1 | def latinterv (area): |
---|
2 | if area == "Europe": |
---|
3 | wlat = [20.,80.] |
---|
4 | wlon = [-50.,50.] |
---|
5 | elif area == "Central_America": |
---|
6 | wlat = [-10.,40.] |
---|
7 | wlon = [230.,300.] |
---|
8 | elif area == "Africa": |
---|
9 | wlat = [-20.,50.] |
---|
10 | wlon = [-50.,50.] |
---|
11 | elif area == "Whole": |
---|
12 | wlat = [-90.,90.] |
---|
13 | wlon = [-180.,180.] |
---|
14 | elif area == "Southern_Hemisphere": |
---|
15 | wlat = [-90.,60.] |
---|
16 | wlon = [-180.,180.] |
---|
17 | elif area == "Northern_Hemisphere": |
---|
18 | wlat = [-60.,90.] |
---|
19 | wlon = [-180.,180.] |
---|
20 | elif area == "Tharsis": |
---|
21 | wlat = [-30.,60.] |
---|
22 | wlon = [-170.,-10.] |
---|
23 | elif area == "Whole_No_High": |
---|
24 | wlat = [-60.,60.] |
---|
25 | wlon = [-180.,180.] |
---|
26 | elif area == "Chryse": |
---|
27 | wlat = [-60.,60.] |
---|
28 | wlon = [-60.,60.] |
---|
29 | elif area == "North_Pole": |
---|
30 | wlat = [60.,90.] |
---|
31 | wlon = [-180.,180.] |
---|
32 | elif area == "Close_North_Pole": |
---|
33 | wlat = [75.,90.] |
---|
34 | wlon = [-180.,180.] |
---|
35 | return wlon,wlat |
---|
36 | |
---|
37 | def api_onelevel ( path_to_input = None, \ |
---|
38 | input_name = 'wrfout_d0?_????-??-??_??:00:00', \ |
---|
39 | path_to_output = None, \ |
---|
40 | output_name = 'output.nc', \ |
---|
41 | process = 'list', \ |
---|
42 | fields = 'tk,W,uvmet,HGT', \ |
---|
43 | debug = False, \ |
---|
44 | bit64 = False, \ |
---|
45 | oldvar = True, \ |
---|
46 | interp_method = 4, \ |
---|
47 | extrapolate = 0, \ |
---|
48 | unstagger_grid = False, \ |
---|
49 | onelevel = 0.020 ): |
---|
50 | import api |
---|
51 | import numpy as np |
---|
52 | if not path_to_input: path_to_input = './' |
---|
53 | if not path_to_output: path_to_output = path_to_input |
---|
54 | api.api_main ( path_to_input, input_name, path_to_output, output_name, \ |
---|
55 | process, fields, debug, bit64, oldvar, np.arange (299), \ |
---|
56 | interp_method, extrapolate, unstagger_grid, onelevel ) |
---|
57 | return |
---|
58 | |
---|
59 | def getproj (nc): |
---|
60 | map_proj = getattr(nc, 'MAP_PROJ') |
---|
61 | cen_lat = getattr(nc, 'CEN_LAT') |
---|
62 | if map_proj == 2: |
---|
63 | if cen_lat > 10.: |
---|
64 | proj="npstere" |
---|
65 | print "NP stereographic polar domain" |
---|
66 | else: |
---|
67 | proj="spstere" |
---|
68 | print "SP stereographic polar domain" |
---|
69 | elif map_proj == 1: |
---|
70 | print "lambert projection domain" |
---|
71 | proj="lcc" |
---|
72 | elif map_proj == 3: |
---|
73 | print "mercator projection" |
---|
74 | proj="merc" |
---|
75 | else: |
---|
76 | proj="merc" |
---|
77 | return proj |
---|
78 | |
---|
79 | def ptitle (name): |
---|
80 | from matplotlib.pyplot import title |
---|
81 | title(name) |
---|
82 | print name |
---|
83 | |
---|
84 | def simplinterv (lon2d,lat2d): |
---|
85 | import numpy as np |
---|
86 | return [[np.min(lon2d),np.max(lon2d)],[np.min(lat2d),np.max(lat2d)]] |
---|
87 | |
---|
88 | def wrfinterv (lon2d,lat2d): |
---|
89 | nx = len(lon2d[0,:])-1 |
---|
90 | ny = len(lon2d[:,0])-1 |
---|
91 | return [[lon2d[0,0],lon2d[nx,ny]],[lat2d[0,0],lat2d[nx,ny]]] |
---|
92 | |
---|
93 | def makeplotpngres (filename,res,pad_inches_value=0.25,folder='',disp=True): |
---|
94 | import matplotlib.pyplot as plt |
---|
95 | res = int(res) |
---|
96 | name = filename+"_"+str(res)+".png" |
---|
97 | if folder != '': name = folder+'/'+name |
---|
98 | plt.savefig(name,dpi=res,bbox_inches='tight',pad_inches=pad_inches_value) |
---|
99 | if disp: display(name) |
---|
100 | return |
---|
101 | |
---|
102 | def makeplotpng (filename,pad_inches_value=0.25,minres=100.,folder=''): |
---|
103 | makeplotpngres(filename,minres, pad_inches_value=pad_inches_value,folder=folder) |
---|
104 | makeplotpngres(filename,minres+200.,pad_inches_value=pad_inches_value,folder=folder,disp=False) |
---|
105 | return |
---|
106 | |
---|
107 | def dumpbdy (field): |
---|
108 | nx = len(field[0,:])-1 |
---|
109 | ny = len(field[:,0])-1 |
---|
110 | return field[5:ny-5,5:nx-5] |
---|
111 | |
---|
112 | def getcoord2d (nc,nlat='XLAT',nlon='XLONG',is1d=False): |
---|
113 | import numpy as np |
---|
114 | if is1d: |
---|
115 | lat = nc.variables[nlat][:] |
---|
116 | lon = nc.variables[nlon][:] |
---|
117 | [lon2d,lat2d] = np.meshgrid(lon,lat) |
---|
118 | else: |
---|
119 | lat = nc.variables[nlat][0,:,:] |
---|
120 | lon = nc.variables[nlon][0,:,:] |
---|
121 | [lon2d,lat2d] = [lon,lat] |
---|
122 | return lon2d,lat2d |
---|
123 | |
---|
124 | def smooth (field, coeff): |
---|
125 | ## actually blur_image could work with different coeff on x and y |
---|
126 | if coeff > 1: result = blur_image(field,int(coeff)) |
---|
127 | else: result = field |
---|
128 | return result |
---|
129 | |
---|
130 | def gauss_kern(size, sizey=None): |
---|
131 | import numpy as np |
---|
132 | ## FROM COOKBOOK http://www.scipy.org/Cookbook/SignalSmooth |
---|
133 | # Returns a normalized 2D gauss kernel array for convolutions |
---|
134 | size = int(size) |
---|
135 | if not sizey: |
---|
136 | sizey = size |
---|
137 | else: |
---|
138 | sizey = int(sizey) |
---|
139 | x, y = np.mgrid[-size:size+1, -sizey:sizey+1] |
---|
140 | g = np.exp(-(x**2/float(size)+y**2/float(sizey))) |
---|
141 | return g / g.sum() |
---|
142 | |
---|
143 | def blur_image(im, n, ny=None) : |
---|
144 | from scipy.signal import convolve |
---|
145 | ## FROM COOKBOOK http://www.scipy.org/Cookbook/SignalSmooth |
---|
146 | # blurs the image by convolving with a gaussian kernel of typical size n. |
---|
147 | # The optional keyword argument ny allows for a different size in the y direction. |
---|
148 | g = gauss_kern(n, sizey=ny) |
---|
149 | improc = convolve(im, g, mode='same') |
---|
150 | return improc |
---|
151 | |
---|
152 | def vectorfield (u, v, x, y, stride=3, scale=15., factor=250., color='black', csmooth=1, key=True): |
---|
153 | ## scale regle la reference du vecteur |
---|
154 | ## factor regle toutes les longueurs (dont la reference). l'AUGMENTER pour raccourcir les vecteurs. |
---|
155 | import matplotlib.pyplot as plt |
---|
156 | import numpy as np |
---|
157 | #posx = np.max(x) + np.std(x) / 3. ## pb pour les domaines globaux ... |
---|
158 | #posy = np.mean(y) |
---|
159 | #posx = np.min(x) |
---|
160 | #posy = np.max(x) |
---|
161 | #posx = np.max(x) - np.std(x) / 10. |
---|
162 | #posy = np.max(y) + np.std(y) / 10. |
---|
163 | posx = np.min(x) - np.std(x) / 10. |
---|
164 | posy = np.min(y) - np.std(y) / 10. |
---|
165 | u = smooth(u,csmooth) |
---|
166 | v = smooth(v,csmooth) |
---|
167 | widthvec = 0.003 #0.005 #0.003 |
---|
168 | q = plt.quiver( x[::stride,::stride],\ |
---|
169 | y[::stride,::stride],\ |
---|
170 | u[::stride,::stride],\ |
---|
171 | v[::stride,::stride],\ |
---|
172 | angles='xy',color=color,\ |
---|
173 | scale=factor,width=widthvec ) |
---|
174 | if color=='white': kcolor='black' |
---|
175 | elif color=='yellow': kcolor=color |
---|
176 | else: kcolor=color |
---|
177 | if key: p = plt.quiverkey(q,posx,posy,scale,\ |
---|
178 | str(int(scale)),coordinates='data',color=kcolor,labelpos='S') |
---|
179 | return |
---|
180 | |
---|
181 | def display (name): |
---|
182 | from os import system |
---|
183 | system("display "+name+" > /dev/null 2> /dev/null &") |
---|
184 | return name |
---|
185 | |
---|
186 | def findstep (wlon): |
---|
187 | steplon = int((wlon[1]-wlon[0])/4.) #3 |
---|
188 | step = 120. |
---|
189 | while step > steplon and step > 15. : step = step / 2. |
---|
190 | if step <= 15.: |
---|
191 | while step > steplon and step > 5. : step = step - 5. |
---|
192 | if step <= 5.: |
---|
193 | while step > steplon and step > 1. : step = step - 1. |
---|
194 | if step <= 1.: |
---|
195 | step = 1. |
---|
196 | return step |
---|
197 | |
---|
198 | def define_proj (char,wlon,wlat,back="."): |
---|
199 | from mpl_toolkits.basemap import Basemap |
---|
200 | import numpy as np |
---|
201 | import matplotlib as mpl |
---|
202 | meanlon = 0.5*(wlon[0]+wlon[1]) |
---|
203 | meanlat = 0.5*(wlat[0]+wlat[1]) |
---|
204 | if wlat[0] >= 80.: blat = 40. |
---|
205 | elif wlat[0] <= -80.: blat = -40. |
---|
206 | else: blat = wlat[0] |
---|
207 | h = 2000. |
---|
208 | radius = 3397200 |
---|
209 | if char == "cyl": m = Basemap(rsphere=radius,projection='cyl',\ |
---|
210 | llcrnrlat=wlat[0],urcrnrlat=wlat[1],llcrnrlon=wlon[0],urcrnrlon=wlon[1]) |
---|
211 | elif char == "moll": m = Basemap(rsphere=radius,projection='moll',lon_0=meanlon) |
---|
212 | elif char == "ortho": m = Basemap(rsphere=radius,projection='ortho',lon_0=meanlon,lat_0=meanlat) |
---|
213 | elif char == "lcc": m = Basemap(rsphere=radius,projection='lcc',lat_1=meanlat,lat_0=meanlat,lon_0=meanlon,\ |
---|
214 | llcrnrlat=wlat[0],urcrnrlat=wlat[1],llcrnrlon=wlon[0],urcrnrlon=wlon[1]) |
---|
215 | elif char == "npstere": m = Basemap(rsphere=radius,projection='npstere', boundinglat=blat, lon_0=0.) |
---|
216 | elif char == "spstere": m = Basemap(rsphere=radius,projection='spstere', boundinglat=blat, lon_0=0.) |
---|
217 | elif char == "nsper": m = Basemap(rsphere=radius,projection='nsper',lon_0=meanlon,lat_0=meanlat,satellite_height=h*1000.) |
---|
218 | elif char == "merc": m = Basemap(rsphere=radius,projection='merc',lat_ts=0.,\ |
---|
219 | llcrnrlat=wlat[0],urcrnrlat=wlat[1],llcrnrlon=wlon[0],urcrnrlon=wlon[1]) |
---|
220 | fontsizemer = int(mpl.rcParams['font.size']*3./4.) |
---|
221 | if char in ["cyl","lcc","merc"]: step = findstep(wlon) |
---|
222 | else: step = 10. |
---|
223 | m.drawmeridians(np.r_[-180.:180.:step*2.], labels=[0,0,0,1], color='grey', fontsize=fontsizemer) |
---|
224 | m.drawparallels(np.r_[-90.:90.:step], labels=[1,0,0,0], color='grey', fontsize=fontsizemer) |
---|
225 | if back == ".": m.warpimage(marsmap(),scale=0.75) |
---|
226 | elif back == None: pass |
---|
227 | else: m.warpimage(marsmap(back),scale=0.75) |
---|
228 | return m |
---|
229 | |
---|
230 | def marsmap (whichone="vishires"): |
---|
231 | whichlink = { \ |
---|
232 | "vis": "http://maps.jpl.nasa.gov/pix/mar0kuu2.jpg",\ |
---|
233 | "vishires": "http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/MarsMap_2500x1250.jpg",\ |
---|
234 | "mola": "http://www.lns.cornell.edu/~seb/celestia/mars-mola-2k.jpg",\ |
---|
235 | "molabw": "http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/MarsElevation_2500x1250.jpg",\ |
---|
236 | } |
---|
237 | if whichone not in whichlink: |
---|
238 | print "marsmap: choice not defined... you'll get the default one... " |
---|
239 | whichone = "vishires" |
---|
240 | return whichlink[whichone] |
---|
241 | |
---|
242 | def earthmap (whichone): |
---|
243 | if whichone == "contrast": whichlink="http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/EarthMapAtmos_2500x1250.jpg" |
---|
244 | elif whichone == "bw": whichlink="http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/EarthElevation_2500x1250.jpg" |
---|
245 | elif whichone == "nice": whichlink="http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/earthmap1k.jpg" |
---|
246 | return whichlink |
---|
247 | |
---|