1 | ! |
---|
2 | ! $Header: /home/cvsroot/LMDZ4/libf/phylmd/radlwsw.F,v 1.2 2004/10/27 10:14:46 lmdzadmin Exp $ |
---|
3 | ! |
---|
4 | SUBROUTINE radlwsw(dist, rmu0, fract, zzlev, |
---|
5 | . paprs, pplay,tsol, t) |
---|
6 | c |
---|
7 | c====================================================================== |
---|
8 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19960719 |
---|
9 | c Objet: interface entre le modele et les rayonnements |
---|
10 | c Arguments: |
---|
11 | c dist-----input-R- distance astronomique terre-soleil |
---|
12 | c rmu0-----input-R- cosinus de l'angle zenithal |
---|
13 | c fract----input-R- duree d'ensoleillement normalisee |
---|
14 | c zzlev----input-R- altitude a inter-couche (m) |
---|
15 | c paprs----input-R- pression a inter-couche (Pa) |
---|
16 | c pplay----input-R- pression au milieu de couche (Pa) |
---|
17 | c tsol-----input-R- temperature du sol (en K) |
---|
18 | c t--------input-R- temperature (K) |
---|
19 | |
---|
20 | c MODIFS pour multimatrices ksi SPECIFIQUE VENUS |
---|
21 | c S. Lebonnois 20/12/2006 |
---|
22 | c corrections 13/07/2007 |
---|
23 | c New ksi matrix: possibility of different cloud model fct of lat 05/2014 |
---|
24 | |
---|
25 | c With extension NLTE (G. Gilli, 2014) |
---|
26 | |
---|
27 | c Ksi matrices latitudinaly interpolated (I. Garate-Lopez, 2016) |
---|
28 | |
---|
29 | c====================================================================== |
---|
30 | use dimphy, only: klon,klev |
---|
31 | USE geometry_mod, ONLY: latitude_deg |
---|
32 | USE phys_state_var_mod, only: heat,cool,radsol, |
---|
33 | . topsw,toplw,solsw,sollw,sollwdown,lwnet,swnet |
---|
34 | use write_field_phy |
---|
35 | use radinc_h, only: ini_radinc_h |
---|
36 | |
---|
37 | #ifdef CPP_XIOS |
---|
38 | use xios_output_mod, only: send_xios_field |
---|
39 | #endif |
---|
40 | |
---|
41 | IMPLICIT none |
---|
42 | include "YOMCST.h" |
---|
43 | include "clesphys.h" |
---|
44 | include "comcstVE.h" |
---|
45 | include "nlteparams.h" |
---|
46 | |
---|
47 | !=========== |
---|
48 | ! Arguments |
---|
49 | !=========== |
---|
50 | real,intent(in) :: dist ! planet-Sun distance |
---|
51 | real,intent(in) :: rmu0(klon) ! cosine of zenital angle |
---|
52 | real,intent(in) :: fract(klon) ! normalized fraction of sunlight illumination |
---|
53 | REAL,intent(in) :: zzlev(klon,klev+1) ! altitude of the layer boundaries (m) |
---|
54 | real,intent(in) :: paprs(klon,klev+1) ! inter-layer pressure (Pa) |
---|
55 | real,intent(in) :: pplay(klon,klev) ! mid-layer pressure (Pa) |
---|
56 | real,intent(in) :: tsol(klon) ! surface temperature (K) |
---|
57 | real,intent(in) :: t(klon,klev) ! atmospheric temperature (K) |
---|
58 | |
---|
59 | !=========== |
---|
60 | ! Local |
---|
61 | !=========== |
---|
62 | INTEGER k, kk, i, j, band |
---|
63 | integer,save :: i_sw |
---|
64 | integer,parameter :: subloop=100 |
---|
65 | |
---|
66 | REAL PPB(klev+1) |
---|
67 | REAL PPA(klev) |
---|
68 | |
---|
69 | REAL zfract, zrmu0,latdeg |
---|
70 | |
---|
71 | REAL zheat(klev), zcool(klev) |
---|
72 | real temp(klev),znivs(klev+1) |
---|
73 | REAL ZFSNET(klev+1),ZFLNET(klev+1) |
---|
74 | REAL ztopsw, ztoplw |
---|
75 | REAL zsolsw, zsollw |
---|
76 | cIM BEG |
---|
77 | REAL zsollwdown |
---|
78 | cIM END |
---|
79 | real,save,allocatable :: ksive(:,:,:,:) ! ksi matrixes in Vincent's file |
---|
80 | |
---|
81 | real psi(0:klev+1,0:klev+1) |
---|
82 | real deltapsi(0:klev+1,0:klev+1) |
---|
83 | real pt0(0:klev+1) |
---|
84 | real bplck(0:klev+1,nnuve) ! Planck luminances in table layers |
---|
85 | real y(0:klev,nnuve) ! temporary variable for Planck |
---|
86 | real zdblay(0:klev+1,nnuve) ! temperature gradient of planck function |
---|
87 | integer mat0,lat,ips,isza,ips0,isza0 |
---|
88 | real factp,factz,ksi |
---|
89 | c ------- for lat-interp ---------------- |
---|
90 | integer mat0A, mat0B, latA, latB, kasua |
---|
91 | integer ipsA, ipsB, iszaA, iszaB, ips0A, ips0B, isza0A, isza0B |
---|
92 | real lat_deg, latA_deg, latB_deg |
---|
93 | real factlat, k1, k2, k3, k4 |
---|
94 | c -------------------------------------- |
---|
95 | logical,save :: firstcall=.true. |
---|
96 | |
---|
97 | cERROR ! For checking if the file it's being read |
---|
98 | c------------------------------------------- |
---|
99 | c Initialisations |
---|
100 | c----------------- |
---|
101 | |
---|
102 | if (firstcall) then |
---|
103 | |
---|
104 | c ---------- ksive -------------- |
---|
105 | allocate(ksive(0:klev+1,0:klev+1,nnuve,nbmat)) |
---|
106 | call load_ksi(ksive) |
---|
107 | |
---|
108 | i_sw = subloop |
---|
109 | c for sw_venus_corrk |
---|
110 | if (solarchoice.eq.2) call ini_radinc_h(klev) |
---|
111 | |
---|
112 | endif ! firstcall |
---|
113 | c------------------------------------------- |
---|
114 | |
---|
115 | DO k = 1, klev |
---|
116 | DO i = 1, klon |
---|
117 | ! Solar heating rates from generic => directly on klon |
---|
118 | ! only once every subloop calls, because of high frequency needed by lw... |
---|
119 | if (i_sw.eq.subloop) heat(i,k)=0. |
---|
120 | cool(i,k)=0. |
---|
121 | ENDDO |
---|
122 | ENDDO |
---|
123 | |
---|
124 | |
---|
125 | c+++++++ BOUCLE SUR LA GRILLE +++++++++++++++++++++++++ |
---|
126 | DO j = 1, klon |
---|
127 | |
---|
128 | c====================================================================== |
---|
129 | c Initialisations |
---|
130 | c --------------- |
---|
131 | |
---|
132 | DO k = 1, klev |
---|
133 | zheat(k) = 0.0 |
---|
134 | zcool(k) = 0.0 |
---|
135 | ENDDO |
---|
136 | c zheat(1:klev)=0.0 !Explicit loop (no change in performance) |
---|
137 | c zcool(1:klev)=0.0 |
---|
138 | |
---|
139 | DO k = 1, klev+1 |
---|
140 | ZFLNET(k) = 0.0 |
---|
141 | ZFSNET(k) = 0.0 |
---|
142 | ENDDO |
---|
143 | c ZFLNET(1:klev+1)=0.0 |
---|
144 | c ZFSNET(1:klev+1)=0.0 |
---|
145 | |
---|
146 | ztopsw = 0.0 |
---|
147 | ztoplw = 0.0 |
---|
148 | zsolsw = 0.0 |
---|
149 | zsollw = 0.0 |
---|
150 | zsollwdown = 0.0 |
---|
151 | |
---|
152 | zfract = fract(j) |
---|
153 | zrmu0 = rmu0(j) |
---|
154 | |
---|
155 | DO k = 1, klev+1 |
---|
156 | PPB(k) = paprs(j,k)/1.e5 |
---|
157 | ENDDO |
---|
158 | DO k = 1,klev |
---|
159 | PPA(k) = pplay(j,k)/1.e5 |
---|
160 | ENDDO |
---|
161 | |
---|
162 | pt0(0) = tsol(j) |
---|
163 | DO k = 1, klev |
---|
164 | pt0(k) = t(j,k) |
---|
165 | ENDDO |
---|
166 | pt0(klev+1) = 0. |
---|
167 | |
---|
168 | DO k = 0,klev+1 |
---|
169 | DO i = 0,klev+1 |
---|
170 | psi(i,k) = 0. ! positif quand nrj de i->k |
---|
171 | deltapsi(i,k) = 0. |
---|
172 | ENDDO |
---|
173 | ENDDO |
---|
174 | |
---|
175 | c====================================================================== |
---|
176 | c Getting psi and deltapsi |
---|
177 | c ------------------------ |
---|
178 | |
---|
179 | c Planck function |
---|
180 | c --------------- |
---|
181 | do band=1,nnuve |
---|
182 | do k=0,klev |
---|
183 | c B(T,l) = al/(exp(bl/T)-1) |
---|
184 | y(k,band) = exp(bl(band)/pt0(k))-1. |
---|
185 | bplck(k,band) = al(band)/(y(k,band)) |
---|
186 | zdblay(k,band)= al(band)*bl(band)*exp(bl(band)/pt0(k))/ |
---|
187 | . ((pt0(k)*pt0(k))*(y(k,band)*y(k,band))) |
---|
188 | enddo |
---|
189 | bplck(klev+1,band) = 0.0 |
---|
190 | zdblay(klev+1,band)= 0.0 |
---|
191 | enddo |
---|
192 | |
---|
193 | c finding the right matrixes |
---|
194 | c -------------------------- |
---|
195 | |
---|
196 | mat0 = 0 |
---|
197 | mat0A = 0 |
---|
198 | mat0B = 0 |
---|
199 | |
---|
200 | c Latitude |
---|
201 | c -------- |
---|
202 | lat = 0 |
---|
203 | latA = 0 |
---|
204 | latB = 0 |
---|
205 | |
---|
206 | c write(*,*) 'nlatve:', nlatve |
---|
207 | |
---|
208 | lat_deg = abs(latitude_deg(j)) |
---|
209 | |
---|
210 | c if (nlatve.eq.1) then ! clouds are taken as uniform |
---|
211 | if ((nlatve.eq.1).or.(lat_deg.le.25.)) then |
---|
212 | lat = 1 |
---|
213 | elseif (lat_deg.le.50.) then |
---|
214 | lat = 1 |
---|
215 | latA = 1 |
---|
216 | latB = 2 |
---|
217 | latA_deg = 25.0 |
---|
218 | latB_deg = 55.0 |
---|
219 | elseif (lat_deg.le.55.) then |
---|
220 | lat = 2 |
---|
221 | latA = 1 |
---|
222 | latB = 2 |
---|
223 | latA_deg = 25.0 |
---|
224 | latB_deg = 55.0 |
---|
225 | elseif (lat_deg.le.60.) then |
---|
226 | lat = 2 |
---|
227 | latA = 2 |
---|
228 | latB = 3 |
---|
229 | latA_deg = 55.0 |
---|
230 | latB_deg = 65.0 |
---|
231 | elseif (lat_deg.le.65.) then |
---|
232 | lat = 3 |
---|
233 | latA = 2 |
---|
234 | latB = 3 |
---|
235 | latA_deg = 55.0 |
---|
236 | latB_deg = 65.0 |
---|
237 | elseif (lat_deg.le.70.) then |
---|
238 | lat = 3 |
---|
239 | latA = 3 |
---|
240 | latB = 4 |
---|
241 | latA_deg = 65.0 |
---|
242 | latB_deg = 75.0 |
---|
243 | elseif (lat_deg.le.75.) then |
---|
244 | lat = 4 |
---|
245 | latA = 3 |
---|
246 | latB = 4 |
---|
247 | latA_deg = 65.0 |
---|
248 | latB_deg = 75.0 |
---|
249 | elseif (lat_deg.le.80.) then |
---|
250 | lat = 4 |
---|
251 | latA = 4 |
---|
252 | latB = 5 |
---|
253 | latA_deg = 75.0 |
---|
254 | latB_deg = 85.0 |
---|
255 | elseif (lat_deg.le.85.) then |
---|
256 | lat = 5 |
---|
257 | latA = 4 |
---|
258 | latB = 5 |
---|
259 | latA_deg = 75.0 |
---|
260 | latB_deg = 85.0 |
---|
261 | else |
---|
262 | lat = 5 |
---|
263 | endif |
---|
264 | |
---|
265 | c write(*,*) 'Lat',lat,'LatA',latA,'LatB',latB |
---|
266 | |
---|
267 | factlat = 0 |
---|
268 | if (latA.gt.0) then |
---|
269 | factlat = (lat_deg - latA_deg) / (latB_deg - latA_deg) |
---|
270 | endif |
---|
271 | |
---|
272 | c write (*,*) 'Factor de correccion:', factlat |
---|
273 | |
---|
274 | |
---|
275 | c Pressure at Surface |
---|
276 | c ------------------- |
---|
277 | |
---|
278 | ips0=0 |
---|
279 | ips0A=0 |
---|
280 | ips0B=0 |
---|
281 | if (nbpsve(lat).gt.1) then ! Interpolation on ps |
---|
282 | do ips=1,nbpsve(lat)-1 |
---|
283 | if ( (psurfve(ips,lat).ge.paprs(j,1)) |
---|
284 | . .and.(psurfve(ips+1,lat).lt.paprs(j,1)) ) then |
---|
285 | ips0 = ips |
---|
286 | c print*,'ig=',j,' ips0=',ips |
---|
287 | factp = (paprs(j,1) -psurfve(ips0,lat)) |
---|
288 | . /(psurfve(ips0+1,lat)-psurfve(ips0,lat)) |
---|
289 | exit |
---|
290 | endif |
---|
291 | enddo |
---|
292 | else ! Only one ps, no interpolation |
---|
293 | ips0=1 |
---|
294 | endif |
---|
295 | |
---|
296 | if (latA.eq.lat) then |
---|
297 | ips0A=ips0 |
---|
298 | else |
---|
299 | if (latA.gt.0) then |
---|
300 | if (nbpsve(latA).gt.1) then |
---|
301 | do ipsA=1,nbpsve(latA)-1 |
---|
302 | if ( (psurfve(ipsA,latA).ge.paprs(j,1)) |
---|
303 | . .and.(psurfve(ipsA+1,latA).lt.paprs(j,1)) ) then |
---|
304 | ips0A = ipsA |
---|
305 | exit |
---|
306 | endif |
---|
307 | enddo |
---|
308 | else ! Only one ps, no interpolation |
---|
309 | ips0A=1 |
---|
310 | endif ! nbpsve(latA).gt.1 |
---|
311 | endif ! latA.gt.0 (if latA=0 ips0A is not used, so it doesn't matter) |
---|
312 | endif ! latA.eq.lat |
---|
313 | |
---|
314 | if (latB.eq.lat) then |
---|
315 | ips0B=ips0 |
---|
316 | else |
---|
317 | if (latB.gt.0) then |
---|
318 | if (nbpsve(latB).gt.1) then |
---|
319 | do ipsB=1,nbpsve(latB)-1 |
---|
320 | if ( (psurfve(ipsB,latB).ge.paprs(j,1)) |
---|
321 | . .and.(psurfve(ipsB+1,latB).lt.paprs(j,1)) ) then |
---|
322 | ips0B = ipsB |
---|
323 | exit |
---|
324 | endif |
---|
325 | enddo |
---|
326 | else |
---|
327 | ips0B=1 |
---|
328 | endif ! nbpsve(latB).gt.1 |
---|
329 | endif ! latB.gt.0 (if latB=0 ips0B is not used, so it doesn't matter) |
---|
330 | endif ! latB.eq.lat |
---|
331 | |
---|
332 | |
---|
333 | c Solar Zenith Angle |
---|
334 | c ------------------ |
---|
335 | |
---|
336 | isza0=0 |
---|
337 | isza0A=0 |
---|
338 | isza0B=0 |
---|
339 | if (nbszave(lat).gt.1) then |
---|
340 | do isza=1,nbszave(lat)-1 |
---|
341 | if ( (szave(isza,lat).ge.zrmu0) |
---|
342 | . .and.(szave(isza+1,lat).lt.zrmu0) ) then |
---|
343 | isza0 = isza |
---|
344 | c print*,'ig=',j,' isza0=',isza |
---|
345 | factz = (zrmu0 -szave(isza0,lat)) |
---|
346 | . /(szave(isza0+1,lat)-szave(isza0,lat)) |
---|
347 | exit |
---|
348 | endif |
---|
349 | enddo |
---|
350 | else ! Only one sza, no interpolation |
---|
351 | isza0=-99 |
---|
352 | endif |
---|
353 | |
---|
354 | |
---|
355 | if (latA.eq.lat) then |
---|
356 | isza0A=isza0 |
---|
357 | else |
---|
358 | if (latA.gt.0) then |
---|
359 | if (nbszave(latA).gt.1) then |
---|
360 | do iszaA=1,nbszave(latA)-1 |
---|
361 | if ( (szave(iszaA,latA).ge.zrmu0) |
---|
362 | . .and.(szave(iszaA+1,latA).lt.zrmu0) ) then |
---|
363 | isza0A = iszaA |
---|
364 | exit |
---|
365 | endif |
---|
366 | enddo |
---|
367 | else ! Only one sza, no interpolation |
---|
368 | isza0A=-99 |
---|
369 | endif ! nbszave(latA).gt.1 |
---|
370 | endif ! latA.gt.0 (if latA=0 isza0A is not used, so it doesn't matter) |
---|
371 | endif ! latA.eq.lat |
---|
372 | |
---|
373 | if (latB.eq.lat) then |
---|
374 | isza0B=isza0 |
---|
375 | else |
---|
376 | if (latB.gt.0) then |
---|
377 | if (nbszave(latB).gt.1) then |
---|
378 | ! init to avoid outside values (near midnight so similar compo...) |
---|
379 | isza0B = nbszave(latB) |
---|
380 | do iszaB=1,nbszave(latB)-1 |
---|
381 | if ( (szave(iszaB,latB).ge.zrmu0) |
---|
382 | . .and.(szave(iszaB+1,latB).lt.zrmu0) ) then |
---|
383 | isza0B = iszaB |
---|
384 | exit |
---|
385 | endif |
---|
386 | enddo |
---|
387 | else ! Only one sza, no interpolation |
---|
388 | isza0B=-99 |
---|
389 | endif ! nbszave(latB).gt.1 |
---|
390 | endif ! latB.gt.0 (if latB=0 isza0B is not used, so it doesn't matter) |
---|
391 | endif ! latB.eq.lat |
---|
392 | |
---|
393 | c write(*,*) 'nbszave', nbszave(lat),'nbpsve(lat)',nbpsve(lat) |
---|
394 | |
---|
395 | |
---|
396 | c -------- Probleme aux bords |
---|
397 | c surf press lower than the lowest surf pres in matrices |
---|
398 | if ((ips0.eq.0).and.(psurfve(nbpsve(lat),lat).gt.paprs(j,1))) |
---|
399 | . then |
---|
400 | ips0 = nbpsve(lat)-1 |
---|
401 | print*,'Extrapolation! ig=',j,' ips0=',ips0 |
---|
402 | factp = (paprs(j,1) -psurfve(ips0,lat)) |
---|
403 | . /(psurfve(ips0+1,lat)-psurfve(ips0,lat)) |
---|
404 | endif |
---|
405 | c surf press higher than the highest surf pres in matrices |
---|
406 | if ((ips0.eq.0).and.(psurfve(1,lat).le.paprs(j,1))) then |
---|
407 | ips0 = 1 |
---|
408 | print*,'Extrapolation! ig=',j,' ips0=',ips0 |
---|
409 | factp = (paprs(j,1) -psurfve(ips0,lat)) |
---|
410 | . /(psurfve(ips0+1,lat)-psurfve(ips0,lat)) |
---|
411 | endif |
---|
412 | |
---|
413 | c this has to be done for ips0A and ips0B also... |
---|
414 | if (latA.eq.lat) then |
---|
415 | ips0A = ips0 |
---|
416 | else |
---|
417 | if (latA.gt.0) then |
---|
418 | if ((ips0A.eq.0).and. |
---|
419 | . (psurfve(nbpsve(latA),latA).gt.paprs(j,1))) then |
---|
420 | ips0A = nbpsve(latA)-1 |
---|
421 | endif |
---|
422 | if ((ips0A.eq.0).and.(psurfve(1,latA).le.paprs(j,1))) then |
---|
423 | ips0A = 1 |
---|
424 | endif |
---|
425 | endif |
---|
426 | endif |
---|
427 | if (latB.eq.lat) then |
---|
428 | ips0B = ips0 |
---|
429 | else |
---|
430 | if (latB.gt.0) then |
---|
431 | if ((ips0B.eq.0).and. |
---|
432 | . (psurfve(nbpsve(latB),latB).gt.paprs(j,1))) then |
---|
433 | ips0B = nbpsve(latB)-1 |
---|
434 | endif |
---|
435 | if ((ips0B.eq.0).and.(psurfve(1,latB).le.paprs(j,1))) then |
---|
436 | ips0B = 1 |
---|
437 | endif |
---|
438 | endif |
---|
439 | endif |
---|
440 | |
---|
441 | c --------- |
---|
442 | |
---|
443 | if ((ips0.eq.0).or.(isza0.eq.0)) then |
---|
444 | write(*,*) 'Finding the right matrix in radlwsw' |
---|
445 | print*,'Interpolation problem, grid point ig=',j |
---|
446 | print*,'psurf = ',paprs(j,1),' mu0 = ',zrmu0 |
---|
447 | stop |
---|
448 | endif |
---|
449 | |
---|
450 | if (isza0.eq.-99) then |
---|
451 | mat0 = indexve(lat) +ips0 |
---|
452 | if (latA.gt.0) then |
---|
453 | mat0A = indexve(latA)+ips0A |
---|
454 | mat0B = indexve(latB)+ips0B |
---|
455 | endif |
---|
456 | else |
---|
457 | mat0 = indexve(lat) +(isza0 -1)*nbpsve(lat) +ips0 |
---|
458 | if (latA.gt.0) then |
---|
459 | mat0A = indexve(latA)+(isza0A-1)*nbpsve(latA)+ips0A |
---|
460 | mat0B = indexve(latB)+(isza0B-1)*nbpsve(latB)+ips0B |
---|
461 | endif |
---|
462 | endif |
---|
463 | |
---|
464 | c write(*,*) 'Second revision> Lat',lat,'LatA',latA,'LatB',latB |
---|
465 | |
---|
466 | c interpolation of ksi and computation of psi,deltapsi |
---|
467 | c ---------------------------------------------------- |
---|
468 | |
---|
469 | if (isza0.eq.-99) then |
---|
470 | if (latA.gt.0) then ! Not being in the two extremal bins |
---|
471 | |
---|
472 | do band=1,nnuve |
---|
473 | do k=0,klev+1 |
---|
474 | do i=k+1,klev+1 |
---|
475 | k1 = ksive(i,k,band,mat0A)*(1-factlat) |
---|
476 | . + ksive(i,k,band,mat0B)*factlat |
---|
477 | k2 = ksive(i,k,band,mat0A+1)*(1-factlat) |
---|
478 | . + ksive(i,k,band,mat0B+1)*factlat |
---|
479 | ksi = k1*(1-factp) + k2*factp |
---|
480 | psi(i,k) = psi(i,k) + |
---|
481 | . RPI*ksi*(bplck(i,band)-bplck(k,band)) |
---|
482 | c ONLY NEEDED IF IMPLICIT CHOSEN IN LW_VENUS_VE (not the case right now) |
---|
483 | c deltapsi(i,k) = deltapsi(i,k) + RPI*ksi*zdblay(i,band) |
---|
484 | c deltapsi(k,i) = deltapsi(k,i) + RPI*ksi*zdblay(k,band) |
---|
485 | |
---|
486 | kasua=1 |
---|
487 | enddo |
---|
488 | enddo |
---|
489 | enddo |
---|
490 | do k=0,klev+1 |
---|
491 | do i=k+1,klev+1 |
---|
492 | psi(k,i) = -psi(i,k) |
---|
493 | enddo |
---|
494 | enddo |
---|
495 | |
---|
496 | else ! latA=0 --> extremal bins |
---|
497 | |
---|
498 | do band=1,nnuve |
---|
499 | do k=0,klev+1 |
---|
500 | do i=k+1,klev+1 |
---|
501 | ksi = ksive(i,k,band,mat0)*(1-factp) |
---|
502 | . + ksive(i,k,band,mat0+1)*factp |
---|
503 | psi(i,k) = psi(i,k) + |
---|
504 | . RPI*ksi*(bplck(i,band)-bplck(k,band)) |
---|
505 | c ONLY NEEDED IF IMPLICIT CHOSEN IN LW_VENUS_VE (not the case right now) |
---|
506 | c deltapsi(i,k) = deltapsi(i,k) + RPI*ksi*zdblay(i,band) |
---|
507 | c deltapsi(k,i) = deltapsi(k,i) + RPI*ksi*zdblay(k,band) |
---|
508 | |
---|
509 | kasua=2 |
---|
510 | enddo |
---|
511 | enddo |
---|
512 | enddo |
---|
513 | do k=0,klev+1 |
---|
514 | do i=k+1,klev+1 |
---|
515 | psi(k,i) = -psi(i,k) |
---|
516 | enddo |
---|
517 | enddo |
---|
518 | |
---|
519 | endif ! latA.gt.0 |
---|
520 | |
---|
521 | else ! isza0=!-99 |
---|
522 | |
---|
523 | if (latA.gt.0) then ! Not being in the two extremal bins |
---|
524 | |
---|
525 | do band=1,nnuve |
---|
526 | do k=0,klev+1 |
---|
527 | do i=k+1,klev+1 |
---|
528 | k1 = ksive(i,k,band,mat0A)*(1-factlat) |
---|
529 | . + ksive(i,k,band,mat0B)*factlat |
---|
530 | k2 = ksive(i,k,band,mat0A+1)*(1-factlat) |
---|
531 | . + ksive(i,k,band,mat0B+1)*factlat |
---|
532 | k3 = ksive(i,k,band,mat0A+nbpsve(latA))*(1-factlat) |
---|
533 | . + ksive(i,k,band,mat0B+nbpsve(latB))*factlat |
---|
534 | k4 = ksive(i,k,band,mat0A+nbpsve(latA)+1)*(1-factlat) |
---|
535 | . + ksive(i,k,band,mat0B+nbpsve(latB)+1)*factlat |
---|
536 | ksi = ( k1*(1-factp) + k2*factp )*(1-factz) |
---|
537 | . + ( k3*(1-factp) + k4*factp )*factz |
---|
538 | psi(i,k) = psi(i,k) + |
---|
539 | . RPI*ksi*(bplck(i,band)-bplck(k,band)) |
---|
540 | c ONLY NEEDED IF IMPLICIT CHOSEN IN LW_VENUS_VE (not the case right now) |
---|
541 | c deltapsi(i,k) = deltapsi(i,k) + RPI*ksi*zdblay(i,band) |
---|
542 | c deltapsi(k,i) = deltapsi(k,i) + RPI*ksi*zdblay(k,band) |
---|
543 | |
---|
544 | kasua=3 |
---|
545 | enddo |
---|
546 | enddo |
---|
547 | enddo |
---|
548 | do k=0,klev+1 |
---|
549 | do i=k+1,klev+1 |
---|
550 | psi(k,i) = -psi(i,k) |
---|
551 | enddo |
---|
552 | enddo |
---|
553 | |
---|
554 | else ! latA=0 --> extremal bins |
---|
555 | |
---|
556 | do band=1,nnuve |
---|
557 | do k=0,klev+1 |
---|
558 | do i=k+1,klev+1 |
---|
559 | ksi = ksive(i,k,band,mat0)*(1-factp)*(1-factz) |
---|
560 | . + ksive(i,k,band,mat0+1)*factp *(1-factz) |
---|
561 | . + ksive(i,k,band,mat0+nbpsve(lat))*(1-factp)*factz |
---|
562 | . + ksive(i,k,band,mat0+nbpsve(lat)+1)*factp *factz |
---|
563 | psi(i,k) = psi(i,k) + |
---|
564 | . RPI*ksi*(bplck(i,band)-bplck(k,band)) |
---|
565 | c ONLY NEEDED IF IMPLICIT CHOSEN IN LW_VENUS_VE (not the case right now) |
---|
566 | c deltapsi(i,k) = deltapsi(i,k) + RPI*ksi*zdblay(i,band) |
---|
567 | c deltapsi(k,i) = deltapsi(k,i) + RPI*ksi*zdblay(k,band) |
---|
568 | |
---|
569 | kasua=4 |
---|
570 | enddo |
---|
571 | enddo |
---|
572 | enddo |
---|
573 | do k=0,klev+1 |
---|
574 | do i=k+1,klev+1 |
---|
575 | psi(k,i) = -psi(i,k) |
---|
576 | enddo |
---|
577 | enddo |
---|
578 | |
---|
579 | endif ! latA.gt.0 |
---|
580 | endif ! isza0.eq.-99 |
---|
581 | |
---|
582 | c write(*,*) 'Kasua:', kasua |
---|
583 | |
---|
584 | c====================================================================== |
---|
585 | c LW call |
---|
586 | c--------- |
---|
587 | temp(1:klev)=t(j,1:klev) |
---|
588 | CALL LW_venus_ve( |
---|
589 | . PPB,temp,psi,deltapsi, |
---|
590 | . zcool, |
---|
591 | . ztoplw,zsollw, |
---|
592 | . zsollwdown,ZFLNET) |
---|
593 | c--------- |
---|
594 | c SW call |
---|
595 | c--------- |
---|
596 | znivs=zzlev(j,:) |
---|
597 | latdeg=abs(latitude_deg(j)) |
---|
598 | |
---|
599 | c CALL SW_venus_ve_1Dglobave(zrmu0, zfract, ! pour moy globale |
---|
600 | c CALL SW_venus_ve(zrmu0, zfract, |
---|
601 | c S PPB,temp,znivs, |
---|
602 | c S zheat, |
---|
603 | c S ztopsw,zsolsw,ZFSNET) |
---|
604 | |
---|
605 | c CALL SW_venus_cl_1Dglobave(zrmu0,zfract, ! pour moy globale |
---|
606 | c CALL SW_venus_cl(zrmu0,zfract, |
---|
607 | c CALL SW_venus_dc_1Dglobave(zrmu0,zfract, ! pour moy globale |
---|
608 | c CALL SW_venus_dc(zrmu0,zfract, |
---|
609 | c CALL SW_venus_rh_1Dglobave(zrmu0,zfract, ! pour moy globale |
---|
610 | c S PPB,temp, |
---|
611 | c S zheat, |
---|
612 | c S ztopsw,zsolsw,ZFSNET) |
---|
613 | |
---|
614 | cc SOLAR : RH TABLES |
---|
615 | if (solarchoice.eq.1) then |
---|
616 | CALL SW_venus_rh(zrmu0,zfract,latdeg, |
---|
617 | S PPA,PPB,temp, |
---|
618 | S zheat, |
---|
619 | S ztopsw,zsolsw,ZFSNET) |
---|
620 | endif ! solarchoice.eq.1 |
---|
621 | |
---|
622 | c====================================================================== |
---|
623 | c lw into klon grid: |
---|
624 | radsol(j) = - zsollw ! + vers bas |
---|
625 | toplw(j) = ztoplw ! + vers haut |
---|
626 | sollw(j) = -zsollw ! + vers bas |
---|
627 | sollwdown(j) = zsollwdown ! + vers bas |
---|
628 | |
---|
629 | DO k = 1, klev+1 |
---|
630 | lwnet (j,k) = ZFLNET(k) ! + vers haut |
---|
631 | ENDDO |
---|
632 | |
---|
633 | cc SOLAR : RH TABLES |
---|
634 | c sw into klon grid (if not using the generic routine) |
---|
635 | if (solarchoice.eq.1) then |
---|
636 | radsol(j)= radsol(j)+zsolsw ! + vers bas |
---|
637 | topsw(j) = ztopsw ! + vers bas |
---|
638 | solsw(j) = zsolsw ! + vers bas |
---|
639 | DO k = 1, klev+1 |
---|
640 | swnet (j,k) = ZFSNET(k) ! + vers bas |
---|
641 | ENDDO |
---|
642 | endif ! solarchoice.eq.1 |
---|
643 | |
---|
644 | c |
---|
645 | C cool with upper atmosphere |
---|
646 | C |
---|
647 | IF(callnlte) THEN |
---|
648 | DO k = 1,nlaylte |
---|
649 | cool(j,k) = zcool(k) |
---|
650 | ENDDO |
---|
651 | c Zero tendencies for any remaining layers between nlaylte and klev |
---|
652 | if (klev.gt.nlaylte) then |
---|
653 | do k = nlaylte+1, klev |
---|
654 | cool(j,k) = 0. |
---|
655 | enddo |
---|
656 | endif |
---|
657 | ELSE |
---|
658 | DO k = 1, klev |
---|
659 | cool(j,k) = zcool(k) |
---|
660 | ENDDO |
---|
661 | ENDIF ! callnlte |
---|
662 | |
---|
663 | cc SOLAR : RH TABLES |
---|
664 | C heat with upper atmosphere |
---|
665 | IF(solarchoice.eq.1) THEN |
---|
666 | IF(callnlte) THEN |
---|
667 | DO k = 1,nlaylte |
---|
668 | heat(j,k) = zheat(k) |
---|
669 | ENDDO |
---|
670 | c Zero tendencies for any remaining layers between nlaylte and klev |
---|
671 | if (klev.gt.nlaylte) then |
---|
672 | do k = nlaylte+1, klev |
---|
673 | heat(j,k) = 0. |
---|
674 | enddo |
---|
675 | endif |
---|
676 | ELSE |
---|
677 | DO k = 1, klev |
---|
678 | heat(j,k) = zheat(k) |
---|
679 | ENDDO |
---|
680 | ENDIF ! callnlte |
---|
681 | ENDIF ! solarchoice.eq.1 |
---|
682 | |
---|
683 | ENDDO ! of DO j = 1, klon |
---|
684 | c+++++++ FIN BOUCLE SUR LA GRILLE +++++++++++++++++++++++++ |
---|
685 | |
---|
686 | cc SOLAR : GENERICS |
---|
687 | ! Solar heating rates from generic => directly on klon |
---|
688 | ! only once every subloop calls, because of high frequency needed by lw... |
---|
689 | if (solarchoice.eq.2) then |
---|
690 | |
---|
691 | if (i_sw.eq.subloop) then |
---|
692 | |
---|
693 | call sw_venus_corrk(klon,klev,rmu0,paprs,pplay,t,tsol, |
---|
694 | . fract,dist,heat,solsw,topsw,swnet,firstcall) |
---|
695 | |
---|
696 | IF(callnlte) THEN |
---|
697 | c Zero tendencies for any remaining layers between nlaylte and klev |
---|
698 | if (klev.gt.nlaylte) then |
---|
699 | do k = nlaylte+1,klev |
---|
700 | heat(:,k) = 0. |
---|
701 | enddo |
---|
702 | endif |
---|
703 | ENDIF ! callnlte |
---|
704 | |
---|
705 | i_sw=0 |
---|
706 | endif ! i_sw=subloop |
---|
707 | |
---|
708 | radsol(:)=radsol(:)+solsw(:) |
---|
709 | i_sw=i_sw+1 |
---|
710 | endif ! solarchoice.eq.2 |
---|
711 | |
---|
712 | !---------------------------------------------------------- |
---|
713 | |
---|
714 | ! for tests: write output fields... |
---|
715 | ! call writefield_phy('radlwsw_heat',heat,klev) |
---|
716 | ! call writefield_phy('radlwsw_cool',cool,klev) |
---|
717 | ! call writefield_phy('radlwsw_radsol',radsol,1) |
---|
718 | ! call writefield_phy('radlwsw_topsw',topsw,1) |
---|
719 | ! call writefield_phy('radlwsw_toplw',toplw,1) |
---|
720 | ! call writefield_phy('radlwsw_solsw',solsw,1) |
---|
721 | ! call writefield_phy('radlwsw_sollw',sollw,1) |
---|
722 | ! call writefield_phy('radlwsw_sollwdown',sollwdown,1) |
---|
723 | ! call writefield_phy('radlwsw_swnet',swnet,klev+1) |
---|
724 | ! call writefield_phy('radlwsw_lwnet',lwnet,klev+1) |
---|
725 | |
---|
726 | c tests |
---|
727 | |
---|
728 | c j = klon/2 |
---|
729 | c j = 1 |
---|
730 | c print*,'mu0=',rmu0(j) |
---|
731 | c print*,' net flux vis HEAT(K/Eday)' |
---|
732 | c do k=1,klev |
---|
733 | c print*,k,ZFSNET(k),heat(j,k)*86400. |
---|
734 | c enddo |
---|
735 | c print*,' net flux IR COOL(K/Eday)' |
---|
736 | c do k=1,klev |
---|
737 | c print*,k,ZFLNET(k),cool(j,k)*86400. |
---|
738 | c enddo |
---|
739 | |
---|
740 | firstcall = .false. |
---|
741 | |
---|
742 | END |
---|