[207] | 1 | MODULE module_interp |
---|
| 2 | |
---|
| 3 | CONTAINS |
---|
| 4 | !-------------------------------------------------------- |
---|
| 5 | |
---|
| 6 | SUBROUTINE interp( data_in, nx, ny, nz, & |
---|
| 7 | data_out, nxout, nyout, nzout, & |
---|
| 8 | z_data, z_levs, number_of_zlevs ) |
---|
| 9 | |
---|
| 10 | USE module_model_basics |
---|
| 11 | |
---|
| 12 | implicit none |
---|
| 13 | |
---|
| 14 | ! Arguments |
---|
| 15 | integer :: nx, ny, nz, number_of_zlevs |
---|
| 16 | real, dimension(west_east_dim,south_north_dim,bottom_top_dim) :: z_data |
---|
| 17 | real, dimension(nx,ny,nz) :: data_in |
---|
| 18 | real, pointer, dimension(:,:,:) :: data_out |
---|
| 19 | real, dimension(number_of_zlevs) :: z_levs |
---|
| 20 | |
---|
| 21 | ! Local variables |
---|
| 22 | integer :: nxout, nyout, nzout |
---|
| 23 | real, allocatable, dimension(:,:,:) :: SCR2 |
---|
| 24 | real, dimension(bottom_top_dim) :: data_in_1d, z_data_1d |
---|
| 25 | real, dimension(number_of_zlevs) :: data_out_1d |
---|
| 26 | integer :: i,j,k |
---|
| 27 | |
---|
| 28 | |
---|
| 29 | IF ( ALLOCATED(SCR2) ) DEALLOCATE(SCR2) |
---|
| 30 | IF ( ASSOCIATED(data_out) ) DEALLOCATE(data_out) |
---|
| 31 | nxout = nx |
---|
| 32 | nyout = ny |
---|
| 33 | nzout = nz |
---|
| 34 | |
---|
| 35 | !! We may be dealing with a staggered field |
---|
| 36 | IF ( nx .gt. west_east_dim ) THEN |
---|
| 37 | ALLOCATE(SCR2(west_east_dim,south_north_dim,bottom_top_dim)) |
---|
| 38 | SCR2 = 0.5*(data_in(1:west_east_dim,:,:)+data_in(2:west_east_dim+1,:,:)) |
---|
| 39 | nxout = west_east_dim |
---|
| 40 | ELSE IF ( ny .gt. south_north_dim ) THEN |
---|
| 41 | ALLOCATE(SCR2(west_east_dim,south_north_dim,bottom_top_dim)) |
---|
| 42 | SCR2 = 0.5*(data_in(:,1:south_north_dim,:)+data_in(:,2:south_north_dim+1,:)) |
---|
| 43 | nyout = south_north_dim |
---|
| 44 | ELSE IF ( nz .gt. bottom_top_dim ) THEN |
---|
| 45 | ALLOCATE(SCR2(west_east_dim,south_north_dim,bottom_top_dim)) |
---|
| 46 | SCR2 = 0.5*(data_in(:,:,1:bottom_top_dim)+data_in(:,:,2:bottom_top_dim+1)) |
---|
| 47 | nzout = bottom_top_dim |
---|
| 48 | ELSE |
---|
| 49 | ALLOCATE(SCR2(nx,ny,nz)) |
---|
| 50 | SCR2 = data_in |
---|
| 51 | ENDIF |
---|
| 52 | |
---|
| 53 | |
---|
| 54 | IF ( iprogram .ge. 6 .AND. nzout .gt. 10 .AND. & |
---|
| 55 | (vertical_type == 'p' .or. vertical_type == 'z') ) THEN |
---|
| 56 | |
---|
| 57 | ALLOCATE(data_out(west_east_dim,south_north_dim,number_of_zlevs)) |
---|
| 58 | DO i=1,west_east_dim |
---|
| 59 | DO j=1,south_north_dim |
---|
| 60 | |
---|
| 61 | DO k=1,bottom_top_dim |
---|
| 62 | data_in_1d(k) = SCR2(i,j,k) |
---|
| 63 | z_data_1d(k) = z_data(i,j,k) |
---|
| 64 | ENDDO |
---|
| 65 | |
---|
| 66 | CALL interp_1d( data_in_1d, z_data_1d, bottom_top_dim, & |
---|
| 67 | data_out_1d, z_levs, number_of_zlevs, & |
---|
| 68 | vertical_type) |
---|
| 69 | |
---|
| 70 | DO k=1,number_of_zlevs |
---|
| 71 | data_out(i,j,k) = data_out_1d(k) |
---|
| 72 | ENDDO |
---|
| 73 | |
---|
| 74 | ENDDO |
---|
| 75 | ENDDO |
---|
| 76 | |
---|
| 77 | nzout = number_of_zlevs |
---|
| 78 | |
---|
| 79 | ELSE |
---|
| 80 | |
---|
| 81 | ALLOCATE(data_out(nxout,nyout,nzout)) |
---|
| 82 | data_out = SCR2 |
---|
| 83 | DEALLOCATE(SCR2) |
---|
| 84 | |
---|
| 85 | ENDIF |
---|
| 86 | |
---|
| 87 | END SUBROUTINE interp |
---|
| 88 | |
---|
| 89 | !---------------------------------------------- |
---|
| 90 | |
---|
| 91 | SUBROUTINE interp_1d( a, xa, na, b, xb, nb, vertical_type) |
---|
| 92 | |
---|
| 93 | implicit none |
---|
| 94 | |
---|
| 95 | ! Arguments |
---|
| 96 | integer, intent(in) :: na, nb |
---|
| 97 | real, intent(in), dimension(na) :: a, xa |
---|
| 98 | real, intent(in), dimension(nb) :: xb |
---|
| 99 | real, intent(out), dimension(nb) :: b |
---|
| 100 | character (len=1) :: vertical_type |
---|
| 101 | |
---|
| 102 | ! Local variables |
---|
| 103 | real :: missing_value |
---|
| 104 | integer :: n_in, n_out |
---|
| 105 | real :: w1, w2 |
---|
| 106 | logical :: interp |
---|
| 107 | |
---|
| 108 | ! parameter (MISSING_VALUE=1.0E37) |
---|
| 109 | !!!! |
---|
| 110 | !!!!AYM AYM |
---|
| 111 | !!!! |
---|
| 112 | parameter (MISSING_VALUE=-9999.) |
---|
| 113 | |
---|
| 114 | |
---|
| 115 | |
---|
| 116 | IF ( vertical_type == 'p' ) THEN |
---|
| 117 | |
---|
| 118 | DO n_out = 1, nb |
---|
| 119 | |
---|
| 120 | b(n_out) = missing_value |
---|
| 121 | interp = .false. |
---|
| 122 | n_in = 1 |
---|
| 123 | |
---|
| 124 | DO WHILE ( (.not.interp) .and. (n_in < na) ) |
---|
| 125 | IF( (xa(n_in) >= xb(n_out)) .and. & |
---|
| 126 | (xa(n_in+1) <= xb(n_out)) ) THEN |
---|
| 127 | interp = .true. |
---|
| 128 | w1 = (xa(n_in+1)-xb(n_out))/(xa(n_in+1)-xa(n_in)) |
---|
| 129 | w2 = 1. - w1 |
---|
| 130 | b(n_out) = w1*a(n_in) + w2*a(n_in+1) |
---|
| 131 | END IF |
---|
| 132 | n_in = n_in +1 |
---|
| 133 | ENDDO |
---|
| 134 | |
---|
| 135 | ENDDO |
---|
| 136 | |
---|
| 137 | ELSE |
---|
| 138 | |
---|
| 139 | DO n_out = 1, nb |
---|
| 140 | |
---|
| 141 | b(n_out) = missing_value |
---|
| 142 | interp = .false. |
---|
| 143 | n_in = 1 |
---|
| 144 | |
---|
| 145 | DO WHILE ( (.not.interp) .and. (n_in < na) ) |
---|
| 146 | IF( (xa(n_in) <= xb(n_out)) .and. & |
---|
| 147 | (xa(n_in+1) >= xb(n_out)) ) THEN |
---|
| 148 | interp = .true. |
---|
| 149 | w1 = (xa(n_in+1)-xb(n_out))/(xa(n_in+1)-xa(n_in)) |
---|
| 150 | w2 = 1. - w1 |
---|
| 151 | b(n_out) = w1*a(n_in) + w2*a(n_in+1) |
---|
| 152 | END IF |
---|
| 153 | n_in = n_in +1 |
---|
| 154 | ENDDO |
---|
| 155 | |
---|
| 156 | ENDDO |
---|
| 157 | |
---|
| 158 | END IF |
---|
| 159 | |
---|
| 160 | END SUBROUTINE interp_1d |
---|
| 161 | |
---|
| 162 | !------------------------------------------------------------------------- |
---|
| 163 | |
---|
| 164 | END MODULE module_interp |
---|