1 | subroutine sw_venus_corrk(ngrid,nlayer, & |
---|
2 | mu0,pplev,pplay,pt,tsurf,fract,dist_star, & |
---|
3 | dtsw,nfluxsurf,nfluxtop,netflux,firstcall) |
---|
4 | |
---|
5 | use mod_phys_lmdz_para, only : is_master |
---|
6 | use radinc_h, only: NBinfrared, NBvisible, L_NSPECTV, naerkind,& |
---|
7 | L_LEVELS, L_NGAUSS, L_NLEVRAD, L_NLAYRAD, L_REFVAR |
---|
8 | use radcommon_h, only: fzerov, gasv, & |
---|
9 | gweight, pfgasref, pgasmax, pgasmin, & |
---|
10 | pgasref, tgasmax, tgasmin, tgasref, scalep, & |
---|
11 | stellarf, dwnv, tauray |
---|
12 | use datafile_mod, only: datadir,banddir,corrkdir |
---|
13 | use ioipsl_getin_p_mod, only: getin_p |
---|
14 | use gases_h, only: ngasmx |
---|
15 | use optcv_mod, only: optcv |
---|
16 | use cpdet_phy_mod, only: cpdet |
---|
17 | |
---|
18 | implicit none |
---|
19 | #include "YOMCST.h" |
---|
20 | #include "clesphys.h" |
---|
21 | |
---|
22 | !================================================================== |
---|
23 | ! |
---|
24 | ! Purpose |
---|
25 | ! ------- |
---|
26 | ! Solve the radiative transfer using the correlated-k method for |
---|
27 | ! the gaseous absorption and the Toon et al. (1989) method for |
---|
28 | ! scatttering due to aerosols. |
---|
29 | ! |
---|
30 | ! Based on callcorrk (Generic GCM) |
---|
31 | ! adapted for the SW in the Venus GCM (S. Lebonnois, summer 2020) |
---|
32 | !================================================================== |
---|
33 | |
---|
34 | !----------------------------------------------------------------------- |
---|
35 | ! Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid |
---|
36 | ! Layer #1 is the layer near the ground. |
---|
37 | ! Layer #nlayer is the layer at the top. |
---|
38 | !----------------------------------------------------------------------- |
---|
39 | |
---|
40 | |
---|
41 | ! INPUT |
---|
42 | INTEGER,INTENT(IN) :: ngrid ! Number of atmospheric columns. |
---|
43 | INTEGER,INTENT(IN) :: nlayer ! Number of atmospheric layers. |
---|
44 | REAL,INTENT(IN) :: mu0(ngrid) ! Cosine of sun incident angle. |
---|
45 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! Inter-layer pressure (Pa). |
---|
46 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! Mid-layer pressure (Pa). |
---|
47 | REAL,INTENT(IN) :: pt(ngrid,nlayer) ! Air temperature (K). |
---|
48 | REAL,INTENT(IN) :: tsurf(ngrid) ! Surface temperature (K). |
---|
49 | REAL,INTENT(IN) :: fract(ngrid) ! Fraction of day. |
---|
50 | REAL,INTENT(IN) :: dist_star ! Distance star-planet (AU). |
---|
51 | logical,intent(in) :: firstcall ! Signals first call to physics. |
---|
52 | |
---|
53 | ! OUTPUT |
---|
54 | REAL,INTENT(OUT) :: dtsw(ngrid,nlayer) ! Heating rate (K/s) due to SW radiation. |
---|
55 | REAL,INTENT(OUT) :: nfluxsurf(ngrid) ! Net SW flux absorbed at surface (W/m2). |
---|
56 | REAL,INTENT(OUT) :: nfluxtop(ngrid) ! Net incident top of atmosphere SW flux (W/m2). |
---|
57 | REAL,INTENT(OUT) :: netflux(ngrid,nlayer) ! net SW flux (W/m2). |
---|
58 | |
---|
59 | ! interesting variables |
---|
60 | ! albedo could be an input map... For future adaptation |
---|
61 | REAL :: albedo(ngrid,L_NSPECTV) ! Spectral Short Wavelengths Albedo. By MT2015 |
---|
62 | ! potential outputs |
---|
63 | REAL :: fluxabs_sw(ngrid) ! SW flux absorbed by the planet (W/m2). |
---|
64 | REAL :: fluxtop_dn(ngrid) ! Incident top of atmosphere SW flux (W/m2). |
---|
65 | REAL :: fluxsurf_sw(ngrid) ! Incident SW flux to surf (W/m2) |
---|
66 | REAL :: OSR_nu(ngrid,L_NSPECTV) ! Outgoing SW radition in each band (Normalized to the band width (W/m2/cm-1). |
---|
67 | |
---|
68 | ! Globally varying aerosol optical properties on GCM grid ; not needed everywhere so not in radcommon_h. |
---|
69 | REAL :: QVISsQREF3d(ngrid,nlayer,L_NSPECTV,naerkind) |
---|
70 | REAL :: omegaVIS3d(ngrid,nlayer,L_NSPECTV,naerkind) |
---|
71 | REAL :: gVIS3d(ngrid,nlayer,L_NSPECTV,naerkind) |
---|
72 | |
---|
73 | REAL :: aerosol(ngrid,nlayer,naerkind) ! Aerosol tau at reference wavelenght. |
---|
74 | REAL :: tau_col(ngrid) ! Diagnostic from aeropacity. |
---|
75 | |
---|
76 | REAL,ALLOCATABLE,SAVE :: reffrad(:,:,:) ! aerosol effective radius (m) |
---|
77 | REAL,ALLOCATABLE,SAVE :: nueffrad(:,:,:) ! aerosol effective variance |
---|
78 | !$OMP THREADPRIVATE(reffrad,nueffrad) |
---|
79 | |
---|
80 | !----------------------------------------------------------------------- |
---|
81 | ! Declaration of the variables required by correlated-k subroutines |
---|
82 | ! Numbered from top to bottom (unlike in the GCM) |
---|
83 | !----------------------------------------------------------------------- |
---|
84 | |
---|
85 | REAL*8 tmid(L_LEVELS),pmid(L_LEVELS) |
---|
86 | REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS) |
---|
87 | |
---|
88 | ! Optical values for the optci/cv subroutines |
---|
89 | REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV) |
---|
90 | ! NB: Arrays below are "save" to avoid reallocating them at every call |
---|
91 | ! not because their content needs be reused from call to the next |
---|
92 | REAL*8,allocatable,save :: dtauv(:,:,:) |
---|
93 | REAL*8,allocatable,save :: cosbv(:,:,:) |
---|
94 | REAL*8,allocatable,save :: wbarv(:,:,:) |
---|
95 | !$OMP THREADPRIVATE(dtauv,cosbv,wbarv) |
---|
96 | REAL*8,allocatable,save :: tauv(:,:,:) |
---|
97 | REAL*8,allocatable,save :: taucumv(:,:,:) |
---|
98 | !$OMP THREADPRIVATE(tauv,taucumv) |
---|
99 | REAL*8 tauaero(L_LEVELS,naerkind) |
---|
100 | REAL*8 nfluxtopv,fluxtopvdn |
---|
101 | REAL*8 nfluxoutv_nu(L_NSPECTV) ! Outgoing band-resolved VI flux at TOA (W/m2). |
---|
102 | REAL*8 fmnetv(L_NLAYRAD) |
---|
103 | REAL*8 fluxupv(L_NLAYRAD) |
---|
104 | REAL*8 fluxdnv(L_NLAYRAD) |
---|
105 | REAL*8 acosz |
---|
106 | REAL*8 albv(L_NSPECTV) ! Spectral Visible Albedo. |
---|
107 | |
---|
108 | INTEGER ig,l,k,nw,iaer |
---|
109 | |
---|
110 | real*8,allocatable,save :: taugsurf(:,:) |
---|
111 | !$OMP THREADPRIVATE(taugsurf) |
---|
112 | real*8 qvar(L_LEVELS) ! Mixing ratio of variable component (mol/mol). |
---|
113 | |
---|
114 | ! Local aerosol optical properties for each column on RADIATIVE grid. |
---|
115 | real*8,save,allocatable :: QXVAER(:,:,:) ! Extinction coeff (QVISsQREF*QREFvis) |
---|
116 | real*8,save,allocatable :: QSVAER(:,:,:) |
---|
117 | real*8,save,allocatable :: GVAER(:,:,:) |
---|
118 | !$OMP THREADPRIVATE(QXVAER,QSVAER,GVAER) |
---|
119 | real, dimension(:,:,:), save, allocatable :: QREFvis3d |
---|
120 | !$OMP THREADPRIVATE(QREFvis3d) |
---|
121 | |
---|
122 | |
---|
123 | ! Miscellaneous : |
---|
124 | real*8 temp,temp1,temp2,pweight |
---|
125 | character(len=10) :: tmp1 |
---|
126 | character(len=10) :: tmp2 |
---|
127 | character(len=100) :: message |
---|
128 | character(len=10),parameter :: subname="sw_corrk" |
---|
129 | |
---|
130 | ! For fixed water vapour profiles. |
---|
131 | integer i_var |
---|
132 | real RH |
---|
133 | real psat,qsat |
---|
134 | |
---|
135 | logical OLRz |
---|
136 | real*8 NFLUXGNDV_nu(L_NSPECTV) |
---|
137 | |
---|
138 | ! Included by RW for runaway greenhouse 1D study. |
---|
139 | real vtmp(nlayer) |
---|
140 | REAL*8 muvarrad(L_LEVELS) |
---|
141 | |
---|
142 | |
---|
143 | !=============================================================== |
---|
144 | ! I.a Initialization on first call |
---|
145 | !=============================================================== |
---|
146 | |
---|
147 | |
---|
148 | if(firstcall) then |
---|
149 | |
---|
150 | call iniaerosol() |
---|
151 | |
---|
152 | allocate(QXVAER(L_LEVELS,L_NSPECTV,naerkind)) |
---|
153 | allocate(QSVAER(L_LEVELS,L_NSPECTV,naerkind)) |
---|
154 | allocate(GVAER(L_LEVELS,L_NSPECTV,naerkind)) |
---|
155 | |
---|
156 | ALLOCATE(QREFvis3d(ngrid,nlayer,naerkind)) |
---|
157 | ! Effective radius and variance of the aerosols |
---|
158 | allocate(reffrad(ngrid,nlayer,naerkind)) |
---|
159 | allocate(nueffrad(ngrid,nlayer,naerkind)) |
---|
160 | |
---|
161 | !-------------------------------------------------- |
---|
162 | ! Set up correlated k |
---|
163 | !-------------------------------------------------- |
---|
164 | |
---|
165 | print*, "callcorrk: Correlated-k data base folder:",trim(datadir) |
---|
166 | print*, "corrkdir = ",corrkdir |
---|
167 | write( tmp1, '(i3)' ) NBinfrared |
---|
168 | write( tmp2, '(i3)' ) NBvisible |
---|
169 | banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2)) |
---|
170 | banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir)) |
---|
171 | |
---|
172 | call su_gases ! reading of gases.def bypassed in this, hardcoded. cf su_gases.F90 |
---|
173 | call su_aer_radii(ngrid,nlayer,reffrad,nueffrad) |
---|
174 | call setspv ! Basic visible properties. |
---|
175 | call sugas_corrk ! Set up gaseous absorption properties. |
---|
176 | call suaer_corrk ! Set up aerosol optical properties. |
---|
177 | |
---|
178 | ! now that L_NGAUSS has been initialized (by sugas_corrk) |
---|
179 | ! allocate related arrays |
---|
180 | ALLOCATE(dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS)) |
---|
181 | ALLOCATE(cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS)) |
---|
182 | ALLOCATE(wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS)) |
---|
183 | ALLOCATE(tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS)) |
---|
184 | ALLOCATE(taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS)) |
---|
185 | ALLOCATE(taugsurf(L_NSPECTV,L_NGAUSS-1)) |
---|
186 | |
---|
187 | OSR_nu(:,:) = 0. |
---|
188 | |
---|
189 | ! Surface albedo in the solar range |
---|
190 | ! example of data: Cutler et al 2020 |
---|
191 | ! reflectance of basalts in UV and visible varies from a few to 10% |
---|
192 | ! it also depends on mineralogy |
---|
193 | ! in the absence of further data, I take 5% as a mean value... Sensitivity could be tested... |
---|
194 | albedo(:,:) = 0.05 |
---|
195 | |
---|
196 | end if ! of if (firstcall) |
---|
197 | |
---|
198 | !======================================================================= |
---|
199 | ! I.b Initialization on every call |
---|
200 | !======================================================================= |
---|
201 | |
---|
202 | qxvaer(:,:,:)=0.0 |
---|
203 | qsvaer(:,:,:)=0.0 |
---|
204 | gvaer(:,:,:) =0.0 |
---|
205 | |
---|
206 | ! How much light do we get ? |
---|
207 | do nw=1,L_NSPECTV |
---|
208 | stel(nw)=stellarf(nw)/(dist_star**2) |
---|
209 | end do |
---|
210 | |
---|
211 | ! Get 3D aerosol optical properties. |
---|
212 | call aeroptproperties(ngrid,nlayer,reffrad,nueffrad, & |
---|
213 | QVISsQREF3d,omegaVIS3d,gVIS3d,QREFvis3d) |
---|
214 | |
---|
215 | ! Get aerosol optical depths. |
---|
216 | call aeropacity(ngrid,nlayer,pplay,pplev,pt,aerosol, & |
---|
217 | reffrad,nueffrad,QREFvis3d,tau_col) |
---|
218 | |
---|
219 | !----------------------------------------------------------------------- |
---|
220 | !----------------------------------------------------------------------- |
---|
221 | do ig=1,ngrid ! Starting Big Loop over every GCM column |
---|
222 | !----------------------------------------------------------------------- |
---|
223 | !----------------------------------------------------------------------- |
---|
224 | |
---|
225 | !======================================================================= |
---|
226 | ! II. Transformation of the GCM variables |
---|
227 | !======================================================================= |
---|
228 | |
---|
229 | !----------------------------------------------------------------------- |
---|
230 | ! Aerosol optical properties Qext, Qscat and g. |
---|
231 | ! The transformation in the vertical is the same as for temperature. |
---|
232 | !----------------------------------------------------------------------- |
---|
233 | |
---|
234 | do iaer=1,naerkind |
---|
235 | ! Shortwave. |
---|
236 | do nw=1,L_NSPECTV |
---|
237 | |
---|
238 | do l=1,nlayer |
---|
239 | |
---|
240 | temp1=QVISsQREF3d(ig,nlayer+1-l,nw,iaer) & |
---|
241 | *QREFvis3d(ig,nlayer+1-l,iaer) |
---|
242 | |
---|
243 | temp2=QVISsQREF3d(ig,max(nlayer-l,1),nw,iaer) & |
---|
244 | *QREFvis3d(ig,max(nlayer-l,1),iaer) |
---|
245 | |
---|
246 | qxvaer(2*l,nw,iaer) = temp1 |
---|
247 | qxvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
248 | |
---|
249 | temp1=temp1*omegavis3d(ig,nlayer+1-l,nw,iaer) |
---|
250 | temp2=temp2*omegavis3d(ig,max(nlayer-l,1),nw,iaer) |
---|
251 | |
---|
252 | qsvaer(2*l,nw,iaer) = temp1 |
---|
253 | qsvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
254 | |
---|
255 | temp1=gvis3d(ig,nlayer+1-l,nw,iaer) |
---|
256 | temp2=gvis3d(ig,max(nlayer-l,1),nw,iaer) |
---|
257 | |
---|
258 | gvaer(2*l,nw,iaer) = temp1 |
---|
259 | gvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
260 | |
---|
261 | end do ! nlayer |
---|
262 | |
---|
263 | qxvaer(1,nw,iaer)=qxvaer(2,nw,iaer) |
---|
264 | qxvaer(2*nlayer+1,nw,iaer)=0. |
---|
265 | |
---|
266 | qsvaer(1,nw,iaer)=qsvaer(2,nw,iaer) |
---|
267 | qsvaer(2*nlayer+1,nw,iaer)=0. |
---|
268 | |
---|
269 | gvaer(1,nw,iaer)=gvaer(2,nw,iaer) |
---|
270 | gvaer(2*nlayer+1,nw,iaer)=0. |
---|
271 | |
---|
272 | end do ! L_NSPECTV |
---|
273 | end do ! naerkind |
---|
274 | |
---|
275 | ! Test / Correct for freaky s. s. albedo values. |
---|
276 | do iaer=1,naerkind |
---|
277 | do k=1,L_LEVELS |
---|
278 | |
---|
279 | do nw=1,L_NSPECTV |
---|
280 | if(qsvaer(k,nw,iaer).gt.1.05*qxvaer(k,nw,iaer))then |
---|
281 | message='Serious problems with qsvaer values' |
---|
282 | call abort_physic(subname,message,1) |
---|
283 | endif |
---|
284 | if(qsvaer(k,nw,iaer).gt.qxvaer(k,nw,iaer))then |
---|
285 | qsvaer(k,nw,iaer)=qxvaer(k,nw,iaer) |
---|
286 | endif |
---|
287 | end do |
---|
288 | |
---|
289 | end do ! L_LEVELS |
---|
290 | end do ! naerkind |
---|
291 | |
---|
292 | !----------------------------------------------------------------------- |
---|
293 | ! Aerosol optical depths |
---|
294 | !----------------------------------------------------------------------- |
---|
295 | |
---|
296 | do iaer=1,naerkind |
---|
297 | do k=0,nlayer-1 |
---|
298 | |
---|
299 | pweight=(pplay(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))/ & |
---|
300 | (pplev(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1)) |
---|
301 | ! As 'aerosol' is at reference (visible) wavelenght we scale it as |
---|
302 | ! it will be multplied by qxi/v in optci/v |
---|
303 | temp=aerosol(ig,L_NLAYRAD-k,iaer)/QREFvis3d(ig,L_NLAYRAD-k,iaer) |
---|
304 | tauaero(2*k+2,iaer)=max(temp*pweight,0.d0) |
---|
305 | tauaero(2*k+3,iaer)=max(temp-tauaero(2*k+2,iaer),0.d0) |
---|
306 | |
---|
307 | end do |
---|
308 | ! boundary conditions |
---|
309 | tauaero(1,iaer) = tauaero(2,iaer) |
---|
310 | !tauaero(1,iaer) = 0. |
---|
311 | !JL18 at time of testing, the two above conditions gave the same results bit for bit. |
---|
312 | |
---|
313 | end do ! naerkind |
---|
314 | |
---|
315 | ! Albedo |
---|
316 | DO nw=1,L_NSPECTV ! Short Wave loop. |
---|
317 | albv(nw)=albedo(ig,nw) |
---|
318 | ENDDO |
---|
319 | |
---|
320 | acosz=mu0(ig) ! Cosine of sun incident angle : 3D simulations or local 1D simulations using latitude. |
---|
321 | |
---|
322 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
323 | !!! Note by JL13 : In the following, some indices were changed in the interpolations, |
---|
324 | !!! so that the model results are less dependent on the number of layers ! |
---|
325 | !!! |
---|
326 | !!! --- The older versions are commented with the comment !JL13index --- |
---|
327 | !!! |
---|
328 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
329 | |
---|
330 | |
---|
331 | !----------------------------------------------------------------------- |
---|
332 | ! Variable species... Not used for Venus |
---|
333 | !----------------------------------------------------------------------- |
---|
334 | |
---|
335 | do k=1,L_LEVELS |
---|
336 | qvar(k) = 1.0D-7 |
---|
337 | end do |
---|
338 | |
---|
339 | DO l=1,nlayer |
---|
340 | muvarrad(2*l) = RMD |
---|
341 | muvarrad(2*l+1) = RMD |
---|
342 | END DO |
---|
343 | |
---|
344 | muvarrad(1) = muvarrad(2) |
---|
345 | muvarrad(2*nlayer+1)=RMD |
---|
346 | |
---|
347 | ! Keep values inside limits for which we have radiative transfer coefficients !!! |
---|
348 | if(L_REFVAR.gt.1)then ! (there was a bug here) |
---|
349 | message='no variable species for Venus yet' |
---|
350 | call abort_physic(subname,message,1) |
---|
351 | endif |
---|
352 | |
---|
353 | !----------------------------------------------------------------------- |
---|
354 | ! Pressure and temperature |
---|
355 | !----------------------------------------------------------------------- |
---|
356 | |
---|
357 | DO l=1,nlayer |
---|
358 | plevrad(2*l) = pplay(ig,nlayer+1-l)/scalep |
---|
359 | plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep |
---|
360 | tlevrad(2*l) = pt(ig,nlayer+1-l) |
---|
361 | tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2 |
---|
362 | END DO |
---|
363 | |
---|
364 | plevrad(1) = 0. |
---|
365 | ! plevrad(2) = 0. !! JL18 enabling this line puts the radiative top at p=0 which was the idea before, but does not seem to perform best after all. |
---|
366 | |
---|
367 | tlevrad(1) = tlevrad(2) |
---|
368 | tlevrad(2*nlayer+1)=tsurf(ig) |
---|
369 | |
---|
370 | pmid(1) = pplay(ig,nlayer)/scalep |
---|
371 | pmid(2) = pmid(1) |
---|
372 | |
---|
373 | tmid(1) = tlevrad(2) |
---|
374 | tmid(2) = tmid(1) |
---|
375 | |
---|
376 | DO l=1,L_NLAYRAD-1 |
---|
377 | tmid(2*l+1) = tlevrad(2*l+1) |
---|
378 | tmid(2*l+2) = tlevrad(2*l+1) |
---|
379 | pmid(2*l+1) = plevrad(2*l+1) |
---|
380 | pmid(2*l+2) = plevrad(2*l+1) |
---|
381 | END DO |
---|
382 | pmid(L_LEVELS) = plevrad(L_LEVELS) |
---|
383 | tmid(L_LEVELS) = tlevrad(L_LEVELS) |
---|
384 | |
---|
385 | !!Alternative interpolation: |
---|
386 | ! pmid(3) = pmid(1) |
---|
387 | ! pmid(4) = pmid(1) |
---|
388 | ! tmid(3) = tmid(1) |
---|
389 | ! tmid(4) = tmid(1) |
---|
390 | ! DO l=2,L_NLAYRAD-1 |
---|
391 | ! tmid(2*l+1) = tlevrad(2*l) |
---|
392 | ! tmid(2*l+2) = tlevrad(2*l) |
---|
393 | ! pmid(2*l+1) = plevrad(2*l) |
---|
394 | ! pmid(2*l+2) = plevrad(2*l) |
---|
395 | ! END DO |
---|
396 | ! pmid(L_LEVELS) = plevrad(L_LEVELS-1) |
---|
397 | ! tmid(L_LEVELS) = tlevrad(L_LEVELS-1) |
---|
398 | |
---|
399 | ! Test for out-of-bounds pressure. |
---|
400 | if(plevrad(3).lt.pgasmin)then |
---|
401 | ! print*,'Minimum pressure is outside the radiative' |
---|
402 | ! print*,'transfer kmatrix bounds, exiting.' |
---|
403 | ! message="Minimum pressure outside of kmatrix bounds" |
---|
404 | ! call abort_physic(subname,message,1) |
---|
405 | elseif(plevrad(L_LEVELS).gt.pgasmax)then |
---|
406 | ! print*,'Maximum pressure is outside the radiative' |
---|
407 | ! print*,'transfer kmatrix bounds, exiting.' |
---|
408 | ! message="Maximum pressure outside of kmatrix bounds" |
---|
409 | ! call abort_physic(subname,message,1) |
---|
410 | endif |
---|
411 | |
---|
412 | ! Test for out-of-bounds temperature. |
---|
413 | do k=1,L_LEVELS |
---|
414 | |
---|
415 | if(tlevrad(k).lt.tgasmin)then |
---|
416 | print*,'Minimum temperature is outside the radiative' |
---|
417 | print*,'transfer kmatrix bounds' |
---|
418 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
419 | print*,"tgasmin=",tgasmin |
---|
420 | ! if (strictboundcorrk) then |
---|
421 | ! message="Minimum temperature outside of kmatrix bounds" |
---|
422 | ! call abort_physic(subname,message,1) |
---|
423 | ! else |
---|
424 | print*,'***********************************************' |
---|
425 | print*,'we allow model to continue with tlevrad<tgasmin' |
---|
426 | print*,' ... we assume we know what you are doing ... ' |
---|
427 | print*,' ... but do not let this happen too often ... ' |
---|
428 | print*,'***********************************************' |
---|
429 | !tlevrad(k)=tgasmin ! Used in the source function ! |
---|
430 | ! endif |
---|
431 | elseif(tlevrad(k).gt.tgasmax)then |
---|
432 | print*,'Maximum temperature is outside the radiative' |
---|
433 | print*,'transfer kmatrix bounds, exiting.' |
---|
434 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
435 | print*,"tgasmax=",tgasmax |
---|
436 | ! if (strictboundcorrk) then |
---|
437 | ! message="Maximum temperature outside of kmatrix bounds" |
---|
438 | ! call abort_physic(subname,message,1) |
---|
439 | ! else |
---|
440 | print*,'***********************************************' |
---|
441 | print*,'we allow model to continue with tlevrad>tgasmax' |
---|
442 | print*,' ... we assume we know what you are doing ... ' |
---|
443 | print*,' ... but do not let this happen too often ... ' |
---|
444 | print*,'***********************************************' |
---|
445 | !tlevrad(k)=tgasmax ! Used in the source function ! |
---|
446 | ! endif |
---|
447 | endif |
---|
448 | |
---|
449 | enddo |
---|
450 | |
---|
451 | do k=1,L_NLAYRAD+1 |
---|
452 | if(tmid(k).lt.tgasmin)then |
---|
453 | print*,'Minimum temperature is outside the radiative' |
---|
454 | print*,'transfer kmatrix bounds, exiting.' |
---|
455 | print*,"k=",k," tmid(k)=",tmid(k) |
---|
456 | print*,"tgasmin=",tgasmin |
---|
457 | ! if (strictboundcorrk) then |
---|
458 | ! message="Minimum temperature outside of kmatrix bounds" |
---|
459 | ! call abort_physic(subname,message,1) |
---|
460 | ! else |
---|
461 | print*,'***********************************************' |
---|
462 | print*,'we allow model to continue but with tmid=tgasmin' |
---|
463 | print*,' ... we assume we know what you are doing ... ' |
---|
464 | print*,' ... but do not let this happen too often ... ' |
---|
465 | print*,'***********************************************' |
---|
466 | tmid(k)=tgasmin |
---|
467 | ! endif |
---|
468 | elseif(tmid(k).gt.tgasmax)then |
---|
469 | print*,'Maximum temperature is outside the radiative' |
---|
470 | print*,'transfer kmatrix bounds, exiting.' |
---|
471 | print*,"k=",k," tmid(k)=",tmid(k) |
---|
472 | print*,"tgasmax=",tgasmax |
---|
473 | ! if (strictboundcorrk) then |
---|
474 | ! message="Maximum temperature outside of kmatrix bounds" |
---|
475 | ! call abort_physic(subname,message,1) |
---|
476 | ! else |
---|
477 | print*,'***********************************************' |
---|
478 | print*,'we allow model to continue but with tmid=tgasmax' |
---|
479 | print*,' ... we assume we know what you are doing ... ' |
---|
480 | print*,' ... but do not let this happen too often ... ' |
---|
481 | print*,'***********************************************' |
---|
482 | tmid(k)=tgasmax |
---|
483 | ! endif |
---|
484 | endif |
---|
485 | enddo |
---|
486 | |
---|
487 | !======================================================================= |
---|
488 | ! III. Calling the main radiative transfer subroutines |
---|
489 | !======================================================================= |
---|
490 | |
---|
491 | !----------------------------------------------------------------------- |
---|
492 | ! Short Wave Part |
---|
493 | !----------------------------------------------------------------------- |
---|
494 | |
---|
495 | if(fract(ig) .ge. 1.0e-4) then ! Only during daylight. |
---|
496 | do nw=1,L_NSPECTV |
---|
497 | stel_fract(nw)= stel(nw) * fract(ig) |
---|
498 | end do |
---|
499 | |
---|
500 | call optcv(dtauv,tauv,taucumv,plevrad, & |
---|
501 | qxvaer,qsvaer,gvaer,wbarv,cosbv,tauray,tauaero, & |
---|
502 | tmid,pmid,taugsurf,qvar,muvarrad) |
---|
503 | |
---|
504 | call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv, & |
---|
505 | acosz,stel_fract, & |
---|
506 | nfluxtopv,fluxtopvdn,nfluxoutv_nu,nfluxgndv_nu, & |
---|
507 | fmnetv,fluxupv,fluxdnv,fzerov,taugsurf) |
---|
508 | |
---|
509 | else ! During the night, fluxes = 0. |
---|
510 | nfluxtopv = 0.0d0 |
---|
511 | fluxtopvdn = 0.0d0 |
---|
512 | nfluxoutv_nu(:) = 0.0d0 |
---|
513 | nfluxgndv_nu(:) = 0.0d0 |
---|
514 | do l=1,L_NLAYRAD |
---|
515 | fmnetv(l)=0.0d0 |
---|
516 | fluxupv(l)=0.0d0 |
---|
517 | fluxdnv(l)=0.0d0 |
---|
518 | end do |
---|
519 | end if |
---|
520 | |
---|
521 | !----------------------------------------------------------------------- |
---|
522 | ! Transformation of the correlated-k code outputs |
---|
523 | ! (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw) |
---|
524 | |
---|
525 | ! Net incident flux tops, positive downward |
---|
526 | nfluxtop(ig) = -1.*nfluxtopv |
---|
527 | |
---|
528 | ! Net incident flux at surface, positive downward |
---|
529 | nfluxsurf(ig) = -1.*fmnetv(L_NLAYRAD) |
---|
530 | |
---|
531 | ! Flux incident at the top of the atmosphere |
---|
532 | fluxtop_dn(ig)= fluxtopvdn |
---|
533 | |
---|
534 | fluxabs_sw(ig) = real(-nfluxtopv) |
---|
535 | fluxsurf_sw(ig) = real(fluxdnv(L_NLAYRAD)) |
---|
536 | |
---|
537 | if(fluxtop_dn(ig).lt.0.0)then |
---|
538 | print*,'Achtung! fluxtop_dn has lost the plot!' |
---|
539 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
---|
540 | print*,'acosz=',acosz |
---|
541 | print*,'aerosol=',aerosol(ig,:,:) |
---|
542 | print*,'temp= ',pt(ig,:) |
---|
543 | print*,'pplay= ',pplay(ig,:) |
---|
544 | message="Achtung! fluxtop_dn has lost the plot!" |
---|
545 | call abort_physic(subname,message,1) |
---|
546 | endif |
---|
547 | |
---|
548 | ! Net solar flux, positive downward |
---|
549 | |
---|
550 | do l=1,L_NLAYRAD |
---|
551 | netflux(ig,L_NLAYRAD+1-l)= -1.*fmnetv(l) |
---|
552 | enddo |
---|
553 | netflux(ig,L_NLAYRAD+1) = -1.*nfluxtopv |
---|
554 | |
---|
555 | ! Finally, the heating rates |
---|
556 | |
---|
557 | DO l=2,L_NLAYRAD |
---|
558 | dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1)) & |
---|
559 | *RG/(cpdet(tmid(l))*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
560 | END DO |
---|
561 | |
---|
562 | ! These are values at top of atmosphere |
---|
563 | dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv) & |
---|
564 | *RG/(cpdet(tmid(1))*scalep*(plevrad(3)-plevrad(2))) |
---|
565 | |
---|
566 | !----------------------------------------------------------------------- |
---|
567 | !----------------------------------------------------------------------- |
---|
568 | end do ! End of big loop over every GCM column. |
---|
569 | !----------------------------------------------------------------------- |
---|
570 | !----------------------------------------------------------------------- |
---|
571 | |
---|
572 | end subroutine sw_venus_corrk |
---|
573 | |
---|