
---|
44 | |
---|
45 | INTEGER :: dyn_opt |
---|
46 | INTEGER :: idum1, idum2 |
---|
47 | |
---|
48 | CALL nl_get_dyn_opt ( 1, dyn_opt ) |
---|
49 | |
---|
50 | CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 ) |
---|
51 | |
---|
52 | IF ( dyn_opt .eq. 1 & |
---|
53 | .or. dyn_opt .eq. 2 & |
---|
54 | .or. dyn_opt .eq. 3 & |
---|
55 | ) THEN |
---|
56 | CALL init_domain_rk( grid & |
---|
57 | ! |
---|
58 | #include "em_actual_new_args.inc" |
---|
59 | ! |
---|
60 | ) |
---|
61 | |
---|
62 | ELSE |
---|
63 | WRITE(0,*)' init_domain: unknown or unimplemented dyn_opt = ',dyn_opt |
---|
64 | CALL wrf_error_fatal ( 'ERROR-dyn_opt-wrong-in-namelist' ) |
---|
65 | ENDIF |
---|
66 | |
---|
67 | END SUBROUTINE init_domain |
---|
68 | |
---|
69 | !------------------------------------------------------------------- |
---|
70 | |
---|
71 | SUBROUTINE init_domain_rk ( grid & |
---|
72 | ! |
---|
73 | #include "em_dummy_new_args.inc" |
---|
74 | ! |
---|
75 | ) |
---|
76 | |
---|
77 | USE module_optional_si_input |
---|
78 | IMPLICIT NONE |
---|
79 | |
---|
80 | ! Input space and data. No gridded meteorological data has been stored, though. |
---|
81 | |
---|
82 | ! TYPE (domain), POINTER :: grid |
---|
83 | TYPE (domain) :: grid |
---|
84 | |
---|
85 | #include "em_dummy_new_decl.inc" |
---|
86 | |
---|
87 | TYPE (grid_config_rec_type) :: config_flags |
---|
88 | |
---|
89 | ! Local domain indices and counters. |
---|
90 | |
---|
91 | INTEGER :: num_veg_cat , num_soil_top_cat , num_soil_bot_cat |
---|
92 | INTEGER :: loop , num_seaice_changes |
---|
93 | |
---|
94 | INTEGER :: & |
---|
95 | ids, ide, jds, jde, kds, kde, & |
---|
96 | ims, ime, jms, jme, kms, kme, & |
---|
97 | its, ite, jts, jte, kts, kte, & |
---|
98 | ips, ipe, jps, jpe, kps, kpe, & |
---|
99 | i, j, k |
---|
100 | INTEGER :: ns |
---|
101 | |
---|
102 | ! Local data |
---|
103 | |
---|
104 | INTEGER :: error |
---|
105 | REAL :: p_surf, p_level |
---|
106 | REAL :: cof1, cof2 |
---|
107 | REAL :: qvf , qvf1 , qvf2 , pd_surf |
---|
108 | REAL :: p00 , t00 , a |
---|
109 | REAL :: hold_znw |
---|
110 | LOGICAL :: were_bad |
---|
111 | |
---|
112 | LOGICAL :: stretch_grid, dry_sounding, debug |
---|
113 | INTEGER IICOUNT |
---|
114 | |
---|
115 | REAL :: p_top_requested , temp |
---|
116 | INTEGER :: num_metgrid_levels |
---|
117 | REAL , DIMENSION(max_eta) :: eta_levels |
---|
118 | REAL :: max_dz |
---|
119 | |
---|
120 | ! INTEGER , PARAMETER :: nl_max = 1000 |
---|
121 | ! REAL , DIMENSION(nl_max) :: grid%em_dn |
---|
122 | |
---|
123 | integer::oops1,oops2 |
---|
124 | |
---|
125 | REAL :: zap_close_levels |
---|
126 | INTEGER :: force_sfc_in_vinterp |
---|
127 | INTEGER :: interp_type , lagrange_order |
---|
128 | LOGICAL :: lowest_lev_from_sfc |
---|
129 | LOGICAL :: we_have_tavgsfc |
---|
130 | |
---|
131 | INTEGER :: lev500 , loop_count |
---|
132 | REAL :: zl , zu , pl , pu , z500 , dz500 , tvsfc , dpmu |
---|
133 | |
---|
134 | !-- Carsel and Parrish [1988] |
---|
135 | REAL , DIMENSION(100) :: lqmi |
---|
136 | |
---|
137 | |
---|
138 | !****MARS |
---|
139 | INTEGER :: sizegcm, kold, knew,inew,jnew |
---|
140 | REAL :: pa, indic, p1, p2, pn |
---|
141 | REAL, ALLOCATABLE, DIMENSION (:,:,:) :: sig, ap, bp, box |
---|
142 | REAL :: randnum |
---|
143 | !****MARS |
---|
144 | |
---|
145 | |
---|
146 | #ifdef DM_PARALLEL |
---|
147 | # include "em_data_calls.inc" |
---|
148 | #endif |
---|
149 | |
---|
150 | SELECT CASE ( model_data_order ) |
---|
151 | CASE ( DATA_ORDER_ZXY ) |
---|
152 | kds = grid%sd31 ; kde = grid%ed31 ; |
---|
153 | ids = grid%sd32 ; ide = grid%ed32 ; |
---|
154 | jds = grid%sd33 ; jde = grid%ed33 ; |
---|
155 | |
---|
156 | kms = grid%sm31 ; kme = grid%em31 ; |
---|
157 | ims = grid%sm32 ; ime = grid%em32 ; |
---|
158 | jms = grid%sm33 ; jme = grid%em33 ; |
---|
159 | |
---|
160 | kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch |
---|
161 | its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch |
---|
162 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
---|
163 | |
---|
164 | CASE ( DATA_ORDER_XYZ ) |
---|
165 | ids = grid%sd31 ; ide = grid%ed31 ; |
---|
166 | jds = grid%sd32 ; jde = grid%ed32 ; |
---|
167 | kds = grid%sd33 ; kde = grid%ed33 ; |
---|
168 | |
---|
169 | ims = grid%sm31 ; ime = grid%em31 ; |
---|
170 | jms = grid%sm32 ; jme = grid%em32 ; |
---|
171 | kms = grid%sm33 ; kme = grid%em33 ; |
---|
172 | |
---|
173 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
---|
174 | jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch |
---|
175 | kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch |
---|
176 | |
---|
177 | CASE ( DATA_ORDER_XZY ) |
---|
178 | ids = grid%sd31 ; ide = grid%ed31 ; |
---|
179 | kds = grid%sd32 ; kde = grid%ed32 ; |
---|
180 | jds = grid%sd33 ; jde = grid%ed33 ; |
---|
181 | |
---|
182 | ims = grid%sm31 ; ime = grid%em31 ; |
---|
183 | kms = grid%sm32 ; kme = grid%em32 ; |
---|
184 | jms = grid%sm33 ; jme = grid%em33 ; |
---|
185 | |
---|
186 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
---|
187 | kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch |
---|
188 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
---|
189 | |
---|
190 | END SELECT |
---|
191 | |
---|
192 | CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) |
---|
193 | |
---|
194 | ! Check to see if the boundary conditions are set properly in the namelist file. |
---|
195 | ! This checks for sufficiency and redundancy. |
---|
196 | |
---|
197 | CALL boundary_condition_check( config_flags, bdyzone, error, grid%id ) |
---|
198 | |
---|
199 | ! Some sort of "this is the first time" initialization. Who knows. |
---|
200 | |
---|
201 | grid%step_number = 0 |
---|
202 | grid%itimestep=0 |
---|
203 | |
---|
204 | ! Pull in the info in the namelist to compare it to the input data. |
---|
205 | |
---|
206 | grid%real_data_init_type = model_config_rec%real_data_init_type |
---|
207 | |
---|
208 | ! To define the base state, we call a USER MODIFIED routine to set the three |
---|
209 | ! necessary constants: p00 (sea level pressure, Pa), t00 (sea level temperature, K), |
---|
210 | ! and A (temperature difference, from 1000 mb to 300 mb, K). |
---|
211 | |
---|
212 | CALL const_module_initialize ( p00 , t00 , a ) |
---|
213 | |
---|
214 | #if 0 |
---|
215 | !KLUDGE, this is for testing only |
---|
216 | if ( flag_metgrid .eq. 1 ) then |
---|
217 | read (20+grid%id) grid%em_ht_gc |
---|
218 | read (20+grid%id) grid%em_xlat_gc |
---|
219 | read (20+grid%id) grid%em_xlong_gc |
---|
220 | read (20+grid%id) msft |
---|
221 | read (20+grid%id) msfu |
---|
222 | read (20+grid%id) msfv |
---|
223 | read (20+grid%id) f |
---|
224 | read (20+grid%id) e |
---|
225 | read (20+grid%id) sina |
---|
226 | read (20+grid%id) cosa |
---|
227 | read (20+grid%id) grid%landmask |
---|
228 | read (20+grid%id) grid%landusef |
---|
229 | read (20+grid%id) grid%soilctop |
---|
230 | read (20+grid%id) grid%soilcbot |
---|
231 | read (20+grid%id) grid%vegcat |
---|
232 | read (20+grid%id) grid%soilcat |
---|
233 | else |
---|
234 | write (20+grid%id) grid%em_ht |
---|
235 | write (20+grid%id) grid%em_xlat |
---|
236 | write (20+grid%id) grid%em_xlong |
---|
237 | write (20+grid%id) msft |
---|
238 | write (20+grid%id) msfu |
---|
239 | write (20+grid%id) msfv |
---|
240 | write (20+grid%id) f |
---|
241 | write (20+grid%id) e |
---|
242 | write (20+grid%id) sina |
---|
243 | write (20+grid%id) cosa |
---|
244 | write (20+grid%id) grid%landmask |
---|
245 | write (20+grid%id) grid%landusef |
---|
246 | write (20+grid%id) grid%soilctop |
---|
247 | write (20+grid%id) grid%soilcbot |
---|
248 | write (20+grid%id) grid%vegcat |
---|
249 | write (20+grid%id) grid%soilcat |
---|
250 | endif |
---|
251 | #endif |
---|
252 | |
---|
253 | |
---|
254 | ! Is there any vertical interpolation to do? The "old" data comes in on the correct |
---|
255 | ! vertical locations already. |
---|
256 | |
---|
257 | IF ( flag_metgrid .EQ. 1 ) THEN ! <----- START OF VERTICAL INTERPOLATION PART ----> |
---|
258 | |
---|
259 | ! Variables that are named differently between SI and WPS. |
---|
260 | |
---|
261 | DO j = jts, MIN(jte,jde-1) |
---|
262 | DO i = its, MIN(ite,ide-1) |
---|
263 | !!****MARS: tsk is surface temperature |
---|
264 | grid%tsk(i,j) = grid%em_tsk_gc(i,j) |
---|
265 | grid%tmn(i,j) = grid%em_tmn_gc(i,j) |
---|
266 | grid%xlat(i,j) = grid%em_xlat_gc(i,j) |
---|
267 | grid%xlong(i,j) = grid%em_xlong_gc(i,j) |
---|
268 | grid%ht(i,j) = grid%em_ht_gc(i,j) |
---|
269 | !!****MARS |
---|
270 | grid%albedo_gcm(i,j) = grid%em_albedo_gcm_gc(i,j) |
---|
271 | grid%therm_inert(i,j) = grid%em_therm_inert_gc(i,j) |
---|
272 | grid%slpx(i,j) = grid%em_slpx_gc(i,j) |
---|
273 | grid%slpy(i,j) = grid%em_slpy_gc(i,j) |
---|
274 | grid%mars_emiss(i,j)=grid%st000010(i,j) |
---|
275 | grid%mars_cice(i,j)=grid%st010040(i,j) |
---|
276 | !! one more security ... co2ice cannot be negative |
---|
277 | IF (grid%mars_cice(i,j) .lt. 0.) grid%mars_cice(i,j)=0. |
---|
278 | |
---|
279 | DO k = 1, config_flags%num_soil_layers |
---|
280 | grid%mars_tsoil(i,k,j)=grid%em_tsoil_gc(i,k,j) |
---|
281 | ENDDO |
---|
282 | |
---|
283 | grid%mars_gw(i,1,j)=grid%st040100(i,j) !!ZMEA |
---|
284 | grid%mars_gw(i,2,j)=grid%st100200(i,j) !!ZSTD |
---|
285 | grid%mars_gw(i,3,j)=grid%sm000010(i,j) !!ZSIG |
---|
286 | grid%mars_gw(i,4,j)=grid%sm010040(i,j) !!ZGAM |
---|
287 | grid%mars_gw(i,5,j)=grid%sm040100(i,j) !!ZTHE |
---|
288 | |
---|
289 | END DO |
---|
290 | END DO |
---|
291 | |
---|
292 | |
---|
293 | !!****MARS |
---|
294 | !!****MARS |
---|
295 | !! User-defined constants initialisations |
---|
296 | !! defined by the namelist entries |
---|
297 | !! init_TI : fixed value for thermal inertia |
---|
298 | !! init_AL : fixed value for albedo |
---|
299 | !! init_U : fixed value for zonal wind |
---|
300 | !! init_V : fixed value for meridional wind |
---|
301 | !! init_WX & init_WY : fixed wind profile taken at these coordinates |
---|
302 | !! init_MU : multiply zonal wind by a constant |
---|
303 | !! init_MV : multiply meridional wind by a constant |
---|
304 | !! init_LES : LES mode (LOGICAL) |
---|
305 | |
---|
306 | IF (config_flags%init_TI .ne. 0.) THEN |
---|
307 | |
---|
308 | !DO j = jts, MIN(jte,jde-1) |
---|
309 | !DO i = its, MIN(ite,ide-1) |
---|
310 | ! grid%therm_inert(i,j) = config_flags%init_TI |
---|
311 | !ENDDO |
---|
312 | !ENDDO |
---|
313 | grid%therm_inert = grid%therm_inert*0. + config_flags%init_TI |
---|
314 | print *, 'constant thermal inertia ', config_flags%init_TI |
---|
315 | |
---|
316 | ENDIF |
---|
317 | |
---|
318 | IF (config_flags%init_AL .ne. 0.) THEN |
---|
319 | |
---|
320 | grid%albedo_gcm = grid%albedo_gcm*0. + config_flags%init_AL |
---|
321 | print *, 'constant albedo ', config_flags%init_AL |
---|
322 | |
---|
323 | ENDIF |
---|
324 | |
---|
325 | IF (config_flags%init_U .ne. 0.) THEN |
---|
326 | |
---|
327 | grid%em_u_gc = grid%em_u_gc*0. + config_flags%init_U |
---|
328 | print *, 'constant zonal wind ', config_flags%init_U |
---|
329 | |
---|
330 | ENDIF |
---|
331 | |
---|
332 | IF (config_flags%init_V .ne. 0.) THEN |
---|
333 | |
---|
334 | grid%em_v_gc = grid%em_v_gc*0. + config_flags%init_V |
---|
335 | print *, 'constant meridional wind ', config_flags%init_V |
---|
336 | |
---|
337 | ENDIF |
---|
338 | |
---|
339 | IF ( (config_flags%init_WX .ne. 0) .and. (config_flags%init_WY .ne. 0) ) THEN |
---|
340 | |
---|
341 | DO j = jts, MIN(jte,jde-1) |
---|
342 | DO i = its, MIN(ite,ide-1) |
---|
343 | grid%em_u_gc(i,:,j)=grid%em_u_gc(config_flags%init_WX,:,config_flags%init_WY) ! zonal wind |
---|
344 | grid%em_v_gc(i,:,j)=grid%em_v_gc(config_flags%init_WX,:,config_flags%init_WY) ! meridional wind |
---|
345 | ENDDO |
---|
346 | ENDDO |
---|
347 | !! FIX for the STAGGERED SPECIFICITY |
---|
348 | grid%em_u_gc(MIN(ite,ide-1)+1,:,:)=grid%em_u_gc(MIN(ite,ide-1),:,:) |
---|
349 | grid%em_v_gc(:,:,MIN(jte,jde-1)+1)=grid%em_v_gc(:,:,MIN(jte,jde-1)) |
---|
350 | |
---|
351 | !! CHECK |
---|
352 | print *, 'wind profile' |
---|
353 | print *, 'took at ...', config_flags%init_WX, config_flags%init_WY |
---|
354 | print *, '--zonal' |
---|
355 | print *, grid%em_u_gc(config_flags%init_WX,:,config_flags%init_WY) |
---|
356 | print *, '--meridional' |
---|
357 | print *, grid%em_v_gc(config_flags%init_WX,:,config_flags%init_WY) |
---|
358 | |
---|
359 | ENDIF |
---|
360 | |
---|
361 | IF (config_flags%init_MU .ne. 0.) THEN |
---|
362 | |
---|
363 | grid%em_u_gc = grid%em_u_gc*config_flags%init_MU |
---|
364 | print *, 'multiply zonal wind ', config_flags%init_MU |
---|
365 | |
---|
366 | ENDIF |
---|
367 | |
---|
368 | IF (config_flags%init_MV .ne. 0.) THEN |
---|
369 | |
---|
370 | grid%em_v_gc = grid%em_v_gc*config_flags%init_MV |
---|
371 | print *, 'multiply meridional wind ', config_flags%init_MV |
---|
372 | |
---|
373 | ENDIF |
---|
374 | |
---|
375 | IF (config_flags%init_LES) THEN |
---|
376 | |
---|
377 | print *, '*** LES MODE ***' |
---|
378 | print *, 'setting uniform values and profiles' |
---|
379 | print *, 'u', grid%em_u_gc(its+1,:,jts+1) |
---|
380 | print *, 'v', grid%em_v_gc(its+1,:,jts+1) |
---|
381 | print *, 't', grid%em_t_gc(its+1,:,jts+1) |
---|
382 | print *, 'p', grid%em_rh_gc(its+1,:,jts+1) |
---|
383 | print *, 'geop', grid%em_ght_gc(its+1,:,jts+1) |
---|
384 | print *, 'albedo', grid%albedo_gcm(its+1,jts+1) |
---|
385 | print *, 'thermal inertia', grid%therm_inert(its+1,jts+1) |
---|
386 | print *, 'topography', grid%ht(its+1,jts+1) |
---|
387 | print *, 'toposoil', grid%toposoil(its+1,jts+1) |
---|
388 | print *, 'surface temperature', grid%tsk(its+1,jts+1) |
---|
389 | print *, 'surface pressure', grid%psfc(its+1,jts+1), grid%em_psfc_gc(its+1,jts+1) |
---|
390 | |
---|
391 | DO j = jts, MIN(jte,jde-1) |
---|
392 | DO i = its, MIN(ite,ide-1) |
---|
393 | grid%em_u_gc(i,:,j)=grid%em_u_gc(its+1,:,jts+1) |
---|
394 | grid%em_v_gc(i,:,j)=grid%em_v_gc(its+1,:,jts+1) |
---|
395 | grid%em_t_gc(i,:,j)=grid%em_t_gc(its+1,:,jts+1) |
---|
396 | grid%em_rh_gc(i,:,j)=grid%em_rh_gc(its+1,:,jts+1) |
---|
397 | grid%em_ght_gc(i,:,j) = grid%em_ght_gc(its+1,:,jts+1) |
---|
398 | grid%albedo_gcm(i,j) = grid%albedo_gcm(its+1,jts+1) |
---|
399 | grid%therm_inert(i,j) = grid%therm_inert(its+1,jts+1) |
---|
400 | grid%ht(i,j) = grid%ht(its+1,jts+1) |
---|
401 | grid%toposoil(i,j) = grid%toposoil(its+1,jts+1) |
---|
402 | grid%tsk(i,j) = grid%tsk(its+1,jts+1) |
---|
403 | grid%psfc(i,j) = grid%psfc(its+1,jts+1) |
---|
404 | grid%em_psfc_gc(i,j) = grid%em_psfc_gc(its+1,jts+1) |
---|
405 | grid%slpx(i,j) = 0. |
---|
406 | grid%slpy(i,j) = 0. |
---|
407 | grid%mars_emiss(i,j) = 0.95 |
---|
408 | grid%mars_cice(i,j) = 0. |
---|
409 | grid%mars_tsoil(i,:,j)=grid%mars_tsoil(its+1,:,jts+1) |
---|
410 | |
---|
411 | |
---|
412 | !! T.Michaels trick to break symmetry |
---|
413 | CALL RANDOM_NUMBER(randnum) |
---|
414 | grid%em_t_gc(i,1,j)=grid%em_t_gc(its+1,1,jts+1) + 0.1*2.*(0.5-randnum) |
---|
415 | CALL RANDOM_NUMBER(randnum) |
---|
416 | grid%em_t_gc(i,2,j)=grid%em_t_gc(its+1,2,jts+1) + 0.1*2.*(0.5-randnum) |
---|
417 | !CALL RANDOM_NUMBER(randnum) |
---|
418 | !grid%em_t_gc(i,3,j)=grid%em_t_gc(its+1,3,jts+1) + 0.1*2.*(0.5-randnum) |
---|
419 | !CALL RANDOM_NUMBER(randnum) |
---|
420 | !grid%em_t_gc(i,4,j)=grid%em_t_gc(its+1,4,jts+1) + 0.1*2.*(0.5-randnum) |
---|
421 | !CALL RANDOM_NUMBER(randnum) |
---|
422 | !grid%em_t_gc(i,5,j)=grid%em_t_gc(its+1,5,jts+1) + 0.1*2.*(0.5-randnum) |
---|
423 | |
---|
424 | |
---|
425 | ENDDO |
---|
426 | ENDDO |
---|
427 | |
---|
428 | ENDIF |
---|
429 | |
---|
430 | |
---|
431 | |
---|
432 | !!!!!!!!!!!!!!!!!!! |
---|
433 | !!! READ PROFILE !! |
---|
434 | !!!!!!!!!!!!!!!!!!! |
---|
435 | ! |
---|
436 | !open(unit=10,file='input_sounding',form='formatted',status='old') |
---|
437 | !rewind(10) |
---|
438 | !read(10,*) grid%em_u_gc(1,:,1) |
---|
439 | !!****MARS |
---|
440 | !! |
---|
441 | !! case with idealized topography |
---|
442 | !! |
---|
443 | !!CALL ideal_topo ( grid%ht , 2000., 6., & |
---|
444 | !CALL ideal_topo ( grid%ht , 2000., 3., & |
---|
445 | ! ids , ide , jds , jde , kds , kde , & |
---|
446 | ! ims , ime , jms , jme , kms , kme , & |
---|
447 | ! its , ite , jts , jte , kts , kte ) |
---|
448 | !!****MARS |
---|
449 | |
---|
450 | |
---|
451 | |
---|
452 | |
---|
453 | ! If we have any input low-res surface pressure, we store it. |
---|
454 | |
---|
455 | !!****MARS |
---|
456 | !!fix pour être certain d'être avec les bons flag |
---|
457 | print *,flag_psfc |
---|
458 | print *,flag_soilhgt |
---|
459 | print *,flag_metgrid |
---|
460 | |
---|
461 | flag_psfc=1 |
---|
462 | flag_soilhgt=1 |
---|
463 | flag_metgrid=1 |
---|
464 | !!**** TODO: trouver quand même pourquoi ça donne 0 :) |
---|
465 | pa=999999. |
---|
466 | !!****MARS |
---|
467 | |
---|
468 | IF ( flag_psfc .EQ. 1 ) THEN |
---|
469 | DO j = jts, MIN(jte,jde-1) |
---|
470 | DO i = its, MIN(ite,ide-1) |
---|
471 | grid%em_psfc_gc(i,j) = grid%psfc(i,j) |
---|
472 | !!!****MARS: em_p_gc is only a way to count vertical levels in WPS :) |
---|
473 | !!!****MARS: is filled here with real pressure levels |
---|
474 | grid%em_p_gc(i,:,j) = grid%em_rh_gc(i,:,j) |
---|
475 | !!!****MARS |
---|
476 | grid%em_p_gc(i,1,j) = grid%psfc(i,j) |
---|
477 | !!!****MARS |
---|
478 | IF (pa .gt. grid%em_p_gc(i,1,j)) pa=grid%em_p_gc(i,1,j) |
---|
479 | !!!****MARS |
---|
480 | END DO |
---|
481 | END DO |
---|
482 | END IF |
---|
483 | print *, 'found minimum pressure (Pa) :',pa |
---|
484 | |
---|
485 | |
---|
486 | !!!!****MARS |
---|
487 | !!!!****MARS |
---|
488 | !!!! define new hybrid coordinate levels |
---|
489 | !!!! with transition level between sigma and pressure |
---|
490 | !!!! lower than input data |
---|
491 | ! |
---|
492 | ! |
---|
493 | ! !--get vertical size of the GCM input array |
---|
494 | ! sizegcm=SIZE(grid%em_rh_gc(1,:,1)) |
---|
495 | ! ALLOCATE(sig(MIN(ite,ide-1)-its+1,sizegcm, MIN(jte,jde-1)-jts+1)) |
---|
496 | ! ALLOCATE(ap(MIN(ite,ide-1)-its+1,sizegcm, MIN(jte,jde-1)-jts+1)) |
---|
497 | ! ALLOCATE(bp(MIN(ite,ide-1)-its+1,sizegcm, MIN(jte,jde-1)-jts+1)) |
---|
498 | ! !ALLOCATE(box(MIN(ite,ide-1)-its+1,sizegcm, MIN(jte,jde-1)-jts+1)) |
---|
499 | ! |
---|
500 | ! |
---|
501 | ! |
---|
502 | ! !--define sigma levels, |
---|
503 | ! !--then derive new sigma levels, and new pressure levels |
---|
504 | ! DO j = jts, MIN(jte,jde-1) |
---|
505 | ! DO i = its, MIN(ite,ide-1) |
---|
506 | ! |
---|
507 | ! ! old sigma levels |
---|
508 | ! sig(i,:,j)=grid%em_p_gc(i,:,j)/grid%em_psfc_gc(i,j) |
---|
509 | !! sig(i,:,j)=grid%em_p_gc(20,:,20)/grid%em_psfc_gc(20,20) |
---|
510 | ! ! new pressure levels |
---|
511 | ! ! - pressure_new = ap_new + bp_new * ps_gcm |
---|
512 | ! ! - bp_new is converging more rapidly than bp |
---|
513 | ! ! ... while conserving the same structure near the surface |
---|
514 | ! ! |
---|
515 | ! ! NB: grid%zap_close_levels ne sert pas dans vert_interp_old :) |
---|
516 | ! ! NB: peut donc servir pour préciser une constante reelle |
---|
517 | ! ! NB: qui permet de rehausser la zone de transition |
---|
518 | ! ! |
---|
519 | ! bp(i,:,j)=sqrt(sqrt(exp(1.-1./(sig(i,:,j)**4)))) |
---|
520 | ! ap(i,:,j)=pa*exp(-grid%zap_close_levels/10.)*(sig(i,:,j)-bp(i,:,j)) |
---|
521 | ! grid%em_rh_gc(i,:,j)=ap(i,:,j)+bp(i,:,j)*grid%em_psfc_gc(i,j) |
---|
522 | ! |
---|
523 | ! ! avoid extrapolation at the top |
---|
524 | ! ! -- the last level is thus unsignificant |
---|
525 | ! grid%em_p_gc(i,sizegcm,j)=grid%em_p_gc(i,sizegcm,j)/100. |
---|
526 | !! grid%em_p_gc(i,sizegcm,j)=grid%em_p_gc(i,sizegcm,j)/10000. |
---|
527 | ! |
---|
528 | ! ENDDO |
---|
529 | ! ENDDO |
---|
530 | ! |
---|
531 | ! |
---|
532 | ! |
---|
533 | ! |
---|
534 | ! !-- check that the biggest differences are higher |
---|
535 | ! print *, 'sigma levels' |
---|
536 | ! print *, sig(its+1,:,jts+1) |
---|
537 | ! print *, 'old pressure levels' |
---|
538 | ! print *, grid%em_p_gc(its+1,:,jts+1) |
---|
539 | ! print *, 'new pressure levels' |
---|
540 | ! print *, grid%em_rh_gc(its+1,:,jts+1) |
---|
541 | ! |
---|
542 | !!print *, 't_gc', SIZE(grid%em_t_gc(1,:,1)) |
---|
543 | !!print *, 'p_gc', SIZE(grid%em_p_gc(1,:,1)) |
---|
544 | !!print *, 't_2', SIZE(grid%em_t_2(1,:,1)) |
---|
545 | !!print *, 'rh_gc', SIZE(grid%em_rh_gc(1,:,1)) |
---|
546 | ! |
---|
547 | ! |
---|
548 | !!-------- |
---|
549 | !!-- interpolate on the new pressure levels |
---|
550 | !!-------- |
---|
551 | ! |
---|
552 | ! DO j = jts, MIN(jte,jde-1) |
---|
553 | ! DO i = its, MIN(ite,ide-1) |
---|
554 | ! |
---|
555 | !DO knew = 1,sizegcm ! loop on each level of the new grid |
---|
556 | ! |
---|
557 | ! DO kold = 1,sizegcm-1 ! find the two enclosing levels |
---|
558 | ! |
---|
559 | ! ! indic becomes negative when the two levels are found |
---|
560 | ! indic=(grid%em_p_gc(i,kold,j)-grid%em_rh_gc(i,knew,j))& |
---|
561 | ! *(grid%em_p_gc(i,kold+1,j)-grid%em_rh_gc(i,knew,j)) |
---|
562 | ! |
---|
563 | ! ! 1. the two levels are found - define p1,p2,pn and exit the loop |
---|
564 | ! IF (indic < 0.) THEN |
---|
565 | ! !IF ((i == its) .AND. (j == jts)) THEN !just a check |
---|
566 | ! ! print *, 'new level', grid%em_rh_gc(i,knew,j) |
---|
567 | ! ! print *, 'interp levels', grid%em_p_gc(i,kold,j), & |
---|
568 | ! ! grid%em_p_gc(i,kold+1,j) |
---|
569 | ! !ENDIF |
---|
570 | ! p1 = ALOG(grid%em_p_gc(i,kold,j)) |
---|
571 | ! p2 = ALOG(grid%em_p_gc(i,kold+1,j)) |
---|
572 | ! pn = ALOG(grid%em_rh_gc(i,knew,j)) |
---|
573 | ! EXIT |
---|
574 | ! |
---|
575 | ! ! 2. must handle the case (usually close to the surface) |
---|
576 | ! ! of similar new/old levels - then exit with the right kold value |
---|
577 | ! ELSE IF (1-abs(grid%em_rh_gc(i,knew,j)/grid%em_p_gc(i,kold,j)) .lt. 1e-8) THEN |
---|
578 | ! !print *,grid%em_p_gc(i,kold,j),grid%em_rh_gc(i,knew,j) |
---|
579 | ! EXIT |
---|
580 | ! ELSE IF (1-abs(grid%em_rh_gc(i,knew,j)/grid%em_p_gc(i,kold+1,j)) .lt. 1e-8) THEN |
---|
581 | ! !print *,grid%em_p_gc(i,kold+1,j),grid%em_rh_gc(i,knew,j) |
---|
582 | ! kold=kold+1 |
---|
583 | ! EXIT |
---|
584 | ! |
---|
585 | ! ! 3. continue looping if the two levels are not found .... |
---|
586 | ! ENDIF |
---|
587 | ! ENDDO |
---|
588 | ! |
---|
589 | ! ! this is an initialization, useful for case 2 (and erased just below if case 1) |
---|
590 | ! grid%em_t_2(i,knew,j)= grid%em_t_gc(i,kold,j) |
---|
591 | ! grid%em_u_2(i,knew,j)= grid%em_u_gc(i,kold,j) |
---|
592 | ! grid%em_v_2(i,knew,j)= grid%em_v_gc(i,kold,j) |
---|
593 | ! |
---|
594 | ! ! case 1: OK, in the previous loop, the two levels were found, and stored in p1 and p2 |
---|
595 | ! ! ... thus interpolation can be performed |
---|
596 | ! IF (indic < 0.) THEN |
---|
597 | ! grid%em_t_2(i,knew,j)= ( grid%em_t_gc(i,kold,j) * ( p2 - pn ) + & |
---|
598 | ! grid%em_t_gc(i,kold+1,j) * ( pn - p1 ) ) / & |
---|
599 | ! ( p2 - p1 ) |
---|
600 | ! grid%em_u_2(i,knew,j)= ( grid%em_u_gc(i,kold,j) * ( p2 - pn ) + & |
---|
601 | ! grid%em_u_gc(i,kold+1,j) * ( pn - p1 ) ) / & |
---|
602 | ! ( p2 - p1 ) |
---|
603 | ! grid%em_v_2(i,knew,j)= ( grid%em_v_gc(i,kold,j) * ( p2 - pn ) + & |
---|
604 | ! grid%em_v_gc(i,kold+1,j) * ( pn - p1 ) ) / & |
---|
605 | ! ( p2 - p1 ) |
---|
606 | ! ENDIF |
---|
607 | ! |
---|
608 | ! |
---|
609 | !ENDDO |
---|
610 | ! |
---|
611 | ! ENDDO |
---|
612 | ! ENDDO |
---|
613 | !grid%em_u_2(MIN(ite,ide-1)+1,:,:)=grid%em_u_2(MIN(ite,ide-1),:,:) |
---|
614 | !grid%em_v_2(:,:,MIN(jte,jde-1)+1)=grid%em_v_2(:,:,MIN(jte,jde-1)) |
---|
615 | !!-------- |
---|
616 | !!-- end - interpolate on the new pressure levels |
---|
617 | !!-------- |
---|
618 | |
---|
619 | |
---|
620 | ! !-- interpolate on the new pressure levels |
---|
621 | ! CALL vert_interp_old ( grid%em_t_gc , & ! --- interpolate this field |
---|
622 | ! grid%em_p_gc, & ! --- with coordinates |
---|
623 | ! grid%em_t_2, & ! --- to obtain the new field |
---|
624 | ! grid%em_rh_gc, & ! --- on coordinates |
---|
625 | ! sizegcm, & |
---|
626 | ! 'T', & ! --- no staggering (will be done later) |
---|
627 | ! 2, & ! --- log p interpolation |
---|
628 | ! 1, & ! --- (0) lagrange_order |
---|
629 | ! .false., & ! --- (0) lowest_lev_from_sfc |
---|
630 | ! 0., & ! --- (0) zap_close_levels |
---|
631 | ! 0, & ! --- (0) force_sfc_in_vinterp |
---|
632 | ! ids , ide , jds , jde , kds , kde , & |
---|
633 | ! ims , ime , jms , jme , kms , kme , & |
---|
634 | ! its , ite , jts , jte , kts , kte ) |
---|
635 | ! CALL vert_interp_old ( grid%em_u_gc , & ! --- interpolate this field |
---|
636 | ! grid%em_p_gc, & ! --- with coordinates |
---|
637 | ! grid%em_u_2 , & ! --- to obtain the new field |
---|
638 | ! grid%em_rh_gc, & ! --- on coordinates |
---|
639 | ! sizegcm, & |
---|
640 | ! 'U', & ! --- no staggering (will be done later) |
---|
641 | ! 2, & ! --- log p interpolation |
---|
642 | ! 1, & ! --- (0) lagrange_order |
---|
643 | ! .false., & ! --- (0) lowest_lev_from_sfc |
---|
644 | ! 0., & ! --- (0) zap_close_levels |
---|
645 | ! 0, & ! --- (0) force_sfc_in_vinterp |
---|
646 | ! ids , ide , jds , jde , kds , kde , & |
---|
647 | ! ims , ime , jms , jme , kms , kme , & |
---|
648 | ! its , ite , jts , jte , kts , kte ) |
---|
649 | ! CALL vert_interp_old ( grid%em_v_gc , & ! --- interpolate this field |
---|
650 | ! grid%em_p_gc, & ! --- with coordinates |
---|
651 | ! grid%em_v_2 , & ! --- to obtain the new field |
---|
652 | ! grid%em_rh_gc, & ! --- on coordinates |
---|
653 | ! sizegcm, & |
---|
654 | ! 'V', & ! --- no staggering (will be done later) |
---|
655 | ! 2, & ! --- log p interpolation |
---|
656 | ! 1, & ! --- (0) lagrange_order |
---|
657 | ! .false., & ! --- (0) lowest_lev_from_sfc |
---|
658 | ! 0., & ! --- (0) zap_close_levels |
---|
659 | ! 0, & ! --- (0) force_sfc_in_vinterp |
---|
660 | ! !ids , ide , jds , jde , kds , sizegcm , & |
---|
661 | ! !ims , ime , jms , jme , kms , sizegcm , & |
---|
662 | ! !its , ite , jts , jte , kts , sizegcm ) |
---|
663 | ! ids , ide , jds , jde , kds , kde , & |
---|
664 | ! ims , ime , jms , jme , kms , kme , & |
---|
665 | ! its , ite , jts , jte , kts , kte ) |
---|
666 | ! |
---|
667 | ! |
---|
668 | ! !-- save the new field and the new pressure coordinates |
---|
669 | ! !-- these will be regarded now as the inputs from the GCM |
---|
670 | ! grid%em_t_gc=grid%em_t_2 |
---|
671 | ! grid%em_t_2(:,:,:)=0. |
---|
672 | ! grid%em_u_gc=grid%em_u_2 |
---|
673 | ! grid%em_u_2(:,:,:)=0. |
---|
674 | ! grid%em_v_gc=grid%em_v_2 |
---|
675 | ! grid%em_v_2(:,:,:)=0. |
---|
676 | ! grid%em_p_gc=grid%em_rh_gc |
---|
677 | ! grid%em_rh_gc(:,:,:)=0. |
---|
678 | !!!!****MARS |
---|
679 | !!!****MARS |
---|
680 | |
---|
681 | |
---|
682 | |
---|
683 | |
---|
684 | ! If we have the low-resolution surface elevation, stick that in the |
---|
685 | ! "input" locations of the 3d height. We still have the "hi-res" topo |
---|
686 | ! stuck in the grid%em_ht array. The grid%landmask if test is required as some sources |
---|
687 | ! have ZERO elevation over water (thank you very much). |
---|
688 | |
---|
689 | IF ( flag_soilhgt .EQ. 1) THEN |
---|
690 | DO j = jts, MIN(jte,jde-1) |
---|
691 | DO i = its, MIN(ite,ide-1) |
---|
692 | IF ( grid%landmask(i,j) .GT. 0.5 ) THEN |
---|
693 | grid%em_ght_gc(i,1,j) = grid%toposoil(i,j) |
---|
694 | grid%em_ht_gc(i,j)= grid%toposoil(i,j) |
---|
695 | END IF |
---|
696 | END DO |
---|
697 | END DO |
---|
698 | END IF |
---|
699 | |
---|
700 | ! Assign surface fields with original input values. If this is hybrid data, |
---|
701 | ! the values are not exactly representative. However - this is only for |
---|
702 | ! plotting purposes and such at the 0h of the forecast, so we are not all that |
---|
703 | ! worried. |
---|
704 | |
---|
705 | !****MARS |
---|
706 | ! DO j = jts, min(jde-1,jte) |
---|
707 | ! DO i = its, min(ide,ite) |
---|
708 | ! grid%u10(i,j)=grid%em_u_gc(i,1,j) |
---|
709 | ! END DO |
---|
710 | ! END DO |
---|
711 | ! |
---|
712 | ! DO j = jts, min(jde,jte) |
---|
713 | ! DO i = its, min(ide-1,ite) |
---|
714 | ! grid%v10(i,j)=grid%em_v_gc(i,1,j) |
---|
715 | ! END DO |
---|
716 | ! END DO |
---|
717 | !****MARS |
---|
718 | |
---|
719 | ! DO j = jts, min(jde-1,jte) |
---|
720 | ! DO i = its, min(ide-1,ite) |
---|
721 | ! grid%t2(i,j)=grid%em_t_gc(i,1,j) |
---|
722 | ! END DO |
---|
723 | ! END DO |
---|
724 | |
---|
725 | |
---|
726 | ! The number of vertical levels in the input data. There is no staggering for |
---|
727 | ! different variables. |
---|
728 | |
---|
729 | num_metgrid_levels = grid%num_metgrid_levels |
---|
730 | |
---|
731 | ! The requested ptop for real data cases. |
---|
732 | |
---|
733 | p_top_requested = grid%p_top_requested |
---|
734 | |
---|
735 | ! Compute the top pressure, grid%p_top. For isobaric data, this is just the |
---|
736 | ! top level. For the generalized vertical coordinate data, we find the |
---|
737 | ! max pressure on the top level. We have to be careful of two things: |
---|
738 | ! 1) the value has to be communicated, 2) the value can not increase |
---|
739 | ! at subsequent times from the initial value. |
---|
740 | |
---|
741 | IF ( internal_time_loop .EQ. 1 ) THEN |
---|
742 | |
---|
743 | CALL find_p_top ( grid%em_p_gc , grid%p_top , & |
---|
744 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
745 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
746 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
747 | |
---|
748 | !! ^---- equivalent to: |
---|
749 | !!grid%ptop=MINVAL(grid%em_p_gc(:,:,:)) |
---|
750 | |
---|
751 | |
---|
752 | |
---|
753 | !!!!obsolete |
---|
754 | !print *,'ptop GCM',grid%em_rh_gc(2,1,2) |
---|
755 | !IF (grid%em_rh_gc(2,1,2) == 0) THEN |
---|
756 | ! print *,'ptop cannot be 0' |
---|
757 | ! stop |
---|
758 | !ENDIF |
---|
759 | !grid%p_top=grid%em_rh_gc(2,1,2) |
---|
760 | !!!!obsolete |
---|
761 | |
---|
762 | |
---|
763 | #ifdef DM_PARALLEL |
---|
764 | grid%p_top = wrf_dm_max_real ( grid%p_top ) |
---|
765 | #endif |
---|
766 | |
---|
767 | ! Compare the requested grid%p_top with the value available from the input data. |
---|
768 | |
---|
769 | print *,'p_top_requested = ',p_top_requested |
---|
770 | print *,'allowable grid%p_top in data = ',grid%p_top |
---|
771 | IF ( p_top_requested .LT. grid%p_top ) THEN |
---|
772 | CALL wrf_error_fatal ( 'p_top_requested < grid%p_top possible from data' ) |
---|
773 | END IF |
---|
774 | |
---|
775 | ! The grid%p_top valus is the max of what is available from the data and the |
---|
776 | ! requested value. We have already compared <, so grid%p_top is directly set to |
---|
777 | ! the value in the namelist. |
---|
778 | |
---|
779 | grid%p_top = p_top_requested |
---|
780 | |
---|
781 | ! For subsequent times, we have to remember what the grid%p_top for the first |
---|
782 | ! time was. Why? If we have a generalized vert coordinate, the grid%p_top value |
---|
783 | ! could fluctuate. |
---|
784 | |
---|
785 | p_top_save = grid%p_top |
---|
786 | |
---|
787 | ELSE |
---|
788 | CALL find_p_top ( grid%em_p_gc , grid%p_top , & |
---|
789 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
790 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
791 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
792 | |
---|
793 | #ifdef DM_PARALLEL |
---|
794 | grid%p_top = wrf_dm_max_real ( grid%p_top ) |
---|
795 | #endif |
---|
796 | IF ( grid%p_top .GT. p_top_save ) THEN |
---|
797 | print *,'grid%p_top from last time period = ',p_top_save |
---|
798 | print *,'grid%p_top from this time period = ',grid%p_top |
---|
799 | CALL wrf_error_fatal ( 'grid%p_top > previous value' ) |
---|
800 | END IF |
---|
801 | grid%p_top = p_top_save |
---|
802 | ENDIF |
---|
803 | |
---|
804 | |
---|
805 | !****MARS |
---|
806 | !****MARS |
---|
807 | print *,'ptop GCM', grid%p_top |
---|
808 | print *,'sample: pressure at its jts' |
---|
809 | print *,grid%em_p_gc(its,:,jts) |
---|
810 | !****MARS |
---|
811 | !****MARS |
---|
812 | |
---|
813 | |
---|
814 | |
---|
815 | !****MARS: useless |
---|
816 | !****MARS: |
---|
817 | ! ! Get the monthly values interpolated to the current date for the traditional monthly |
---|
818 | ! ! fields of green-ness fraction and background albedo. |
---|
819 | ! |
---|
820 | ! CALL monthly_interp_to_date ( grid%em_greenfrac , current_date , grid%vegfra , & |
---|
821 | ! ids , ide , jds , jde , kds , kde , & |
---|
822 | ! ims , ime , jms , jme , kms , kme , & |
---|
823 | ! its , ite , jts , jte , kts , kte ) |
---|
824 | ! |
---|
825 | ! CALL monthly_interp_to_date ( grid%em_albedo12m , current_date , grid%albbck , & |
---|
826 | ! ids , ide , jds , jde , kds , kde , & |
---|
827 | ! ims , ime , jms , jme , kms , kme , & |
---|
828 | ! its , ite , jts , jte , kts , kte ) |
---|
829 | ! |
---|
830 | ! ! Get the min/max of each i,j for the monthly green-ness fraction. |
---|
831 | ! |
---|
832 | ! CALL monthly_min_max ( grid%em_greenfrac , grid%shdmin , grid%shdmax , & |
---|
833 | ! ids , ide , jds , jde , kds , kde , & |
---|
834 | ! ims , ime , jms , jme , kms , kme , & |
---|
835 | ! its , ite , jts , jte , kts , kte ) |
---|
836 | ! |
---|
837 | ! ! The model expects the green-ness values in percent, not fraction. |
---|
838 | ! |
---|
839 | ! DO j = jts, MIN(jte,jde-1) |
---|
840 | ! DO i = its, MIN(ite,ide-1) |
---|
841 | ! grid%vegfra(i,j) = grid%vegfra(i,j) * 100. |
---|
842 | ! grid%shdmax(i,j) = grid%shdmax(i,j) * 100. |
---|
843 | ! grid%shdmin(i,j) = grid%shdmin(i,j) * 100. |
---|
844 | ! END DO |
---|
845 | ! END DO |
---|
846 | ! |
---|
847 | ! ! The model expects the albedo fields as a fraction, not a percent. Set the |
---|
848 | ! ! water values to 8%. |
---|
849 | ! |
---|
850 | ! DO j = jts, MIN(jte,jde-1) |
---|
851 | ! DO i = its, MIN(ite,ide-1) |
---|
852 | ! grid%albbck(i,j) = grid%albbck(i,j) / 100. |
---|
853 | ! grid%snoalb(i,j) = grid%snoalb(i,j) / 100. |
---|
854 | ! IF ( grid%landmask(i,j) .LT. 0.5 ) THEN |
---|
855 | ! grid%albbck(i,j) = 0.08 |
---|
856 | ! grid%snoalb(i,j) = 0.08 |
---|
857 | ! END IF |
---|
858 | ! END DO |
---|
859 | ! END DO |
---|
860 | !!****MARS: |
---|
861 | !!****MARS: useless |
---|
862 | |
---|
863 | |
---|
864 | |
---|
865 | |
---|
866 | !!****MARS: |
---|
867 | ! ! Compute the mixing ratio from the input relative humidity. |
---|
868 | ! |
---|
869 | ! IF ( flag_qv .NE. 1 ) THEN |
---|
870 | ! CALL rh_to_mxrat (grid%em_rh_gc, grid%em_t_gc, grid%em_p_gc, grid%em_qv_gc , .TRUE. , & |
---|
871 | ! ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
872 | ! ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
873 | ! its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
874 | ! END IF |
---|
875 | !!****MARS: |
---|
876 | !!grid%em_rh_gc are GCM equivalent eta_levels |
---|
877 | !!****MARS |
---|
878 | |
---|
879 | |
---|
880 | |
---|
881 | |
---|
882 | ! Two ways to get the surface pressure. 1) If we have the low-res input surface |
---|
883 | ! pressure and the low-res topography, then we can do a simple hydrostatic |
---|
884 | ! relation. 2) Otherwise we compute the surface pressure from the sea-level |
---|
885 | ! pressure. |
---|
886 | ! Note that on output, grid%em_psfc is now hi-res. The low-res surface pressure and |
---|
887 | ! elevation are grid%em_psfc_gc and grid%em_ht_gc (same as grid%em_ght_gc(k=1)). |
---|
888 | |
---|
889 | !!****MARS: switch off this option |
---|
890 | !!****MARS: --> cf sfcprs2 and geopotential function at 500mb |
---|
891 | ! IF ( config_flags%adjust_heights ) THEN |
---|
892 | ! we_have_tavgsfc = ( flag_tavgsfc == 1 ) |
---|
893 | ! ELSE |
---|
894 | ! we_have_tavgsfc = .FALSE. |
---|
895 | ! END IF |
---|
896 | !****MARS: |
---|
897 | we_have_tavgsfc = .FALSE. |
---|
898 | |
---|
899 | |
---|
900 | |
---|
901 | !****MARS: hi-res psfc is done if the flag 'sfcp_to_sfcp' is active (recommended) |
---|
902 | IF ( ( flag_psfc .EQ. 1 ) .AND. ( flag_soilhgt .EQ. 1 ) .AND. & |
---|
903 | ( config_flags%sfcp_to_sfcp ) ) THEN |
---|
904 | print *,'compute psfc from hi-res topography' |
---|
905 | CALL sfcprs2(grid%em_t_gc, grid%em_qv_gc, grid%em_ght_gc, grid%em_psfc_gc, grid%ht, & |
---|
906 | grid%em_tavgsfc, grid%em_p_gc, grid%psfc, we_have_tavgsfc, & |
---|
907 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
908 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
909 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
910 | !****MARS: here, in reality, grid%em_p_gc is not used |
---|
911 | |
---|
912 | !****MARS: no sea-level pressure inputs possible |
---|
913 | ! ELSE |
---|
914 | ! CALL sfcprs (grid%em_t_gc, grid%em_qv_gc, grid%em_ght_gc, grid%em_pslv_gc, grid%ht, & |
---|
915 | ! grid%em_tavgsfc, grid%em_p_gc, grid%psfc, we_have_tavgsfc, & |
---|
916 | ! ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
917 | ! ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
918 | ! its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
919 | !****MARS: no sea-level pressure inputs possible |
---|
920 | |
---|
921 | |
---|
922 | ! If we have no input surface pressure, we'd better stick something in there. |
---|
923 | |
---|
924 | IF ( flag_psfc .NE. 1 ) THEN |
---|
925 | DO j = jts, MIN(jte,jde-1) |
---|
926 | DO i = its, MIN(ite,ide-1) |
---|
927 | grid%em_psfc_gc(i,j) = grid%psfc(i,j) |
---|
928 | grid%em_p_gc(i,1,j) = grid%psfc(i,j) |
---|
929 | END DO |
---|
930 | END DO |
---|
931 | END IF |
---|
932 | |
---|
933 | END IF |
---|
934 | |
---|
935 | |
---|
936 | !!!****MARS: |
---|
937 | !!!****MARS: old stuff |
---|
938 | !!! grid%em_p_gc is needed ... so it is computed from eta_gcm |
---|
939 | ! |
---|
940 | !print *,'computing pressure levels for input data...' |
---|
941 | ! |
---|
942 | ! !! pressure is computed from eta_gcm and hi-res topography |
---|
943 | ! DO j = jts, MIN(jte,jde-1) |
---|
944 | ! DO i = its, MIN(ite,ide-1) |
---|
945 | !!!psfc ou em_psfc_gc ? em_psfc_gc, sinon c'est faux et déclenche instabilités |
---|
946 | !grid%em_p_gc(i,:,j)=grid%em_rh_gc(i,:,j)*(grid%em_psfc_gc(i,j)-grid%em_rh_gc(2,1,2))+grid%em_rh_gc(2,1,2) |
---|
947 | !grid%em_p_gc(i,1,j)=grid%em_psfc_gc(i,j) |
---|
948 | ! |
---|
949 | ! |
---|
950 | ! END DO |
---|
951 | ! END DO |
---|
952 | !! |
---|
953 | !!****MARS: |
---|
954 | |
---|
955 | |
---|
956 | |
---|
957 | !! Integrate the mixing ratio to get the vapor pressure. |
---|
958 | ! |
---|
959 | !CALL integ_moist ( grid%em_qv_gc , grid%em_p_gc , grid%em_pd_gc , grid%em_t_gc , grid%em_ght_gc , grid%em_intq_gc , & |
---|
960 | ! ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
961 | ! ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
962 | ! its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
963 | |
---|
964 | |
---|
965 | !!****MARS |
---|
966 | !!****MARS |
---|
967 | !! and now, convert the GCM sigma levels into WRF sigma levels using hi-res surface pressure |
---|
968 | !!DO j = jts , MIN ( jde-1 , jte ) |
---|
969 | !!DO i = its , MIN (ide-1 , ite ) |
---|
970 | !! |
---|
971 | !! grid%em_pd_gc(i,:,j)=ap(i,:,j)+bp(i,:,j)*grid%psfc(i,j) |
---|
972 | !! |
---|
973 | !!END DO |
---|
974 | !!END DO |
---|
975 | |
---|
976 | |
---|
977 | !--get vertical size of the GCM input array and allocate new stuff |
---|
978 | sizegcm=SIZE(grid%em_rh_gc(1,:,1)) |
---|
979 | ALLOCATE(sig(MIN(ite,ide-1)-its+1,sizegcm, MIN(jte,jde-1)-jts+1)) |
---|
980 | !ALLOCATE(ap(MIN(ite,ide-1)-its+1,sizegcm, MIN(jte,jde-1)-jts+1)) |
---|
981 | ALLOCATE(bp(MIN(ite,ide-1)-its+1,sizegcm, MIN(jte,jde-1)-jts+1)) |
---|
982 | |
---|
983 | DO j = jts , MIN ( jde-1 , jte ) |
---|
984 | DO i = its , MIN (ide-1 , ite ) |
---|
985 | |
---|
986 | !!! Define old sigma levels for each column |
---|
987 | sig(i,:,j)=grid%em_p_gc(i,:,j)/grid%em_psfc_gc(i,j) |
---|
988 | |
---|
989 | !!! Compute new sigma levels from old sigma levels with GCM (low-res) and WRF (hi-res) surface pressure |
---|
990 | !!! (dimlevs,sigma_gcm, ps_gcm, ps_hr, sigma_hr) |
---|
991 | CALL build_sigma_hr(sizegcm,sig(i,:,j),grid%em_psfc_gc(i,j),grid%psfc(i,j),bp(i,:,j)) |
---|
992 | |
---|
993 | !!! Calculate new pressure levels |
---|
994 | grid%em_pd_gc(i,:,j)=bp(i,:,j)*grid%psfc(i,j) |
---|
995 | |
---|
996 | END DO |
---|
997 | END DO |
---|
998 | |
---|
999 | DEALLOCATE(sig) |
---|
1000 | DEALLOCATE(bp) |
---|
1001 | |
---|
1002 | |
---|
1003 | !!****MARS |
---|
1004 | !grid%em_pd_gc=grid%em_p_gc |
---|
1005 | !!****MARS |
---|
1006 | |
---|
1007 | |
---|
1008 | |
---|
1009 | |
---|
1010 | !! Compute the difference between the dry, total surface pressure (input) and the |
---|
1011 | !! dry top pressure (constant). |
---|
1012 | ! |
---|
1013 | !CALL p_dts ( grid%em_mu0 , grid%em_intq_gc , grid%psfc , grid%p_top , & |
---|
1014 | ! ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
1015 | ! ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
1016 | ! its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
1017 | |
---|
1018 | !!****MARS |
---|
1019 | DO j = jts , MIN ( jde-1 , jte ) |
---|
1020 | DO i = its , MIN (ide-1 , ite ) |
---|
1021 | |
---|
1022 | grid%em_mu0(i,j) = grid%psfc(i,j) - grid%p_top |
---|
1023 | |
---|
1024 | END DO |
---|
1025 | END DO |
---|
1026 | !!****MARS |
---|
1027 | |
---|
1028 | |
---|
1029 | !! Compute the dry, hydrostatic surface pressure. |
---|
1030 | ! |
---|
1031 | !CALL p_dhs ( grid%em_pdhs , grid%ht , p00 , t00 , a , & |
---|
1032 | ! ids , ide , jds , jde , kds , kde , & |
---|
1033 | ! ims , ime , jms , jme , kms , kme , & |
---|
1034 | ! its , ite , jts , jte , kts , kte ) |
---|
1035 | !!****MARS: voir remarques dans la routine |
---|
1036 | !!****MARS: dry hydrostatic pressure comes from the GCM ... |
---|
1037 | ! DO j = jts , MIN ( jde-1 , jte ) |
---|
1038 | ! DO i = its , MIN (ide-1 , ite ) |
---|
1039 | ! grid%em_pdhs(i,j) = grid%psfc(i,j) |
---|
1040 | ! END DO |
---|
1041 | ! END DO |
---|
1042 | !!****MARS: em_pdhs ne sert qu'ici ! |
---|
1043 | |
---|
1044 | |
---|
1045 | ! Compute the eta levels if not defined already. |
---|
1046 | |
---|
1047 | !!TODO: pb when ptop<1Pa |
---|
1048 | |
---|
1049 | IF ( grid%em_znw(1) .NE. 1.0 ) THEN |
---|
1050 | |
---|
1051 | eta_levels(1:kde) = model_config_rec%eta_levels(1:kde) |
---|
1052 | max_dz = model_config_rec%max_dz |
---|
1053 | |
---|
1054 | !!****MARS |
---|
1055 | IF (grid%force_sfc_in_vinterp == 0) grid%force_sfc_in_vinterp = 8 |
---|
1056 | !!default choice |
---|
1057 | !!****MARS |
---|
1058 | |
---|
1059 | CALL compute_eta ( grid%em_znw , & |
---|
1060 | eta_levels , max_eta , max_dz , & |
---|
1061 | grid%force_sfc_in_vinterp, & !!ne sert pas par ailleurs |
---|
1062 | grid%p_top , g , p00 , cvpm , a , r_d , cp , t00 , p1000mb , t0 , & |
---|
1063 | ids , ide , jds , jde , kds , kde , & |
---|
1064 | ims , ime , jms , jme , kms , kme , & |
---|
1065 | its , ite , jts , jte , kts , kte ) |
---|
1066 | END IF |
---|
1067 | |
---|
1068 | ! The input field is temperature, we want potential temp. |
---|
1069 | !****MARS: here em_p_gc is really needed ! |
---|
1070 | CALL t_to_theta ( grid%em_t_gc , grid%em_p_gc , p00 , & |
---|
1071 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
---|
1072 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
---|
1073 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
---|
1074 | |
---|
1075 | |
---|
1076 | |
---|
1077 | ! On the eta surfaces, compute the dry pressure = mu eta, stored in |
---|
1078 | ! grid%em_pb, since it is a pressure, and we don't need another kms:kme 3d |
---|
1079 | ! array floating around. The grid%em_pb array is re-computed as the base pressure |
---|
1080 | ! later after the vertical interpolations are complete. |
---|
1081 | CALL p_dry ( grid%em_mu0 , grid%em_znw , grid%p_top , grid%em_pb , & |
---|
1082 | ids , ide , jds , jde , kds , kde , & |
---|
1083 | ims , ime , jms , jme , kms , kme , & |
---|
1084 | its , ite , jts , jte , kts , kte ) |
---|
1085 | |
---|
1086 | print *, 'test sample' |
---|
1087 | print *, grid%em_pb(its+10,:,jts+10) |
---|
1088 | print *, 'test sample 2' |
---|
1089 | print *, grid%em_pb(its,:,jts) |
---|
1090 | |
---|
1091 | |
---|
1092 | !****MARS |
---|
1093 | !****MARS: old stuff |
---|
1094 | !****MARS |
---|
1095 | !!! and now eta levels from the GCM are computed with the WRF ptop and GCM psfc |
---|
1096 | !!! and em_pb is filled with WRF eta levels to prepare interpolation |
---|
1097 | !print *,'computing eta levels for input data...' |
---|
1098 | ! DO j = jts, MIN(jte,jde-1) |
---|
1099 | ! DO i = its, MIN(ite,ide-1) |
---|
1100 | ! |
---|
1101 | !!grid%em_psfc_gc: pb en haut!!!! |
---|
1102 | !!!!valeurs plus grandes que 1 et extrapolation |
---|
1103 | !!grid%em_p_gc(i,:,j)=(grid%em_p_gc(i,:,j)-grid%p_top)/(grid%psfc(i,j)-grid%p_top) |
---|
1104 | !!!!utile si l'on est proche de la surface, mais pb plus haut ! |
---|
1105 | !grid%em_p_gc(i,:,j)=(grid%em_p_gc(i,:,j)-grid%p_top)/(grid%em_psfc_gc(i,j)-grid%p_top) |
---|
1106 | !grid%em_pb(i,:,j)=grid%em_znw(:) |
---|
1107 | ! |
---|
1108 | !! |
---|
1109 | !!!!manage negative values |
---|
1110 | !!DO k=1,num_metgrid_levels |
---|
1111 | !! grid%em_p_gc(i,k,j)=MAX(0.,grid%em_p_gc(i,k,j)) |
---|
1112 | !!END DO |
---|
1113 | !! |
---|
1114 | ! |
---|
1115 | ! END DO |
---|
1116 | ! END DO |
---|
1117 | !! |
---|
1118 | !!print *,'sample: eta GCM at its jts' |
---|
1119 | !!print *,grid%em_p_gc(its,:,jts) |
---|
1120 | !!print *,'sample: eta WRF at its jts' |
---|
1121 | !!print *,grid%em_pb(its,:,jts) |
---|
1122 | !! |
---|
1123 | !!print *,grid%em_p_gc(:,2,:) |
---|
1124 | !!print *, 'yeah yeah' |
---|
1125 | !!grid%em_pd_gc(:,:,:)=grid%em_p_gc(:,:,:) |
---|
1126 | !! |
---|
1127 | !****MARS |
---|
1128 | !****MARS: old stuff |
---|
1129 | !****MARS |
---|
1130 | |
---|
1131 | |
---|
1132 | |
---|
1133 | |
---|
1134 | ! All of the vertical interpolations are done in dry-pressure space. The |
---|
1135 | ! input data has had the moisture removed (grid%em_pd_gc). The target levels (grid%em_pb) |
---|
1136 | ! had the vapor pressure removed from the surface pressure, then they were |
---|
1137 | ! scaled by the eta levels. |
---|
1138 | |
---|
1139 | interp_type = grid%interp_type |
---|
1140 | lagrange_order = grid%lagrange_order |
---|
1141 | lowest_lev_from_sfc = grid%lowest_lev_from_sfc |
---|
1142 | zap_close_levels = grid%zap_close_levels |
---|
1143 | force_sfc_in_vinterp = grid%force_sfc_in_vinterp |
---|
1144 | |
---|
1145 | !!****MARS: normalement c'est vert_interp |
---|
1146 | !!****MARS: mais les résultats sont trop discontinus > retour à une |
---|
1147 | !!****MARS: interpolation plus classique |
---|
1148 | CALL vert_interp_old ( grid%em_qv_gc , grid%em_pd_gc , moist(:,:,:,P_QV) , grid%em_pb , & |
---|
1149 | num_metgrid_levels , 'Q' , & |
---|
1150 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
---|
1151 | zap_close_levels , force_sfc_in_vinterp , & |
---|
1152 | ids , ide , jds , jde , kds , kde , & |
---|
1153 | ims , ime , jms , jme , kms , kme , & |
---|
1154 | its , ite , jts , jte , kts , kte ) |
---|
1155 | |
---|
1156 | !!****MARS: normalement c'est vert_interp |
---|
1157 | CALL vert_interp_old ( grid%em_t_gc , grid%em_pd_gc , grid%em_t_2 , grid%em_pb , & |
---|
1158 | num_metgrid_levels , 'T' , & |
---|
1159 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
---|
1160 | zap_close_levels , force_sfc_in_vinterp , & |
---|
1161 | ids , ide , jds , jde , kds , kde , & |
---|
1162 | ims , ime , jms , jme , kms , kme , & |
---|
1163 | its , ite , jts , jte , kts , kte ) |
---|
1164 | |
---|
1165 | if (config_flags%mars == 1) then |
---|
1166 | !if (size(scalar(0,0,0,:)) > 2) then |
---|
1167 | !! autre possibilite: activer les flags dans metgrid.tbl |
---|
1168 | !! |
---|
1169 | !! pour l'instant les indices sont indiqués en dur en attendant plus souple |
---|
1170 | !! |
---|
1171 | !! |
---|
1172 | |
---|
1173 | print *, '**** WATER CYCLE ON ****' |
---|
1174 | !print *, size(scalar(0,0,0,:)), P_QH2O, P_QH2O_ICE |
---|
1175 | |
---|
1176 | |
---|
1177 | !!****MARS: initialization for water cycle |
---|
1178 | !!****MARS: |
---|
1179 | !!****MARS: -- note that -real.F was modified to include GCM QH2O boundary conditions |
---|
1180 | !!****MARS: -qvapor was not used to avoid any terrestrial calculations in WRF unsuitable for Mars |
---|
1181 | !!****MARS: -any change and/or modification of variables has to be recorded in the Registry |
---|
1182 | !!****MARS: |
---|
1183 | !CALL vert_interp_old ( grid%em_hv_gc , grid%em_pd_gc , scalar(:,:,:,P_QH2O) , grid%em_pb , & |
---|
1184 | CALL vert_interp_old ( grid%em_hv_gc , grid%em_pd_gc , scalar(:,:,:,2) , grid%em_pb , & |
---|
1185 | num_metgrid_levels , 'Q' , & |
---|
1186 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
---|
1187 | zap_close_levels , force_sfc_in_vinterp , & |
---|
1188 | ids , ide , jds , jde , kds , kde , & |
---|
1189 | ims , ime , jms , jme , kms , kme , & |
---|
1190 | its , ite , jts , jte , kts , kte ) |
---|
1191 | !CALL vert_interp_old ( grid%em_hi_gc , grid%em_pd_gc , scalar(:,:,:,P_QH2O_ICE) , grid%em_pb , & |
---|
1192 | CALL vert_interp_old ( grid%em_hi_gc , grid%em_pd_gc , scalar(:,:,:,3) , grid%em_pb , & |
---|
1193 | num_metgrid_levels , 'Q' , & |
---|
1194 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
---|
1195 | zap_close_levels , force_sfc_in_vinterp , & |
---|
1196 | ids , ide , jds , jde , kds , kde , & |
---|
1197 | ims , ime , jms , jme , kms , kme , & |
---|
1198 | its , ite , jts , jte , kts , kte ) |
---|
1199 | !!****MARS: |
---|
1200 | |
---|
1201 | endif |
---|
1202 | |
---|
1203 | #if 0 |
---|
1204 | ! Uncomment the Registry entries to activate these. This adds |
---|
1205 | ! noticeably to the allocated space for the model. |
---|
1206 | |
---|
1207 | IF ( flag_qr .EQ. 1 ) THEN |
---|
1208 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
---|
1209 | IF ( im .EQ. P_QR ) THEN |
---|
1210 | CALL vert_interp_old ( qr_gc , grid%em_pd_gc , moist(:,:,:,P_QR) , grid%em_pb , & |
---|
1211 | num_metgrid_levels , 'Q' , & |
---|
1212 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
---|
1213 | zap_close_levels , force_sfc_in_vinterp , & |
---|
1214 | ids , ide , jds , jde , kds , kde , & |
---|
1215 | ims , ime , jms , jme , kms , kme , & |
---|
1216 | its , ite , jts , jte , kts , kte ) |
---|
1217 | END IF |
---|
1218 | END DO |
---|
1219 | END IF |
---|
1220 | |
---|
1221 | IF ( flag_qc .EQ. 1 ) THEN |
---|
1222 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
---|
1223 | IF ( im .EQ. P_QC ) THEN |
---|
1224 | CALL vert_interp_old ( qc_gc , grid%em_pd_gc , moist(:,:,:,P_QC) , grid%em_pb , & |
---|
1225 | num_metgrid_levels , 'Q' , & |
---|
1226 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
---|
1227 | zap_close_levels , force_sfc_in_vinterp , & |
---|
1228 | ids , ide , jds , jde , kds , kde , & |
---|
1229 | ims , ime , jms , jme , kms , kme , & |
---|
1230 | its , ite , jts , jte , kts , kte ) |
---|
1231 | END IF |
---|
1232 | END DO |
---|
1233 | END IF |
---|
1234 | |
---|
1235 | IF ( flag_qi .EQ. 1 ) THEN |
---|
1236 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
---|
1237 | IF ( im .EQ. P_QI ) THEN |
---|
1238 | CALL vert_interp_old ( qi_gc , grid%em_pd_gc , moist(:,:,:,P_QI) , grid%em_pb , & |
---|
1239 | num_metgrid_levels , 'Q' , & |
---|
1240 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
---|
1241 | zap_close_levels , force_sfc_in_vinterp , & |
---|
1242 | ids , ide , jds , jde , kds , kde , & |
---|
1243 | ims , ime , jms , jme , kms , kme , & |
---|
1244 | its , ite , jts , jte , kts , kte ) |
---|
1245 | END IF |
---|
1246 | END DO |
---|
1247 | END IF |
---|
1248 | |
---|
1249 | IF ( flag_qs .EQ. 1 ) THEN |
---|
1250 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
---|
1251 | IF ( im .EQ. P_QS ) THEN |
---|
1252 | CALL vert_interp_old ( qs_gc , grid%em_pd_gc , moist(:,:,:,P_QS) , grid%em_pb , & |
---|
1253 | num_metgrid_levels , 'Q' , & |
---|
1254 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
---|
1255 | zap_close_levels , force_sfc_in_vinterp , & |
---|
1256 | ids , ide , jds , jde , kds , kde , & |
---|
1257 | ims , ime , jms , jme , kms , kme , & |
---|
1258 | its , ite , jts , jte , kts , kte ) |
---|
1259 | END IF |
---|
1260 | END DO |
---|
1261 | END IF |
---|
1262 | |
---|
1263 | IF ( flag_qg .EQ. 1 ) THEN |
---|
1264 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
---|
1265 | IF ( im .EQ. P_QG ) THEN |
---|
1266 | CALL vert_interp_old ( qg_gc , grid%em_pd_gc , moist(:,:,:,P_QG) , grid%em_pb , & |
---|
1267 | num_metgrid_levels , 'Q' , & |
---|
1268 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
---|
1269 | zap_close_levels , force_sfc_in_vinterp , & |
---|
1270 | ids , ide , jds , jde , kds , kde , & |
---|
1271 | ims , ime , jms , jme , kms , kme , & |
---|
1272 | its , ite , jts , jte , kts , kte ) |
---|
1273 | END IF |
---|
1274 | END DO |
---|
1275 | END IF |
---|
1276 | #endif |
---|
1277 | |
---|
1278 | #ifdef DM_PARALLEL |
---|
1279 | ips = its ; ipe = ite ; jps = jts ; jpe = jte ; kps = kts ; kpe = kte |
---|
1280 | |
---|
1281 | ! For the U and V vertical interpolation, we need the pressure defined |
---|
1282 | ! at both the locations for the horizontal momentum, which we get by |
---|
1283 | ! averaging two pressure values (i and i-1 for U, j and j-1 for V). The |
---|
1284 | ! pressure field on input (grid%em_pd_gc) and the pressure of the new coordinate |
---|
1285 | ! (grid%em_pb) are both communicated with an 8 stencil. |
---|
1286 | |
---|
1287 | # include "HALO_EM_VINTERP_UV_1.inc" |
---|
1288 | #endif |
---|
1289 | |
---|
1290 | !!****MARS: normalement c'est vert_interp |
---|
1291 | CALL vert_interp_old ( grid%em_u_gc , grid%em_pd_gc , grid%em_u_2, grid%em_pb , & |
---|
1292 | num_metgrid_levels , 'U' , & |
---|
1293 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
---|
1294 | zap_close_levels , force_sfc_in_vinterp , & |
---|
1295 | ids , ide , jds , jde , kds , kde , & |
---|
1296 | ims , ime , jms , jme , kms , kme , & |
---|
1297 | its , ite , jts , jte , kts , kte ) |
---|
1298 | !!****MARS: normalement c'est vert_interp |
---|
1299 | CALL vert_interp_old ( grid%em_v_gc , grid%em_pd_gc , grid%em_v_2, grid%em_pb , & |
---|
1300 | num_metgrid_levels , 'V' , & |
---|
1301 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
---|
1302 | zap_close_levels , force_sfc_in_vinterp , & |
---|
1303 | ids , ide , jds , jde , kds , kde , & |
---|
1304 | ims , ime , jms , jme , kms , kme , & |
---|
1305 | its , ite , jts , jte , kts , kte ) |
---|
1306 | |
---|
1307 | |
---|
1308 | !!****MARS |
---|
1309 | !!****MARS |
---|
1310 | !! |
---|
1311 | !! old obsolete method |
---|
1312 | !! ------------------- |
---|
1313 | !! |
---|
1314 | !!! and now eta levels from the GCM are computed with the WRF ptop and GCM psfc |
---|
1315 | !!! and em_pb is filled with WRF eta levels to prepare interpolation |
---|
1316 | !print *,'computing eta levels for input data...' |
---|
1317 | ! |
---|
1318 | ! DO j = jts, MIN(jte,jde-1) |
---|
1319 | ! DO i = its, MIN(ite,ide-1) |
---|
1320 | ! |
---|
1321 | !! grid%em_psfc_gc: pb en haut!!!! |
---|
1322 | !!!!valeurs plus grandes que 1 et extrapolation |
---|
1323 | !! grid%em_p_gc(i,:,j)=(grid%em_p_gc(i,:,j)-grid%p_top)/(grid%psfc(i,j)-grid%p_top) |
---|
1324 | !!!!utile si l'on est proche de la surface, mais pb plus haut ! |
---|
1325 | !grid%em_pd_gc(i,:,j)=(grid%em_p_gc(i,:,j)-grid%p_top)/(grid%em_psfc_gc(i,j)-grid%p_top) |
---|
1326 | !grid%em_pb(i,:,j)=grid%em_znw(:) |
---|
1327 | ! |
---|
1328 | !! |
---|
1329 | !!!!manage negative values |
---|
1330 | !!DO k=1,num_metgrid_levels |
---|
1331 | !! grid%em_p_gc(i,k,j)=MAX(0.,grid%em_p_gc(i,k,j)) |
---|
1332 | !!END DO |
---|
1333 | !! |
---|
1334 | ! |
---|
1335 | ! END DO |
---|
1336 | ! END DO |
---|
1337 | ! |
---|
1338 | !print *,'sample: eta GCM at its jts' |
---|
1339 | !print *,grid%em_pd_gc(its,:,jts) |
---|
1340 | !print *,'sample: eta WRF at its jts' |
---|
1341 | !print *,grid%em_pb(its,:,jts) |
---|
1342 | !! |
---|
1343 | !!!****MARS |
---|
1344 | ! |
---|
1345 | ! |
---|
1346 | ! |
---|
1347 | !!!!****MARS |
---|
1348 | !!!! |
---|
1349 | !!!!grid%force_sfc_in_vinterp ne sert pas dans vert_interp_old :) |
---|
1350 | !!!!peut donc servir pour préciser le nombre de niveaux |
---|
1351 | !!!!pris à partir de l'interpolation eta |
---|
1352 | ! |
---|
1353 | !IF (grid%force_sfc_in_vinterp .NE. 0) THEN |
---|
1354 | ! |
---|
1355 | ! !!!save in an array that is now unused |
---|
1356 | ! !!!the previously performed pressure interpolation |
---|
1357 | ! grid%em_qv_gc(:,:,:)=grid%em_t_2(:,:,:) |
---|
1358 | ! |
---|
1359 | ! |
---|
1360 | ! !!!perform interpolation on eta levels |
---|
1361 | ! print *, 'interpolate on eta levels for near-surface fields' |
---|
1362 | ! CALL vert_interp_old ( grid%em_t_gc , grid%em_pd_gc , grid%em_t_2, grid%em_pb , & |
---|
1363 | ! num_metgrid_levels , 'T' , & |
---|
1364 | ! interp_type , lagrange_order , lowest_lev_from_sfc ,& |
---|
1365 | ! zap_close_levels , force_sfc_in_vinterp , & |
---|
1366 | ! ids , ide , jds , jde , kds , kde , & |
---|
1367 | ! ims , ime , jms , jme , kms , kme , & |
---|
1368 | ! its , ite , jts , jte , kts , kte ) |
---|
1369 | ! |
---|
1370 | ! !!!take the first layers from the eta interpolation |
---|
1371 | ! print *, 'the first ', & |
---|
1372 | ! grid%force_sfc_in_vinterp, & |
---|
1373 | ! 'layers will be taken from eta interpolation' |
---|
1374 | ! grid%em_qv_gc(:,1:grid%force_sfc_in_vinterp,:)=grid%em_t_2(:,1:grid%force_sfc_in_vinterp,:) |
---|
1375 | ! |
---|
1376 | ! !!!fix the possible little discontinuity at the limit |
---|
1377 | ! !!!between the two interpolation methods |
---|
1378 | ! grid%em_qv_gc(:,grid%force_sfc_in_vinterp+1,:)= & |
---|
1379 | ! 0.5*(grid%em_t_2(:,grid%force_sfc_in_vinterp,:) + & !!eta interpolation below |
---|
1380 | ! grid%em_qv_gc(:,grid%force_sfc_in_vinterp+2,:)) !!pressure interpolation above |
---|
1381 | ! |
---|
1382 | ! |
---|
1383 | ! !!!assign the final result in t_2 |
---|
1384 | ! grid%em_t_2(:,:,:)=grid%em_qv_gc(:,:,:) |
---|
1385 | ! grid%em_qv_gc(:,:,:)=0. |
---|
1386 | ! |
---|
1387 | ! |
---|
1388 | !ELSE |
---|
1389 | ! |
---|
1390 | ! |
---|
1391 | !ENDIF |
---|
1392 | !!****MARS |
---|
1393 | !!****MARS |
---|
1394 | |
---|
1395 | |
---|
1396 | END IF ! <----- END OF VERTICAL INTERPOLATION PART ----> |
---|
1397 | |
---|
1398 | |
---|
1399 | |
---|
1400 | !****MARS: no need |
---|
1401 | ! ! Protect against bad grid%em_tsk values over water by supplying grid%sst (if it is |
---|
1402 | ! ! available, and if the grid%sst is reasonable). |
---|
1403 | ! |
---|
1404 | ! DO j = jts, MIN(jde-1,jte) |
---|
1405 | ! DO i = its, MIN(ide-1,ite) |
---|
1406 | ! IF ( ( grid%landmask(i,j) .LT. 0.5 ) .AND. ( flag_sst .EQ. 1 ) .AND. & |
---|
1407 | ! ( grid%sst(i,j) .GT. 200. ) .AND. ( grid%sst(i,j) .LT. 350. ) ) THEN |
---|
1408 | ! grid%tsk(i,j) = grid%sst(i,j) |
---|
1409 | ! ENDIF |
---|
1410 | ! END DO |
---|
1411 | ! END DO |
---|
1412 | ! |
---|
1413 | ! ! Save the grid%em_tsk field for later use in the sea ice surface temperature |
---|
1414 | ! ! for the Noah LSM scheme. |
---|
1415 | ! |
---|
1416 | ! DO j = jts, MIN(jte,jde-1) |
---|
1417 | ! DO i = its, MIN(ite,ide-1) |
---|
1418 | ! grid%tsk_save(i,j) = grid%tsk(i,j) |
---|
1419 | ! END DO |
---|
1420 | ! END DO |
---|
1421 | ! |
---|
1422 | !!****MARS: no need |
---|
1423 | ! ! Take the data from the input file and store it in the variables that |
---|
1424 | ! ! use the WRF naming and ordering conventions. |
---|
1425 | ! |
---|
1426 | ! DO j = jts, MIN(jte,jde-1) |
---|
1427 | ! DO i = its, MIN(ite,ide-1) |
---|
1428 | ! IF ( grid%snow(i,j) .GE. 10. ) then |
---|
1429 | ! grid%snowc(i,j) = 1. |
---|
1430 | ! ELSE |
---|
1431 | ! grid%snowc(i,j) = 0.0 |
---|
1432 | ! END IF |
---|
1433 | ! END DO |
---|
1434 | ! END DO |
---|
1435 | ! |
---|
1436 | ! ! Set flag integers for presence of snowh and soilw fields |
---|
1437 | ! |
---|
1438 | ! grid%ifndsnowh = flag_snowh |
---|
1439 | ! IF (num_sw_levels_input .GE. 1) THEN |
---|
1440 | ! grid%ifndsoilw = 1 |
---|
1441 | ! ELSE |
---|
1442 | ! grid%ifndsoilw = 0 |
---|
1443 | ! END IF |
---|
1444 | ! |
---|
1445 | !****MARS: no need |
---|
1446 | ! ! We require input data for the various LSM schemes. |
---|
1447 | ! |
---|
1448 | ! enough_data : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
---|
1449 | ! |
---|
1450 | ! CASE (LSMSCHEME) |
---|
1451 | ! IF ( num_st_levels_input .LT. 2 ) THEN |
---|
1452 | ! CALL wrf_error_fatal ( 'Not enough soil temperature data for Noah LSM scheme.') |
---|
1453 | ! END IF |
---|
1454 | ! |
---|
1455 | ! CASE (RUCLSMSCHEME) |
---|
1456 | ! IF ( num_st_levels_input .LT. 2 ) THEN |
---|
1457 | ! CALL wrf_error_fatal ( 'Not enough soil temperature data for RUC LSM scheme.') |
---|
1458 | ! END IF |
---|
1459 | ! |
---|
1460 | ! END SELECT enough_data |
---|
1461 | ! |
---|
1462 | ! ! For sf_surface_physics = 1, we want to use close to a 30 cm value |
---|
1463 | ! ! for the bottom level of the soil temps. |
---|
1464 | ! |
---|
1465 | ! fix_bottom_level_for_temp : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
---|
1466 | ! |
---|
1467 | ! CASE (SLABSCHEME) |
---|
1468 | ! IF ( flag_tavgsfc .EQ. 1 ) THEN |
---|
1469 | ! DO j = jts , MIN(jde-1,jte) |
---|
1470 | ! DO i = its , MIN(ide-1,ite) |
---|
1471 | ! grid%tmn(i,j) = grid%em_tavgsfc(i,j) |
---|
1472 | ! END DO |
---|
1473 | ! END DO |
---|
1474 | ! ELSE IF ( flag_st010040 .EQ. 1 ) THEN |
---|
1475 | ! DO j = jts , MIN(jde-1,jte) |
---|
1476 | ! DO i = its , MIN(ide-1,ite) |
---|
1477 | ! grid%tmn(i,j) = grid%st010040(i,j) |
---|
1478 | ! END DO |
---|
1479 | ! END DO |
---|
1480 | ! ELSE IF ( flag_st000010 .EQ. 1 ) THEN |
---|
1481 | ! DO j = jts , MIN(jde-1,jte) |
---|
1482 | ! DO i = its , MIN(ide-1,ite) |
---|
1483 | ! grid%tmn(i,j) = grid%st000010(i,j) |
---|
1484 | ! END DO |
---|
1485 | ! END DO |
---|
1486 | ! ELSE IF ( flag_soilt020 .EQ. 1 ) THEN |
---|
1487 | ! DO j = jts , MIN(jde-1,jte) |
---|
1488 | ! DO i = its , MIN(ide-1,ite) |
---|
1489 | ! grid%tmn(i,j) = grid%soilt020(i,j) |
---|
1490 | ! END DO |
---|
1491 | ! END DO |
---|
1492 | ! ELSE IF ( flag_st007028 .EQ. 1 ) THEN |
---|
1493 | ! DO j = jts , MIN(jde-1,jte) |
---|
1494 | ! DO i = its , MIN(ide-1,ite) |
---|
1495 | ! grid%tmn(i,j) = grid%st007028(i,j) |
---|
1496 | ! END DO |
---|
1497 | ! END DO |
---|
1498 | ! ELSE |
---|
1499 | ! CALL wrf_debug ( 0 , 'No 10-40 cm, 0-10 cm, 7-28, or 20 cm soil temperature data for grid%em_tmn') |
---|
1500 | ! CALL wrf_debug ( 0 , 'Using 1 degree static annual mean temps' ) |
---|
1501 | ! END IF |
---|
1502 | ! |
---|
1503 | ! CASE (LSMSCHEME) |
---|
1504 | ! |
---|
1505 | ! CASE (RUCLSMSCHEME) |
---|
1506 | ! |
---|
1507 | ! END SELECT fix_bottom_level_for_temp |
---|
1508 | ! |
---|
1509 | ! ! Adjustments for the seaice field PRIOR to the grid%tslb computations. This is |
---|
1510 | ! ! is for the 5-layer scheme. |
---|
1511 | ! |
---|
1512 | ! num_veg_cat = SIZE ( grid%landusef , DIM=2 ) |
---|
1513 | ! num_soil_top_cat = SIZE ( grid%soilctop , DIM=2 ) |
---|
1514 | ! num_soil_bot_cat = SIZE ( grid%soilcbot , DIM=2 ) |
---|
1515 | ! CALL nl_get_seaice_threshold ( grid%id , grid%seaice_threshold ) |
---|
1516 | ! CALL nl_get_isice ( grid%id , grid%isice ) |
---|
1517 | ! CALL nl_get_iswater ( grid%id , grid%iswater ) |
---|
1518 | ! CALL adjust_for_seaice_pre ( grid%xice , grid%landmask , grid%tsk , grid%ivgtyp , grid%vegcat , grid%lu_index , & |
---|
1519 | ! grid%xland , grid%landusef , grid%isltyp , grid%soilcat , grid%soilctop , & |
---|
1520 | ! grid%soilcbot , grid%tmn , & |
---|
1521 | ! grid%seaice_threshold , & |
---|
1522 | ! num_veg_cat , num_soil_top_cat , num_soil_bot_cat , & |
---|
1523 | ! grid%iswater , grid%isice , & |
---|
1524 | ! model_config_rec%sf_surface_physics(grid%id) , & |
---|
1525 | ! ids , ide , jds , jde , kds , kde , & |
---|
1526 | ! ims , ime , jms , jme , kms , kme , & |
---|
1527 | ! its , ite , jts , jte , kts , kte ) |
---|
1528 | ! |
---|
1529 | ! ! surface_input_source=1 => use data from static file (fractional category as input) |
---|
1530 | ! ! surface_input_source=2 => use data from grib file (dominant category as input) |
---|
1531 | ! |
---|
1532 | ! IF ( config_flags%surface_input_source .EQ. 1 ) THEN |
---|
1533 | ! grid%vegcat (its,jts) = 0 |
---|
1534 | ! grid%soilcat(its,jts) = 0 |
---|
1535 | ! END IF |
---|
1536 | ! |
---|
1537 | ! ! Generate the vegetation and soil category information from the fractional input |
---|
1538 | ! ! data, or use the existing dominant category fields if they exist. |
---|
1539 | ! |
---|
1540 | ! IF ( ( grid%soilcat(its,jts) .LT. 0.5 ) .AND. ( grid%vegcat(its,jts) .LT. 0.5 ) ) THEN |
---|
1541 | ! |
---|
1542 | ! num_veg_cat = SIZE ( grid%landusef , DIM=2 ) |
---|
1543 | ! num_soil_top_cat = SIZE ( grid%soilctop , DIM=2 ) |
---|
1544 | ! num_soil_bot_cat = SIZE ( grid%soilcbot , DIM=2 ) |
---|
1545 | ! |
---|
1546 | ! CALL process_percent_cat_new ( grid%landmask , & |
---|
1547 | ! grid%landusef , grid%soilctop , grid%soilcbot , & |
---|
1548 | ! grid%isltyp , grid%ivgtyp , & |
---|
1549 | ! num_veg_cat , num_soil_top_cat , num_soil_bot_cat , & |
---|
1550 | ! ids , ide , jds , jde , kds , kde , & |
---|
1551 | ! ims , ime , jms , jme , kms , kme , & |
---|
1552 | ! its , ite , jts , jte , kts , kte , & |
---|
1553 | ! model_config_rec%iswater(grid%id) ) |
---|
1554 | ! |
---|
1555 | ! ! Make all the veg/soil parms the same so as not to confuse the developer. |
---|
1556 | ! |
---|
1557 | ! DO j = jts , MIN(jde-1,jte) |
---|
1558 | ! DO i = its , MIN(ide-1,ite) |
---|
1559 | ! grid%vegcat(i,j) = grid%ivgtyp(i,j) |
---|
1560 | ! grid%soilcat(i,j) = grid%isltyp(i,j) |
---|
1561 | ! END DO |
---|
1562 | ! END DO |
---|
1563 | ! |
---|
1564 | ! ELSE |
---|
1565 | ! |
---|
1566 | ! ! Do we have dominant soil and veg data from the input already? |
---|
1567 | ! |
---|
1568 | ! IF ( grid%soilcat(its,jts) .GT. 0.5 ) THEN |
---|
1569 | ! DO j = jts, MIN(jde-1,jte) |
---|
1570 | ! DO i = its, MIN(ide-1,ite) |
---|
1571 | ! grid%isltyp(i,j) = NINT( grid%soilcat(i,j) ) |
---|
1572 | ! END DO |
---|
1573 | ! END DO |
---|
1574 | ! END IF |
---|
1575 | ! IF ( grid%vegcat(its,jts) .GT. 0.5 ) THEN |
---|
1576 | ! DO j = jts, MIN(jde-1,jte) |
---|
1577 | ! DO i = its, MIN(ide-1,ite) |
---|
1578 | ! grid%ivgtyp(i,j) = NINT( grid%vegcat(i,j) ) |
---|
1579 | ! END DO |
---|
1580 | ! END DO |
---|
1581 | ! END IF |
---|
1582 | ! |
---|
1583 | ! END IF |
---|
1584 | ! |
---|
1585 | ! ! Land use assignment. |
---|
1586 | ! |
---|
1587 | ! DO j = jts, MIN(jde-1,jte) |
---|
1588 | ! DO i = its, MIN(ide-1,ite) |
---|
1589 | ! grid%lu_index(i,j) = grid%ivgtyp(i,j) |
---|
1590 | ! IF ( grid%lu_index(i,j) .NE. model_config_rec%iswater(grid%id) ) THEN |
---|
1591 | ! grid%landmask(i,j) = 1 |
---|
1592 | ! grid%xland(i,j) = 1 |
---|
1593 | ! ELSE |
---|
1594 | ! grid%landmask(i,j) = 0 |
---|
1595 | ! grid%xland(i,j) = 2 |
---|
1596 | ! END IF |
---|
1597 | ! END DO |
---|
1598 | ! END DO |
---|
1599 | ! |
---|
1600 | ! ! Adjust the various soil temperature values depending on the difference in |
---|
1601 | ! ! in elevation between the current model's elevation and the incoming data's |
---|
1602 | ! ! orography. |
---|
1603 | ! |
---|
1604 | ! IF ( flag_soilhgt .EQ. 1 ) THEN |
---|
1605 | ! adjust_soil : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
---|
1606 | ! |
---|
1607 | ! CASE ( SLABSCHEME , LSMSCHEME , RUCLSMSCHEME ) |
---|
1608 | ! CALL adjust_soil_temp_new ( grid%tmn , model_config_rec%sf_surface_physics(grid%id) , & |
---|
1609 | ! grid%tsk , grid%ht , grid%toposoil , grid%landmask , flag_soilhgt , & |
---|
1610 | ! grid%st000010 , grid%st010040 , grid%st040100 , grid%st100200 , grid%st010200 , & |
---|
1611 | ! flag_st000010 , flag_st010040 , flag_st040100 , flag_st100200 , flag_st010200 , & |
---|
1612 | ! grid%st000007 , grid%st007028 , grid%st028100 , grid%st100255 , & |
---|
1613 | ! flag_st000007 , flag_st007028 , flag_st028100 , flag_st100255 , & |
---|
1614 | ! grid%soilt000 , grid%soilt005 , grid%soilt020 , grid%soilt040 , grid%soilt160 , & |
---|
1615 | ! grid%soilt300 , & |
---|
1616 | ! flag_soilt000 , flag_soilt005 , flag_soilt020 , flag_soilt040 , & |
---|
1617 | ! flag_soilt160 , flag_soilt300 , & |
---|
1618 | ! ids , ide , jds , jde , kds , kde , & |
---|
1619 | ! ims , ime , jms , jme , kms , kme , & |
---|
1620 | ! its , ite , jts , jte , kts , kte ) |
---|
1621 | ! |
---|
1622 | ! END SELECT adjust_soil |
---|
1623 | ! END IF |
---|
1624 | ! |
---|
1625 | ! ! Fix grid%em_tmn and grid%em_tsk. |
---|
1626 | ! |
---|
1627 | ! fix_tsk_tmn : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
---|
1628 | ! |
---|
1629 | ! CASE ( SLABSCHEME , LSMSCHEME , RUCLSMSCHEME ) |
---|
1630 | ! DO j = jts, MIN(jde-1,jte) |
---|
1631 | ! DO i = its, MIN(ide-1,ite) |
---|
1632 | ! IF ( ( grid%landmask(i,j) .LT. 0.5 ) .AND. ( flag_sst .EQ. 1 ) .AND. & |
---|
1633 | ! ( grid%sst(i,j) .GT. 240. ) .AND. ( grid%sst(i,j) .LT. 350. ) ) THEN |
---|
1634 | ! grid%tmn(i,j) = grid%sst(i,j) |
---|
1635 | ! grid%tsk(i,j) = grid%sst(i,j) |
---|
1636 | ! ELSE IF ( grid%landmask(i,j) .LT. 0.5 ) THEN |
---|
1637 | ! grid%tmn(i,j) = grid%tsk(i,j) |
---|
1638 | ! END IF |
---|
1639 | ! END DO |
---|
1640 | ! END DO |
---|
1641 | ! END SELECT fix_tsk_tmn |
---|
1642 | ! |
---|
1643 | ! ! Is the grid%em_tsk reasonable? |
---|
1644 | ! |
---|
1645 | |
---|
1646 | |
---|
1647 | !!**** MARS |
---|
1648 | DO j = jts, MIN(jde-1,jte) |
---|
1649 | DO i = its, MIN(ide-1,ite) |
---|
1650 | !!grid%tsk(i,j)=200 |
---|
1651 | grid%tmn(i,j)=0 |
---|
1652 | grid%sst(i,j)=0 !!no use on Mars!! |
---|
1653 | grid%tslb(i,:,j)=0 !!tslb is 3D field |
---|
1654 | END DO |
---|
1655 | END DO |
---|
1656 | !!**** MARS |
---|
1657 | |
---|
1658 | ! IF ( internal_time_loop .NE. 1 ) THEN |
---|
1659 | ! DO j = jts, MIN(jde-1,jte) |
---|
1660 | ! DO i = its, MIN(ide-1,ite) |
---|
1661 | ! IF ( grid%tsk(i,j) .LT. 170 .or. grid%tsk(i,j) .GT. 400. ) THEN |
---|
1662 | ! grid%tsk(i,j) = grid%em_t_2(i,1,j) |
---|
1663 | ! END IF |
---|
1664 | ! END DO |
---|
1665 | ! END DO |
---|
1666 | ! ELSE |
---|
1667 | ! DO j = jts, MIN(jde-1,jte) |
---|
1668 | ! DO i = its, MIN(ide-1,ite) |
---|
1669 | ! IF ( grid%tsk(i,j) .LT. 170 .or. grid%tsk(i,j) .GT. 400. ) THEN |
---|
1670 | ! print *,'error in the grid%em_tsk' |
---|
1671 | ! print *,'i,j=',i,j |
---|
1672 | ! print *,'grid%landmask=',grid%landmask(i,j) |
---|
1673 | ! print *,'grid%tsk, grid%sst, grid%tmn=',grid%tsk(i,j),grid%sst(i,j),grid%tmn(i,j) |
---|
1674 | ! if(grid%tmn(i,j).gt.170. .and. grid%tmn(i,j).lt.400.)then |
---|
1675 | ! grid%tsk(i,j)=grid%tmn(i,j) |
---|
1676 | ! else if(grid%sst(i,j).gt.170. .and. grid%sst(i,j).lt.400.)then |
---|
1677 | ! grid%tsk(i,j)=grid%sst(i,j) |
---|
1678 | ! else |
---|
1679 | ! CALL wrf_error_fatal ( 'grid%em_tsk unreasonable' ) |
---|
1680 | ! end if |
---|
1681 | ! END IF |
---|
1682 | ! END DO |
---|
1683 | ! END DO |
---|
1684 | ! END IF |
---|
1685 | ! |
---|
1686 | ! ! Is the grid%em_tmn reasonable? |
---|
1687 | ! |
---|
1688 | ! DO j = jts, MIN(jde-1,jte) |
---|
1689 | ! DO i = its, MIN(ide-1,ite) |
---|
1690 | ! IF ( ( ( grid%tmn(i,j) .LT. 170. ) .OR. ( grid%tmn(i,j) .GT. 400. ) ) & |
---|
1691 | ! .AND. ( grid%landmask(i,j) .GT. 0.5 ) ) THEN |
---|
1692 | ! IF ( model_config_rec%sf_surface_physics(grid%id) .NE. LSMSCHEME ) THEN |
---|
1693 | ! print *,'error in the grid%em_tmn' |
---|
1694 | ! print *,'i,j=',i,j |
---|
1695 | ! print *,'grid%landmask=',grid%landmask(i,j) |
---|
1696 | ! print *,'grid%tsk, grid%sst, grid%tmn=',grid%tsk(i,j),grid%sst(i,j),grid%tmn(i,j) |
---|
1697 | ! END IF |
---|
1698 | ! |
---|
1699 | ! if(grid%tsk(i,j).gt.170. .and. grid%tsk(i,j).lt.400.)then |
---|
1700 | ! grid%tmn(i,j)=grid%tsk(i,j) |
---|
1701 | ! else if(grid%sst(i,j).gt.170. .and. grid%sst(i,j).lt.400.)then |
---|
1702 | ! grid%tmn(i,j)=grid%sst(i,j) |
---|
1703 | ! else |
---|
1704 | ! CALL wrf_error_fatal ( 'grid%em_tmn unreasonable' ) |
---|
1705 | ! endif |
---|
1706 | ! END IF |
---|
1707 | ! END DO |
---|
1708 | ! END DO |
---|
1709 | ! |
---|
1710 | ! interpolate_soil_tmw : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
---|
1711 | ! |
---|
1712 | ! CASE ( SLABSCHEME , LSMSCHEME , RUCLSMSCHEME ) |
---|
1713 | ! CALL process_soil_real ( grid%tsk , grid%tmn , & |
---|
1714 | ! grid%landmask , grid%sst , & |
---|
1715 | ! st_input , sm_input , sw_input , st_levels_input , sm_levels_input , sw_levels_input , & |
---|
1716 | ! grid%zs , grid%dzs , grid%tslb , grid%smois , grid%sh2o , & |
---|
1717 | ! flag_sst , flag_soilt000, flag_soilm000, & |
---|
1718 | ! ids , ide , jds , jde , kds , kde , & |
---|
1719 | ! ims , ime , jms , jme , kms , kme , & |
---|
1720 | ! its , ite , jts , jte , kts , kte , & |
---|
1721 | ! model_config_rec%sf_surface_physics(grid%id) , & |
---|
1722 | ! model_config_rec%num_soil_layers , & |
---|
1723 | ! model_config_rec%real_data_init_type , & |
---|
1724 | ! num_st_levels_input , num_sm_levels_input , num_sw_levels_input , & |
---|
1725 | ! num_st_levels_alloc , num_sm_levels_alloc , num_sw_levels_alloc ) |
---|
1726 | ! |
---|
1727 | ! END SELECT interpolate_soil_tmw |
---|
1728 | ! |
---|
1729 | ! ! Minimum soil values, residual, from RUC LSM scheme. For input from Noah and using |
---|
1730 | ! ! RUC LSM scheme, this must be subtracted from the input total soil moisture. For |
---|
1731 | ! ! input RUC data and using the Noah LSM scheme, this value must be added to the soil |
---|
1732 | ! ! moisture input. |
---|
1733 | ! |
---|
1734 | ! lqmi(1:num_soil_top_cat) = & |
---|
1735 | ! (/0.045, 0.057, 0.065, 0.067, 0.034, 0.078, 0.10, & |
---|
1736 | ! 0.089, 0.095, 0.10, 0.070, 0.068, 0.078, 0.0, & |
---|
1737 | ! 0.004, 0.065 /) |
---|
1738 | !! 0.004, 0.065, 0.020, 0.004, 0.008 /) ! has extra levels for playa, lava, and white sand |
---|
1739 | ! |
---|
1740 | ! ! At the initial time we care about values of soil moisture and temperature, other times are |
---|
1741 | ! ! ignored by the model, so we ignore them, too. |
---|
1742 | ! |
---|
1743 | ! IF ( domain_ClockIsStartTime(grid) ) THEN |
---|
1744 | ! account_for_zero_soil_moisture : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
---|
1745 | ! |
---|
1746 | ! CASE ( LSMSCHEME ) |
---|
1747 | ! iicount = 0 |
---|
1748 | ! IF ( FLAG_SM000010 .EQ. 1 ) THEN |
---|
1749 | ! DO j = jts, MIN(jde-1,jte) |
---|
1750 | ! DO i = its, MIN(ide-1,ite) |
---|
1751 | ! IF ( (grid%landmask(i,j).gt.0.5) .and. ( grid%tslb(i,1,j) .gt. 200 ) .and. & |
---|
1752 | ! ( grid%tslb(i,1,j) .lt. 400 ) .and. ( grid%smois(i,1,j) .lt. 0.005 ) ) then |
---|
1753 | ! print *,'Noah -> Noah: bad soil moisture at i,j = ',i,j,grid%smois(i,:,j) |
---|
1754 | ! iicount = iicount + 1 |
---|
1755 | ! grid%smois(i,:,j) = 0.005 |
---|
1756 | ! END IF |
---|
1757 | ! END DO |
---|
1758 | ! END DO |
---|
1759 | ! IF ( iicount .GT. 0 ) THEN |
---|
1760 | ! print *,'Noah -> Noah: total number of small soil moisture locations = ',iicount |
---|
1761 | ! END IF |
---|
1762 | ! ELSE IF ( FLAG_SOILM000 .EQ. 1 ) THEN |
---|
1763 | ! DO j = jts, MIN(jde-1,jte) |
---|
1764 | ! DO i = its, MIN(ide-1,ite) |
---|
1765 | ! grid%smois(i,:,j) = grid%smois(i,:,j) + lqmi(grid%isltyp(i,j)) |
---|
1766 | ! END DO |
---|
1767 | ! END DO |
---|
1768 | ! DO j = jts, MIN(jde-1,jte) |
---|
1769 | ! DO i = its, MIN(ide-1,ite) |
---|
1770 | ! IF ( (grid%landmask(i,j).gt.0.5) .and. ( grid%tslb(i,1,j) .gt. 200 ) .and. & |
---|
1771 | ! ( grid%tslb(i,1,j) .lt. 400 ) .and. ( grid%smois(i,1,j) .lt. 0.005 ) ) then |
---|
1772 | ! print *,'RUC -> Noah: bad soil moisture at i,j = ',i,j,grid%smois(i,:,j) |
---|
1773 | ! iicount = iicount + 1 |
---|
1774 | ! grid%smois(i,:,j) = 0.005 |
---|
1775 | ! END IF |
---|
1776 | ! END DO |
---|
1777 | ! END DO |
---|
1778 | ! IF ( iicount .GT. 0 ) THEN |
---|
1779 | ! print *,'RUC -> Noah: total number of small soil moisture locations = ',iicount |
---|
1780 | ! END IF |
---|
1781 | ! END IF |
---|
1782 | ! |
---|
1783 | ! CASE ( RUCLSMSCHEME ) |
---|
1784 | ! iicount = 0 |
---|
1785 | ! IF ( FLAG_SM000010 .EQ. 1 ) THEN |
---|
1786 | ! DO j = jts, MIN(jde-1,jte) |
---|
1787 | ! DO i = its, MIN(ide-1,ite) |
---|
1788 | ! grid%smois(i,:,j) = MAX ( grid%smois(i,:,j) - lqmi(grid%isltyp(i,j)) , 0. ) |
---|
1789 | ! END DO |
---|
1790 | ! END DO |
---|
1791 | ! ELSE IF ( FLAG_SOILM000 .EQ. 1 ) THEN |
---|
1792 | ! ! no op |
---|
1793 | ! END IF |
---|
1794 | ! |
---|
1795 | ! END SELECT account_for_zero_soil_moisture |
---|
1796 | ! END IF |
---|
1797 | ! |
---|
1798 | ! ! Is the grid%tslb reasonable? |
---|
1799 | ! |
---|
1800 | ! IF ( internal_time_loop .NE. 1 ) THEN |
---|
1801 | ! DO j = jts, MIN(jde-1,jte) |
---|
1802 | ! DO ns = 1 , model_config_rec%num_soil_layers |
---|
1803 | ! DO i = its, MIN(ide-1,ite) |
---|
1804 | ! IF ( grid%tslb(i,ns,j) .LT. 170 .or. grid%tslb(i,ns,j) .GT. 400. ) THEN |
---|
1805 | ! grid%tslb(i,ns,j) = grid%em_t_2(i,1,j) |
---|
1806 | ! grid%smois(i,ns,j) = 0.3 |
---|
1807 | ! END IF |
---|
1808 | ! END DO |
---|
1809 | ! END DO |
---|
1810 | ! END DO |
---|
1811 | ! ELSE |
---|
1812 | ! DO j = jts, MIN(jde-1,jte) |
---|
1813 | ! DO i = its, MIN(ide-1,ite) |
---|
1814 | ! IF ( ( ( grid%tslb(i,1,j) .LT. 170. ) .OR. ( grid%tslb(i,1,j) .GT. 400. ) ) .AND. & |
---|
1815 | ! ( grid%landmask(i,j) .GT. 0.5 ) ) THEN |
---|
1816 | ! IF ( ( model_config_rec%sf_surface_physics(grid%id) .NE. LSMSCHEME ) .AND. & |
---|
1817 | ! ( model_config_rec%sf_surface_physics(grid%id) .NE. RUCLSMSCHEME ) ) THEN |
---|
1818 | ! print *,'error in the grid%tslb' |
---|
1819 | ! print *,'i,j=',i,j |
---|
1820 | ! print *,'grid%landmask=',grid%landmask(i,j) |
---|
1821 | ! print *,'grid%tsk, grid%sst, grid%tmn=',grid%tsk(i,j),grid%sst(i,j),grid%tmn(i,j) |
---|
1822 | ! print *,'grid%tslb = ',grid%tslb(i,:,j) |
---|
1823 | ! print *,'old grid%smois = ',grid%smois(i,:,j) |
---|
1824 | ! grid%smois(i,1,j) = 0.3 |
---|
1825 | ! grid%smois(i,2,j) = 0.3 |
---|
1826 | ! grid%smois(i,3,j) = 0.3 |
---|
1827 | ! grid%smois(i,4,j) = 0.3 |
---|
1828 | ! END IF |
---|
1829 | ! |
---|
1830 | ! IF ( (grid%tsk(i,j).GT.170. .AND. grid%tsk(i,j).LT.400.) .AND. & |
---|
1831 | ! (grid%tmn(i,j).GT.170. .AND. grid%tmn(i,j).LT.400.) ) THEN |
---|
1832 | ! fake_soil_temp : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
---|
1833 | ! CASE ( SLABSCHEME ) |
---|
1834 | ! DO ns = 1 , model_config_rec%num_soil_layers |
---|
1835 | ! grid%tslb(i,ns,j) = ( grid%tsk(i,j)*(3.0 - grid%zs(ns)) + & |
---|
1836 | ! grid%tmn(i,j)*(0.0 - grid%zs(ns)) ) /(3.0 - 0.0) |
---|
1837 | ! END DO |
---|
1838 | ! CASE ( LSMSCHEME , RUCLSMSCHEME ) |
---|
1839 | ! CALL wrf_error_fatal ( 'Assigning constant soil moisture, bad idea') |
---|
1840 | ! DO ns = 1 , model_config_rec%num_soil_layers |
---|
1841 | ! grid%tslb(i,ns,j) = ( grid%tsk(i,j)*(3.0 - grid%zs(ns)) + & |
---|
1842 | ! grid%tmn(i,j)*(0.0 - grid%zs(ns)) ) /(3.0 - 0.0) |
---|
1843 | ! END DO |
---|
1844 | ! END SELECT fake_soil_temp |
---|
1845 | ! else if(grid%tsk(i,j).gt.170. .and. grid%tsk(i,j).lt.400.)then |
---|
1846 | ! CALL wrf_error_fatal ( 'grid%tslb unreasonable 1' ) |
---|
1847 | ! DO ns = 1 , model_config_rec%num_soil_layers |
---|
1848 | ! grid%tslb(i,ns,j)=grid%tsk(i,j) |
---|
1849 | ! END DO |
---|
1850 | ! else if(grid%sst(i,j).gt.170. .and. grid%sst(i,j).lt.400.)then |
---|
1851 | ! CALL wrf_error_fatal ( 'grid%tslb unreasonable 2' ) |
---|
1852 | ! DO ns = 1 , model_config_rec%num_soil_layers |
---|
1853 | ! grid%tslb(i,ns,j)=grid%sst(i,j) |
---|
1854 | ! END DO |
---|
1855 | ! else if(grid%tmn(i,j).gt.170. .and. grid%tmn(i,j).lt.400.)then |
---|
1856 | ! CALL wrf_error_fatal ( 'grid%tslb unreasonable 3' ) |
---|
1857 | ! DO ns = 1 , model_config_rec%num_soil_layers |
---|
1858 | ! grid%tslb(i,ns,j)=grid%tmn(i,j) |
---|
1859 | ! END DO |
---|
1860 | ! else |
---|
1861 | ! CALL wrf_error_fatal ( 'grid%tslb unreasonable 4' ) |
---|
1862 | ! endif |
---|
1863 | ! END IF |
---|
1864 | ! END DO |
---|
1865 | ! END DO |
---|
1866 | ! END IF |
---|
1867 | ! |
---|
1868 | ! ! Adjustments for the seaice field AFTER the grid%tslb computations. This is |
---|
1869 | ! ! is for the Noah LSM scheme. |
---|
1870 | ! |
---|
1871 | ! num_veg_cat = SIZE ( grid%landusef , DIM=2 ) |
---|
1872 | ! num_soil_top_cat = SIZE ( grid%soilctop , DIM=2 ) |
---|
1873 | ! num_soil_bot_cat = SIZE ( grid%soilcbot , DIM=2 ) |
---|
1874 | ! CALL nl_get_seaice_threshold ( grid%id , grid%seaice_threshold ) |
---|
1875 | ! CALL nl_get_isice ( grid%id , grid%isice ) |
---|
1876 | ! CALL nl_get_iswater ( grid%id , grid%iswater ) |
---|
1877 | ! CALL adjust_for_seaice_post ( grid%xice , grid%landmask , grid%tsk , grid%tsk_save , & |
---|
1878 | ! grid%ivgtyp , grid%vegcat , grid%lu_index , & |
---|
1879 | ! grid%xland , grid%landusef , grid%isltyp , grid%soilcat , & |
---|
1880 | ! grid%soilctop , & |
---|
1881 | ! grid%soilcbot , grid%tmn , grid%vegfra , & |
---|
1882 | ! grid%tslb , grid%smois , grid%sh2o , & |
---|
1883 | ! grid%seaice_threshold , & |
---|
1884 | ! num_veg_cat , num_soil_top_cat , num_soil_bot_cat , & |
---|
1885 | ! model_config_rec%num_soil_layers , & |
---|
1886 | ! grid%iswater , grid%isice , & |
---|
1887 | ! model_config_rec%sf_surface_physics(grid%id) , & |
---|
1888 | ! ids , ide , jds , jde , kds , kde , & |
---|
1889 | ! ims , ime , jms , jme , kms , kme , & |
---|
1890 | ! its , ite , jts , jte , kts , kte ) |
---|
1891 | ! |
---|
1892 | ! ! Let us make sure (again) that the grid%landmask and the veg/soil categories match. |
---|
1893 | ! |
---|
1894 | !oops1=0 |
---|
1895 | !oops2=0 |
---|
1896 | ! DO j = jts, MIN(jde-1,jte) |
---|
1897 | ! DO i = its, MIN(ide-1,ite) |
---|
1898 | ! IF ( ( ( grid%landmask(i,j) .LT. 0.5 ) .AND. & |
---|
1899 | ! ( grid%ivgtyp(i,j) .NE. config_flags%iswater .OR. grid%isltyp(i,j) .NE. 14 ) ) .OR. & |
---|
1900 | ! ( ( grid%landmask(i,j) .GT. 0.5 ) .AND. & |
---|
1901 | ! ( grid%ivgtyp(i,j) .EQ. config_flags%iswater .OR. grid%isltyp(i,j) .EQ. 14 ) ) ) THEN |
---|
1902 | ! IF ( grid%tslb(i,1,j) .GT. 1. ) THEN |
---|
1903 | !oops1=oops1+1 |
---|
1904 | ! grid%ivgtyp(i,j) = 5 |
---|
1905 | ! grid%isltyp(i,j) = 8 |
---|
1906 | ! grid%landmask(i,j) = 1 |
---|
1907 | ! grid%xland(i,j) = 1 |
---|
1908 | ! ELSE IF ( grid%sst(i,j) .GT. 1. ) THEN |
---|
1909 | !oops2=oops2+1 |
---|
1910 | ! grid%ivgtyp(i,j) = config_flags%iswater |
---|
1911 | ! grid%isltyp(i,j) = 14 |
---|
1912 | ! grid%landmask(i,j) = 0 |
---|
1913 | ! grid%xland(i,j) = 2 |
---|
1914 | ! ELSE |
---|
1915 | ! print *,'the grid%landmask and soil/veg cats do not match' |
---|
1916 | ! print *,'i,j=',i,j |
---|
1917 | ! print *,'grid%landmask=',grid%landmask(i,j) |
---|
1918 | ! print *,'grid%ivgtyp=',grid%ivgtyp(i,j) |
---|
1919 | ! print *,'grid%isltyp=',grid%isltyp(i,j) |
---|
1920 | ! print *,'iswater=', config_flags%iswater |
---|
1921 | ! print *,'grid%tslb=',grid%tslb(i,:,j) |
---|
1922 | ! print *,'grid%sst=',grid%sst(i,j) |
---|
1923 | ! CALL wrf_error_fatal ( 'mismatch_landmask_ivgtyp' ) |
---|
1924 | ! END IF |
---|
1925 | ! END IF |
---|
1926 | ! END DO |
---|
1927 | ! END DO |
---|
1928 | !if (oops1.gt.0) then |
---|
1929 | !print *,'points artificially set to land : ',oops1 |
---|
1930 | !endif |
---|
1931 | !if(oops2.gt.0) then |
---|
1932 | !print *,'points artificially set to water: ',oops2 |
---|
1933 | !endif |
---|
1934 | !! fill grid%sst array with grid%em_tsk if missing in real input (needed for time-varying grid%sst in wrf) |
---|
1935 | ! DO j = jts, MIN(jde-1,jte) |
---|
1936 | ! DO i = its, MIN(ide-1,ite) |
---|
1937 | ! IF ( flag_sst .NE. 1 ) THEN |
---|
1938 | ! grid%sst(i,j) = grid%tsk(i,j) |
---|
1939 | ! ENDIF |
---|
1940 | ! END DO |
---|
1941 | ! END DO |
---|
1942 | |
---|
1943 | |
---|
1944 | ! From the full level data, we can get the half levels, reciprocals, and layer |
---|
1945 | ! thicknesses. These are all defined at half level locations, so one less level. |
---|
1946 | ! We allow the vertical coordinate to *accidently* come in upside down. We want |
---|
1947 | ! the first full level to be the ground surface. |
---|
1948 | |
---|
1949 | ! Check whether grid%em_znw (full level) data are truly full levels. If not, we need to adjust them |
---|
1950 | ! to be full levels. |
---|
1951 | ! in this test, we check if grid%em_znw(1) is neither 0 nor 1 (within a tolerance of 10**-5) |
---|
1952 | |
---|
1953 | were_bad = .false. |
---|
1954 | IF ( ( (grid%em_znw(1).LT.(1-1.E-5) ) .OR. ( grid%em_znw(1).GT.(1+1.E-5) ) ).AND. & |
---|
1955 | ( (grid%em_znw(1).LT.(0-1.E-5) ) .OR. ( grid%em_znw(1).GT.(0+1.E-5) ) ) ) THEN |
---|
1956 | were_bad = .true. |
---|
1957 | print *,'Your grid%em_znw input values are probably half-levels. ' |
---|
1958 | print *,grid%em_znw |
---|
1959 | print *,'WRF expects grid%em_znw values to be full levels. ' |
---|
1960 | print *,'Adjusting now to full levels...' |
---|
1961 | ! We want to ignore the first value if it's negative |
---|
1962 | IF (grid%em_znw(1).LT.0) THEN |
---|
1963 | grid%em_znw(1)=0 |
---|
1964 | END IF |
---|
1965 | DO k=2,kde |
---|
1966 | grid%em_znw(k)=2*grid%em_znw(k)-grid%em_znw(k-1) |
---|
1967 | END DO |
---|
1968 | END IF |
---|
1969 | |
---|
1970 | ! Let's check our changes |
---|
1971 | |
---|
1972 | IF ( ( ( grid%em_znw(1) .LT. (1-1.E-5) ) .OR. ( grid%em_znw(1) .GT. (1+1.E-5) ) ).AND. & |
---|
1973 | ( ( grid%em_znw(1) .LT. (0-1.E-5) ) .OR. ( grid%em_znw(1) .GT. (0+1.E-5) ) ) ) THEN |
---|
1974 | print *,'The input grid%em_znw height values were half-levels or erroneous. ' |
---|
1975 | print *,'Attempts to treat the values as half-levels and change them ' |
---|
1976 | print *,'to valid full levels failed.' |
---|
1977 | CALL wrf_error_fatal("bad grid%em_znw values from input files") |
---|
1978 | ELSE IF ( were_bad ) THEN |
---|
1979 | print *,'...adjusted. grid%em_znw array now contains full eta level values. ' |
---|
1980 | ENDIF |
---|
1981 | |
---|
1982 | IF ( grid%em_znw(1) .LT. grid%em_znw(kde) ) THEN |
---|
1983 | DO k=1, kde/2 |
---|
1984 | hold_znw = grid%em_znw(k) |
---|
1985 | grid%em_znw(k)=grid%em_znw(kde+1-k) |
---|
1986 | grid%em_znw(kde+1-k)=hold_znw |
---|
1987 | END DO |
---|
1988 | END IF |
---|
1989 | |
---|
1990 | DO k=1, kde-1 |
---|
1991 | grid%em_dnw(k) = grid%em_znw(k+1) - grid%em_znw(k) |
---|
1992 | grid%em_rdnw(k) = 1./grid%em_dnw(k) |
---|
1993 | grid%em_znu(k) = 0.5*(grid%em_znw(k+1)+grid%em_znw(k)) |
---|
1994 | END DO |
---|
1995 | |
---|
1996 | ! Now the same sort of computations with the half eta levels, even ANOTHER |
---|
1997 | ! level less than the one above. |
---|
1998 | |
---|
1999 | DO k=2, kde-1 |
---|
2000 | grid%em_dn(k) = 0.5*(grid%em_dnw(k)+grid%em_dnw(k-1)) |
---|
2001 | grid%em_rdn(k) = 1./grid%em_dn(k) |
---|
2002 | grid%em_fnp(k) = .5* grid%em_dnw(k )/grid%em_dn(k) |
---|
2003 | grid%em_fnm(k) = .5* grid%em_dnw(k-1)/grid%em_dn(k) |
---|
2004 | END DO |
---|
2005 | |
---|
2006 | ! Scads of vertical coefficients. |
---|
2007 | |
---|
2008 | cof1 = (2.*grid%em_dn(2)+grid%em_dn(3))/(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(2) |
---|
2009 | cof2 = grid%em_dn(2) /(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(3) |
---|
2010 | |
---|
2011 | grid%cf1 = grid%em_fnp(2) + cof1 |
---|
2012 | grid%cf2 = grid%em_fnm(2) - cof1 - cof2 |
---|
2013 | grid%cf3 = cof2 |
---|
2014 | |
---|
2015 | grid%cfn = (.5*grid%em_dnw(kde-1)+grid%em_dn(kde-1))/grid%em_dn(kde-1) |
---|
2016 | grid%cfn1 = -.5*grid%em_dnw(kde-1)/grid%em_dn(kde-1) |
---|
2017 | |
---|
2018 | ! Inverse grid distances. |
---|
2019 | |
---|
2020 | grid%rdx = 1./config_flags%dx |
---|
2021 | grid%rdy = 1./config_flags%dy |
---|
2022 | |
---|
2023 | ! Some of the many weird geopotential initializations that we'll see today: grid%em_ph0 is total, |
---|
2024 | ! and grid%em_ph_2 is a perturbation from the base state geopotential. We set the base geopotential |
---|
2025 | ! at the lowest level to terrain elevation * gravity. |
---|
2026 | |
---|
2027 | DO j=jts,jte |
---|
2028 | DO i=its,ite |
---|
2029 | grid%em_ph0(i,1,j) = grid%ht(i,j) * g |
---|
2030 | grid%em_ph_2(i,1,j) = 0. |
---|
2031 | END DO |
---|
2032 | END DO |
---|
2033 | |
---|
2034 | ! Base state potential temperature and inverse density (alpha = 1/rho) from |
---|
2035 | ! the half eta levels and the base-profile surface pressure. Compute 1/rho |
---|
2036 | ! from equation of state. The potential temperature is a perturbation from t0. |
---|
2037 | |
---|
2038 | DO j = jts, MIN(jte,jde-1) |
---|
2039 | DO i = its, MIN(ite,ide-1) |
---|
2040 | |
---|
2041 | |
---|
2042 | !****MARS |
---|
2043 | !TODO: etudier si une meilleure formule n'existe pas pour Mars |
---|
2044 | !TODO: mais il s'agit juste d'un etat de base ... |
---|
2045 | !****MARS |
---|
2046 | ! Base state pressure is a function of eta level and terrain, only, plus |
---|
2047 | ! the hand full of constants: p00 (sea level pressure, Pa), t00 (sea level |
---|
2048 | ! temperature, K), and A (temperature difference, from 1000 mb to 300 mb, K). |
---|
2049 | |
---|
2050 | !!****MARS |
---|
2051 | !!ici il s'agit de definir un etat de base, de reference |
---|
2052 | !!- on ne peut prendre le profil de temperature du modele |
---|
2053 | !! qui conduit a des instabilites |
---|
2054 | !! grid%em_t_init(i,k,j)=grid%em_t_2(i,k,j) - t0 est a eviter donc. |
---|
2055 | !!- pour la pression de surface, aucune information |
---|
2056 | !! sur un profil de temperature variable et non equilibre |
---|
2057 | !! ne doit transparaitre |
---|
2058 | !! p_surf = grid%psfc(i,j) pourquoi pas ... mais t y est utilisee ... |
---|
2059 | !! |
---|
2060 | !!>> l'etat de base ne doit dependre "geographiquement" que de la topographie |
---|
2061 | !! |
---|
2062 | !!****MARS |
---|
2063 | p_surf = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht(i,j)/a/r_d ) **0.5 ) |
---|
2064 | |
---|
2065 | DO k = 1, kte-1 |
---|
2066 | grid%em_php(i,k,j) = grid%em_znw(k)*(p_surf - grid%p_top) + grid%p_top ! temporary, full lev base pressure |
---|
2067 | grid%em_pb(i,k,j) = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top |
---|
2068 | ! temp = MAX ( 200., t00 + A*LOG(grid%em_pb(i,k,j)/p00) ) |
---|
2069 | temp = t00 + A*LOG(grid%em_pb(i,k,j)/p00) |
---|
2070 | grid%em_t_init(i,k,j) = temp*(p00/grid%em_pb(i,k,j))**(r_d/cp) - t0 |
---|
2071 | grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm |
---|
2072 | END DO |
---|
2073 | |
---|
2074 | ! Base state mu is defined as base state surface pressure minus grid%p_top |
---|
2075 | |
---|
2076 | grid%em_mub(i,j) = p_surf - grid%p_top |
---|
2077 | |
---|
2078 | ! Dry surface pressure is defined as the following (this mu is from the input file |
---|
2079 | ! computed from the dry pressure). Here the dry pressure is just reconstituted. |
---|
2080 | |
---|
2081 | pd_surf = grid%em_mu0(i,j) + grid%p_top |
---|
2082 | |
---|
2083 | ! Integrate base geopotential, starting at terrain elevation. This assures that |
---|
2084 | ! the base state is in exact hydrostatic balance with respect to the model equations. |
---|
2085 | ! This field is on full levels. |
---|
2086 | |
---|
2087 | grid%em_phb(i,1,j) = grid%ht(i,j) * g |
---|
2088 | DO k = 2,kte |
---|
2089 | grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j) |
---|
2090 | END DO |
---|
2091 | END DO |
---|
2092 | END DO |
---|
2093 | |
---|
2094 | ! Fill in the outer rows and columns to allow us to be sloppy. |
---|
2095 | |
---|
2096 | IF ( ite .EQ. ide ) THEN |
---|
2097 | i = ide |
---|
2098 | DO j = jts, MIN(jde-1,jte) |
---|
2099 | grid%em_mub(i,j) = grid%em_mub(i-1,j) |
---|
2100 | grid%em_mu_2(i,j) = grid%em_mu_2(i-1,j) |
---|
2101 | DO k = 1, kte-1 |
---|
2102 | grid%em_pb(i,k,j) = grid%em_pb(i-1,k,j) |
---|
2103 | grid%em_t_init(i,k,j) = grid%em_t_init(i-1,k,j) |
---|
2104 | grid%em_alb(i,k,j) = grid%em_alb(i-1,k,j) |
---|
2105 | END DO |
---|
2106 | DO k = 1, kte |
---|
2107 | grid%em_phb(i,k,j) = grid%em_phb(i-1,k,j) |
---|
2108 | END DO |
---|
2109 | END DO |
---|
2110 | END IF |
---|
2111 | |
---|
2112 | IF ( jte .EQ. jde ) THEN |
---|
2113 | j = jde |
---|
2114 | DO i = its, ite |
---|
2115 | grid%em_mub(i,j) = grid%em_mub(i,j-1) |
---|
2116 | grid%em_mu_2(i,j) = grid%em_mu_2(i,j-1) |
---|
2117 | DO k = 1, kte-1 |
---|
2118 | grid%em_pb(i,k,j) = grid%em_pb(i,k,j-1) |
---|
2119 | grid%em_t_init(i,k,j) = grid%em_t_init(i,k,j-1) |
---|
2120 | grid%em_alb(i,k,j) = grid%em_alb(i,k,j-1) |
---|
2121 | END DO |
---|
2122 | DO k = 1, kte |
---|
2123 | grid%em_phb(i,k,j) = grid%em_phb(i,k,j-1) |
---|
2124 | END DO |
---|
2125 | END DO |
---|
2126 | END IF |
---|
2127 | |
---|
2128 | ! Compute the perturbation dry pressure (grid%em_mub + grid%em_mu_2 + ptop = dry grid%em_psfc). |
---|
2129 | |
---|
2130 | DO j = jts, min(jde-1,jte) |
---|
2131 | DO i = its, min(ide-1,ite) |
---|
2132 | grid%em_mu_2(i,j) = grid%em_mu0(i,j) - grid%em_mub(i,j) |
---|
2133 | END DO |
---|
2134 | END DO |
---|
2135 | |
---|
2136 | ! Fill in the outer rows and columns to allow us to be sloppy. |
---|
2137 | |
---|
2138 | IF ( ite .EQ. ide ) THEN |
---|
2139 | i = ide |
---|
2140 | DO j = jts, MIN(jde-1,jte) |
---|
2141 | grid%em_mu_2(i,j) = grid%em_mu_2(i-1,j) |
---|
2142 | END DO |
---|
2143 | END IF |
---|
2144 | |
---|
2145 | IF ( jte .EQ. jde ) THEN |
---|
2146 | j = jde |
---|
2147 | DO i = its, ite |
---|
2148 | grid%em_mu_2(i,j) = grid%em_mu_2(i,j-1) |
---|
2149 | END DO |
---|
2150 | END IF |
---|
2151 | |
---|
2152 | lev500 = 0 |
---|
2153 | DO j = jts, min(jde-1,jte) |
---|
2154 | DO i = its, min(ide-1,ite) |
---|
2155 | |
---|
2156 | ! Assign the potential temperature (perturbation from t0) and qv on all the mass |
---|
2157 | ! point locations. |
---|
2158 | |
---|
2159 | DO k = 1 , kde-1 |
---|
2160 | grid%em_t_2(i,k,j) = grid%em_t_2(i,k,j) - t0 |
---|
2161 | END DO |
---|
2162 | |
---|
2163 | !!--------------------------------------------------------------- |
---|
2164 | !!****MARS: no 500mb adjustment needed |
---|
2165 | !!****MARS: must keep however the hydrostatic equation integration performed in this loop ! |
---|
2166 | !!****MARS: the DO WHILE loop is deactivated, since we will always be in the case |
---|
2167 | !!****MARS: ... of "ELSE dpmu = 0." |
---|
2168 | !!--------------------------------------------------------------- |
---|
2169 | ! dpmu = 10001. |
---|
2170 | ! loop_count = 0 |
---|
2171 | ! |
---|
2172 | ! DO WHILE ( ( ABS(dpmu) .GT. 10. ) .AND. & |
---|
2173 | ! ( loop_count .LT. 5 ) ) |
---|
2174 | ! |
---|
2175 | ! loop_count = loop_count + 1 |
---|
2176 | |
---|
2177 | ! Integrate the hydrostatic equation (from the RHS of the bigstep vertical momentum |
---|
2178 | ! equation) down from the top to get the pressure perturbation. First get the pressure |
---|
2179 | ! perturbation, moisture, and inverse density (total and perturbation) at the top-most level. |
---|
2180 | |
---|
2181 | k = kte-1 |
---|
2182 | |
---|
2183 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV)) |
---|
2184 | qvf2 = 1./(1.+qvf1) |
---|
2185 | qvf1 = qvf1*qvf2 |
---|
2186 | |
---|
2187 | grid%em_p(i,k,j) = - 0.5*(grid%em_mu_2(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2 |
---|
2188 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
---|
2189 | grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_2(i,k,j)+t0)*qvf& |
---|
2190 | *(((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm) |
---|
2191 | grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j) |
---|
2192 | |
---|
2193 | ! Now, integrate down the column to compute the pressure perturbation, and diagnose the two |
---|
2194 | ! inverse density fields (total and perturbation). |
---|
2195 | |
---|
2196 | DO k=kte-2,1,-1 |
---|
2197 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV)) |
---|
2198 | qvf2 = 1./(1.+qvf1) |
---|
2199 | qvf1 = qvf1*qvf2 |
---|
2200 | grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_2(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1) |
---|
2201 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
---|
2202 | grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_2(i,k,j)+t0)*qvf* & |
---|
2203 | (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm) |
---|
2204 | grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j) |
---|
2205 | END DO |
---|
2206 | |
---|
2207 | ! This is the hydrostatic equation used in the model after the small timesteps. In |
---|
2208 | ! the model, grid%em_al (inverse density) is computed from the geopotential. |
---|
2209 | |
---|
2210 | DO k = 2,kte |
---|
2211 | grid%em_ph_2(i,k,j) = grid%em_ph_2(i,k-1,j) - & |
---|
2212 | grid%em_dnw(k-1) * ( (grid%em_mub(i,j)+grid%em_mu_2(i,j))*grid%em_al(i,k-1,j) & |
---|
2213 | + grid%em_mu_2(i,j)*grid%em_alb(i,k-1,j) ) |
---|
2214 | grid%em_ph0(i,k,j) = grid%em_ph_2(i,k,j) + grid%em_phb(i,k,j) |
---|
2215 | END DO |
---|
2216 | |
---|
2217 | ! ! Adjust the column pressure so that the computed 500 mb height is close to the |
---|
2218 | ! ! input value (of course, not when we are doing hybrid input). |
---|
2219 | ! |
---|
2220 | ! IF ( ( flag_metgrid .EQ. 1 ) .AND. ( i .EQ. its ) .AND. ( j .EQ. jts ) ) THEN |
---|
2221 | ! DO k = 1 , num_metgrid_levels |
---|
2222 | ! IF ( ABS ( grid%em_p_gc(i,k,j) - 50000. ) .LT. 1. ) THEN |
---|
2223 | ! lev500 = k |
---|
2224 | ! EXIT |
---|
2225 | ! END IF |
---|
2226 | ! END DO |
---|
2227 | ! END IF |
---|
2228 | ! |
---|
2229 | ! ! We only do the adjustment of height if we have the input data on pressure |
---|
2230 | ! ! surfaces, and folks have asked to do this option. |
---|
2231 | ! |
---|
2232 | ! IF ( ( flag_metgrid .EQ. 1 ) .AND. & |
---|
2233 | ! ( config_flags%adjust_heights ) .AND. & |
---|
2234 | ! ( lev500 .NE. 0 ) ) THEN |
---|
2235 | ! |
---|
2236 | ! DO k = 2 , kte-1 |
---|
2237 | ! |
---|
2238 | ! ! Get the pressures on the full eta levels (grid%em_php is defined above as |
---|
2239 | ! ! the full-lev base pressure, an easy array to use for 3d space). |
---|
2240 | ! |
---|
2241 | ! pl = grid%em_php(i,k ,j) + & |
---|
2242 | ! ( grid%em_p(i,k-1 ,j) * ( grid%em_znw(k ) - grid%em_znu(k ) ) + & |
---|
2243 | ! grid%em_p(i,k ,j) * ( grid%em_znu(k-1 ) - grid%em_znw(k ) ) ) / & |
---|
2244 | ! ( grid%em_znu(k-1 ) - grid%em_znu(k ) ) |
---|
2245 | ! pu = grid%em_php(i,k+1,j) + & |
---|
2246 | ! ( grid%em_p(i,k-1+1,j) * ( grid%em_znw(k +1) - grid%em_znu(k+1) ) + & |
---|
2247 | ! grid%em_p(i,k +1,j) * ( grid%em_znu(k-1+1) - grid%em_znw(k+1) ) ) / & |
---|
2248 | ! ( grid%em_znu(k-1+1) - grid%em_znu(k+1) ) |
---|
2249 | ! |
---|
2250 | ! ! If these pressure levels trap 500 mb, use them to interpolate |
---|
2251 | ! ! to the 500 mb level of the computed height. |
---|
2252 | !!**** PB on MARS .... ? |
---|
2253 | ! IF ( ( pl .GE. 50000. ) .AND. ( pu .LT. 50000. ) ) THEN |
---|
2254 | ! zl = ( grid%em_ph_2(i,k ,j) + grid%em_phb(i,k ,j) ) / g |
---|
2255 | ! zu = ( grid%em_ph_2(i,k+1,j) + grid%em_phb(i,k+1,j) ) / g |
---|
2256 | ! |
---|
2257 | ! z500 = ( zl * ( LOG(50000.) - LOG(pu ) ) + & |
---|
2258 | ! zu * ( LOG(pl ) - LOG(50000.) ) ) / & |
---|
2259 | ! ( LOG(pl) - LOG(pu) ) |
---|
2260 | !! z500 = ( zl * ( (50000.) - (pu ) ) + & |
---|
2261 | !! zu * ( (pl ) - (50000.) ) ) / & |
---|
2262 | !! ( (pl) - (pu) ) |
---|
2263 | ! |
---|
2264 | ! ! Compute the difference of the 500 mb heights (computed minus input), and |
---|
2265 | ! ! then the change in grid%em_mu_2. The grid%em_php is still full-levels, base pressure. |
---|
2266 | ! |
---|
2267 | ! dz500 = z500 - grid%em_ght_gc(i,lev500,j) |
---|
2268 | ! tvsfc = ((grid%em_t_2(i,1,j)+t0)*((grid%em_p(i,1,j)+grid%em_php(i,1,j))/p1000mb)**(r_d/cp)) * & |
---|
2269 | ! (1.+0.6*moist(i,1,j,P_QV)) |
---|
2270 | ! dpmu = ( grid%em_php(i,1,j) + grid%em_p(i,1,j) ) * EXP ( g * dz500 / ( r_d * tvsfc ) ) |
---|
2271 | ! dpmu = dpmu - ( grid%em_php(i,1,j) + grid%em_p(i,1,j) ) |
---|
2272 | ! grid%em_mu_2(i,j) = grid%em_mu_2(i,j) - dpmu |
---|
2273 | ! EXIT |
---|
2274 | ! END IF |
---|
2275 | ! |
---|
2276 | ! END DO |
---|
2277 | ! ELSE |
---|
2278 | ! dpmu = 0. |
---|
2279 | ! END IF |
---|
2280 | ! |
---|
2281 | ! END DO |
---|
2282 | |
---|
2283 | END DO |
---|
2284 | END DO |
---|
2285 | |
---|
2286 | !!****MARS: we use WPS |
---|
2287 | ! |
---|
2288 | ! ! If this is data from the SI, then we probably do not have the original |
---|
2289 | ! ! surface data laying around. Note that these are all the lowest levels |
---|
2290 | ! ! of the respective 3d arrays. For surface pressure, we assume that the |
---|
2291 | ! ! vertical gradient of grid%em_p prime is zilch. This is not all that important. |
---|
2292 | ! ! These are filled in so that the various plotting routines have something |
---|
2293 | ! ! to play with at the initial time for the model. |
---|
2294 | ! |
---|
2295 | ! IF ( flag_metgrid .NE. 1 ) THEN |
---|
2296 | ! DO j = jts, min(jde-1,jte) |
---|
2297 | ! DO i = its, min(ide,ite) |
---|
2298 | ! grid%u10(i,j)=grid%em_u_2(i,1,j) |
---|
2299 | ! END DO |
---|
2300 | ! END DO |
---|
2301 | ! |
---|
2302 | ! DO j = jts, min(jde,jte) |
---|
2303 | ! DO i = its, min(ide-1,ite) |
---|
2304 | ! grid%v10(i,j)=grid%em_v_2(i,1,j) |
---|
2305 | ! END DO |
---|
2306 | ! END DO |
---|
2307 | ! |
---|
2308 | ! DO j = jts, min(jde-1,jte) |
---|
2309 | ! DO i = its, min(ide-1,ite) |
---|
2310 | ! p_surf = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht(i,j)/a/r_d ) **0.5 ) |
---|
2311 | ! grid%psfc(i,j)=p_surf + grid%em_p(i,1,j) |
---|
2312 | ! grid%q2(i,j)=moist(i,1,j,P_QV) |
---|
2313 | ! grid%th2(i,j)=grid%em_t_2(i,1,j)+300. |
---|
2314 | ! grid%t2(i,j)=grid%th2(i,j)*(((grid%em_p(i,1,j)+grid%em_pb(i,1,j))/p00)**(r_d/cp)) |
---|
2315 | ! END DO |
---|
2316 | ! END DO |
---|
2317 | ! |
---|
2318 | ! ! If this data is from WPS, then we have previously assigned the surface |
---|
2319 | ! ! data for u, v, and t. If we have an input qv, welp, we assigned that one, |
---|
2320 | ! ! too. Now we pick up the left overs, and if RH came in - we assign the |
---|
2321 | ! ! mixing ratio. |
---|
2322 | ! |
---|
2323 | ! ELSE IF ( flag_metgrid .EQ. 1 ) THEN |
---|
2324 | ! |
---|
2325 | !!****MARS: we use WPS |
---|
2326 | |
---|
2327 | DO j = jts, min(jde-1,jte) |
---|
2328 | DO i = its, min(ide-1,ite) |
---|
2329 | p_surf = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht(i,j)/a/r_d ) **0.5 ) |
---|
2330 | ! recompute the value of surface pressure as calculated by sfcprs2 |
---|
2331 | grid%psfc(i,j)=p_surf + grid%em_p(i,1,j) |
---|
2332 | !!grid%th2 is used for other purpose |
---|
2333 | !grid%th2(i,j)=grid%t2(i,j)*(p00/(grid%em_p(i,1,j)+grid%em_pb(i,1,j)))**(r_d/cp) |
---|
2334 | grid%th2(i,j)=0. !!TODO TODO TODO - waiting for an input |
---|
2335 | END DO |
---|
2336 | END DO |
---|
2337 | |
---|
2338 | !!NB: q2 is used for other purpose ... |
---|
2339 | !IF ( flag_qv .NE. 1 ) THEN |
---|
2340 | ! DO j = jts, min(jde-1,jte) |
---|
2341 | ! DO i = its, min(ide-1,ite) |
---|
2342 | ! grid%q2(i,j)=moist(i,1,j,P_QV) |
---|
2343 | ! END DO |
---|
2344 | ! END DO |
---|
2345 | !END IF |
---|
2346 | !!NB: q2 is used for other purpose ... |
---|
2347 | |
---|
2348 | |
---|
2349 | ! END IF |
---|
2350 | |
---|
2351 | !!!!MARS |
---|
2352 | !!!! |
---|
2353 | !!!! useful for history files @ first step |
---|
2354 | !!!! |
---|
2355 | grid%em_phtot = grid%em_ph0 |
---|
2356 | grid%em_ptot = grid%em_p + grid%em_pb |
---|
2357 | !!!! |
---|
2358 | !!!!MARS |
---|
2359 | |
---|
2360 | ips = its ; ipe = ite ; jps = jts ; jpe = jte ; kps = kts ; kpe = kte |
---|
2361 | #ifdef DM_PARALLEL |
---|
2362 | # include "HALO_EM_INIT_1.inc" |
---|
2363 | # include "HALO_EM_INIT_2.inc" |
---|
2364 | # include "HALO_EM_INIT_3.inc" |
---|
2365 | # include "HALO_EM_INIT_4.inc" |
---|
2366 | # include "HALO_EM_INIT_5.inc" |
---|
2367 | #endif |
---|
2368 | |
---|
2369 | RETURN |
---|
2370 | |
---|
2371 | END SUBROUTINE init_domain_rk |
---|
2372 | |
---|
2373 | !--------------------------------------------------------------------- |
---|
2374 | |
---|
2375 | SUBROUTINE const_module_initialize ( p00 , t00 , a ) |
---|
2376 | USE module_configure |
---|
2377 | IMPLICIT NONE |
---|
2378 | ! For the real-data-cases only. |
---|
2379 | REAL , INTENT(OUT) :: p00 , t00 , a |
---|
2380 | CALL nl_get_base_pres ( 1 , p00 ) |
---|
2381 | CALL nl_get_base_temp ( 1 , t00 ) |
---|
2382 | CALL nl_get_base_lapse ( 1 , a ) |
---|
2383 | END SUBROUTINE const_module_initialize |
---|
2384 | |
---|
2385 | !------------------------------------------------------------------- |
---|
2386 | |
---|
2387 | SUBROUTINE rebalance_driver ( grid ) |
---|
2388 | |
---|
2389 | IMPLICIT NONE |
---|
2390 | |
---|
2391 | TYPE (domain) :: grid |
---|
2392 | |
---|
2393 | CALL rebalance( grid & |
---|
2394 | ! |
---|
2395 | #include "em_actual_new_args.inc" |
---|
2396 | ! |
---|
2397 | ) |
---|
2398 | |
---|
2399 | END SUBROUTINE rebalance_driver |
---|
2400 | |
---|
2401 | !--------------------------------------------------------------------- |
---|
2402 | |
---|
2403 | SUBROUTINE rebalance ( grid & |
---|
2404 | ! |
---|
2405 | #include "em_dummy_new_args.inc" |
---|
2406 | ! |
---|
2407 | ) |
---|
2408 | IMPLICIT NONE |
---|
2409 | |
---|
2410 | TYPE (domain) :: grid |
---|
2411 | |
---|
2412 | #include "em_dummy_new_decl.inc" |
---|
2413 | |
---|
2414 | TYPE (grid_config_rec_type) :: config_flags |
---|
2415 | |
---|
2416 | REAL :: p_surf , pd_surf, p_surf_int , pb_int , ht_hold |
---|
2417 | REAL :: qvf , qvf1 , qvf2 |
---|
2418 | REAL :: p00 , t00 , a |
---|
2419 | REAL , DIMENSION(:,:,:) , ALLOCATABLE :: t_init_int |
---|
2420 | |
---|
2421 | ! Local domain indices and counters. |
---|
2422 | |
---|
2423 | INTEGER :: num_veg_cat , num_soil_top_cat , num_soil_bot_cat |
---|
2424 | |
---|
2425 | INTEGER :: & |
---|
2426 | ids, ide, jds, jde, kds, kde, & |
---|
2427 | ims, ime, jms, jme, kms, kme, & |
---|
2428 | its, ite, jts, jte, kts, kte, & |
---|
2429 | ips, ipe, jps, jpe, kps, kpe, & |
---|
2430 | i, j, k |
---|
2431 | |
---|
2432 | #ifdef DM_PARALLEL |
---|
2433 | # include "em_data_calls.inc" |
---|
2434 | #endif |
---|
2435 | |
---|
2436 | SELECT CASE ( model_data_order ) |
---|
2437 | CASE ( DATA_ORDER_ZXY ) |
---|
2438 | kds = grid%sd31 ; kde = grid%ed31 ; |
---|
2439 | ids = grid%sd32 ; ide = grid%ed32 ; |
---|
2440 | jds = grid%sd33 ; jde = grid%ed33 ; |
---|
2441 | |
---|
2442 | kms = grid%sm31 ; kme = grid%em31 ; |
---|
2443 | ims = grid%sm32 ; ime = grid%em32 ; |
---|
2444 | jms = grid%sm33 ; jme = grid%em33 ; |
---|
2445 | |
---|
2446 | kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch |
---|
2447 | its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch |
---|
2448 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
---|
2449 | |
---|
2450 | CASE ( DATA_ORDER_XYZ ) |
---|
2451 | ids = grid%sd31 ; ide = grid%ed31 ; |
---|
2452 | jds = grid%sd32 ; jde = grid%ed32 ; |
---|
2453 | kds = grid%sd33 ; kde = grid%ed33 ; |
---|
2454 | |
---|
2455 | ims = grid%sm31 ; ime = grid%em31 ; |
---|
2456 | jms = grid%sm32 ; jme = grid%em32 ; |
---|
2457 | kms = grid%sm33 ; kme = grid%em33 ; |
---|
2458 | |
---|
2459 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
---|
2460 | jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch |
---|
2461 | kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch |
---|
2462 | |
---|
2463 | CASE ( DATA_ORDER_XZY ) |
---|
2464 | ids = grid%sd31 ; ide = grid%ed31 ; |
---|
2465 | kds = grid%sd32 ; kde = grid%ed32 ; |
---|
2466 | jds = grid%sd33 ; jde = grid%ed33 ; |
---|
2467 | |
---|
2468 | ims = grid%sm31 ; ime = grid%em31 ; |
---|
2469 | kms = grid%sm32 ; kme = grid%em32 ; |
---|
2470 | jms = grid%sm33 ; jme = grid%em33 ; |
---|
2471 | |
---|
2472 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
---|
2473 | kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch |
---|
2474 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
---|
2475 | |
---|
2476 | END SELECT |
---|
2477 | |
---|
2478 | ALLOCATE ( t_init_int(ims:ime,kms:kme,jms:jme) ) |
---|
2479 | |
---|
2480 | ! Some of the many weird geopotential initializations that we'll see today: grid%em_ph0 is total, |
---|
2481 | ! and grid%em_ph_2 is a perturbation from the base state geopotential. We set the base geopotential |
---|
2482 | ! at the lowest level to terrain elevation * gravity. |
---|
2483 | |
---|
2484 | DO j=jts,jte |
---|
2485 | DO i=its,ite |
---|
2486 | grid%em_ph0(i,1,j) = grid%ht_fine(i,j) * g |
---|
2487 | grid%em_ph_2(i,1,j) = 0. |
---|
2488 | END DO |
---|
2489 | END DO |
---|
2490 | |
---|
2491 | ! To define the base state, we call a USER MODIFIED routine to set the three |
---|
2492 | ! necessary constants: p00 (sea level pressure, Pa), t00 (sea level temperature, K), |
---|
2493 | ! and A (temperature difference, from 1000 mb to 300 mb, K). |
---|
2494 | |
---|
2495 | CALL const_module_initialize ( p00 , t00 , a ) |
---|
2496 | |
---|
2497 | ! Base state potential temperature and inverse density (alpha = 1/rho) from |
---|
2498 | ! the half eta levels and the base-profile surface pressure. Compute 1/rho |
---|
2499 | ! from equation of state. The potential temperature is a perturbation from t0. |
---|
2500 | |
---|
2501 | DO j = jts, MIN(jte,jde-1) |
---|
2502 | DO i = its, MIN(ite,ide-1) |
---|
2503 | |
---|
2504 | ! Base state pressure is a function of eta level and terrain, only, plus |
---|
2505 | ! the hand full of constants: p00 (sea level pressure, Pa), t00 (sea level |
---|
2506 | ! temperature, K), and A (temperature difference, from 1000 mb to 300 mb, K). |
---|
2507 | ! The fine grid terrain is ht_fine, the interpolated is grid%em_ht. |
---|
2508 | |
---|
2509 | p_surf = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht_fine(i,j)/a/r_d ) **0.5 ) |
---|
2510 | p_surf_int = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht(i,j) /a/r_d ) **0.5 ) |
---|
2511 | |
---|
2512 | DO k = 1, kte-1 |
---|
2513 | grid%em_pb(i,k,j) = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top |
---|
2514 | pb_int = grid%em_znu(k)*(p_surf_int - grid%p_top) + grid%p_top |
---|
2515 | grid%em_t_init(i,k,j) = (t00 + A*LOG(grid%em_pb(i,k,j)/p00))*(p00/grid%em_pb(i,k,j))**(r_d/cp) - t0 |
---|
2516 | t_init_int(i,k,j)= (t00 + A*LOG(pb_int /p00))*(p00/pb_int )**(r_d/cp) - t0 |
---|
2517 | grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm |
---|
2518 | END DO |
---|
2519 | |
---|
2520 | ! Base state mu is defined as base state surface pressure minus grid%p_top |
---|
2521 | |
---|
2522 | grid%em_mub(i,j) = p_surf - grid%p_top |
---|
2523 | |
---|
2524 | ! Dry surface pressure is defined as the following (this mu is from the input file |
---|
2525 | ! computed from the dry pressure). Here the dry pressure is just reconstituted. |
---|
2526 | |
---|
2527 | pd_surf = ( grid%em_mub(i,j) + grid%em_mu_2(i,j) ) + grid%p_top |
---|
2528 | |
---|
2529 | ! Integrate base geopotential, starting at terrain elevation. This assures that |
---|
2530 | ! the base state is in exact hydrostatic balance with respect to the model equations. |
---|
2531 | ! This field is on full levels. |
---|
2532 | |
---|
2533 | grid%em_phb(i,1,j) = grid%ht_fine(i,j) * g |
---|
2534 | DO k = 2,kte |
---|
2535 | grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j) |
---|
2536 | END DO |
---|
2537 | END DO |
---|
2538 | END DO |
---|
2539 | |
---|
2540 | ! Replace interpolated terrain with fine grid values. |
---|
2541 | |
---|
2542 | DO j = jts, MIN(jte,jde-1) |
---|
2543 | DO i = its, MIN(ite,ide-1) |
---|
2544 | grid%ht(i,j) = grid%ht_fine(i,j) |
---|
2545 | END DO |
---|
2546 | END DO |
---|
2547 | |
---|
2548 | ! Perturbation fields. |
---|
2549 | |
---|
2550 | DO j = jts, min(jde-1,jte) |
---|
2551 | DO i = its, min(ide-1,ite) |
---|
2552 | |
---|
2553 | ! The potential temperature is THETAnest = THETAinterp + ( TBARnest - TBARinterp) |
---|
2554 | |
---|
2555 | DO k = 1 , kde-1 |
---|
2556 | grid%em_t_2(i,k,j) = grid%em_t_2(i,k,j) + ( grid%em_t_init(i,k,j) - t_init_int(i,k,j) ) |
---|
2557 | END DO |
---|
2558 | |
---|
2559 | ! Integrate the hydrostatic equation (from the RHS of the bigstep vertical momentum |
---|
2560 | ! equation) down from the top to get the pressure perturbation. First get the pressure |
---|
2561 | ! perturbation, moisture, and inverse density (total and perturbation) at the top-most level. |
---|
2562 | |
---|
2563 | k = kte-1 |
---|
2564 | |
---|
2565 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV)) |
---|
2566 | qvf2 = 1./(1.+qvf1) |
---|
2567 | qvf1 = qvf1*qvf2 |
---|
2568 | |
---|
2569 | grid%em_p(i,k,j) = - 0.5*(grid%em_mu_2(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2 |
---|
2570 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
---|
2571 | grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_2(i,k,j)+t0)*qvf* & |
---|
2572 | (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm) |
---|
2573 | grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j) |
---|
2574 | |
---|
2575 | ! Now, integrate down the column to compute the pressure perturbation, and diagnose the two |
---|
2576 | ! inverse density fields (total and perturbation). |
---|
2577 | |
---|
2578 | DO k=kte-2,1,-1 |
---|
2579 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV)) |
---|
2580 | qvf2 = 1./(1.+qvf1) |
---|
2581 | qvf1 = qvf1*qvf2 |
---|
2582 | grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_2(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1) |
---|
2583 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
---|
2584 | grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_2(i,k,j)+t0)*qvf* & |
---|
2585 | (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm) |
---|
2586 | grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j) |
---|
2587 | END DO |
---|
2588 | |
---|
2589 | ! This is the hydrostatic equation used in the model after the small timesteps. In |
---|
2590 | ! the model, grid%em_al (inverse density) is computed from the geopotential. |
---|
2591 | |
---|
2592 | DO k = 2,kte |
---|
2593 | grid%em_ph_2(i,k,j) = grid%em_ph_2(i,k-1,j) - & |
---|
2594 | grid%em_dnw(k-1) * ( (grid%em_mub(i,j)+grid%em_mu_2(i,j))*grid%em_al(i,k-1,j) & |
---|
2595 | + grid%em_mu_2(i,j)*grid%em_alb(i,k-1,j) ) |
---|
2596 | grid%em_ph0(i,k,j) = grid%em_ph_2(i,k,j) + grid%em_phb(i,k,j) |
---|
2597 | END DO |
---|
2598 | |
---|
2599 | END DO |
---|
2600 | END DO |
---|
2601 | |
---|
2602 | DEALLOCATE ( t_init_int ) |
---|
2603 | |
---|
2604 | ips = its ; ipe = ite ; jps = jts ; jpe = jte ; kps = kts ; kpe = kte |
---|
2605 | #ifdef DM_PARALLEL |
---|
2606 | # include "HALO_EM_INIT_1.inc" |
---|
2607 | # include "HALO_EM_INIT_2.inc" |
---|
2608 | # include "HALO_EM_INIT_3.inc" |
---|
2609 | # include "HALO_EM_INIT_4.inc" |
---|
2610 | # include "HALO_EM_INIT_5.inc" |
---|
2611 | #endif |
---|
2612 | END SUBROUTINE rebalance |
---|
2613 | |
---|
2614 | !--------------------------------------------------------------------- |
---|
2615 | |
---|
2616 | RECURSIVE SUBROUTINE find_my_parent ( grid_ptr_in , grid_ptr_out , id_i_am , id_wanted , found_the_id ) |
---|
2617 | |
---|
2618 | USE module_domain |
---|
2619 | |
---|
2620 | TYPE(domain) , POINTER :: grid_ptr_in , grid_ptr_out |
---|
2621 | TYPE(domain) , POINTER :: grid_ptr_sibling |
---|
2622 | INTEGER :: id_wanted , id_i_am |
---|
2623 | LOGICAL :: found_the_id |
---|
2624 | |
---|
2625 | found_the_id = .FALSE. |
---|
2626 | grid_ptr_sibling => grid_ptr_in |
---|
2627 | DO WHILE ( ASSOCIATED ( grid_ptr_sibling ) ) |
---|
2628 | |
---|
2629 | IF ( grid_ptr_sibling%grid_id .EQ. id_wanted ) THEN |
---|
2630 | found_the_id = .TRUE. |
---|
2631 | grid_ptr_out => grid_ptr_sibling |
---|
2632 | RETURN |
---|
2633 | ELSE IF ( grid_ptr_sibling%num_nests .GT. 0 ) THEN |
---|
2634 | grid_ptr_sibling => grid_ptr_sibling%nests(1)%ptr |
---|
2635 | CALL find_my_parent ( grid_ptr_sibling , grid_ptr_out , id_i_am , id_wanted , found_the_id ) |
---|
2636 | ELSE |
---|
2637 | grid_ptr_sibling => grid_ptr_sibling%sibling |
---|
2638 | END IF |
---|
2639 | |
---|
2640 | END DO |
---|
2641 | |
---|
2642 | END SUBROUTINE find_my_parent |
---|
2643 | |
---|
2644 | #endif |
---|
2645 | |
---|
2646 | !--------------------------------------------------------------------- |
---|
2647 | |
---|
2648 | #ifdef VERT_UNIT |
---|
2649 | |
---|
2650 | !This is a main program for a small unit test for the vertical interpolation. |
---|
2651 | |
---|
2652 | program vint |
---|
2653 | |
---|
2654 | implicit none |
---|
2655 | |
---|
2656 | integer , parameter :: ij = 3 |
---|
2657 | integer , parameter :: keta = 30 |
---|
2658 | integer , parameter :: kgen =20 |
---|
2659 | |
---|
2660 | integer :: ids , ide , jds , jde , kds , kde , & |
---|
2661 | ims , ime , jms , jme , kms , kme , & |
---|
2662 | its , ite , jts , jte , kts , kte |
---|
2663 | |
---|
2664 | integer :: generic |
---|
2665 | |
---|
2666 | real , dimension(1:ij,kgen,1:ij) :: fo , po |
---|
2667 | real , dimension(1:ij,1:keta,1:ij) :: fn_calc , fn_interp , pn |
---|
2668 | |
---|
2669 | integer, parameter :: interp_type = 1 ! 2 |
---|
2670 | ! integer, parameter :: lagrange_order = 2 ! 1 |
---|
2671 | integer :: lagrange_order |
---|
2672 | logical, parameter :: lowest_lev_from_sfc = .FALSE. ! .TRUE. |
---|
2673 | real , parameter :: zap_close_levels = 500. ! 100. |
---|
2674 | integer, parameter :: force_sfc_in_vinterp = 0 ! 6 |
---|
2675 | |
---|
2676 | integer :: k |
---|
2677 | |
---|
2678 | ids = 1 ; ide = ij ; jds = 1 ; jde = ij ; kds = 1 ; kde = keta |
---|
2679 | ims = 1 ; ime = ij ; jms = 1 ; jme = ij ; kms = 1 ; kme = keta |
---|
2680 | its = 1 ; ite = ij ; jts = 1 ; jte = ij ; kts = 1 ; kte = keta |
---|
2681 | |
---|
2682 | generic = kgen |
---|
2683 | |
---|
2684 | print *,' ' |
---|
2685 | print *,'------------------------------------' |
---|
2686 | print *,'UNIT TEST FOR VERTICAL INTERPOLATION' |
---|
2687 | print *,'------------------------------------' |
---|
2688 | print *,' ' |
---|
2689 | do lagrange_order = 1 , 2 |
---|
2690 | print *,' ' |
---|
2691 | print *,'------------------------------------' |
---|
2692 | print *,'Lagrange Order = ',lagrange_order |
---|
2693 | print *,'------------------------------------' |
---|
2694 | print *,' ' |
---|
2695 | call fillitup ( fo , po , fn_calc , pn , & |
---|
2696 | ids , ide , jds , jde , kds , kde , & |
---|
2697 | ims , ime , jms , jme , kms , kme , & |
---|
2698 | its , ite , jts , jte , kts , kte , & |
---|
2699 | generic , lagrange_order ) |
---|
2700 | |
---|
2701 | print *,' ' |
---|
2702 | print *,'Level Pressure Field' |
---|
2703 | print *,' (Pa) (generic)' |
---|
2704 | print *,'------------------------------------' |
---|
2705 | print *,' ' |
---|
2706 | do k = 1 , generic |
---|
2707 | write (*,fmt='(i2,2x,f12.3,1x,g15.8)' ) & |
---|
2708 | k,po(2,k,2),fo(2,k,2) |
---|
2709 | end do |
---|
2710 | print *,' ' |
---|
2711 | |
---|
2712 | call vert_interp ( fo , po , fn_interp , pn , & |
---|
2713 | generic , 'T' , & |
---|
2714 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
---|
2715 | zap_close_levels , force_sfc_in_vinterp , & |
---|
2716 | ids , ide , jds , jde , kds , kde , & |
---|
2717 | ims , ime , jms , jme , kms , kme , & |
---|
2718 | its , ite , jts , jte , kts , kte ) |
---|
2719 | |
---|
2720 | print *,'Multi-Order Interpolator' |
---|
2721 | print *,'------------------------------------' |
---|
2722 | print *,' ' |
---|
2723 | print *,'Level Pressure Field Field Field' |
---|
2724 | print *,' (Pa) Calc Interp Diff' |
---|
2725 | print *,'------------------------------------' |
---|
2726 | print *,' ' |
---|
2727 | do k = kts , kte-1 |
---|
2728 | write (*,fmt='(i2,2x,f12.3,1x,3(g15.7))' ) & |
---|
2729 | k,pn(2,k,2),fn_calc(2,k,2),fn_interp(2,k,2),fn_calc(2,k,2)-fn_interp(2,k,2) |
---|
2730 | end do |
---|
2731 | |
---|
2732 | call vert_interp_old ( fo , po , fn_interp , pn , & |
---|
2733 | generic , 'T' , & |
---|
2734 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
---|
2735 | zap_close_levels , force_sfc_in_vinterp , & |
---|
2736 | ids , ide , jds , jde , kds , kde , & |
---|
2737 | ims , ime , jms , jme , kms , kme , & |
---|
2738 | its , ite , jts , jte , kts , kte ) |
---|
2739 | |
---|
2740 | print *,'Linear Interpolator' |
---|
2741 | print *,'------------------------------------' |
---|
2742 | print *,' ' |
---|
2743 | print *,'Level Pressure Field Field Field' |
---|
2744 | print *,' (Pa) Calc Interp Diff' |
---|
2745 | print *,'------------------------------------' |
---|
2746 | print *,' ' |
---|
2747 | do k = kts , kte-1 |
---|
2748 | write (*,fmt='(i2,2x,f12.3,1x,3(g15.7))' ) & |
---|
2749 | k,pn(2,k,2),fn_calc(2,k,2),fn_interp(2,k,2),fn_calc(2,k,2)-fn_interp(2,k,2) |
---|
2750 | end do |
---|
2751 | end do |
---|
2752 | |
---|
2753 | end program vint |
---|
2754 | |
---|
2755 | subroutine wrf_error_fatal (string) |
---|
2756 | character (len=*) :: string |
---|
2757 | print *,string |
---|
2758 | stop |
---|
2759 | end subroutine wrf_error_fatal |
---|
2760 | |
---|
2761 | subroutine fillitup ( fo , po , fn , pn , & |
---|
2762 | ids , ide , jds , jde , kds , kde , & |
---|
2763 | ims , ime , jms , jme , kms , kme , & |
---|
2764 | its , ite , jts , jte , kts , kte , & |
---|
2765 | generic , lagrange_order ) |
---|
2766 | |
---|
2767 | implicit none |
---|
2768 | |
---|
2769 | integer , intent(in) :: ids , ide , jds , jde , kds , kde , & |
---|
2770 | ims , ime , jms , jme , kms , kme , & |
---|
2771 | its , ite , jts , jte , kts , kte |
---|
2772 | |
---|
2773 | integer , intent(in) :: generic , lagrange_order |
---|
2774 | |
---|
2775 | real , dimension(ims:ime,generic,jms:jme) , intent(out) :: fo , po |
---|
2776 | real , dimension(ims:ime,kms:kme,jms:jme) , intent(out) :: fn , pn |
---|
2777 | |
---|
2778 | integer :: i , j , k |
---|
2779 | |
---|
2780 | real , parameter :: piov2 = 3.14159265358 / 2. |
---|
2781 | |
---|
2782 | k = 1 |
---|
2783 | do j = jts , jte |
---|
2784 | do i = its , ite |
---|
2785 | po(i,k,j) = 102000. |
---|
2786 | end do |
---|
2787 | end do |
---|
2788 | |
---|
2789 | do k = 2 , generic |
---|
2790 | do j = jts , jte |
---|
2791 | do i = its , ite |
---|
2792 | po(i,k,j) = ( 5000. * ( 1 - (k-1) ) + 100000. * ( (k-1) - (generic-1) ) ) / (1. - real(generic-1) ) |
---|
2793 | end do |
---|
2794 | end do |
---|
2795 | end do |
---|
2796 | |
---|
2797 | if ( lagrange_order .eq. 1 ) then |
---|
2798 | do k = 1 , generic |
---|
2799 | do j = jts , jte |
---|
2800 | do i = its , ite |
---|
2801 | fo(i,k,j) = po(i,k,j) |
---|
2802 | ! fo(i,k,j) = sin(po(i,k,j) * piov2 / 102000. ) |
---|
2803 | end do |
---|
2804 | end do |
---|
2805 | end do |
---|
2806 | else if ( lagrange_order .eq. 2 ) then |
---|
2807 | do k = 1 , generic |
---|
2808 | do j = jts , jte |
---|
2809 | do i = its , ite |
---|
2810 | fo(i,k,j) = (((po(i,k,j)-5000.)/102000.)*((102000.-po(i,k,j))/102000.))*102000. |
---|
2811 | ! fo(i,k,j) = sin(po(i,k,j) * piov2 / 102000. ) |
---|
2812 | end do |
---|
2813 | end do |
---|
2814 | end do |
---|
2815 | end if |
---|
2816 | |
---|
2817 | !!!!!!!!!!!! |
---|
2818 | |
---|
2819 | do k = kts , kte |
---|
2820 | do j = jts , jte |
---|
2821 | do i = its , ite |
---|
2822 | pn(i,k,j) = ( 5000. * ( 0 - (k-1) ) + 102000. * ( (k-1) - (kte-1) ) ) / (-1. * real(kte-1) ) |
---|
2823 | end do |
---|
2824 | end do |
---|
2825 | end do |
---|
2826 | |
---|
2827 | do k = kts , kte-1 |
---|
2828 | do j = jts , jte |
---|
2829 | do i = its , ite |
---|
2830 | pn(i,k,j) = ( pn(i,k,j) + pn(i,k+1,j) ) /2. |
---|
2831 | end do |
---|
2832 | end do |
---|
2833 | end do |
---|
2834 | |
---|
2835 | |
---|
2836 | if ( lagrange_order .eq. 1 ) then |
---|
2837 | do k = kts , kte-1 |
---|
2838 | do j = jts , jte |
---|
2839 | do i = its , ite |
---|
2840 | fn(i,k,j) = pn(i,k,j) |
---|
2841 | ! fn(i,k,j) = sin(pn(i,k,j) * piov2 / 102000. ) |
---|
2842 | end do |
---|
2843 | end do |
---|
2844 | end do |
---|
2845 | else if ( lagrange_order .eq. 2 ) then |
---|
2846 | do k = kts , kte-1 |
---|
2847 | do j = jts , jte |
---|
2848 | do i = its , ite |
---|
2849 | fn(i,k,j) = (((pn(i,k,j)-5000.)/102000.)*((102000.-pn(i,k,j))/102000.))*102000. |
---|
2850 | ! fn(i,k,j) = sin(pn(i,k,j) * piov2 / 102000. ) |
---|
2851 | end do |
---|
2852 | end do |
---|
2853 | end do |
---|
2854 | end if |
---|
2855 | |
---|
2856 | end subroutine fillitup |
---|
2857 | |
---|
2858 | #endif |
---|
2859 | |
---|
2860 | !--------------------------------------------------------------------- |
---|
2861 | |
---|
2862 | SUBROUTINE vert_interp ( fo , po , fnew , pnu , & |
---|
2863 | generic , var_type , & |
---|
2864 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
---|
2865 | zap_close_levels , force_sfc_in_vinterp , & |
---|
2866 | ids , ide , jds , jde , kds , kde , & |
---|
2867 | ims , ime , jms , jme , kms , kme , & |
---|
2868 | its , ite , jts , jte , kts , kte ) |
---|
2869 | |
---|
2870 | ! Vertically interpolate the new field. The original field on the original |
---|
2871 | ! pressure levels is provided, and the new pressure surfaces to interpolate to. |
---|
2872 | |
---|
2873 | IMPLICIT NONE |
---|
2874 | |
---|
2875 | INTEGER , INTENT(IN) :: interp_type , lagrange_order |
---|
2876 | LOGICAL , INTENT(IN) :: lowest_lev_from_sfc |
---|
2877 | REAL , INTENT(IN) :: zap_close_levels |
---|
2878 | INTEGER , INTENT(IN) :: force_sfc_in_vinterp |
---|
2879 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
2880 | ims , ime , jms , jme , kms , kme , & |
---|
2881 | its , ite , jts , jte , kts , kte |
---|
2882 | INTEGER , INTENT(IN) :: generic |
---|
2883 | |
---|
2884 | CHARACTER (LEN=1) :: var_type |
---|
2885 | |
---|
2886 | REAL , DIMENSION(ims:ime,generic,jms:jme) , INTENT(IN) :: fo , po |
---|
2887 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: pnu |
---|
2888 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: fnew |
---|
2889 | |
---|
2890 | REAL , DIMENSION(ims:ime,generic,jms:jme) :: forig , porig |
---|
2891 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) :: pnew |
---|
2892 | |
---|
2893 | ! Local vars |
---|
2894 | |
---|
2895 | INTEGER :: i , j , k , ko , kn , k1 , k2 , ko_1 , ko_2 , knext |
---|
2896 | INTEGER :: istart , iend , jstart , jend , kstart , kend |
---|
2897 | INTEGER , DIMENSION(ims:ime,kms:kme ) :: k_above , k_below |
---|
2898 | INTEGER , DIMENSION(ims:ime ) :: ks |
---|
2899 | INTEGER , DIMENSION(ims:ime ) :: ko_above_sfc |
---|
2900 | INTEGER :: count , zap , kst |
---|
2901 | |
---|
2902 | LOGICAL :: any_below_ground |
---|
2903 | |
---|
2904 | REAL :: p1 , p2 , pn, hold |
---|
2905 | REAL , DIMENSION(1:generic) :: ordered_porig , ordered_forig |
---|
2906 | REAL , DIMENSION(kts:kte) :: ordered_pnew , ordered_fnew |
---|
2907 | |
---|
2908 | !****MARS |
---|
2909 | !big problems ... discontinuity in the interpolated fields ... |
---|
2910 | print *, '25/05/2007: decided to use simple linear interpolations' |
---|
2911 | print *, 'use that one at your own risk' |
---|
2912 | !stop |
---|
2913 | !****MARS |
---|
2914 | |
---|
2915 | |
---|
2916 | ! Horiontal loop bounds for different variable types. |
---|
2917 | |
---|
2918 | IF ( var_type .EQ. 'U' ) THEN |
---|
2919 | istart = its |
---|
2920 | iend = ite |
---|
2921 | jstart = jts |
---|
2922 | jend = MIN(jde-1,jte) |
---|
2923 | kstart = kts |
---|
2924 | kend = kte-1 |
---|
2925 | DO j = jstart,jend |
---|
2926 | DO k = 1,generic |
---|
2927 | DO i = MAX(ids+1,its) , MIN(ide-1,ite) |
---|
2928 | porig(i,k,j) = ( po(i,k,j) + po(i-1,k,j) ) * 0.5 |
---|
2929 | END DO |
---|
2930 | END DO |
---|
2931 | IF ( ids .EQ. its ) THEN |
---|
2932 | DO k = 1,generic |
---|
2933 | porig(its,k,j) = po(its,k,j) |
---|
2934 | END DO |
---|
2935 | END IF |
---|
2936 | IF ( ide .EQ. ite ) THEN |
---|
2937 | DO k = 1,generic |
---|
2938 | porig(ite,k,j) = po(ite-1,k,j) |
---|
2939 | END DO |
---|
2940 | END IF |
---|
2941 | |
---|
2942 | DO k = kstart,kend |
---|
2943 | DO i = MAX(ids+1,its) , MIN(ide-1,ite) |
---|
2944 | pnew(i,k,j) = ( pnu(i,k,j) + pnu(i-1,k,j) ) * 0.5 |
---|
2945 | END DO |
---|
2946 | END DO |
---|
2947 | IF ( ids .EQ. its ) THEN |
---|
2948 | DO k = kstart,kend |
---|
2949 | pnew(its,k,j) = pnu(its,k,j) |
---|
2950 | END DO |
---|
2951 | END IF |
---|
2952 | IF ( ide .EQ. ite ) THEN |
---|
2953 | DO k = kstart,kend |
---|
2954 | pnew(ite,k,j) = pnu(ite-1,k,j) |
---|
2955 | END DO |
---|
2956 | END IF |
---|
2957 | END DO |
---|
2958 | ELSE IF ( var_type .EQ. 'V' ) THEN |
---|
2959 | istart = its |
---|
2960 | iend = MIN(ide-1,ite) |
---|
2961 | jstart = jts |
---|
2962 | jend = jte |
---|
2963 | kstart = kts |
---|
2964 | kend = kte-1 |
---|
2965 | DO i = istart,iend |
---|
2966 | DO k = 1,generic |
---|
2967 | DO j = MAX(jds+1,jts) , MIN(jde-1,jte) |
---|
2968 | porig(i,k,j) = ( po(i,k,j) + po(i,k,j-1) ) * 0.5 |
---|
2969 | END DO |
---|
2970 | END DO |
---|
2971 | IF ( jds .EQ. jts ) THEN |
---|
2972 | DO k = 1,generic |
---|
2973 | porig(i,k,jts) = po(i,k,jts) |
---|
2974 | END DO |
---|
2975 | END IF |
---|
2976 | IF ( jde .EQ. jte ) THEN |
---|
2977 | DO k = 1,generic |
---|
2978 | porig(i,k,jte) = po(i,k,jte-1) |
---|
2979 | END DO |
---|
2980 | END IF |
---|
2981 | |
---|
2982 | DO k = kstart,kend |
---|
2983 | DO j = MAX(jds+1,jts) , MIN(jde-1,jte) |
---|
2984 | pnew(i,k,j) = ( pnu(i,k,j) + pnu(i,k,j-1) ) * 0.5 |
---|
2985 | END DO |
---|
2986 | END DO |
---|
2987 | IF ( jds .EQ. jts ) THEN |
---|
2988 | DO k = kstart,kend |
---|
2989 | pnew(i,k,jts) = pnu(i,k,jts) |
---|
2990 | END DO |
---|
2991 | END IF |
---|
2992 | IF ( jde .EQ. jte ) THEN |
---|
2993 | DO k = kstart,kend |
---|
2994 | pnew(i,k,jte) = pnu(i,k,jte-1) |
---|
2995 | END DO |
---|
2996 | END IF |
---|
2997 | END DO |
---|
2998 | ELSE IF ( ( var_type .EQ. 'W' ) .OR. ( var_type .EQ. 'Z' ) ) THEN |
---|
2999 | istart = its |
---|
3000 | iend = MIN(ide-1,ite) |
---|
3001 | jstart = jts |
---|
3002 | jend = MIN(jde-1,jte) |
---|
3003 | kstart = kts |
---|
3004 | kend = kte |
---|
3005 | DO j = jstart,jend |
---|
3006 | DO k = 1,generic |
---|
3007 | DO i = istart,iend |
---|
3008 | porig(i,k,j) = po(i,k,j) |
---|
3009 | END DO |
---|
3010 | END DO |
---|
3011 | |
---|
3012 | DO k = kstart,kend |
---|
3013 | DO i = istart,iend |
---|
3014 | pnew(i,k,j) = pnu(i,k,j) |
---|
3015 | END DO |
---|
3016 | END DO |
---|
3017 | END DO |
---|
3018 | ELSE IF ( ( var_type .EQ. 'T' ) .OR. ( var_type .EQ. 'Q' ) ) THEN |
---|
3019 | istart = its |
---|
3020 | iend = MIN(ide-1,ite) |
---|
3021 | jstart = jts |
---|
3022 | jend = MIN(jde-1,jte) |
---|
3023 | kstart = kts |
---|
3024 | kend = kte-1 |
---|
3025 | DO j = jstart,jend |
---|
3026 | DO k = 1,generic |
---|
3027 | DO i = istart,iend |
---|
3028 | porig(i,k,j) = po(i,k,j) |
---|
3029 | END DO |
---|
3030 | END DO |
---|
3031 | |
---|
3032 | DO k = kstart,kend |
---|
3033 | DO i = istart,iend |
---|
3034 | pnew(i,k,j) = pnu(i,k,j) |
---|
3035 | END DO |
---|
3036 | END DO |
---|
3037 | END DO |
---|
3038 | ELSE |
---|
3039 | istart = its |
---|
3040 | iend = MIN(ide-1,ite) |
---|
3041 | jstart = jts |
---|
3042 | jend = MIN(jde-1,jte) |
---|
3043 | kstart = kts |
---|
3044 | kend = kte-1 |
---|
3045 | DO j = jstart,jend |
---|
3046 | DO k = 1,generic |
---|
3047 | DO i = istart,iend |
---|
3048 | porig(i,k,j) = po(i,k,j) |
---|
3049 | END DO |
---|
3050 | END DO |
---|
3051 | |
---|
3052 | DO k = kstart,kend |
---|
3053 | DO i = istart,iend |
---|
3054 | pnew(i,k,j) = pnu(i,k,j) |
---|
3055 | END DO |
---|
3056 | END DO |
---|
3057 | END DO |
---|
3058 | END IF |
---|
3059 | |
---|
3060 | DO j = jstart , jend |
---|
3061 | |
---|
3062 | ! The lowest level is the surface. Levels 2 through "generic" are supposed to |
---|
3063 | ! be "bottom-up". Flip if they are not. This is based on the input pressure |
---|
3064 | ! array. |
---|
3065 | |
---|
3066 | IF ( porig(its,2,j) .LT. porig(its,generic,j) ) THEN |
---|
3067 | DO kn = 2 , ( generic + 1 ) / 2 |
---|
3068 | DO i = istart , iend |
---|
3069 | hold = porig(i,kn,j) |
---|
3070 | porig(i,kn,j) = porig(i,generic+2-kn,j) |
---|
3071 | porig(i,generic+2-kn,j) = hold |
---|
3072 | forig(i,kn,j) = fo (i,generic+2-kn,j) |
---|
3073 | forig(i,generic+2-kn,j) = fo (i,kn,j) |
---|
3074 | END DO |
---|
3075 | DO i = istart , iend |
---|
3076 | forig(i,1,j) = fo (i,1,j) |
---|
3077 | END DO |
---|
3078 | END DO |
---|
3079 | ELSE |
---|
3080 | DO kn = 1 , generic |
---|
3081 | DO i = istart , iend |
---|
3082 | forig(i,kn,j) = fo (i,kn,j) |
---|
3083 | END DO |
---|
3084 | END DO |
---|
3085 | END IF |
---|
3086 | |
---|
3087 | ! Skip all of the levels below ground in the original data based upon the surface pressure. |
---|
3088 | ! The ko_above_sfc is the index in the pressure array that is above the surface. If there |
---|
3089 | ! are no levels underground, this is index = 2. The remaining levels are eligible for use |
---|
3090 | ! in the vertical interpolation. |
---|
3091 | |
---|
3092 | DO i = istart , iend |
---|
3093 | ko_above_sfc(i) = -1 |
---|
3094 | END DO |
---|
3095 | DO ko = kstart+1 , kend |
---|
3096 | DO i = istart , iend |
---|
3097 | IF ( ko_above_sfc(i) .EQ. -1 ) THEN |
---|
3098 | IF ( porig(i,1,j) .GT. porig(i,ko,j) ) THEN |
---|
3099 | ko_above_sfc(i) = ko |
---|
3100 | END IF |
---|
3101 | END IF |
---|
3102 | END DO |
---|
3103 | END DO |
---|
3104 | |
---|
3105 | ! Piece together columns of the original input data. Pass the vertical columns to |
---|
3106 | ! the iterpolator. |
---|
3107 | |
---|
3108 | DO i = istart , iend |
---|
3109 | |
---|
3110 | ! If the surface value is in the middle of the array, three steps: 1) do the |
---|
3111 | ! values below the ground (this is just to catch the occasional value that is |
---|
3112 | ! inconsistently below the surface based on input data), 2) do the surface level, then |
---|
3113 | ! 3) add in the levels that are above the surface. For the levels next to the surface, |
---|
3114 | ! we check to remove any levels that are "too close". When building the column of input |
---|
3115 | ! pressures, we also attend to the request for forcing the surface analysis to be used |
---|
3116 | ! in a few lower eta-levels. |
---|
3117 | |
---|
3118 | ! How many levels have we skipped in the input column. |
---|
3119 | |
---|
3120 | zap = 0 |
---|
3121 | |
---|
3122 | ! Fill in the column from up to the level just below the surface with the input |
---|
3123 | ! presssure and the input field (orig or old, which ever). For an isobaric input |
---|
3124 | ! file, this data is isobaric. |
---|
3125 | |
---|
3126 | IF ( ko_above_sfc(i) .GT. 2 ) THEN |
---|
3127 | count = 1 |
---|
3128 | DO ko = 2 , ko_above_sfc(i)-1 |
---|
3129 | ordered_porig(count) = porig(i,ko,j) |
---|
3130 | ordered_forig(count) = forig(i,ko,j) |
---|
3131 | count = count + 1 |
---|
3132 | END DO |
---|
3133 | |
---|
3134 | ! Make sure the pressure just below the surface is not "too close", this |
---|
3135 | ! will cause havoc with the higher order interpolators. In case of a "too close" |
---|
3136 | ! instance, we toss out the offending level (NOT the surface one) by simply |
---|
3137 | ! decrementing the accumulating loop counter. |
---|
3138 | |
---|
3139 | IF ( ordered_porig(count-1) - porig(i,1,j) .LT. zap_close_levels ) THEN |
---|
3140 | count = count -1 |
---|
3141 | zap = 1 |
---|
3142 | END IF |
---|
3143 | |
---|
3144 | ! Add in the surface values. |
---|
3145 | |
---|
3146 | ordered_porig(count) = porig(i,1,j) |
---|
3147 | ordered_forig(count) = forig(i,1,j) |
---|
3148 | count = count + 1 |
---|
3149 | |
---|
3150 | ! A usual way to do the vertical interpolation is to pay more attention to the |
---|
3151 | ! surface data. Why? Well it has about 20x the density as the upper air, so we |
---|
3152 | ! hope the analysis is better there. We more strongly use this data by artificially |
---|
3153 | ! tossing out levels above the surface that are beneath a certain number of prescribed |
---|
3154 | ! eta levels at this (i,j). The "zap" value is how many levels of input we are |
---|
3155 | ! removing, which is used to tell the interpolator how many valid values are in |
---|
3156 | ! the column. The "count" value is the increment to the index of levels, and is |
---|
3157 | ! only used for assignments. |
---|
3158 | |
---|
3159 | IF ( force_sfc_in_vinterp .GT. 0 ) THEN |
---|
3160 | |
---|
3161 | ! Get the pressure at the eta level. We want to remove all input pressure levels |
---|
3162 | ! between the level above the surface to the pressure at this eta surface. That |
---|
3163 | ! forces the surface value to be used through the selected eta level. Keep track |
---|
3164 | ! of two things: the level to use above the eta levels, and how many levels we are |
---|
3165 | ! skipping. |
---|
3166 | |
---|
3167 | knext = ko_above_sfc(i) |
---|
3168 | find_level : DO ko = ko_above_sfc(i) , generic |
---|
3169 | IF ( porig(i,ko,j) .LE. pnew(i,force_sfc_in_vinterp,j) ) THEN |
---|
3170 | knext = ko |
---|
3171 | exit find_level |
---|
3172 | ELSE |
---|
3173 | zap = zap + 1 |
---|
3174 | END IF |
---|
3175 | END DO find_level |
---|
3176 | |
---|
3177 | ! No request for special interpolation, so we just assign the next level to use |
---|
3178 | ! above the surface as, ta da, the first level above the surface. I know, wow. |
---|
3179 | |
---|
3180 | ELSE |
---|
3181 | knext = ko_above_sfc(i) |
---|
3182 | END IF |
---|
3183 | |
---|
3184 | ! One more time, make sure the pressure just above the surface is not "too close", this |
---|
3185 | ! will cause havoc with the higher order interpolators. In case of a "too close" |
---|
3186 | ! instance, we toss out the offending level above the surface (NOT the surface one) by simply |
---|
3187 | ! incrementing the loop counter. Here, count-1 is the surface level and knext is either |
---|
3188 | ! the next level up OR it is the level above the prescribed number of eta surfaces. |
---|
3189 | |
---|
3190 | IF ( ordered_porig(count-1) - porig(i,knext,j) .LT. zap_close_levels ) THEN |
---|
3191 | kst = knext+1 |
---|
3192 | zap = zap + 1 |
---|
3193 | ELSE |
---|
3194 | kst = knext |
---|
3195 | END IF |
---|
3196 | |
---|
3197 | DO ko = kst , generic |
---|
3198 | ordered_porig(count) = porig(i,ko,j) |
---|
3199 | ordered_forig(count) = forig(i,ko,j) |
---|
3200 | count = count + 1 |
---|
3201 | END DO |
---|
3202 | |
---|
3203 | ! This is easy, the surface is the lowest level, just stick them in, in this order. OK, |
---|
3204 | ! there are a couple of subtleties. We have to check for that special interpolation that |
---|
3205 | ! skips some input levels so that the surface is used for the lowest few eta levels. Also, |
---|
3206 | ! we must macke sure that we still do not have levels that are "too close" together. |
---|
3207 | |
---|
3208 | ELSE |
---|
3209 | |
---|
3210 | ! Initialize no input levels have yet been removed from consideration. |
---|
3211 | |
---|
3212 | zap = 0 |
---|
3213 | |
---|
3214 | ! The surface is the lowest level, so it gets set right away to location 1. |
---|
3215 | |
---|
3216 | ordered_porig(1) = porig(i,1,j) |
---|
3217 | ordered_forig(1) = forig(i,1,j) |
---|
3218 | |
---|
3219 | ! We start filling in the array at loc 2, as in just above the level we just stored. |
---|
3220 | |
---|
3221 | count = 2 |
---|
3222 | |
---|
3223 | ! Are we forcing the interpolator to skip valid input levels so that the |
---|
3224 | ! surface data is used through more levels? Essentially as above. |
---|
3225 | |
---|
3226 | IF ( force_sfc_in_vinterp .GT. 0 ) THEN |
---|
3227 | knext = 2 |
---|
3228 | find_level2: DO ko = 2 , generic |
---|
3229 | IF ( porig(i,ko,j) .LE. pnew(i,force_sfc_in_vinterp,j) ) THEN |
---|
3230 | knext = ko |
---|
3231 | exit find_level2 |
---|
3232 | ELSE |
---|
3233 | zap = zap + 1 |
---|
3234 | END IF |
---|
3235 | END DO find_level2 |
---|
3236 | ELSE |
---|
3237 | knext = 2 |
---|
3238 | END IF |
---|
3239 | |
---|
3240 | ! Fill in the data above the surface. The "knext" index is either the one |
---|
3241 | ! just above the surface OR it is the index associated with the level that |
---|
3242 | ! is just above the pressure at this (i,j) of the top eta level that is to |
---|
3243 | ! be directly impacted with the surface level in interpolation. |
---|
3244 | |
---|
3245 | DO ko = knext , generic |
---|
3246 | IF ( ordered_porig(count-1) - porig(i,ko,j) .LT. zap_close_levels ) THEN |
---|
3247 | zap = zap + 1 |
---|
3248 | CYCLE |
---|
3249 | END IF |
---|
3250 | ordered_porig(count) = porig(i,ko,j) |
---|
3251 | ordered_forig(count) = forig(i,ko,j) |
---|
3252 | count = count + 1 |
---|
3253 | END DO |
---|
3254 | |
---|
3255 | END IF |
---|
3256 | |
---|
3257 | ! Now get the column of the "new" pressure data. So, this one is easy. |
---|
3258 | |
---|
3259 | DO kn = kstart , kend |
---|
3260 | ordered_pnew(kn) = pnew(i,kn,j) |
---|
3261 | END DO |
---|
3262 | |
---|
3263 | ! The polynomials are either in pressure or LOG(pressure). |
---|
3264 | |
---|
3265 | IF ( interp_type .EQ. 1 ) THEN |
---|
3266 | CALL lagrange_setup ( var_type , & |
---|
3267 | ordered_porig , ordered_forig , generic-zap , lagrange_order , & |
---|
3268 | ordered_pnew , ordered_fnew , kend-kstart+1 ,i,j) |
---|
3269 | ELSE |
---|
3270 | CALL lagrange_setup ( var_type , & |
---|
3271 | LOG(ordered_porig(1:generic-zap)) , ordered_forig , generic-zap , lagrange_order , & |
---|
3272 | LOG(ordered_pnew(kstart:kend)) , ordered_fnew , kend-kstart+1 ,i,j) |
---|
3273 | END IF |
---|
3274 | |
---|
3275 | ! Save the computed data. |
---|
3276 | |
---|
3277 | DO kn = kstart , kend |
---|
3278 | fnew(i,kn,j) = ordered_fnew(kn) |
---|
3279 | END DO |
---|
3280 | |
---|
3281 | ! There may have been a request to have the surface data from the input field |
---|
3282 | ! to be assigned as to the lowest eta level. This assumes thin layers (usually |
---|
3283 | ! the isobaric original field has the surface from 2-m T and RH, and 10-m U and V). |
---|
3284 | |
---|
3285 | IF ( lowest_lev_from_sfc ) THEN |
---|
3286 | fnew(i,1,j) = forig(i,ko_above_sfc(i)-1,j) |
---|
3287 | END IF |
---|
3288 | |
---|
3289 | END DO |
---|
3290 | |
---|
3291 | END DO |
---|
3292 | |
---|
3293 | END SUBROUTINE vert_interp |
---|
3294 | |
---|
3295 | !--------------------------------------------------------------------- |
---|
3296 | |
---|
3297 | SUBROUTINE vert_interp_old ( forig , po , fnew , pnu , & |
---|
3298 | generic , var_type , & |
---|
3299 | interp_type , lagrange_order , lowest_lev_from_sfc , & |
---|
3300 | zap_close_levels , force_sfc_in_vinterp , & |
---|
3301 | ids , ide , jds , jde , kds , kde , & |
---|
3302 | ims , ime , jms , jme , kms , kme , & |
---|
3303 | its , ite , jts , jte , kts , kte ) |
---|
3304 | |
---|
3305 | ! Vertically interpolate the new field. The original field on the original |
---|
3306 | ! pressure levels is provided, and the new pressure surfaces to interpolate to. |
---|
3307 | |
---|
3308 | IMPLICIT NONE |
---|
3309 | |
---|
3310 | INTEGER , INTENT(IN) :: interp_type , lagrange_order |
---|
3311 | LOGICAL , INTENT(IN) :: lowest_lev_from_sfc |
---|
3312 | REAL , INTENT(IN) :: zap_close_levels |
---|
3313 | INTEGER , INTENT(IN) :: force_sfc_in_vinterp |
---|
3314 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
3315 | ims , ime , jms , jme , kms , kme , & |
---|
3316 | its , ite , jts , jte , kts , kte |
---|
3317 | INTEGER , INTENT(IN) :: generic |
---|
3318 | |
---|
3319 | CHARACTER (LEN=1) :: var_type |
---|
3320 | |
---|
3321 | ! REAL , DIMENSION(ims:ime,generic,jms:jme) , INTENT(IN) :: forig , po |
---|
3322 | !****MARS |
---|
3323 | !error with g95 and warning with pgf90 |
---|
3324 | REAL , DIMENSION(ims:ime,generic,jms:jme) , INTENT(IN) :: po |
---|
3325 | REAL , DIMENSION(ims:ime,generic,jms:jme) , INTENT(INOUT) :: forig |
---|
3326 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: pnu |
---|
3327 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: fnew |
---|
3328 | |
---|
3329 | REAL , DIMENSION(ims:ime,generic,jms:jme) :: porig |
---|
3330 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) :: pnew |
---|
3331 | |
---|
3332 | ! Local vars |
---|
3333 | |
---|
3334 | INTEGER :: i , j , k , ko , kn , k1 , k2 , ko_1 , ko_2 |
---|
3335 | INTEGER :: istart , iend , jstart , jend , kstart , kend |
---|
3336 | INTEGER , DIMENSION(ims:ime,kms:kme ) :: k_above , k_below |
---|
3337 | INTEGER , DIMENSION(ims:ime ) :: ks |
---|
3338 | INTEGER , DIMENSION(ims:ime ) :: ko_above_sfc |
---|
3339 | |
---|
3340 | LOGICAL :: any_below_ground |
---|
3341 | |
---|
3342 | REAL :: p1 , p2 , pn |
---|
3343 | !****MARS |
---|
3344 | integer vert_extrap |
---|
3345 | integer kn_save |
---|
3346 | vert_extrap = 0 |
---|
3347 | kn_save = 0 |
---|
3348 | !****MARS |
---|
3349 | |
---|
3350 | ! Horizontal loop bounds for different variable types. |
---|
3351 | |
---|
3352 | IF ( var_type .EQ. 'U' ) THEN |
---|
3353 | istart = its |
---|
3354 | iend = ite |
---|
3355 | jstart = jts |
---|
3356 | jend = MIN(jde-1,jte) |
---|
3357 | kstart = kts |
---|
3358 | kend = kte-1 |
---|
3359 | DO j = jstart,jend |
---|
3360 | DO k = 1,generic |
---|
3361 | DO i = MAX(ids+1,its) , MIN(ide-1,ite) |
---|
3362 | porig(i,k,j) = ( po(i,k,j) + po(i-1,k,j) ) * 0.5 |
---|
3363 | END DO |
---|
3364 | END DO |
---|
3365 | IF ( ids .EQ. its ) THEN |
---|
3366 | DO k = 1,generic |
---|
3367 | porig(its,k,j) = po(its,k,j) |
---|
3368 | END DO |
---|
3369 | END IF |
---|
3370 | IF ( ide .EQ. ite ) THEN |
---|
3371 | DO k = 1,generic |
---|
3372 | porig(ite,k,j) = po(ite-1,k,j) |
---|
3373 | END DO |
---|
3374 | END IF |
---|
3375 | |
---|
3376 | DO k = kstart,kend |
---|
3377 | DO i = MAX(ids+1,its) , MIN(ide-1,ite) |
---|
3378 | pnew(i,k,j) = ( pnu(i,k,j) + pnu(i-1,k,j) ) * 0.5 |
---|
3379 | END DO |
---|
3380 | END DO |
---|
3381 | IF ( ids .EQ. its ) THEN |
---|
3382 | DO k = kstart,kend |
---|
3383 | pnew(its,k,j) = pnu(its,k,j) |
---|
3384 | END DO |
---|
3385 | END IF |
---|
3386 | IF ( ide .EQ. ite ) THEN |
---|
3387 | DO k = kstart,kend |
---|
3388 | pnew(ite,k,j) = pnu(ite-1,k,j) |
---|
3389 | END DO |
---|
3390 | END IF |
---|
3391 | END DO |
---|
3392 | ELSE IF ( var_type .EQ. 'V' ) THEN |
---|
3393 | istart = its |
---|
3394 | iend = MIN(ide-1,ite) |
---|
3395 | jstart = jts |
---|
3396 | jend = jte |
---|
3397 | kstart = kts |
---|
3398 | kend = kte-1 |
---|
3399 | DO i = istart,iend |
---|
3400 | DO k = 1,generic |
---|
3401 | DO j = MAX(jds+1,jts) , MIN(jde-1,jte) |
---|
3402 | porig(i,k,j) = ( po(i,k,j) + po(i,k,j-1) ) * 0.5 |
---|
3403 | END DO |
---|
3404 | END DO |
---|
3405 | IF ( jds .EQ. jts ) THEN |
---|
3406 | DO k = 1,generic |
---|
3407 | porig(i,k,jts) = po(i,k,jts) |
---|
3408 | END DO |
---|
3409 | END IF |
---|
3410 | IF ( jde .EQ. jte ) THEN |
---|
3411 | DO k = 1,generic |
---|
3412 | porig(i,k,jte) = po(i,k,jte-1) |
---|
3413 | END DO |
---|
3414 | END IF |
---|
3415 | |
---|
3416 | DO k = kstart,kend |
---|
3417 | DO j = MAX(jds+1,jts) , MIN(jde-1,jte) |
---|
3418 | pnew(i,k,j) = ( pnu(i,k,j) + pnu(i,k,j-1) ) * 0.5 |
---|
3419 | END DO |
---|
3420 | END DO |
---|
3421 | IF ( jds .EQ. jts ) THEN |
---|
3422 | DO k = kstart,kend |
---|
3423 | pnew(i,k,jts) = pnu(i,k,jts) |
---|
3424 | END DO |
---|
3425 | END IF |
---|
3426 | IF ( jde .EQ. jte ) THEN |
---|
3427 | DO k = kstart,kend |
---|
3428 | pnew(i,k,jte) = pnu(i,k,jte-1) |
---|
3429 | END DO |
---|
3430 | END IF |
---|
3431 | END DO |
---|
3432 | ELSE IF ( ( var_type .EQ. 'W' ) .OR. ( var_type .EQ. 'Z' ) ) THEN |
---|
3433 | istart = its |
---|
3434 | iend = MIN(ide-1,ite) |
---|
3435 | jstart = jts |
---|
3436 | jend = MIN(jde-1,jte) |
---|
3437 | kstart = kts |
---|
3438 | kend = kte |
---|
3439 | DO j = jstart,jend |
---|
3440 | DO k = 1,generic |
---|
3441 | DO i = istart,iend |
---|
3442 | porig(i,k,j) = po(i,k,j) |
---|
3443 | END DO |
---|
3444 | END DO |
---|
3445 | |
---|
3446 | DO k = kstart,kend |
---|
3447 | DO i = istart,iend |
---|
3448 | pnew(i,k,j) = pnu(i,k,j) |
---|
3449 | END DO |
---|
3450 | END DO |
---|
3451 | END DO |
---|
3452 | ELSE IF ( ( var_type .EQ. 'T' ) .OR. ( var_type .EQ. 'Q' ) ) THEN |
---|
3453 | istart = its |
---|
3454 | iend = MIN(ide-1,ite) |
---|
3455 | jstart = jts |
---|
3456 | jend = MIN(jde-1,jte) |
---|
3457 | kstart = kts |
---|
3458 | kend = kte-1 |
---|
3459 | DO j = jstart,jend |
---|
3460 | DO k = 1,generic |
---|
3461 | DO i = istart,iend |
---|
3462 | porig(i,k,j) = po(i,k,j) |
---|
3463 | END DO |
---|
3464 | END DO |
---|
3465 | |
---|
3466 | DO k = kstart,kend |
---|
3467 | DO i = istart,iend |
---|
3468 | pnew(i,k,j) = pnu(i,k,j) |
---|
3469 | END DO |
---|
3470 | END DO |
---|
3471 | END DO |
---|
3472 | ELSE |
---|
3473 | istart = its |
---|
3474 | iend = MIN(ide-1,ite) |
---|
3475 | jstart = jts |
---|
3476 | jend = MIN(jde-1,jte) |
---|
3477 | kstart = kts |
---|
3478 | kend = kte-1 |
---|
3479 | DO j = jstart,jend |
---|
3480 | DO k = 1,generic |
---|
3481 | DO i = istart,iend |
---|
3482 | porig(i,k,j) = po(i,k,j) |
---|
3483 | END DO |
---|
3484 | END DO |
---|
3485 | |
---|
3486 | DO k = kstart,kend |
---|
3487 | DO i = istart,iend |
---|
3488 | pnew(i,k,j) = pnu(i,k,j) |
---|
3489 | END DO |
---|
3490 | END DO |
---|
3491 | END DO |
---|
3492 | END IF |
---|
3493 | |
---|
3494 | |
---|
3495 | DO j = jstart , jend |
---|
3496 | |
---|
3497 | ! Skip all of the levels below ground in the original data based upon the surface pressure. |
---|
3498 | ! The ko_above_sfc is the index in the pressure array that is above the surface. If there |
---|
3499 | ! are no levels underground, this is index = 2. The remaining levels are eligible for use |
---|
3500 | ! in the vertical interpolation. |
---|
3501 | |
---|
3502 | DO i = istart , iend |
---|
3503 | ko_above_sfc(i) = -1 |
---|
3504 | END DO |
---|
3505 | DO ko = kstart+1 , kend |
---|
3506 | DO i = istart , iend |
---|
3507 | |
---|
3508 | IF ( ko_above_sfc(i) .EQ. -1 ) THEN |
---|
3509 | IF ( porig(i,1,j) .GT. porig(i,ko,j) ) THEN |
---|
3510 | ko_above_sfc(i) = ko |
---|
3511 | !!****MARS |
---|
3512 | !!old stuff |
---|
3513 | !! |
---|
3514 | !! Pressure level may be OK, however data from the diagfi is possibly missing |
---|
3515 | !IF (forig(i,ko,j) .EQ. -1.0e+30) THEN |
---|
3516 | ! ko_above_sfc(i) = -1 |
---|
3517 | !END IF |
---|
3518 | ! !! Once the right start level is found, check that it is OK |
---|
3519 | ! !! >> first column should be 1e30 or so, second column should be a realistic value |
---|
3520 | ! !IF ( ko_above_sfc(i) .NE. -1 ) THEN |
---|
3521 | ! ! print *, 'verif', forig(i,ko-1,j), forig(i,ko,j), forig(i,ko+1,j), ko |
---|
3522 | ! !END IF |
---|
3523 | !! |
---|
3524 | !!****MARS |
---|
3525 | END IF |
---|
3526 | END IF |
---|
3527 | |
---|
3528 | END DO |
---|
3529 | END DO |
---|
3530 | |
---|
3531 | ! Initialize interpolation location. These are the levels in the original pressure |
---|
3532 | ! data that are physically below and above the targeted new pressure level. |
---|
3533 | |
---|
3534 | DO kn = kts , kte |
---|
3535 | DO i = its , ite |
---|
3536 | k_above(i,kn) = -1 |
---|
3537 | k_below(i,kn) = -2 |
---|
3538 | END DO |
---|
3539 | END DO |
---|
3540 | |
---|
3541 | ! Starting location is no lower than previous found location. This is for O(n logn) |
---|
3542 | ! and not O(n^2), where n is the number of vertical levels to search. |
---|
3543 | |
---|
3544 | DO i = its , ite |
---|
3545 | ks(i) = 1 |
---|
3546 | END DO |
---|
3547 | |
---|
3548 | ! Find trapping layer for interpolation. The kn index runs through all of the "new" |
---|
3549 | ! levels of data. |
---|
3550 | |
---|
3551 | DO kn = kstart , kend |
---|
3552 | |
---|
3553 | DO i = istart , iend |
---|
3554 | |
---|
3555 | ! For each "new" level (kn), we search to find the trapping levels in the "orig" |
---|
3556 | ! data. Most of the time, the "new" levels are the eta surfaces, and the "orig" |
---|
3557 | ! levels are the input pressure levels. |
---|
3558 | |
---|
3559 | found_trap_above : DO ko = ks(i) , generic-1 |
---|
3560 | |
---|
3561 | ! Because we can have levels in the interpolation that are not valid, |
---|
3562 | ! let's toss out any candidate orig pressure values that are below ground |
---|
3563 | ! based on the surface pressure. If the level =1, then this IS the surface |
---|
3564 | ! level, so we HAVE to keep that one, but maybe not the ones above. If the |
---|
3565 | ! level (ks) is NOT=1, then we have to just CYCLE our loop to find a legit |
---|
3566 | ! below-pressure value. If we are not below ground, then we choose two |
---|
3567 | ! neighboring levels to test whether they surround the new pressure level. |
---|
3568 | |
---|
3569 | ! The input trapping levels that we are trying is the surface and the first valid |
---|
3570 | ! level above the surface. |
---|
3571 | |
---|
3572 | IF ( ( ko .LT. ko_above_sfc(i) ) .AND. ( ko .EQ. 1 ) ) THEN |
---|
3573 | ko_1 = ko |
---|
3574 | ko_2 = ko_above_sfc(i) |
---|
3575 | !!****MARS |
---|
3576 | !!old remark: the possible issue is fixed later in the code ... |
---|
3577 | !!****MARS |
---|
3578 | |
---|
3579 | ! The "below" level is underground, cycle until we get to a valid pressure |
---|
3580 | ! above ground. |
---|
3581 | |
---|
3582 | ELSE IF ( ( ko .LT. ko_above_sfc(i) ) .AND. ( ko .NE. 1 ) ) THEN |
---|
3583 | CYCLE found_trap_above |
---|
3584 | |
---|
3585 | ! The "below" level is above the surface, so we are in the clear to test these |
---|
3586 | ! two levels out. |
---|
3587 | |
---|
3588 | ELSE |
---|
3589 | ko_1 = ko |
---|
3590 | ko_2 = ko+1 |
---|
3591 | |
---|
3592 | END IF |
---|
3593 | |
---|
3594 | |
---|
3595 | ! The test of the candidate levels: "below" has to have a larger pressure, and |
---|
3596 | ! "above" has to have a smaller pressure. |
---|
3597 | |
---|
3598 | ! OK, we found the correct two surrounding levels. The locations are saved for use in the |
---|
3599 | ! interpolation. |
---|
3600 | |
---|
3601 | IF ( ( porig(i,ko_1,j) .GE. pnew(i,kn,j) ) .AND. & |
---|
3602 | ( porig(i,ko_2,j) .LT. pnew(i,kn,j) ) ) THEN |
---|
3603 | k_above(i,kn) = ko_2 |
---|
3604 | k_below(i,kn) = ko_1 |
---|
3605 | ks(i) = ko_1 |
---|
3606 | EXIT found_trap_above |
---|
3607 | |
---|
3608 | ! What do we do is we need to extrapolate the data underground? This happens when the |
---|
3609 | ! lowest pressure that we have is physically "above" the new target pressure. Our |
---|
3610 | ! actions depend on the type of variable we are interpolating. |
---|
3611 | |
---|
3612 | ELSE IF ( porig(i,1,j) .LT. pnew(i,kn,j) ) THEN |
---|
3613 | !!****MARS |
---|
3614 | !!old stuff |
---|
3615 | !!check: values are usually quite close |
---|
3616 | !print *,porig(i,1,j),pnew(i,kn,j) |
---|
3617 | !!****MARS |
---|
3618 | |
---|
3619 | ! For horizontal winds and moisture, we keep a constant value under ground. |
---|
3620 | |
---|
3621 | IF ( ( var_type .EQ. 'U' ) .OR. & |
---|
3622 | ( var_type .EQ. 'V' ) .OR. & |
---|
3623 | ( var_type .EQ. 'Q' ) ) THEN |
---|
3624 | k_above(i,kn) = 1 |
---|
3625 | ks(i) = 1 |
---|
3626 | |
---|
3627 | ! For temperature and height, we extrapolate the data. Hopefully, we are not |
---|
3628 | ! extrapolating too far. For pressure level input, the eta levels are always |
---|
3629 | ! contained within the surface to p_top levels, so no extrapolation is ever |
---|
3630 | ! required. |
---|
3631 | |
---|
3632 | ELSE IF ( ( var_type .EQ. 'Z' ) .OR. & |
---|
3633 | ( var_type .EQ. 'T' ) ) THEN |
---|
3634 | k_above(i,kn) = ko_above_sfc(i) |
---|
3635 | k_below(i,kn) = 1 |
---|
3636 | ks(i) = 1 |
---|
3637 | !!!****MARS |
---|
3638 | !!old stuff |
---|
3639 | !k_above(i,kn) = 1 |
---|
3640 | !ks(i) = 1 |
---|
3641 | !!!"Hopefully, we are not extrapolating too far" |
---|
3642 | !!!>> true on Mars ?? |
---|
3643 | !!!****MARS |
---|
3644 | |
---|
3645 | ! Just a catch all right now. |
---|
3646 | |
---|
3647 | ELSE |
---|
3648 | k_above(i,kn) = 1 |
---|
3649 | ks(i) = 1 |
---|
3650 | END IF |
---|
3651 | |
---|
3652 | EXIT found_trap_above |
---|
3653 | |
---|
3654 | ! The other extrapolation that might be required is when we are going above the |
---|
3655 | ! top level of the input data. Usually this means we chose a P_PTOP value that |
---|
3656 | ! was inappropriate, and we should stop and let someone fix this mess. |
---|
3657 | |
---|
3658 | ELSE IF ( porig(i,generic,j) .GT. pnew(i,kn,j) ) THEN |
---|
3659 | print *,'data is too high, try a lower p_top' |
---|
3660 | print *,'pnew=',pnew(i,kn,j),'i',i,'j',j,'kn',kn |
---|
3661 | print *,'pnew=',pnew(i,:,j) |
---|
3662 | print *,'porig=',porig(i,:,j) |
---|
3663 | CALL wrf_error_fatal ('requested p_top is higher than input data, lower p_top') |
---|
3664 | |
---|
3665 | END IF |
---|
3666 | END DO found_trap_above |
---|
3667 | END DO |
---|
3668 | END DO |
---|
3669 | |
---|
3670 | ! Linear vertical interpolation. |
---|
3671 | |
---|
3672 | DO kn = kstart , kend |
---|
3673 | DO i = istart , iend |
---|
3674 | IF ( k_above(i,kn) .EQ. 1 ) THEN |
---|
3675 | !!!****MARS |
---|
3676 | !!old stuff |
---|
3677 | !!!ne doit pas arriver avec la temperature si l'on definit bien le champ au sol |
---|
3678 | !IF (forig(i,1,j) .EQ. -1.0e+30) THEN |
---|
3679 | ! print *,'no data here - surface - var is ...',var_type,i,j,1 |
---|
3680 | ! print *,'setting to first level with data...',ko_above_sfc(i),porig(i,ko_above_sfc(i),j) |
---|
3681 | ! forig(i,1,j) = forig(i,ko_above_sfc(i),j) |
---|
3682 | ! !IF ( ( var_type .EQ. 'U' ) .OR. & |
---|
3683 | ! ! ( var_type .EQ. 'V' ) .OR. & |
---|
3684 | ! ! ( var_type .EQ. 'Q' ) ) THEN |
---|
3685 | ! ! print *,'zero wind at the ground' |
---|
3686 | ! ! forig(i,1,j) = 0 |
---|
3687 | ! !ENDIF |
---|
3688 | ! IF (forig(i,1,j) .EQ. -1.0e+30) THEN |
---|
3689 | ! print *,'well ... are you sure ?' |
---|
3690 | ! stop |
---|
3691 | ! ENDIF |
---|
3692 | !END IF |
---|
3693 | !!!****MARS |
---|
3694 | fnew(i,kn,j) = forig(i,1,j) |
---|
3695 | ELSE |
---|
3696 | k2 = MAX ( k_above(i,kn) , 2) |
---|
3697 | k1 = MAX ( k_below(i,kn) , 1) |
---|
3698 | IF ( k1 .EQ. k2 ) THEN |
---|
3699 | CALL wrf_error_fatal ( 'identical values in the interp, bad for divisions' ) |
---|
3700 | END IF |
---|
3701 | !!!****MARS |
---|
3702 | !!old stuff |
---|
3703 | !IF (forig(i,k2,j) .EQ. -1.0e+30) THEN |
---|
3704 | ! print *,'no data here - level above - you_d better stop',i,j,k2 |
---|
3705 | ! stop |
---|
3706 | !END IF |
---|
3707 | !IF (forig(i,k1,j) .EQ. -1.0e+30) THEN |
---|
3708 | ! print *,'no data here - level below - var is ...',var_type,i,j,k1 |
---|
3709 | ! print *,'setting to first level with data...',ko_above_sfc(i),porig(i,ko_above_sfc(i),j) |
---|
3710 | ! forig(i,k1,j) = forig(i,ko_above_sfc(i),j) |
---|
3711 | ! !!!VERIFIER QUE LA TEMPERATURE AU SOL N'EST PAS CONCERNEE |
---|
3712 | ! !!!(montagnes=sources locales de chaleur) |
---|
3713 | ! !!!normalement, pas de souci, et lors de l'exécution rien ne s'affiche |
---|
3714 | !END IF |
---|
3715 | !!!****MARS |
---|
3716 | IF ( interp_type .EQ. 1 ) THEN |
---|
3717 | p1 = porig(i,k1,j) |
---|
3718 | p2 = porig(i,k2,j) |
---|
3719 | pn = pnew(i,kn,j) |
---|
3720 | ELSE IF ( interp_type .EQ. 2 ) THEN |
---|
3721 | p1 = ALOG(porig(i,k1,j)) |
---|
3722 | p2 = ALOG(porig(i,k2,j)) |
---|
3723 | pn = ALOG(pnew(i,kn,j)) |
---|
3724 | END IF |
---|
3725 | IF ( ( p1-pn) * (p2-pn) > 0. ) THEN |
---|
3726 | ! CALL wrf_error_fatal ( 'both trapping pressures are on the same side of the new pressure' ) |
---|
3727 | ! CALL wrf_debug ( 0 , 'both trapping pressures are on the same side of the new pressure' ) |
---|
3728 | !!!****MARS |
---|
3729 | vert_extrap = vert_extrap + 1 |
---|
3730 | !print *, 'extrapolate', pnew(i,kn,j)-porig(i,k1,j), 'for WRF level', kn |
---|
3731 | IF (kn_save < kn) kn_save=kn |
---|
3732 | !!!****MARS |
---|
3733 | END IF |
---|
3734 | fnew(i,kn,j) = ( forig(i,k1,j) * ( p2 - pn ) + & |
---|
3735 | forig(i,k2,j) * ( pn - p1 ) ) / & |
---|
3736 | ( p2 - p1 ) |
---|
3737 | END IF |
---|
3738 | END DO |
---|
3739 | END DO |
---|
3740 | |
---|
3741 | search_below_ground : DO kn = kstart , kend |
---|
3742 | any_below_ground = .FALSE. |
---|
3743 | DO i = istart , iend |
---|
3744 | IF ( k_above(i,kn) .EQ. 1 ) THEN |
---|
3745 | fnew(i,kn,j) = forig(i,1,j) |
---|
3746 | any_below_ground = .TRUE. |
---|
3747 | END IF |
---|
3748 | END DO |
---|
3749 | IF ( .NOT. any_below_ground ) THEN |
---|
3750 | EXIT search_below_ground |
---|
3751 | END IF |
---|
3752 | END DO search_below_ground |
---|
3753 | |
---|
3754 | ! There may have been a request to have the surface data from the input field |
---|
3755 | ! to be assigned as to the lowest eta level. This assumes thin layers (usually |
---|
3756 | ! the isobaric original field has the surface from 2-m T and RH, and 10-m U and V). |
---|
3757 | |
---|
3758 | |
---|
3759 | DO i = istart , iend |
---|
3760 | IF ( lowest_lev_from_sfc ) THEN |
---|
3761 | fnew(i,1,j) = forig(i,ko_above_sfc(i),j) |
---|
3762 | END IF |
---|
3763 | END DO |
---|
3764 | |
---|
3765 | END DO |
---|
3766 | print *,'VERT EXTRAP = ', vert_extrap |
---|
3767 | print *,'finished with ... ', var_type |
---|
3768 | print *,'max WRF eta level where extrap. occurs: ',kn_save |
---|
3769 | |
---|
3770 | END SUBROUTINE vert_interp_old |
---|
3771 | |
---|
3772 | !--------------------------------------------------------------------- |
---|
3773 | |
---|
3774 | SUBROUTINE lagrange_setup ( var_type , all_x , all_y , all_dim , n , target_x , target_y , target_dim ,i,j) |
---|
3775 | |
---|
3776 | ! We call a Lagrange polynomial interpolator. The parallel concerns are put off as this |
---|
3777 | ! is initially set up for vertical use. The purpose is an input column of pressure (all_x), |
---|
3778 | ! and the associated pressure level data (all_y). These are assumed to be sorted (ascending |
---|
3779 | ! or descending, no matter). The locations to be interpolated to are the pressures in |
---|
3780 | ! target_x, probably the new vertical coordinate values. The field that is output is the |
---|
3781 | ! target_y, which is defined at the target_x location. Mostly we expect to be 2nd order |
---|
3782 | ! overlapping polynomials, with only a single 2nd order method near the top and bottom. |
---|
3783 | ! When n=1, this is linear; when n=2, this is a second order interpolator. |
---|
3784 | |
---|
3785 | IMPLICIT NONE |
---|
3786 | |
---|
3787 | CHARACTER (LEN=1) :: var_type |
---|
3788 | INTEGER , INTENT(IN) :: all_dim , n , target_dim |
---|
3789 | REAL, DIMENSION(all_dim) , INTENT(IN) :: all_x , all_y |
---|
3790 | REAL , DIMENSION(target_dim) , INTENT(IN) :: target_x |
---|
3791 | REAL , DIMENSION(target_dim) , INTENT(OUT) :: target_y |
---|
3792 | |
---|
3793 | ! Brought in for debug purposes, all of the computations are in a single column. |
---|
3794 | |
---|
3795 | INTEGER , INTENT(IN) :: i,j |
---|
3796 | |
---|
3797 | ! Local vars |
---|
3798 | |
---|
3799 | REAL , DIMENSION(n+1) :: x , y |
---|
3800 | REAL :: target_y_1 , target_y_2 |
---|
3801 | LOGICAL :: found_loc |
---|
3802 | INTEGER :: loop , loc_center_left , loc_center_right , ist , iend , target_loop |
---|
3803 | |
---|
3804 | |
---|
3805 | IF ( all_dim .LT. n+1 ) THEN |
---|
3806 | print *,'all_dim = ',all_dim |
---|
3807 | print *,'order = ',n |
---|
3808 | print *,'i,j = ',i,j |
---|
3809 | print *,'p array = ',all_x |
---|
3810 | print *,'f array = ',all_y |
---|
3811 | print *,'p target= ',target_x |
---|
3812 | CALL wrf_error_fatal ( 'troubles, the interpolating order is too large for this few input values' ) |
---|
3813 | END IF |
---|
3814 | |
---|
3815 | IF ( n .LT. 1 ) THEN |
---|
3816 | CALL wrf_error_fatal ( 'pal, linear is about as low as we go' ) |
---|
3817 | END IF |
---|
3818 | |
---|
3819 | ! Loop over the list of target x and y values. |
---|
3820 | |
---|
3821 | DO target_loop = 1 , target_dim |
---|
3822 | |
---|
3823 | ! Find the two trapping x values, and keep the indices. |
---|
3824 | |
---|
3825 | found_loc = .FALSE. |
---|
3826 | find_trap : DO loop = 1 , all_dim -1 |
---|
3827 | IF ( ( target_x(target_loop) - all_x(loop) ) * ( target_x(target_loop) - all_x(loop+1) ) .LE. 0.0 ) THEN |
---|
3828 | loc_center_left = loop |
---|
3829 | loc_center_right = loop+1 |
---|
3830 | found_loc = .TRUE. |
---|
3831 | !****MARS: check if no errors here |
---|
3832 | !print *,'interpolating ... ',var_type |
---|
3833 | ! print *,'i,j = ',i,j |
---|
3834 | ! print *,'target pressure and value = ',target_x(target_loop),target_y(target_loop) |
---|
3835 | ! DO loop = 1 , all_dim |
---|
3836 | ! print *,'column of pressure and value = ',all_x(loop),all_y(loop) |
---|
3837 | ! END DO |
---|
3838 | !END IF |
---|
3839 | !****MARS |
---|
3840 | EXIT find_trap |
---|
3841 | END IF |
---|
3842 | END DO find_trap |
---|
3843 | |
---|
3844 | IF ( ( .NOT. found_loc ) .AND. ( target_x(target_loop) .GT. all_x(1) ) ) THEN |
---|
3845 | IF ( var_type .EQ. 'T' ) THEN |
---|
3846 | write(6,fmt='(A,2i5,2f11.3)') & |
---|
3847 | ' --> extrapolating TEMPERATURE near sfc: i,j,psfc, p target = ',& |
---|
3848 | i,j,all_x(1),target_x(target_loop) |
---|
3849 | target_y(target_loop) = ( all_y(1) * ( target_x(target_loop) - all_x(2) ) + & |
---|
3850 | all_y(2) * ( all_x(1) - target_x(target_loop) ) ) / & |
---|
3851 | ( all_x(1) - all_x(2) ) |
---|
3852 | ELSE |
---|
3853 | !write(6,fmt='(A,2i5,2f11.3)') & |
---|
3854 | !' --> extrapolating zero gradient near sfc: i,j,psfc, p target = ',& |
---|
3855 | !i,j,all_x(1),target_x(target_loop) |
---|
3856 | target_y(target_loop) = all_y(1) |
---|
3857 | END IF |
---|
3858 | CYCLE |
---|
3859 | ELSE IF ( .NOT. found_loc ) THEN |
---|
3860 | !****MARS: normally, no errors here (otherwise, keep this part commented ?) |
---|
3861 | print *, var_type |
---|
3862 | print *,'i,j = ',i,j |
---|
3863 | print *,'target pressure and value = ',target_x(target_loop),target_y(target_loop) |
---|
3864 | DO loop = 1 , all_dim |
---|
3865 | print *,'column of pressure and value = ',all_x(loop),all_y(loop) |
---|
3866 | END DO |
---|
3867 | CALL wrf_error_fatal ( 'troubles, could not find trapping x locations' ) |
---|
3868 | !****MARS: end of 'keep this part commented' |
---|
3869 | END IF |
---|
3870 | |
---|
3871 | ! Even or odd order? We can put the value in the middle if this is |
---|
3872 | ! an odd order interpolator. For the even guys, we'll do it twice |
---|
3873 | ! and shift the range one index, then get an average. |
---|
3874 | |
---|
3875 | IF ( MOD(n,2) .NE. 0 ) THEN |
---|
3876 | IF ( ( loc_center_left -(((n+1)/2)-1) .GE. 1 ) .AND. & |
---|
3877 | ( loc_center_right+(((n+1)/2)-1) .LE. all_dim ) ) THEN |
---|
3878 | ist = loc_center_left -(((n+1)/2)-1) |
---|
3879 | iend = iend + n |
---|
3880 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y(target_loop) ) |
---|
3881 | ELSE |
---|
3882 | IF ( .NOT. found_loc ) THEN |
---|
3883 | CALL wrf_error_fatal ( 'I doubt this will happen, I will only do 2nd order for now' ) |
---|
3884 | END IF |
---|
3885 | END IF |
---|
3886 | |
---|
3887 | ELSE IF ( MOD(n,2) .EQ. 0 ) THEN |
---|
3888 | IF ( ( loc_center_left -(((n )/2)-1) .GE. 1 ) .AND. & |
---|
3889 | ( loc_center_right+(((n )/2) ) .LE. all_dim ) .AND. & |
---|
3890 | ( loc_center_left -(((n )/2) ) .GE. 1 ) .AND. & |
---|
3891 | ( loc_center_right+(((n )/2)-1) .LE. all_dim ) ) THEN |
---|
3892 | ist = loc_center_left -(((n )/2)-1) |
---|
3893 | iend = ist + n |
---|
3894 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y_1 ) |
---|
3895 | ist = loc_center_left -(((n )/2) ) |
---|
3896 | iend = ist + n |
---|
3897 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y_2 ) |
---|
3898 | target_y(target_loop) = ( target_y_1 + target_y_2 ) * 0.5 |
---|
3899 | |
---|
3900 | ELSE IF ( ( loc_center_left -(((n )/2)-1) .GE. 1 ) .AND. & |
---|
3901 | ( loc_center_right+(((n )/2) ) .LE. all_dim ) ) THEN |
---|
3902 | ist = loc_center_left -(((n )/2)-1) |
---|
3903 | iend = ist + n |
---|
3904 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y(target_loop) ) |
---|
3905 | ELSE IF ( ( loc_center_left -(((n )/2) ) .GE. 1 ) .AND. & |
---|
3906 | ( loc_center_right+(((n )/2)-1) .LE. all_dim ) ) THEN |
---|
3907 | ist = loc_center_left -(((n )/2) ) |
---|
3908 | iend = ist + n |
---|
3909 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y(target_loop) ) |
---|
3910 | ELSE |
---|
3911 | CALL wrf_error_fatal ( 'unauthorized area, you should not be here' ) |
---|
3912 | END IF |
---|
3913 | |
---|
3914 | END IF |
---|
3915 | |
---|
3916 | END DO |
---|
3917 | |
---|
3918 | END SUBROUTINE lagrange_setup |
---|
3919 | |
---|
3920 | !--------------------------------------------------------------------- |
---|
3921 | |
---|
3922 | SUBROUTINE lagrange_interp ( x , y , n , target_x , target_y ) |
---|
3923 | |
---|
3924 | ! Interpolation using Lagrange polynomials. |
---|
3925 | ! P(x) = f(x0)Ln0(x) + ... + f(xn)Lnn(x) |
---|
3926 | ! where Lnk(x) = (x -x0)(x -x1)...(x -xk-1)(x -xk+1)...(x -xn) |
---|
3927 | ! --------------------------------------------- |
---|
3928 | ! (xk-x0)(xk-x1)...(xk-xk-1)(xk-xk+1)...(xk-xn) |
---|
3929 | |
---|
3930 | IMPLICIT NONE |
---|
3931 | |
---|
3932 | INTEGER , INTENT(IN) :: n |
---|
3933 | REAL , DIMENSION(0:n) , INTENT(IN) :: x , y |
---|
3934 | REAL , INTENT(IN) :: target_x |
---|
3935 | |
---|
3936 | REAL , INTENT(OUT) :: target_y |
---|
3937 | |
---|
3938 | ! Local vars |
---|
3939 | |
---|
3940 | INTEGER :: i , k |
---|
3941 | REAL :: numer , denom , Px |
---|
3942 | REAL , DIMENSION(0:n) :: Ln |
---|
3943 | |
---|
3944 | Px = 0. |
---|
3945 | DO i = 0 , n |
---|
3946 | numer = 1. |
---|
3947 | denom = 1. |
---|
3948 | DO k = 0 , n |
---|
3949 | IF ( k .EQ. i ) CYCLE |
---|
3950 | numer = numer * ( target_x - x(k) ) |
---|
3951 | denom = denom * ( x(i) - x(k) ) |
---|
3952 | END DO |
---|
3953 | Ln(i) = y(i) * numer / denom |
---|
3954 | Px = Px + Ln(i) |
---|
3955 | END DO |
---|
3956 | target_y = Px |
---|
3957 | |
---|
3958 | END SUBROUTINE lagrange_interp |
---|
3959 | |
---|
3960 | #ifndef VERT_UNIT |
---|
3961 | !--------------------------------------------------------------------- |
---|
3962 | |
---|
3963 | SUBROUTINE p_dry ( mu0 , eta , pdht , pdry , & |
---|
3964 | ids , ide , jds , jde , kds , kde , & |
---|
3965 | ims , ime , jms , jme , kms , kme , & |
---|
3966 | its , ite , jts , jte , kts , kte ) |
---|
3967 | |
---|
3968 | ! Compute reference pressure and the reference mu. |
---|
3969 | |
---|
3970 | IMPLICIT NONE |
---|
3971 | |
---|
3972 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
3973 | ims , ime , jms , jme , kms , kme , & |
---|
3974 | its , ite , jts , jte , kts , kte |
---|
3975 | |
---|
3976 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(IN) :: mu0 |
---|
3977 | REAL , DIMENSION( kms:kme ) , INTENT(IN) :: eta |
---|
3978 | REAL :: pdht |
---|
3979 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: pdry |
---|
3980 | |
---|
3981 | ! Local vars |
---|
3982 | |
---|
3983 | INTEGER :: i , j , k |
---|
3984 | REAL , DIMENSION( kms:kme ) :: eta_h |
---|
3985 | |
---|
3986 | DO k = kts , kte-1 |
---|
3987 | eta_h(k) = ( eta(k) + eta(k+1) ) * 0.5 |
---|
3988 | END DO |
---|
3989 | |
---|
3990 | DO j = jts , MIN ( jde-1 , jte ) |
---|
3991 | DO k = kts , kte-1 |
---|
3992 | DO i = its , MIN (ide-1 , ite ) |
---|
3993 | pdry(i,k,j) = eta_h(k) * mu0(i,j) + pdht |
---|
3994 | END DO |
---|
3995 | END DO |
---|
3996 | END DO |
---|
3997 | |
---|
3998 | END SUBROUTINE p_dry |
---|
3999 | |
---|
4000 | !--------------------------------------------------------------------- |
---|
4001 | |
---|
4002 | SUBROUTINE p_dts ( pdts , intq , psfc , p_top , & |
---|
4003 | ids , ide , jds , jde , kds , kde , & |
---|
4004 | ims , ime , jms , jme , kms , kme , & |
---|
4005 | its , ite , jts , jte , kts , kte ) |
---|
4006 | |
---|
4007 | ! Compute difference between the dry, total surface pressure and the top pressure. |
---|
4008 | |
---|
4009 | IMPLICIT NONE |
---|
4010 | |
---|
4011 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
4012 | ims , ime , jms , jme , kms , kme , & |
---|
4013 | its , ite , jts , jte , kts , kte |
---|
4014 | |
---|
4015 | REAL , INTENT(IN) :: p_top |
---|
4016 | REAL , DIMENSION(ims:ime,jms:jme) , INTENT(IN) :: psfc |
---|
4017 | REAL , DIMENSION(ims:ime,jms:jme) , INTENT(IN) :: intq |
---|
4018 | REAL , DIMENSION(ims:ime,jms:jme) , INTENT(OUT) :: pdts |
---|
4019 | |
---|
4020 | ! Local vars |
---|
4021 | |
---|
4022 | INTEGER :: i , j , k |
---|
4023 | |
---|
4024 | DO j = jts , MIN ( jde-1 , jte ) |
---|
4025 | DO i = its , MIN (ide-1 , ite ) |
---|
4026 | pdts(i,j) = psfc(i,j) - intq(i,j) - p_top |
---|
4027 | END DO |
---|
4028 | END DO |
---|
4029 | |
---|
4030 | END SUBROUTINE p_dts |
---|
4031 | |
---|
4032 | !--------------------------------------------------------------------- |
---|
4033 | |
---|
4034 | SUBROUTINE p_dhs ( pdhs , ht , p0 , t0 , a , & |
---|
4035 | ids , ide , jds , jde , kds , kde , & |
---|
4036 | ims , ime , jms , jme , kms , kme , & |
---|
4037 | its , ite , jts , jte , kts , kte ) |
---|
4038 | |
---|
4039 | ! Compute dry, hydrostatic surface pressure. |
---|
4040 | |
---|
4041 | IMPLICIT NONE |
---|
4042 | |
---|
4043 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
4044 | ims , ime , jms , jme , kms , kme , & |
---|
4045 | its , ite , jts , jte , kts , kte |
---|
4046 | |
---|
4047 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(IN) :: ht |
---|
4048 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: pdhs |
---|
4049 | |
---|
4050 | REAL , INTENT(IN) :: p0 , t0 , a |
---|
4051 | |
---|
4052 | ! Local vars |
---|
4053 | |
---|
4054 | INTEGER :: i , j , k |
---|
4055 | !****MARS .... |
---|
4056 | REAL , PARAMETER :: Rd = 192. |
---|
4057 | REAL , PARAMETER :: g = 3.72 |
---|
4058 | print *,'compute dry, hydrostatic surface pressure' |
---|
4059 | !****MARS .... |
---|
4060 | |
---|
4061 | DO j = jts , MIN ( jde-1 , jte ) |
---|
4062 | DO i = its , MIN (ide-1 , ite ) |
---|
4063 | pdhs(i,j) = p0 * EXP ( -t0/a + SQRT ( (t0/a)**2 - 2. * g * ht(i,j)/(a * Rd) ) ) |
---|
4064 | END DO |
---|
4065 | END DO |
---|
4066 | |
---|
4067 | !****MARS |
---|
4068 | !****MARS cette formule est-elle juste sur Mars ? |
---|
4069 | !****MARS >> a premiere vue, ne donne pas de resultats absurdes |
---|
4070 | !****TODO: il y a peut etre meilleur ! |
---|
4071 | !****MARS |
---|
4072 | |
---|
4073 | !print *,pdhs |
---|
4074 | !stop |
---|
4075 | |
---|
4076 | |
---|
4077 | END SUBROUTINE p_dhs |
---|
4078 | |
---|
4079 | !--------------------------------------------------------------------- |
---|
4080 | |
---|
4081 | SUBROUTINE find_p_top ( p , p_top , & |
---|
4082 | ids , ide , jds , jde , kds , kde , & |
---|
4083 | ims , ime , jms , jme , kms , kme , & |
---|
4084 | its , ite , jts , jte , kts , kte ) |
---|
4085 | |
---|
4086 | ! Find the largest pressure in the top level. This is our p_top. We are |
---|
4087 | ! assuming that the top level is the location where the pressure is a minimum |
---|
4088 | ! for each column. In cases where the top surface is not isobaric, a |
---|
4089 | ! communicated value must be shared in the calling routine. Also in cases |
---|
4090 | ! where the top surface is not isobaric, care must be taken that the new |
---|
4091 | ! maximum pressure is not greater than the previous value. This test is |
---|
4092 | ! also handled in the calling routine. |
---|
4093 | |
---|
4094 | IMPLICIT NONE |
---|
4095 | |
---|
4096 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
4097 | ims , ime , jms , jme , kms , kme , & |
---|
4098 | its , ite , jts , jte , kts , kte |
---|
4099 | |
---|
4100 | REAL :: p_top |
---|
4101 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: p |
---|
4102 | |
---|
4103 | ! Local vars |
---|
4104 | |
---|
4105 | INTEGER :: i , j , k, min_lev |
---|
4106 | |
---|
4107 | i = its |
---|
4108 | j = jts |
---|
4109 | p_top = p(i,2,j) |
---|
4110 | min_lev = 2 |
---|
4111 | DO k = 2 , kte |
---|
4112 | IF ( p_top .GT. p(i,k,j) ) THEN |
---|
4113 | p_top = p(i,k,j) |
---|
4114 | min_lev = k |
---|
4115 | END IF |
---|
4116 | END DO |
---|
4117 | |
---|
4118 | k = min_lev |
---|
4119 | p_top = p(its,k,jts) |
---|
4120 | DO j = jts , MIN ( jde-1 , jte ) |
---|
4121 | DO i = its , MIN (ide-1 , ite ) |
---|
4122 | p_top = MAX ( p_top , p(i,k,j) ) |
---|
4123 | END DO |
---|
4124 | END DO |
---|
4125 | |
---|
4126 | END SUBROUTINE find_p_top |
---|
4127 | |
---|
4128 | !--------------------------------------------------------------------- |
---|
4129 | |
---|
4130 | SUBROUTINE t_to_theta ( t , p , p00 , & |
---|
4131 | ids , ide , jds , jde , kds , kde , & |
---|
4132 | ims , ime , jms , jme , kms , kme , & |
---|
4133 | its , ite , jts , jte , kts , kte ) |
---|
4134 | |
---|
4135 | ! Compute dry, hydrostatic surface pressure. |
---|
4136 | |
---|
4137 | IMPLICIT NONE |
---|
4138 | |
---|
4139 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
4140 | ims , ime , jms , jme , kms , kme , & |
---|
4141 | its , ite , jts , jte , kts , kte |
---|
4142 | |
---|
4143 | REAL , INTENT(IN) :: p00 |
---|
4144 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: p |
---|
4145 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(INOUT) :: t |
---|
4146 | |
---|
4147 | ! Local vars |
---|
4148 | |
---|
4149 | INTEGER :: i , j , k |
---|
4150 | !****MARS |
---|
4151 | REAL , PARAMETER :: Rd = 192. |
---|
4152 | REAL , PARAMETER :: Cp = 844.6 |
---|
4153 | !****MARS |
---|
4154 | |
---|
4155 | DO j = jts , MIN ( jde-1 , jte ) |
---|
4156 | DO k = kts , kte |
---|
4157 | DO i = its , MIN (ide-1 , ite ) |
---|
4158 | t(i,k,j) = t(i,k,j) * ( p00 / p(i,k,j) ) ** (Rd / Cp) |
---|
4159 | END DO |
---|
4160 | END DO |
---|
4161 | END DO |
---|
4162 | |
---|
4163 | END SUBROUTINE t_to_theta |
---|
4164 | |
---|
4165 | !--------------------------------------------------------------------- |
---|
4166 | |
---|
4167 | SUBROUTINE integ_moist ( q_in , p_in , pd_out , t_in , ght_in , intq , & |
---|
4168 | ids , ide , jds , jde , kds , kde , & |
---|
4169 | ims , ime , jms , jme , kms , kme , & |
---|
4170 | its , ite , jts , jte , kts , kte ) |
---|
4171 | |
---|
4172 | ! Integrate the moisture field vertically. Mostly used to get the total |
---|
4173 | ! vapor pressure, which can be subtracted from the total pressure to get |
---|
4174 | ! the dry pressure. |
---|
4175 | |
---|
4176 | IMPLICIT NONE |
---|
4177 | |
---|
4178 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
4179 | ims , ime , jms , jme , kms , kme , & |
---|
4180 | its , ite , jts , jte , kts , kte |
---|
4181 | |
---|
4182 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: q_in , p_in , t_in , ght_in |
---|
4183 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: pd_out |
---|
4184 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: intq |
---|
4185 | |
---|
4186 | ! Local vars |
---|
4187 | |
---|
4188 | INTEGER :: i , j , k |
---|
4189 | INTEGER , DIMENSION(ims:ime) :: level_above_sfc |
---|
4190 | REAL , DIMENSION(ims:ime,jms:jme) :: psfc , tsfc , qsfc, zsfc |
---|
4191 | REAL , DIMENSION(ims:ime,kms:kme) :: q , p , t , ght, pd |
---|
4192 | |
---|
4193 | REAL :: rhobar , qbar , dz |
---|
4194 | REAL :: p1 , p2 , t1 , t2 , q1 , q2 , z1, z2 |
---|
4195 | |
---|
4196 | LOGICAL :: upside_down |
---|
4197 | |
---|
4198 | !****MARS |
---|
4199 | REAL , PARAMETER :: Rd = 192. |
---|
4200 | REAL , PARAMETER :: g = 3.72 |
---|
4201 | !****MARS |
---|
4202 | |
---|
4203 | |
---|
4204 | ! Get a surface value, always the first level of a 3d field. |
---|
4205 | |
---|
4206 | DO j = jts , MIN ( jde-1 , jte ) |
---|
4207 | DO i = its , MIN (ide-1 , ite ) |
---|
4208 | psfc(i,j) = p_in(i,kts,j) |
---|
4209 | tsfc(i,j) = t_in(i,kts,j) |
---|
4210 | qsfc(i,j) = q_in(i,kts,j) |
---|
4211 | zsfc(i,j) = ght_in(i,kts,j) |
---|
4212 | END DO |
---|
4213 | END DO |
---|
4214 | |
---|
4215 | IF ( p_in(its,kts+1,jts) .LT. p_in(its,kte,jts) ) THEN |
---|
4216 | upside_down = .TRUE. |
---|
4217 | ELSE |
---|
4218 | upside_down = .FALSE. |
---|
4219 | END IF |
---|
4220 | |
---|
4221 | DO j = jts , MIN ( jde-1 , jte ) |
---|
4222 | |
---|
4223 | ! Initialize the integrated quantity of moisture to zero. |
---|
4224 | |
---|
4225 | DO i = its , MIN (ide-1 , ite ) |
---|
4226 | intq(i,j) = 0. |
---|
4227 | END DO |
---|
4228 | |
---|
4229 | IF ( upside_down ) THEN |
---|
4230 | DO i = its , MIN (ide-1 , ite ) |
---|
4231 | p(i,kts) = p_in(i,kts,j) |
---|
4232 | t(i,kts) = t_in(i,kts,j) |
---|
4233 | q(i,kts) = q_in(i,kts,j) |
---|
4234 | ght(i,kts) = ght_in(i,kts,j) |
---|
4235 | DO k = kts+1,kte |
---|
4236 | p(i,k) = p_in(i,kte+2-k,j) |
---|
4237 | t(i,k) = t_in(i,kte+2-k,j) |
---|
4238 | q(i,k) = q_in(i,kte+2-k,j) |
---|
4239 | ght(i,k) = ght_in(i,kte+2-k,j) |
---|
4240 | END DO |
---|
4241 | END DO |
---|
4242 | ELSE |
---|
4243 | DO i = its , MIN (ide-1 , ite ) |
---|
4244 | DO k = kts,kte |
---|
4245 | p(i,k) = p_in(i,k ,j) |
---|
4246 | t(i,k) = t_in(i,k ,j) |
---|
4247 | q(i,k) = q_in(i,k ,j) |
---|
4248 | ght(i,k) = ght_in(i,k ,j) |
---|
4249 | END DO |
---|
4250 | END DO |
---|
4251 | END IF |
---|
4252 | |
---|
4253 | ! Find the first level above the ground. If all of the levels are above ground, such as |
---|
4254 | ! a terrain following lower coordinate, then the first level above ground is index #2. |
---|
4255 | |
---|
4256 | DO i = its , MIN (ide-1 , ite ) |
---|
4257 | level_above_sfc(i) = -1 |
---|
4258 | IF ( p(i,kts+1) .LT. psfc(i,j) ) THEN |
---|
4259 | level_above_sfc(i) = kts+1 |
---|
4260 | ELSE |
---|
4261 | find_k : DO k = kts+1,kte-1 |
---|
4262 | IF ( ( p(i,k )-psfc(i,j) .GE. 0. ) .AND. & |
---|
4263 | ( p(i,k+1)-psfc(i,j) .LT. 0. ) ) THEN |
---|
4264 | level_above_sfc(i) = k+1 |
---|
4265 | EXIT find_k |
---|
4266 | END IF |
---|
4267 | END DO find_k |
---|
4268 | IF ( level_above_sfc(i) .EQ. -1 ) THEN |
---|
4269 | print *,'i,j = ',i,j |
---|
4270 | print *,'p = ',p(i,:) |
---|
4271 | print *,'p sfc = ',psfc(i,j) |
---|
4272 | CALL wrf_error_fatal ( 'Could not find level above ground') |
---|
4273 | END IF |
---|
4274 | END IF |
---|
4275 | END DO |
---|
4276 | |
---|
4277 | DO i = its , MIN (ide-1 , ite ) |
---|
4278 | |
---|
4279 | ! Account for the moisture above the ground. |
---|
4280 | |
---|
4281 | pd(i,kte) = p(i,kte) |
---|
4282 | DO k = kte-1,level_above_sfc(i),-1 |
---|
4283 | rhobar = ( p(i,k ) / ( Rd * t(i,k ) ) + & |
---|
4284 | p(i,k+1) / ( Rd * t(i,k+1) ) ) * 0.5 |
---|
4285 | qbar = ( q(i,k ) + q(i,k+1) ) * 0.5 |
---|
4286 | dz = ght(i,k+1) - ght(i,k) |
---|
4287 | intq(i,j) = intq(i,j) + g * qbar * rhobar / (1. + qbar) * dz |
---|
4288 | pd(i,k) = p(i,k) - intq(i,j) |
---|
4289 | END DO |
---|
4290 | |
---|
4291 | ! Account for the moisture between the surface and the first level up. |
---|
4292 | |
---|
4293 | IF ( ( p(i,level_above_sfc(i)-1)-psfc(i,j) .GE. 0. ) .AND. & |
---|
4294 | ( p(i,level_above_sfc(i) )-psfc(i,j) .LT. 0. ) .AND. & |
---|
4295 | ( level_above_sfc(i) .GT. kts ) ) THEN |
---|
4296 | p1 = psfc(i,j) |
---|
4297 | p2 = p(i,level_above_sfc(i)) |
---|
4298 | t1 = tsfc(i,j) |
---|
4299 | t2 = t(i,level_above_sfc(i)) |
---|
4300 | q1 = qsfc(i,j) |
---|
4301 | q2 = q(i,level_above_sfc(i)) |
---|
4302 | z1 = zsfc(i,j) |
---|
4303 | z2 = ght(i,level_above_sfc(i)) |
---|
4304 | rhobar = ( p1 / ( Rd * t1 ) + & |
---|
4305 | p2 / ( Rd * t2 ) ) * 0.5 |
---|
4306 | qbar = ( q1 + q2 ) * 0.5 |
---|
4307 | dz = z2 - z1 |
---|
4308 | IF ( dz .GT. 0.1 ) THEN |
---|
4309 | intq(i,j) = intq(i,j) + g * qbar * rhobar / (1. + qbar) * dz |
---|
4310 | END IF |
---|
4311 | |
---|
4312 | ! Fix the underground values. |
---|
4313 | |
---|
4314 | DO k = level_above_sfc(i)-1,kts+1,-1 |
---|
4315 | pd(i,k) = p(i,k) - intq(i,j) |
---|
4316 | END DO |
---|
4317 | END IF |
---|
4318 | pd(i,kts) = psfc(i,j) - intq(i,j) |
---|
4319 | |
---|
4320 | END DO |
---|
4321 | |
---|
4322 | IF ( upside_down ) THEN |
---|
4323 | DO i = its , MIN (ide-1 , ite ) |
---|
4324 | pd_out(i,kts,j) = pd(i,kts) |
---|
4325 | DO k = kts+1,kte |
---|
4326 | pd_out(i,kte+2-k,j) = pd(i,k) |
---|
4327 | END DO |
---|
4328 | END DO |
---|
4329 | ELSE |
---|
4330 | DO i = its , MIN (ide-1 , ite ) |
---|
4331 | DO k = kts,kte |
---|
4332 | pd_out(i,k,j) = pd(i,k) |
---|
4333 | END DO |
---|
4334 | END DO |
---|
4335 | END IF |
---|
4336 | |
---|
4337 | END DO |
---|
4338 | |
---|
4339 | |
---|
4340 | !!!****MARS: no water vapor pressure |
---|
4341 | !! DO k = level_above_sfc(i)-1,kts+1,-1 |
---|
4342 | !! pd(i,k) = p(i,k) |
---|
4343 | !! END DO |
---|
4344 | !! pd(i,kts) = psfc(i,j) |
---|
4345 | !!!****MARS |
---|
4346 | |
---|
4347 | |
---|
4348 | END SUBROUTINE integ_moist |
---|
4349 | |
---|
4350 | !--------------------------------------------------------------------- |
---|
4351 | |
---|
4352 | SUBROUTINE rh_to_mxrat (rh, t, p, q , wrt_liquid , & |
---|
4353 | ids , ide , jds , jde , kds , kde , & |
---|
4354 | ims , ime , jms , jme , kms , kme , & |
---|
4355 | its , ite , jts , jte , kts , kte ) |
---|
4356 | |
---|
4357 | IMPLICIT NONE |
---|
4358 | |
---|
4359 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
4360 | ims , ime , jms , jme , kms , kme , & |
---|
4361 | its , ite , jts , jte , kts , kte |
---|
4362 | |
---|
4363 | LOGICAL , INTENT(IN) :: wrt_liquid |
---|
4364 | |
---|
4365 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: p , t |
---|
4366 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(INOUT) :: rh |
---|
4367 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: q |
---|
4368 | |
---|
4369 | ! Local vars |
---|
4370 | |
---|
4371 | INTEGER :: i , j , k |
---|
4372 | |
---|
4373 | REAL :: ew , q1 , t1 |
---|
4374 | !****MARS .... regler si besoin .... |
---|
4375 | !****MARS |
---|
4376 | REAL, PARAMETER :: T_REF = 0.0 |
---|
4377 | REAL, PARAMETER :: MW_AIR = 28.966 |
---|
4378 | REAL, PARAMETER :: MW_VAP = 18.0152 |
---|
4379 | |
---|
4380 | REAL, PARAMETER :: A0 = 6.107799961 |
---|
4381 | REAL, PARAMETER :: A1 = 4.436518521e-01 |
---|
4382 | REAL, PARAMETER :: A2 = 1.428945805e-02 |
---|
4383 | REAL, PARAMETER :: A3 = 2.650648471e-04 |
---|
4384 | REAL, PARAMETER :: A4 = 3.031240396e-06 |
---|
4385 | REAL, PARAMETER :: A5 = 2.034080948e-08 |
---|
4386 | REAL, PARAMETER :: A6 = 6.136820929e-11 |
---|
4387 | |
---|
4388 | REAL, PARAMETER :: ES0 = 6.1121 |
---|
4389 | |
---|
4390 | REAL, PARAMETER :: C1 = 9.09718 |
---|
4391 | REAL, PARAMETER :: C2 = 3.56654 |
---|
4392 | REAL, PARAMETER :: C3 = 0.876793 |
---|
4393 | REAL, PARAMETER :: EIS = 6.1071 |
---|
4394 | REAL :: RHS |
---|
4395 | REAL, PARAMETER :: TF = 273.16 |
---|
4396 | REAL :: TK |
---|
4397 | |
---|
4398 | REAL :: ES |
---|
4399 | REAL :: QS |
---|
4400 | REAL, PARAMETER :: EPS = 0.622 |
---|
4401 | REAL, PARAMETER :: SVP1 = 0.6112 |
---|
4402 | REAL, PARAMETER :: SVP2 = 17.67 |
---|
4403 | REAL, PARAMETER :: SVP3 = 29.65 |
---|
4404 | REAL, PARAMETER :: SVPT0 = 273.15 |
---|
4405 | !****MARS |
---|
4406 | !****MARS |
---|
4407 | |
---|
4408 | |
---|
4409 | ! This subroutine computes mixing ratio (q, kg/kg) from basic variables |
---|
4410 | ! pressure (p, Pa), temperature (t, K) and relative humidity (rh, 1-100%). |
---|
4411 | ! The reference temperature (t_ref, C) is used to describe the temperature |
---|
4412 | ! at which the liquid and ice phase change occurs. |
---|
4413 | |
---|
4414 | DO j = jts , MIN ( jde-1 , jte ) |
---|
4415 | DO k = kts , kte |
---|
4416 | DO i = its , MIN (ide-1 , ite ) |
---|
4417 | rh(i,k,j) = MIN ( MAX ( rh(i,k,j) , 1. ) , 100. ) |
---|
4418 | END DO |
---|
4419 | END DO |
---|
4420 | END DO |
---|
4421 | |
---|
4422 | IF ( wrt_liquid ) THEN |
---|
4423 | DO j = jts , MIN ( jde-1 , jte ) |
---|
4424 | DO k = kts , kte |
---|
4425 | DO i = its , MIN (ide-1 , ite ) |
---|
4426 | es=svp1*10.*EXP(svp2*(t(i,k,j)-svpt0)/(t(i,k,j)-svp3)) |
---|
4427 | qs=eps*es/(p(i,k,j)/100.-es) |
---|
4428 | q(i,k,j)=MAX(.01*rh(i,k,j)*qs,0.0) |
---|
4429 | END DO |
---|
4430 | END DO |
---|
4431 | END DO |
---|
4432 | |
---|
4433 | ELSE |
---|
4434 | DO j = jts , MIN ( jde-1 , jte ) |
---|
4435 | DO k = kts , kte |
---|
4436 | DO i = its , MIN (ide-1 , ite ) |
---|
4437 | |
---|
4438 | t1 = t(i,k,j) - 273.16 |
---|
4439 | |
---|
4440 | ! Obviously dry. |
---|
4441 | |
---|
4442 | IF ( t1 .lt. -200. ) THEN |
---|
4443 | q(i,k,j) = 0 |
---|
4444 | |
---|
4445 | ELSE |
---|
4446 | |
---|
4447 | ! First compute the ambient vapor pressure of water |
---|
4448 | |
---|
4449 | IF ( ( t1 .GE. t_ref ) .AND. ( t1 .GE. -47.) ) THEN ! liq phase ESLO |
---|
4450 | ew = a0 + t1 * (a1 + t1 * (a2 + t1 * (a3 + t1 * (a4 + t1 * (a5 + t1 * a6))))) |
---|
4451 | |
---|
4452 | ELSE IF ( ( t1 .GE. t_ref ) .AND. ( t1 .LT. -47. ) ) then !liq phas poor ES |
---|
4453 | ew = es0 * exp(17.67 * t1 / ( t1 + 243.5)) |
---|
4454 | |
---|
4455 | ELSE |
---|
4456 | tk = t(i,k,j) |
---|
4457 | rhs = -c1 * (tf / tk - 1.) - c2 * alog10(tf / tk) + & |
---|
4458 | c3 * (1. - tk / tf) + alog10(eis) |
---|
4459 | ew = 10. ** rhs |
---|
4460 | |
---|
4461 | END IF |
---|
4462 | |
---|
4463 | ! Now sat vap pres obtained compute local vapor pressure |
---|
4464 | |
---|
4465 | ew = MAX ( ew , 0. ) * rh(i,k,j) * 0.01 |
---|
4466 | |
---|
4467 | ! Now compute the specific humidity using the partial vapor |
---|
4468 | ! pressures of water vapor (ew) and dry air (p-ew). The |
---|
4469 | ! constants assume that the pressure is in hPa, so we divide |
---|
4470 | ! the pressures by 100. |
---|
4471 | |
---|
4472 | q1 = mw_vap * ew |
---|
4473 | q1 = q1 / (q1 + mw_air * (p(i,k,j)/100. - ew)) |
---|
4474 | |
---|
4475 | q(i,k,j) = q1 / (1. - q1 ) |
---|
4476 | |
---|
4477 | END IF |
---|
4478 | |
---|
4479 | END DO |
---|
4480 | END DO |
---|
4481 | END DO |
---|
4482 | |
---|
4483 | END IF |
---|
4484 | |
---|
4485 | !!****MARS |
---|
4486 | !!TODO: change once tracers are activated ? |
---|
4487 | !q=0. |
---|
4488 | !!****MARS |
---|
4489 | |
---|
4490 | END SUBROUTINE rh_to_mxrat |
---|
4491 | |
---|
4492 | !--------------------------------------------------------------------- |
---|
4493 | |
---|
4494 | SUBROUTINE compute_eta ( znw , & |
---|
4495 | eta_levels , max_eta , max_dz , & |
---|
4496 | fixedpbl, & |
---|
4497 | p_top , g , p00 , cvpm , a , r_d , cp , t00 , p1000mb , t0 , & |
---|
4498 | ids , ide , jds , jde , kds , kde , & |
---|
4499 | ims , ime , jms , jme , kms , kme , & |
---|
4500 | its , ite , jts , jte , kts , kte ) |
---|
4501 | |
---|
4502 | ! Compute eta levels, either using given values from the namelist (hardly |
---|
4503 | ! a computation, yep, I know), or assuming a constant dz above the PBL, |
---|
4504 | ! knowing p_top and the number of eta levels. |
---|
4505 | |
---|
4506 | IMPLICIT NONE |
---|
4507 | |
---|
4508 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
4509 | ims , ime , jms , jme , kms , kme , & |
---|
4510 | its , ite , jts , jte , kts , kte |
---|
4511 | REAL , INTENT(IN) :: max_dz |
---|
4512 | REAL , INTENT(IN) :: p_top , g , p00 , cvpm , a , r_d , cp , t00 , p1000mb , t0 |
---|
4513 | INTEGER , INTENT(IN) :: max_eta |
---|
4514 | REAL , DIMENSION (max_eta) , INTENT(IN) :: eta_levels |
---|
4515 | |
---|
4516 | REAL , DIMENSION (kts:kte) , INTENT(OUT) :: znw |
---|
4517 | |
---|
4518 | ! Local vars |
---|
4519 | |
---|
4520 | INTEGER :: k |
---|
4521 | REAL :: mub , t_init , p_surf , pb, ztop, ztop_pbl , dz , temp |
---|
4522 | REAL , DIMENSION(kts:kte) :: dnw |
---|
4523 | |
---|
4524 | INTEGER , PARAMETER :: prac_levels = 17 |
---|
4525 | INTEGER :: loop , loop1 |
---|
4526 | REAL , DIMENSION(prac_levels) :: znw_prac , znu_prac , dnw_prac |
---|
4527 | REAL , DIMENSION(kts:kte) :: alb , phb |
---|
4528 | |
---|
4529 | |
---|
4530 | !****MARS |
---|
4531 | !****MARS |
---|
4532 | INTEGER :: fixedpbl ! usually, 8 first layers are fixed |
---|
4533 | ! change this parameter if the top is very |
---|
4534 | ! low |
---|
4535 | print *, 'check Mars: p_top , g , p00 , cvpm , a , r_d , cp , t00 , p1000mb , t0' |
---|
4536 | print *, p_top , g , p00 , cvpm , a , r_d , cp , t00 , p1000mb , t0 |
---|
4537 | !-----solution alternative: definir dans la namelist les niveaux verticaux |
---|
4538 | !****MARS |
---|
4539 | !****MARS |
---|
4540 | |
---|
4541 | |
---|
4542 | ! Gee, do the eta levels come in from the namelist? |
---|
4543 | |
---|
4544 | IF ( ABS(eta_levels(1)+1.) .GT. 0.0000001 ) THEN |
---|
4545 | |
---|
4546 | IF ( ( ABS(eta_levels(1 )-1.) .LT. 0.0000001 ) .AND. & |
---|
4547 | ( ABS(eta_levels(kde)-0.) .LT. 0.0000001 ) ) THEN |
---|
4548 | DO k = kds+1 , kde-1 |
---|
4549 | znw(k) = eta_levels(k) |
---|
4550 | END DO |
---|
4551 | znw( 1) = 1. |
---|
4552 | znw(kde) = 0. |
---|
4553 | |
---|
4554 | |
---|
4555 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
4556 | p_surf=p00 |
---|
4557 | print *, 'prescribed levels' |
---|
4558 | DO k = 1, kde |
---|
4559 | pb = znw(k) * (p_surf - p_top) + p_top |
---|
4560 | print *, 'level', k, & |
---|
4561 | ', pressure (Pa)', pb, & |
---|
4562 | ', logp height (m)', -10000.*log(pb/p00) |
---|
4563 | END DO |
---|
4564 | !mub = p_surf - p_top |
---|
4565 | !DO k = 1, kde-1 |
---|
4566 | ! pb = (znw(k)+znw(k+1))*0.5 * (p_surf - p_top) + p_top |
---|
4567 | ! !temp = MAX ( 200., t00 + A*LOG(pb/p00) ) |
---|
4568 | ! temp = t00 + A*LOG(pb/p00) |
---|
4569 | ! t_init = temp*(p00/pb)**(r_d/cp) - t0 |
---|
4570 | ! alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
---|
4571 | !END DO |
---|
4572 | !phb(1) = 0. |
---|
4573 | !DO k = 2,kde |
---|
4574 | ! phb(k) = phb(k-1) - (znw(k)-znw(k-1)) * mub*alb(k-1) |
---|
4575 | !END DO |
---|
4576 | !ztop = phb(kde)/g |
---|
4577 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
4578 | |
---|
4579 | |
---|
4580 | |
---|
4581 | ELSE |
---|
4582 | CALL wrf_error_fatal ( 'First eta level should be 1.0 and the last 0.0 in namelist' ) |
---|
4583 | END IF |
---|
4584 | |
---|
4585 | ! Compute eta levels assuming a constant delta z above the PBL. |
---|
4586 | |
---|
4587 | ELSE |
---|
4588 | |
---|
4589 | ! Compute top of the atmosphere with some silly levels. We just want to |
---|
4590 | ! integrate to get a reasonable value for ztop. We use the planned PBL-esque |
---|
4591 | ! levels, and then just coarse resolution above that. We know p_top, and we |
---|
4592 | ! have the base state vars. |
---|
4593 | |
---|
4594 | p_surf = p00 |
---|
4595 | |
---|
4596 | ! znw_prac = (/ 1.000 , 0.993 , 0.983 , 0.970 , 0.954 , 0.934 , 0.909 , & |
---|
4597 | ! 0.88 , 0.8 , 0.7 , 0.6 , 0.5 , 0.4 , 0.3 , 0.2 , 0.1 , 0.0 /) |
---|
4598 | |
---|
4599 | !****MARS |
---|
4600 | !****MARS |
---|
4601 | ! on Mars, this is important to correctly resolve the surface |
---|
4602 | ! -- levels were changed to get closer to the surface |
---|
4603 | ! -- values were chosen as done typically in LMD GCM simulations |
---|
4604 | !TODO: better repartition ? |
---|
4605 | |
---|
4606 | ! znw_prac = (/ 1.000 , & |
---|
4607 | ! 0.9999 , & !1m |
---|
4608 | ! 0.9995 , & !5m |
---|
4609 | ! 0.9980 , & !20m |
---|
4610 | ! 0.9950 , & !55m |
---|
4611 | ! 0.9850 , & !166m |
---|
4612 | ! 0.9550 , & !504m 0.9700 , & !334m 0.9400 , & !676m |
---|
4613 | ! 0.9000 , & |
---|
4614 | ! 0.8 , 0.7 , 0.6 , 0.5 , 0.4 , 0.3 , 0.2 , 0.1 , 0.0 /) |
---|
4615 | |
---|
4616 | |
---|
4617 | ! znw_prac = (/ 1.000 , & |
---|
4618 | ! 0.9995 , & !5m |
---|
4619 | ! 0.9980 , & !20m |
---|
4620 | ! 0.9950 , & !55m |
---|
4621 | ! 0.9850 , & !166m |
---|
4622 | ! 0.9700 , & !334m |
---|
4623 | ! 0.9400 , & !676m |
---|
4624 | ! 0.9000 , & |
---|
4625 | ! 0.8 , 0.7 , 0.6 , 0.5 , 0.4 , 0.3 , 0.2 , 0.1 , 0.0 /) |
---|
4626 | |
---|
4627 | |
---|
4628 | znw_prac = (/ 1.000 , & |
---|
4629 | 0.9985 , & !15m |
---|
4630 | 0.9960 , & !45m |
---|
4631 | 0.9900 , & !100m |
---|
4632 | 0.9700 , & !334m |
---|
4633 | 0.9400 , & !676m |
---|
4634 | 0.9000 , & |
---|
4635 | 0.85, & |
---|
4636 | 0.8 , 0.7 , 0.6 , 0.5 , 0.4 , 0.3 , 0.2 , 0.1 , 0.0 /) |
---|
4637 | |
---|
4638 | |
---|
4639 | !****MARS |
---|
4640 | !****MARS |
---|
4641 | |
---|
4642 | |
---|
4643 | DO k = 1 , prac_levels - 1 |
---|
4644 | znu_prac(k) = ( znw_prac(k) + znw_prac(k+1) ) * 0.5 |
---|
4645 | dnw_prac(k) = znw_prac(k+1) - znw_prac(k) |
---|
4646 | END DO |
---|
4647 | |
---|
4648 | DO k = 1, prac_levels-1 |
---|
4649 | pb = znu_prac(k)*(p_surf - p_top) + p_top |
---|
4650 | ! temp = MAX ( 200., t00 + A*LOG(pb/p00) ) |
---|
4651 | temp = t00 + A*LOG(pb/p00) |
---|
4652 | t_init = temp*(p00/pb)**(r_d/cp) - t0 |
---|
4653 | alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
---|
4654 | END DO |
---|
4655 | |
---|
4656 | ! Base state mu is defined as base state surface pressure minus p_top |
---|
4657 | |
---|
4658 | mub = p_surf - p_top |
---|
4659 | |
---|
4660 | ! Integrate base geopotential, starting at terrain elevation. |
---|
4661 | |
---|
4662 | phb(1) = 0. |
---|
4663 | DO k = 2,prac_levels |
---|
4664 | phb(k) = phb(k-1) - dnw_prac(k-1)*mub*alb(k-1) |
---|
4665 | END DO |
---|
4666 | |
---|
4667 | ! So, now we know the model top in meters. Get the average depth above the PBL |
---|
4668 | ! of each of the remaining levels. We are going for a constant delta z thickness. |
---|
4669 | |
---|
4670 | ztop = phb(prac_levels) / g |
---|
4671 | ztop_pbl = phb(fixedpbl) / g |
---|
4672 | dz = ( ztop - ztop_pbl ) / REAL ( kde - fixedpbl ) |
---|
4673 | |
---|
4674 | ! Standard levels near the surface so no one gets in trouble. |
---|
4675 | DO k = 1 , fixedpbl |
---|
4676 | znw(k) = znw_prac(k) |
---|
4677 | END DO |
---|
4678 | |
---|
4679 | ! Using d phb(k)/ d eta(k) = -mub * alb(k), eqn 2.9 |
---|
4680 | ! Skamarock et al, NCAR TN 468. Use full levels, so |
---|
4681 | ! use twice the thickness. |
---|
4682 | |
---|
4683 | DO k = fixedpbl, kte-1 |
---|
4684 | pb = znw(k) * (p_surf - p_top) + p_top |
---|
4685 | ! temp = MAX ( 200., t00 + A*LOG(pb/p00) ) |
---|
4686 | temp = t00 + A*LOG(pb/p00) |
---|
4687 | t_init = temp*(p00/pb)**(r_d/cp) - t0 |
---|
4688 | alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
---|
4689 | znw(k+1) = znw(k) - dz*g / ( mub*alb(k) ) |
---|
4690 | END DO |
---|
4691 | znw(kte) = 0.000 |
---|
4692 | |
---|
4693 | ! There is some iteration. We want the top level, ztop, to be |
---|
4694 | ! consistent with the delta z, and we want the half level values |
---|
4695 | ! to be consistent with the eta levels. The inner loop to 10 gets |
---|
4696 | ! the eta levels very accurately, but has a residual at the top, due |
---|
4697 | ! to dz changing. We reset dz five times, and then things seem OK. |
---|
4698 | |
---|
4699 | |
---|
4700 | DO loop1 = 1 , 5 |
---|
4701 | DO loop = 1 , 10 |
---|
4702 | DO k = fixedpbl, kte-1 |
---|
4703 | pb = (znw(k)+znw(k+1))*0.5 * (p_surf - p_top) + p_top |
---|
4704 | ! temp = MAX ( 200., t00 + A*LOG(pb/p00) ) |
---|
4705 | temp = t00 + A*LOG(pb/p00) |
---|
4706 | t_init = temp*(p00/pb)**(r_d/cp) - t0 |
---|
4707 | alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
---|
4708 | znw(k+1) = znw(k) - dz*g / ( mub*alb(k) ) |
---|
4709 | !!****MARS |
---|
4710 | !!attention 'base_lapse' ne doit pas etre trop grand |
---|
4711 | !!sinon ... des NaN car temperatures negatives en haut |
---|
4712 | !IF ( ( loop1 .EQ. 5 ) .AND. ( loop .EQ. 10 ) ) THEN |
---|
4713 | ! IF (k .EQ. 8) THEN |
---|
4714 | ! print *, 'p,t,z,k' |
---|
4715 | ! END IF |
---|
4716 | ! print *, pb,temp,znw(k+1),k |
---|
4717 | !END IF |
---|
4718 | !****MARS |
---|
4719 | END DO |
---|
4720 | IF ( ( loop1 .EQ. 5 ) .AND. ( loop .EQ. 10 ) ) THEN |
---|
4721 | print *,'Converged znw(kte) should be 0.0 = ',znw(kte) |
---|
4722 | END IF |
---|
4723 | znw(kte) = 0.000 |
---|
4724 | END DO |
---|
4725 | |
---|
4726 | ! Here is where we check the eta levels values we just computed. |
---|
4727 | |
---|
4728 | DO k = 1, kde-1 |
---|
4729 | pb = (znw(k)+znw(k+1))*0.5 * (p_surf - p_top) + p_top |
---|
4730 | ! temp = MAX ( 200., t00 + A*LOG(pb/p00) ) |
---|
4731 | temp = t00 + A*LOG(pb/p00) |
---|
4732 | t_init = temp*(p00/pb)**(r_d/cp) - t0 |
---|
4733 | alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
---|
4734 | END DO |
---|
4735 | |
---|
4736 | phb(1) = 0. |
---|
4737 | DO k = 2,kde |
---|
4738 | phb(k) = phb(k-1) - (znw(k)-znw(k-1)) * mub*alb(k-1) |
---|
4739 | END DO |
---|
4740 | |
---|
4741 | ! Reset the model top and the dz, and iterate. |
---|
4742 | |
---|
4743 | ztop = phb(kde)/g |
---|
4744 | ztop_pbl = phb(fixedpbl)/g |
---|
4745 | dz = ( ztop - ztop_pbl ) / REAL ( kde - fixedpbl ) |
---|
4746 | END DO |
---|
4747 | |
---|
4748 | |
---|
4749 | ! ****MARS |
---|
4750 | |
---|
4751 | print *, 'eta_levels= ', znw |
---|
4752 | |
---|
4753 | |
---|
4754 | ! Display the computed levels |
---|
4755 | print *,'WRF levels are:' |
---|
4756 | print *,'z (m) = ',phb(1)/g |
---|
4757 | do k = 2 ,kte |
---|
4758 | print *,'z (m) and dz (m) = ',phb(k)/g,(phb(k)-phb(k-1))/g |
---|
4759 | |
---|
4760 | |
---|
4761 | !! little check of the repartition |
---|
4762 | if (k>2) then |
---|
4763 | if ((phb(k)-2.*phb(k-1)+phb(k-2))/g < -1.e-2) then |
---|
4764 | print *, 'problem on the repartition' |
---|
4765 | print *, '>> try to decrease force_sfc_in_vinterp (<8)' |
---|
4766 | print *, '>> or increase model top (i.e. lower ptop)' |
---|
4767 | print *, (phb(k)-2.*phb(k-1)+phb(k-2))/g |
---|
4768 | stop |
---|
4769 | endif |
---|
4770 | endif |
---|
4771 | end do |
---|
4772 | ! ****MARS |
---|
4773 | |
---|
4774 | |
---|
4775 | IF ( dz .GT. max_dz ) THEN |
---|
4776 | print *,'z (m) = ',phb(1)/g |
---|
4777 | do k = 2 ,kte |
---|
4778 | print *,'z (m) and dz (m) = ',phb(k)/g,(phb(k)-phb(k-1))/g |
---|
4779 | end do |
---|
4780 | print *,'dz (m) above fixed eta levels = ',dz |
---|
4781 | print *,'namelist max_dz (m) = ',max_dz |
---|
4782 | print *,'namelist p_top (Pa) = ',p_top |
---|
4783 | CALL wrf_debug ( 0, 'You need one of three things:' ) |
---|
4784 | CALL wrf_debug ( 0, '1) More eta levels to reduce the dz: e_vert' ) |
---|
4785 | CALL wrf_debug ( 0, '2) A lower p_top so your total height is reduced: p_top_requested') |
---|
4786 | CALL wrf_debug ( 0, '3) Increase the maximum allowable eta thickness: max_dz') |
---|
4787 | CALL wrf_debug ( 0, 'All are namelist options') |
---|
4788 | CALL wrf_error_fatal ( 'dz above fixed eta levels is too large') |
---|
4789 | END IF |
---|
4790 | |
---|
4791 | END IF |
---|
4792 | |
---|
4793 | END SUBROUTINE compute_eta |
---|
4794 | |
---|
4795 | !--------------------------------------------------------------------- |
---|
4796 | |
---|
4797 | SUBROUTINE monthly_min_max ( field_in , field_min , field_max , & |
---|
4798 | ids , ide , jds , jde , kds , kde , & |
---|
4799 | ims , ime , jms , jme , kms , kme , & |
---|
4800 | its , ite , jts , jte , kts , kte ) |
---|
4801 | |
---|
4802 | ! Plow through each month, find the max, min values for each i,j. |
---|
4803 | |
---|
4804 | IMPLICIT NONE |
---|
4805 | |
---|
4806 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
4807 | ims , ime , jms , jme , kms , kme , & |
---|
4808 | its , ite , jts , jte , kts , kte |
---|
4809 | |
---|
4810 | REAL , DIMENSION(ims:ime,12,jms:jme) , INTENT(IN) :: field_in |
---|
4811 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: field_min , field_max |
---|
4812 | |
---|
4813 | ! Local vars |
---|
4814 | |
---|
4815 | INTEGER :: i , j , l |
---|
4816 | REAL :: minner , maxxer |
---|
4817 | |
---|
4818 | DO j = jts , MIN(jde-1,jte) |
---|
4819 | DO i = its , MIN(ide-1,ite) |
---|
4820 | minner = field_in(i,1,j) |
---|
4821 | maxxer = field_in(i,1,j) |
---|
4822 | DO l = 2 , 12 |
---|
4823 | IF ( field_in(i,l,j) .LT. minner ) THEN |
---|
4824 | minner = field_in(i,l,j) |
---|
4825 | END IF |
---|
4826 | IF ( field_in(i,l,j) .GT. maxxer ) THEN |
---|
4827 | maxxer = field_in(i,l,j) |
---|
4828 | END IF |
---|
4829 | END DO |
---|
4830 | field_min(i,j) = minner |
---|
4831 | field_max(i,j) = maxxer |
---|
4832 | END DO |
---|
4833 | END DO |
---|
4834 | |
---|
4835 | END SUBROUTINE monthly_min_max |
---|
4836 | |
---|
4837 | !--------------------------------------------------------------------- |
---|
4838 | |
---|
4839 | SUBROUTINE monthly_interp_to_date ( field_in , date_str , field_out , & |
---|
4840 | ids , ide , jds , jde , kds , kde , & |
---|
4841 | ims , ime , jms , jme , kms , kme , & |
---|
4842 | its , ite , jts , jte , kts , kte ) |
---|
4843 | |
---|
4844 | ! Linrarly in time interpolate data to a current valid time. The data is |
---|
4845 | ! assumed to come in "monthly", valid at the 15th of every month. |
---|
4846 | |
---|
4847 | IMPLICIT NONE |
---|
4848 | |
---|
4849 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
4850 | ims , ime , jms , jme , kms , kme , & |
---|
4851 | its , ite , jts , jte , kts , kte |
---|
4852 | |
---|
4853 | CHARACTER (LEN=24) , INTENT(IN) :: date_str |
---|
4854 | REAL , DIMENSION(ims:ime,12,jms:jme) , INTENT(IN) :: field_in |
---|
4855 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: field_out |
---|
4856 | |
---|
4857 | ! Local vars |
---|
4858 | |
---|
4859 | INTEGER :: i , j , l |
---|
4860 | INTEGER , DIMENSION(0:13) :: middle |
---|
4861 | INTEGER :: target_julyr , target_julday , target_date |
---|
4862 | INTEGER :: julyr , julday , int_month , month1 , month2 |
---|
4863 | REAL :: gmt |
---|
4864 | CHARACTER (LEN=4) :: yr |
---|
4865 | CHARACTER (LEN=2) :: mon , day15 |
---|
4866 | |
---|
4867 | |
---|
4868 | WRITE(day15,FMT='(I2.2)') 15 |
---|
4869 | DO l = 1 , 12 |
---|
4870 | WRITE(mon,FMT='(I2.2)') l |
---|
4871 | CALL get_julgmt ( date_str(1:4)//'-'//mon//'-'//day15//'_'//'00:00:00.0000' , julyr , julday , gmt ) |
---|
4872 | middle(l) = julyr*1000 + julday |
---|
4873 | END DO |
---|
4874 | |
---|
4875 | l = 0 |
---|
4876 | middle(l) = middle( 1) - 31 |
---|
4877 | |
---|
4878 | l = 13 |
---|
4879 | middle(l) = middle(12) + 31 |
---|
4880 | |
---|
4881 | CALL get_julgmt ( date_str , target_julyr , target_julday , gmt ) |
---|
4882 | target_date = target_julyr * 1000 + target_julday |
---|
4883 | find_month : DO l = 0 , 12 |
---|
4884 | IF ( ( middle(l) .LT. target_date ) .AND. ( middle(l+1) .GE. target_date ) ) THEN |
---|
4885 | DO j = jts , MIN ( jde-1 , jte ) |
---|
4886 | DO i = its , MIN (ide-1 , ite ) |
---|
4887 | int_month = l |
---|
4888 | IF ( ( int_month .EQ. 0 ) .OR. ( int_month .EQ. 12 ) ) THEN |
---|
4889 | month1 = 12 |
---|
4890 | month2 = 1 |
---|
4891 | ELSE |
---|
4892 | month1 = int_month |
---|
4893 | month2 = month1 + 1 |
---|
4894 | END IF |
---|
4895 | field_out(i,j) = ( field_in(i,month2,j) * ( target_date - middle(l) ) + & |
---|
4896 | field_in(i,month1,j) * ( middle(l+1) - target_date ) ) / & |
---|
4897 | ( middle(l+1) - middle(l) ) |
---|
4898 | END DO |
---|
4899 | END DO |
---|
4900 | EXIT find_month |
---|
4901 | END IF |
---|
4902 | END DO find_month |
---|
4903 | |
---|
4904 | END SUBROUTINE monthly_interp_to_date |
---|
4905 | |
---|
4906 | !--------------------------------------------------------------------- |
---|
4907 | |
---|
4908 | SUBROUTINE sfcprs (t, q, height, pslv, ter, avgsfct, p, & |
---|
4909 | psfc, ez_method, & |
---|
4910 | ids , ide , jds , jde , kds , kde , & |
---|
4911 | ims , ime , jms , jme , kms , kme , & |
---|
4912 | its , ite , jts , jte , kts , kte ) |
---|
4913 | |
---|
4914 | |
---|
4915 | ! Computes the surface pressure using the input height, |
---|
4916 | ! temperature and q (already computed from relative |
---|
4917 | ! humidity) on p surfaces. Sea level pressure is used |
---|
4918 | ! to extrapolate a first guess. |
---|
4919 | |
---|
4920 | IMPLICIT NONE |
---|
4921 | |
---|
4922 | !****MARS |
---|
4923 | REAL , PARAMETER :: Rd = 192. |
---|
4924 | REAL , PARAMETER :: Cp = 844.6 |
---|
4925 | REAL, PARAMETER :: g = 3.72 |
---|
4926 | REAL, PARAMETER :: pconst = 610. |
---|
4927 | !****MARS |
---|
4928 | |
---|
4929 | !****MARS .... to be changed if used |
---|
4930 | REAL, PARAMETER :: gamma = 6.5E-3 |
---|
4931 | REAL, PARAMETER :: TC = 273.15 + 17.5 |
---|
4932 | REAL, PARAMETER :: gammarg = gamma * Rd / g |
---|
4933 | REAL, PARAMETER :: rov2 = Rd / 2. |
---|
4934 | !****MARS .... to be changed if used |
---|
4935 | |
---|
4936 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
4937 | ims , ime , jms , jme , kms , kme , & |
---|
4938 | its , ite , jts , jte , kts , kte |
---|
4939 | LOGICAL , INTENT ( IN ) :: ez_method |
---|
4940 | |
---|
4941 | REAL , DIMENSION (ims:ime,kms:kme,jms:jme) , INTENT(IN ):: t, q, height, p |
---|
4942 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(IN ):: pslv , ter, avgsfct |
---|
4943 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(OUT):: psfc |
---|
4944 | |
---|
4945 | INTEGER :: i |
---|
4946 | INTEGER :: j |
---|
4947 | INTEGER :: k |
---|
4948 | INTEGER , DIMENSION (its:ite,jts:jte) :: k500 , k700 , k850 |
---|
4949 | |
---|
4950 | LOGICAL :: l1 |
---|
4951 | LOGICAL :: l2 |
---|
4952 | LOGICAL :: l3 |
---|
4953 | LOGICAL :: OK |
---|
4954 | |
---|
4955 | REAL :: gamma78 ( its:ite,jts:jte ) |
---|
4956 | REAL :: gamma57 ( its:ite,jts:jte ) |
---|
4957 | REAL :: ht ( its:ite,jts:jte ) |
---|
4958 | REAL :: p1 ( its:ite,jts:jte ) |
---|
4959 | REAL :: t1 ( its:ite,jts:jte ) |
---|
4960 | REAL :: t500 ( its:ite,jts:jte ) |
---|
4961 | REAL :: t700 ( its:ite,jts:jte ) |
---|
4962 | REAL :: t850 ( its:ite,jts:jte ) |
---|
4963 | REAL :: tfixed ( its:ite,jts:jte ) |
---|
4964 | REAL :: tsfc ( its:ite,jts:jte ) |
---|
4965 | REAL :: tslv ( its:ite,jts:jte ) |
---|
4966 | |
---|
4967 | ! We either compute the surface pressure from a time averaged surface temperature |
---|
4968 | ! (what we will call the "easy way"), or we try to remove the diurnal impact on the |
---|
4969 | ! surface temperature (what we will call the "other way"). Both are essentially |
---|
4970 | ! corrections to a sea level pressure with a high-resolution topography field. |
---|
4971 | |
---|
4972 | !****MARS .... |
---|
4973 | !****MARS .... the mean sea level method is abandoned |
---|
4974 | print *, 'no sea level pressure on Mars, please' |
---|
4975 | stop |
---|
4976 | !****MARS .... |
---|
4977 | |
---|
4978 | IF ( ez_method ) THEN |
---|
4979 | |
---|
4980 | DO j = jts , MIN(jde-1,jte) |
---|
4981 | DO i = its , MIN(ide-1,ite) |
---|
4982 | psfc(i,j) = pslv(i,j) * ( 1.0 + gamma * ter(i,j) / avgsfct(i,j) ) ** ( - g / ( Rd * gamma ) ) |
---|
4983 | END DO |
---|
4984 | END DO |
---|
4985 | |
---|
4986 | ELSE |
---|
4987 | |
---|
4988 | ! Find the locations of the 850, 700 and 500 mb levels. |
---|
4989 | |
---|
4990 | k850 = 0 ! find k at: P=850 |
---|
4991 | k700 = 0 ! P=700 |
---|
4992 | k500 = 0 ! P=500 |
---|
4993 | |
---|
4994 | i = its |
---|
4995 | j = jts |
---|
4996 | DO k = kts+1 , kte |
---|
4997 | IF (NINT(p(i,k,j)) .EQ. 85000) THEN |
---|
4998 | k850(i,j) = k |
---|
4999 | ELSE IF (NINT(p(i,k,j)) .EQ. 70000) THEN |
---|
5000 | k700(i,j) = k |
---|
5001 | ELSE IF (NINT(p(i,k,j)) .EQ. 50000) THEN |
---|
5002 | k500(i,j) = k |
---|
5003 | END IF |
---|
5004 | END DO |
---|
5005 | |
---|
5006 | IF ( ( k850(i,j) .EQ. 0 ) .OR. ( k700(i,j) .EQ. 0 ) .OR. ( k500(i,j) .EQ. 0 ) ) THEN |
---|
5007 | |
---|
5008 | DO j = jts , MIN(jde-1,jte) |
---|
5009 | DO i = its , MIN(ide-1,ite) |
---|
5010 | psfc(i,j) = pslv(i,j) * ( 1.0 + gamma * ter(i,j) / t(i,1,j) ) ** ( - g / ( Rd * gamma ) ) |
---|
5011 | END DO |
---|
5012 | END DO |
---|
5013 | |
---|
5014 | RETURN |
---|
5015 | #if 0 |
---|
5016 | |
---|
5017 | ! Possibly it is just that we have a generalized vertical coord, so we do not |
---|
5018 | ! have the values exactly. Do a simple assignment to a close vertical level. |
---|
5019 | |
---|
5020 | DO j = jts , MIN(jde-1,jte) |
---|
5021 | DO i = its , MIN(ide-1,ite) |
---|
5022 | DO k = kts+1 , kte-1 |
---|
5023 | IF ( ( p(i,k,j) - 85000. ) * ( p(i,k+1,j) - 85000. ) .LE. 0.0 ) THEN |
---|
5024 | k850(i,j) = k |
---|
5025 | END IF |
---|
5026 | IF ( ( p(i,k,j) - 70000. ) * ( p(i,k+1,j) - 70000. ) .LE. 0.0 ) THEN |
---|
5027 | k700(i,j) = k |
---|
5028 | END IF |
---|
5029 | IF ( ( p(i,k,j) - 50000. ) * ( p(i,k+1,j) - 50000. ) .LE. 0.0 ) THEN |
---|
5030 | k500(i,j) = k |
---|
5031 | END IF |
---|
5032 | END DO |
---|
5033 | END DO |
---|
5034 | END DO |
---|
5035 | |
---|
5036 | ! If we *still* do not have the k levels, punt. I mean, we did try. |
---|
5037 | |
---|
5038 | OK = .TRUE. |
---|
5039 | DO j = jts , MIN(jde-1,jte) |
---|
5040 | DO i = its , MIN(ide-1,ite) |
---|
5041 | IF ( ( k850(i,j) .EQ. 0 ) .OR. ( k700(i,j) .EQ. 0 ) .OR. ( k500(i,j) .EQ. 0 ) ) THEN |
---|
5042 | OK = .FALSE. |
---|
5043 | PRINT '(A)','(i,j) = ',i,j,' Error in finding p level for 850, 700 or 500 hPa.' |
---|
5044 | DO K = kts+1 , kte |
---|
5045 | PRINT '(A,I3,A,F10.2,A)','K = ',k,' PRESSURE = ',p(i,k,j),' Pa' |
---|
5046 | END DO |
---|
5047 | PRINT '(A)','Expected 850, 700, and 500 mb values, at least.' |
---|
5048 | END IF |
---|
5049 | END DO |
---|
5050 | END DO |
---|
5051 | IF ( .NOT. OK ) THEN |
---|
5052 | CALL wrf_error_fatal ( 'wrong pressure levels' ) |
---|
5053 | END IF |
---|
5054 | #endif |
---|
5055 | |
---|
5056 | ! We are here if the data is isobaric and we found the levels for 850, 700, |
---|
5057 | ! and 500 mb right off the bat. |
---|
5058 | |
---|
5059 | ELSE |
---|
5060 | DO j = jts , MIN(jde-1,jte) |
---|
5061 | DO i = its , MIN(ide-1,ite) |
---|
5062 | k850(i,j) = k850(its,jts) |
---|
5063 | k700(i,j) = k700(its,jts) |
---|
5064 | k500(i,j) = k500(its,jts) |
---|
5065 | END DO |
---|
5066 | END DO |
---|
5067 | END IF |
---|
5068 | |
---|
5069 | ! The 850 hPa level of geopotential height is called something special. |
---|
5070 | |
---|
5071 | DO j = jts , MIN(jde-1,jte) |
---|
5072 | DO i = its , MIN(ide-1,ite) |
---|
5073 | ht(i,j) = height(i,k850(i,j),j) |
---|
5074 | END DO |
---|
5075 | END DO |
---|
5076 | |
---|
5077 | ! The variable ht is now -ter/ht(850 hPa). The plot thickens. |
---|
5078 | |
---|
5079 | DO j = jts , MIN(jde-1,jte) |
---|
5080 | DO i = its , MIN(ide-1,ite) |
---|
5081 | ht(i,j) = -ter(i,j) / ht(i,j) |
---|
5082 | END DO |
---|
5083 | END DO |
---|
5084 | |
---|
5085 | ! Make an isothermal assumption to get a first guess at the surface |
---|
5086 | ! pressure. This is to tell us which levels to use for the lapse |
---|
5087 | ! rates in a bit. |
---|
5088 | |
---|
5089 | DO j = jts , MIN(jde-1,jte) |
---|
5090 | DO i = its , MIN(ide-1,ite) |
---|
5091 | psfc(i,j) = pslv(i,j) * (pslv(i,j) / p(i,k850(i,j),j)) ** ht(i,j) |
---|
5092 | END DO |
---|
5093 | END DO |
---|
5094 | |
---|
5095 | ! Get a pressure more than pconst Pa above the surface - p1. The |
---|
5096 | ! p1 is the top of the level that we will use for our lapse rate |
---|
5097 | ! computations. |
---|
5098 | |
---|
5099 | DO j = jts , MIN(jde-1,jte) |
---|
5100 | DO i = its , MIN(ide-1,ite) |
---|
5101 | IF ( ( psfc(i,j) - 95000. ) .GE. 0. ) THEN |
---|
5102 | p1(i,j) = 85000. |
---|
5103 | ELSE IF ( ( psfc(i,j) - 70000. ) .GE. 0. ) THEN |
---|
5104 | p1(i,j) = psfc(i,j) - pconst |
---|
5105 | ELSE |
---|
5106 | p1(i,j) = 50000. |
---|
5107 | END IF |
---|
5108 | END DO |
---|
5109 | END DO |
---|
5110 | |
---|
5111 | ! Compute virtual temperatures for k850, k700, and k500 layers. Now |
---|
5112 | ! you see why we wanted Q on pressure levels, it all is beginning |
---|
5113 | ! to make sense. |
---|
5114 | |
---|
5115 | DO j = jts , MIN(jde-1,jte) |
---|
5116 | DO i = its , MIN(ide-1,ite) |
---|
5117 | t850(i,j) = t(i,k850(i,j),j) * (1. + 0.608 * q(i,k850(i,j),j)) |
---|
5118 | t700(i,j) = t(i,k700(i,j),j) * (1. + 0.608 * q(i,k700(i,j),j)) |
---|
5119 | t500(i,j) = t(i,k500(i,j),j) * (1. + 0.608 * q(i,k500(i,j),j)) |
---|
5120 | END DO |
---|
5121 | END DO |
---|
5122 | |
---|
5123 | ! Compute lapse rates between these three levels. These are |
---|
5124 | ! environmental values for each (i,j). |
---|
5125 | |
---|
5126 | DO j = jts , MIN(jde-1,jte) |
---|
5127 | DO i = its , MIN(ide-1,ite) |
---|
5128 | gamma78(i,j) = ALOG(t850(i,j) / t700(i,j)) / ALOG (p(i,k850(i,j),j) / p(i,k700(i,j),j) ) |
---|
5129 | gamma57(i,j) = ALOG(t700(i,j) / t500(i,j)) / ALOG (p(i,k700(i,j),j) / p(i,k500(i,j),j) ) |
---|
5130 | END DO |
---|
5131 | END DO |
---|
5132 | |
---|
5133 | DO j = jts , MIN(jde-1,jte) |
---|
5134 | DO i = its , MIN(ide-1,ite) |
---|
5135 | IF ( ( psfc(i,j) - 95000. ) .GE. 0. ) THEN |
---|
5136 | t1(i,j) = t850(i,j) |
---|
5137 | ELSE IF ( ( psfc(i,j) - 85000. ) .GE. 0. ) THEN |
---|
5138 | t1(i,j) = t700(i,j) * (p1(i,j) / (p(i,k700(i,j),j))) ** gamma78(i,j) |
---|
5139 | ELSE IF ( ( psfc(i,j) - 70000. ) .GE. 0.) THEN |
---|
5140 | t1(i,j) = t500(i,j) * (p1(i,j) / (p(i,k500(i,j),j))) ** gamma57(i,j) |
---|
5141 | ELSE |
---|
5142 | t1(i,j) = t500(i,j) |
---|
5143 | ENDIF |
---|
5144 | END DO |
---|
5145 | END DO |
---|
5146 | |
---|
5147 | ! From our temperature way up in the air, we extrapolate down to |
---|
5148 | ! the sea level to get a guess at the sea level temperature. |
---|
5149 | |
---|
5150 | DO j = jts , MIN(jde-1,jte) |
---|
5151 | DO i = its , MIN(ide-1,ite) |
---|
5152 | tslv(i,j) = t1(i,j) * (pslv(i,j) / p1(i,j)) ** gammarg |
---|
5153 | END DO |
---|
5154 | END DO |
---|
5155 | |
---|
5156 | ! The new surface temperature is computed from the with new sea level |
---|
5157 | ! temperature, just using the elevation and a lapse rate. This lapse |
---|
5158 | ! rate is -6.5 K/km. |
---|
5159 | |
---|
5160 | DO j = jts , MIN(jde-1,jte) |
---|
5161 | DO i = its , MIN(ide-1,ite) |
---|
5162 | tsfc(i,j) = tslv(i,j) - gamma * ter(i,j) |
---|
5163 | END DO |
---|
5164 | END DO |
---|
5165 | |
---|
5166 | ! A small correction to the sea-level temperature, in case it is too warm. |
---|
5167 | |
---|
5168 | DO j = jts , MIN(jde-1,jte) |
---|
5169 | DO i = its , MIN(ide-1,ite) |
---|
5170 | tfixed(i,j) = tc - 0.005 * (tsfc(i,j) - tc) ** 2 |
---|
5171 | END DO |
---|
5172 | END DO |
---|
5173 | |
---|
5174 | DO j = jts , MIN(jde-1,jte) |
---|
5175 | DO i = its , MIN(ide-1,ite) |
---|
5176 | l1 = tslv(i,j) .LT. tc |
---|
5177 | l2 = tsfc(i,j) .LE. tc |
---|
5178 | l3 = .NOT. l1 |
---|
5179 | IF ( l2 .AND. l3 ) THEN |
---|
5180 | tslv(i,j) = tc |
---|
5181 | ELSE IF ( ( .NOT. l2 ) .AND. l3 ) THEN |
---|
5182 | tslv(i,j) = tfixed(i,j) |
---|
5183 | END IF |
---|
5184 | END DO |
---|
5185 | END DO |
---|
5186 | |
---|
5187 | ! Finally, we can get to the surface pressure. |
---|
5188 | |
---|
5189 | DO j = jts , MIN(jde-1,jte) |
---|
5190 | DO i = its , MIN(ide-1,ite) |
---|
5191 | p1(i,j) = - ter(i,j) * g / ( rov2 * ( tsfc(i,j) + tslv(i,j) ) ) |
---|
5192 | psfc(i,j) = pslv(i,j) * EXP ( p1(i,j) ) |
---|
5193 | END DO |
---|
5194 | END DO |
---|
5195 | |
---|
5196 | END IF |
---|
5197 | |
---|
5198 | ! Surface pressure and sea-level pressure are the same at sea level. |
---|
5199 | |
---|
5200 | ! DO j = jts , MIN(jde-1,jte) |
---|
5201 | ! DO i = its , MIN(ide-1,ite) |
---|
5202 | ! IF ( ABS ( ter(i,j) ) .LT. 0.1 ) THEN |
---|
5203 | ! psfc(i,j) = pslv(i,j) |
---|
5204 | ! END IF |
---|
5205 | ! END DO |
---|
5206 | ! END DO |
---|
5207 | |
---|
5208 | END SUBROUTINE sfcprs |
---|
5209 | |
---|
5210 | !--------------------------------------------------------------------- |
---|
5211 | |
---|
5212 | SUBROUTINE sfcprs2(t, q, height, psfc_in, ter, avgsfct, p, & |
---|
5213 | psfc, ez_method, & |
---|
5214 | ids , ide , jds , jde , kds , kde , & |
---|
5215 | ims , ime , jms , jme , kms , kme , & |
---|
5216 | its , ite , jts , jte , kts , kte ) |
---|
5217 | |
---|
5218 | |
---|
5219 | ! Computes the surface pressure using the input height, |
---|
5220 | ! temperature and q (already computed from relative |
---|
5221 | ! humidity) on p surfaces. Sea level pressure is used |
---|
5222 | ! to extrapolate a first guess. |
---|
5223 | |
---|
5224 | IMPLICIT NONE |
---|
5225 | |
---|
5226 | !****MARS |
---|
5227 | REAL , PARAMETER :: Rd = 192. |
---|
5228 | REAL, PARAMETER :: g = 3.72 |
---|
5229 | !****MARS |
---|
5230 | |
---|
5231 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
5232 | ims , ime , jms , jme , kms , kme , & |
---|
5233 | its , ite , jts , jte , kts , kte |
---|
5234 | LOGICAL , INTENT ( IN ) :: ez_method |
---|
5235 | |
---|
5236 | REAL , DIMENSION (ims:ime,kms:kme,jms:jme) , INTENT(IN ):: t, q, height, p |
---|
5237 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(IN ):: psfc_in , ter, avgsfct |
---|
5238 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(OUT):: psfc |
---|
5239 | |
---|
5240 | INTEGER :: i |
---|
5241 | INTEGER :: j |
---|
5242 | INTEGER :: k |
---|
5243 | |
---|
5244 | REAL :: tv_sfc_avg , tv_sfc , del_z |
---|
5245 | |
---|
5246 | ! Compute the new surface pressure from the old surface pressure, and a |
---|
5247 | ! known change in elevation at the surface. |
---|
5248 | |
---|
5249 | |
---|
5250 | !****MARS: as is done in MCD/pres0 with the MOLA topography :) |
---|
5251 | |
---|
5252 | !!--------- |
---|
5253 | !! del_z = diff in surface topo, lo-res vs hi-res |
---|
5254 | !grid%em_ght_gc - grid%ht |
---|
5255 | !!--------- |
---|
5256 | !!* em_ght_gc: surface geopotential height from the GCM |
---|
5257 | !!* ht: hi-res altimetry |
---|
5258 | ! psfc = psfc_in * exp ( g del_z / (Rd Tv_sfc ) ) |
---|
5259 | !!--------- |
---|
5260 | |
---|
5261 | |
---|
5262 | IF ( ez_method ) THEN |
---|
5263 | !! |
---|
5264 | !!****MARS: 'ez_method' is 'we_have_tavgsfc', hard-coded as false |
---|
5265 | !! |
---|
5266 | DO j = jts , MIN(jde-1,jte) |
---|
5267 | DO i = its , MIN(ide-1,ite) |
---|
5268 | tv_sfc_avg = avgsfct(i,j) * (1. + 0.608 * q(i,1,j)) |
---|
5269 | del_z = height(i,1,j) - ter(i,j) |
---|
5270 | psfc(i,j) = psfc_in(i,j) * EXP ( g * del_z / ( Rd * tv_sfc_avg ) ) |
---|
5271 | END DO |
---|
5272 | END DO |
---|
5273 | ELSE |
---|
5274 | !! |
---|
5275 | !!****MARS .... here is what is done for Mars |
---|
5276 | !! |
---|
5277 | DO j = jts , MIN(jde-1,jte) |
---|
5278 | DO i = its , MIN(ide-1,ite) |
---|
5279 | ! tv_sfc = t(i,1,j) * (1. + 0.608 * q(i,1,j)) |
---|
5280 | !!****MARS: 0.608 >> nonsense on Mars |
---|
5281 | tv_sfc = t(i,1,j) |
---|
5282 | !!****MARS .... changer pour t_1km - 7e couche GCM |
---|
5283 | !!****MARS .... spiga et al. (2007) |
---|
5284 | tv_sfc = t(i,8,j) |
---|
5285 | del_z = height(i,1,j) - ter(i,j) |
---|
5286 | psfc(i,j) = psfc_in(i,j) * EXP ( g * del_z / ( Rd * tv_sfc ) ) |
---|
5287 | !****MARS |
---|
5288 | !****MARS .... which temperature is used in the Laplace formula ? |
---|
5289 | !!****MARS: hardcoded as 220K (t0) |
---|
5290 | !!****MARS: pas une enorme influence |
---|
5291 | !psfc(i,j) = psfc_in(i,j) * EXP ( g * del_z / ( Rd * 220 ) ) |
---|
5292 | |
---|
5293 | |
---|
5294 | ! !****MARS .... check of the altimetry differences |
---|
5295 | ! print *,del_z, tv_sfc |
---|
5296 | |
---|
5297 | END DO |
---|
5298 | END DO |
---|
5299 | print *, '1 km temperatures - max' |
---|
5300 | print *, MAXVAL(t(:,8,:)) |
---|
5301 | END IF |
---|
5302 | |
---|
5303 | END SUBROUTINE sfcprs2 |
---|
5304 | |
---|
5305 | !--------------------------------------------------------------------- |
---|
5306 | |
---|
5307 | SUBROUTINE init_module_initialize |
---|
5308 | END SUBROUTINE init_module_initialize |
---|
5309 | |
---|
5310 | !--------------------------------------------------------------------- |
---|
5311 | SUBROUTINE constante3(field, field_custom, & |
---|
5312 | ids , ide , jds , jde , kds , kde , & |
---|
5313 | ims , ime , jms , jme , kms , kme , & |
---|
5314 | its , ite , jts , jte , kts , kte ) |
---|
5315 | |
---|
5316 | |
---|
5317 | IMPLICIT NONE |
---|
5318 | |
---|
5319 | REAL :: field_custom |
---|
5320 | REAL, DIMENSION (ims:ime,kms:kme,jms:jme), INTENT(INOUT):: field |
---|
5321 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
5322 | ims , ime , jms , jme , kms , kme , & |
---|
5323 | its , ite , jts , jte , kts , kte |
---|
5324 | |
---|
5325 | |
---|
5326 | !!****MARS: set the 3D field to a constant value |
---|
5327 | field(:,:,:)=field_custom |
---|
5328 | |
---|
5329 | END SUBROUTINE constante3 |
---|
5330 | !--------------------------------------------------------------------- |
---|
5331 | SUBROUTINE constante2(field, field_custom, & |
---|
5332 | ids , ide , jds , jde , kds , kde , & |
---|
5333 | ims , ime , jms , jme , kms , kme , & |
---|
5334 | its , ite , jts , jte , kts , kte ) |
---|
5335 | |
---|
5336 | |
---|
5337 | IMPLICIT NONE |
---|
5338 | |
---|
5339 | REAL :: field_custom |
---|
5340 | REAL, DIMENSION (ims:ime,jms:jme), INTENT(INOUT):: field |
---|
5341 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
---|
5342 | ims , ime , jms , jme , kms , kme , & |
---|
5343 | its , ite , jts , jte , kts , kte |
---|
5344 | |
---|
5345 | |
---|
5346 | !!****MARS: set the 3D field to a constant value |
---|
5347 | field(:,:)=field_custom |
---|
5348 | |
---|
5349 | END SUBROUTINE constante2 |
---|
5350 | !--------------------------------------------------------------------- |
---|
5351 | |
---|
5352 | subroutine build_sigma_hr(dimlevs,sigma_gcm,ps_gcm,ps_hr,sigma_hr) !,p_pgcm) |
---|
5353 | |
---|
5354 | implicit none |
---|
5355 | ! include "constants_mcd.inc" |
---|
5356 | |
---|
5357 | !--------------------------------------- |
---|
5358 | ! written by E. Millour and F. Forget |
---|
5359 | ! Mars Climate Database v4.2 |
---|
5360 | ! see DDD page 27 and following |
---|
5361 | !--------------------------------------- |
---|
5362 | |
---|
5363 | INTEGER , INTENT(IN) :: dimlevs |
---|
5364 | |
---|
5365 | ! inputs |
---|
5366 | real sigma_gcm(dimlevs) ! GCM sigma levels |
---|
5367 | real ps_gcm ! GCM surface pressure |
---|
5368 | real ps_hr ! High res surface pressure |
---|
5369 | ! outputs |
---|
5370 | real sigma_hr(dimlevs) ! High res sigma levels |
---|
5371 | ! real p_pgcm(dimlevs) ! high res to GCM pressure ratios |
---|
5372 | |
---|
5373 | ! local variables |
---|
5374 | integer l |
---|
5375 | real x ! lower layer compression (-0.9<x<0) or dilatation (0.<x<0.9) |
---|
5376 | real rp ! surface pressure ratio ps_hr/ps_gcm |
---|
5377 | real deltaz ! corresponding pseudo-altitude difference (km) |
---|
5378 | real f ! coefficient f= p_hr / p_gcm |
---|
5379 | real z ! altitude of transition of p_hr toward p_gcm (km) |
---|
5380 | real p_pgcm(dimlevs) ! high res to GCM pressure ratios |
---|
5381 | |
---|
5382 | ! 1. Coefficients |
---|
5383 | rp=ps_hr/ps_gcm |
---|
5384 | deltaz=-10.*log(rp) |
---|
5385 | x = min(max(0.12*(abs(deltaz)-1.),0.),0.8) |
---|
5386 | if(deltaz.gt.0) x=-x |
---|
5387 | z=max(deltaz + 3.,3.) |
---|
5388 | |
---|
5389 | do l=1,dimlevs |
---|
5390 | f=rp*sigma_gcm(l)**x |
---|
5391 | ! f=f+(1-f)*0.5*(1+tanh(6.*(-10.*log(sigma_gcm(l))-z)/z)) |
---|
5392 | ! sigma_hr(l)=f*sigma_gcm(l)/rp |
---|
5393 | p_pgcm(l)=f+(1-f)*0.5*(1+tanh(6.*(-10.*log(sigma_gcm(l))-z)/z)) |
---|
5394 | sigma_hr(l)=p_pgcm(l)*sigma_gcm(l)/rp |
---|
5395 | enddo |
---|
5396 | |
---|
5397 | end subroutine build_sigma_hr |
---|
5398 | |
---|
5399 | |
---|
5400 | |
---|
5401 | |
---|
5402 | |
---|
5403 | END MODULE module_initialize |
---|
5404 | |
---|
5405 | #endif |
---|