1 | ! |
---|
2 | ! $Id: $ |
---|
3 | ! |
---|
4 | MODULE physiq_mod |
---|
5 | |
---|
6 | IMPLICIT NONE |
---|
7 | |
---|
8 | CONTAINS |
---|
9 | |
---|
10 | SUBROUTINE physiq (nlon,nlev,nqmax, |
---|
11 | . debut,lafin,rjourvrai,gmtime,pdtphys, |
---|
12 | . paprs,pplay,ppk,pphi,pphis,presnivs, |
---|
13 | . u,v,t,qx, |
---|
14 | . flxmw, |
---|
15 | . d_u, d_v, d_t, d_qx, d_ps) |
---|
16 | |
---|
17 | c====================================================================== |
---|
18 | c |
---|
19 | c Modifications pour la physique de Venus |
---|
20 | c S. Lebonnois (LMD/CNRS) Septembre 2005 |
---|
21 | c |
---|
22 | c --------------------------------------------------------------------- |
---|
23 | c Auteur(s) Z.X. Li (LMD/CNRS) date: 19930818 |
---|
24 | c |
---|
25 | c Objet: Moniteur general de la physique du modele |
---|
26 | cAA Modifications quant aux traceurs : |
---|
27 | cAA - uniformisation des parametrisations ds phytrac |
---|
28 | cAA - stockage des moyennes des champs necessaires |
---|
29 | cAA en mode traceur off-line |
---|
30 | c modif ( P. Le Van , 12/10/98 ) |
---|
31 | c |
---|
32 | c Arguments: |
---|
33 | c |
---|
34 | c nlon----input-I-nombre de points horizontaux |
---|
35 | c nlev----input-I-nombre de couches verticales |
---|
36 | c nqmax---input-I-nombre de traceurs |
---|
37 | c debut---input-L-variable logique indiquant le premier passage |
---|
38 | c lafin---input-L-variable logique indiquant le dernier passage |
---|
39 | c rjour---input-R-numero du jour de l'experience |
---|
40 | c gmtime--input-R-fraction de la journee (0 a 1) |
---|
41 | c pdtphys-input-R-pas d'integration pour la physique (seconde) |
---|
42 | c paprs---input-R-pression pour chaque inter-couche (en Pa) |
---|
43 | c pplay---input-R-pression pour le mileu de chaque couche (en Pa) |
---|
44 | c ppk ---input-R-fonction d'Exner au milieu de couche |
---|
45 | c pphi----input-R-geopotentiel de chaque couche (g z) (reference sol) |
---|
46 | c pphis---input-R-geopotentiel du sol |
---|
47 | c presnivs-input_R_pressions approximat. des milieux couches ( en PA) |
---|
48 | c u-------input-R-vitesse dans la direction X (de O a E) en m/s |
---|
49 | c v-------input-R-vitesse Y (de S a N) en m/s |
---|
50 | c t-------input-R-temperature (K) |
---|
51 | c qx------input-R-mass mixing ratio traceurs (kg/kg) |
---|
52 | c d_t_dyn-input-R-tendance dynamique pour "t" (K/s) |
---|
53 | c flxmw---input-R-flux de masse vertical en kg/s |
---|
54 | c |
---|
55 | c d_u-----output-R-tendance physique de "u" (m/s/s) |
---|
56 | c d_v-----output-R-tendance physique de "v" (m/s/s) |
---|
57 | c d_t-----output-R-tendance physique de "t" (K/s) |
---|
58 | c d_qx----output-R-tendance physique de "qx" (kg/kg/s) |
---|
59 | c d_ps----output-R-tendance physique de la pression au sol |
---|
60 | c====================================================================== |
---|
61 | USE ioipsl |
---|
62 | ! USE histcom ! not needed; histcom is included in ioipsl |
---|
63 | use dimphy |
---|
64 | USE geometry_mod,only: longitude, latitude, ! in radians |
---|
65 | & longitude_deg,latitude_deg, ! in degrees |
---|
66 | & cell_area,dx,dy |
---|
67 | USE phys_state_var_mod ! Variables sauvegardees de la physique |
---|
68 | USE cpdet_phy_mod, only: cpdet, t2tpot |
---|
69 | USE chemparam_mod |
---|
70 | USE conc |
---|
71 | USE param_v4_h |
---|
72 | USE compo_hedin83_mod2 |
---|
73 | use radlwsw_newtoncool_mod, only: radlwsw_newtoncool |
---|
74 | ! use ieee_arithmetic |
---|
75 | use time_phylmdz_mod, only: annee_ref, day_ref, itau_phy |
---|
76 | use mod_grid_phy_lmdz, only: nbp_lon |
---|
77 | use infotrac_phy, only: iflag_trac, tname, ttext |
---|
78 | use vertical_layers_mod, only: pseudoalt |
---|
79 | use turb_mod, only : sens, turb_resolved |
---|
80 | use sed_and_prod_mad, only: aer_sedimentation, drop_sedimentation |
---|
81 | #ifdef CPP_XIOS |
---|
82 | use xios_output_mod, only: initialize_xios_output, |
---|
83 | & update_xios_timestep, |
---|
84 | & send_xios_field |
---|
85 | use wxios, only: wxios_context_init, xios_context_finalize |
---|
86 | #endif |
---|
87 | #ifdef MESOSCALE |
---|
88 | use comm_wrf |
---|
89 | #else |
---|
90 | use iophy |
---|
91 | use write_field_phy |
---|
92 | use mod_phys_lmdz_omp_data, ONLY: is_omp_master |
---|
93 | USE mod_phys_lmdz_para, only : is_parallel,jj_nb, |
---|
94 | & is_north_pole_phy, |
---|
95 | & is_south_pole_phy, |
---|
96 | & is_master |
---|
97 | #endif |
---|
98 | IMPLICIT none |
---|
99 | c====================================================================== |
---|
100 | c CLEFS CPP POUR LES IO |
---|
101 | c ===================== |
---|
102 | #ifndef MESOSCALE |
---|
103 | c#define histhf |
---|
104 | #define histday |
---|
105 | #define histmth |
---|
106 | #define histins |
---|
107 | #endif |
---|
108 | c====================================================================== |
---|
109 | #include "dimsoil.h" |
---|
110 | #include "clesphys.h" |
---|
111 | #include "iniprint.h" |
---|
112 | #include "timerad.h" |
---|
113 | #include "tabcontrol.h" |
---|
114 | #include "nirdata.h" |
---|
115 | #include "hedin.h" |
---|
116 | c====================================================================== |
---|
117 | LOGICAL ok_journe ! sortir le fichier journalier |
---|
118 | save ok_journe |
---|
119 | c PARAMETER (ok_journe=.true.) |
---|
120 | c |
---|
121 | LOGICAL ok_mensuel ! sortir le fichier mensuel |
---|
122 | save ok_mensuel |
---|
123 | c PARAMETER (ok_mensuel=.true.) |
---|
124 | c |
---|
125 | LOGICAL ok_instan ! sortir le fichier instantane |
---|
126 | save ok_instan |
---|
127 | c PARAMETER (ok_instan=.true.) |
---|
128 | c |
---|
129 | c====================================================================== |
---|
130 | c |
---|
131 | c Variables argument: |
---|
132 | c |
---|
133 | INTEGER nlon |
---|
134 | INTEGER nlev |
---|
135 | INTEGER nqmax |
---|
136 | REAL rjourvrai |
---|
137 | REAL gmtime |
---|
138 | REAL pdtphys |
---|
139 | LOGICAL debut, lafin |
---|
140 | REAL paprs(klon,klev+1) |
---|
141 | REAL pplay(klon,klev) |
---|
142 | REAL pphi(klon,klev) |
---|
143 | REAL pphis(klon) |
---|
144 | REAL presnivs(klev) |
---|
145 | |
---|
146 | ! ADAPTATION GCM POUR CP(T) |
---|
147 | REAL ppk(klon,klev) |
---|
148 | |
---|
149 | REAL u(klon,klev) |
---|
150 | REAL v(klon,klev) |
---|
151 | REAL t(klon,klev) |
---|
152 | REAL qx(klon,klev,nqmax) |
---|
153 | |
---|
154 | REAL d_u_dyn(klon,klev) |
---|
155 | REAL d_t_dyn(klon,klev) |
---|
156 | |
---|
157 | REAL flxmw(klon,klev) |
---|
158 | |
---|
159 | REAL d_u(klon,klev) |
---|
160 | REAL d_v(klon,klev) |
---|
161 | REAL d_t(klon,klev) |
---|
162 | REAL d_qx(klon,klev,nqmax) |
---|
163 | REAL d_ps(klon) |
---|
164 | |
---|
165 | logical ok_hf |
---|
166 | real ecrit_hf |
---|
167 | integer nid_hf |
---|
168 | save ok_hf, ecrit_hf, nid_hf |
---|
169 | |
---|
170 | #ifdef histhf |
---|
171 | data ok_hf,ecrit_hf/.true.,0.25/ |
---|
172 | #else |
---|
173 | data ok_hf/.false./ |
---|
174 | #endif |
---|
175 | |
---|
176 | c Variables propres a la physique |
---|
177 | |
---|
178 | integer,save :: itap ! physics counter |
---|
179 | REAL delp(klon,klev) ! epaisseur d'une couche |
---|
180 | REAL omega(klon,klev) ! vitesse verticale en Pa/s |
---|
181 | |
---|
182 | INTEGER igwd,idx(klon),itest(klon) |
---|
183 | |
---|
184 | c Diagnostiques 2D de drag_noro, lift_noro et gw_nonoro |
---|
185 | |
---|
186 | REAL zulow(klon),zvlow(klon) |
---|
187 | REAL zustrdr(klon), zvstrdr(klon) |
---|
188 | REAL zustrli(klon), zvstrli(klon) |
---|
189 | REAL zustrhi(klon), zvstrhi(klon) |
---|
190 | REAL zublstrdr(klon), zvblstrdr(klon) |
---|
191 | REAL znlow(klon), zeff(klon) |
---|
192 | REAL zbl(klon), knu2(klon),kbreak(nlon) |
---|
193 | REAL tau0(klon), ztau(klon,klev) |
---|
194 | |
---|
195 | c Pour calcul GW drag oro et nonoro: CALCUL de N2: |
---|
196 | real zdtlev(klon,klev),zdzlev(klon,klev) |
---|
197 | real ztlev(klon,klev) |
---|
198 | real zn2(klon,klev) ! BV^2 at plev |
---|
199 | |
---|
200 | c Pour les bilans de moment angulaire, |
---|
201 | integer bilansmc |
---|
202 | c Pour le transport de ballons |
---|
203 | integer ballons |
---|
204 | c j'ai aussi besoin |
---|
205 | c du stress de couche limite a la surface: |
---|
206 | |
---|
207 | REAL zustrcl(klon),zvstrcl(klon) |
---|
208 | |
---|
209 | c et du stress total c de la physique: |
---|
210 | |
---|
211 | REAL zustrph(klon),zvstrph(klon) |
---|
212 | |
---|
213 | c Variables locales: |
---|
214 | c |
---|
215 | REAL cdragh(klon) ! drag coefficient pour T and Q |
---|
216 | REAL cdragm(klon) ! drag coefficient pour vent |
---|
217 | c |
---|
218 | cAA Pour TRACEURS |
---|
219 | cAA |
---|
220 | REAL,save,allocatable :: source(:,:) |
---|
221 | REAL ycoefh(klon,klev) ! coef d'echange pour phytrac |
---|
222 | REAL yu1(klon) ! vents dans la premiere couche U |
---|
223 | REAL yv1(klon) ! vents dans la premiere couche V |
---|
224 | |
---|
225 | REAL dsens(klon) ! derivee chaleur sensible |
---|
226 | REAL ve(klon) ! integr. verticale du transport meri. de l'energie |
---|
227 | REAL vq(klon) ! integr. verticale du transport meri. de l'eau |
---|
228 | REAL ue(klon) ! integr. verticale du transport zonal de l'energie |
---|
229 | REAL uq(klon) ! integr. verticale du transport zonal de l'eau |
---|
230 | c |
---|
231 | REAL Fsedim(klon,klev+1) ! Flux de sedimentation (kg.m-2) |
---|
232 | |
---|
233 | c====================================================================== |
---|
234 | c |
---|
235 | c Declaration des procedures appelees |
---|
236 | c |
---|
237 | EXTERNAL ajsec ! ajustement sec |
---|
238 | EXTERNAL clmain ! couche limite |
---|
239 | EXTERNAL clmain_ideal ! couche limite simple |
---|
240 | EXTERNAL hgardfou ! verifier les temperatures |
---|
241 | c EXTERNAL orbite ! calculer l'orbite |
---|
242 | EXTERNAL phyetat0 ! lire l'etat initial de la physique |
---|
243 | EXTERNAL phyredem ! ecrire l'etat de redemarrage de la physique |
---|
244 | EXTERNAL radlwsw ! rayonnements solaire et infrarouge |
---|
245 | ! EXTERNAL suphec ! initialiser certaines constantes |
---|
246 | EXTERNAL transp ! transport total de l'eau et de l'energie |
---|
247 | EXTERNAL printflag |
---|
248 | EXTERNAL zenang |
---|
249 | EXTERNAL diagetpq |
---|
250 | EXTERNAL conf_phys |
---|
251 | EXTERNAL diagphy |
---|
252 | EXTERNAL mucorr |
---|
253 | EXTERNAL nirco2abs |
---|
254 | EXTERNAL nir_leedat |
---|
255 | EXTERNAL nltecool |
---|
256 | EXTERNAL nlte_tcool |
---|
257 | EXTERNAL nlte_setup |
---|
258 | EXTERNAL blendrad |
---|
259 | EXTERNAL nlthermeq |
---|
260 | EXTERNAL euvheat |
---|
261 | EXTERNAL param_read_e107 |
---|
262 | EXTERNAL conduction |
---|
263 | EXTERNAL molvis |
---|
264 | EXTERNAL moldiff_red |
---|
265 | |
---|
266 | c |
---|
267 | c Variables locales |
---|
268 | c |
---|
269 | CXXX PB |
---|
270 | REAL fluxt(klon,klev) ! flux turbulent de chaleur |
---|
271 | REAL fluxu(klon,klev) ! flux turbulent de vitesse u |
---|
272 | REAL fluxv(klon,klev) ! flux turbulent de vitesse v |
---|
273 | c |
---|
274 | REAL flux_dyn(klon,klev) ! flux de chaleur produit par la dynamique |
---|
275 | REAL flux_ajs(klon,klev) ! flux de chaleur ajustement sec |
---|
276 | REAL flux_ec(klon,klev) ! flux de chaleur Ec |
---|
277 | c |
---|
278 | REAL tmpout(klon,klev) ! K s-1 |
---|
279 | c |
---|
280 | REAL dist, rmu0(klon), fract(klon) |
---|
281 | REAL zdtime, zlongi |
---|
282 | c |
---|
283 | INTEGER i, k, iq, ig, j, ll, ilon, ilat, ilev, isoil |
---|
284 | c |
---|
285 | REAL zphi(klon,klev) |
---|
286 | REAL zzlev(klon,klev+1),zzlay(klon,klev),z1,z2 |
---|
287 | real tsurf(klon) |
---|
288 | |
---|
289 | c va avec nlte_tcool |
---|
290 | INTEGER ierr_nlte |
---|
291 | REAL varerr |
---|
292 | |
---|
293 | ! photochemistry |
---|
294 | |
---|
295 | integer :: chempas |
---|
296 | real :: nbapp_chem, zctime |
---|
297 | |
---|
298 | ! sedimentation |
---|
299 | |
---|
300 | REAL :: m0_mode1(klev,2),m0_mode2(klev,2) |
---|
301 | REAL :: m3_mode1(klev,3),m3_mode2 (klev,3) |
---|
302 | REAL :: d_drop_sed(klev),d_ccn_sed(klev,2),d_liq_sed(klev,2) |
---|
303 | REAL :: aer_flux(klev) |
---|
304 | c |
---|
305 | c Variables du changement |
---|
306 | c |
---|
307 | c ajs: ajustement sec |
---|
308 | c vdf: couche limite (Vertical DiFfusion) |
---|
309 | REAL d_t_ajs(klon,klev), d_tr_ajs(klon,klev,nqmax) |
---|
310 | REAL d_u_ajs(klon,klev), d_v_ajs(klon,klev) |
---|
311 | c |
---|
312 | REAL d_ts(klon) |
---|
313 | c |
---|
314 | REAL d_u_vdf(klon,klev), d_v_vdf(klon,klev) |
---|
315 | REAL d_t_vdf(klon,klev), d_tr_vdf(klon,klev,nqmax) |
---|
316 | c |
---|
317 | CMOD LOTT: Tendances Orography Sous-maille |
---|
318 | REAL d_u_oro(klon,klev), d_v_oro(klon,klev) |
---|
319 | REAL d_t_oro(klon,klev) |
---|
320 | REAL d_u_lif(klon,klev), d_v_lif(klon,klev) |
---|
321 | REAL d_t_lif(klon,klev) |
---|
322 | C Tendances Ondes de G non oro (runs strato). |
---|
323 | REAL d_u_hin(klon,klev), d_v_hin(klon,klev) |
---|
324 | REAL d_t_hin(klon,klev) |
---|
325 | |
---|
326 | c Tendencies due to radiative scheme [K/s] |
---|
327 | c d_t_rad,dtsw,dtlw,d_t_nirco2,d_t_nlte,d_t_euv |
---|
328 | c are not computed at each physical timestep |
---|
329 | c therefore, they are defined and saved in phys_state_var_mod |
---|
330 | |
---|
331 | c Tendencies due to molecular viscosity and conduction |
---|
332 | real d_t_conduc(klon,klev) ! [K/s] |
---|
333 | real d_u_molvis(klon,klev) ! (m/s) /s |
---|
334 | real d_v_molvis(klon,klev) ! (m/s) /s |
---|
335 | |
---|
336 | c Tendencies due to molecular diffusion |
---|
337 | real d_q_moldif(klon,klev,nqmax) |
---|
338 | |
---|
339 | c |
---|
340 | c Variables liees a l'ecriture de la bande histoire physique |
---|
341 | c |
---|
342 | INTEGER ecrit_mth |
---|
343 | SAVE ecrit_mth ! frequence d'ecriture (fichier mensuel) |
---|
344 | c |
---|
345 | INTEGER ecrit_day |
---|
346 | SAVE ecrit_day ! frequence d'ecriture (fichier journalier) |
---|
347 | c |
---|
348 | INTEGER ecrit_ins |
---|
349 | SAVE ecrit_ins ! frequence d'ecriture (fichier instantane) |
---|
350 | c |
---|
351 | integer itau_w ! pas de temps ecriture = itap + itau_phy |
---|
352 | |
---|
353 | c Variables locales pour effectuer les appels en serie |
---|
354 | c |
---|
355 | REAL t_seri(klon,klev) |
---|
356 | REAL u_seri(klon,klev), v_seri(klon,klev) |
---|
357 | c |
---|
358 | REAL :: tr_seri(klon,klev,nqmax) |
---|
359 | REAL :: tr_hedin(klon,klev,nqmax) |
---|
360 | REAL :: d_tr(klon,klev,nqmax) |
---|
361 | |
---|
362 | c pour ioipsl |
---|
363 | INTEGER nid_day, nid_mth, nid_ins |
---|
364 | SAVE nid_day, nid_mth, nid_ins |
---|
365 | INTEGER nhori, nvert, idayref |
---|
366 | REAL zsto, zout, zsto1, zsto2, zero |
---|
367 | parameter (zero=0.0e0) |
---|
368 | real zjulian |
---|
369 | save zjulian |
---|
370 | |
---|
371 | CHARACTER*2 str2 |
---|
372 | character*20 modname |
---|
373 | character*80 abort_message |
---|
374 | logical ok_sync |
---|
375 | |
---|
376 | character*30 nom_fichier |
---|
377 | character*10 varname |
---|
378 | character*40 vartitle |
---|
379 | character*20 varunits |
---|
380 | C Variables liees au bilan d'energie et d'enthalpi |
---|
381 | REAL ztsol(klon) |
---|
382 | REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot |
---|
383 | $ , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot |
---|
384 | SAVE h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot |
---|
385 | $ , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot |
---|
386 | REAL d_h_vcol, d_h_dair, d_qt, d_qw, d_ql, d_qs, d_ec |
---|
387 | REAL d_h_vcol_phy |
---|
388 | REAL fs_bound, fq_bound |
---|
389 | SAVE d_h_vcol_phy |
---|
390 | REAL zero_v(klon),zero_v2(klon,klev) |
---|
391 | CHARACTER*15 ztit |
---|
392 | INTEGER ip_ebil ! PRINT level for energy conserv. diag. |
---|
393 | SAVE ip_ebil |
---|
394 | DATA ip_ebil/2/ |
---|
395 | INTEGER if_ebil ! level for energy conserv. dignostics |
---|
396 | SAVE if_ebil |
---|
397 | c+jld ec_conser |
---|
398 | REAL d_t_ec(klon,klev) ! tendance du a la conversion Ec -> E thermique |
---|
399 | c-jld ec_conser |
---|
400 | |
---|
401 | c TEST VENUS... |
---|
402 | REAL mang(klon,klev) ! moment cinetique |
---|
403 | REAL mangtot ! moment cinetique total |
---|
404 | |
---|
405 | c cell_area for outputs in hist* |
---|
406 | REAL cell_area_out(klon) |
---|
407 | #ifdef MESOSCALE |
---|
408 | REAL :: dt_dyn(klev) |
---|
409 | #endif |
---|
410 | c Declaration des constantes et des fonctions thermodynamiques |
---|
411 | c |
---|
412 | #include "YOMCST.h" |
---|
413 | |
---|
414 | c====================================================================== |
---|
415 | c====================================================================== |
---|
416 | c INITIALISATIONS |
---|
417 | c====================================================================== |
---|
418 | |
---|
419 | modname = 'physiq' |
---|
420 | ok_sync=.TRUE. |
---|
421 | |
---|
422 | bilansmc = 0 |
---|
423 | ballons = 0 |
---|
424 | ! NE FONCTIONNENT PAS ENCORE EN PARALLELE !!! |
---|
425 | #ifndef MESOSCALE |
---|
426 | if (is_parallel) then |
---|
427 | bilansmc = 0 |
---|
428 | ballons = 0 |
---|
429 | endif |
---|
430 | #endif |
---|
431 | IF (if_ebil.ge.1) THEN |
---|
432 | DO i=1,klon |
---|
433 | zero_v(i)=0. |
---|
434 | END DO |
---|
435 | DO i=1,klon |
---|
436 | DO j=1,klev |
---|
437 | zero_v2(i,j)=0. |
---|
438 | END DO |
---|
439 | END DO |
---|
440 | END IF |
---|
441 | |
---|
442 | c====================================================================== |
---|
443 | c PREMIER APPEL SEULEMENT |
---|
444 | c======================== |
---|
445 | IF (debut) THEN |
---|
446 | allocate(source(klon,nqmax)) |
---|
447 | |
---|
448 | #ifdef CPP_XIOS |
---|
449 | ! Initialize XIOS context |
---|
450 | write(*,*) "physiq: call wxios_context_init" |
---|
451 | CALL wxios_context_init |
---|
452 | #endif |
---|
453 | |
---|
454 | ! The call to suphec is now done in iniphysiq_mod (interface) |
---|
455 | ! CALL suphec ! initialiser constantes et parametres phys. |
---|
456 | |
---|
457 | IF (if_ebil.ge.1) d_h_vcol_phy=0. |
---|
458 | c |
---|
459 | c appel a la lecture du physiq.def |
---|
460 | c |
---|
461 | call conf_phys(ok_journe, ok_mensuel, |
---|
462 | . ok_instan, |
---|
463 | . if_ebil) |
---|
464 | |
---|
465 | call phys_state_var_init(nqmax) |
---|
466 | c |
---|
467 | c Initialising Hedin model for upper atm |
---|
468 | c (to be revised when coupled to chemistry) : |
---|
469 | call conc_init |
---|
470 | |
---|
471 | ! initialise physics counter |
---|
472 | |
---|
473 | itap = 0 |
---|
474 | |
---|
475 | #ifdef MESOSCALE |
---|
476 | print*,'check pdtphys',pdtphys |
---|
477 | PRINT*,'check phisfi ',pphis(1),pphis(klon) |
---|
478 | PRINT*,'check geop',pphi(1,1),pphi(klon,klev) |
---|
479 | PRINT*,'check radsol',radsol(1),radsol(klon) |
---|
480 | print*,'check ppk',ppk(1,1),ppk(klon,klev) |
---|
481 | print*,'check ftsoil',ftsoil(1,1),ftsoil(klon,nsoilmx) |
---|
482 | print*,'check ftsol',ftsol(1),ftsol(klon) |
---|
483 | print*, "check temp", t(1,1),t(klon,klev) |
---|
484 | print*, "check pres",paprs(1,1),paprs(klon,klev),pplay(1,1), |
---|
485 | . pplay(klon,klev) |
---|
486 | print*, "check u", u(1,1),u(klon,klev) |
---|
487 | print*, "check v", v(1,1),v(klon,klev) |
---|
488 | print*,'check falbe',falbe(1),falbe(klon) |
---|
489 | !nqtot=nqmax |
---|
490 | !ALLOCATE(tname(nqtot)) |
---|
491 | !tname=noms |
---|
492 | zmea=0. |
---|
493 | zstd=0. |
---|
494 | zsig=0. |
---|
495 | zgam=0. |
---|
496 | zthe=0. |
---|
497 | dtime=pdtphys |
---|
498 | #else |
---|
499 | c |
---|
500 | c Lecture startphy.nc : |
---|
501 | c |
---|
502 | CALL phyetat0 ("startphy.nc") |
---|
503 | IF (.not.startphy_file) THEN |
---|
504 | ! Additionnal academic initializations |
---|
505 | ftsol(:)=t(:,1) ! surface temperature as in first atm. layer |
---|
506 | DO isoil=1, nsoilmx |
---|
507 | ! subsurface temperatures equal to surface temperature |
---|
508 | ftsoil(:,isoil)=ftsol(:) |
---|
509 | ENDDO |
---|
510 | ENDIF |
---|
511 | #endif |
---|
512 | |
---|
513 | c dtime est defini dans tabcontrol.h et lu dans startphy |
---|
514 | c pdtphys est calcule a partir des nouvelles conditions: |
---|
515 | c Reinitialisation du pas de temps physique quand changement |
---|
516 | IF (ABS(dtime-pdtphys).GT.0.001) THEN |
---|
517 | WRITE(lunout,*) 'Pas physique a change',dtime, |
---|
518 | . pdtphys |
---|
519 | c abort_message='Pas physique n est pas correct ' |
---|
520 | c call abort_physic(modname,abort_message,1) |
---|
521 | c---------------- |
---|
522 | c pour initialiser convenablement le time_counter, il faut tenir compte |
---|
523 | c du changement de dtime en changeant itau_phy (point de depart) |
---|
524 | itau_phy = NINT(itau_phy*dtime/pdtphys) |
---|
525 | c---------------- |
---|
526 | dtime=pdtphys |
---|
527 | ENDIF |
---|
528 | |
---|
529 | radpas = NINT(RDAY/pdtphys/nbapp_rad) |
---|
530 | |
---|
531 | CALL printflag( ok_journe,ok_instan ) |
---|
532 | |
---|
533 | #ifdef CPP_XIOS |
---|
534 | write(*,*) "physiq: call initialize_xios_output" |
---|
535 | call initialize_xios_output(rjourvrai,gmtime,pdtphys,RDAY, |
---|
536 | & presnivs,pseudoalt) |
---|
537 | #endif |
---|
538 | |
---|
539 | c |
---|
540 | c--------- |
---|
541 | c FLOTT |
---|
542 | IF (ok_orodr) THEN |
---|
543 | DO i=1,klon |
---|
544 | rugoro(i) = MAX(1.0e-05, zstd(i)*zsig(i)/2.0) |
---|
545 | ENDDO |
---|
546 | CALL SUGWD(klon,klev,paprs,pplay) |
---|
547 | DO i=1,klon |
---|
548 | zuthe(i)=0. |
---|
549 | zvthe(i)=0. |
---|
550 | if(zstd(i).gt.10.)then |
---|
551 | zuthe(i)=(1.-zgam(i))*cos(zthe(i)) |
---|
552 | zvthe(i)=(1.-zgam(i))*sin(zthe(i)) |
---|
553 | endif |
---|
554 | ENDDO |
---|
555 | ENDIF |
---|
556 | |
---|
557 | if (bilansmc.eq.1) then |
---|
558 | C OUVERTURE D'UN FICHIER FORMATTE POUR STOCKER LES COMPOSANTES |
---|
559 | C DU BILAN DE MOMENT ANGULAIRE. |
---|
560 | open(27,file='aaam_bud.out',form='formatted') |
---|
561 | open(28,file='fields_2d.out',form='formatted') |
---|
562 | write(*,*)'Ouverture de aaam_bud.out (FL Vous parle)' |
---|
563 | write(*,*)'Ouverture de fields_2d.out (FL Vous parle)' |
---|
564 | endif !bilansmc |
---|
565 | |
---|
566 | c--------------SLEBONNOIS |
---|
567 | C OUVERTURE DES FICHIERS FORMATTES CONTENANT LES POSITIONS ET VITESSES |
---|
568 | C DES BALLONS |
---|
569 | if (ballons.eq.1) then |
---|
570 | open(30,file='ballons-lat.out',form='formatted') |
---|
571 | open(31,file='ballons-lon.out',form='formatted') |
---|
572 | open(32,file='ballons-u.out',form='formatted') |
---|
573 | open(33,file='ballons-v.out',form='formatted') |
---|
574 | open(34,file='ballons-alt.out',form='formatted') |
---|
575 | write(*,*)'Ouverture des ballons*.out' |
---|
576 | endif !ballons |
---|
577 | c------------- |
---|
578 | |
---|
579 | c--------- |
---|
580 | C TRACEURS |
---|
581 | C source dans couche limite |
---|
582 | source(:,:) = 0.0 ! pas de source, pour l'instant |
---|
583 | c--------- |
---|
584 | |
---|
585 | c--------- |
---|
586 | c INITIALIZE THERMOSPHERIC PARAMETERS |
---|
587 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
588 | |
---|
589 | if (callthermos) then |
---|
590 | call fill_data_thermos |
---|
591 | call allocate_param_thermos(klev) |
---|
592 | call param_read_e107 |
---|
593 | endif |
---|
594 | |
---|
595 | c Initialisation (recomputed in concentration2) |
---|
596 | do ig=1,klon |
---|
597 | do j=1,klev |
---|
598 | rnew(ig,j)=R |
---|
599 | cpnew(ig,j)=cpdet(t(ig,j)) |
---|
600 | mmean(ig,j)=RMD |
---|
601 | akknew(ig,j)=1.e-4 |
---|
602 | rho(ig,j)=pplay(ig,j)*mmean(ig,j)*1e-3/(rnew(ig,j)*t(ig,j)) |
---|
603 | enddo |
---|
604 | |
---|
605 | enddo |
---|
606 | |
---|
607 | IF(callthermos.or.callnlte.or.callnirco2) THEN |
---|
608 | call compo_hedin83_init2 |
---|
609 | ENDIF |
---|
610 | if (callnlte.and.nltemodel.eq.2) call nlte_setup |
---|
611 | if (callnirco2.and.nircorr.eq.1) call nir_leedat |
---|
612 | c--------- |
---|
613 | |
---|
614 | c |
---|
615 | c Verifications: |
---|
616 | c |
---|
617 | IF (nlon .NE. klon) THEN |
---|
618 | WRITE(lunout,*)'nlon et klon ne sont pas coherents', nlon, |
---|
619 | . klon |
---|
620 | abort_message='nlon et klon ne sont pas coherents' |
---|
621 | call abort_physic(modname,abort_message,1) |
---|
622 | ENDIF |
---|
623 | IF (nlev .NE. klev) THEN |
---|
624 | WRITE(lunout,*)'nlev et klev ne sont pas coherents', nlev, |
---|
625 | . klev |
---|
626 | abort_message='nlev et klev ne sont pas coherents' |
---|
627 | call abort_physic(modname,abort_message,1) |
---|
628 | ENDIF |
---|
629 | c |
---|
630 | IF (dtime*REAL(radpas).GT.(RDAY*0.25).AND.cycle_diurne) |
---|
631 | $ THEN |
---|
632 | WRITE(lunout,*)'Nbre d appels au rayonnement insuffisant' |
---|
633 | WRITE(lunout,*)"Au minimum 4 appels par jour si cycle diurne" |
---|
634 | abort_message='Nbre d appels au rayonnement insuffisant' |
---|
635 | call abort_physic(modname,abort_message,1) |
---|
636 | ENDIF |
---|
637 | c |
---|
638 | WRITE(lunout,*)"Clef pour la convection seche, iflag_ajs=", |
---|
639 | . iflag_ajs |
---|
640 | c |
---|
641 | ecrit_mth = NINT(RDAY/dtime*ecriphy) ! tous les ecritphy jours |
---|
642 | IF (ok_mensuel) THEN |
---|
643 | WRITE(lunout,*)'La frequence de sortie mensuelle est de ', |
---|
644 | . ecrit_mth |
---|
645 | ENDIF |
---|
646 | |
---|
647 | ecrit_day = NINT(RDAY/dtime *1.0) ! tous les jours |
---|
648 | IF (ok_journe) THEN |
---|
649 | WRITE(lunout,*)'La frequence de sortie journaliere est de ', |
---|
650 | . ecrit_day |
---|
651 | ENDIF |
---|
652 | |
---|
653 | ecrit_ins = NINT(RDAY/dtime*ecriphy) ! Fraction de jour reglable |
---|
654 | IF (ok_instan) THEN |
---|
655 | WRITE(lunout,*)'La frequence de sortie instant. est de ', |
---|
656 | . ecrit_ins |
---|
657 | ENDIF |
---|
658 | |
---|
659 | c Initialisation des sorties |
---|
660 | c=========================== |
---|
661 | |
---|
662 | #ifdef CPP_IOIPSL |
---|
663 | |
---|
664 | #ifdef histhf |
---|
665 | #include "ini_histhf.h" |
---|
666 | #endif |
---|
667 | |
---|
668 | #ifdef histday |
---|
669 | #include "ini_histday.h" |
---|
670 | #endif |
---|
671 | |
---|
672 | #ifdef histmth |
---|
673 | #include "ini_histmth.h" |
---|
674 | #endif |
---|
675 | |
---|
676 | #ifdef histins |
---|
677 | #include "ini_histins.h" |
---|
678 | #endif |
---|
679 | |
---|
680 | #endif |
---|
681 | |
---|
682 | c |
---|
683 | c Initialiser les valeurs de u pour calculs tendances |
---|
684 | c (pour T, c'est fait dans phyetat0) |
---|
685 | c |
---|
686 | DO k = 1, klev |
---|
687 | DO i = 1, klon |
---|
688 | u_ancien(i,k) = u(i,k) |
---|
689 | ENDDO |
---|
690 | ENDDO |
---|
691 | |
---|
692 | c--------- |
---|
693 | c Ecriture fichier initialisation |
---|
694 | c PRINT*,'Ecriture Initial_State.csv' |
---|
695 | c OPEN(88,file='Trac_Point.csv', |
---|
696 | c & form='formatted') |
---|
697 | c--------- |
---|
698 | |
---|
699 | c--------- |
---|
700 | c Initialisation des parametres des nuages |
---|
701 | c=============================================== |
---|
702 | |
---|
703 | c MICROPHY SANS CHIMIE: seulement si full microphy (cl_scheme=2) |
---|
704 | |
---|
705 | if (ok_chem.and..not.ok_cloud) then |
---|
706 | print*,"LA CHIMIE A BESOIN DE LA MICROPHYSIQUE" |
---|
707 | print*,"ok_cloud doit etre = a ok_chem" |
---|
708 | stop |
---|
709 | endif |
---|
710 | if (.not.ok_chem.and.ok_cloud.and.(cl_scheme.eq.1)) then |
---|
711 | print*,"cl_scheme=1 doesnot work without chemistry" |
---|
712 | stop |
---|
713 | endif |
---|
714 | if (.not.ok_chem.and.ok_cloud.and.(cl_scheme.eq.2)) then |
---|
715 | print*,"Full microphysics without chemistry" |
---|
716 | c indexation of microphys tracers |
---|
717 | CALL chemparam_ini() |
---|
718 | endif |
---|
719 | |
---|
720 | ! number of microphysical tracers |
---|
721 | |
---|
722 | nmicro = 0 |
---|
723 | if (ok_cloud .and. (cl_scheme == 1)) nmicro = 2 |
---|
724 | if (ok_cloud .and. (cl_scheme == 2)) nmicro = 12 |
---|
725 | |
---|
726 | c CAS 1D POUR MICROPHYS Aurelien |
---|
727 | if ((nlon .EQ. 1) .AND. ok_cloud .AND. (cl_scheme.eq.1)) then |
---|
728 | PRINT*,'Open profile_cloud_parameters.csv' |
---|
729 | OPEN(66,file='profile_cloud_parameters.csv', |
---|
730 | & form='formatted') |
---|
731 | endif |
---|
732 | |
---|
733 | if ((nlon .EQ. 1) .AND. ok_sedim .AND. (cl_scheme.eq.1)) then |
---|
734 | PRINT*,'Open profile_cloud_sedim.csv' |
---|
735 | OPEN(77,file='profile_cloud_sedim.csv', |
---|
736 | & form='formatted') |
---|
737 | endif |
---|
738 | |
---|
739 | c INIT PHOTOCHEMISTRY ! includes the indexation of microphys tracers |
---|
740 | c if ((nlon .GT. 1) .AND. ok_chem) then |
---|
741 | c !!! DONC 3D !!! POURQUOI ??? |
---|
742 | if (ok_chem) then |
---|
743 | CALL chemparam_ini() |
---|
744 | endif |
---|
745 | |
---|
746 | c INIT MICROPHYS SCHEME 1 (AURELIEN) |
---|
747 | if ((nlon .GT. 1) .AND. ok_cloud .AND. (cl_scheme.eq.1)) then |
---|
748 | c !!! DONC 3D !!! |
---|
749 | CALL cloud_ini(nlon,nlev) |
---|
750 | endif |
---|
751 | |
---|
752 | ! initialise mmean |
---|
753 | |
---|
754 | if(callthermos) then |
---|
755 | call concentrations2(pplay,t,qx,nqmax) |
---|
756 | endif |
---|
757 | |
---|
758 | c======================== |
---|
759 | ENDIF ! debut |
---|
760 | c======================== |
---|
761 | |
---|
762 | c====================================================================== |
---|
763 | ! ------------------------------------------------------ |
---|
764 | ! Initializations done at every physical timestep: |
---|
765 | ! ------------------------------------------------------ |
---|
766 | |
---|
767 | c Mettre a zero des variables de sortie (pour securite) |
---|
768 | c |
---|
769 | DO i = 1, klon |
---|
770 | d_ps(i) = 0.0 |
---|
771 | ENDDO |
---|
772 | DO k = 1, klev |
---|
773 | DO i = 1, klon |
---|
774 | d_t(i,k) = 0.0 |
---|
775 | d_u(i,k) = 0.0 |
---|
776 | d_v(i,k) = 0.0 |
---|
777 | ENDDO |
---|
778 | ENDDO |
---|
779 | DO iq = 1, nqmax |
---|
780 | DO k = 1, klev |
---|
781 | DO i = 1, klon |
---|
782 | d_qx(i,k,iq) = 0.0 |
---|
783 | ENDDO |
---|
784 | ENDDO |
---|
785 | ENDDO |
---|
786 | c |
---|
787 | c Ne pas affecter les valeurs entrees de u, v, h, et q |
---|
788 | c |
---|
789 | DO k = 1, klev |
---|
790 | DO i = 1, klon |
---|
791 | t_seri(i,k) = t(i,k) |
---|
792 | u_seri(i,k) = u(i,k) |
---|
793 | v_seri(i,k) = v(i,k) |
---|
794 | ENDDO |
---|
795 | ENDDO |
---|
796 | DO iq = 1, nqmax |
---|
797 | DO k = 1, klev |
---|
798 | DO i = 1, klon |
---|
799 | tr_seri(i,k,iq) = qx(i,k,iq) |
---|
800 | ENDDO |
---|
801 | ENDDO |
---|
802 | ENDDO |
---|
803 | C |
---|
804 | DO i = 1, klon |
---|
805 | ztsol(i) = ftsol(i) |
---|
806 | ENDDO |
---|
807 | C |
---|
808 | IF (if_ebil.ge.1) THEN |
---|
809 | ztit='after dynamic' |
---|
810 | CALL diagetpq(cell_area,ztit,ip_ebil,1,1,dtime |
---|
811 | e , t_seri,zero_v2,zero_v2,zero_v2,u_seri,v_seri,paprs,pplay |
---|
812 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
813 | C Comme les tendances de la physique sont ajoute dans la dynamique, |
---|
814 | C on devrait avoir que la variation d'entalpie par la dynamique |
---|
815 | C est egale a la variation de la physique au pas de temps precedent. |
---|
816 | C Donc la somme de ces 2 variations devrait etre nulle. |
---|
817 | call diagphy(cell_area,ztit,ip_ebil |
---|
818 | e , zero_v, zero_v, zero_v, zero_v, zero_v |
---|
819 | e , zero_v, zero_v, zero_v, ztsol |
---|
820 | e , d_h_vcol+d_h_vcol_phy, d_qt, 0. |
---|
821 | s , fs_bound, fq_bound ) |
---|
822 | END IF |
---|
823 | |
---|
824 | c==================================================================== |
---|
825 | c XIOS outputs |
---|
826 | |
---|
827 | #ifdef CPP_XIOS |
---|
828 | ! update XIOS time/calendar |
---|
829 | call update_xios_timestep |
---|
830 | #endif |
---|
831 | |
---|
832 | c==================================================================== |
---|
833 | c Diagnostiquer la tendance dynamique |
---|
834 | c |
---|
835 | IF (ancien_ok) THEN |
---|
836 | DO k = 1, klev |
---|
837 | DO i = 1, klon |
---|
838 | d_u_dyn(i,k) = (u_seri(i,k)-u_ancien(i,k))/dtime |
---|
839 | d_t_dyn(i,k) = (t_seri(i,k)-t_ancien(i,k))/dtime |
---|
840 | ENDDO |
---|
841 | ENDDO |
---|
842 | |
---|
843 | ! ADAPTATION GCM POUR CP(T) |
---|
844 | do i=1,klon |
---|
845 | flux_dyn(i,1) = 0.0 |
---|
846 | do j=2,klev |
---|
847 | flux_dyn(i,j) = flux_dyn(i,j-1) |
---|
848 | . +cpdet(t_seri(i,j-1))/RG*d_t_dyn(i,j-1)*(paprs(i,j-1)-paprs(i,j)) |
---|
849 | enddo |
---|
850 | enddo |
---|
851 | |
---|
852 | ELSE |
---|
853 | DO k = 1, klev |
---|
854 | DO i = 1, klon |
---|
855 | d_u_dyn(i,k) = 0.0 |
---|
856 | d_t_dyn(i,k) = 0.0 |
---|
857 | ENDDO |
---|
858 | ENDDO |
---|
859 | ancien_ok = .TRUE. |
---|
860 | ENDIF |
---|
861 | c==================================================================== |
---|
862 | |
---|
863 | c Calcule de vitesse verticale a partir de flux de masse verticale |
---|
864 | DO k = 1, klev |
---|
865 | DO i = 1, klon |
---|
866 | omega(i,k) = RG*flxmw(i,k) / cell_area(i) |
---|
867 | END DO |
---|
868 | END DO |
---|
869 | |
---|
870 | c====== |
---|
871 | c GEOP CORRECTION |
---|
872 | c |
---|
873 | c Ajouter le geopotentiel du sol: |
---|
874 | c |
---|
875 | DO k = 1, klev |
---|
876 | DO i = 1, klon |
---|
877 | zphi(i,k) = pphi(i,k) + pphis(i) |
---|
878 | ENDDO |
---|
879 | ENDDO |
---|
880 | |
---|
881 | c............................ |
---|
882 | c CETTE CORRECTION VA DE PAIR AVEC DES MODIFS DE LEAPFROG(_p) |
---|
883 | c ELLE MARCHE A 50 NIVEAUX (si mmean constante...) |
---|
884 | c MAIS PAS A 78 NIVEAUX (quand mmean varie...) |
---|
885 | c A ANALYSER PLUS EN DETAIL AVANT D'UTILISER |
---|
886 | c............................ |
---|
887 | c zphi is recomputed (pphi is not ok if mean molecular mass varies) |
---|
888 | c with dphi = RT/mmean d(ln p) [evaluated at interface] |
---|
889 | |
---|
890 | c DO i = 1, klon |
---|
891 | c zphi(i,1) = pphis(i) + R*t_seri(i,1)/mmean(i,1)*1000. |
---|
892 | c * *( log(paprs(i,1)) - log(pplay(i,1)) ) |
---|
893 | c DO k = 2, klev |
---|
894 | c zphi(i,k) = zphi(i,k-1) |
---|
895 | c * + R*500.*(t_seri(i,k)/mmean(i,k)+t_seri(i,k-1)/mmean(i,k-1)) |
---|
896 | c * * (log(pplay(i,k-1)) - log(pplay(i,k))) |
---|
897 | c ENDDO |
---|
898 | c ENDDO |
---|
899 | c............................ |
---|
900 | c===== |
---|
901 | |
---|
902 | c calcul du geopotentiel aux niveaux intercouches |
---|
903 | c ponderation des altitudes au niveau des couches en dp/p |
---|
904 | |
---|
905 | DO k=1,klev |
---|
906 | DO i=1,klon |
---|
907 | zzlay(i,k)=zphi(i,k)/RG ! [m] |
---|
908 | ENDDO |
---|
909 | ENDDO |
---|
910 | DO i=1,klon |
---|
911 | zzlev(i,1)=pphis(i)/RG ! [m] |
---|
912 | ENDDO |
---|
913 | DO k=2,klev |
---|
914 | DO i=1,klon |
---|
915 | z1=(pplay(i,k-1)+paprs(i,k))/(pplay(i,k-1)-paprs(i,k)) |
---|
916 | z2=(paprs(i,k) +pplay(i,k))/(paprs(i,k) -pplay(i,k)) |
---|
917 | zzlev(i,k)=(z1*zzlay(i,k-1)+z2*zzlay(i,k))/(z1+z2) |
---|
918 | ENDDO |
---|
919 | ENDDO |
---|
920 | DO i=1,klon |
---|
921 | zzlev(i,klev+1)=zzlay(i,klev)+(zzlay(i,klev)-zzlev(i,klev)) |
---|
922 | ENDDO |
---|
923 | |
---|
924 | c==================================================================== |
---|
925 | c |
---|
926 | c Verifier les temperatures |
---|
927 | c |
---|
928 | CALL hgardfou(t_seri,ftsol,'debutphy') |
---|
929 | |
---|
930 | c==================================================================== |
---|
931 | c Orbite et eclairement |
---|
932 | c======================= |
---|
933 | |
---|
934 | c Pour VENUS, on fixe l'obliquite a 0 et l'eccentricite a 0. |
---|
935 | c donc pas de variations de Ls, ni de dist. |
---|
936 | c La seule chose qui compte, c'est la rotation de la planete devant |
---|
937 | c le Soleil... |
---|
938 | |
---|
939 | zlongi = 0.0 |
---|
940 | dist = 0.72333 ! en UA |
---|
941 | |
---|
942 | c Si on veut remettre l'obliquite a 3 degres et/ou l'eccentricite |
---|
943 | c a sa valeur, et prendre en compte leur evolution, |
---|
944 | c il faudra refaire un orbite.F... |
---|
945 | c CALL orbite(zlongi,dist) |
---|
946 | |
---|
947 | IF (cycle_diurne) THEN |
---|
948 | zdtime=dtime*REAL(radpas) ! pas de temps du rayonnement (s) |
---|
949 | CALL zenang(zlongi,gmtime,zdtime,latitude_deg,longitude_deg, |
---|
950 | & rmu0,fract) |
---|
951 | ELSE |
---|
952 | call mucorr(klon,zlongi,latitude_deg,rmu0,fract) |
---|
953 | ENDIF |
---|
954 | |
---|
955 | ! print fraction of venus day |
---|
956 | |
---|
957 | if (is_master) then |
---|
958 | print*, 'gmtime = ', gmtime |
---|
959 | end if |
---|
960 | |
---|
961 | c====================================================================== |
---|
962 | c FIN INITIALISATIONS |
---|
963 | c====================================================================== |
---|
964 | c====================================================================== |
---|
965 | |
---|
966 | c======================================================= |
---|
967 | ! CONDUCTION and MOLECULAR VISCOSITY |
---|
968 | c======================================================= |
---|
969 | |
---|
970 | d_t_conduc(:,:)=0. |
---|
971 | d_u_molvis(:,:)=0. |
---|
972 | d_v_molvis(:,:)=0. |
---|
973 | |
---|
974 | IF (callthermos) THEN |
---|
975 | |
---|
976 | tsurf(:)=t_seri(:,1) |
---|
977 | call conduction(klon, klev,pdtphys, |
---|
978 | $ pplay,paprs,t_seri, |
---|
979 | $ tsurf,zzlev,zzlay,d_t_conduc) |
---|
980 | |
---|
981 | call molvis(klon, klev,pdtphys, |
---|
982 | $ pplay,paprs,t_seri, |
---|
983 | $ u,tsurf,zzlev,zzlay,d_u_molvis) |
---|
984 | |
---|
985 | call molvis(klon, klev, pdtphys, |
---|
986 | $ pplay,paprs,t_seri, |
---|
987 | $ v,tsurf,zzlev,zzlay,d_v_molvis) |
---|
988 | |
---|
989 | DO k=1,klev |
---|
990 | DO ig=1,klon |
---|
991 | t_seri(ig,k)= t_seri(ig,k)+ d_t_conduc(ig,k)*dtime ! [K] |
---|
992 | u_seri(ig,k)= u_seri(ig,k)+ d_u_molvis(ig,k)*dtime ! m/s |
---|
993 | v_seri(ig,k)= v_seri(ig,k)+ d_v_molvis(ig,k)*dtime ! m/s |
---|
994 | ENDDO |
---|
995 | ENDDO |
---|
996 | ENDIF |
---|
997 | |
---|
998 | c==================================================================== |
---|
999 | c Compute mean mass, cp and R : |
---|
1000 | c------------------------------------ |
---|
1001 | |
---|
1002 | if(callthermos) then |
---|
1003 | call concentrations2(pplay,t_seri,tr_seri, nqmax) |
---|
1004 | endif |
---|
1005 | |
---|
1006 | |
---|
1007 | c======================================================= |
---|
1008 | ! CHEMISTRY AND MICROPHYSICS |
---|
1009 | c======================================================= |
---|
1010 | |
---|
1011 | if (iflag_trac.eq.1) then |
---|
1012 | !==================================================================== |
---|
1013 | ! Case 1: pseudo-chemistry with relaxation toward fixed profile |
---|
1014 | !========= |
---|
1015 | if (tr_scheme.eq.1) then |
---|
1016 | |
---|
1017 | call phytrac_relax (debut,lafin,nqmax, |
---|
1018 | I nlon,nlev,dtime,pplay, |
---|
1019 | O tr_seri) |
---|
1020 | |
---|
1021 | elseif (tr_scheme.eq.2) then |
---|
1022 | !==================================================================== |
---|
1023 | ! Case 2: surface emission |
---|
1024 | ! For the moment, inspired from Mars version |
---|
1025 | ! However, the variable 'source' could be used in physiq |
---|
1026 | ! so the call to phytrac_emiss could be to initialise it. |
---|
1027 | !========= |
---|
1028 | |
---|
1029 | call phytrac_emiss (debut,lafin,nqmax, |
---|
1030 | I nlon,nlev,dtime,paprs, |
---|
1031 | I latitude_deg,longitude_deg, |
---|
1032 | O tr_seri) |
---|
1033 | |
---|
1034 | else if (tr_scheme.eq.3) then |
---|
1035 | !==================================================================== |
---|
1036 | ! Case 3: Full chemistry and/or clouds. |
---|
1037 | ! routines are called every "chempas" physical timestep. |
---|
1038 | ! |
---|
1039 | ! if the physics is called 96000 times per venus day: |
---|
1040 | ! |
---|
1041 | ! nbapp_chem = 24000 => chempas = 4 => zctime = 420 s |
---|
1042 | ! nbapp_chem = 12000 => chempas = 8 => zctime = 840 s |
---|
1043 | !========= |
---|
1044 | |
---|
1045 | nbapp_chem = 24000 |
---|
1046 | chempas = nint(rday/pdtphys/nbapp_chem) |
---|
1047 | zctime = dtime*real(chempas) ! chemical timestep |
---|
1048 | |
---|
1049 | if (mod(itap,chempas) == 0) then ! <------- start of chemistry supercycling |
---|
1050 | |
---|
1051 | ! photochemistry and microphysics |
---|
1052 | |
---|
1053 | call phytrac_chimie(debut, |
---|
1054 | $ gmtime, |
---|
1055 | $ nqmax, |
---|
1056 | $ klon, |
---|
1057 | $ latitude_deg, |
---|
1058 | $ longitude_deg, |
---|
1059 | $ nlev, |
---|
1060 | $ zctime, |
---|
1061 | $ t_seri, |
---|
1062 | $ pplay, |
---|
1063 | $ tr_seri, |
---|
1064 | $ d_tr_chem, |
---|
1065 | $ iter) |
---|
1066 | |
---|
1067 | if (ok_sedim) then |
---|
1068 | if (cl_scheme == 1) then |
---|
1069 | |
---|
1070 | ! sedimentation for simplified microphysics |
---|
1071 | |
---|
1072 | #ifndef MESOSCALE |
---|
1073 | call new_cloud_sedim(klon, |
---|
1074 | $ nlev, |
---|
1075 | $ zctime, |
---|
1076 | $ pplay, |
---|
1077 | $ paprs, |
---|
1078 | $ t_seri, |
---|
1079 | $ tr_seri, |
---|
1080 | $ d_tr_chem, |
---|
1081 | $ d_tr_sed(:,:,1:2), |
---|
1082 | $ nqmax, |
---|
1083 | $ Fsedim) |
---|
1084 | |
---|
1085 | ! test to avoid nans |
---|
1086 | |
---|
1087 | do k = 1, klev |
---|
1088 | do i = 1, klon |
---|
1089 | if ((d_tr_sed(i,k,1) /= d_tr_sed(i,k,1)) .or. |
---|
1090 | $ (d_tr_sed(i,k,2) /= d_tr_sed(i,k,2))) then |
---|
1091 | print*,'sedim NaN PROBLEM' |
---|
1092 | print*,'d_tr_sed Nan?',d_tr_sed(i,k,:) |
---|
1093 | print*,'Temp',t_seri(i,k) |
---|
1094 | print*,'lat-lon',i,'level',k,'zctime',zctime |
---|
1095 | print*,'F_sed',Fsedim(i,k) |
---|
1096 | d_tr_sed(i,k,:) = 0. |
---|
1097 | end if |
---|
1098 | end do |
---|
1099 | end do |
---|
1100 | |
---|
1101 | ! tendency due to condensation and sedimentation |
---|
1102 | |
---|
1103 | d_tr_sed(:,:,1:2) = d_tr_sed(:,:,1:2)/zctime |
---|
1104 | Fsedim(:,1:klev) = Fsedim(:,1:klev)/zctime |
---|
1105 | Fsedim(:,klev+1) = 0. |
---|
1106 | |
---|
1107 | else if (cl_scheme == 2) then |
---|
1108 | |
---|
1109 | ! sedimentation for detailed microphysics |
---|
1110 | |
---|
1111 | d_tr_sed(:,:,:) = 0. |
---|
1112 | |
---|
1113 | do i = 1, klon |
---|
1114 | |
---|
1115 | ! mode 1 |
---|
1116 | |
---|
1117 | m0_mode1(:,1) = tr_seri(i,:,i_m0_mode1drop) |
---|
1118 | m0_mode1(:,2) = tr_seri(i,:,i_m0_mode1ccn) |
---|
1119 | m3_mode1(:,1) = tr_seri(i,:,i_m3_mode1sa) |
---|
1120 | m3_mode1(:,2) = tr_seri(i,:,i_m3_mode1w) |
---|
1121 | m3_mode1(:,3) = tr_seri(i,:,i_m3_mode1ccn) |
---|
1122 | |
---|
1123 | call drop_sedimentation(zctime,klev,m0_mode1,m3_mode1, |
---|
1124 | $ paprs(i,:),zzlev(i,:), |
---|
1125 | $ zzlay(i,:),t_seri(i,:),1, |
---|
1126 | $ d_ccn_sed(:,1),d_drop_sed, |
---|
1127 | $ d_ccn_sed(:,2),d_liq_sed) |
---|
1128 | |
---|
1129 | d_tr_sed(i,:,i_m0_mode1drop)= d_tr_sed(i,:,i_m0_mode1drop) |
---|
1130 | $ + d_drop_sed |
---|
1131 | d_tr_sed(i,:,i_m0_mode1ccn) = d_tr_sed(i,:,i_m0_mode1ccn) |
---|
1132 | $ + d_ccn_sed(:,1) |
---|
1133 | d_tr_sed(i,:,i_m3_mode1ccn) = d_tr_sed(i,:,i_m3_mode1ccn) |
---|
1134 | $ + d_ccn_sed(:,2) |
---|
1135 | d_tr_sed(i,:,i_m3_mode1sa) = d_tr_sed(i,:,i_m3_mode1sa) |
---|
1136 | $ + d_liq_sed(:,1) |
---|
1137 | d_tr_sed(i,:,i_m3_mode1w) = d_tr_sed(i,:,i_m3_mode1w) |
---|
1138 | $ + d_liq_sed(:,2) |
---|
1139 | |
---|
1140 | ! mode 2 |
---|
1141 | |
---|
1142 | m0_mode2(:,1) = tr_seri(i,:,i_m0_mode2drop) |
---|
1143 | m0_mode2(:,2) = tr_seri(i,:,i_m0_mode2ccn) |
---|
1144 | m3_mode2(:,1) = tr_seri(i,:,i_m3_mode2sa) |
---|
1145 | m3_mode2(:,2) = tr_seri(i,:,i_m3_mode2w) |
---|
1146 | m3_mode2(:,3) = tr_seri(i,:,i_m3_mode2ccn) |
---|
1147 | |
---|
1148 | call drop_sedimentation(zctime,klev,m0_mode2,m3_mode2, |
---|
1149 | $ paprs(i,:),zzlev(i,:), |
---|
1150 | $ zzlay(i,:),t_seri(i,:),2, |
---|
1151 | $ d_ccn_sed(:,1),d_drop_sed, |
---|
1152 | $ d_ccn_sed(:,2),d_liq_sed) |
---|
1153 | |
---|
1154 | d_tr_sed(i,:,i_m0_mode2drop)= d_tr_sed(i,:,i_m0_mode2drop) |
---|
1155 | $ + d_drop_sed |
---|
1156 | d_tr_sed(i,:,i_m0_mode2ccn) = d_tr_sed(i,:,i_m0_mode2ccn) |
---|
1157 | $ + d_ccn_sed(:,1) |
---|
1158 | d_tr_sed(i,:,i_m3_mode2ccn) = d_tr_sed(i,:,i_m3_mode2ccn) |
---|
1159 | $ + d_ccn_sed(:,2) |
---|
1160 | d_tr_sed(i,:,i_m3_mode2sa) = d_tr_sed(i,:,i_m3_mode2sa) |
---|
1161 | $ + d_liq_sed(:,1) |
---|
1162 | d_tr_sed(i,:,i_m3_mode2w) = d_tr_sed(i,:,i_m3_mode2w) |
---|
1163 | $ + d_liq_sed(:,2) |
---|
1164 | |
---|
1165 | ! aer |
---|
1166 | |
---|
1167 | call aer_sedimentation(zctime,klev, |
---|
1168 | $ tr_seri(i,:,i_m0_aer), |
---|
1169 | $ tr_seri(i,:,i_m3_aer), |
---|
1170 | $ paprs(i,:),zzlev(i,:), |
---|
1171 | $ zzlay(i,:),t_seri(i,:), |
---|
1172 | $ d_tr_sed(i,:,i_m0_aer), |
---|
1173 | $ d_tr_sed(i,:,i_m3_aer), |
---|
1174 | $ aer_flux) |
---|
1175 | |
---|
1176 | end do |
---|
1177 | |
---|
1178 | ! tendency due to sedimentation |
---|
1179 | |
---|
1180 | do iq = nqmax-nmicro+1,nqmax |
---|
1181 | d_tr_sed(:,:,iq) = d_tr_sed(:,:,iq)/zctime |
---|
1182 | end do |
---|
1183 | #endif |
---|
1184 | end if ! cl_scheme |
---|
1185 | |
---|
1186 | ! update gaseous tracers (chemistry) |
---|
1187 | |
---|
1188 | do iq = 1, nqmax - nmicro |
---|
1189 | tr_seri(:,:,iq) = max(tr_seri(:,:,iq) |
---|
1190 | $ + d_tr_chem(:,:,iq)*zctime,1.e-30) |
---|
1191 | end do |
---|
1192 | |
---|
1193 | ! update condensed tracers (condensation + sedimentation) |
---|
1194 | |
---|
1195 | if (cl_scheme == 1) then |
---|
1196 | tr_seri(:,:,i_h2so4liq) = max(tr_seri(:,:,i_h2so4liq) |
---|
1197 | $ + d_tr_sed(:,:,1)*zctime, 1.e-30) |
---|
1198 | tr_seri(:,:,i_h2oliq) = max(tr_seri(:,:,i_h2oliq) |
---|
1199 | $ + d_tr_sed(:,:,2)*zctime, 1.e-30) |
---|
1200 | else if (cl_scheme == 2) then |
---|
1201 | do iq = nqmax-nmicro+1,nqmax |
---|
1202 | tr_seri(:,:,iq) = max(tr_seri(:,:,iq) |
---|
1203 | $ + d_tr_sed(:,:,iq)*zctime,1.e-30) |
---|
1204 | end do |
---|
1205 | end if ! cl_scheme |
---|
1206 | |
---|
1207 | end if ! ok_sedim |
---|
1208 | end if ! mod(itap,chempas) <------- end of chemistry supercycling |
---|
1209 | |
---|
1210 | !========= |
---|
1211 | ! End Case 3: Full chemistry and/or clouds. |
---|
1212 | !==================================================================== |
---|
1213 | |
---|
1214 | end if ! tr_scheme |
---|
1215 | end if ! iflag_trac |
---|
1216 | |
---|
1217 | c==================================================================== |
---|
1218 | c Appeler la diffusion verticale (programme de couche limite) |
---|
1219 | c==================================================================== |
---|
1220 | |
---|
1221 | c------------------------------- |
---|
1222 | c VENUS TEST: on ne tient pas compte des calculs de clmain mais on force |
---|
1223 | c l'equilibre radiatif du sol |
---|
1224 | if (.not. ok_clmain) then |
---|
1225 | if (debut) then |
---|
1226 | print*,"ATTENTION, CLMAIN SHUNTEE..." |
---|
1227 | endif |
---|
1228 | |
---|
1229 | DO i = 1, klon |
---|
1230 | sens(i) = 0.0e0 ! flux de chaleur sensible au sol |
---|
1231 | fder(i) = 0.0e0 |
---|
1232 | dlw(i) = 0.0e0 |
---|
1233 | ENDDO |
---|
1234 | |
---|
1235 | c Incrementer la temperature du sol |
---|
1236 | c |
---|
1237 | DO i = 1, klon |
---|
1238 | d_ts(i) = dtime * radsol(i)/22000. !valeur calculee par GCM pour I=200 |
---|
1239 | ftsol(i) = ftsol(i) + d_ts(i) |
---|
1240 | do j=1,nsoilmx |
---|
1241 | ftsoil(i,j)=ftsol(i) |
---|
1242 | enddo |
---|
1243 | ENDDO |
---|
1244 | |
---|
1245 | c------------------------------- |
---|
1246 | else |
---|
1247 | c------------------------------- |
---|
1248 | |
---|
1249 | fder = dlw |
---|
1250 | |
---|
1251 | ! ADAPTATION GCM POUR CP(T) |
---|
1252 | |
---|
1253 | if (physideal) then |
---|
1254 | CALL clmain_ideal(dtime,itap, |
---|
1255 | e t_seri,u_seri,v_seri, |
---|
1256 | e rmu0, |
---|
1257 | e ftsol, |
---|
1258 | $ ftsoil, |
---|
1259 | $ paprs,pplay,ppk,radsol,falbe, |
---|
1260 | e solsw, sollw, sollwdown, fder, |
---|
1261 | e longitude_deg, latitude_deg, dx, dy, |
---|
1262 | e debut, lafin, |
---|
1263 | s d_t_vdf,d_u_vdf,d_v_vdf,d_ts, |
---|
1264 | s fluxt,fluxu,fluxv,cdragh,cdragm, |
---|
1265 | s dsens, |
---|
1266 | s ycoefh,yu1,yv1) |
---|
1267 | else |
---|
1268 | CALL clmain(dtime,itap, |
---|
1269 | e t_seri,u_seri,v_seri, |
---|
1270 | e rmu0, |
---|
1271 | e ftsol, |
---|
1272 | $ ftsoil, |
---|
1273 | $ paprs,pplay,ppk,radsol,falbe, |
---|
1274 | e solsw, sollw, sollwdown, fder, |
---|
1275 | e longitude_deg, latitude_deg, dx, dy, |
---|
1276 | e debut, lafin, |
---|
1277 | s d_t_vdf,d_u_vdf,d_v_vdf,d_ts, |
---|
1278 | s fluxt,fluxu,fluxv,cdragh,cdragm, |
---|
1279 | s dsens, |
---|
1280 | s ycoefh,yu1,yv1) |
---|
1281 | endif |
---|
1282 | |
---|
1283 | CXXX Incrementation des flux |
---|
1284 | DO i = 1, klon |
---|
1285 | sens(i) = - fluxt(i,1) ! flux de chaleur sensible au sol |
---|
1286 | fder(i) = dlw(i) + dsens(i) |
---|
1287 | ENDDO |
---|
1288 | CXXX |
---|
1289 | IF (.not. turb_resolved) then !True only for LES |
---|
1290 | DO k = 1, klev |
---|
1291 | DO i = 1, klon |
---|
1292 | t_seri(i,k) = t_seri(i,k) + d_t_vdf(i,k) |
---|
1293 | d_t_vdf(i,k)= d_t_vdf(i,k)/dtime ! K/s |
---|
1294 | u_seri(i,k) = u_seri(i,k) + d_u_vdf(i,k) |
---|
1295 | d_u_vdf(i,k)= d_u_vdf(i,k)/dtime ! (m/s)/s |
---|
1296 | v_seri(i,k) = v_seri(i,k) + d_v_vdf(i,k) |
---|
1297 | d_v_vdf(i,k)= d_v_vdf(i,k)/dtime ! (m/s)/s |
---|
1298 | ENDDO |
---|
1299 | ENDDO |
---|
1300 | ENDIF |
---|
1301 | C TRACEURS |
---|
1302 | |
---|
1303 | if (iflag_trac.eq.1) then |
---|
1304 | DO k = 1, klev |
---|
1305 | DO i = 1, klon |
---|
1306 | delp(i,k) = paprs(i,k)-paprs(i,k+1) |
---|
1307 | ENDDO |
---|
1308 | ENDDO |
---|
1309 | |
---|
1310 | DO iq=1, nqmax |
---|
1311 | |
---|
1312 | CALL cltrac(dtime,ycoefh,t_seri, |
---|
1313 | s tr_seri(:,:,iq),source(:,iq), |
---|
1314 | e paprs, pplay,delp, |
---|
1315 | s d_tr_vdf(:,:,iq)) |
---|
1316 | |
---|
1317 | tr_seri(:,:,iq) = tr_seri(:,:,iq) + d_tr_vdf(:,:,iq) |
---|
1318 | d_tr_vdf(:,:,iq)= d_tr_vdf(:,:,iq)/dtime ! /s |
---|
1319 | |
---|
1320 | ENDDO !nqmax |
---|
1321 | |
---|
1322 | endif |
---|
1323 | |
---|
1324 | IF (if_ebil.ge.2) THEN |
---|
1325 | ztit='after clmain' |
---|
1326 | CALL diagetpq(cell_area,ztit,ip_ebil,2,1,dtime |
---|
1327 | e , t_seri,zero_v2,zero_v2,zero_v2,u_seri,v_seri,paprs,pplay |
---|
1328 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
1329 | call diagphy(cell_area,ztit,ip_ebil |
---|
1330 | e , zero_v, zero_v, zero_v, zero_v, sens |
---|
1331 | e , zero_v, zero_v, zero_v, ztsol |
---|
1332 | e , d_h_vcol, d_qt, d_ec |
---|
1333 | s , fs_bound, fq_bound ) |
---|
1334 | END IF |
---|
1335 | C |
---|
1336 | c |
---|
1337 | c Incrementer la temperature du sol |
---|
1338 | c |
---|
1339 | DO i = 1, klon |
---|
1340 | ftsol(i) = ftsol(i) + d_ts(i) |
---|
1341 | ENDDO |
---|
1342 | |
---|
1343 | c Calculer la derive du flux infrarouge |
---|
1344 | c |
---|
1345 | DO i = 1, klon |
---|
1346 | dlw(i) = - 4.0*RSIGMA*ftsol(i)**3 |
---|
1347 | ENDDO |
---|
1348 | |
---|
1349 | c------------------------------- |
---|
1350 | endif ! fin du VENUS TEST |
---|
1351 | |
---|
1352 | ! tests: output tendencies |
---|
1353 | ! call writefield_phy('physiq_d_t_vdf',d_t_vdf,klev) |
---|
1354 | ! call writefield_phy('physiq_d_u_vdf',d_u_vdf,klev) |
---|
1355 | ! call writefield_phy('physiq_d_v_vdf',d_v_vdf,klev) |
---|
1356 | ! call writefield_phy('physiq_d_ts',d_ts,1) |
---|
1357 | |
---|
1358 | c=================================================================== |
---|
1359 | c Convection seche |
---|
1360 | c=================================================================== |
---|
1361 | c |
---|
1362 | d_t_ajs(:,:)=0. |
---|
1363 | d_u_ajs(:,:)=0. |
---|
1364 | d_v_ajs(:,:)=0. |
---|
1365 | d_tr_ajs(:,:,:)=0. |
---|
1366 | c |
---|
1367 | IF(prt_level>9)WRITE(lunout,*) |
---|
1368 | . 'AVANT LA CONVECTION SECHE , iflag_ajs=' |
---|
1369 | s ,iflag_ajs |
---|
1370 | |
---|
1371 | if(iflag_ajs.eq.0) then |
---|
1372 | c Rien |
---|
1373 | c ==== |
---|
1374 | IF(prt_level>9)WRITE(lunout,*)'pas de convection' |
---|
1375 | |
---|
1376 | else if(iflag_ajs.eq.1) then |
---|
1377 | |
---|
1378 | c Ajustement sec |
---|
1379 | c ============== |
---|
1380 | IF(prt_level>9)WRITE(lunout,*)'ajsec' |
---|
1381 | |
---|
1382 | ! ADAPTATION GCM POUR CP(T) |
---|
1383 | CALL ajsec(paprs, pplay, ppk, t_seri, u_seri, v_seri, nqmax, |
---|
1384 | . tr_seri, d_t_ajs, d_u_ajs, d_v_ajs, d_tr_ajs) |
---|
1385 | |
---|
1386 | ! ADAPTATION GCM POUR CP(T) |
---|
1387 | do i=1,klon |
---|
1388 | flux_ajs(i,1) = 0.0 |
---|
1389 | do j=2,klev |
---|
1390 | flux_ajs(i,j) = flux_ajs(i,j-1) |
---|
1391 | . + cpdet(t_seri(i,j-1))/RG*d_t_ajs(i,j-1)/dtime |
---|
1392 | . *(paprs(i,j-1)-paprs(i,j)) |
---|
1393 | enddo |
---|
1394 | enddo |
---|
1395 | |
---|
1396 | t_seri(:,:) = t_seri(:,:) + d_t_ajs(:,:) |
---|
1397 | d_t_ajs(:,:)= d_t_ajs(:,:)/dtime ! K/s |
---|
1398 | u_seri(:,:) = u_seri(:,:) + d_u_ajs(:,:) |
---|
1399 | d_u_ajs(:,:)= d_u_ajs(:,:)/dtime ! (m/s)/s |
---|
1400 | v_seri(:,:) = v_seri(:,:) + d_v_ajs(:,:) |
---|
1401 | d_v_ajs(:,:)= d_v_ajs(:,:)/dtime ! (m/s)/s |
---|
1402 | |
---|
1403 | if (iflag_trac.eq.1) then |
---|
1404 | tr_seri(:,:,:) = tr_seri(:,:,:) + d_tr_ajs(:,:,:) |
---|
1405 | d_tr_ajs(:,:,:)= d_tr_ajs(:,:,:)/dtime ! /s |
---|
1406 | endif |
---|
1407 | endif |
---|
1408 | |
---|
1409 | ! tests: output tendencies |
---|
1410 | ! call writefield_phy('physiq_d_t_ajs',d_t_ajs,klev) |
---|
1411 | ! call writefield_phy('physiq_d_u_ajs',d_u_ajs,klev) |
---|
1412 | ! call writefield_phy('physiq_d_v_ajs',d_v_ajs,klev) |
---|
1413 | c |
---|
1414 | IF (if_ebil.ge.2) THEN |
---|
1415 | ztit='after dry_adjust' |
---|
1416 | CALL diagetpq(cell_area,ztit,ip_ebil,2,2,dtime |
---|
1417 | e , t_seri,zero_v2,zero_v2,zero_v2,u_seri,v_seri,paprs,pplay |
---|
1418 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
1419 | call diagphy(cell_area,ztit,ip_ebil |
---|
1420 | e , zero_v, zero_v, zero_v, zero_v, sens |
---|
1421 | e , zero_v, zero_v, zero_v, ztsol |
---|
1422 | e , d_h_vcol, d_qt, d_ec |
---|
1423 | s , fs_bound, fq_bound ) |
---|
1424 | END IF |
---|
1425 | |
---|
1426 | c==================================================================== |
---|
1427 | c RAYONNEMENT |
---|
1428 | c==================================================================== |
---|
1429 | if (mod(itap,radpas) == 0) then |
---|
1430 | |
---|
1431 | dtimerad = dtime*REAL(radpas) ! pas de temps du rayonnement (s) |
---|
1432 | |
---|
1433 | ! update mmean |
---|
1434 | if (ok_chem) then |
---|
1435 | mmean(:,:) = 0. |
---|
1436 | do iq = 1,nqmax - nmicro |
---|
1437 | mmean(:,:) = mmean(:,:)+tr_seri(:,:,iq)*m_tr(iq) |
---|
1438 | rnew(:,:) = 8.314/mmean(:,:)*1.e3 ! J/kg K |
---|
1439 | enddo |
---|
1440 | endif |
---|
1441 | |
---|
1442 | cc--------------------------------------------- |
---|
1443 | if (callnlte .or. callthermos) then |
---|
1444 | if (ok_chem) then |
---|
1445 | |
---|
1446 | ! nlte : use computed chemical species |
---|
1447 | |
---|
1448 | co2vmr_gcm(:,:) = tr_seri(:,:,i_co2)*mmean(:,:)/m_tr(i_co2) |
---|
1449 | covmr_gcm(:,:) = tr_seri(:,:,i_co)*mmean(:,:)/m_tr(i_co) |
---|
1450 | ovmr_gcm(:,:) = tr_seri(:,:,i_o)*mmean(:,:)/m_tr(i_o) |
---|
1451 | n2vmr_gcm(:,:) = tr_seri(:,:,i_n2)*mmean(:,:)/m_tr(i_n2) |
---|
1452 | |
---|
1453 | else |
---|
1454 | |
---|
1455 | ! nlte : use hedin climatology |
---|
1456 | |
---|
1457 | call compo_hedin83_mod(pplay,rmu0, |
---|
1458 | $ co2vmr_gcm,covmr_gcm,ovmr_gcm,n2vmr_gcm,nvmr_gcm) |
---|
1459 | end if |
---|
1460 | end if |
---|
1461 | |
---|
1462 | c NLTE cooling from CO2 emission |
---|
1463 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1464 | |
---|
1465 | IF(callnlte) THEN |
---|
1466 | if(nltemodel.eq.0.or.nltemodel.eq.1) then |
---|
1467 | c nltecool call not correct... |
---|
1468 | c CALL nltecool(klon, klev, nqmax, pplay*9.869e-6, t_seri, |
---|
1469 | c $ tr_seri, d_t_nlte) |
---|
1470 | abort_message='nltemodel=0 or 1 should not be used...' |
---|
1471 | call abort_physic(modname,abort_message,1) |
---|
1472 | else if(nltemodel.eq.2) then |
---|
1473 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1474 | !! HEDIN instead of compo for this calculation |
---|
1475 | ! call compo_hedin83_mod(pplay,rmu0, |
---|
1476 | ! $ co2vmr_gcm,covmr_gcm,ovmr_gcm,n2vmr_gcm,nvmr_gcm) |
---|
1477 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1478 | CALL nlte_tcool(klon,klev,pplay*9.869e-6, |
---|
1479 | $ t_seri,zzlay,co2vmr_gcm, n2vmr_gcm, covmr_gcm, |
---|
1480 | $ ovmr_gcm,d_t_nlte,ierr_nlte,varerr ) |
---|
1481 | if(ierr_nlte.gt.0) then |
---|
1482 | write(*,*) |
---|
1483 | $ 'WARNING: nlte_tcool output with error message', |
---|
1484 | $ 'ierr_nlte=',ierr_nlte,'varerr=',varerr |
---|
1485 | write(*,*)'I will continue anyway' |
---|
1486 | endif |
---|
1487 | endif |
---|
1488 | |
---|
1489 | ELSE |
---|
1490 | |
---|
1491 | d_t_nlte(:,:)=0. |
---|
1492 | |
---|
1493 | ENDIF |
---|
1494 | |
---|
1495 | c Find number of layers for LTE radiation calculations |
---|
1496 | |
---|
1497 | IF(callnlte .or. callnirco2) |
---|
1498 | $ CALL nlthermeq(klon, klev, paprs, pplay) |
---|
1499 | |
---|
1500 | cc--------------------------------------------- |
---|
1501 | c LTE radiative transfert / solar / IR matrix |
---|
1502 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1503 | if (physideal) then |
---|
1504 | CALL radlwsw_newtoncool(presnivs,t_seri) |
---|
1505 | else |
---|
1506 | CALL radlwsw |
---|
1507 | e (dist, rmu0, fract, zzlev, |
---|
1508 | e paprs, pplay,ftsol, t_seri) |
---|
1509 | endif |
---|
1510 | |
---|
1511 | c albedo variations: test for Yeon Joo Lee |
---|
1512 | c increment to increase it for 20 Vd => +80% |
---|
1513 | c heat(:,:)=heat(:,:)*(1.+0.80*((rjourvrai-356)+gmtime)/20.) |
---|
1514 | c or to decrease it for 20 Vd => 1/1.8 |
---|
1515 | c heat(:,:)=heat(:,:)/(1.+0.80*((rjourvrai-356)+gmtime)/20.) |
---|
1516 | |
---|
1517 | cc--------------------------------------------- |
---|
1518 | c CO2 near infrared absorption |
---|
1519 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1520 | |
---|
1521 | d_t_nirco2(:,:)=0. |
---|
1522 | if (callnirco2) then |
---|
1523 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1524 | !! HEDIN instead of compo for this calculation |
---|
1525 | ! call compo_hedin83_mod(pplay,rmu0, |
---|
1526 | ! $ co2vmr_gcm,covmr_gcm,ovmr_gcm,n2vmr_gcm,nvmr_gcm) |
---|
1527 | ! tr_hedin(:,:,:)=tr_seri(:,:,:) |
---|
1528 | ! tr_hedin(:,:,i_co2)=co2vmr_gcm(:,:)/mmean(:,:)*m_tr(i_co2) |
---|
1529 | ! tr_hedin(:,:,i_co) = covmr_gcm(:,:)/mmean(:,:)*m_tr(i_co) |
---|
1530 | ! tr_hedin(:,:,i_o) = ovmr_gcm(:,:)/mmean(:,:)*m_tr(i_o) |
---|
1531 | ! tr_hedin(:,:,i_n2) = n2vmr_gcm(:,:)/mmean(:,:)*m_tr(i_n2) |
---|
1532 | ! call nirco2abs (klon, klev, pplay, dist, nqmax, tr_hedin, |
---|
1533 | ! . rmu0, fract, d_t_nirco2) |
---|
1534 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1535 | call nirco2abs (klon, klev, pplay, dist, nqmax, tr_seri, |
---|
1536 | . rmu0, fract, d_t_nirco2) |
---|
1537 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1538 | endif |
---|
1539 | |
---|
1540 | |
---|
1541 | cc--------------------------------------------- |
---|
1542 | c Net atmospheric radiative heating rate (K.s-1) |
---|
1543 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1544 | |
---|
1545 | IF(callnlte.or.callnirco2) THEN |
---|
1546 | CALL blendrad(klon, klev, pplay,heat, |
---|
1547 | & cool, d_t_nirco2,d_t_nlte, dtsw, dtlw) |
---|
1548 | ELSE |
---|
1549 | dtsw(:,:)=heat(:,:) |
---|
1550 | dtlw(:,:)=-1*cool(:,:) |
---|
1551 | ENDIF |
---|
1552 | |
---|
1553 | DO k=1,klev |
---|
1554 | DO i=1,klon |
---|
1555 | d_t_rad(i,k) = dtsw(i,k) + dtlw(i,k) ! K/s |
---|
1556 | ENDDO |
---|
1557 | ENDDO |
---|
1558 | |
---|
1559 | |
---|
1560 | cc--------------------------------------------- |
---|
1561 | c EUV heating rate (K.s-1) |
---|
1562 | c ~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1563 | |
---|
1564 | d_t_euv(:,:)=0. |
---|
1565 | |
---|
1566 | IF (callthermos) THEN |
---|
1567 | |
---|
1568 | call euvheat(klon, klev, nqmax, t_seri,paprs,pplay,zzlay, |
---|
1569 | $ rmu0,dtimerad,gmtime, |
---|
1570 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1571 | !! HEDIN instead of compo for this calculation |
---|
1572 | !! cf nlte_tcool and nirco2abs above !! |
---|
1573 | ! $ tr_hedin, d_tr, d_t_euv ) |
---|
1574 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1575 | $ tr_seri, d_tr, d_t_euv ) |
---|
1576 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1577 | |
---|
1578 | DO k=1,klev |
---|
1579 | DO ig=1,klon |
---|
1580 | d_t_rad(ig,k)=d_t_rad(ig,k)+d_t_euv(ig,k) |
---|
1581 | |
---|
1582 | ENDDO |
---|
1583 | ENDDO |
---|
1584 | |
---|
1585 | ENDIF ! callthermos |
---|
1586 | |
---|
1587 | ENDIF ! radpas |
---|
1588 | c==================================================================== |
---|
1589 | c |
---|
1590 | c Ajouter la tendance des rayonnements (tous les pas) |
---|
1591 | c |
---|
1592 | DO k = 1, klev |
---|
1593 | DO i = 1, klon |
---|
1594 | t_seri(i,k) = t_seri(i,k) + d_t_rad(i,k) * dtime |
---|
1595 | ENDDO |
---|
1596 | ENDDO |
---|
1597 | |
---|
1598 | ! increment physics counter |
---|
1599 | |
---|
1600 | itap = itap + 1 |
---|
1601 | c==================================================================== |
---|
1602 | |
---|
1603 | |
---|
1604 | c============================== |
---|
1605 | ! -- MOLECULAR DIFFUSION --- |
---|
1606 | c============================== |
---|
1607 | |
---|
1608 | d_q_moldif(:,:,:)=0 |
---|
1609 | |
---|
1610 | IF (callthermos .and. ok_chem) THEN |
---|
1611 | |
---|
1612 | call moldiff_red(klon, klev, nqmax, |
---|
1613 | & pplay,paprs,t_seri, tr_seri, pdtphys, |
---|
1614 | & d_t_euv,d_t_conduc,d_q_moldif) |
---|
1615 | |
---|
1616 | |
---|
1617 | ! --- update tendencies tracers --- |
---|
1618 | |
---|
1619 | DO iq = 1, nqmax |
---|
1620 | DO k=1,klev |
---|
1621 | DO ig=1,klon |
---|
1622 | tr_seri(ig,k,iq)= max(tr_seri(ig,k,iq)+ |
---|
1623 | & d_q_moldif(ig,k,iq)*dtime,1.e-30) |
---|
1624 | ENDDO |
---|
1625 | ENDDO |
---|
1626 | ENDDO |
---|
1627 | |
---|
1628 | ENDIF ! callthermos & ok_chem |
---|
1629 | |
---|
1630 | c==================================================================== |
---|
1631 | ! tests: output tendencies |
---|
1632 | ! call writefield_phy('physiq_dtrad',dtrad,klev) |
---|
1633 | |
---|
1634 | IF (if_ebil.ge.2) THEN |
---|
1635 | ztit='after rad' |
---|
1636 | CALL diagetpq(cell_area,ztit,ip_ebil,2,2,dtime |
---|
1637 | e , t_seri,zero_v2,zero_v2,zero_v2,u_seri,v_seri,paprs,pplay |
---|
1638 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
1639 | call diagphy(cell_area,ztit,ip_ebil |
---|
1640 | e , topsw, toplw, solsw, sollw, zero_v |
---|
1641 | e , zero_v, zero_v, zero_v, ztsol |
---|
1642 | e , d_h_vcol, d_qt, d_ec |
---|
1643 | s , fs_bound, fq_bound ) |
---|
1644 | END IF |
---|
1645 | c |
---|
1646 | |
---|
1647 | c==================================================================== |
---|
1648 | c Calcul des gravity waves FLOTT |
---|
1649 | c==================================================================== |
---|
1650 | c |
---|
1651 | c if (ok_orodr.or.ok_gw_nonoro) then |
---|
1652 | |
---|
1653 | c CALCUL DE N2 |
---|
1654 | c UTILISE LA RELATION ENTRE N2 ET STABILITE |
---|
1655 | c N2 = RG/T (dT/dz+RG/cp(T)) |
---|
1656 | c ET DONC EN N'UTILISE QUE LA TEMPERATURE, PAS teta. |
---|
1657 | |
---|
1658 | do i=1,klon |
---|
1659 | do k=2,klev |
---|
1660 | ztlev(i,k) = (t_seri(i,k)+t_seri(i,k-1))/2. |
---|
1661 | enddo |
---|
1662 | enddo |
---|
1663 | do i=1,klon |
---|
1664 | do k=2,klev |
---|
1665 | ztlev(i,k) = (t_seri(i,k)+t_seri(i,k-1))/2. |
---|
1666 | zdtlev(i,k) = t_seri(i,k)-t_seri(i,k-1) |
---|
1667 | zdzlev(i,k) = (zphi(i,k)-zphi(i,k-1))/RG |
---|
1668 | zn2(i,k) = RG/ztlev(i,k) * ( zdtlev(i,k)/zdzlev(i,k) |
---|
1669 | . + RG/cpdet(ztlev(i,k)) ) |
---|
1670 | zn2(i,k) = max(zn2(i,k),1.e-12) ! securite |
---|
1671 | enddo |
---|
1672 | zn2(i,1) = 1.e-12 ! securite |
---|
1673 | enddo |
---|
1674 | |
---|
1675 | c endif |
---|
1676 | |
---|
1677 | c ----------------------------ORODRAG |
---|
1678 | IF (ok_orodr) THEN |
---|
1679 | c |
---|
1680 | c selection des points pour lesquels le shema est actif: |
---|
1681 | igwd=0 |
---|
1682 | DO i=1,klon |
---|
1683 | itest(i)=0 |
---|
1684 | c IF ((zstd(i).gt.10.0)) THEN |
---|
1685 | IF (((zpic(i)-zmea(i)).GT.100.).AND.(zstd(i).GT.10.0)) THEN |
---|
1686 | itest(i)=1 |
---|
1687 | igwd=igwd+1 |
---|
1688 | idx(igwd)=i |
---|
1689 | ENDIF |
---|
1690 | ENDDO |
---|
1691 | c igwdim=MAX(1,igwd) |
---|
1692 | c |
---|
1693 | c A ADAPTER POUR VENUS!!! [ TN: c'est fait ! ] |
---|
1694 | CALL drag_noro(klon,klev,dtime,paprs,pplay,pphi,zn2, |
---|
1695 | e zmea,zstd, zsig, zgam, zthe,zpic,zval, |
---|
1696 | e igwd,idx,itest, |
---|
1697 | e t_seri, u_seri, v_seri, |
---|
1698 | s zulow, zvlow, zustrdr, zvstrdr, |
---|
1699 | s d_t_oro, d_u_oro, d_v_oro, |
---|
1700 | s zublstrdr,zvblstrdr,znlow,zeff,zbl, |
---|
1701 | s ztau,tau0,knu2,kbreak) |
---|
1702 | |
---|
1703 | c print*,"d_u_oro=",d_u_oro(klon/2,:) |
---|
1704 | c ajout des tendances |
---|
1705 | t_seri(:,:) = t_seri(:,:) + d_t_oro(:,:) |
---|
1706 | d_t_oro(:,:)= d_t_oro(:,:)/dtime ! K/s |
---|
1707 | u_seri(:,:) = u_seri(:,:) + d_u_oro(:,:) |
---|
1708 | d_u_oro(:,:)= d_u_oro(:,:)/dtime ! (m/s)/s |
---|
1709 | v_seri(:,:) = v_seri(:,:) + d_v_oro(:,:) |
---|
1710 | d_v_oro(:,:)= d_v_oro(:,:)/dtime ! (m/s)/s |
---|
1711 | c |
---|
1712 | ELSE |
---|
1713 | d_t_oro = 0. |
---|
1714 | d_u_oro = 0. |
---|
1715 | d_v_oro = 0. |
---|
1716 | zustrdr = 0. |
---|
1717 | zvstrdr = 0. |
---|
1718 | zublstrdr = 0. |
---|
1719 | zvblstrdr = 0. |
---|
1720 | znlow = 0. |
---|
1721 | zeff = 0. |
---|
1722 | zbl = 0 |
---|
1723 | knu2 = 0 |
---|
1724 | kbreak = 0 |
---|
1725 | ztau = 0 |
---|
1726 | tau0 = 0. |
---|
1727 | c |
---|
1728 | ENDIF ! fin de test sur ok_orodr |
---|
1729 | c |
---|
1730 | ! tests: output tendencies |
---|
1731 | ! call writefield_phy('physiq_d_t_oro',d_t_oro,klev) |
---|
1732 | ! call writefield_phy('physiq_d_u_oro',d_u_oro,klev) |
---|
1733 | ! call writefield_phy('physiq_d_v_oro',d_v_oro,klev) |
---|
1734 | |
---|
1735 | c ----------------------------OROLIFT |
---|
1736 | IF (ok_orolf) THEN |
---|
1737 | print*,"ok_orolf NOT IMPLEMENTED !" |
---|
1738 | stop |
---|
1739 | c |
---|
1740 | c selection des points pour lesquels le shema est actif: |
---|
1741 | igwd=0 |
---|
1742 | DO i=1,klon |
---|
1743 | itest(i)=0 |
---|
1744 | IF ((zpic(i)-zmea(i)).GT.100.) THEN |
---|
1745 | itest(i)=1 |
---|
1746 | igwd=igwd+1 |
---|
1747 | idx(igwd)=i |
---|
1748 | ENDIF |
---|
1749 | ENDDO |
---|
1750 | c igwdim=MAX(1,igwd) |
---|
1751 | c |
---|
1752 | c A ADAPTER POUR VENUS!!! |
---|
1753 | c CALL lift_noro(klon,klev,dtime,paprs,pplay, |
---|
1754 | c e latitude_deg,zmea,zstd,zpic,zgam,zthe,zpic,zval, |
---|
1755 | c e igwd,idx,itest, |
---|
1756 | c e t_seri, u_seri, v_seri, |
---|
1757 | c s zulow, zvlow, zustrli, zvstrli, |
---|
1758 | c s d_t_lif, d_u_lif, d_v_lif ) |
---|
1759 | |
---|
1760 | c |
---|
1761 | c ajout des tendances |
---|
1762 | t_seri(:,:) = t_seri(:,:) + d_t_lif(:,:) |
---|
1763 | d_t_lif(:,:)= d_t_lif(:,:)/dtime ! K/s |
---|
1764 | u_seri(:,:) = u_seri(:,:) + d_u_lif(:,:) |
---|
1765 | d_u_lif(:,:)= d_u_lif(:,:)/dtime ! (m/s)/s |
---|
1766 | v_seri(:,:) = v_seri(:,:) + d_v_lif(:,:) |
---|
1767 | d_v_lif(:,:)= d_v_lif(:,:)/dtime ! (m/s)/s |
---|
1768 | c |
---|
1769 | ELSE |
---|
1770 | d_t_lif = 0. |
---|
1771 | d_u_lif = 0. |
---|
1772 | d_v_lif = 0. |
---|
1773 | zustrli = 0. |
---|
1774 | zvstrli = 0. |
---|
1775 | c |
---|
1776 | ENDIF ! fin de test sur ok_orolf |
---|
1777 | |
---|
1778 | c ---------------------------- NON-ORO GRAVITY WAVES |
---|
1779 | IF(ok_gw_nonoro) then |
---|
1780 | |
---|
1781 | call flott_gwd_ran(klon,klev,dtime,pplay,zn2, |
---|
1782 | e t_seri, u_seri, v_seri, paprs(klon/2+1,:), |
---|
1783 | o zustrhi,zvstrhi, |
---|
1784 | o d_t_hin, d_u_hin, d_v_hin) |
---|
1785 | |
---|
1786 | c ajout des tendances |
---|
1787 | |
---|
1788 | t_seri(:,:) = t_seri(:,:) + d_t_hin(:,:) |
---|
1789 | d_t_hin(:,:)= d_t_hin(:,:)/dtime ! K/s |
---|
1790 | u_seri(:,:) = u_seri(:,:) + d_u_hin(:,:) |
---|
1791 | d_u_hin(:,:)= d_u_hin(:,:)/dtime ! (m/s)/s |
---|
1792 | v_seri(:,:) = v_seri(:,:) + d_v_hin(:,:) |
---|
1793 | d_v_hin(:,:)= d_v_hin(:,:)/dtime ! (m/s)/s |
---|
1794 | |
---|
1795 | ELSE |
---|
1796 | d_t_hin = 0. |
---|
1797 | d_u_hin = 0. |
---|
1798 | d_v_hin = 0. |
---|
1799 | zustrhi = 0. |
---|
1800 | zvstrhi = 0. |
---|
1801 | |
---|
1802 | ENDIF ! fin de test sur ok_gw_nonoro |
---|
1803 | |
---|
1804 | ! tests: output tendencies |
---|
1805 | ! call writefield_phy('physiq_d_t_hin',d_t_hin,klev) |
---|
1806 | ! call writefield_phy('physiq_d_u_hin',d_u_hin,klev) |
---|
1807 | ! call writefield_phy('physiq_d_v_hin',d_v_hin,klev) |
---|
1808 | |
---|
1809 | c==================================================================== |
---|
1810 | c Transport de ballons |
---|
1811 | c==================================================================== |
---|
1812 | if (ballons.eq.1) then |
---|
1813 | CALL ballon(30,pdtphys,rjourvrai,gmtime*RDAY, |
---|
1814 | & latitude_deg,longitude_deg, |
---|
1815 | c C t,pplay,u,v,pphi) ! alt above surface (smoothed for GCM) |
---|
1816 | C t,pplay,u,v,zphi) ! alt above planet average radius |
---|
1817 | endif !ballons |
---|
1818 | |
---|
1819 | c==================================================================== |
---|
1820 | c Bilan de mmt angulaire |
---|
1821 | c==================================================================== |
---|
1822 | if (bilansmc.eq.1) then |
---|
1823 | CMODDEB FLOTT |
---|
1824 | C CALCULER LE BILAN DE MOMENT ANGULAIRE (DIAGNOSTIQUE) |
---|
1825 | C STRESS NECESSAIRES: COUCHE LIMITE ET TOUTE LA PHYSIQUE |
---|
1826 | |
---|
1827 | DO i = 1, klon |
---|
1828 | zustrph(i)=0. |
---|
1829 | zvstrph(i)=0. |
---|
1830 | zustrcl(i)=0. |
---|
1831 | zvstrcl(i)=0. |
---|
1832 | ENDDO |
---|
1833 | DO k = 1, klev |
---|
1834 | DO i = 1, klon |
---|
1835 | zustrph(i)=zustrph(i)+(u_seri(i,k)-u(i,k))/dtime* |
---|
1836 | c (paprs(i,k)-paprs(i,k+1))/rg |
---|
1837 | zvstrph(i)=zvstrph(i)+(v_seri(i,k)-v(i,k))/dtime* |
---|
1838 | c (paprs(i,k)-paprs(i,k+1))/rg |
---|
1839 | zustrcl(i)=zustrcl(i)+d_u_vdf(i,k)* |
---|
1840 | c (paprs(i,k)-paprs(i,k+1))/rg |
---|
1841 | zvstrcl(i)=zvstrcl(i)+d_v_vdf(i,k)* |
---|
1842 | c (paprs(i,k)-paprs(i,k+1))/rg |
---|
1843 | ENDDO |
---|
1844 | ENDDO |
---|
1845 | |
---|
1846 | CALL aaam_bud (27,klon,klev,rjourvrai,gmtime*RDAY, |
---|
1847 | C ra,rg,romega, |
---|
1848 | C latitude_deg,longitude_deg,pphis, |
---|
1849 | C zustrdr,zustrli,zustrcl, |
---|
1850 | C zvstrdr,zvstrli,zvstrcl, |
---|
1851 | C paprs,u,v) |
---|
1852 | |
---|
1853 | CCMODFIN FLOTT |
---|
1854 | endif !bilansmc |
---|
1855 | |
---|
1856 | c==================================================================== |
---|
1857 | c==================================================================== |
---|
1858 | c Calculer le transport de l'eau et de l'energie (diagnostique) |
---|
1859 | c |
---|
1860 | c A REVOIR POUR VENUS... |
---|
1861 | c |
---|
1862 | c CALL transp (paprs,ftsol, |
---|
1863 | c e t_seri, q_seri, u_seri, v_seri, zphi, |
---|
1864 | c s ve, vq, ue, uq) |
---|
1865 | c |
---|
1866 | c==================================================================== |
---|
1867 | c+jld ec_conser |
---|
1868 | DO k = 1, klev |
---|
1869 | DO i = 1, klon |
---|
1870 | d_t_ec(i,k)=0.5/cpdet(t_seri(i,k)) |
---|
1871 | $ *(u(i,k)**2+v(i,k)**2-u_seri(i,k)**2-v_seri(i,k)**2) |
---|
1872 | t_seri(i,k)=t_seri(i,k)+d_t_ec(i,k) |
---|
1873 | d_t_ec(i,k) = d_t_ec(i,k)/dtime |
---|
1874 | END DO |
---|
1875 | END DO |
---|
1876 | do i=1,klon |
---|
1877 | flux_ec(i,1) = 0.0 |
---|
1878 | do j=2,klev |
---|
1879 | flux_ec(i,j) = flux_ec(i,j-1) |
---|
1880 | . +cpdet(t_seri(i,j-1))/RG*d_t_ec(i,j-1)*(paprs(i,j-1)-paprs(i,j)) |
---|
1881 | enddo |
---|
1882 | enddo |
---|
1883 | |
---|
1884 | c-jld ec_conser |
---|
1885 | c==================================================================== |
---|
1886 | IF (if_ebil.ge.1) THEN |
---|
1887 | ztit='after physic' |
---|
1888 | CALL diagetpq(cell_area,ztit,ip_ebil,1,1,dtime |
---|
1889 | e , t_seri,zero_v2,zero_v2,zero_v2,u_seri,v_seri,paprs,pplay |
---|
1890 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
1891 | C Comme les tendances de la physique sont ajoute dans la dynamique, |
---|
1892 | C on devrait avoir que la variation d'entalpie par la dynamique |
---|
1893 | C est egale a la variation de la physique au pas de temps precedent. |
---|
1894 | C Donc la somme de ces 2 variations devrait etre nulle. |
---|
1895 | call diagphy(cell_area,ztit,ip_ebil |
---|
1896 | e , topsw, toplw, solsw, sollw, sens |
---|
1897 | e , zero_v, zero_v, zero_v, ztsol |
---|
1898 | e , d_h_vcol, d_qt, d_ec |
---|
1899 | s , fs_bound, fq_bound ) |
---|
1900 | C |
---|
1901 | d_h_vcol_phy=d_h_vcol |
---|
1902 | C |
---|
1903 | END IF |
---|
1904 | C |
---|
1905 | c======================================================================= |
---|
1906 | c SORTIES |
---|
1907 | c======================================================================= |
---|
1908 | |
---|
1909 | c Convertir les incrementations en tendances |
---|
1910 | c |
---|
1911 | DO k = 1, klev |
---|
1912 | DO i = 1, klon |
---|
1913 | d_u(i,k) = ( u_seri(i,k) - u(i,k) ) / dtime |
---|
1914 | d_v(i,k) = ( v_seri(i,k) - v(i,k) ) / dtime |
---|
1915 | d_t(i,k) = ( t_seri(i,k) - t(i,k) ) / dtime |
---|
1916 | ENDDO |
---|
1917 | ENDDO |
---|
1918 | c |
---|
1919 | DO iq = 1, nqmax |
---|
1920 | DO k = 1, klev |
---|
1921 | DO i = 1, klon |
---|
1922 | d_qx(i,k,iq) = ( tr_seri(i,k,iq) - qx(i,k,iq) ) / dtime |
---|
1923 | ENDDO |
---|
1924 | ENDDO |
---|
1925 | ENDDO |
---|
1926 | |
---|
1927 | c mise à jour rho,mmean pour sorties |
---|
1928 | if(callthermos) then |
---|
1929 | call concentrations2(pplay,t_seri,tr_seri, nqmax) |
---|
1930 | endif |
---|
1931 | |
---|
1932 | c------------------------ |
---|
1933 | c Calcul moment cinetique |
---|
1934 | c------------------------ |
---|
1935 | c TEST VENUS... |
---|
1936 | c mangtot = 0.0 |
---|
1937 | c DO k = 1, klev |
---|
1938 | c DO i = 1, klon |
---|
1939 | c mang(i,k) = RA*cos(latitude(i)) |
---|
1940 | c . *(u_seri(i,k)+RA*cos(latitude(i))*ROMEGA) |
---|
1941 | c . *cell_area(i)*(paprs(i,k)-paprs(i,k+1))/RG |
---|
1942 | c mangtot=mangtot+mang(i,k) |
---|
1943 | c ENDDO |
---|
1944 | c ENDDO |
---|
1945 | c print*,"Moment cinetique total = ",mangtot |
---|
1946 | c |
---|
1947 | c------------------------ |
---|
1948 | c |
---|
1949 | c Sauvegarder les valeurs de t et u a la fin de la physique: |
---|
1950 | c |
---|
1951 | DO k = 1, klev |
---|
1952 | DO i = 1, klon |
---|
1953 | u_ancien(i,k) = u_seri(i,k) |
---|
1954 | t_ancien(i,k) = t_seri(i,k) |
---|
1955 | ENDDO |
---|
1956 | ENDDO |
---|
1957 | c |
---|
1958 | c============================================================= |
---|
1959 | c Ecriture des sorties |
---|
1960 | c============================================================= |
---|
1961 | #ifndef MESOSCALE |
---|
1962 | #ifdef CPP_IOIPSL |
---|
1963 | |
---|
1964 | #ifdef histhf |
---|
1965 | #include "write_histhf.h" |
---|
1966 | #endif |
---|
1967 | |
---|
1968 | #ifdef histday |
---|
1969 | #include "write_histday.h" |
---|
1970 | #endif |
---|
1971 | |
---|
1972 | #ifdef histmth |
---|
1973 | #include "write_histmth.h" |
---|
1974 | #endif |
---|
1975 | |
---|
1976 | #ifdef histins |
---|
1977 | #include "write_histins.h" |
---|
1978 | #endif |
---|
1979 | |
---|
1980 | #endif |
---|
1981 | |
---|
1982 | ! XIOS outputs |
---|
1983 | ! This can be done ANYWHERE in the physics routines ! |
---|
1984 | |
---|
1985 | #ifdef CPP_XIOS |
---|
1986 | ! Send fields to XIOS: (NB these fields must also be defined as |
---|
1987 | ! <field id="..." /> in context_lmdz_physics.xml to be correctly used) |
---|
1988 | |
---|
1989 | ! 2D fields |
---|
1990 | |
---|
1991 | CALL send_xios_field("phis",pphis) |
---|
1992 | cell_area_out(:)=cell_area(:) |
---|
1993 | if (is_north_pole_phy) cell_area_out(1)=cell_area(1)/nbp_lon |
---|
1994 | if (is_south_pole_phy) cell_area_out(klon)=cell_area(klon)/nbp_lon |
---|
1995 | CALL send_xios_field("aire",cell_area_out) |
---|
1996 | CALL send_xios_field("tsol",ftsol) |
---|
1997 | CALL send_xios_field("psol",paprs(:,1)) |
---|
1998 | CALL send_xios_field("cdragh",cdragh) |
---|
1999 | CALL send_xios_field("cdragm",cdragm) |
---|
2000 | |
---|
2001 | CALL send_xios_field("tops",topsw) |
---|
2002 | CALL send_xios_field("topl",toplw) |
---|
2003 | CALL send_xios_field("sols",solsw) |
---|
2004 | CALL send_xios_field("soll",sollw) |
---|
2005 | |
---|
2006 | ! 3D fields |
---|
2007 | |
---|
2008 | CALL send_xios_field("temp",t_seri) |
---|
2009 | CALL send_xios_field("pres",pplay) |
---|
2010 | CALL send_xios_field("geop",zphi) |
---|
2011 | CALL send_xios_field("vitu",u_seri) |
---|
2012 | c VENUS: regardee a l envers!!!!!!!!!!!!!!! |
---|
2013 | CALL send_xios_field("vitv",-1.*v_seri) |
---|
2014 | CALL send_xios_field("vitw",omega) |
---|
2015 | CALL send_xios_field("Kz",ycoefh) |
---|
2016 | CALL send_xios_field("mmean",mmean) |
---|
2017 | CALL send_xios_field("rho",rho) |
---|
2018 | CALL send_xios_field("BV2",zn2) |
---|
2019 | |
---|
2020 | CALL send_xios_field("dudyn",d_u_dyn) |
---|
2021 | CALL send_xios_field("duvdf",d_u_vdf) |
---|
2022 | c VENUS: regardee a l envers!!!!!!!!!!!!!!! |
---|
2023 | CALL send_xios_field("dvvdf",-1.*d_v_vdf) |
---|
2024 | CALL send_xios_field("duajs",d_u_ajs) |
---|
2025 | CALL send_xios_field("dugwo",d_u_oro) |
---|
2026 | CALL send_xios_field("dugwno",d_u_hin) |
---|
2027 | CALL send_xios_field("dumolvis",d_u_molvis) |
---|
2028 | c VENUS: regardee a l envers!!!!!!!!!!!!!!! |
---|
2029 | CALL send_xios_field("dvmolvis",-1.*d_v_molvis) |
---|
2030 | CALL send_xios_field("dtdyn",d_t_dyn) |
---|
2031 | CALL send_xios_field("dtphy",d_t) |
---|
2032 | CALL send_xios_field("dtvdf",d_t_vdf) |
---|
2033 | CALL send_xios_field("dtajs",d_t_ajs) |
---|
2034 | CALL send_xios_field("dtswr",dtsw) |
---|
2035 | CALL send_xios_field("dtswrNLTE",d_t_nirco2) |
---|
2036 | CALL send_xios_field("dtswrLTE",heat) |
---|
2037 | CALL send_xios_field("dtlwr",dtlw) |
---|
2038 | CALL send_xios_field("dtlwrNLTE",d_t_nlte) |
---|
2039 | CALL send_xios_field("dtlwrLTE",-1.*cool) |
---|
2040 | CALL send_xios_field("dteuv",d_t_euv) |
---|
2041 | CALL send_xios_field("dtcond",d_t_conduc) |
---|
2042 | CALL send_xios_field("dtec",d_t_ec) |
---|
2043 | |
---|
2044 | CALL send_xios_field("SWnet",swnet(:,1:klev)) |
---|
2045 | CALL send_xios_field("LWnet",lwnet(:,1:klev)) |
---|
2046 | CALL send_xios_field("fluxvdf",fluxt) |
---|
2047 | CALL send_xios_field("fluxdyn",flux_dyn) |
---|
2048 | CALL send_xios_field("fluxajs",flux_ajs) |
---|
2049 | CALL send_xios_field("fluxec",flux_ec) |
---|
2050 | |
---|
2051 | ! when using tracers |
---|
2052 | |
---|
2053 | if (iflag_trac == 1) then |
---|
2054 | |
---|
2055 | ! tracers in gas phase, volume mixing ratio |
---|
2056 | |
---|
2057 | do iq = 1,nqmax - nmicro |
---|
2058 | call send_xios_field(tname(iq), |
---|
2059 | $ tr_seri(:,:,iq)*mmean(:,:)/m_tr(iq)) |
---|
2060 | end do |
---|
2061 | |
---|
2062 | ! tracers in liquid phase, volume mixing ratio |
---|
2063 | |
---|
2064 | if ((tr_scheme == 3) .and. (cl_scheme == 1)) THEN |
---|
2065 | call send_xios_field(tname(i_h2oliq), |
---|
2066 | $ tr_seri(:,:,i_h2oliq)*mmean(:,:)/m_tr(i_h2oliq)) |
---|
2067 | call send_xios_field(tname(i_h2so4liq), |
---|
2068 | $ tr_seri(:,:,i_h2so4liq)*mmean(:,:)/m_tr(i_h2so4liq)) |
---|
2069 | if (ok_sedim) then |
---|
2070 | call send_xios_field("Fsedim",fsedim(:,1:klev)) |
---|
2071 | end if |
---|
2072 | end if |
---|
2073 | |
---|
2074 | ! chemical iterations |
---|
2075 | |
---|
2076 | if (tr_scheme.eq.3) call send_xios_field("iter",real(iter)) |
---|
2077 | |
---|
2078 | end if |
---|
2079 | |
---|
2080 | IF (callthermos .and. ok_chem) THEN |
---|
2081 | CALL send_xios_field("d_qmoldifCO2",d_q_moldif(:,:,i_co2)) |
---|
2082 | CALL send_xios_field("d_qmoldifO3p",d_q_moldif(:,:,i_o)) |
---|
2083 | CALL send_xios_field("d_qmoldifN2",d_q_moldif(:,:,i_n2)) |
---|
2084 | ENDIF |
---|
2085 | |
---|
2086 | !! DEBUG |
---|
2087 | ! if (is_master) print*,"itauphy=",itap |
---|
2088 | ! if (itap.eq.10) lafin=.true. |
---|
2089 | |
---|
2090 | if (lafin.and.is_omp_master) then |
---|
2091 | write(*,*) "physiq: call xios_context_finalize" |
---|
2092 | call xios_context_finalize |
---|
2093 | endif |
---|
2094 | |
---|
2095 | #endif |
---|
2096 | #else |
---|
2097 | ! Outputs MESOSCALE |
---|
2098 | CALL allocate_comm_wrf(klon,klev) |
---|
2099 | comm_HR_SW(1:klon,1:klev) = dtsw(1:klon,1:klev) |
---|
2100 | comm_HR_LW(1:klon,1:klev) = dtlw(1:klon,1:klev) |
---|
2101 | comm_DT_RAD(1:klon,1:klev) = d_t_rad(1:klon,1:klev) |
---|
2102 | IF (turb_resolved) THEN |
---|
2103 | open(17,file='hrdyn.txt',form='formatted',status='old') |
---|
2104 | rewind(17) |
---|
2105 | DO k=1,klev |
---|
2106 | read(17,*) dt_dyn(k) |
---|
2107 | ENDDO |
---|
2108 | close(17) |
---|
2109 | |
---|
2110 | do i=1,klon |
---|
2111 | d_t(i,:)=d_t(i,:)+dt_dyn(:) |
---|
2112 | comm_HR_DYN(i,:) = dt_dyn(:) |
---|
2113 | enddo |
---|
2114 | ELSE |
---|
2115 | comm_HR_DYN(1:klon,1:klev) = d_t_dyn(1:klon,1:klev) |
---|
2116 | comm_DT_VDF(1:klon,1:klev) = d_t_vdf(1:klon,1:klev) |
---|
2117 | comm_DT_AJS(1:klon,1:klev) = d_t_ajs(1:klon,1:klev) |
---|
2118 | ENDIF |
---|
2119 | comm_DT(1:klon,1:klev)=d_t(1:klon,1:klev) |
---|
2120 | #endif |
---|
2121 | |
---|
2122 | |
---|
2123 | c==================================================================== |
---|
2124 | c Si c'est la fin, il faut conserver l'etat de redemarrage |
---|
2125 | c==================================================================== |
---|
2126 | c |
---|
2127 | IF (lafin) THEN |
---|
2128 | itau_phy = itau_phy + itap |
---|
2129 | CALL phyredem ("restartphy.nc") |
---|
2130 | |
---|
2131 | c--------------FLOTT |
---|
2132 | CMODEB LOTT |
---|
2133 | C FERMETURE DU FICHIER FORMATTE CONTENANT LES COMPOSANTES |
---|
2134 | C DU BILAN DE MOMENT ANGULAIRE. |
---|
2135 | if (bilansmc.eq.1) then |
---|
2136 | write(*,*)'Fermeture de aaam_bud.out (FL Vous parle)' |
---|
2137 | close(27) |
---|
2138 | close(28) |
---|
2139 | endif !bilansmc |
---|
2140 | CMODFIN |
---|
2141 | c------------- |
---|
2142 | c--------------SLEBONNOIS |
---|
2143 | C FERMETURE DES FICHIERS FORMATTES CONTENANT LES POSITIONS ET VITESSES |
---|
2144 | C DES BALLONS |
---|
2145 | if (ballons.eq.1) then |
---|
2146 | write(*,*)'Fermeture des ballons*.out' |
---|
2147 | close(30) |
---|
2148 | close(31) |
---|
2149 | close(32) |
---|
2150 | close(33) |
---|
2151 | close(34) |
---|
2152 | endif !ballons |
---|
2153 | c------------- |
---|
2154 | ENDIF |
---|
2155 | |
---|
2156 | END SUBROUTINE physiq |
---|
2157 | |
---|
2158 | END MODULE physiq_mod |
---|
2159 | |
---|