| 1 | subroutine sw_venus_corrk(ngrid,nlayer, & |
|---|
| 2 | mu0,pplev,pplay,pt,tsurf,fract,dist_star, & |
|---|
| 3 | dtsw,nfluxsurf,nfluxtop,netflux,firstcall) |
|---|
| 4 | |
|---|
| 5 | use mod_phys_lmdz_para, only : is_master |
|---|
| 6 | use radinc_h, only: NBinfrared, NBvisible, L_NSPECTV, naerkind,& |
|---|
| 7 | L_LEVELS, L_NGAUSS, L_NLEVRAD, L_NLAYRAD, L_REFVAR |
|---|
| 8 | use radcommon_h, only: fzerov, gasv, & |
|---|
| 9 | gweight, pfgasref, pgasmax, pgasmin, & |
|---|
| 10 | pgasref, tgasmax, tgasmin, tgasref, scalep, & |
|---|
| 11 | stellarf, dwnv, tauray |
|---|
| 12 | use datafile_mod, only: datadir,banddir,corrkdir |
|---|
| 13 | use ioipsl_getin_p_mod, only: getin_p |
|---|
| 14 | use gases_h, only: ngasmx |
|---|
| 15 | use optcv_mod, only: optcv |
|---|
| 16 | use cpdet_phy_mod, only: cpdet |
|---|
| 17 | |
|---|
| 18 | implicit none |
|---|
| 19 | #include "YOMCST.h" |
|---|
| 20 | #include "clesphys.h" |
|---|
| 21 | |
|---|
| 22 | !================================================================== |
|---|
| 23 | ! |
|---|
| 24 | ! Purpose |
|---|
| 25 | ! ------- |
|---|
| 26 | ! Solve the radiative transfer using the correlated-k method for |
|---|
| 27 | ! the gaseous absorption and the Toon et al. (1989) method for |
|---|
| 28 | ! scatttering due to aerosols. |
|---|
| 29 | ! |
|---|
| 30 | ! Based on callcorrk (Generic GCM) |
|---|
| 31 | ! adapted for the SW in the Venus GCM (S. Lebonnois, summer 2020) |
|---|
| 32 | !================================================================== |
|---|
| 33 | |
|---|
| 34 | !----------------------------------------------------------------------- |
|---|
| 35 | ! Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid |
|---|
| 36 | ! Layer #1 is the layer near the ground. |
|---|
| 37 | ! Layer #nlayer is the layer at the top. |
|---|
| 38 | !----------------------------------------------------------------------- |
|---|
| 39 | |
|---|
| 40 | |
|---|
| 41 | ! INPUT |
|---|
| 42 | INTEGER,INTENT(IN) :: ngrid ! Number of atmospheric columns. |
|---|
| 43 | INTEGER,INTENT(IN) :: nlayer ! Number of atmospheric layers. |
|---|
| 44 | REAL,INTENT(IN) :: mu0(ngrid) ! Cosine of sun incident angle. |
|---|
| 45 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! Inter-layer pressure (Pa). |
|---|
| 46 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! Mid-layer pressure (Pa). |
|---|
| 47 | REAL,INTENT(IN) :: pt(ngrid,nlayer) ! Air temperature (K). |
|---|
| 48 | REAL,INTENT(IN) :: tsurf(ngrid) ! Surface temperature (K). |
|---|
| 49 | REAL,INTENT(IN) :: fract(ngrid) ! Fraction of day. |
|---|
| 50 | REAL,INTENT(IN) :: dist_star ! Distance star-planet (AU). |
|---|
| 51 | logical,intent(in) :: firstcall ! Signals first call to physics. |
|---|
| 52 | |
|---|
| 53 | ! OUTPUT |
|---|
| 54 | REAL,INTENT(OUT) :: dtsw(ngrid,nlayer) ! Heating rate (K/s) due to SW radiation. |
|---|
| 55 | REAL,INTENT(OUT) :: nfluxsurf(ngrid) ! Net SW flux absorbed at surface (W/m2). |
|---|
| 56 | REAL,INTENT(OUT) :: nfluxtop(ngrid) ! Net incident top of atmosphere SW flux (W/m2). |
|---|
| 57 | REAL,INTENT(OUT) :: netflux(ngrid,nlayer) ! net SW flux (W/m2). |
|---|
| 58 | |
|---|
| 59 | ! interesting variables |
|---|
| 60 | ! albedo could be an input map... For future adaptation |
|---|
| 61 | REAL :: albedo(ngrid,L_NSPECTV) ! Spectral Short Wavelengths Albedo. By MT2015 |
|---|
| 62 | ! potential outputs |
|---|
| 63 | REAL :: fluxabs_sw(ngrid) ! SW flux absorbed by the planet (W/m2). |
|---|
| 64 | REAL :: fluxtop_dn(ngrid) ! Incident top of atmosphere SW flux (W/m2). |
|---|
| 65 | REAL :: fluxsurf_sw(ngrid) ! Incident SW flux to surf (W/m2) |
|---|
| 66 | REAL :: OSR_nu(ngrid,L_NSPECTV) ! Outgoing SW radition in each band (Normalized to the band width (W/m2/cm-1). |
|---|
| 67 | |
|---|
| 68 | ! Globally varying aerosol optical properties on GCM grid ; not needed everywhere so not in radcommon_h. |
|---|
| 69 | REAL :: QVISsQREF3d(ngrid,nlayer,L_NSPECTV,naerkind) |
|---|
| 70 | REAL :: omegaVIS3d(ngrid,nlayer,L_NSPECTV,naerkind) |
|---|
| 71 | REAL :: gVIS3d(ngrid,nlayer,L_NSPECTV,naerkind) |
|---|
| 72 | |
|---|
| 73 | REAL :: aerosol(ngrid,nlayer,naerkind) ! Aerosol tau at reference wavelenght. |
|---|
| 74 | REAL :: tau_col(ngrid) ! Diagnostic from aeropacity. |
|---|
| 75 | |
|---|
| 76 | REAL,ALLOCATABLE,SAVE :: reffrad(:,:,:) ! aerosol effective radius (m) |
|---|
| 77 | REAL,ALLOCATABLE,SAVE :: nueffrad(:,:,:) ! aerosol effective variance |
|---|
| 78 | !$OMP THREADPRIVATE(reffrad,nueffrad) |
|---|
| 79 | |
|---|
| 80 | !----------------------------------------------------------------------- |
|---|
| 81 | ! Declaration of the variables required by correlated-k subroutines |
|---|
| 82 | ! Numbered from top to bottom (unlike in the GCM) |
|---|
| 83 | !----------------------------------------------------------------------- |
|---|
| 84 | |
|---|
| 85 | REAL*8 tmid(L_LEVELS),pmid(L_LEVELS) |
|---|
| 86 | REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS) |
|---|
| 87 | |
|---|
| 88 | ! Optical values for the optci/cv subroutines |
|---|
| 89 | REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV) |
|---|
| 90 | ! NB: Arrays below are "save" to avoid reallocating them at every call |
|---|
| 91 | ! not because their content needs be reused from call to the next |
|---|
| 92 | REAL*8,allocatable,save :: dtauv(:,:,:) |
|---|
| 93 | REAL*8,allocatable,save :: cosbv(:,:,:) |
|---|
| 94 | REAL*8,allocatable,save :: wbarv(:,:,:) |
|---|
| 95 | !$OMP THREADPRIVATE(dtauv,cosbv,wbarv) |
|---|
| 96 | REAL*8,allocatable,save :: tauv(:,:,:) |
|---|
| 97 | REAL*8,allocatable,save :: taucumv(:,:,:) |
|---|
| 98 | !$OMP THREADPRIVATE(tauv,taucumv) |
|---|
| 99 | REAL*8 tauaero(L_LEVELS,naerkind) |
|---|
| 100 | REAL*8 nfluxtopv,fluxtopvdn |
|---|
| 101 | REAL*8 nfluxoutv_nu(L_NSPECTV) ! Outgoing band-resolved VI flux at TOA (W/m2). |
|---|
| 102 | REAL*8 fmnetv(L_NLAYRAD) |
|---|
| 103 | REAL*8 fluxupv(L_NLAYRAD) |
|---|
| 104 | REAL*8 fluxdnv(L_NLAYRAD) |
|---|
| 105 | REAL*8 acosz |
|---|
| 106 | REAL*8 albv(L_NSPECTV) ! Spectral Visible Albedo. |
|---|
| 107 | |
|---|
| 108 | INTEGER ig,l,k,nw,iaer |
|---|
| 109 | |
|---|
| 110 | real*8,allocatable,save :: taugsurf(:,:) |
|---|
| 111 | !$OMP THREADPRIVATE(taugsurf) |
|---|
| 112 | real*8 qvar(L_LEVELS) ! Mixing ratio of variable component (mol/mol). |
|---|
| 113 | |
|---|
| 114 | ! Local aerosol optical properties for each column on RADIATIVE grid. |
|---|
| 115 | real*8,save,allocatable :: QXVAER(:,:,:) ! Extinction coeff (QVISsQREF*QREFvis) |
|---|
| 116 | real*8,save,allocatable :: QSVAER(:,:,:) |
|---|
| 117 | real*8,save,allocatable :: GVAER(:,:,:) |
|---|
| 118 | !$OMP THREADPRIVATE(QXVAER,QSVAER,GVAER) |
|---|
| 119 | real, dimension(:,:,:), save, allocatable :: QREFvis3d |
|---|
| 120 | !$OMP THREADPRIVATE(QREFvis3d) |
|---|
| 121 | |
|---|
| 122 | |
|---|
| 123 | ! Miscellaneous : |
|---|
| 124 | real*8 temp,temp1,temp2,pweight |
|---|
| 125 | character(len=10) :: tmp1 |
|---|
| 126 | character(len=10) :: tmp2 |
|---|
| 127 | character(len=100) :: message |
|---|
| 128 | character(len=10),parameter :: subname="sw_corrk" |
|---|
| 129 | |
|---|
| 130 | ! For fixed water vapour profiles. |
|---|
| 131 | integer i_var |
|---|
| 132 | real RH |
|---|
| 133 | real psat,qsat |
|---|
| 134 | |
|---|
| 135 | logical OLRz |
|---|
| 136 | real*8 NFLUXGNDV_nu(L_NSPECTV) |
|---|
| 137 | |
|---|
| 138 | ! Included by RW for runaway greenhouse 1D study. |
|---|
| 139 | real vtmp(nlayer) |
|---|
| 140 | REAL*8 muvarrad(L_LEVELS) |
|---|
| 141 | |
|---|
| 142 | |
|---|
| 143 | !=============================================================== |
|---|
| 144 | ! I.a Initialization on first call |
|---|
| 145 | !=============================================================== |
|---|
| 146 | |
|---|
| 147 | |
|---|
| 148 | if(firstcall) then |
|---|
| 149 | |
|---|
| 150 | call iniaerosol() |
|---|
| 151 | |
|---|
| 152 | allocate(QXVAER(L_LEVELS,L_NSPECTV,naerkind)) |
|---|
| 153 | allocate(QSVAER(L_LEVELS,L_NSPECTV,naerkind)) |
|---|
| 154 | allocate(GVAER(L_LEVELS,L_NSPECTV,naerkind)) |
|---|
| 155 | |
|---|
| 156 | ALLOCATE(QREFvis3d(ngrid,nlayer,naerkind)) |
|---|
| 157 | ! Effective radius and variance of the aerosols |
|---|
| 158 | allocate(reffrad(ngrid,nlayer,naerkind)) |
|---|
| 159 | allocate(nueffrad(ngrid,nlayer,naerkind)) |
|---|
| 160 | |
|---|
| 161 | !-------------------------------------------------- |
|---|
| 162 | ! Set up correlated k |
|---|
| 163 | !-------------------------------------------------- |
|---|
| 164 | |
|---|
| 165 | print*, "callcorrk: Correlated-k data base folder:",trim(datadir) |
|---|
| 166 | print*, "corrkdir = ",corrkdir |
|---|
| 167 | write( tmp1, '(i3)' ) NBinfrared |
|---|
| 168 | write( tmp2, '(i3)' ) NBvisible |
|---|
| 169 | banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2)) |
|---|
| 170 | banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir)) |
|---|
| 171 | |
|---|
| 172 | call su_gases ! reading of gases.def bypassed in this, hardcoded. cf su_gases.F90 |
|---|
| 173 | call su_aer_radii(ngrid,nlayer,reffrad,nueffrad) |
|---|
| 174 | call setspv ! Basic visible properties. |
|---|
| 175 | call sugas_corrk ! Set up gaseous absorption properties. |
|---|
| 176 | call suaer_corrk ! Set up aerosol optical properties. |
|---|
| 177 | |
|---|
| 178 | ! now that L_NGAUSS has been initialized (by sugas_corrk) |
|---|
| 179 | ! allocate related arrays |
|---|
| 180 | ALLOCATE(dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS)) |
|---|
| 181 | ALLOCATE(cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS)) |
|---|
| 182 | ALLOCATE(wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS)) |
|---|
| 183 | ALLOCATE(tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS)) |
|---|
| 184 | ALLOCATE(taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS)) |
|---|
| 185 | ALLOCATE(taugsurf(L_NSPECTV,L_NGAUSS-1)) |
|---|
| 186 | |
|---|
| 187 | OSR_nu(:,:) = 0. |
|---|
| 188 | |
|---|
| 189 | ! Surface albedo in the solar range |
|---|
| 190 | ! example of data: Cutler et al 2020 |
|---|
| 191 | ! reflectance of basalts in UV and visible varies from a few to 10% |
|---|
| 192 | ! it also depends on mineralogy |
|---|
| 193 | ! in the absence of further data, I take 5% as a mean value... Sensitivity could be tested... |
|---|
| 194 | albedo(:,:) = 0.05 |
|---|
| 195 | |
|---|
| 196 | end if ! of if (firstcall) |
|---|
| 197 | |
|---|
| 198 | !======================================================================= |
|---|
| 199 | ! I.b Initialization on every call |
|---|
| 200 | !======================================================================= |
|---|
| 201 | |
|---|
| 202 | qxvaer(:,:,:)=0.0 |
|---|
| 203 | qsvaer(:,:,:)=0.0 |
|---|
| 204 | gvaer(:,:,:) =0.0 |
|---|
| 205 | |
|---|
| 206 | ! How much light do we get ? |
|---|
| 207 | do nw=1,L_NSPECTV |
|---|
| 208 | stel(nw)=stellarf(nw)/(dist_star**2) |
|---|
| 209 | end do |
|---|
| 210 | |
|---|
| 211 | ! Get 3D aerosol optical properties. |
|---|
| 212 | call aeroptproperties(ngrid,nlayer,reffrad,nueffrad, & |
|---|
| 213 | QVISsQREF3d,omegaVIS3d,gVIS3d,QREFvis3d) |
|---|
| 214 | |
|---|
| 215 | ! Get aerosol optical depths. |
|---|
| 216 | call aeropacity(ngrid,nlayer,pplay,pplev,pt,aerosol, & |
|---|
| 217 | reffrad,nueffrad,QREFvis3d,tau_col) |
|---|
| 218 | |
|---|
| 219 | !----------------------------------------------------------------------- |
|---|
| 220 | !----------------------------------------------------------------------- |
|---|
| 221 | do ig=1,ngrid ! Starting Big Loop over every GCM column |
|---|
| 222 | !----------------------------------------------------------------------- |
|---|
| 223 | !----------------------------------------------------------------------- |
|---|
| 224 | |
|---|
| 225 | !======================================================================= |
|---|
| 226 | ! II. Transformation of the GCM variables |
|---|
| 227 | !======================================================================= |
|---|
| 228 | |
|---|
| 229 | !----------------------------------------------------------------------- |
|---|
| 230 | ! Aerosol optical properties Qext, Qscat and g. |
|---|
| 231 | ! The transformation in the vertical is the same as for temperature. |
|---|
| 232 | !----------------------------------------------------------------------- |
|---|
| 233 | |
|---|
| 234 | do iaer=1,naerkind |
|---|
| 235 | ! Shortwave. |
|---|
| 236 | do nw=1,L_NSPECTV |
|---|
| 237 | |
|---|
| 238 | do l=1,nlayer |
|---|
| 239 | |
|---|
| 240 | temp1=QVISsQREF3d(ig,nlayer+1-l,nw,iaer) & |
|---|
| 241 | *QREFvis3d(ig,nlayer+1-l,iaer) |
|---|
| 242 | |
|---|
| 243 | temp2=QVISsQREF3d(ig,max(nlayer-l,1),nw,iaer) & |
|---|
| 244 | *QREFvis3d(ig,max(nlayer-l,1),iaer) |
|---|
| 245 | |
|---|
| 246 | qxvaer(2*l,nw,iaer) = temp1 |
|---|
| 247 | qxvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
|---|
| 248 | |
|---|
| 249 | temp1=temp1*omegavis3d(ig,nlayer+1-l,nw,iaer) |
|---|
| 250 | temp2=temp2*omegavis3d(ig,max(nlayer-l,1),nw,iaer) |
|---|
| 251 | |
|---|
| 252 | qsvaer(2*l,nw,iaer) = temp1 |
|---|
| 253 | qsvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
|---|
| 254 | |
|---|
| 255 | temp1=gvis3d(ig,nlayer+1-l,nw,iaer) |
|---|
| 256 | temp2=gvis3d(ig,max(nlayer-l,1),nw,iaer) |
|---|
| 257 | |
|---|
| 258 | gvaer(2*l,nw,iaer) = temp1 |
|---|
| 259 | gvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
|---|
| 260 | |
|---|
| 261 | end do ! nlayer |
|---|
| 262 | |
|---|
| 263 | qxvaer(1,nw,iaer)=qxvaer(2,nw,iaer) |
|---|
| 264 | qxvaer(2*nlayer+1,nw,iaer)=0. |
|---|
| 265 | |
|---|
| 266 | qsvaer(1,nw,iaer)=qsvaer(2,nw,iaer) |
|---|
| 267 | qsvaer(2*nlayer+1,nw,iaer)=0. |
|---|
| 268 | |
|---|
| 269 | gvaer(1,nw,iaer)=gvaer(2,nw,iaer) |
|---|
| 270 | gvaer(2*nlayer+1,nw,iaer)=0. |
|---|
| 271 | |
|---|
| 272 | end do ! L_NSPECTV |
|---|
| 273 | end do ! naerkind |
|---|
| 274 | |
|---|
| 275 | ! Test / Correct for freaky s. s. albedo values. |
|---|
| 276 | do iaer=1,naerkind |
|---|
| 277 | do k=1,L_LEVELS |
|---|
| 278 | |
|---|
| 279 | do nw=1,L_NSPECTV |
|---|
| 280 | if(qsvaer(k,nw,iaer).gt.1.05*qxvaer(k,nw,iaer))then |
|---|
| 281 | message='Serious problems with qsvaer values' |
|---|
| 282 | call abort_physic(subname,message,1) |
|---|
| 283 | endif |
|---|
| 284 | if(qsvaer(k,nw,iaer).gt.qxvaer(k,nw,iaer))then |
|---|
| 285 | qsvaer(k,nw,iaer)=qxvaer(k,nw,iaer) |
|---|
| 286 | endif |
|---|
| 287 | end do |
|---|
| 288 | |
|---|
| 289 | end do ! L_LEVELS |
|---|
| 290 | end do ! naerkind |
|---|
| 291 | |
|---|
| 292 | !----------------------------------------------------------------------- |
|---|
| 293 | ! Aerosol optical depths |
|---|
| 294 | !----------------------------------------------------------------------- |
|---|
| 295 | |
|---|
| 296 | do iaer=1,naerkind |
|---|
| 297 | do k=0,nlayer-1 |
|---|
| 298 | |
|---|
| 299 | pweight=(pplay(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))/ & |
|---|
| 300 | (pplev(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1)) |
|---|
| 301 | ! As 'aerosol' is at reference (visible) wavelenght we scale it as |
|---|
| 302 | ! it will be multplied by qxi/v in optci/v |
|---|
| 303 | temp=aerosol(ig,L_NLAYRAD-k,iaer)/QREFvis3d(ig,L_NLAYRAD-k,iaer) |
|---|
| 304 | tauaero(2*k+2,iaer)=max(temp*pweight,0.d0) |
|---|
| 305 | tauaero(2*k+3,iaer)=max(temp-tauaero(2*k+2,iaer),0.d0) |
|---|
| 306 | |
|---|
| 307 | end do |
|---|
| 308 | ! boundary conditions |
|---|
| 309 | tauaero(1,iaer) = tauaero(2,iaer) |
|---|
| 310 | !tauaero(1,iaer) = 0. |
|---|
| 311 | !JL18 at time of testing, the two above conditions gave the same results bit for bit. |
|---|
| 312 | |
|---|
| 313 | end do ! naerkind |
|---|
| 314 | |
|---|
| 315 | ! Albedo |
|---|
| 316 | DO nw=1,L_NSPECTV ! Short Wave loop. |
|---|
| 317 | albv(nw)=albedo(ig,nw) |
|---|
| 318 | ENDDO |
|---|
| 319 | |
|---|
| 320 | acosz=mu0(ig) ! Cosine of sun incident angle : 3D simulations or local 1D simulations using latitude. |
|---|
| 321 | |
|---|
| 322 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 323 | !!! Note by JL13 : In the following, some indices were changed in the interpolations, |
|---|
| 324 | !!! so that the model results are less dependent on the number of layers ! |
|---|
| 325 | !!! |
|---|
| 326 | !!! --- The older versions are commented with the comment !JL13index --- |
|---|
| 327 | !!! |
|---|
| 328 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 329 | |
|---|
| 330 | |
|---|
| 331 | !----------------------------------------------------------------------- |
|---|
| 332 | ! Variable species... Not used for Venus |
|---|
| 333 | !----------------------------------------------------------------------- |
|---|
| 334 | |
|---|
| 335 | do k=1,L_LEVELS |
|---|
| 336 | qvar(k) = 1.0D-7 |
|---|
| 337 | end do |
|---|
| 338 | |
|---|
| 339 | DO l=1,nlayer |
|---|
| 340 | muvarrad(2*l) = RMD |
|---|
| 341 | muvarrad(2*l+1) = RMD |
|---|
| 342 | END DO |
|---|
| 343 | |
|---|
| 344 | muvarrad(1) = muvarrad(2) |
|---|
| 345 | muvarrad(2*nlayer+1)=RMD |
|---|
| 346 | |
|---|
| 347 | ! Keep values inside limits for which we have radiative transfer coefficients !!! |
|---|
| 348 | if(L_REFVAR.gt.1)then ! (there was a bug here) |
|---|
| 349 | message='no variable species for Venus yet' |
|---|
| 350 | call abort_physic(subname,message,1) |
|---|
| 351 | endif |
|---|
| 352 | |
|---|
| 353 | !----------------------------------------------------------------------- |
|---|
| 354 | ! Pressure and temperature |
|---|
| 355 | !----------------------------------------------------------------------- |
|---|
| 356 | |
|---|
| 357 | DO l=1,nlayer |
|---|
| 358 | plevrad(2*l) = pplay(ig,nlayer+1-l)/scalep |
|---|
| 359 | plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep |
|---|
| 360 | tlevrad(2*l) = pt(ig,nlayer+1-l) |
|---|
| 361 | tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2 |
|---|
| 362 | END DO |
|---|
| 363 | |
|---|
| 364 | plevrad(1) = 0. |
|---|
| 365 | ! plevrad(2) = 0. !! JL18 enabling this line puts the radiative top at p=0 which was the idea before, but does not seem to perform best after all. |
|---|
| 366 | |
|---|
| 367 | tlevrad(1) = tlevrad(2) |
|---|
| 368 | tlevrad(2*nlayer+1)=tsurf(ig) |
|---|
| 369 | |
|---|
| 370 | pmid(1) = pplay(ig,nlayer)/scalep |
|---|
| 371 | pmid(2) = pmid(1) |
|---|
| 372 | |
|---|
| 373 | tmid(1) = tlevrad(2) |
|---|
| 374 | tmid(2) = tmid(1) |
|---|
| 375 | |
|---|
| 376 | DO l=1,L_NLAYRAD-1 |
|---|
| 377 | tmid(2*l+1) = tlevrad(2*l+1) |
|---|
| 378 | tmid(2*l+2) = tlevrad(2*l+1) |
|---|
| 379 | pmid(2*l+1) = plevrad(2*l+1) |
|---|
| 380 | pmid(2*l+2) = plevrad(2*l+1) |
|---|
| 381 | END DO |
|---|
| 382 | pmid(L_LEVELS) = plevrad(L_LEVELS) |
|---|
| 383 | tmid(L_LEVELS) = tlevrad(L_LEVELS) |
|---|
| 384 | |
|---|
| 385 | !!Alternative interpolation: |
|---|
| 386 | ! pmid(3) = pmid(1) |
|---|
| 387 | ! pmid(4) = pmid(1) |
|---|
| 388 | ! tmid(3) = tmid(1) |
|---|
| 389 | ! tmid(4) = tmid(1) |
|---|
| 390 | ! DO l=2,L_NLAYRAD-1 |
|---|
| 391 | ! tmid(2*l+1) = tlevrad(2*l) |
|---|
| 392 | ! tmid(2*l+2) = tlevrad(2*l) |
|---|
| 393 | ! pmid(2*l+1) = plevrad(2*l) |
|---|
| 394 | ! pmid(2*l+2) = plevrad(2*l) |
|---|
| 395 | ! END DO |
|---|
| 396 | ! pmid(L_LEVELS) = plevrad(L_LEVELS-1) |
|---|
| 397 | ! tmid(L_LEVELS) = tlevrad(L_LEVELS-1) |
|---|
| 398 | |
|---|
| 399 | ! Test for out-of-bounds pressure. |
|---|
| 400 | if(plevrad(3).lt.pgasmin)then |
|---|
| 401 | ! print*,'Minimum pressure is outside the radiative' |
|---|
| 402 | ! print*,'transfer kmatrix bounds, exiting.' |
|---|
| 403 | ! message="Minimum pressure outside of kmatrix bounds" |
|---|
| 404 | ! call abort_physic(subname,message,1) |
|---|
| 405 | elseif(plevrad(L_LEVELS).gt.pgasmax)then |
|---|
| 406 | ! print*,'Maximum pressure is outside the radiative' |
|---|
| 407 | ! print*,'transfer kmatrix bounds, exiting.' |
|---|
| 408 | ! message="Maximum pressure outside of kmatrix bounds" |
|---|
| 409 | ! call abort_physic(subname,message,1) |
|---|
| 410 | endif |
|---|
| 411 | |
|---|
| 412 | ! Test for out-of-bounds temperature. |
|---|
| 413 | do k=1,L_LEVELS |
|---|
| 414 | |
|---|
| 415 | if(tlevrad(k).lt.tgasmin)then |
|---|
| 416 | print*,'Minimum temperature is outside the radiative' |
|---|
| 417 | print*,'transfer kmatrix bounds' |
|---|
| 418 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
|---|
| 419 | print*,"tgasmin=",tgasmin |
|---|
| 420 | ! if (strictboundcorrk) then |
|---|
| 421 | ! message="Minimum temperature outside of kmatrix bounds" |
|---|
| 422 | ! call abort_physic(subname,message,1) |
|---|
| 423 | ! else |
|---|
| 424 | print*,'***********************************************' |
|---|
| 425 | print*,'we allow model to continue with tlevrad<tgasmin' |
|---|
| 426 | print*,' ... we assume we know what you are doing ... ' |
|---|
| 427 | print*,' ... but do not let this happen too often ... ' |
|---|
| 428 | print*,'***********************************************' |
|---|
| 429 | !tlevrad(k)=tgasmin ! Used in the source function ! |
|---|
| 430 | ! endif |
|---|
| 431 | elseif(tlevrad(k).gt.tgasmax)then |
|---|
| 432 | print*,'Maximum temperature is outside the radiative' |
|---|
| 433 | print*,'transfer kmatrix bounds, exiting.' |
|---|
| 434 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
|---|
| 435 | print*,"tgasmax=",tgasmax |
|---|
| 436 | ! if (strictboundcorrk) then |
|---|
| 437 | ! message="Maximum temperature outside of kmatrix bounds" |
|---|
| 438 | ! call abort_physic(subname,message,1) |
|---|
| 439 | ! else |
|---|
| 440 | print*,'***********************************************' |
|---|
| 441 | print*,'we allow model to continue with tlevrad>tgasmax' |
|---|
| 442 | print*,' ... we assume we know what you are doing ... ' |
|---|
| 443 | print*,' ... but do not let this happen too often ... ' |
|---|
| 444 | print*,'***********************************************' |
|---|
| 445 | !tlevrad(k)=tgasmax ! Used in the source function ! |
|---|
| 446 | ! endif |
|---|
| 447 | endif |
|---|
| 448 | |
|---|
| 449 | enddo |
|---|
| 450 | |
|---|
| 451 | do k=1,L_NLAYRAD+1 |
|---|
| 452 | if(tmid(k).lt.tgasmin)then |
|---|
| 453 | print*,'Minimum temperature is outside the radiative' |
|---|
| 454 | print*,'transfer kmatrix bounds, exiting.' |
|---|
| 455 | print*,"k=",k," tmid(k)=",tmid(k) |
|---|
| 456 | print*,"tgasmin=",tgasmin |
|---|
| 457 | ! if (strictboundcorrk) then |
|---|
| 458 | ! message="Minimum temperature outside of kmatrix bounds" |
|---|
| 459 | ! call abort_physic(subname,message,1) |
|---|
| 460 | ! else |
|---|
| 461 | print*,'***********************************************' |
|---|
| 462 | print*,'we allow model to continue but with tmid=tgasmin' |
|---|
| 463 | print*,' ... we assume we know what you are doing ... ' |
|---|
| 464 | print*,' ... but do not let this happen too often ... ' |
|---|
| 465 | print*,'***********************************************' |
|---|
| 466 | tmid(k)=tgasmin |
|---|
| 467 | ! endif |
|---|
| 468 | elseif(tmid(k).gt.tgasmax)then |
|---|
| 469 | print*,'Maximum temperature is outside the radiative' |
|---|
| 470 | print*,'transfer kmatrix bounds, exiting.' |
|---|
| 471 | print*,"k=",k," tmid(k)=",tmid(k) |
|---|
| 472 | print*,"tgasmax=",tgasmax |
|---|
| 473 | ! if (strictboundcorrk) then |
|---|
| 474 | ! message="Maximum temperature outside of kmatrix bounds" |
|---|
| 475 | ! call abort_physic(subname,message,1) |
|---|
| 476 | ! else |
|---|
| 477 | print*,'***********************************************' |
|---|
| 478 | print*,'we allow model to continue but with tmid=tgasmax' |
|---|
| 479 | print*,' ... we assume we know what you are doing ... ' |
|---|
| 480 | print*,' ... but do not let this happen too often ... ' |
|---|
| 481 | print*,'***********************************************' |
|---|
| 482 | tmid(k)=tgasmax |
|---|
| 483 | ! endif |
|---|
| 484 | endif |
|---|
| 485 | enddo |
|---|
| 486 | |
|---|
| 487 | !======================================================================= |
|---|
| 488 | ! III. Calling the main radiative transfer subroutines |
|---|
| 489 | !======================================================================= |
|---|
| 490 | |
|---|
| 491 | !----------------------------------------------------------------------- |
|---|
| 492 | ! Short Wave Part |
|---|
| 493 | !----------------------------------------------------------------------- |
|---|
| 494 | |
|---|
| 495 | if(fract(ig) .ge. 1.0e-4) then ! Only during daylight. |
|---|
| 496 | do nw=1,L_NSPECTV |
|---|
| 497 | stel_fract(nw)= stel(nw) * fract(ig) |
|---|
| 498 | end do |
|---|
| 499 | |
|---|
| 500 | call optcv(dtauv,tauv,taucumv,plevrad, & |
|---|
| 501 | qxvaer,qsvaer,gvaer,wbarv,cosbv,tauray,tauaero, & |
|---|
| 502 | tmid,pmid,taugsurf,qvar,muvarrad) |
|---|
| 503 | |
|---|
| 504 | call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv, & |
|---|
| 505 | acosz,stel_fract, & |
|---|
| 506 | nfluxtopv,fluxtopvdn,nfluxoutv_nu,nfluxgndv_nu, & |
|---|
| 507 | fmnetv,fluxupv,fluxdnv,fzerov,taugsurf) |
|---|
| 508 | |
|---|
| 509 | else ! During the night, fluxes = 0. |
|---|
| 510 | nfluxtopv = 0.0d0 |
|---|
| 511 | fluxtopvdn = 0.0d0 |
|---|
| 512 | nfluxoutv_nu(:) = 0.0d0 |
|---|
| 513 | nfluxgndv_nu(:) = 0.0d0 |
|---|
| 514 | do l=1,L_NLAYRAD |
|---|
| 515 | fmnetv(l)=0.0d0 |
|---|
| 516 | fluxupv(l)=0.0d0 |
|---|
| 517 | fluxdnv(l)=0.0d0 |
|---|
| 518 | end do |
|---|
| 519 | end if |
|---|
| 520 | |
|---|
| 521 | !----------------------------------------------------------------------- |
|---|
| 522 | ! Transformation of the correlated-k code outputs |
|---|
| 523 | ! (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw) |
|---|
| 524 | |
|---|
| 525 | ! Net incident flux tops, positive downward |
|---|
| 526 | nfluxtop(ig) = -1.*nfluxtopv |
|---|
| 527 | |
|---|
| 528 | ! Net incident flux at surface, positive downward |
|---|
| 529 | nfluxsurf(ig) = -1.*fmnetv(L_NLAYRAD) |
|---|
| 530 | |
|---|
| 531 | ! Flux incident at the top of the atmosphere |
|---|
| 532 | fluxtop_dn(ig)= fluxtopvdn |
|---|
| 533 | |
|---|
| 534 | fluxabs_sw(ig) = real(-nfluxtopv) |
|---|
| 535 | fluxsurf_sw(ig) = real(fluxdnv(L_NLAYRAD)) |
|---|
| 536 | |
|---|
| 537 | if(fluxtop_dn(ig).lt.0.0)then |
|---|
| 538 | print*,'Achtung! fluxtop_dn has lost the plot!' |
|---|
| 539 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
|---|
| 540 | print*,'acosz=',acosz |
|---|
| 541 | print*,'aerosol=',aerosol(ig,:,:) |
|---|
| 542 | print*,'temp= ',pt(ig,:) |
|---|
| 543 | print*,'pplay= ',pplay(ig,:) |
|---|
| 544 | message="Achtung! fluxtop_dn has lost the plot!" |
|---|
| 545 | call abort_physic(subname,message,1) |
|---|
| 546 | endif |
|---|
| 547 | |
|---|
| 548 | ! Net solar flux, positive downward |
|---|
| 549 | |
|---|
| 550 | do l=1,L_NLAYRAD |
|---|
| 551 | netflux(ig,L_NLAYRAD+1-l)= -1.*fmnetv(l) |
|---|
| 552 | enddo |
|---|
| 553 | netflux(ig,L_NLAYRAD+1) = -1.*nfluxtopv |
|---|
| 554 | |
|---|
| 555 | ! Finally, the heating rates |
|---|
| 556 | |
|---|
| 557 | DO l=2,L_NLAYRAD |
|---|
| 558 | dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1)) & |
|---|
| 559 | *RG/(cpdet(tmid(l))*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
|---|
| 560 | END DO |
|---|
| 561 | |
|---|
| 562 | ! These are values at top of atmosphere |
|---|
| 563 | dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv) & |
|---|
| 564 | *RG/(cpdet(tmid(1))*scalep*(plevrad(3)-plevrad(2))) |
|---|
| 565 | |
|---|
| 566 | !----------------------------------------------------------------------- |
|---|
| 567 | !----------------------------------------------------------------------- |
|---|
| 568 | end do ! End of big loop over every GCM column. |
|---|
| 569 | !----------------------------------------------------------------------- |
|---|
| 570 | !----------------------------------------------------------------------- |
|---|
| 571 | |
|---|
| 572 | end subroutine sw_venus_corrk |
|---|
| 573 | |
|---|