1 | SUBROUTINE initracer(qsurf,co2ice) |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | c======================================================================= |
---|
5 | c subject: |
---|
6 | c -------- |
---|
7 | c Initialisation related to tracer |
---|
8 | c (transported dust, water, chemical species, ice...) |
---|
9 | c |
---|
10 | c Name of the tracer |
---|
11 | c |
---|
12 | c Test of dimension : |
---|
13 | c Initialise COMMON tracer in tracer.h |
---|
14 | c |
---|
15 | c If water=T : q(iq=nqmx) is the water mass mixing ratio |
---|
16 | c If water=T and iceparty=T : q(iq=nqmx-1) is the ice mass mixing ratio |
---|
17 | |
---|
18 | c If there is transported dust, it uses iq=1 to iq=dustbin |
---|
19 | c If there is no transported dust : dustbin=0 |
---|
20 | c If doubleq=T : q(iq=1) is the dust mass mixing ratio |
---|
21 | c q(iq=2) is the dust number mixing ratio |
---|
22 | |
---|
23 | c If (photochem.or.thermochem) there is "ncomp" chemical species (ncomp |
---|
24 | c is set in aeronomars/chimiedata.h) using the ncomp iq values starting at |
---|
25 | c iq=nqchem_min = dustbin+1 (nqchem_min is defined in inifis.F) |
---|
26 | c |
---|
27 | c |
---|
28 | c author: F.Forget |
---|
29 | c ------ |
---|
30 | c Modifs: Franck Montmessin, Sebastien Lebonnois (june 2003) |
---|
31 | c |
---|
32 | c======================================================================= |
---|
33 | |
---|
34 | |
---|
35 | #include "dimensions.h" |
---|
36 | #include "dimphys.h" |
---|
37 | #include "comcstfi.h" |
---|
38 | #include "callkeys.h" |
---|
39 | #include "tracer.h" |
---|
40 | |
---|
41 | #include "comgeomfi.h" |
---|
42 | #include "watercap.h" |
---|
43 | #include "aerice.h" |
---|
44 | #include "fisice.h" |
---|
45 | #include "chimiedata.h" |
---|
46 | |
---|
47 | |
---|
48 | real qsurf(ngridmx,nqmx) ! tracer on surface (e.g. kg.m-2) |
---|
49 | real co2ice(ngridmx) ! co2 ice mass on surface (e.g. kg.m-2) |
---|
50 | integer iq,ig |
---|
51 | real r0_lift , reff_lift |
---|
52 | |
---|
53 | c----------------------------------------------------------------------- |
---|
54 | c radius(nqmx) ! aerosol particle radius (m) |
---|
55 | c rho_q(nqmx) ! tracer densities (kg.m-3) |
---|
56 | c qext(nqmx) ! Single Scat. Extinction coeff at 0.67 um |
---|
57 | c alpha_lift(nqmx) ! saltation vertical flux/horiz flux ratio (m-1) |
---|
58 | c alpha_devil(nqmx) ! lifting coeeficient by dust devil |
---|
59 | c rho_dust ! Mars dust density |
---|
60 | c rho_ice ! Water ice density |
---|
61 | c doubleq ! if method with mass (iq=1) and number(iq=2) mixing ratio |
---|
62 | c varian ! Characteristic variance of log-normal distribution |
---|
63 | c----------------------------------------------------------------------- |
---|
64 | |
---|
65 | |
---|
66 | c------------------------------------------------------------ |
---|
67 | c Test Dimensions tracers |
---|
68 | c------------------------------------------------------------ |
---|
69 | |
---|
70 | if(photochem.or.thermochem) then |
---|
71 | if (iceparty) then |
---|
72 | if ((nqchem_min+ncomp+1).ne.nqmx) then |
---|
73 | print*,'********* Dimension problem! ********' |
---|
74 | print*,"nqchem_min+ncomp+1).ne.nqmx" |
---|
75 | print*,"ncomp: ",ncomp |
---|
76 | print*,"nqchem_min: ",nqchem_min |
---|
77 | print*,"nqmx: ",nqmx |
---|
78 | print*,'Change ncomp in chimiedata.h' |
---|
79 | endif |
---|
80 | else |
---|
81 | if ((nqchem_min+ncomp).ne.nqmx) then |
---|
82 | print*,'********* Dimension problem! ********' |
---|
83 | print*,"nqchem_min+ncomp).ne.nqmx" |
---|
84 | print*,"ncomp: ",ncomp |
---|
85 | print*,"nqchem_min: ",nqchem_min |
---|
86 | print*,"nqmx: ",nqmx |
---|
87 | print*,'Change ncomp in chimiedata.h' |
---|
88 | STOP |
---|
89 | endif |
---|
90 | endif |
---|
91 | endif |
---|
92 | |
---|
93 | c------------------------------------------------------------ |
---|
94 | c NAME and molar mass of the tracer |
---|
95 | c------------------------------------------------------------ |
---|
96 | |
---|
97 | c noms and mmol vectors: |
---|
98 | if (water) then |
---|
99 | mmol(nqmx) = 18. |
---|
100 | noms(nqmx) = 'h2o' |
---|
101 | end if |
---|
102 | if (iceparty) then |
---|
103 | noms(nqmx-1) = 'ice' |
---|
104 | mmol(nqmx-1) = 18. |
---|
105 | end if |
---|
106 | if(photochem.or.thermochem) then |
---|
107 | do iq=nqchem_min, nqchem_min+ncomp-1 |
---|
108 | noms(iq) = nomchem(iq-nqchem_min+1) |
---|
109 | mmol(iq) = mmolchem(iq-nqchem_min+1) |
---|
110 | enddo |
---|
111 | end if |
---|
112 | if (dustbin.ge.1) then |
---|
113 | do iq=1,dustbin |
---|
114 | noms(iq) = 'dust' |
---|
115 | mmol(iq) = 100. |
---|
116 | enddo |
---|
117 | if (doubleq) then |
---|
118 | noms(1) = 'dust mass mix. ratio' |
---|
119 | noms(dustbin) = 'dust number mix. ratio' |
---|
120 | end if |
---|
121 | end if |
---|
122 | |
---|
123 | c Simulation of CO2 + neutral gaz |
---|
124 | if ((dustbin.eq.0).and.(.not.water)) then |
---|
125 | noms(1) = 'co2' |
---|
126 | mmol(1) = 44 |
---|
127 | if (nqmx.eq.2)then |
---|
128 | noms(nqmx) = 'Ar_N2' |
---|
129 | mmol(nqmx) = 30 |
---|
130 | end if |
---|
131 | end if |
---|
132 | |
---|
133 | |
---|
134 | c------------------------------------------------------------ |
---|
135 | c Initialisation tracers .... |
---|
136 | c------------------------------------------------------------ |
---|
137 | call zerophys(nqmx,rho_q) |
---|
138 | |
---|
139 | rho_dust=2500. ! Mars dust density (kg.m-3) |
---|
140 | rho_ice=920. ! Water ice density (kg.m-3) |
---|
141 | |
---|
142 | if (doubleq) then |
---|
143 | c "doubleq" technique |
---|
144 | c ------------------- |
---|
145 | c (transport of mass and number mixing ratio) |
---|
146 | c iq=1: Q mass mixing ratio, iq=2: N number mixing ratio |
---|
147 | |
---|
148 | if( (nqmx.lt.2).or.(water.and.(nqmx.lt.3)) ) then |
---|
149 | write(*,*) 'nqmx is too low : nqmx=', nqmx |
---|
150 | write(*,*) 'water= ',water,' doubleq= ',doubleq |
---|
151 | end if |
---|
152 | |
---|
153 | varian=0.637 ! Characteristic variance |
---|
154 | qext(1)=3.04 ! reference extinction at 0.67 um for ref dust |
---|
155 | qext(2)=3.04 ! reference extinction at 0.67 um for ref dust |
---|
156 | rho_q(1)=rho_dust |
---|
157 | rho_q(2)=rho_dust |
---|
158 | |
---|
159 | c Intermediate calcul for computing geometric mean radius r0 |
---|
160 | c as a function of mass and number mixing ratio Q and N |
---|
161 | c (r0 = (r3n_q * Q/ N) |
---|
162 | r3n_q = exp(-4.5*varian**2)*(3./4.)/(pi*rho_dust) |
---|
163 | |
---|
164 | c Intermediate calcul for computing effective radius reff |
---|
165 | c from geometric mean radius r0 |
---|
166 | c (reff = ref_r0 * r0) |
---|
167 | ref_r0 = exp(2.5*varian**2) |
---|
168 | |
---|
169 | c lifted dust : |
---|
170 | c ''''''''''' |
---|
171 | reff_lift = 3.e-6 ! Effective radius of lifted dust (m) |
---|
172 | alpha_devil(1)=9.e-9 ! dust devil lift mass coeff |
---|
173 | alpha_lift(1)=3.0e-15 ! Lifted mass coeff |
---|
174 | |
---|
175 | r0_lift = reff_lift/ref_r0 |
---|
176 | alpha_devil(2)= r3n_q * alpha_devil(1)/r0_lift**3 |
---|
177 | alpha_lift(2)= r3n_q * alpha_lift(1)/r0_lift**3 |
---|
178 | |
---|
179 | c Not used: |
---|
180 | radius(1) = 0. |
---|
181 | radius(2) = 0. |
---|
182 | |
---|
183 | else |
---|
184 | |
---|
185 | if (dustbin.gt.1) then |
---|
186 | print*,'ATTENTION:', |
---|
187 | $ ' properties of dust need input in initracer !!!' |
---|
188 | stop |
---|
189 | |
---|
190 | else if (dustbin.eq.1) then |
---|
191 | |
---|
192 | c This will be used for 1 dust particle size: |
---|
193 | c ------------------------------------------ |
---|
194 | radius(1)=3.e-6 |
---|
195 | Qext(1)=3.04 |
---|
196 | alpha_lift(1)=0.0e-6 |
---|
197 | alpha_devil(1)=7.65e-9 |
---|
198 | qextrhor(1)= (3./4.)*Qext(1) / (rho_dust*radius(1)) |
---|
199 | rho_q(1)=rho_dust |
---|
200 | |
---|
201 | endif |
---|
202 | end if ! (doubleq) |
---|
203 | |
---|
204 | c Initialization for photochemistry: |
---|
205 | c --------------------------------- |
---|
206 | if (photochem) then |
---|
207 | do iq=nqchem_min,nqmx |
---|
208 | radius(iq)=0. |
---|
209 | Qext(iq)=0. |
---|
210 | alpha_lift(iq) =0. |
---|
211 | alpha_devil(iq)=0. |
---|
212 | qextrhor(iq)= 0. |
---|
213 | enddo |
---|
214 | endif |
---|
215 | |
---|
216 | c Initialization for water vapor |
---|
217 | c ------------------------------ |
---|
218 | if(water) then |
---|
219 | radius(nqmx)=0. |
---|
220 | Qext(nqmx)=0. |
---|
221 | alpha_lift(nqmx) =0. |
---|
222 | alpha_devil(nqmx)=0. |
---|
223 | qextrhor(nqmx)= 0. |
---|
224 | |
---|
225 | c "Dryness coefficient" controlling the evaporation and |
---|
226 | c sublimation from the ground water ice (close to 1) |
---|
227 | c HERE, the goal is to correct for the fact |
---|
228 | c that the simulated permanent water ice polar caps |
---|
229 | c is larger than the actual cap and the atmospheric |
---|
230 | c opacity not always realistic. |
---|
231 | |
---|
232 | do ig=1,ngridmx |
---|
233 | if (ngridmx.ne.1) watercaptag(ig)=.false. |
---|
234 | dryness(ig) = 1. |
---|
235 | if (activice) pclc(ig)=1. |
---|
236 | enddo |
---|
237 | |
---|
238 | IF (caps) THEN |
---|
239 | c Perennial H20 north cap defined by watercaptag=true (allows surface to be |
---|
240 | c hollowed by sublimation in vdifc). |
---|
241 | c Cloud area fraction (pclc) is defined here. |
---|
242 | do ig=1,ngridmx |
---|
243 | if (lati(ig)*180./pi.gt.84) then |
---|
244 | if (ngridmx.ne.1) watercaptag(ig)=.true. |
---|
245 | dryness(ig) = 1. |
---|
246 | if (activice)then |
---|
247 | pclc(ig)=1. |
---|
248 | print*,'Cloud area ratio : ',pclc(ig),' at lat ' |
---|
249 | $ ,lati(ig)*180./pi |
---|
250 | endif |
---|
251 | c Use the following cap definition for high spatial resolution (latitudinal bin <= 5 deg) |
---|
252 | c if (lati(ig)*180./pi.lt.85.and.long(ig).ge.0) then |
---|
253 | c if (ngridmx.ne.1) watercaptag(ig)=.true. |
---|
254 | c pclc(ig)=.3 |
---|
255 | c dryness(ig) = 1. |
---|
256 | c print*,'Cloud area ratio : ',pclc(ig),' at lat ' |
---|
257 | c endif |
---|
258 | c if (lati(ig)*180./pi.ge.85) then |
---|
259 | c if (ngridmx.ne.1) watercaptag(ig)=.true. |
---|
260 | c dryness(ig) = 1. |
---|
261 | c pclc(ig)=.3 |
---|
262 | c print*,'Cloud area ratio : ',pclc(ig),' at lat ' |
---|
263 | c endif |
---|
264 | endif ! (lati>80 deg) |
---|
265 | end do ! (ngridmx) |
---|
266 | ENDIF ! (caps) |
---|
267 | |
---|
268 | if(iceparty.and.nqmx.ge.2) then |
---|
269 | radius(nqmx-1)=3.e-6 |
---|
270 | rho_q(nqmx-1)=rho_ice |
---|
271 | Qext(nqmx-1)=0. |
---|
272 | alpha_lift(nqmx-1) =0. |
---|
273 | alpha_devil(nqmx-1)=0. |
---|
274 | if (activice) then |
---|
275 | radius(nqmx-1)=rcrystal |
---|
276 | Qext(nqmx-1)=qrefice |
---|
277 | endif |
---|
278 | qextrhor(nqmx-1)= (3./4.)*Qext(nqmx-1) |
---|
279 | $ / (rho_ice*radius(nqmx-1)) |
---|
280 | elseif(iceparty.and.nqmx.lt.2) then |
---|
281 | write(*,*) 'nqmx is too low : nqmx=', nqmx |
---|
282 | write(*,*) 'water= ',water,' iceparty= ',iceparty |
---|
283 | endif |
---|
284 | |
---|
285 | end if ! (water) |
---|
286 | |
---|
287 | c Output for records: |
---|
288 | c ~~~~~~~~~~~~~~~~~~ |
---|
289 | write(*,*) |
---|
290 | Write(*,*) '******** initracer : dust transport parameters :' |
---|
291 | write(*,*) 'alpha_lift = ', alpha_lift |
---|
292 | write(*,*) 'alpha_devil = ', alpha_devil |
---|
293 | write(*,*) 'radius = ', radius |
---|
294 | if(doubleq) then |
---|
295 | write(*,*) 'reff_lift (um) = ', reff_lift |
---|
296 | write(*,*) 'size distribution variance = ', varian |
---|
297 | write(*,*) 'r3n_q , ref_r0 : ', r3n_q , ref_r0 |
---|
298 | end if |
---|
299 | write(*,*) 'Qext = ', qext |
---|
300 | write(*,*) |
---|
301 | |
---|
302 | end |
---|