1 | SUBROUTINE SW_venus_rh(PRMU0, PFRAC, latdeg, |
---|
2 | S PPA, PPB, pt, |
---|
3 | S PHEAT, |
---|
4 | S PTOPSW,PSOLSW,ZFSNET) |
---|
5 | |
---|
6 | use dimphy, only: klev |
---|
7 | use cpdet_phy_mod, only: cpdet |
---|
8 | IMPLICIT none |
---|
9 | |
---|
10 | include "YOMCST.h" |
---|
11 | include "clesphys.h" |
---|
12 | C |
---|
13 | C ------------------------------------------------------------------ |
---|
14 | C |
---|
15 | C PURPOSE. |
---|
16 | C -------- |
---|
17 | C |
---|
18 | c this routine loads and interpolates the shortwave radiation |
---|
19 | c fluxes taken from Rainer Haus calculations for Venus. |
---|
20 | c Ref: Haus et al. 2016 |
---|
21 | C |
---|
22 | C AUTHOR. |
---|
23 | C ------- |
---|
24 | C Sebastien Lebonnois |
---|
25 | C |
---|
26 | C MODIFICATIONS. |
---|
27 | C -------------- |
---|
28 | C ORIGINAL : 5/2016 |
---|
29 | C ------------------------------------------------------------------ |
---|
30 | C |
---|
31 | C* ARGUMENTS: |
---|
32 | C |
---|
33 | c inputs |
---|
34 | |
---|
35 | REAL,INTENT(IN) :: PRMU0 ! COSINE OF ZENITHAL ANGLE |
---|
36 | REAL,INTENT(IN) :: PFRAC ! fraction de la journee |
---|
37 | REAL,INTENT(IN) :: latdeg ! |latitude| (in degrees) |
---|
38 | REAL,INTENT(IN) :: PPB(klev+1) ! inter-couches PRESSURE (bar) |
---|
39 | REAL,INTENT(IN) :: PPA(klev) |
---|
40 | REAL,INTENT(IN) :: pt(klev) ! mid-layer temperature |
---|
41 | C |
---|
42 | c output |
---|
43 | |
---|
44 | REAL,INTENT(OUT) :: PHEAT(klev) ! SHORTWAVE HEATING (K/s) within each layer |
---|
45 | REAL PHEATPPA(klev) |
---|
46 | REAL,INTENT(OUT) :: PTOPSW ! SHORTWAVE FLUX AT T.O.A. (net) |
---|
47 | REAL,INTENT(OUT) :: PSOLSW ! SHORTWAVE FLUX AT SURFACE (net) |
---|
48 | REAL,INTENT(OUT) :: ZFSNET(klev+1) ! net solar flux at ppb levels |
---|
49 | |
---|
50 | C |
---|
51 | C* LOCAL VARIABLES: |
---|
52 | C |
---|
53 | integer nlrh,nszarh,nlatrh |
---|
54 | parameter (nlrh=118) ! fichiers Rainer Haus |
---|
55 | parameter (nszarh=7) ! fichiers Rainer Haus |
---|
56 | parameter (nlatrh=19) ! fichiers Rainer Haus |
---|
57 | |
---|
58 | integer i,j,k,lat,nsza,nsza0(2),nl0,nlat0 |
---|
59 | real zsnet(nlrh+1,nszarh+1,nlatrh+1)! net solar flux (W/m**2) (+ vers bas) |
---|
60 | real solza(nszarh,nlatrh) ! solar zenith angles in table |
---|
61 | real presrh(nlrh+1) ! pressure in table (bar) |
---|
62 | real logplayrh(nlrh) |
---|
63 | real altrh(nlrh+1) ! altitude in table (km) |
---|
64 | real latrh(nlatrh) ! latitude in table (degrees) |
---|
65 | character*22 nullchar |
---|
66 | real sza0,factsza(2),factflux,factlat |
---|
67 | real zsnetmoy |
---|
68 | logical firstcall |
---|
69 | data firstcall/.true./ |
---|
70 | save solza,zsnet,altrh,latrh,presrh |
---|
71 | save firstcall |
---|
72 | real Tplay(nlrh) |
---|
73 | real Qrh1(nlrh) |
---|
74 | real Qrh2(nlrh) |
---|
75 | real Qrh3(nlrh) |
---|
76 | real Qrh4(nlrh) |
---|
77 | |
---|
78 | c ------------------------ |
---|
79 | c Loading the file |
---|
80 | c ------------------------ |
---|
81 | if (firstcall) then |
---|
82 | |
---|
83 | zsnet=0. |
---|
84 | |
---|
85 | open(11,file='SolarNetFlux_RH.dat') |
---|
86 | |
---|
87 | do i=1,nlrh+1 |
---|
88 | read(11,'(E5.1,4x,F8.2)') altrh(i),presrh(i) |
---|
89 | enddo |
---|
90 | |
---|
91 | do lat=1,nlatrh |
---|
92 | latrh(lat)=5.*(lat-1) |
---|
93 | read(11,*) nullchar |
---|
94 | read(11,*) nullchar |
---|
95 | read(11,'(3x,7(5x,E8.5))') solza(:,lat) |
---|
96 | read(11,*) nullchar |
---|
97 | |
---|
98 | do i=1,nlrh+1 |
---|
99 | read(11,'(E6.1,7(2x,F11.5),7x,F11.5)') |
---|
100 | . altrh(i),zsnet(i,1:nszarh,lat),zsnetmoy |
---|
101 | enddo |
---|
102 | read(11,*) nullchar |
---|
103 | enddo |
---|
104 | latrh(nlatrh)=89. |
---|
105 | |
---|
106 | c Correction of factor 2 in the table... |
---|
107 | zsnet=zsnet*2. |
---|
108 | |
---|
109 | close(11) |
---|
110 | |
---|
111 | firstcall=.false. |
---|
112 | endif |
---|
113 | |
---|
114 | c -------------------------------------- |
---|
115 | c Interpolation in the GCM vertical grid |
---|
116 | c -------------------------------------- |
---|
117 | |
---|
118 | c Latitude |
---|
119 | c --------- |
---|
120 | |
---|
121 | do lat=1,nlatrh |
---|
122 | if (latrh(lat).le.latdeg) then |
---|
123 | nlat0 = lat+1 |
---|
124 | endif |
---|
125 | enddo |
---|
126 | |
---|
127 | if (nlat0.ne.nlatrh+1) then |
---|
128 | factlat = (latdeg-latrh(nlat0-1))/(latrh(nlat0)-latrh(nlat0-1)) |
---|
129 | else |
---|
130 | factlat = min((latdeg-latrh(nlatrh))/(90.-latrh(nlatrh)), 1.) |
---|
131 | endif |
---|
132 | |
---|
133 | c Zenith angle |
---|
134 | c ------------ |
---|
135 | |
---|
136 | sza0 = acos(PRMU0)/3.1416*180. |
---|
137 | nsza0(:)=2 |
---|
138 | |
---|
139 | if (.not.cycle_diurne) then |
---|
140 | ! without a diurnal cycle, no need for any elaborate weights of sza |
---|
141 | factsza(1)=1 |
---|
142 | factsza(2)=0 |
---|
143 | else |
---|
144 | ! standard case with diurnal cycle |
---|
145 | do nsza=1,nszarh |
---|
146 | if (solza(nsza,nlat0-1).le.sza0) then |
---|
147 | nsza0(1) = nsza+1 |
---|
148 | endif |
---|
149 | enddo |
---|
150 | if (nsza0(1).ne.nszarh+1) then |
---|
151 | factsza(1) = (sza0-solza(nsza0(1)-1,nlat0-1))/ |
---|
152 | . (solza(nsza0(1),nlat0-1)-solza(nsza0(1)-1,nlat0-1)) |
---|
153 | else |
---|
154 | factsza(1) = min((sza0-solza(nszarh,nlat0-1))/ |
---|
155 | . (90.-solza(nszarh,nlat0-1)), 1.) |
---|
156 | endif |
---|
157 | if (nlat0.ne.nlatrh+1) then |
---|
158 | do nsza=1,nszarh |
---|
159 | if (solza(nsza,nlat0).le.sza0) then |
---|
160 | nsza0(2) = nsza+1 |
---|
161 | endif |
---|
162 | enddo |
---|
163 | if (nsza0(2).eq.nszarh+1) then |
---|
164 | factsza(2) = min((sza0-solza(nszarh,nlat0))/ |
---|
165 | . (90.-solza(nszarh,nlat0)), 1.) |
---|
166 | elseif ((nsza0(2).eq.2).and.(solza(1,nlat0).gt.sza0)) then |
---|
167 | factsza(2) = 0. |
---|
168 | else |
---|
169 | factsza(2) = (sza0-solza(nsza0(2)-1,nlat0))/ |
---|
170 | . (solza(nsza0(2),nlat0)-solza(nsza0(2)-1,nlat0)) |
---|
171 | endif |
---|
172 | else |
---|
173 | nsza0(2) = nszarh+1 |
---|
174 | factsza(2) = 1. |
---|
175 | endif ! of if (nlat0.ne.nlatrh+1) |
---|
176 | endif ! of if (.not.cycle_diurne) |
---|
177 | |
---|
178 | c Pressure levels |
---|
179 | c --------------- |
---|
180 | do j=1,klev+1 |
---|
181 | nl0 = nlrh |
---|
182 | do i=nlrh+1,2,-1 |
---|
183 | if (presrh(i).ge.PPB(j)) then |
---|
184 | nl0 = i-1 |
---|
185 | endif |
---|
186 | enddo |
---|
187 | |
---|
188 | factflux = (log10(max(PPB(j),presrh(1)))-log10(presrh(nl0+1))) |
---|
189 | . /(log10(presrh(nl0))-log10(presrh(nl0+1))) |
---|
190 | |
---|
191 | ZFSNET(j) = factlat*( |
---|
192 | . factflux * factsza(2) *zsnet(nl0,nsza0(2),nlat0) |
---|
193 | . + factflux *(1.-factsza(2))*zsnet(nl0,nsza0(2)-1,nlat0) |
---|
194 | . + (1.-factflux)* factsza(2) *zsnet(nl0+1,nsza0(2),nlat0) |
---|
195 | . + (1.-factflux)*(1.-factsza(2))*zsnet(nl0+1,nsza0(2)-1,nlat0) ) |
---|
196 | . + (1.-factlat)*( |
---|
197 | . factflux * factsza(1) *zsnet(nl0,nsza0(1),nlat0-1) |
---|
198 | . + factflux *(1.-factsza(1))*zsnet(nl0,nsza0(1)-1,nlat0-1) |
---|
199 | . + (1.-factflux)* factsza(1) *zsnet(nl0+1,nsza0(1),nlat0-1) |
---|
200 | . + (1.-factflux)*(1.-factsza(1))*zsnet(nl0+1,nsza0(1)-1,nlat0-1) ) |
---|
201 | |
---|
202 | ZFSNET(j) = ZFSNET(j)*PFRAC |
---|
203 | |
---|
204 | enddo |
---|
205 | PTOPSW = ZFSNET(klev+1) |
---|
206 | PSOLSW = ZFSNET(1) |
---|
207 | |
---|
208 | #ifdef MESOSCALE |
---|
209 | ! extrapolation play RH pressure |
---|
210 | do j=1,nlrh |
---|
211 | logplayrh(j)=(log(presrh(j+1))+log(presrh(j)))/2. |
---|
212 | enddo |
---|
213 | ! Extrapolation of temperature over RH play pressure |
---|
214 | do i=nlrh,2,-1 |
---|
215 | nl0 = 2 |
---|
216 | do j=1,klev-1 |
---|
217 | if (exp(logplayrh(i)).le.PPA(j)) then |
---|
218 | nl0 = j+1 |
---|
219 | endif |
---|
220 | enddo |
---|
221 | factflux = (log10(max(exp(logplayrh(i)),PPA(klev))) |
---|
222 | . -log10(PPA(nl0-1))) |
---|
223 | . /(log10(PPA(nl0))-log10(PPA(nl0-1))) |
---|
224 | Tplay(i)=factflux*pt(nl0) |
---|
225 | . + (1.-factflux)*pt(nl0-1) |
---|
226 | |
---|
227 | ENDDO |
---|
228 | ! RH PHEAT over RH play pressure |
---|
229 | DO k=1,nlrh |
---|
230 | c |
---|
231 | Qrh1(k)=((RG/cpdet(Tplay(k))) |
---|
232 | . *((zsnet(k+1,nsza0(1),nlat0-1)-zsnet(k,nsza0(1),nlat0-1)) |
---|
233 | . *PFRAC)) |
---|
234 | . /((presrh(k)-presrh(k+1))*1.e5) |
---|
235 | Qrh2(k)=((RG/cpdet(Tplay(k))) |
---|
236 | . *((zsnet(k+1,nsza0(1)-1,nlat0-1)-zsnet(k,nsza0(1)-1,nlat0-1)) |
---|
237 | . *PFRAC)) |
---|
238 | . /((presrh(k)-presrh(k+1))*1.e5) |
---|
239 | Qrh3(k)=((RG/cpdet(Tplay(k))) |
---|
240 | . *((zsnet(k+1,nsza0(2),nlat0)-zsnet(k,nsza0(2),nlat0)) |
---|
241 | . *PFRAC)) |
---|
242 | . /((presrh(k)-presrh(k+1))*1.e5) |
---|
243 | Qrh4(k)=((RG/cpdet(Tplay(k))) |
---|
244 | . *((zsnet(k+1,nsza0(2)-1,nlat0)-zsnet(k,nsza0(2)-1,nlat0)) |
---|
245 | . *PFRAC)) |
---|
246 | . /((presrh(k)-presrh(k+1))*1.e5) |
---|
247 | ENDDO |
---|
248 | ! Interapolation of PHEAT over GCM/MESOSCALE play levels |
---|
249 | do j=1,klev |
---|
250 | nl0 = nlrh-1 |
---|
251 | do i=nlrh,2,-1 |
---|
252 | if (exp(logplayrh(i)).ge.PPA(j)) then |
---|
253 | nl0 = i-1 |
---|
254 | endif |
---|
255 | enddo |
---|
256 | c factflux = (log10(max(PPB(j),presrh(1)))-log10(presrh(nl0+1))) |
---|
257 | c . /(log10(presrh(nl0))-log10(presrh(nl0+1))) |
---|
258 | factflux = (log10(max(PPA(j),exp(logplayrh(1)))) |
---|
259 | . -log10(exp(logplayrh(nl0+1)))) |
---|
260 | . /(log10(exp(logplayrh(nl0)))-log10(exp(logplayrh(nl0+1)))) |
---|
261 | PHEATPPA(j)=factlat*( |
---|
262 | . factflux * factsza(2) *Qrh3(nl0) |
---|
263 | . + factflux *(1.-factsza(2))*Qrh4(nl0) |
---|
264 | . + (1.-factflux)* factsza(2) *Qrh3(nl0+1) |
---|
265 | . + (1.-factflux)*(1.-factsza(2))*Qrh4(nl0+1)) |
---|
266 | . + (1.-factlat)*( |
---|
267 | . factflux * factsza(1) *Qrh1(nl0) |
---|
268 | . + factflux *(1.-factsza(1))*Qrh2(nl0) |
---|
269 | . + (1.-factflux)* factsza(1) *Qrh1(nl0+1) |
---|
270 | . + (1.-factflux)*(1.-factsza(1))*Qrh2(nl0+1) ) |
---|
271 | PHEAT(j)=PHEATPPA(j) |
---|
272 | ENDDO |
---|
273 | |
---|
274 | |
---|
275 | #else |
---|
276 | c Heating rates |
---|
277 | c ------------- |
---|
278 | c On utilise le gradient du flux pour calculer le taux de chauffage: |
---|
279 | c heat(K/s) = d(fluxnet) (W/m2) |
---|
280 | c *g (m/s2) |
---|
281 | c /(-dp) (epaisseur couche, en Pa=kg/m/s2) |
---|
282 | c /cp (J/kg/K) |
---|
283 | |
---|
284 | do j=1,klev |
---|
285 | ! ADAPTATION GCM POUR CP(T) |
---|
286 | PHEAT(j) = (ZFSNET(j+1)-ZFSNET(j)) |
---|
287 | . *RG/cpdet(pt(j)) / ((PPB(j)-PPB(j+1))*1.e5) |
---|
288 | c-----TEST------- |
---|
289 | c tayloring the solar flux... |
---|
290 | c if ((PPB(j).gt.0.04).and.(PPB(j).le.0.1)) then |
---|
291 | c PHEAT(j) = PHEAT(j)*1.5 |
---|
292 | c endif |
---|
293 | c if ((PPB(j).gt.0.1).and.(PPB(j).le.0.5)) then |
---|
294 | c PHEAT(j) = PHEAT(j)*2. |
---|
295 | c endif |
---|
296 | c BASE: |
---|
297 | c if ((PPB(j).gt.1.4).and.(PPB(j).le.10.)) then |
---|
298 | c PHEAT(j) = PHEAT(j)*3 |
---|
299 | c endif |
---|
300 | c AFTER Tayloring TdeepD |
---|
301 | if ((PPB(j).gt.1.4).and.(PPB(j).le.10.)) then |
---|
302 | PHEAT(j) = PHEAT(j)*3.5 |
---|
303 | endif |
---|
304 | if ((PPB(j).gt.10.).and.(PPB(j).le.50.)) then |
---|
305 | PHEAT(j) = PHEAT(j)*1.5 |
---|
306 | endif |
---|
307 | c Options: |
---|
308 | c if ((PPB(j).gt.1.4).and.(PPB(j).le.10.)) then |
---|
309 | c if ((PPB(j).gt.2.0).and.(PPB(j).le.10.)) then |
---|
310 | c if ((PPB(j).gt.1.4).and.(PPB(j).le.100.)) then |
---|
311 | c PHEAT(j) = PHEAT(j)*3.5 |
---|
312 | c PHEAT(j) = PHEAT(j)*3 |
---|
313 | c PHEAT(j) = PHEAT(j)*2.5 |
---|
314 | c endif |
---|
315 | c if ((PPB(j).gt.10.).and.(PPB(j).le.35.)) then |
---|
316 | c if ((PPB(j).gt.10.).and.(PPB(j).le.50.)) then |
---|
317 | c PHEAT(j) = PHEAT(j)*2 |
---|
318 | c PHEAT(j) = PHEAT(j)*1.5 |
---|
319 | c PHEAT(j) = PHEAT(j)*1.3 |
---|
320 | c endif |
---|
321 | c if ((PPB(j).gt.35.).and.(PPB(j).le.120.)) then |
---|
322 | c PHEAT(j) = PHEAT(j)*2 |
---|
323 | c PHEAT(j) = PHEAT(j)*1.5 |
---|
324 | c endif |
---|
325 | c---------------- |
---|
326 | enddo |
---|
327 | #endif |
---|
328 | |
---|
329 | |
---|
330 | end |
---|
331 | |
---|