[251] | 1 | #! /usr/bin/env python |
---|
| 2 | |
---|
| 3 | def detsize( xx, res=1, thres=3, loga=False ): |
---|
| 4 | import numpy as np |
---|
| 5 | import math |
---|
| 6 | size = [] |
---|
| 7 | sizecalc = 1 |
---|
| 8 | diff = np.asarray( np.roll(xx,-1) - xx ) |
---|
| 9 | for i in diff: |
---|
| 10 | if abs(i) > 1: |
---|
| 11 | if sizecalc >= thres: |
---|
| 12 | if loga: addthis = math.log(sizecalc*res) |
---|
| 13 | else: addthis = sizecalc*res |
---|
| 14 | size.append(addthis) |
---|
| 15 | sizecalc = 1 |
---|
| 16 | else: |
---|
| 17 | sizecalc += 1 |
---|
| 18 | return size |
---|
| 19 | |
---|
| 20 | def getsize(filename): |
---|
| 21 | |
---|
| 22 | import numpy as np |
---|
| 23 | from scipy.ndimage.measurements import minimum_position |
---|
| 24 | from netCDF4 import Dataset |
---|
| 25 | |
---|
| 26 | ### LOAD NETCDF DATA |
---|
| 27 | filename = "psfc.nc" |
---|
| 28 | nc = Dataset(filename) |
---|
| 29 | psfc = nc.variables["PSFC"] |
---|
| 30 | |
---|
| 31 | ### LOOP on TIME |
---|
| 32 | ### NB: a same event could be counted several times... |
---|
| 33 | shape = np.array(psfc).shape |
---|
| 34 | allsizesx = [] |
---|
| 35 | allsizesy = [] |
---|
| 36 | for i in range(0,shape[0]): |
---|
| 37 | #for i in range(0,2): |
---|
| 38 | |
---|
| 39 | print i, ' on ', shape[0] |
---|
| 40 | psfc2d = np.array ( psfc [ i, : , : ] ) |
---|
| 41 | |
---|
| 42 | ############### CRITERION |
---|
| 43 | ave = np.mean(psfc2d,dtype=np.float64) ## dtype otherwise inaccuracy |
---|
| 44 | where = np.where(psfc2d - ave < -0.3) ## comme le papier Phoenix |
---|
| 45 | |
---|
| 46 | std = np.std(psfc2d,dtype=np.float64) ## dtype otherwise inaccuracy |
---|
| 47 | fac = 2.5 ## not too low, otherwise vortices are not caught. 4 good choice. |
---|
| 48 | lim = ave - fac*std |
---|
| 49 | print lim, ave, std |
---|
| 50 | where = np.where(psfc2d < lim) |
---|
| 51 | ############### END CRITERION |
---|
| 52 | |
---|
| 53 | lab = np.zeros(np.array(psfc2d).shape) ## points to be treated by the minimum_position routine |
---|
| 54 | lab[where] = 1. ## do not treat points close to 'mean' (background) pressure |
---|
| 55 | |
---|
| 56 | xx = [] |
---|
| 57 | yy = [] |
---|
| 58 | while 1 in lab: |
---|
| 59 | p = minimum_position(psfc2d,labels=lab) |
---|
| 60 | lab[p] = 0 ## once a minimum has been found in a grid point, do not search here again. |
---|
| 61 | if p[0] not in xx: xx.append(p[0]) ## if x coordinate not yet in the list add it |
---|
| 62 | if p[1] not in yy: yy.append(p[1]) ## if y coordinate not yet in the list add it |
---|
| 63 | xx.sort() |
---|
| 64 | yy.sort() |
---|
| 65 | ### now xx and yy are sorted arrays containing grid points with pressure minimum |
---|
| 66 | |
---|
| 67 | ######## DETERMINE SIZE OF STRUCTURES |
---|
| 68 | ######## this is rather brute-force... |
---|
| 69 | sizex = detsize( xx, res = 10, loga=False, thres=2 ) |
---|
| 70 | sizey = detsize( yy, res = 10, loga=False, thres=2 ) |
---|
| 71 | ### |
---|
| 72 | allsizesx = np.append(allsizesx,sizex) |
---|
| 73 | allsizesy = np.append(allsizesy,sizey) |
---|
| 74 | ######## |
---|
| 75 | |
---|
| 76 | allsizesx.sort() |
---|
| 77 | allsizesy.sort() |
---|
| 78 | |
---|
| 79 | return allsizesx, allsizesy |
---|
| 80 | |
---|
| 81 | def writeascii ( tab, filename ): |
---|
| 82 | mydata = tab |
---|
| 83 | myfile = open(filename, 'w') |
---|
| 84 | for line in mydata: |
---|
| 85 | myfile.write(str(line) + '\n') |
---|
| 86 | myfile.close() |
---|
| 87 | return |
---|
| 88 | |
---|
| 89 | import matplotlib.pyplot as plt |
---|
| 90 | import pickle |
---|
| 91 | import numpy as np |
---|
| 92 | import matplotlib.mlab as mlab |
---|
| 93 | |
---|
| 94 | save = True |
---|
| 95 | #save = False |
---|
| 96 | if save: |
---|
| 97 | allsizesx, allsizesy = getsize("psfc.nc") |
---|
| 98 | writeascii(allsizesx,'allsizex.txt') |
---|
| 99 | writeascii(allsizesy,'allsizey.txt') |
---|
| 100 | |
---|
| 101 | myfile = open('allsizex.bin', 'wb') |
---|
| 102 | pickle.dump(allsizesx, myfile) |
---|
| 103 | myfile.close() |
---|
| 104 | |
---|
| 105 | myfile = open('allsizey.bin', 'wb') |
---|
| 106 | pickle.dump(allsizesy, myfile) |
---|
| 107 | myfile.close() |
---|
| 108 | |
---|
| 109 | |
---|
| 110 | myfile = open('allsizex.bin', 'r') |
---|
| 111 | allsizesx = pickle.load(myfile) |
---|
| 112 | myfile = open('allsizey.bin', 'r') |
---|
| 113 | allsizesy = pickle.load(myfile) |
---|
| 114 | |
---|
| 115 | plothist = np.append(allsizesx,allsizesy) |
---|
| 116 | plothist.sort() |
---|
| 117 | |
---|
| 118 | nbins=100 |
---|
| 119 | zebins = [2.0] |
---|
| 120 | for i in range(0,nbins): zebins.append(zebins[i]*np.sqrt(2)) |
---|
| 121 | zebins = np.array(zebins) |
---|
| 122 | print zebins |
---|
| 123 | |
---|
| 124 | zebins = zebins [ zebins > 10. ] |
---|
| 125 | zebins = zebins [ zebins < 1000. ] |
---|
| 126 | print zebins |
---|
| 127 | |
---|
| 128 | #### HISTOGRAM |
---|
| 129 | plt.hist( plothist,\ |
---|
| 130 | log=True,\ |
---|
| 131 | bins=zebins,\ |
---|
| 132 | #cumulative=-1,\ |
---|
| 133 | ) |
---|
| 134 | plt.xscale('log') |
---|
| 135 | |
---|
| 136 | plt.show() |
---|
| 137 | |
---|