[3] | 1 | SUBROUTINE SW_venus_dc( PRMU0, PFRAC, |
---|
| 2 | S PPB, pt, |
---|
| 3 | S PHEAT, |
---|
| 4 | S PTOPSW,PSOLSW,ZFSNET) |
---|
| 5 | |
---|
[101] | 6 | use dimphy |
---|
[3] | 7 | IMPLICIT none |
---|
| 8 | |
---|
| 9 | #include "dimensions.h" |
---|
| 10 | #include "YOMCST.h" |
---|
| 11 | C |
---|
| 12 | C ------------------------------------------------------------------ |
---|
| 13 | C |
---|
| 14 | C PURPOSE. |
---|
| 15 | C -------- |
---|
| 16 | C |
---|
| 17 | c this routine loads and interpolates the shortwave radiation |
---|
| 18 | c fluxes taken from Dave Crisp calculations for Venus. |
---|
| 19 | c Ref: Crisp 1986. |
---|
| 20 | C |
---|
| 21 | C AUTHOR. |
---|
| 22 | C ------- |
---|
| 23 | C Sebastien Lebonnois |
---|
| 24 | C |
---|
| 25 | C MODIFICATIONS. |
---|
| 26 | C -------------- |
---|
| 27 | C ORIGINAL : 27/07/2005 |
---|
| 28 | C ------------------------------------------------------------------ |
---|
| 29 | C |
---|
| 30 | C* ARGUMENTS: |
---|
| 31 | C |
---|
| 32 | c inputs |
---|
| 33 | |
---|
| 34 | REAL PRMU0 ! COSINE OF ZENITHAL ANGLE |
---|
| 35 | REAL PFRAC ! fraction de la journee |
---|
[892] | 36 | REAL PPB(klev+1) ! inter-couches PRESSURE (bar) |
---|
| 37 | REAL pt(klev) ! mid-layer temperature |
---|
[3] | 38 | C |
---|
| 39 | c output |
---|
| 40 | |
---|
[892] | 41 | REAL PHEAT(klev) ! SHORTWAVE HEATING (K/VENUSDAY) within each layer |
---|
[3] | 42 | REAL PTOPSW ! SHORTWAVE FLUX AT T.O.A. (net) |
---|
| 43 | REAL PSOLSW ! SHORTWAVE FLUX AT SURFACE (net) |
---|
[892] | 44 | REAL ZFSNET(klev+1) ! net solar flux at ppb levels |
---|
[3] | 45 | |
---|
| 46 | C |
---|
| 47 | C* LOCAL VARIABLES: |
---|
| 48 | C |
---|
| 49 | integer nldc,nszadc |
---|
| 50 | real dureejour |
---|
| 51 | parameter (nldc=49) ! fichiers Crisp |
---|
| 52 | parameter (nszadc=8) ! fichiers Crisp |
---|
| 53 | parameter (dureejour=10.087e6) |
---|
| 54 | |
---|
| 55 | integer i,j,nsza,nsza0,nl0 |
---|
| 56 | real solarrate ! solar heating rate (K/earthday) |
---|
| 57 | real zsnet(nldc+1,nszadc) ! net solar flux (W/m**2) (+ vers bas) |
---|
| 58 | real zsdn,zsup ! downward/upward solar flux (W/m**2) |
---|
| 59 | real solza(nszadc) ! solar zenith angles in table |
---|
| 60 | real presdc(nldc+1) ! pressure levels in table (bar) |
---|
| 61 | real tempdc(nldc+1) ! temperature in table (K) |
---|
| 62 | real altdc(nldc+1) ! altitude in table (km) |
---|
| 63 | real coolrate ! IR heating rate (K/earthday) ? |
---|
| 64 | real totalrate ! total rate (K/earthday) |
---|
| 65 | real zldn ! downward IR flux (W/m**2) ? |
---|
| 66 | real zlup ! upward IR flux (W/m**2) ? |
---|
| 67 | real zsolnet(nldc) ! for testing mean net solar flux in DC |
---|
| 68 | character*22 nullchar |
---|
| 69 | real sza0,factsza,factflux |
---|
| 70 | logical firstcall |
---|
| 71 | data firstcall/.true./ |
---|
[101] | 72 | REAL,save,allocatable :: zsolVE(:) ! net solar flux at ppb levels, fichiers VE |
---|
| 73 | save solza,zsnet,presdc,tempdc,altdc |
---|
[3] | 74 | save firstcall |
---|
| 75 | |
---|
| 76 | c ------------------------ |
---|
| 77 | c Loading the file |
---|
| 78 | c ------------------------ |
---|
| 79 | |
---|
| 80 | if (firstcall) then |
---|
[101] | 81 | allocate(zsolVE(klevp1)) |
---|
| 82 | |
---|
[3] | 83 | open(11,file='dataDCrisp.dat') |
---|
| 84 | read(11,*) nullchar |
---|
| 85 | |
---|
| 86 | do nsza=1,nszadc |
---|
| 87 | read(11,*) nullchar |
---|
| 88 | read(11,*) nullchar |
---|
| 89 | read(11,*) nullchar |
---|
| 90 | read(11,'(22x,F11.5)') solza(nsza) |
---|
| 91 | read(11,*) nullchar |
---|
| 92 | read(11,*) nullchar |
---|
| 93 | read(11,*) nullchar |
---|
| 94 | read(11,'(3(2x,F10.4),36x,4(2x,F11.5))') |
---|
| 95 | . presdc(nldc+1),tempdc(nldc+1), altdc(nldc+1), |
---|
| 96 | . zsdn,zsup,zldn,zlup |
---|
| 97 | zsnet(nldc+1,nsza)=zsdn-zsup |
---|
| 98 | do i=1,nldc |
---|
| 99 | j = nldc+1-i ! changing: vectors from surface to top |
---|
| 100 | read(11,'(6(2x,F10.4),4(2x,F11.5))') |
---|
| 101 | . presdc(j),tempdc(j),altdc(j), |
---|
| 102 | . solarrate,coolrate,totalrate, |
---|
| 103 | . zsdn,zsup,zldn,zlup |
---|
| 104 | zsnet(j,nsza)=zsdn-zsup |
---|
| 105 | enddo |
---|
| 106 | enddo |
---|
| 107 | |
---|
| 108 | close(11) |
---|
| 109 | |
---|
| 110 | c ----------- TEST ------------ |
---|
| 111 | c Fichiers de Vincent |
---|
| 112 | c ----------------------------- |
---|
| 113 | c open(12,file='flux_vis_dcGCM.txt') |
---|
| 114 | c read(12,*) nullchar |
---|
| 115 | c |
---|
[892] | 116 | c do j=1,klev+1 |
---|
[3] | 117 | c read(12,*) zlup,zldn,zsolVE(j) |
---|
| 118 | c enddo |
---|
| 119 | c |
---|
| 120 | c close(12) |
---|
| 121 | c ----------------------------- |
---|
| 122 | c -------- FIN TEST ---------- |
---|
| 123 | |
---|
| 124 | firstcall=.false. |
---|
| 125 | endif |
---|
| 126 | |
---|
| 127 | c ----------- TEST ------------ |
---|
| 128 | c Moyenne planetaire |
---|
| 129 | c ----------------------------- |
---|
| 130 | c do j=1,nldc |
---|
| 131 | c --- |
---|
| 132 | c zsolnet(j) = zsnet(j,1)*0.5* |
---|
| 133 | c . sin(solza(1)*RPI/180.)*solza(2)*RPI/180./2. |
---|
| 134 | c do nsza=2,nszadc-1 |
---|
| 135 | c zsolnet(j) = zsolnet(j)+zsnet(j,nsza)*0.5* |
---|
| 136 | c . sin(solza(nsza)*RPI/180.)* |
---|
| 137 | c . (solza(nsza+1)-solza(nsza-1))*RPI/180./2. |
---|
| 138 | c enddo |
---|
| 139 | c zsolnet(j) = zsolnet(j)+zsdn(j,nszadc)*0.5* |
---|
| 140 | c . sin(solza(nszadc)*RPI/180.)* |
---|
| 141 | c . (90.-solza(nszadc-1))*RPI/180./2. |
---|
| 142 | c --- |
---|
| 143 | c zsolnet(j) = 0.0 |
---|
| 144 | c do nsza=1,nszadc-1 |
---|
| 145 | c zsolnet(j) = zsolnet(j)+(zsnet(j,nsza ) |
---|
| 146 | c . +zsnet(j,nsza+1))*0.5* |
---|
| 147 | c . (cos(solza(nsza )*RPI/180.)- |
---|
| 148 | c . cos(solza(nsza+1)*RPI/180.) ) |
---|
| 149 | c enddo |
---|
| 150 | c zsolnet(j) = zsolnet(j)+zsnet(j,nszadc)*0.25* |
---|
| 151 | c . cos(solza(nszadc)*RPI/180.) |
---|
| 152 | c --- |
---|
| 153 | c print*,j,altdc(j),zsolnet(j) |
---|
| 154 | c enddo |
---|
| 155 | c stop |
---|
| 156 | c ----------------------------- |
---|
| 157 | c -------- FIN TEST ---------- |
---|
| 158 | |
---|
| 159 | c -------------------------------------- |
---|
| 160 | c Interpolation in the GCM vertical grid |
---|
| 161 | c -------------------------------------- |
---|
| 162 | |
---|
| 163 | c Zenith angle |
---|
| 164 | c ------------ |
---|
| 165 | |
---|
| 166 | sza0 = acos(PRMU0)/3.1416*180. |
---|
| 167 | c print*,'Angle Zenithal =',sza0,' PFRAC=',PFRAC |
---|
| 168 | |
---|
| 169 | do nsza=1,nszadc |
---|
| 170 | if (solza(nsza).le.sza0) then |
---|
| 171 | nsza0 = nsza+1 |
---|
| 172 | endif |
---|
| 173 | enddo |
---|
| 174 | |
---|
| 175 | if (nsza0.ne.nszadc+1) then |
---|
| 176 | factsza = (sza0-solza(nsza0-1))/(solza(nsza0)-solza(nsza0-1)) |
---|
| 177 | else |
---|
| 178 | factsza = min((sza0-solza(nszadc))/(90.-solza(nszadc)), 1.) |
---|
| 179 | endif |
---|
| 180 | |
---|
| 181 | c Pressure levels |
---|
| 182 | c --------------- |
---|
| 183 | |
---|
[892] | 184 | do j=1,klev+1 |
---|
[3] | 185 | nl0 = 2 |
---|
| 186 | do i=1,nldc |
---|
| 187 | if (presdc(i).ge.PPB(j)) then |
---|
| 188 | nl0 = i+1 |
---|
| 189 | endif |
---|
| 190 | enddo |
---|
| 191 | |
---|
| 192 | factflux = (log10(max(PPB(j),presdc(nldc+1))) |
---|
| 193 | . -log10(presdc(nl0-1))) |
---|
| 194 | . /(log10(presdc(nl0))-log10(presdc(nl0-1))) |
---|
| 195 | c factflux = (max(PPB(j),presdc(nldc+1))-presdc(nl0-1)) |
---|
| 196 | c . /(presdc(nl0)-presdc(nl0-1)) |
---|
| 197 | if (nsza0.ne.nszadc+1) then |
---|
| 198 | ZFSNET(j) = factflux * factsza *zsnet(nl0,nsza0) |
---|
| 199 | . + factflux *(1.-factsza)*zsnet(nl0,nsza0-1) |
---|
| 200 | . + (1.-factflux)* factsza *zsnet(nl0-1,nsza0) |
---|
| 201 | . + (1.-factflux)*(1.-factsza)*zsnet(nl0-1,nsza0-1) |
---|
| 202 | else |
---|
| 203 | ZFSNET(j) = factflux *(1.-factsza)*zsnet(nl0,nsza0-1) |
---|
| 204 | . + (1.-factflux)*(1.-factsza)*zsnet(nl0-1,nsza0-1) |
---|
| 205 | endif |
---|
| 206 | |
---|
| 207 | ZFSNET(j) = ZFSNET(j)*PFRAC |
---|
| 208 | |
---|
| 209 | enddo |
---|
| 210 | |
---|
| 211 | c ----------- TEST ------------ |
---|
| 212 | c Fichiers de Vincent |
---|
| 213 | c ----------------------------- |
---|
[892] | 214 | c do j=1,klev+1 |
---|
[3] | 215 | c ZFSNET(j)=zsolVE(j) |
---|
| 216 | c enddo |
---|
| 217 | c ----------------------------- |
---|
| 218 | c -------- FIN TEST ---------- |
---|
| 219 | |
---|
[892] | 220 | PTOPSW = ZFSNET(klev+1) |
---|
[3] | 221 | PSOLSW = ZFSNET(1) |
---|
| 222 | |
---|
| 223 | c Heating rates |
---|
| 224 | c ------------- |
---|
| 225 | c On utilise le gradient du flux pour calculer le taux de chauffage: |
---|
| 226 | c heat(K/s) = d(fluxnet) (W/m2) |
---|
| 227 | c *g (m/s2) |
---|
| 228 | c /(-dp) (epaisseur couche, en Pa=kg/m/s2) |
---|
| 229 | c /cp (J/kg/K) |
---|
| 230 | |
---|
[892] | 231 | do j=1,klev |
---|
[3] | 232 | ! ADAPTATION GCM POUR CP(T) |
---|
| 233 | PHEAT(j) = (ZFSNET(j+1)-ZFSNET(j)) |
---|
| 234 | . *RG/cpdet(pt(j)) / ((PPB(j)-PPB(j+1))*1.e5) |
---|
| 235 | PHEAT(j) = PHEAT(j)*dureejour ! K/venus_day |
---|
| 236 | enddo |
---|
| 237 | |
---|
| 238 | return |
---|
| 239 | end |
---|
| 240 | |
---|