[57] | 1 | SUBROUTINE newcondens(ngrid,nlayer,nq,ptimestep, |
---|
| 2 | $ pcapcal,pplay,pplev,ptsrf,pt, |
---|
| 3 | $ pphi,pdt,pdu,pdv,pdtsrf,pu,pv,pq,pdq, |
---|
| 4 | $ piceco2,psolaralb,pemisurf, |
---|
| 5 | $ pdtc,pdtsrfc,pdpsrf,pduc,pdvc,pdqc, |
---|
| 6 | $ fluxsurf_sw) |
---|
| 7 | |
---|
| 8 | IMPLICIT NONE |
---|
| 9 | c======================================================================= |
---|
| 10 | c subject: |
---|
| 11 | c -------- |
---|
| 12 | c Condensation/sublimation of CO2 ice on the ground and in the |
---|
| 13 | c atmosphere |
---|
| 14 | c (Scheme described in Forget et al., Icarus, 1998) |
---|
| 15 | c |
---|
| 16 | c author: Francois Forget 1994-1996 |
---|
| 17 | c ------ |
---|
| 18 | c |
---|
| 19 | c input: |
---|
| 20 | c ----- |
---|
| 21 | c ngrid nombre de points de verticales |
---|
| 22 | c (toutes les boucles de la physique sont au |
---|
| 23 | c moins vectorisees sur ngrid) |
---|
| 24 | c nlayer nombre de couches |
---|
| 25 | c pplay(ngrid,nlayer) Pressure levels |
---|
| 26 | c pplev(ngrid,nlayer+1) Pressure levels |
---|
| 27 | c pt(ngrid,nlayer) temperature (en K) |
---|
| 28 | c ptsrf(ngrid) temperature de surface |
---|
| 29 | c |
---|
| 30 | c \ |
---|
| 31 | c pdt(ngrid,nlayermx) \ derivee temporelle physique avant condensation |
---|
| 32 | c / ou sublimation pour pt,ptsrf |
---|
| 33 | c pdtsrf(ngrid) / |
---|
| 34 | c |
---|
| 35 | c output: |
---|
| 36 | c ------- |
---|
| 37 | c |
---|
| 38 | c pdpsrf(ngrid) \ derivee temporelle physique (contribution de |
---|
| 39 | c pdtc(ngrid,nlayermx) / la condensation ou sublimation) pour Ps,pt,ptsrf |
---|
| 40 | c pdtsrfc(ngrid) / |
---|
| 41 | c |
---|
| 42 | c Entree/sortie |
---|
| 43 | c ------------- |
---|
| 44 | c |
---|
| 45 | c piceco2(ngrid) : quantite de glace co2 au sol (kg/m2) |
---|
| 46 | c psolaralb(ngrid,2) : albedo au sol |
---|
| 47 | c pemisurf(ngrid) : emissivite du sol |
---|
| 48 | |
---|
| 49 | c |
---|
| 50 | c======================================================================= |
---|
| 51 | c |
---|
| 52 | c 0. Declarations : |
---|
| 53 | c ------------------ |
---|
| 54 | c |
---|
| 55 | #include "dimensions.h" |
---|
| 56 | #include "dimphys.h" |
---|
| 57 | #include "comcstfi.h" |
---|
| 58 | #include "surfdat.h" |
---|
| 59 | #include "comgeomfi.h" |
---|
| 60 | #include "comvert.h" |
---|
| 61 | #include "paramet.h" |
---|
| 62 | #include "callkeys.h" |
---|
| 63 | #include "tracer.h" |
---|
| 64 | |
---|
| 65 | #include "fisice.h" |
---|
| 66 | |
---|
| 67 | c----------------------------------------------------------------------- |
---|
| 68 | c Arguments : |
---|
| 69 | c --------- |
---|
| 70 | INTEGER ngrid, nlayer, nq |
---|
| 71 | |
---|
| 72 | REAL ptimestep |
---|
| 73 | REAL pplay(ngrid,nlayer),pplev(ngrid,nlayer+1) |
---|
| 74 | REAL pcapcal(ngrid) |
---|
| 75 | REAL pt(ngrid,nlayer) |
---|
| 76 | REAL ptsrf(ngrid) |
---|
| 77 | REAL pphi(ngrid,nlayer) |
---|
| 78 | REAL pdt(ngrid,nlayer),pdtsrf(ngrid),pdtc(ngrid,nlayer) |
---|
| 79 | REAL pdtsrfc(ngrid),pdpsrf(ngrid) |
---|
| 80 | REAL piceco2(ngrid),psolaralb(ngrid,2),pemisurf(ngrid) |
---|
| 81 | |
---|
| 82 | REAL pu(ngrid,nlayer) , pv(ngrid,nlayer) |
---|
| 83 | REAL pdu(ngrid,nlayer) , pdv(ngrid,nlayer) |
---|
| 84 | REAL pduc(ngrid,nlayer) , pdvc(ngrid,nlayer) |
---|
| 85 | REAL pq(ngridmx,nlayer,nq),pdq(ngrid,nlayer,nq) |
---|
| 86 | REAL pdqc(ngrid,nlayer,nq) |
---|
| 87 | REAL fluxsurf_sw(ngrid,2) ! added to calculate flux dependent albedo |
---|
| 88 | c |
---|
| 89 | c Local variables : |
---|
| 90 | c ----------------- |
---|
| 91 | |
---|
| 92 | c variables used for albedo parametrization |
---|
| 93 | c -------------------------------------------- |
---|
| 94 | INTEGER i,j |
---|
| 95 | REAL Fluxmean(jjp1) |
---|
| 96 | INTEGER l,ig,iq,icap,nmix |
---|
| 97 | LOGICAL transparency, fluxdependent |
---|
| 98 | c flag transparency if you want to make the co2ice semi-transparent |
---|
| 99 | PARAMETER(transparency=.true.) |
---|
| 100 | c flag fluxdependent if you want the co2ice albedo to be dependent on |
---|
| 101 | c the incident solar flux |
---|
| 102 | PARAMETER(fluxdependent=.false.) |
---|
| 103 | REAL slopy,alpha,constA,constB,constT,albediceF_new(ngridmx) |
---|
| 104 | REAL zt(ngridmx,nlayermx) |
---|
| 105 | REAL zcpi |
---|
| 106 | REAL ztcond (ngridmx,nlayermx) |
---|
| 107 | REAL ztcondsol(ngridmx) |
---|
| 108 | REAL zdiceco2(ngridmx) |
---|
| 109 | c REAL zcondicea(ngridmx,nlayermx) ! Already defined in fisice.h |
---|
| 110 | REAL zcondices(ngridmx) |
---|
| 111 | REAL zfallice(ngridmx,nlayermx+1) , zfallheat |
---|
| 112 | REAL zmflux(nlayermx+1) |
---|
| 113 | REAL zu(nlayermx),zv(nlayermx) |
---|
| 114 | REAL zq(nlayermx,nqmx),zq1(nlayermx) |
---|
| 115 | REAL ztsrf(ngridmx) |
---|
| 116 | REAL ztc(nlayermx), ztm(nlayermx+1) |
---|
| 117 | REAL zum(nlayermx+1) , zvm(nlayermx+1) |
---|
| 118 | REAL zqm(nlayermx+1,nqmx),zqm1(nlayermx+1) |
---|
| 119 | REAL masse(nlayermx),w(nlayermx+1) |
---|
| 120 | REAL Sm(nlayermx),Smq(nlayermx,nqmx),mixmas,qmix |
---|
| 121 | LOGICAL condsub(ngridmx) |
---|
| 122 | |
---|
| 123 | c variable speciale diagnostique |
---|
| 124 | real tconda1(ngridmx,nlayermx) |
---|
| 125 | real tconda2(ngridmx,nlayermx) |
---|
| 126 | c REAL zdiceco2a(ngridmx) ! for diagnostic only |
---|
| 127 | real zdtsig (ngridmx,nlayermx) |
---|
| 128 | real zdt (ngridmx,nlayermx) |
---|
| 129 | |
---|
| 130 | |
---|
| 131 | c local saved variables |
---|
| 132 | integer ico2 |
---|
| 133 | real qco2min |
---|
| 134 | save ico2,qco2min |
---|
| 135 | REAL emisref(ngridmx) |
---|
| 136 | REAL latcond,tcond1mb |
---|
| 137 | REAL acond,bcond,ccond,cpice |
---|
| 138 | REAL albediceF(ngridmx) |
---|
| 139 | SAVE emisref |
---|
| 140 | SAVE latcond,acond,bcond,ccond,cpice |
---|
| 141 | SAVE albediceF |
---|
| 142 | |
---|
| 143 | |
---|
| 144 | LOGICAL firstcall,firstcall2 |
---|
| 145 | SAVE firstcall,firstcall2 |
---|
| 146 | REAL SSUM |
---|
| 147 | EXTERNAL SSUM |
---|
| 148 | |
---|
| 149 | c common/scratch/zt,ztcond,zcondicea,zfallice,tconda1 |
---|
| 150 | c , ,tconda2,zdtsig,zdt,zu,zv |
---|
| 151 | |
---|
| 152 | |
---|
| 153 | DATA latcond,tcond1mb/5.9e5,136.27/ |
---|
| 154 | DATA cpice /1000./ |
---|
| 155 | DATA firstcall/.true./ |
---|
| 156 | DATA firstcall2/.true./ |
---|
| 157 | |
---|
| 158 | integer flag |
---|
| 159 | |
---|
| 160 | c---------------------------------------------------------------------- |
---|
| 161 | |
---|
| 162 | c Initialisation |
---|
| 163 | c -------------- |
---|
| 164 | c |
---|
| 165 | IF (firstcall) THEN |
---|
| 166 | bcond=1./tcond1mb |
---|
| 167 | ccond=cpp/(g*latcond) |
---|
| 168 | acond=r/latcond |
---|
| 169 | |
---|
| 170 | firstcall=.false. |
---|
| 171 | PRINT*,'In newcondens:Tcond(P=1mb)=',tcond1mb,' Lcond=',latcond |
---|
| 172 | PRINT*,'acond,bcond,ccond',acond,bcond,acond |
---|
| 173 | |
---|
| 174 | ico2=0 |
---|
| 175 | if (tracer) then |
---|
| 176 | c Prepare Special treatment if one of the tracer is CO2 gas |
---|
| 177 | do iq=1,nqmx |
---|
| 178 | if (noms(iq).eq."co2") ico2=iq |
---|
| 179 | enddo |
---|
| 180 | c minimum CO2 mix. ratio below which mixing occur with layer above: |
---|
| 181 | qco2min =0.75 |
---|
| 182 | end if |
---|
| 183 | ENDIF |
---|
| 184 | zcpi=1./cpp |
---|
| 185 | c |
---|
| 186 | c====================================================================== |
---|
| 187 | c Calcul of CO2 condensation sublimation |
---|
| 188 | c ============================================================ |
---|
| 189 | c |
---|
| 190 | c Used variable : |
---|
| 191 | c piceco2(ngrid) : amount of co2 ice on the ground (kg/m2) |
---|
| 192 | c zcondicea(ngrid,l): condensation rate in layer l (kg/m2/s) |
---|
| 193 | c zcondices(ngrid): condensation rate on the ground (kg/m2/s) |
---|
| 194 | c zfallice(ngrid,l):amount of ice falling from layer l (kg/m2/s) |
---|
| 195 | c |
---|
| 196 | c pdtc(ngrid,nlayermx) : dT/dt due to cond/sub |
---|
| 197 | c |
---|
| 198 | c |
---|
| 199 | c Tendencies set to 0 (except pdtc) |
---|
| 200 | c ------------------------------------- |
---|
| 201 | DO l=1,nlayer |
---|
| 202 | DO ig=1,ngrid |
---|
| 203 | zcondicea(ig,l) = 0. |
---|
| 204 | zfallice(ig,l) = 0. |
---|
| 205 | pduc(ig,l) = 0 |
---|
| 206 | pdvc(ig,l) = 0 |
---|
| 207 | END DO |
---|
| 208 | END DO |
---|
| 209 | |
---|
| 210 | DO iq=1,nqmx |
---|
| 211 | DO l=1,nlayer |
---|
| 212 | DO ig=1,ngrid |
---|
| 213 | pdqc(ig,l,iq) = 0 |
---|
| 214 | END DO |
---|
| 215 | END DO |
---|
| 216 | END DO |
---|
| 217 | |
---|
| 218 | DO ig=1,ngrid |
---|
| 219 | zfallice(ig,nlayer+1) = 0. |
---|
| 220 | zcondices(ig) = 0. |
---|
| 221 | pdtsrfc(ig) = 0. |
---|
| 222 | pdpsrf(ig) = 0. |
---|
| 223 | condsub(ig) = .false. |
---|
| 224 | zdiceco2(ig) = 0. |
---|
| 225 | ENDDO |
---|
| 226 | zfallheat=0 |
---|
| 227 | |
---|
| 228 | c ************************* |
---|
| 229 | c ATMOSPHERIC CONDENSATION |
---|
| 230 | c ************************* |
---|
| 231 | |
---|
| 232 | c forecast of atmospheric temperature zt and frost temperature ztcond |
---|
| 233 | c -------------------------------------------------------------------- |
---|
| 234 | |
---|
| 235 | DO l=1,nlayer |
---|
| 236 | DO ig=1,ngrid |
---|
| 237 | zt(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
---|
| 238 | ztcond(ig,l)=1./(bcond-acond*log(.0095*pplay(ig,l))) |
---|
| 239 | if (pplay(ig,l).lt.1e-4) ztcond(ig,l)=0.0 !mars Monica |
---|
| 240 | ENDDO |
---|
| 241 | ENDDO |
---|
| 242 | |
---|
| 243 | c Condensation/sublimation in the atmosphere |
---|
| 244 | c ------------------------------------------ |
---|
| 245 | c (calcul of zcondicea , zfallice and pdtc) |
---|
| 246 | c |
---|
| 247 | DO l=nlayer , 1, -1 |
---|
| 248 | DO ig=1,ngrid |
---|
| 249 | pdtc(ig,l)=0. |
---|
| 250 | IF((zt(ig,l).LT.ztcond(ig,l)).or.(zfallice(ig,l+1).gt.0))THEN |
---|
| 251 | condsub(ig)=.true. |
---|
| 252 | IF (zfallice(ig,l+1).gt.0) then |
---|
| 253 | zfallheat=zfallice(ig,l+1)* |
---|
| 254 | & (pphi(ig,l+1)-pphi(ig,l) + |
---|
| 255 | & cpice*(ztcond(ig,l+1)-ztcond(ig,l)))/latcond |
---|
| 256 | ELSE |
---|
| 257 | zfallheat=0. |
---|
| 258 | ENDIF |
---|
| 259 | pdtc(ig,l)=(ztcond(ig,l) - zt(ig,l))/ptimestep |
---|
| 260 | zcondicea(ig,l)=(pplev(ig,l)-pplev(ig,l+1)) |
---|
| 261 | & *ccond*pdtc(ig,l)- zfallheat |
---|
| 262 | c Case when the ice from above sublimes entirely |
---|
| 263 | c """"""""""""""""""""""""""""""""""""""""""""""" |
---|
| 264 | IF (zfallice(ig,l+1).lt.- zcondicea(ig,l)) then |
---|
| 265 | pdtc(ig,l)=(-zfallice(ig,l+1)+zfallheat)/ |
---|
| 266 | & (ccond*(pplev(ig,l)-pplev(ig,l+1))) |
---|
| 267 | zcondicea(ig,l)= -zfallice(ig,l+1) |
---|
| 268 | END IF |
---|
| 269 | |
---|
| 270 | zfallice(ig,l) = zcondicea(ig,l)+zfallice(ig,l+1) |
---|
| 271 | END IF |
---|
| 272 | ENDDO |
---|
| 273 | ENDDO |
---|
| 274 | |
---|
| 275 | c ************************* |
---|
| 276 | c SURFACE CONDENSATION |
---|
| 277 | c ************************* |
---|
| 278 | |
---|
| 279 | c forecast of ground temperature ztsrf and frost temperature ztcondsol |
---|
| 280 | c -------------------------------------------------------------------- |
---|
| 281 | DO ig=1,ngrid |
---|
| 282 | ztcondsol(ig)=1./(bcond-acond*log(.0095*pplev(ig,1))) |
---|
| 283 | ztsrf(ig) = ptsrf(ig) + pdtsrf(ig)*ptimestep |
---|
| 284 | ENDDO |
---|
| 285 | |
---|
| 286 | c |
---|
| 287 | c Condensation/sublimation on the ground |
---|
| 288 | c -------------------------------------- |
---|
| 289 | c (calcul of zcondices , pdtsrfc) |
---|
| 290 | c |
---|
| 291 | DO ig=1,ngrid |
---|
| 292 | IF(ig.GT.ngrid/2+1) THEN |
---|
| 293 | icap=2 |
---|
| 294 | ELSE |
---|
| 295 | icap=1 |
---|
| 296 | ENDIF |
---|
| 297 | |
---|
| 298 | c |
---|
| 299 | c Loop on where we have condensation/ sublimation |
---|
| 300 | IF ((ztsrf(ig) .LT. ztcondsol(ig)) .OR. ! ground cond |
---|
| 301 | $ (zfallice(ig,1).NE.0.) .OR. ! falling snow |
---|
| 302 | $ ((ztsrf(ig) .GT. ztcondsol(ig)) .AND. ! ground sublim. |
---|
| 303 | $ ((piceco2(ig)+zfallice(ig,1)*ptimestep) .NE. 0.))) THEN |
---|
| 304 | condsub(ig) = .true. |
---|
| 305 | |
---|
| 306 | IF (zfallice(ig,1).gt.0) then |
---|
| 307 | zfallheat=zfallice(ig,1)* |
---|
| 308 | & (pphi(ig,1)- phisfi(ig) + |
---|
| 309 | & cpice*(ztcond(ig,1)-ztcondsol(ig)))/(latcond*ptimestep) |
---|
| 310 | ELSE |
---|
| 311 | zfallheat=0. |
---|
| 312 | ENDIF |
---|
| 313 | |
---|
| 314 | c condensation or partial sublimation of CO2 ice |
---|
| 315 | c """"""""""""""""""""""""""""""""""""""""""""""" |
---|
| 316 | zcondices(ig)=pcapcal(ig)*(ztcondsol(ig)-ztsrf(ig)) |
---|
| 317 | & /(latcond*ptimestep) - zfallheat |
---|
| 318 | pdtsrfc(ig) = (ztcondsol(ig) - ztsrf(ig))/ptimestep |
---|
| 319 | |
---|
| 320 | c If the entire CO_2 ice layer sublimes |
---|
| 321 | c """""""""""""""""""""""""""""""""""""""""""""""""""" |
---|
| 322 | c (including what has just condensed in the atmosphere) |
---|
| 323 | |
---|
| 324 | IF((piceco2(ig)/ptimestep+zfallice(ig,1)).LE. |
---|
| 325 | & -zcondices(ig))THEN |
---|
| 326 | zcondices(ig) = -piceco2(ig)/ptimestep - zfallice(ig,1) |
---|
| 327 | pdtsrfc(ig)=(latcond/pcapcal(ig))* |
---|
| 328 | & (zcondices(ig)+zfallheat) |
---|
| 329 | END IF |
---|
| 330 | |
---|
| 331 | c Changing CO2 ice amount and pressure : |
---|
| 332 | c """""""""""""""""""""""""""""""""""" |
---|
| 333 | |
---|
| 334 | zdiceco2(ig) = zcondices(ig) + zfallice(ig,1) |
---|
| 335 | piceco2(ig) = piceco2(ig) + zdiceco2(ig)*ptimestep |
---|
| 336 | pdpsrf(ig) = -zdiceco2(ig)*g |
---|
| 337 | |
---|
| 338 | IF(ABS(pdpsrf(ig)*ptimestep).GT.pplev(ig,1)) THEN |
---|
| 339 | PRINT*,'STOP in condens' |
---|
| 340 | PRINT*,'condensing more than total mass' |
---|
| 341 | PRINT*,'Grid point ',ig |
---|
| 342 | PRINT*,'Ps = ',pplev(ig,1) |
---|
| 343 | PRINT*,'d Ps = ',pdpsrf(ig) |
---|
| 344 | STOP |
---|
| 345 | ENDIF |
---|
| 346 | END IF |
---|
| 347 | ENDDO |
---|
| 348 | |
---|
| 349 | c ******************************************************************** |
---|
| 350 | c Surface albedo and emissivity of the surface below the snow (emisref) |
---|
| 351 | c ******************************************************************** |
---|
| 352 | c Prepare the case where albedo varies with insolation: |
---|
| 353 | c ---------------------------------------------------- |
---|
| 354 | if (fluxdependent) then |
---|
| 355 | |
---|
| 356 | c Calcul du flux moyen (zonal mean) |
---|
| 357 | do j=1,jjp1 |
---|
| 358 | Fluxmean(j)=0 |
---|
| 359 | do i=1,iim |
---|
| 360 | ig=1+(j-2)*iim +i |
---|
| 361 | if(j.eq.1) ig=1 |
---|
| 362 | if(j.eq.jjp1) ig=ngrid |
---|
| 363 | Fluxmean(j)=Fluxmean(j)+fluxsurf_sw(ig,1) |
---|
| 364 | $ +fluxsurf_sw(ig,2) |
---|
| 365 | enddo |
---|
| 366 | Fluxmean(j)=Fluxmean(j)/float(iim) |
---|
| 367 | enddo |
---|
| 368 | |
---|
| 369 | c const A and B used to calculate the albedo which depends on solar flux |
---|
| 370 | c albedice=constA+constB*Flux |
---|
| 371 | c constT = time step to calculate the solar flux when flux decreases |
---|
| 372 | constA=0.26 |
---|
| 373 | c constA=0.33 |
---|
| 374 | c constA=0.186 |
---|
| 375 | constB=0.00187 |
---|
| 376 | constT=10 |
---|
| 377 | endif |
---|
| 378 | |
---|
| 379 | c Calcul de l'albedo |
---|
| 380 | c ------------------ |
---|
| 381 | do ig =1,ngrid |
---|
| 382 | IF(ig.GT.ngrid/2+1) THEN |
---|
| 383 | icap=2 |
---|
| 384 | ELSE |
---|
| 385 | icap=1 |
---|
| 386 | ENDIF |
---|
| 387 | IF(firstcall2) THEN |
---|
| 388 | albediceF(ig)=albedice(icap) |
---|
| 389 | ENDIF |
---|
| 390 | c test on the existence of co2ice ccccccccccccccccccccccc |
---|
| 391 | if(.not.piceco2(ig).ge.0.) THEN |
---|
| 392 | if(piceco2(ig).le.-5.e-8) print*, |
---|
| 393 | $ 'WARNING newcondens piceco2(',ig,')=', piceco2(ig) |
---|
| 394 | piceco2(ig)=0. |
---|
| 395 | endif |
---|
| 396 | c if there is still co2ice ccccccccccccccccccccccc |
---|
| 397 | if (piceco2(ig).gt.0) then |
---|
| 398 | emisref(ig) = emisice(icap) |
---|
| 399 | |
---|
| 400 | c if flux dependent albedo is used |
---|
| 401 | c -------------------------------- |
---|
| 402 | if (fluxdependent) then |
---|
| 403 | j=INT((ig-2)/iim)+2 |
---|
| 404 | if(ig.eq.1) j=1 |
---|
| 405 | if(ig.eq.ngrid) j=jjp1 |
---|
| 406 | c albediceF_new(ig)=MIN(constA+constB*Fluxmean(j), |
---|
| 407 | c $ constA+constB*250) |
---|
| 408 | albediceF_new(ig)=constA+constB*Fluxmean(j) |
---|
| 409 | if (albediceF(ig).gt.albediceF_new(ig)) then |
---|
| 410 | albediceF(ig)=albediceF(ig)+ ptimestep/(daysec* |
---|
| 411 | $ constT)*(albediceF_new(ig)-albediceF(ig)) |
---|
| 412 | else |
---|
| 413 | albediceF(ig)=albediceF_new(ig) |
---|
| 414 | endif |
---|
| 415 | c if part of the ice is transparent |
---|
| 416 | c slopy = pente de la droite: alpha = y*co2ice/1620 |
---|
| 417 | c pour une valeur superieur a une epaisseur de glace donnee |
---|
| 418 | c ici, epaisseur limite = 10cm |
---|
| 419 | if (transparency) then |
---|
| 420 | slopy=1/(1620*0.10) |
---|
| 421 | alpha=MIN(slopy*piceco2(ig),1.) |
---|
| 422 | psolaralb(ig,1) = alpha*albediceF(ig) |
---|
| 423 | $ +(1-alpha)*albedodat(ig) |
---|
| 424 | psolaralb(ig,2) = psolaralb(ig,1) |
---|
| 425 | else |
---|
| 426 | psolaralb(ig,1) = albediceF(ig) |
---|
| 427 | psolaralb(ig,2) = psolaralb(ig,1) |
---|
| 428 | endif |
---|
| 429 | else |
---|
| 430 | c transparency set to true and fluxdependent set to false |
---|
| 431 | if (transparency) then |
---|
| 432 | slopy=1/(1620*0.10) |
---|
| 433 | alpha=MIN(slopy*piceco2(ig),1.) |
---|
| 434 | psolaralb(ig,1) = alpha*albedice(icap) |
---|
| 435 | $ +(1-alpha)*albedodat(ig) |
---|
| 436 | psolaralb(ig,2) = psolaralb(ig,1) |
---|
| 437 | else |
---|
| 438 | c simplest case: transparency and flux dependent set to false |
---|
| 439 | psolaralb(ig,1) = albedice(icap) |
---|
| 440 | psolaralb(ig,2) = albedice(icap) |
---|
| 441 | endif |
---|
| 442 | endif |
---|
| 443 | c no more co2ice, albedo = ground albedo |
---|
| 444 | else |
---|
| 445 | psolaralb(ig,1) = albedodat(ig) |
---|
| 446 | psolaralb(ig,2) = albedodat(ig) |
---|
| 447 | emisref(ig) = emissiv |
---|
| 448 | pemisurf(ig) = emissiv |
---|
| 449 | endif |
---|
| 450 | end do ! end of the ig loop |
---|
| 451 | |
---|
| 452 | firstcall2=.false. |
---|
| 453 | c *************************************************************** |
---|
| 454 | c Correction to account for redistribution between sigma or hybrid |
---|
| 455 | c layers when changing surface pressure (and warming/cooling |
---|
| 456 | c of the CO2 currently changing phase). |
---|
| 457 | c ************************************************************* |
---|
| 458 | |
---|
| 459 | DO ig=1,ngrid |
---|
| 460 | if (condsub(ig)) then |
---|
| 461 | do l=1,nlayer |
---|
| 462 | ztc(l) =zt(ig,l) +pdtc(ig,l) *ptimestep |
---|
| 463 | zu(l) =pu(ig,l) +pdu( ig,l) *ptimestep |
---|
| 464 | zv(l) =pv(ig,l) +pdv( ig,l) *ptimestep |
---|
| 465 | do iq=1,nqmx |
---|
| 466 | zq(l,iq)=pq(ig,l,iq)+pdq(ig,l,iq)*ptimestep |
---|
| 467 | enddo |
---|
| 468 | end do |
---|
| 469 | |
---|
| 470 | c Mass fluxes through the sigma levels (kg.m-2.s-1) (>0 when up) |
---|
| 471 | c """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" |
---|
| 472 | |
---|
| 473 | zmflux(1) = -zcondices(ig) |
---|
| 474 | DO l=1,nlayer |
---|
| 475 | zmflux(l+1) = zmflux(l) -zcondicea(ig,l) |
---|
| 476 | & + (bp(l)-bp(l+1))*(zfallice(ig,1)-zmflux(1)) |
---|
| 477 | c zmflux set to 0 if very low to avoid: top layer is disappearing in v1ld |
---|
| 478 | if (abs(zmflux(l+1)).lt.1E-13.OR.bp(l+1).eq.0.) zmflux(l+1)=0. |
---|
| 479 | END DO |
---|
| 480 | |
---|
| 481 | c Mass of each layer |
---|
| 482 | c ------------------ |
---|
| 483 | DO l=1,nlayer |
---|
| 484 | masse(l)=(pplev(ig,l) - pplev(ig,l+1))/g |
---|
| 485 | END DO |
---|
| 486 | |
---|
| 487 | |
---|
| 488 | c Corresponding fluxes for T,U,V,Q |
---|
| 489 | c """""""""""""""""""""""""""""""" |
---|
| 490 | |
---|
| 491 | c averaging operator for TRANSPORT |
---|
| 492 | c """""""""""""""""""""""""""""""" |
---|
| 493 | c Value transfert at the surface interface when condensation |
---|
| 494 | c sublimation: |
---|
| 495 | ztm(1) = ztsrf(ig) + pdtsrfc(ig)*ptimestep |
---|
| 496 | zum(1) = 0 |
---|
| 497 | zvm(1) = 0 |
---|
| 498 | do iq=1,nqmx |
---|
| 499 | zqm(1,iq)=0. ! most tracer do not condense ! |
---|
| 500 | enddo |
---|
| 501 | c Special case if one of the tracer is CO2 gas |
---|
| 502 | if (ico2.ne.0) zqm(1,ico2)=1. ! flux is 100% CO2 |
---|
| 503 | |
---|
| 504 | c Van Leer scheme: |
---|
| 505 | DO l=1,nlayer+1 |
---|
| 506 | w(l)=-zmflux(l)*ptimestep |
---|
| 507 | END DO |
---|
| 508 | call vl1d(ztc,2.,masse,w,ztm) |
---|
| 509 | call vl1d(zu ,2.,masse,w,zum) |
---|
| 510 | call vl1d(zv ,2.,masse,w,zvm) |
---|
| 511 | do iq=1,nqmx |
---|
| 512 | do l=1,nlayer |
---|
| 513 | zq1(l)=zq(l,iq) |
---|
| 514 | enddo |
---|
| 515 | zqm1(1)=zqm(1,iq) |
---|
| 516 | call vl1d(zq1,2.,masse,w,zqm1) |
---|
| 517 | do l=2,nlayer |
---|
| 518 | zq( l,iq)=zq1(l) |
---|
| 519 | zqm(l,iq)=zqm1(l) |
---|
| 520 | enddo |
---|
| 521 | enddo |
---|
| 522 | |
---|
| 523 | c Surface condensation affects low winds |
---|
| 524 | if (zmflux(1).lt.0) then |
---|
| 525 | zum(1)= zu(1) * (w(1)/masse(1)) |
---|
| 526 | zvm(1)= zv(1) * (w(1)/masse(1)) |
---|
| 527 | if (w(1).gt.masse(1)) then ! ensure numerical stability |
---|
| 528 | zum(1)= (zu(1)-zum(2))*masse(1)/w(1) + zum(2) |
---|
| 529 | zvm(1)= (zv(1)-zvm(2))*masse(1)/w(1) + zvm(2) |
---|
| 530 | end if |
---|
| 531 | end if |
---|
| 532 | |
---|
| 533 | ztm(nlayer+1)= ztc(nlayer) ! should not be used, but... |
---|
| 534 | zum(nlayer+1)= zu(nlayer) ! should not be used, but... |
---|
| 535 | zvm(nlayer+1)= zv(nlayer) ! should not be used, but... |
---|
| 536 | do iq=1,nqmx |
---|
| 537 | zqm(nlayer+1,iq)= zq(nlayer,iq) |
---|
| 538 | enddo |
---|
| 539 | |
---|
| 540 | c Tendencies on T, U, V, Q |
---|
| 541 | c """""""""""""""""""""""" |
---|
| 542 | DO l=1,nlayer |
---|
| 543 | |
---|
| 544 | c Tendencies on T |
---|
| 545 | zdtsig(ig,l) = (1/masse(l)) * |
---|
| 546 | & ( zmflux(l)*(ztm(l) - ztc(l)) |
---|
| 547 | & - zmflux(l+1)*(ztm(l+1) - ztc(l)) |
---|
| 548 | & + zcondicea(ig,l)*(ztcond(ig,l)-ztc(l)) ) |
---|
| 549 | pdtc(ig,l) = pdtc(ig,l) + zdtsig(ig,l) |
---|
| 550 | |
---|
| 551 | c Tendencies on U |
---|
| 552 | pduc(ig,l) = (1/masse(l)) * |
---|
| 553 | & ( zmflux(l)*(zum(l) - zu(l)) |
---|
| 554 | & - zmflux(l+1)*(zum(l+1) - zu(l)) ) |
---|
| 555 | |
---|
| 556 | |
---|
| 557 | c Tendencies on V |
---|
| 558 | pdvc(ig,l) = (1/masse(l)) * |
---|
| 559 | & ( zmflux(l)*(zvm(l) - zv(l)) |
---|
| 560 | & - zmflux(l+1)*(zvm(l+1) - zv(l)) ) |
---|
| 561 | |
---|
| 562 | END DO |
---|
| 563 | |
---|
| 564 | c Tendencies on Q |
---|
| 565 | do iq=1,nqmx |
---|
| 566 | if (noms(iq).eq.'co2') then |
---|
| 567 | c SPECIAL Case when the tracer IS CO2 : |
---|
| 568 | DO l=1,nlayer |
---|
| 569 | pdqc(ig,l,iq)= (1/masse(l)) * |
---|
| 570 | & ( zmflux(l)*(zqm(l,iq) - zq(l,iq)) |
---|
| 571 | & - zmflux(l+1)*(zqm(l+1,iq) - zq(l,iq)) |
---|
| 572 | & + zcondicea(ig,l)*(zq(l,iq)-1.) ) |
---|
| 573 | END DO |
---|
| 574 | else |
---|
| 575 | DO l=1,nlayer |
---|
| 576 | pdqc(ig,l,iq)= (1/masse(l)) * |
---|
| 577 | & ( zmflux(l)*(zqm(l,iq) - zq(l,iq)) |
---|
| 578 | & - zmflux(l+1)*(zqm(l+1,iq) - zq(l,iq)) |
---|
| 579 | & + zcondicea(ig,l)*zq(l,iq) ) |
---|
| 580 | END DO |
---|
| 581 | end if |
---|
| 582 | enddo |
---|
| 583 | |
---|
| 584 | c -------------------------------------------------------- |
---|
| 585 | c Roughly Simulate Molecular mixing when CO2 is too depleted by |
---|
| 586 | c Surface condensation (mixing starts if qco2 < qco2min ) |
---|
| 587 | c FF 06/2004 |
---|
| 588 | c WARNING : this is now done in convadj, better (FF 02/2005) |
---|
| 589 | c -------------------------------------------------------- |
---|
| 590 | flag=0 ! now done in convadj : must be =0 |
---|
| 591 | if (flag.eq.1) then |
---|
| 592 | if(ico2.gt.0) then ! relevant only if one tracer is CO2 |
---|
| 593 | if(pq(ig,1,ico2)+(pdq(ig,1,ico2)+pdqc(ig,1,ico2))*ptimestep |
---|
| 594 | & .lt.qco2min) then |
---|
| 595 | do iq=1,nqmx |
---|
| 596 | zq(1,iq)=pq(ig,1,iq) |
---|
| 597 | & +(pdq(ig,1,iq)+pdqc(ig,1,iq))*ptimestep |
---|
| 598 | Smq(1,iq) = masse(1)*zq(1,iq) |
---|
| 599 | end do |
---|
| 600 | Sm(1) = masse(1) |
---|
| 601 | do l =2,nlayermx |
---|
| 602 | do iq=1,nqmx |
---|
| 603 | zq(l,iq)=pq(ig,l,iq) |
---|
| 604 | & +(pdq(ig,l,iq)+pdqc(ig,l,iq))*ptimestep |
---|
| 605 | smq(l,iq) = smq(l-1,iq) + masse(l)*zq(l,iq) |
---|
| 606 | end do |
---|
| 607 | sm(l) = sm(l-1) + masse(l) |
---|
| 608 | if(zq(l,ico2).gt.qco2min) then |
---|
| 609 | c mixmas: mass of atmosphere that must be mixed to reach qco2min |
---|
| 610 | mixmas = (sm(l-1)*zq(l,ico2)-Smq(l-1,ico2)) |
---|
| 611 | & /(zq(l,ico2)-qco2min) |
---|
| 612 | if((mixmas.le.sm(l)))then |
---|
| 613 | c OK if mixed mass less than mass of layers affected |
---|
| 614 | nmix=l ! number of layer affected by mixing |
---|
| 615 | goto 99 |
---|
| 616 | end if |
---|
| 617 | end if |
---|
| 618 | end do |
---|
| 619 | 99 continue |
---|
| 620 | do iq=1,nqmx |
---|
| 621 | qmix=zq(nmix,iq) |
---|
| 622 | & +(Smq(nmix-1,iq)-zq(nmix,iq)*Sm(nmix-1))/mixmas |
---|
| 623 | do l=1,nmix-1 |
---|
| 624 | pdqc(ig,l,iq)= |
---|
| 625 | & (qmix-pq(ig,l,iq))/ptimestep - pdq(ig,l,iq) |
---|
| 626 | end do |
---|
| 627 | c layer only partly mixed : |
---|
| 628 | pdqc(ig,nmix,iq)=( |
---|
| 629 | & qmix+(Sm(nmix)-mixmas)*(zq(nmix,iq)-qmix)/masse(nmix) |
---|
| 630 | & -pq(ig,nmix,iq))/ptimestep -pdq(ig,nmix,iq) |
---|
| 631 | |
---|
| 632 | end do |
---|
| 633 | end if |
---|
| 634 | end if |
---|
| 635 | |
---|
| 636 | endif ! (flag.eq.1) |
---|
| 637 | end if ! if (condsub) |
---|
| 638 | END DO ! loop on ig |
---|
| 639 | |
---|
| 640 | c *************************************************************** |
---|
| 641 | c CO2 snow / clouds scheme |
---|
| 642 | c *************************************************************** |
---|
| 643 | |
---|
| 644 | call co2snow(ngrid,nlayer,ptimestep,emisref,condsub,pplev, |
---|
| 645 | & zcondicea,zcondices,zfallice,pemisurf) |
---|
| 646 | |
---|
| 647 | c *************************************************************** |
---|
| 648 | c Ecriture des diagnostiques |
---|
| 649 | c *************************************************************** |
---|
| 650 | |
---|
| 651 | c DO l=1,nlayer |
---|
| 652 | c DO ig=1,ngrid |
---|
| 653 | c Taux de cond en kg.m-2.pa-1.s-1 |
---|
| 654 | c tconda1(ig,l)=zcondicea(ig,l)/(pplev(ig,l)-pplev(ig,l+1)) |
---|
| 655 | c Taux de cond en kg.m-3.s-1 |
---|
| 656 | c tconda2(ig,l)=tconda1(ig,l)*pplay(ig,l)*g/(r*pt(ig,l)) |
---|
| 657 | c END DO |
---|
| 658 | c END DO |
---|
| 659 | c call WRITEDIAGFI(ngridmx,'tconda1', |
---|
| 660 | c &'Taux de condensation CO2 atmospherique /Pa', |
---|
| 661 | c & 'kg.m-2.Pa-1.s-1',3,tconda1) |
---|
| 662 | c call WRITEDIAGFI(ngridmx,'tconda2', |
---|
| 663 | c &'Taux de condensation CO2 atmospherique /m', |
---|
| 664 | c & 'kg.m-3.s-1',3,tconda2) |
---|
| 665 | |
---|
| 666 | return |
---|
| 667 | end |
---|
| 668 | |
---|
| 669 | |
---|
| 670 | |
---|
| 671 | c ***************************************************************** |
---|
| 672 | SUBROUTINE vl1d(q,pente_max,masse,w,qm) |
---|
| 673 | c |
---|
| 674 | c |
---|
| 675 | c Operateur de moyenne inter-couche pour calcul de transport type |
---|
| 676 | c Van-Leer " pseudo amont " dans la verticale |
---|
| 677 | c q,w sont des arguments d'entree pour le s-pg .... |
---|
| 678 | c masse : masse de la couche Dp/g |
---|
| 679 | c w : masse d'atm ``transferee'' a chaque pas de temps (kg.m-2) |
---|
| 680 | c pente_max = 2 conseillee |
---|
| 681 | c |
---|
| 682 | c |
---|
| 683 | c -------------------------------------------------------------------- |
---|
| 684 | IMPLICIT NONE |
---|
| 685 | |
---|
| 686 | #include "dimensions.h" |
---|
| 687 | |
---|
| 688 | c |
---|
| 689 | c |
---|
| 690 | c |
---|
| 691 | c Arguments: |
---|
| 692 | c ---------- |
---|
| 693 | real masse(llm),pente_max |
---|
| 694 | REAL q(llm),qm(llm+1) |
---|
| 695 | REAL w(llm+1) |
---|
| 696 | c |
---|
| 697 | c Local |
---|
| 698 | c --------- |
---|
| 699 | c |
---|
| 700 | INTEGER l |
---|
| 701 | c |
---|
| 702 | real dzq(llm),dzqw(llm),adzqw(llm),dzqmax |
---|
| 703 | real sigw, Mtot, MQtot |
---|
| 704 | integer m |
---|
| 705 | c integer ismax,ismin |
---|
| 706 | |
---|
| 707 | |
---|
| 708 | c On oriente tout dans le sens de la pression |
---|
| 709 | c W > 0 WHEN DOWN !!!!!!!!!!!!! |
---|
| 710 | |
---|
| 711 | do l=2,llm |
---|
| 712 | dzqw(l)=q(l-1)-q(l) |
---|
| 713 | adzqw(l)=abs(dzqw(l)) |
---|
| 714 | enddo |
---|
| 715 | |
---|
| 716 | do l=2,llm-1 |
---|
| 717 | if(dzqw(l)*dzqw(l+1).gt.0.) then |
---|
| 718 | dzq(l)=0.5*(dzqw(l)+dzqw(l+1)) |
---|
| 719 | else |
---|
| 720 | dzq(l)=0. |
---|
| 721 | endif |
---|
| 722 | dzqmax=pente_max*min(adzqw(l),adzqw(l+1)) |
---|
| 723 | dzq(l)=sign(min(abs(dzq(l)),dzqmax),dzq(l)) |
---|
| 724 | enddo |
---|
| 725 | |
---|
| 726 | dzq(1)=0. |
---|
| 727 | dzq(llm)=0. |
---|
| 728 | |
---|
| 729 | do l = 1,llm-1 |
---|
| 730 | |
---|
| 731 | c Regular scheme (transfered mass < layer mass) |
---|
| 732 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 733 | if(w(l+1).gt.0. .and. w(l+1).le.masse(l+1)) then |
---|
| 734 | sigw=w(l+1)/masse(l+1) |
---|
| 735 | qm(l+1)=(q(l+1)+0.5*(1.-sigw)*dzq(l+1)) |
---|
| 736 | else if(w(l+1).le.0. .and. -w(l+1).le.masse(l)) then |
---|
| 737 | sigw=w(l+1)/masse(l) |
---|
| 738 | qm(l+1)=(q(l)-0.5*(1.+sigw)*dzq(l)) |
---|
| 739 | |
---|
| 740 | c Extended scheme (transfered mass > layer mass) |
---|
| 741 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 742 | else if(w(l+1).gt.0.) then |
---|
| 743 | m=l+1 |
---|
| 744 | Mtot = masse(m) |
---|
| 745 | MQtot = masse(m)*q(m) |
---|
| 746 | do while ((m.lt.llm).and.(w(l+1).gt.(Mtot+masse(m+1)))) |
---|
| 747 | m=m+1 |
---|
| 748 | Mtot = Mtot + masse(m) |
---|
| 749 | MQtot = MQtot + masse(m)*q(m) |
---|
| 750 | end do |
---|
| 751 | if (m.lt.llm) then |
---|
| 752 | sigw=(w(l+1)-Mtot)/masse(m+1) |
---|
| 753 | qm(l+1)= (1/w(l+1))*(MQtot + (w(l+1)-Mtot)* |
---|
| 754 | & (q(m+1)+0.5*(1.-sigw)*dzq(m+1)) ) |
---|
| 755 | else |
---|
| 756 | w(l+1) = Mtot |
---|
| 757 | qm(l+1) = Mqtot / Mtot |
---|
| 758 | write(*,*) 'top layer is disapearing !' |
---|
| 759 | stop |
---|
| 760 | end if |
---|
| 761 | else ! if(w(l+1).lt.0) |
---|
| 762 | m = l-1 |
---|
| 763 | Mtot = masse(m+1) |
---|
| 764 | MQtot = masse(m+1)*q(m+1) |
---|
[1867] | 765 | do while (m.gt.0) |
---|
| 766 | do while (-w(l+1).gt.(Mtot+masse(m))) |
---|
[57] | 767 | m=m-1 |
---|
| 768 | Mtot = Mtot + masse(m+1) |
---|
| 769 | MQtot = MQtot + masse(m+1)*q(m+1) |
---|
[1867] | 770 | end do |
---|
[57] | 771 | end do |
---|
| 772 | if (m.gt.0) then |
---|
| 773 | sigw=(w(l+1)+Mtot)/masse(m) |
---|
| 774 | qm(l+1)= (-1/w(l+1))*(MQtot + (-w(l+1)-Mtot)* |
---|
| 775 | & (q(m)-0.5*(1.+sigw)*dzq(m)) ) |
---|
| 776 | else |
---|
| 777 | qm(l+1)= (-1/w(l+1))*(MQtot + (-w(l+1)-Mtot)*qm(1)) |
---|
| 778 | end if |
---|
| 779 | end if |
---|
| 780 | enddo |
---|
| 781 | |
---|
| 782 | c boundary conditions (not used in newcondens !!) |
---|
| 783 | c qm(llm+1)=0. |
---|
| 784 | c if(w(1).gt.0.) then |
---|
| 785 | c qm(1)=q(1) |
---|
| 786 | c else |
---|
| 787 | c qm(1)=0. |
---|
| 788 | c end if |
---|
| 789 | |
---|
| 790 | return |
---|
| 791 | end |
---|