1 | SUBROUTINE SW_venus_rh(PRMU0, PFRAC, latdeg, |
---|
2 | S PPB, pt, |
---|
3 | S PHEAT, |
---|
4 | S PTOPSW,PSOLSW,ZFSNET) |
---|
5 | |
---|
6 | use dimphy |
---|
7 | use cpdet_phy_mod, only: cpdet |
---|
8 | IMPLICIT none |
---|
9 | |
---|
10 | #include "YOMCST.h" |
---|
11 | C |
---|
12 | C ------------------------------------------------------------------ |
---|
13 | C |
---|
14 | C PURPOSE. |
---|
15 | C -------- |
---|
16 | C |
---|
17 | c this routine loads and interpolates the shortwave radiation |
---|
18 | c fluxes taken from Rainer Haus calculations for Venus. |
---|
19 | c Ref: Haus et al. 2016 |
---|
20 | C |
---|
21 | C AUTHOR. |
---|
22 | C ------- |
---|
23 | C Sebastien Lebonnois |
---|
24 | C |
---|
25 | C MODIFICATIONS. |
---|
26 | C -------------- |
---|
27 | C ORIGINAL : 5/2016 |
---|
28 | C ------------------------------------------------------------------ |
---|
29 | C |
---|
30 | C* ARGUMENTS: |
---|
31 | C |
---|
32 | c inputs |
---|
33 | |
---|
34 | REAL PRMU0 ! COSINE OF ZENITHAL ANGLE |
---|
35 | REAL PFRAC ! fraction de la journee |
---|
36 | REAL latdeg ! |latitude| (in degrees) |
---|
37 | REAL PPB(klev+1) ! inter-couches PRESSURE (bar) |
---|
38 | REAL pt(klev) ! mid-layer temperature |
---|
39 | C |
---|
40 | c output |
---|
41 | |
---|
42 | REAL PHEAT(klev) ! SHORTWAVE HEATING (K/s) within each layer |
---|
43 | REAL PTOPSW ! SHORTWAVE FLUX AT T.O.A. (net) |
---|
44 | REAL PSOLSW ! SHORTWAVE FLUX AT SURFACE (net) |
---|
45 | REAL ZFSNET(klev+1) ! net solar flux at ppb levels |
---|
46 | |
---|
47 | C |
---|
48 | C* LOCAL VARIABLES: |
---|
49 | C |
---|
50 | integer nlrh,nszarh,nlatrh |
---|
51 | parameter (nlrh=118) ! fichiers Rainer Haus |
---|
52 | parameter (nszarh=7) ! fichiers Rainer Haus |
---|
53 | parameter (nlatrh=19) ! fichiers Rainer Haus |
---|
54 | |
---|
55 | integer i,j,lat,nsza,nsza0(2),nl0,nlat0 |
---|
56 | real zsnet(nlrh+1,nszarh+1,nlatrh+1)! net solar flux (W/m**2) (+ vers bas) |
---|
57 | real solza(nszarh,nlatrh) ! solar zenith angles in table |
---|
58 | real presrh(nlrh+1) ! pressure in table (bar) |
---|
59 | real altrh(nlrh+1) ! altitude in table (km) |
---|
60 | real latrh(nlatrh) ! latitude in table (degrees) |
---|
61 | character*22 nullchar |
---|
62 | real sza0,factsza(2),factflux,factlat |
---|
63 | real zsnetmoy |
---|
64 | logical firstcall |
---|
65 | data firstcall/.true./ |
---|
66 | save solza,zsnet,altrh,latrh,presrh |
---|
67 | save firstcall |
---|
68 | |
---|
69 | c ------------------------ |
---|
70 | c Loading the file |
---|
71 | c ------------------------ |
---|
72 | |
---|
73 | if (firstcall) then |
---|
74 | |
---|
75 | zsnet=0. |
---|
76 | |
---|
77 | open(11,file='SolarNetFlux_RH.dat') |
---|
78 | |
---|
79 | do i=1,nlrh+1 |
---|
80 | read(11,'(E5.1,4x,F8.2)') altrh(i),presrh(i) |
---|
81 | enddo |
---|
82 | |
---|
83 | do lat=1,nlatrh |
---|
84 | latrh(lat)=5.*(lat-1) |
---|
85 | read(11,*) nullchar |
---|
86 | read(11,*) nullchar |
---|
87 | read(11,'(3x,7(5x,E8.5))') solza(:,lat) |
---|
88 | read(11,*) nullchar |
---|
89 | |
---|
90 | do i=1,nlrh+1 |
---|
91 | read(11,'(E6.1,7(2x,F11.5),7x,F11.5)') |
---|
92 | . altrh(i),zsnet(i,1:nszarh,lat),zsnetmoy |
---|
93 | enddo |
---|
94 | read(11,*) nullchar |
---|
95 | enddo |
---|
96 | latrh(nlatrh)=89. |
---|
97 | |
---|
98 | c Correction of factor 2 in the table... |
---|
99 | zsnet=zsnet*2. |
---|
100 | |
---|
101 | close(11) |
---|
102 | |
---|
103 | firstcall=.false. |
---|
104 | endif |
---|
105 | |
---|
106 | c -------------------------------------- |
---|
107 | c Interpolation in the GCM vertical grid |
---|
108 | c -------------------------------------- |
---|
109 | |
---|
110 | c Latitude |
---|
111 | c --------- |
---|
112 | |
---|
113 | do lat=1,nlatrh |
---|
114 | if (latrh(lat).le.latdeg) then |
---|
115 | nlat0 = lat+1 |
---|
116 | endif |
---|
117 | enddo |
---|
118 | |
---|
119 | if (nlat0.ne.nlatrh+1) then |
---|
120 | factlat = (latdeg-latrh(nlat0-1))/(latrh(nlat0)-latrh(nlat0-1)) |
---|
121 | else |
---|
122 | factlat = min((latdeg-latrh(nlatrh))/(90.-latrh(nlatrh)), 1.) |
---|
123 | endif |
---|
124 | |
---|
125 | c Zenith angle |
---|
126 | c ------------ |
---|
127 | |
---|
128 | sza0 = acos(PRMU0)/3.1416*180. |
---|
129 | c print*,'Angle Zenithal =',sza0,' PFRAC=',PFRAC |
---|
130 | nsza0(:)=2 |
---|
131 | |
---|
132 | do nsza=1,nszarh |
---|
133 | if (solza(nsza,nlat0-1).le.sza0) then |
---|
134 | nsza0(1) = nsza+1 |
---|
135 | endif |
---|
136 | enddo |
---|
137 | |
---|
138 | if (nsza0(1).ne.nszarh+1) then |
---|
139 | factsza(1) = (sza0-solza(nsza0(1)-1,nlat0-1))/ |
---|
140 | . (solza(nsza0(1),nlat0-1)-solza(nsza0(1)-1,nlat0-1)) |
---|
141 | else |
---|
142 | factsza(1) = min((sza0-solza(nszarh,nlat0-1))/ |
---|
143 | . (90.-solza(nszarh,nlat0-1)), 1.) |
---|
144 | endif |
---|
145 | |
---|
146 | if (nlat0.ne.nlatrh+1) then |
---|
147 | do nsza=1,nszarh |
---|
148 | if (solza(nsza,nlat0).le.sza0) then |
---|
149 | nsza0(2) = nsza+1 |
---|
150 | endif |
---|
151 | enddo |
---|
152 | |
---|
153 | if (nsza0(2).eq.nszarh+1) then |
---|
154 | factsza(2) = min((sza0-solza(nszarh,nlat0))/ |
---|
155 | . (90.-solza(nszarh,nlat0)), 1.) |
---|
156 | elseif ((nsza0(2).eq.2).and.(solza(1,nlat0).gt.sza0)) then |
---|
157 | factsza(2) = 0. |
---|
158 | else |
---|
159 | factsza(2) = (sza0-solza(nsza0(2)-1,nlat0))/ |
---|
160 | . (solza(nsza0(2),nlat0)-solza(nsza0(2)-1,nlat0)) |
---|
161 | endif |
---|
162 | else |
---|
163 | nsza0(2) = nszarh+1 |
---|
164 | factsza(2) = 1. |
---|
165 | endif |
---|
166 | |
---|
167 | c Pressure levels |
---|
168 | c --------------- |
---|
169 | |
---|
170 | do j=1,klev+1 |
---|
171 | nl0 = nlrh |
---|
172 | do i=nlrh+1,2,-1 |
---|
173 | if (presrh(i).ge.PPB(j)) then |
---|
174 | nl0 = i-1 |
---|
175 | endif |
---|
176 | enddo |
---|
177 | |
---|
178 | factflux = (log10(max(PPB(j),presrh(1)))-log10(presrh(nl0+1))) |
---|
179 | . /(log10(presrh(nl0))-log10(presrh(nl0+1))) |
---|
180 | |
---|
181 | ZFSNET(j) = factlat*( |
---|
182 | . factflux * factsza(2) *zsnet(nl0,nsza0(2),nlat0) |
---|
183 | . + factflux *(1.-factsza(2))*zsnet(nl0,nsza0(2)-1,nlat0) |
---|
184 | . + (1.-factflux)* factsza(2) *zsnet(nl0+1,nsza0(2),nlat0) |
---|
185 | . + (1.-factflux)*(1.-factsza(2))*zsnet(nl0+1,nsza0(2)-1,nlat0) ) |
---|
186 | . + (1.-factlat)*( |
---|
187 | . factflux * factsza(1) *zsnet(nl0,nsza0(1),nlat0-1) |
---|
188 | . + factflux *(1.-factsza(1))*zsnet(nl0,nsza0(1)-1,nlat0-1) |
---|
189 | . + (1.-factflux)* factsza(1) *zsnet(nl0+1,nsza0(1),nlat0-1) |
---|
190 | . + (1.-factflux)*(1.-factsza(1))*zsnet(nl0+1,nsza0(1)-1,nlat0-1) ) |
---|
191 | |
---|
192 | ZFSNET(j) = ZFSNET(j)*PFRAC |
---|
193 | |
---|
194 | enddo |
---|
195 | |
---|
196 | PTOPSW = ZFSNET(klev+1) |
---|
197 | PSOLSW = ZFSNET(1) |
---|
198 | |
---|
199 | c Heating rates |
---|
200 | c ------------- |
---|
201 | c On utilise le gradient du flux pour calculer le taux de chauffage: |
---|
202 | c heat(K/s) = d(fluxnet) (W/m2) |
---|
203 | c *g (m/s2) |
---|
204 | c /(-dp) (epaisseur couche, en Pa=kg/m/s2) |
---|
205 | c /cp (J/kg/K) |
---|
206 | |
---|
207 | do j=1,klev |
---|
208 | ! ADAPTATION GCM POUR CP(T) |
---|
209 | PHEAT(j) = (ZFSNET(j+1)-ZFSNET(j)) |
---|
210 | . *RG/cpdet(pt(j)) / ((PPB(j)-PPB(j+1))*1.e5) |
---|
211 | c-----TEST------- |
---|
212 | c tayloring the solar flux... |
---|
213 | if ((PPB(j).gt.1.4).and.(PPB(j).le.10.)) then |
---|
214 | PHEAT(j) = PHEAT(j)*3 |
---|
215 | endif |
---|
216 | c---------------- |
---|
217 | enddo |
---|
218 | |
---|
219 | return |
---|
220 | end |
---|
221 | |
---|