1 | SUBROUTINE SW_venus_rh_1Dglobave(PRMU0, PFRAC, |
---|
2 | S PPB, pt, |
---|
3 | S PHEAT, |
---|
4 | S PTOPSW,PSOLSW,ZFSNET) |
---|
5 | |
---|
6 | use dimphy |
---|
7 | use cpdet_phy_mod, only: cpdet |
---|
8 | IMPLICIT none |
---|
9 | |
---|
10 | #include "YOMCST.h" |
---|
11 | C |
---|
12 | C ------------------------------------------------------------------ |
---|
13 | C |
---|
14 | C PURPOSE. |
---|
15 | C -------- |
---|
16 | C |
---|
17 | c this routine loads and interpolates the shortwave radiation |
---|
18 | c fluxes taken from Rainer Haus calculations for Venus. |
---|
19 | c Ref: Haus et al. 2016 |
---|
20 | C |
---|
21 | C AUTHOR. |
---|
22 | C ------- |
---|
23 | C Sebastien Lebonnois |
---|
24 | C |
---|
25 | C MODIFICATIONS. |
---|
26 | C -------------- |
---|
27 | C ORIGINAL : 5/2016 |
---|
28 | C ------------------------------------------------------------------ |
---|
29 | C |
---|
30 | C* ARGUMENTS: |
---|
31 | C |
---|
32 | c inputs |
---|
33 | |
---|
34 | REAL PRMU0 ! COSINE OF ZENITHAL ANGLE |
---|
35 | REAL PFRAC ! fraction de la journee |
---|
36 | REAL PPB(klev+1) ! inter-couches PRESSURE (bar) |
---|
37 | REAL pt(klev) ! mid-layer temperature |
---|
38 | C |
---|
39 | c output |
---|
40 | |
---|
41 | REAL PHEAT(klev) ! SHORTWAVE HEATING (K/s) within each layer |
---|
42 | REAL PTOPSW ! SHORTWAVE FLUX AT T.O.A. (net) |
---|
43 | REAL PSOLSW ! SHORTWAVE FLUX AT SURFACE (net) |
---|
44 | REAL ZFSNET(klev+1) ! net solar flux at ppb levels |
---|
45 | |
---|
46 | C |
---|
47 | C* LOCAL VARIABLES: |
---|
48 | C |
---|
49 | integer nlrh,nszarh,nlatrh |
---|
50 | parameter (nlrh=118) ! fichiers Rainer Haus |
---|
51 | parameter (nszarh=7) ! fichiers Rainer Haus |
---|
52 | parameter (nlatrh=19) ! fichiers Rainer Haus |
---|
53 | |
---|
54 | integer i,j,lat,nsza,nsza0,nl0 |
---|
55 | real zsnetmoy(nlrh+1,nlatrh) ! net solar flux (W/m**2) (+ vers bas) |
---|
56 | real presrh(nlrh+1) ! pressure in table (bar) |
---|
57 | real altrh(nlrh+1) ! altitude in table (km) |
---|
58 | real latrh(nlatrh) ! latitude in table (degrees) |
---|
59 | real zsolnet(nlrh+1) ! for mean net solar flux in RH |
---|
60 | character*22 nullchar |
---|
61 | real factflux |
---|
62 | real zsnet(nszarh) ! net solar flux (W/m**2) (+ vers bas) |
---|
63 | real deltalat |
---|
64 | logical firstcall |
---|
65 | data firstcall/.true./ |
---|
66 | save zsolnet,altrh,presrh |
---|
67 | save firstcall |
---|
68 | |
---|
69 | c ------------------------ |
---|
70 | c Loading the file |
---|
71 | c ------------------------ |
---|
72 | |
---|
73 | if (firstcall) then |
---|
74 | |
---|
75 | open(11,file='SolarNetFlux_RH.dat') |
---|
76 | |
---|
77 | do i=1,nlrh+1 |
---|
78 | read(11,'(E5.1,4x,F8.2)') altrh(i),presrh(i) |
---|
79 | enddo |
---|
80 | |
---|
81 | do lat=1,nlatrh |
---|
82 | latrh(lat)=5.*(lat-1) |
---|
83 | read(11,*) nullchar |
---|
84 | read(11,*) nullchar |
---|
85 | read(11,*) nullchar |
---|
86 | read(11,*) nullchar |
---|
87 | |
---|
88 | do i=1,nlrh+1 |
---|
89 | read(11,'(E6.1,7(2x,F11.5),7x,F11.5)') |
---|
90 | . altrh(i),zsnet,zsnetmoy(i,lat) |
---|
91 | enddo |
---|
92 | read(11,*) nullchar |
---|
93 | enddo |
---|
94 | latrh(nlatrh)=89. |
---|
95 | |
---|
96 | close(11) |
---|
97 | |
---|
98 | c ----------- TEST ------------ |
---|
99 | c Moyenne planetaire |
---|
100 | c ----------------------------- |
---|
101 | |
---|
102 | zsolnet=0. |
---|
103 | do lat=1,nlatrh-1 |
---|
104 | deltalat=(latrh(lat+1)-latrh(lat))*RPI/180. |
---|
105 | do j=1,nlrh+1 |
---|
106 | zsolnet(j) = zsolnet(j)+ |
---|
107 | . (zsnetmoy(j,lat+1)+zsnetmoy(j,lat))/2.* |
---|
108 | . deltalat*cos((latrh(lat+1)+latrh(lat))*RPI/360.) |
---|
109 | enddo |
---|
110 | enddo |
---|
111 | c ----------------------------- |
---|
112 | c -------- FIN TEST ---------- |
---|
113 | |
---|
114 | firstcall=.false. |
---|
115 | endif |
---|
116 | |
---|
117 | c -------------------------------------- |
---|
118 | c Interpolation in the GCM vertical grid |
---|
119 | c -------------------------------------- |
---|
120 | |
---|
121 | c Pressure levels |
---|
122 | c --------------- |
---|
123 | |
---|
124 | do j=1,klev+1 |
---|
125 | nl0 = nlrh |
---|
126 | do i=nlrh+1,2,-1 |
---|
127 | if (presrh(i).ge.PPB(j)) then |
---|
128 | nl0 = i-1 |
---|
129 | endif |
---|
130 | enddo |
---|
131 | |
---|
132 | factflux = (log10(max(PPB(j),presrh(1)))-log10(presrh(nl0+1))) |
---|
133 | . /(log10(presrh(nl0))-log10(presrh(nl0+1))) |
---|
134 | |
---|
135 | ZFSNET(j) = factflux *zsolnet(nl0) |
---|
136 | . + (1.-factflux)*zsolnet(nl0+1) |
---|
137 | |
---|
138 | c-----TEST------- |
---|
139 | c tayloring the solar flux... |
---|
140 | c if ((PPB(j).gt.0.236).and.(PPB(j).le.22.52)) then |
---|
141 | c ZFSNET(j) = ZFSNET(j)+2.5*(1.+cos((log10(PPB(j)/3.5)/ |
---|
142 | c . log10(0.236/3.5))*RPI)) |
---|
143 | c endif |
---|
144 | c---------------- |
---|
145 | enddo |
---|
146 | |
---|
147 | PTOPSW = ZFSNET(klev+1) |
---|
148 | PSOLSW = ZFSNET(1) |
---|
149 | |
---|
150 | c Heating rates |
---|
151 | c ------------- |
---|
152 | c On utilise le gradient du flux pour calculer le taux de chauffage: |
---|
153 | c heat(K/s) = d(fluxnet) (W/m2) |
---|
154 | c *g (m/s2) |
---|
155 | c /(-dp) (epaisseur couche, en Pa=kg/m/s2) |
---|
156 | c /cp (J/kg/K) |
---|
157 | |
---|
158 | do j=1,klev |
---|
159 | ! ADAPTATION GCM POUR CP(T) |
---|
160 | PHEAT(j) = (ZFSNET(j+1)-ZFSNET(j)) |
---|
161 | . *RG/cpdet(pt(j)) / ((PPB(j)-PPB(j+1))*1.e5) |
---|
162 | c-----TEST------- |
---|
163 | c tayloring the solar flux... |
---|
164 | if ((PPB(j).gt.1.4).and.(PPB(j).le.10.)) then |
---|
165 | PHEAT(j) = PHEAT(j)*3 |
---|
166 | c elseif ((PPB(j).gt.10.).and.(PPB(j).le.30.)) then |
---|
167 | c PHEAT(j) = PHEAT(j)*1.5 |
---|
168 | endif |
---|
169 | c---------------- |
---|
170 | c print*,PPB(j),ZFSNET(j),PHEAT(j) |
---|
171 | enddo |
---|
172 | c stop |
---|
173 | return |
---|
174 | end |
---|
175 | |
---|