[2560] | 1 | module radinc_h |
---|
| 2 | |
---|
| 3 | implicit none |
---|
| 4 | |
---|
| 5 | |
---|
| 6 | !----------------------------------------------------------------------- |
---|
| 7 | ! INCLUDE 'bands.h' |
---|
| 8 | ! |
---|
| 9 | ! bands.h contains the visible & infrared bands in the model |
---|
| 10 | ! |
---|
| 11 | ! NBinfrared = L_NSPECTI in the model |
---|
| 12 | ! NBvisible = L_NSPECTV in the model |
---|
| 13 | !----------------------------------------------------------------------- |
---|
| 14 | |
---|
| 15 | INTEGER, parameter :: NBinfrared=32 |
---|
| 16 | INTEGER, parameter :: NBvisible=36 |
---|
| 17 | |
---|
| 18 | !----------------------------------------------------------------------- |
---|
| 19 | ! INCLUDE 'scatterers.h' |
---|
| 20 | ! |
---|
| 21 | !====================================================================== |
---|
| 22 | ! |
---|
| 23 | ! RADINC.H |
---|
| 24 | ! |
---|
| 25 | ! Includes for the radiation code; RADIATION LAYERS, LEVELS, |
---|
| 26 | ! number of spectral intervals. . . |
---|
| 27 | ! |
---|
| 28 | !====================================================================== |
---|
| 29 | |
---|
| 30 | ! RADIATION parameters |
---|
| 31 | |
---|
| 32 | ! In radiation code, layer 1 corresponds to the stratosphere. Level |
---|
| 33 | ! 1 is the top of the stratosphere. The dummy layer is at the same |
---|
| 34 | ! temperature as the (vertically isothermal) stratosphere, and |
---|
| 35 | ! any time it is explicitly needed, the appropriate quantities will |
---|
| 36 | ! be dealt with (aka "top". . .) |
---|
| 37 | |
---|
| 38 | ! L_NLEVRAD corresponds to the surface - i.e., the GCM Level that |
---|
| 39 | ! is at the surface. PLEV(L_NLEVRAD) = P(J,I)+PTROP, |
---|
| 40 | ! PLEV(2) = PTROP, PLEV(1) = ptop |
---|
| 41 | |
---|
| 42 | ! L_NLAYRAD is the number of radiation code layers |
---|
| 43 | ! L_NLEVRAD is the number of radiation code levels. Level N is the |
---|
| 44 | ! top of layer N. |
---|
| 45 | ! |
---|
| 46 | ! L_NSPECTI is the number of IR spectral intervals |
---|
| 47 | ! L_NSPECTV is the number of Visual(or Solar) spectral intervals |
---|
| 48 | ! L_NGAUSS is the number of Gauss points for K-coefficients |
---|
| 49 | ! GAUSS POINT 17 (aka the last one) is the special case |
---|
| 50 | ! |
---|
| 51 | ! L_NPREF is the number of reference pressures that the |
---|
| 52 | ! k-coefficients are calculated on |
---|
| 53 | ! L_PINT is the number of Lagrange interpolated reference |
---|
| 54 | ! pressures for the gas k-coefficients - now for a |
---|
| 55 | ! smaller p-grid than before |
---|
| 56 | ! L_NTREF is the number of reference temperatures for the |
---|
| 57 | ! k-coefficients |
---|
| 58 | ! L_TAUMAX is the largest optical depth - larger ones are set |
---|
| 59 | ! to this value |
---|
| 60 | ! |
---|
| 61 | ! L_REFVAR The number of different mixing ratio values for |
---|
| 62 | ! the k-coefficients. Variable component of the mixture |
---|
| 63 | ! can in princple be anything: currently it's H2O. |
---|
| 64 | ! |
---|
| 65 | ! NAERKIND The number of radiatively active aerosol types |
---|
| 66 | ! |
---|
| 67 | ! NSIZEMAX The maximum number of aerosol particle sizes |
---|
| 68 | ! |
---|
| 69 | !---------------------------------------------------------------------- |
---|
| 70 | |
---|
| 71 | integer,save :: L_NLAYRAD ! = nbp_lev ! set by ini_radinc_h |
---|
| 72 | integer,save :: L_LEVELS ! = 2*(nbp_lev-1)+3 ! set by ini_radinc_h |
---|
| 73 | integer,save :: L_NLEVRAD ! = nbp_lev+1 ! set by ini_radinc_h |
---|
| 74 | !$OMP THREADPRIVATE(L_NLAYRAD,L_LEVELS,L_NLEVRAD) |
---|
| 75 | |
---|
| 76 | ! These are set in sugas_corrk |
---|
| 77 | ! [uses allocatable arrays] -- AS 12/2011 |
---|
| 78 | integer :: L_NPREF, L_NTREF, L_REFVAR, L_PINT, L_NGAUSS !L_NPREF, L_NTREF, L_REFVAR, L_PINT, L_NGAUSS read by master in sugas_corrk |
---|
| 79 | |
---|
| 80 | integer, parameter :: L_NSPECTV = NBvisible |
---|
| 81 | |
---|
| 82 | integer, parameter :: NAERKIND = 5 |
---|
| 83 | real, parameter :: L_TAUMAX = 35 |
---|
| 84 | |
---|
| 85 | ! For Planck function integration: |
---|
| 86 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 87 | ! Integration boundary temperatures are NTstart/NTfac and Ntstop/NTfac |
---|
| 88 | ! -- JVO 20 : Now read boundary T and integration dT as inputs in callphys.def |
---|
| 89 | ! NTstart, Nstop and NTfac then set by ini_radinc_h |
---|
| 90 | ! Smart user can adjust values depending he's running hot or cold atm |
---|
| 91 | ! Default is wide range : 30K-1500K, with 0.1K step |
---|
| 92 | ! -> NTstart=300, Nstop=15000, NTfac=10 |
---|
| 93 | integer :: NTstart, NTstop |
---|
| 94 | real*8 :: NTfac |
---|
| 95 | |
---|
| 96 | ! Maximum number of grain size classes for aerosol convolution: |
---|
| 97 | ! This must correspond to size of largest dataset used for aerosol |
---|
| 98 | ! optical properties in datagcm folder. |
---|
| 99 | integer, parameter :: nsizemax = 60 |
---|
| 100 | |
---|
| 101 | contains |
---|
| 102 | |
---|
| 103 | subroutine ini_radinc_h(nbp_lev) |
---|
| 104 | ! Initialize module variables |
---|
| 105 | implicit none |
---|
| 106 | integer,intent(in) :: nbp_lev |
---|
| 107 | |
---|
| 108 | L_NLAYRAD = nbp_lev |
---|
| 109 | L_LEVELS = 2*(nbp_lev-1)+3 |
---|
| 110 | L_NLEVRAD = nbp_lev+1 |
---|
| 111 | |
---|
| 112 | NTfac = 10 |
---|
| 113 | NTstart = 300 |
---|
| 114 | NTstop = 15000 |
---|
| 115 | |
---|
| 116 | end subroutine |
---|
| 117 | |
---|
| 118 | end module radinc_h |
---|