1 | #! /usr/bin/env python |
---|
2 | |
---|
3 | def detsize( xx, res=1, thres=3, loga=False ): |
---|
4 | import numpy as np |
---|
5 | import math |
---|
6 | size = [] |
---|
7 | sizecalc = 1 |
---|
8 | diff = np.asarray( np.roll(xx,-1) - xx ) |
---|
9 | for i in diff: |
---|
10 | if abs(i) > 1: |
---|
11 | if sizecalc >= thres: |
---|
12 | if loga: addthis = math.log(sizecalc*res) |
---|
13 | else: addthis = sizecalc*res |
---|
14 | size.append(addthis) |
---|
15 | sizecalc = 1 |
---|
16 | else: |
---|
17 | sizecalc += 1 |
---|
18 | return size |
---|
19 | |
---|
20 | def getsize(filename): |
---|
21 | |
---|
22 | import numpy as np |
---|
23 | from scipy.ndimage.measurements import minimum_position |
---|
24 | from netCDF4 import Dataset |
---|
25 | |
---|
26 | ### LOAD NETCDF DATA |
---|
27 | filename = "psfc.nc" |
---|
28 | nc = Dataset(filename) |
---|
29 | psfc = nc.variables["PSFC"] |
---|
30 | |
---|
31 | ### LOOP on TIME |
---|
32 | ### NB: a same event could be counted several times... |
---|
33 | shape = np.array(psfc).shape |
---|
34 | allsizesx = [] |
---|
35 | allsizesy = [] |
---|
36 | for i in range(0,shape[0]): |
---|
37 | #for i in range(0,2): |
---|
38 | |
---|
39 | print i, ' on ', shape[0] |
---|
40 | psfc2d = np.array ( psfc [ i, : , : ] ) |
---|
41 | |
---|
42 | ############### CRITERION |
---|
43 | ave = np.mean(psfc2d,dtype=np.float64) ## dtype otherwise inaccuracy |
---|
44 | where = np.where(psfc2d - ave < -0.3) ## comme le papier Phoenix |
---|
45 | |
---|
46 | std = np.std(psfc2d,dtype=np.float64) ## dtype otherwise inaccuracy |
---|
47 | fac = 2.5 ## not too low, otherwise vortices are not caught. 4 good choice. |
---|
48 | lim = ave - fac*std |
---|
49 | print lim, ave, std |
---|
50 | where = np.where(psfc2d < lim) |
---|
51 | ############### END CRITERION |
---|
52 | |
---|
53 | lab = np.zeros(np.array(psfc2d).shape) ## points to be treated by the minimum_position routine |
---|
54 | lab[where] = 1. ## do not treat points close to 'mean' (background) pressure |
---|
55 | |
---|
56 | xx = [] |
---|
57 | yy = [] |
---|
58 | while 1 in lab: |
---|
59 | p = minimum_position(psfc2d,labels=lab) |
---|
60 | lab[p] = 0 ## once a minimum has been found in a grid point, do not search here again. |
---|
61 | if p[0] not in xx: xx.append(p[0]) ## if x coordinate not yet in the list add it |
---|
62 | if p[1] not in yy: yy.append(p[1]) ## if y coordinate not yet in the list add it |
---|
63 | xx.sort() |
---|
64 | yy.sort() |
---|
65 | ### now xx and yy are sorted arrays containing grid points with pressure minimum |
---|
66 | |
---|
67 | ######## DETERMINE SIZE OF STRUCTURES |
---|
68 | ######## this is rather brute-force... |
---|
69 | sizex = detsize( xx, res = 10, loga=False, thres=2 ) |
---|
70 | sizey = detsize( yy, res = 10, loga=False, thres=2 ) |
---|
71 | ### |
---|
72 | allsizesx = np.append(allsizesx,sizex) |
---|
73 | allsizesy = np.append(allsizesy,sizey) |
---|
74 | ######## |
---|
75 | |
---|
76 | allsizesx.sort() |
---|
77 | allsizesy.sort() |
---|
78 | |
---|
79 | return allsizesx, allsizesy |
---|
80 | |
---|
81 | def writeascii ( tab, filename ): |
---|
82 | mydata = tab |
---|
83 | myfile = open(filename, 'w') |
---|
84 | for line in mydata: |
---|
85 | myfile.write(str(line) + '\n') |
---|
86 | myfile.close() |
---|
87 | return |
---|
88 | |
---|
89 | import matplotlib.pyplot as plt |
---|
90 | import pickle |
---|
91 | import numpy as np |
---|
92 | import matplotlib.mlab as mlab |
---|
93 | |
---|
94 | save = True |
---|
95 | #save = False |
---|
96 | if save: |
---|
97 | allsizesx, allsizesy = getsize("psfc.nc") |
---|
98 | writeascii(allsizesx,'allsizex.txt') |
---|
99 | writeascii(allsizesy,'allsizey.txt') |
---|
100 | |
---|
101 | myfile = open('allsizex.bin', 'wb') |
---|
102 | pickle.dump(allsizesx, myfile) |
---|
103 | myfile.close() |
---|
104 | |
---|
105 | myfile = open('allsizey.bin', 'wb') |
---|
106 | pickle.dump(allsizesy, myfile) |
---|
107 | myfile.close() |
---|
108 | |
---|
109 | |
---|
110 | myfile = open('allsizex.bin', 'r') |
---|
111 | allsizesx = pickle.load(myfile) |
---|
112 | myfile = open('allsizey.bin', 'r') |
---|
113 | allsizesy = pickle.load(myfile) |
---|
114 | |
---|
115 | plothist = np.append(allsizesx,allsizesy) |
---|
116 | plothist.sort() |
---|
117 | |
---|
118 | nbins=100 |
---|
119 | zebins = [2.0] |
---|
120 | for i in range(0,nbins): zebins.append(zebins[i]*np.sqrt(2)) |
---|
121 | zebins = np.array(zebins) |
---|
122 | print zebins |
---|
123 | |
---|
124 | zebins = zebins [ zebins > 10. ] |
---|
125 | zebins = zebins [ zebins < 1000. ] |
---|
126 | print zebins |
---|
127 | |
---|
128 | #### HISTOGRAM |
---|
129 | plt.hist( plothist,\ |
---|
130 | log=True,\ |
---|
131 | bins=zebins,\ |
---|
132 | #cumulative=-1,\ |
---|
133 | ) |
---|
134 | plt.xscale('log') |
---|
135 | |
---|
136 | plt.show() |
---|
137 | |
---|