[3] | 1 | ! |
---|
[1549] | 2 | ! $Id: $ |
---|
[3] | 3 | ! |
---|
[1549] | 4 | MODULE physiq_mod |
---|
| 5 | |
---|
| 6 | IMPLICIT NONE |
---|
| 7 | |
---|
| 8 | CONTAINS |
---|
| 9 | |
---|
[3] | 10 | SUBROUTINE physiq (nlon,nlev,nqmax, |
---|
| 11 | . debut,lafin,rjourvrai,gmtime,pdtphys, |
---|
[97] | 12 | . paprs,pplay,ppk,pphi,pphis,presnivs, |
---|
[3] | 13 | . u,v,t,qx, |
---|
[2125] | 14 | . flxmw, |
---|
[3] | 15 | . d_u, d_v, d_t, d_qx, d_ps) |
---|
| 16 | |
---|
| 17 | c====================================================================== |
---|
| 18 | c |
---|
| 19 | c Modifications pour la physique de Venus |
---|
| 20 | c S. Lebonnois (LMD/CNRS) Septembre 2005 |
---|
| 21 | c |
---|
| 22 | c --------------------------------------------------------------------- |
---|
| 23 | c Auteur(s) Z.X. Li (LMD/CNRS) date: 19930818 |
---|
| 24 | c |
---|
| 25 | c Objet: Moniteur general de la physique du modele |
---|
| 26 | cAA Modifications quant aux traceurs : |
---|
| 27 | cAA - uniformisation des parametrisations ds phytrac |
---|
| 28 | cAA - stockage des moyennes des champs necessaires |
---|
| 29 | cAA en mode traceur off-line |
---|
| 30 | c modif ( P. Le Van , 12/10/98 ) |
---|
| 31 | c |
---|
| 32 | c Arguments: |
---|
| 33 | c |
---|
| 34 | c nlon----input-I-nombre de points horizontaux |
---|
| 35 | c nlev----input-I-nombre de couches verticales |
---|
| 36 | c nqmax---input-I-nombre de traceurs |
---|
| 37 | c debut---input-L-variable logique indiquant le premier passage |
---|
| 38 | c lafin---input-L-variable logique indiquant le dernier passage |
---|
| 39 | c rjour---input-R-numero du jour de l'experience |
---|
[953] | 40 | c gmtime--input-R-fraction de la journee (0 a 1) |
---|
[3] | 41 | c pdtphys-input-R-pas d'integration pour la physique (seconde) |
---|
| 42 | c paprs---input-R-pression pour chaque inter-couche (en Pa) |
---|
| 43 | c pplay---input-R-pression pour le mileu de chaque couche (en Pa) |
---|
| 44 | c ppk ---input-R-fonction d'Exner au milieu de couche |
---|
| 45 | c pphi----input-R-geopotentiel de chaque couche (g z) (reference sol) |
---|
| 46 | c pphis---input-R-geopotentiel du sol |
---|
| 47 | c presnivs-input_R_pressions approximat. des milieux couches ( en PA) |
---|
| 48 | c u-------input-R-vitesse dans la direction X (de O a E) en m/s |
---|
| 49 | c v-------input-R-vitesse Y (de S a N) en m/s |
---|
| 50 | c t-------input-R-temperature (K) |
---|
| 51 | c qx------input-R-mass mixing ratio traceurs (kg/kg) |
---|
| 52 | c d_t_dyn-input-R-tendance dynamique pour "t" (K/s) |
---|
[1301] | 53 | c flxmw---input-R-flux de masse vertical en kg/s |
---|
[3] | 54 | c |
---|
| 55 | c d_u-----output-R-tendance physique de "u" (m/s/s) |
---|
| 56 | c d_v-----output-R-tendance physique de "v" (m/s/s) |
---|
| 57 | c d_t-----output-R-tendance physique de "t" (K/s) |
---|
| 58 | c d_qx----output-R-tendance physique de "qx" (kg/kg/s) |
---|
| 59 | c d_ps----output-R-tendance physique de la pression au sol |
---|
| 60 | c====================================================================== |
---|
[101] | 61 | USE ioipsl |
---|
[849] | 62 | ! USE histcom ! not needed; histcom is included in ioipsl |
---|
[101] | 63 | use dimphy |
---|
[1545] | 64 | USE geometry_mod,only: longitude, latitude, ! in radians |
---|
| 65 | & longitude_deg,latitude_deg, ! in degrees |
---|
| 66 | & cell_area,dx,dy |
---|
[892] | 67 | USE phys_state_var_mod ! Variables sauvegardees de la physique |
---|
[1621] | 68 | USE cpdet_phy_mod, only: cpdet, t2tpot |
---|
[1310] | 69 | USE chemparam_mod |
---|
| 70 | USE conc |
---|
[2464] | 71 | USE param_v4_h |
---|
[1310] | 72 | USE compo_hedin83_mod2 |
---|
[2486] | 73 | use radlwsw_newtoncool_mod, only: radlwsw_newtoncool |
---|
[1506] | 74 | ! use ieee_arithmetic |
---|
[1524] | 75 | use time_phylmdz_mod, only: annee_ref, day_ref, itau_phy |
---|
[1530] | 76 | use mod_grid_phy_lmdz, only: nbp_lon |
---|
[1621] | 77 | use infotrac_phy, only: iflag_trac, tname, ttext |
---|
[1642] | 78 | use vertical_layers_mod, only: pseudoalt |
---|
[1723] | 79 | use turb_mod, only : sens, turb_resolved |
---|
[2580] | 80 | use nonoro_gwd_ran_mod, only: nonoro_gwd_ran |
---|
[2259] | 81 | use sed_and_prod_mad, only: aer_sedimentation, drop_sedimentation |
---|
[2836] | 82 | use iono_h, only: temp_elect, temp_ion |
---|
[1642] | 83 | #ifdef CPP_XIOS |
---|
| 84 | use xios_output_mod, only: initialize_xios_output, |
---|
| 85 | & update_xios_timestep, |
---|
| 86 | & send_xios_field |
---|
[1682] | 87 | use wxios, only: wxios_context_init, xios_context_finalize |
---|
[1642] | 88 | #endif |
---|
[1723] | 89 | #ifdef MESOSCALE |
---|
| 90 | use comm_wrf |
---|
| 91 | #else |
---|
| 92 | use iophy |
---|
| 93 | use write_field_phy |
---|
| 94 | use mod_phys_lmdz_omp_data, ONLY: is_omp_master |
---|
| 95 | USE mod_phys_lmdz_para, only : is_parallel,jj_nb, |
---|
| 96 | & is_north_pole_phy, |
---|
[2193] | 97 | & is_south_pole_phy, |
---|
| 98 | & is_master |
---|
[1723] | 99 | #endif |
---|
[101] | 100 | IMPLICIT none |
---|
| 101 | c====================================================================== |
---|
| 102 | c CLEFS CPP POUR LES IO |
---|
| 103 | c ===================== |
---|
[1723] | 104 | #ifndef MESOSCALE |
---|
[101] | 105 | c#define histhf |
---|
| 106 | #define histday |
---|
| 107 | #define histmth |
---|
| 108 | #define histins |
---|
[1723] | 109 | #endif |
---|
[101] | 110 | c====================================================================== |
---|
[3] | 111 | #include "dimsoil.h" |
---|
| 112 | #include "clesphys.h" |
---|
| 113 | #include "iniprint.h" |
---|
| 114 | #include "timerad.h" |
---|
[815] | 115 | #include "tabcontrol.h" |
---|
[1310] | 116 | #include "nirdata.h" |
---|
| 117 | #include "hedin.h" |
---|
[3] | 118 | c====================================================================== |
---|
| 119 | LOGICAL ok_journe ! sortir le fichier journalier |
---|
| 120 | save ok_journe |
---|
| 121 | c PARAMETER (ok_journe=.true.) |
---|
| 122 | c |
---|
| 123 | LOGICAL ok_mensuel ! sortir le fichier mensuel |
---|
| 124 | save ok_mensuel |
---|
| 125 | c PARAMETER (ok_mensuel=.true.) |
---|
| 126 | c |
---|
| 127 | LOGICAL ok_instan ! sortir le fichier instantane |
---|
| 128 | save ok_instan |
---|
| 129 | c PARAMETER (ok_instan=.true.) |
---|
| 130 | c |
---|
| 131 | c====================================================================== |
---|
| 132 | c |
---|
| 133 | c Variables argument: |
---|
| 134 | c |
---|
| 135 | INTEGER nlon |
---|
| 136 | INTEGER nlev |
---|
| 137 | INTEGER nqmax |
---|
| 138 | REAL rjourvrai |
---|
| 139 | REAL gmtime |
---|
| 140 | REAL pdtphys |
---|
| 141 | LOGICAL debut, lafin |
---|
| 142 | REAL paprs(klon,klev+1) |
---|
| 143 | REAL pplay(klon,klev) |
---|
| 144 | REAL pphi(klon,klev) |
---|
| 145 | REAL pphis(klon) |
---|
| 146 | REAL presnivs(klev) |
---|
| 147 | |
---|
| 148 | ! ADAPTATION GCM POUR CP(T) |
---|
| 149 | REAL ppk(klon,klev) |
---|
| 150 | |
---|
| 151 | REAL u(klon,klev) |
---|
| 152 | REAL v(klon,klev) |
---|
| 153 | REAL t(klon,klev) |
---|
| 154 | REAL qx(klon,klev,nqmax) |
---|
| 155 | |
---|
| 156 | REAL d_u_dyn(klon,klev) |
---|
| 157 | REAL d_t_dyn(klon,klev) |
---|
| 158 | |
---|
[1301] | 159 | REAL flxmw(klon,klev) |
---|
[1665] | 160 | |
---|
[3] | 161 | REAL d_u(klon,klev) |
---|
| 162 | REAL d_v(klon,klev) |
---|
| 163 | REAL d_t(klon,klev) |
---|
| 164 | REAL d_qx(klon,klev,nqmax) |
---|
| 165 | REAL d_ps(klon) |
---|
| 166 | |
---|
| 167 | logical ok_hf |
---|
| 168 | real ecrit_hf |
---|
| 169 | integer nid_hf |
---|
| 170 | save ok_hf, ecrit_hf, nid_hf |
---|
| 171 | |
---|
| 172 | #ifdef histhf |
---|
| 173 | data ok_hf,ecrit_hf/.true.,0.25/ |
---|
| 174 | #else |
---|
| 175 | data ok_hf/.false./ |
---|
| 176 | #endif |
---|
| 177 | |
---|
| 178 | c Variables propres a la physique |
---|
[2193] | 179 | |
---|
| 180 | integer,save :: itap ! physics counter |
---|
[3] | 181 | REAL delp(klon,klev) ! epaisseur d'une couche |
---|
[2523] | 182 | REAL omega(klon,klev) ! vitesse verticale en Pa/s (+ downward) |
---|
| 183 | REAL vertwind(klon,klev) ! vitesse verticale en m/s (+ upward) |
---|
[3] | 184 | |
---|
| 185 | INTEGER igwd,idx(klon),itest(klon) |
---|
[2193] | 186 | |
---|
[3] | 187 | c Diagnostiques 2D de drag_noro, lift_noro et gw_nonoro |
---|
| 188 | |
---|
| 189 | REAL zulow(klon),zvlow(klon) |
---|
| 190 | REAL zustrdr(klon), zvstrdr(klon) |
---|
| 191 | REAL zustrli(klon), zvstrli(klon) |
---|
| 192 | REAL zustrhi(klon), zvstrhi(klon) |
---|
[2047] | 193 | REAL zublstrdr(klon), zvblstrdr(klon) |
---|
| 194 | REAL znlow(klon), zeff(klon) |
---|
| 195 | REAL zbl(klon), knu2(klon),kbreak(nlon) |
---|
| 196 | REAL tau0(klon), ztau(klon,klev) |
---|
[3] | 197 | |
---|
| 198 | c Pour calcul GW drag oro et nonoro: CALCUL de N2: |
---|
[1665] | 199 | real zdtlev(klon,klev),zdzlev(klon,klev) |
---|
| 200 | real ztlev(klon,klev) |
---|
[3] | 201 | real zn2(klon,klev) ! BV^2 at plev |
---|
| 202 | |
---|
| 203 | c Pour les bilans de moment angulaire, |
---|
| 204 | integer bilansmc |
---|
| 205 | c Pour le transport de ballons |
---|
| 206 | integer ballons |
---|
| 207 | c j'ai aussi besoin |
---|
| 208 | c du stress de couche limite a la surface: |
---|
| 209 | |
---|
| 210 | REAL zustrcl(klon),zvstrcl(klon) |
---|
| 211 | |
---|
| 212 | c et du stress total c de la physique: |
---|
| 213 | |
---|
| 214 | REAL zustrph(klon),zvstrph(klon) |
---|
| 215 | |
---|
| 216 | c Variables locales: |
---|
| 217 | c |
---|
| 218 | REAL cdragh(klon) ! drag coefficient pour T and Q |
---|
| 219 | REAL cdragm(klon) ! drag coefficient pour vent |
---|
| 220 | c |
---|
| 221 | cAA Pour TRACEURS |
---|
| 222 | cAA |
---|
[105] | 223 | REAL,save,allocatable :: source(:,:) |
---|
[3] | 224 | REAL ycoefh(klon,klev) ! coef d'echange pour phytrac |
---|
| 225 | REAL yu1(klon) ! vents dans la premiere couche U |
---|
| 226 | REAL yv1(klon) ! vents dans la premiere couche V |
---|
| 227 | |
---|
[1723] | 228 | REAL dsens(klon) ! derivee chaleur sensible |
---|
[3] | 229 | REAL ve(klon) ! integr. verticale du transport meri. de l'energie |
---|
| 230 | REAL vq(klon) ! integr. verticale du transport meri. de l'eau |
---|
| 231 | REAL ue(klon) ! integr. verticale du transport zonal de l'energie |
---|
| 232 | REAL uq(klon) ! integr. verticale du transport zonal de l'eau |
---|
| 233 | c |
---|
[1305] | 234 | REAL Fsedim(klon,klev+1) ! Flux de sedimentation (kg.m-2) |
---|
[3] | 235 | |
---|
| 236 | c====================================================================== |
---|
| 237 | c |
---|
| 238 | c Declaration des procedures appelees |
---|
| 239 | c |
---|
[2836] | 240 | EXTERNAL ajsec ! ajustement sec |
---|
| 241 | EXTERNAL clmain ! couche limite |
---|
| 242 | EXTERNAL clmain_ideal ! couche limite simple |
---|
| 243 | EXTERNAL hgardfou ! verifier les temperatures |
---|
| 244 | c EXTERNAL orbite ! calculer l'orbite |
---|
| 245 | EXTERNAL phyetat0 ! lire l'etat initial de la physique |
---|
| 246 | EXTERNAL phyredem ! ecrire l'etat de redemarrage de la physique |
---|
| 247 | EXTERNAL radlwsw ! rayonnements solaire et infrarouge |
---|
| 248 | ! EXTERNAL suphec ! initialiser certaines constantes |
---|
| 249 | EXTERNAL transp ! transport total de l'eau et de l'energie |
---|
[3] | 250 | EXTERNAL printflag |
---|
| 251 | EXTERNAL zenang |
---|
| 252 | EXTERNAL diagetpq |
---|
| 253 | EXTERNAL conf_phys |
---|
| 254 | EXTERNAL diagphy |
---|
| 255 | EXTERNAL mucorr |
---|
[1310] | 256 | EXTERNAL nirco2abs |
---|
| 257 | EXTERNAL nir_leedat |
---|
| 258 | EXTERNAL nltecool |
---|
| 259 | EXTERNAL nlte_tcool |
---|
| 260 | EXTERNAL nlte_setup |
---|
| 261 | EXTERNAL blendrad |
---|
| 262 | EXTERNAL nlthermeq |
---|
| 263 | EXTERNAL euvheat |
---|
| 264 | EXTERNAL param_read_e107 |
---|
| 265 | EXTERNAL conduction |
---|
| 266 | EXTERNAL molvis |
---|
[1442] | 267 | EXTERNAL moldiff_red |
---|
| 268 | |
---|
[3] | 269 | c |
---|
| 270 | c Variables locales |
---|
| 271 | c |
---|
| 272 | CXXX PB |
---|
[2836] | 273 | REAL fluxt(klon,klev) ! flux turbulent de chaleur |
---|
| 274 | REAL fluxu(klon,klev) ! flux turbulent de vitesse u |
---|
| 275 | REAL fluxv(klon,klev) ! flux turbulent de vitesse v |
---|
[3] | 276 | c |
---|
| 277 | REAL flux_dyn(klon,klev) ! flux de chaleur produit par la dynamique |
---|
| 278 | REAL flux_ajs(klon,klev) ! flux de chaleur ajustement sec |
---|
| 279 | REAL flux_ec(klon,klev) ! flux de chaleur Ec |
---|
| 280 | c |
---|
[2836] | 281 | REAL tmpout(klon,klev) ! [K/s] |
---|
[3] | 282 | c |
---|
| 283 | REAL dist, rmu0(klon), fract(klon) |
---|
| 284 | REAL zdtime, zlongi |
---|
| 285 | c |
---|
[1718] | 286 | INTEGER i, k, iq, ig, j, ll, ilon, ilat, ilev, isoil |
---|
[3] | 287 | c |
---|
| 288 | REAL zphi(klon,klev) |
---|
[1301] | 289 | REAL zzlev(klon,klev+1),zzlay(klon,klev),z1,z2 |
---|
[2686] | 290 | REAL tlaymean ! valeur temporaire pour calculer zzlay |
---|
[1310] | 291 | real tsurf(klon) |
---|
[1301] | 292 | |
---|
[1310] | 293 | c va avec nlte_tcool |
---|
| 294 | INTEGER ierr_nlte |
---|
| 295 | REAL varerr |
---|
| 296 | |
---|
[2193] | 297 | ! photochemistry |
---|
| 298 | |
---|
| 299 | integer :: chempas |
---|
[3035] | 300 | real :: zctime |
---|
[2193] | 301 | |
---|
| 302 | ! sedimentation |
---|
| 303 | |
---|
| 304 | REAL :: m0_mode1(klev,2),m0_mode2(klev,2) |
---|
| 305 | REAL :: m3_mode1(klev,3),m3_mode2 (klev,3) |
---|
| 306 | REAL :: d_drop_sed(klev),d_ccn_sed(klev,2),d_liq_sed(klev,2) |
---|
| 307 | REAL :: aer_flux(klev) |
---|
| 308 | c |
---|
[3] | 309 | c Variables du changement |
---|
| 310 | c |
---|
| 311 | c ajs: ajustement sec |
---|
| 312 | c vdf: couche limite (Vertical DiFfusion) |
---|
| 313 | REAL d_t_ajs(klon,klev), d_tr_ajs(klon,klev,nqmax) |
---|
| 314 | REAL d_u_ajs(klon,klev), d_v_ajs(klon,klev) |
---|
| 315 | c |
---|
| 316 | REAL d_ts(klon) |
---|
| 317 | c |
---|
| 318 | REAL d_u_vdf(klon,klev), d_v_vdf(klon,klev) |
---|
| 319 | REAL d_t_vdf(klon,klev), d_tr_vdf(klon,klev,nqmax) |
---|
| 320 | c |
---|
| 321 | CMOD LOTT: Tendances Orography Sous-maille |
---|
| 322 | REAL d_u_oro(klon,klev), d_v_oro(klon,klev) |
---|
| 323 | REAL d_t_oro(klon,klev) |
---|
| 324 | REAL d_u_lif(klon,klev), d_v_lif(klon,klev) |
---|
| 325 | REAL d_t_lif(klon,klev) |
---|
| 326 | C Tendances Ondes de G non oro (runs strato). |
---|
| 327 | REAL d_u_hin(klon,klev), d_v_hin(klon,klev) |
---|
| 328 | REAL d_t_hin(klon,klev) |
---|
| 329 | |
---|
[1310] | 330 | c Tendencies due to radiative scheme [K/s] |
---|
| 331 | c d_t_rad,dtsw,dtlw,d_t_nirco2,d_t_nlte,d_t_euv |
---|
| 332 | c are not computed at each physical timestep |
---|
| 333 | c therefore, they are defined and saved in phys_state_var_mod |
---|
| 334 | |
---|
| 335 | c Tendencies due to molecular viscosity and conduction |
---|
| 336 | real d_t_conduc(klon,klev) ! [K/s] |
---|
[2836] | 337 | real d_u_molvis(klon,klev) ! [m/s] /s |
---|
| 338 | real d_v_molvis(klon,klev) ! [m/s] /s |
---|
[1310] | 339 | |
---|
[1442] | 340 | c Tendencies due to molecular diffusion |
---|
| 341 | real d_q_moldif(klon,klev,nqmax) |
---|
| 342 | |
---|
[3035] | 343 | c Tendencies due to ambipolar ion diffusion |
---|
| 344 | real d_q_iondif(klon,klev,nqmax) |
---|
| 345 | |
---|
[3] | 346 | c |
---|
| 347 | c Variables liees a l'ecriture de la bande histoire physique |
---|
| 348 | c |
---|
| 349 | INTEGER ecrit_mth |
---|
| 350 | SAVE ecrit_mth ! frequence d'ecriture (fichier mensuel) |
---|
| 351 | c |
---|
| 352 | INTEGER ecrit_day |
---|
| 353 | SAVE ecrit_day ! frequence d'ecriture (fichier journalier) |
---|
| 354 | c |
---|
| 355 | INTEGER ecrit_ins |
---|
| 356 | SAVE ecrit_ins ! frequence d'ecriture (fichier instantane) |
---|
| 357 | c |
---|
| 358 | integer itau_w ! pas de temps ecriture = itap + itau_phy |
---|
| 359 | |
---|
| 360 | c Variables locales pour effectuer les appels en serie |
---|
| 361 | c |
---|
| 362 | REAL t_seri(klon,klev) |
---|
| 363 | REAL u_seri(klon,klev), v_seri(klon,klev) |
---|
| 364 | c |
---|
[1305] | 365 | REAL :: tr_seri(klon,klev,nqmax) |
---|
[2464] | 366 | REAL :: tr_hedin(klon,klev,nqmax) |
---|
[1305] | 367 | REAL :: d_tr(klon,klev,nqmax) |
---|
[2523] | 368 | c pour sorties |
---|
| 369 | REAL :: col_dens_tr(klon,nqmax) |
---|
[2580] | 370 | REAL,allocatable,save :: prod_tr(:,:,:) |
---|
| 371 | REAL,allocatable,save :: loss_tr(:,:,:) |
---|
[1305] | 372 | |
---|
[3] | 373 | c pour ioipsl |
---|
| 374 | INTEGER nid_day, nid_mth, nid_ins |
---|
| 375 | SAVE nid_day, nid_mth, nid_ins |
---|
| 376 | INTEGER nhori, nvert, idayref |
---|
[97] | 377 | REAL zsto, zout, zsto1, zsto2, zero |
---|
[3] | 378 | parameter (zero=0.0e0) |
---|
| 379 | real zjulian |
---|
| 380 | save zjulian |
---|
| 381 | |
---|
| 382 | CHARACTER*2 str2 |
---|
| 383 | character*20 modname |
---|
| 384 | character*80 abort_message |
---|
| 385 | logical ok_sync |
---|
| 386 | |
---|
| 387 | character*30 nom_fichier |
---|
| 388 | character*10 varname |
---|
| 389 | character*40 vartitle |
---|
| 390 | character*20 varunits |
---|
| 391 | C Variables liees au bilan d'energie et d'enthalpi |
---|
| 392 | REAL ztsol(klon) |
---|
| 393 | REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot |
---|
| 394 | $ , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot |
---|
| 395 | SAVE h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot |
---|
| 396 | $ , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot |
---|
| 397 | REAL d_h_vcol, d_h_dair, d_qt, d_qw, d_ql, d_qs, d_ec |
---|
| 398 | REAL d_h_vcol_phy |
---|
| 399 | REAL fs_bound, fq_bound |
---|
| 400 | SAVE d_h_vcol_phy |
---|
| 401 | REAL zero_v(klon),zero_v2(klon,klev) |
---|
| 402 | CHARACTER*15 ztit |
---|
| 403 | INTEGER ip_ebil ! PRINT level for energy conserv. diag. |
---|
| 404 | SAVE ip_ebil |
---|
| 405 | DATA ip_ebil/2/ |
---|
| 406 | INTEGER if_ebil ! level for energy conserv. dignostics |
---|
| 407 | SAVE if_ebil |
---|
| 408 | c+jld ec_conser |
---|
| 409 | REAL d_t_ec(klon,klev) ! tendance du a la conversion Ec -> E thermique |
---|
| 410 | c-jld ec_conser |
---|
| 411 | |
---|
[2580] | 412 | c ALBEDO VARIATIONS (VCD) |
---|
| 413 | REAL factAlb |
---|
[3] | 414 | c TEST VENUS... |
---|
| 415 | REAL mang(klon,klev) ! moment cinetique |
---|
| 416 | REAL mangtot ! moment cinetique total |
---|
| 417 | |
---|
[1572] | 418 | c cell_area for outputs in hist* |
---|
| 419 | REAL cell_area_out(klon) |
---|
[1723] | 420 | #ifdef MESOSCALE |
---|
| 421 | REAL :: dt_dyn(klev) |
---|
| 422 | #endif |
---|
[3] | 423 | c Declaration des constantes et des fonctions thermodynamiques |
---|
| 424 | c |
---|
| 425 | #include "YOMCST.h" |
---|
| 426 | |
---|
| 427 | c====================================================================== |
---|
[2464] | 428 | c====================================================================== |
---|
[3] | 429 | c INITIALISATIONS |
---|
[2464] | 430 | c====================================================================== |
---|
[3] | 431 | |
---|
| 432 | modname = 'physiq' |
---|
| 433 | ok_sync=.TRUE. |
---|
| 434 | |
---|
[119] | 435 | bilansmc = 0 |
---|
[3] | 436 | ballons = 0 |
---|
[892] | 437 | ! NE FONCTIONNENT PAS ENCORE EN PARALLELE !!! |
---|
[1723] | 438 | #ifndef MESOSCALE |
---|
[892] | 439 | if (is_parallel) then |
---|
| 440 | bilansmc = 0 |
---|
| 441 | ballons = 0 |
---|
| 442 | endif |
---|
[1723] | 443 | #endif |
---|
[3] | 444 | IF (if_ebil.ge.1) THEN |
---|
| 445 | DO i=1,klon |
---|
| 446 | zero_v(i)=0. |
---|
| 447 | END DO |
---|
| 448 | DO i=1,klon |
---|
| 449 | DO j=1,klev |
---|
| 450 | zero_v2(i,j)=0. |
---|
| 451 | END DO |
---|
| 452 | END DO |
---|
| 453 | END IF |
---|
| 454 | |
---|
[2464] | 455 | c====================================================================== |
---|
[3] | 456 | c PREMIER APPEL SEULEMENT |
---|
| 457 | c======================== |
---|
| 458 | IF (debut) THEN |
---|
[105] | 459 | allocate(source(klon,nqmax)) |
---|
[2580] | 460 | allocate(prod_tr(klon,klev,nqmax)) |
---|
| 461 | allocate(loss_tr(klon,klev,nqmax)) |
---|
[2795] | 462 | allocate(no_emission(klon,klev)) |
---|
| 463 | allocate(o2_emission(klon,klev)) |
---|
[3] | 464 | |
---|
[1682] | 465 | #ifdef CPP_XIOS |
---|
| 466 | ! Initialize XIOS context |
---|
| 467 | write(*,*) "physiq: call wxios_context_init" |
---|
| 468 | CALL wxios_context_init |
---|
| 469 | #endif |
---|
| 470 | |
---|
[2135] | 471 | ! The call to suphec is now done in iniphysiq_mod (interface) |
---|
| 472 | ! CALL suphec ! initialiser constantes et parametres phys. |
---|
[3] | 473 | |
---|
| 474 | IF (if_ebil.ge.1) d_h_vcol_phy=0. |
---|
| 475 | c |
---|
| 476 | c appel a la lecture du physiq.def |
---|
| 477 | c |
---|
| 478 | call conf_phys(ok_journe, ok_mensuel, |
---|
| 479 | . ok_instan, |
---|
| 480 | . if_ebil) |
---|
| 481 | |
---|
[2193] | 482 | call phys_state_var_init(nqmax) |
---|
[3] | 483 | c |
---|
[1310] | 484 | c Initialising Hedin model for upper atm |
---|
| 485 | c (to be revised when coupled to chemistry) : |
---|
| 486 | call conc_init |
---|
[1723] | 487 | |
---|
[2193] | 488 | ! initialise physics counter |
---|
| 489 | |
---|
| 490 | itap = 0 |
---|
| 491 | |
---|
[1723] | 492 | #ifdef MESOSCALE |
---|
| 493 | print*,'check pdtphys',pdtphys |
---|
| 494 | PRINT*,'check phisfi ',pphis(1),pphis(klon) |
---|
| 495 | PRINT*,'check geop',pphi(1,1),pphi(klon,klev) |
---|
| 496 | PRINT*,'check radsol',radsol(1),radsol(klon) |
---|
| 497 | print*,'check ppk',ppk(1,1),ppk(klon,klev) |
---|
| 498 | print*,'check ftsoil',ftsoil(1,1),ftsoil(klon,nsoilmx) |
---|
| 499 | print*,'check ftsol',ftsol(1),ftsol(klon) |
---|
| 500 | print*, "check temp", t(1,1),t(klon,klev) |
---|
| 501 | print*, "check pres",paprs(1,1),paprs(klon,klev),pplay(1,1), |
---|
| 502 | . pplay(klon,klev) |
---|
| 503 | print*, "check u", u(1,1),u(klon,klev) |
---|
| 504 | print*, "check v", v(1,1),v(klon,klev) |
---|
| 505 | print*,'check falbe',falbe(1),falbe(klon) |
---|
| 506 | !nqtot=nqmax |
---|
| 507 | !ALLOCATE(tname(nqtot)) |
---|
| 508 | !tname=noms |
---|
| 509 | zmea=0. |
---|
| 510 | zstd=0. |
---|
| 511 | zsig=0. |
---|
| 512 | zgam=0. |
---|
| 513 | zthe=0. |
---|
| 514 | dtime=pdtphys |
---|
| 515 | #else |
---|
[3] | 516 | c |
---|
| 517 | c Lecture startphy.nc : |
---|
| 518 | c |
---|
[892] | 519 | CALL phyetat0 ("startphy.nc") |
---|
[1718] | 520 | IF (.not.startphy_file) THEN |
---|
| 521 | ! Additionnal academic initializations |
---|
| 522 | ftsol(:)=t(:,1) ! surface temperature as in first atm. layer |
---|
| 523 | DO isoil=1, nsoilmx |
---|
| 524 | ! subsurface temperatures equal to surface temperature |
---|
| 525 | ftsoil(:,isoil)=ftsol(:) |
---|
| 526 | ENDDO |
---|
| 527 | ENDIF |
---|
[1723] | 528 | #endif |
---|
[3] | 529 | |
---|
[815] | 530 | c dtime est defini dans tabcontrol.h et lu dans startphy |
---|
[150] | 531 | c pdtphys est calcule a partir des nouvelles conditions: |
---|
| 532 | c Reinitialisation du pas de temps physique quand changement |
---|
| 533 | IF (ABS(dtime-pdtphys).GT.0.001) THEN |
---|
| 534 | WRITE(lunout,*) 'Pas physique a change',dtime, |
---|
| 535 | . pdtphys |
---|
| 536 | c abort_message='Pas physique n est pas correct ' |
---|
[1719] | 537 | c call abort_physic(modname,abort_message,1) |
---|
[152] | 538 | c---------------- |
---|
| 539 | c pour initialiser convenablement le time_counter, il faut tenir compte |
---|
| 540 | c du changement de dtime en changeant itau_phy (point de depart) |
---|
| 541 | itau_phy = NINT(itau_phy*dtime/pdtphys) |
---|
| 542 | c---------------- |
---|
[150] | 543 | dtime=pdtphys |
---|
| 544 | ENDIF |
---|
| 545 | |
---|
[2193] | 546 | radpas = NINT(RDAY/pdtphys/nbapp_rad) |
---|
[3] | 547 | |
---|
[815] | 548 | CALL printflag( ok_journe,ok_instan ) |
---|
[1642] | 549 | |
---|
| 550 | #ifdef CPP_XIOS |
---|
| 551 | write(*,*) "physiq: call initialize_xios_output" |
---|
| 552 | call initialize_xios_output(rjourvrai,gmtime,pdtphys,RDAY, |
---|
| 553 | & presnivs,pseudoalt) |
---|
| 554 | #endif |
---|
| 555 | |
---|
[3] | 556 | c |
---|
| 557 | c--------- |
---|
| 558 | c FLOTT |
---|
| 559 | IF (ok_orodr) THEN |
---|
| 560 | DO i=1,klon |
---|
| 561 | rugoro(i) = MAX(1.0e-05, zstd(i)*zsig(i)/2.0) |
---|
| 562 | ENDDO |
---|
| 563 | CALL SUGWD(klon,klev,paprs,pplay) |
---|
| 564 | DO i=1,klon |
---|
| 565 | zuthe(i)=0. |
---|
| 566 | zvthe(i)=0. |
---|
| 567 | if(zstd(i).gt.10.)then |
---|
| 568 | zuthe(i)=(1.-zgam(i))*cos(zthe(i)) |
---|
| 569 | zvthe(i)=(1.-zgam(i))*sin(zthe(i)) |
---|
| 570 | endif |
---|
| 571 | ENDDO |
---|
| 572 | ENDIF |
---|
| 573 | |
---|
| 574 | if (bilansmc.eq.1) then |
---|
| 575 | C OUVERTURE D'UN FICHIER FORMATTE POUR STOCKER LES COMPOSANTES |
---|
| 576 | C DU BILAN DE MOMENT ANGULAIRE. |
---|
| 577 | open(27,file='aaam_bud.out',form='formatted') |
---|
| 578 | open(28,file='fields_2d.out',form='formatted') |
---|
| 579 | write(*,*)'Ouverture de aaam_bud.out (FL Vous parle)' |
---|
| 580 | write(*,*)'Ouverture de fields_2d.out (FL Vous parle)' |
---|
| 581 | endif !bilansmc |
---|
| 582 | |
---|
| 583 | c--------------SLEBONNOIS |
---|
| 584 | C OUVERTURE DES FICHIERS FORMATTES CONTENANT LES POSITIONS ET VITESSES |
---|
| 585 | C DES BALLONS |
---|
| 586 | if (ballons.eq.1) then |
---|
| 587 | open(30,file='ballons-lat.out',form='formatted') |
---|
| 588 | open(31,file='ballons-lon.out',form='formatted') |
---|
| 589 | open(32,file='ballons-u.out',form='formatted') |
---|
| 590 | open(33,file='ballons-v.out',form='formatted') |
---|
| 591 | open(34,file='ballons-alt.out',form='formatted') |
---|
| 592 | write(*,*)'Ouverture des ballons*.out' |
---|
| 593 | endif !ballons |
---|
| 594 | c------------- |
---|
| 595 | |
---|
| 596 | c--------- |
---|
| 597 | C TRACEURS |
---|
| 598 | C source dans couche limite |
---|
[1442] | 599 | source(:,:) = 0.0 ! pas de source, pour l'instant |
---|
[3] | 600 | c--------- |
---|
[1310] | 601 | |
---|
| 602 | c--------- |
---|
| 603 | c INITIALIZE THERMOSPHERIC PARAMETERS |
---|
| 604 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 605 | |
---|
| 606 | if (callthermos) then |
---|
[2464] | 607 | call fill_data_thermos |
---|
| 608 | call allocate_param_thermos(klev) |
---|
| 609 | call param_read_e107 |
---|
[1310] | 610 | endif |
---|
| 611 | |
---|
| 612 | c Initialisation (recomputed in concentration2) |
---|
| 613 | do ig=1,klon |
---|
| 614 | do j=1,klev |
---|
[2788] | 615 | rnew(ig,j)=RD |
---|
[1665] | 616 | cpnew(ig,j)=cpdet(t(ig,j)) |
---|
[1442] | 617 | mmean(ig,j)=RMD |
---|
[1310] | 618 | akknew(ig,j)=1.e-4 |
---|
[2788] | 619 | rho(ig,j)=pplay(ig,j)/(rnew(ig,j)*t(ig,j)) |
---|
[1310] | 620 | enddo |
---|
| 621 | |
---|
| 622 | enddo |
---|
| 623 | |
---|
| 624 | IF(callthermos.or.callnlte.or.callnirco2) THEN |
---|
| 625 | call compo_hedin83_init2 |
---|
| 626 | ENDIF |
---|
[1442] | 627 | if (callnlte.and.nltemodel.eq.2) call nlte_setup |
---|
| 628 | if (callnirco2.and.nircorr.eq.1) call nir_leedat |
---|
[1310] | 629 | c--------- |
---|
| 630 | |
---|
[3] | 631 | c |
---|
| 632 | c Verifications: |
---|
| 633 | c |
---|
| 634 | IF (nlon .NE. klon) THEN |
---|
| 635 | WRITE(lunout,*)'nlon et klon ne sont pas coherents', nlon, |
---|
| 636 | . klon |
---|
| 637 | abort_message='nlon et klon ne sont pas coherents' |
---|
[1719] | 638 | call abort_physic(modname,abort_message,1) |
---|
[3] | 639 | ENDIF |
---|
| 640 | IF (nlev .NE. klev) THEN |
---|
| 641 | WRITE(lunout,*)'nlev et klev ne sont pas coherents', nlev, |
---|
| 642 | . klev |
---|
| 643 | abort_message='nlev et klev ne sont pas coherents' |
---|
[1719] | 644 | call abort_physic(modname,abort_message,1) |
---|
[3] | 645 | ENDIF |
---|
| 646 | c |
---|
[808] | 647 | IF (dtime*REAL(radpas).GT.(RDAY*0.25).AND.cycle_diurne) |
---|
[3] | 648 | $ THEN |
---|
| 649 | WRITE(lunout,*)'Nbre d appels au rayonnement insuffisant' |
---|
| 650 | WRITE(lunout,*)"Au minimum 4 appels par jour si cycle diurne" |
---|
| 651 | abort_message='Nbre d appels au rayonnement insuffisant' |
---|
[1719] | 652 | call abort_physic(modname,abort_message,1) |
---|
[3] | 653 | ENDIF |
---|
| 654 | c |
---|
| 655 | WRITE(lunout,*)"Clef pour la convection seche, iflag_ajs=", |
---|
| 656 | . iflag_ajs |
---|
| 657 | c |
---|
[1120] | 658 | ecrit_mth = NINT(RDAY/dtime*ecriphy) ! tous les ecritphy jours |
---|
[3] | 659 | IF (ok_mensuel) THEN |
---|
| 660 | WRITE(lunout,*)'La frequence de sortie mensuelle est de ', |
---|
| 661 | . ecrit_mth |
---|
| 662 | ENDIF |
---|
[97] | 663 | |
---|
[3] | 664 | ecrit_day = NINT(RDAY/dtime *1.0) ! tous les jours |
---|
| 665 | IF (ok_journe) THEN |
---|
| 666 | WRITE(lunout,*)'La frequence de sortie journaliere est de ', |
---|
| 667 | . ecrit_day |
---|
| 668 | ENDIF |
---|
[97] | 669 | |
---|
[1120] | 670 | ecrit_ins = NINT(RDAY/dtime*ecriphy) ! Fraction de jour reglable |
---|
[3] | 671 | IF (ok_instan) THEN |
---|
| 672 | WRITE(lunout,*)'La frequence de sortie instant. est de ', |
---|
| 673 | . ecrit_ins |
---|
| 674 | ENDIF |
---|
| 675 | |
---|
[3035] | 676 | c Verification synchronize AMBIPOLAR DIFFUSION & CHEMISTRY |
---|
| 677 | |
---|
| 678 | IF ((ok_iondiff) .and. (NINT(RDAY/dtime).ne.nbapp_chem)) THEN |
---|
| 679 | WRITE(lunout,*)'nbapp_chem .NE. day_step' |
---|
| 680 | WRITE(lunout,*)'nbapp_chem ', nbapp_chem |
---|
| 681 | WRITE(lunout,*)'day_step ', NINT(RDAY/dtime) |
---|
| 682 | WRITE(lunout,*)'nbapp_chem must be equal to day_step' |
---|
| 683 | STOP |
---|
| 684 | ENDIF |
---|
| 685 | |
---|
[3] | 686 | c Initialisation des sorties |
---|
| 687 | c=========================== |
---|
| 688 | |
---|
| 689 | #ifdef CPP_IOIPSL |
---|
| 690 | |
---|
| 691 | #ifdef histhf |
---|
| 692 | #include "ini_histhf.h" |
---|
| 693 | #endif |
---|
| 694 | |
---|
| 695 | #ifdef histday |
---|
| 696 | #include "ini_histday.h" |
---|
| 697 | #endif |
---|
| 698 | |
---|
| 699 | #ifdef histmth |
---|
| 700 | #include "ini_histmth.h" |
---|
| 701 | #endif |
---|
| 702 | |
---|
| 703 | #ifdef histins |
---|
| 704 | #include "ini_histins.h" |
---|
| 705 | #endif |
---|
| 706 | |
---|
| 707 | #endif |
---|
| 708 | |
---|
| 709 | c |
---|
| 710 | c Initialiser les valeurs de u pour calculs tendances |
---|
| 711 | c (pour T, c'est fait dans phyetat0) |
---|
| 712 | c |
---|
| 713 | DO k = 1, klev |
---|
| 714 | DO i = 1, klon |
---|
| 715 | u_ancien(i,k) = u(i,k) |
---|
| 716 | ENDDO |
---|
| 717 | ENDDO |
---|
| 718 | |
---|
[2683] | 719 | ! initialisation of microphysical and chemical parameters |
---|
[1661] | 720 | |
---|
[2683] | 721 | if (ok_chem .and. .not. ok_cloud) then |
---|
| 722 | print*,"chemistry requires clouds" |
---|
| 723 | print*,"ok_cloud must be .true." |
---|
| 724 | stop |
---|
| 725 | end if |
---|
| 726 | |
---|
| 727 | if (.not. ok_chem .and. ok_cloud .and. (cl_scheme == 1)) then |
---|
| 728 | print*,"cl_scheme = 1 requires chemistry" |
---|
| 729 | print*,"ok_chem must be .true." |
---|
| 730 | stop |
---|
| 731 | end if |
---|
[1661] | 732 | |
---|
[2683] | 733 | ! number of microphysical tracers |
---|
[2193] | 734 | |
---|
| 735 | nmicro = 0 |
---|
| 736 | if (ok_cloud .and. (cl_scheme == 1)) nmicro = 2 |
---|
| 737 | if (ok_cloud .and. (cl_scheme == 2)) nmicro = 12 |
---|
[1661] | 738 | |
---|
[2683] | 739 | ! initialise chemical parameters. includes the indexation of microphys tracers |
---|
[1305] | 740 | |
---|
[2683] | 741 | if (ok_chem .or. cl_scheme == 2) then |
---|
| 742 | call chemparam_ini() |
---|
| 743 | end if |
---|
[3] | 744 | |
---|
[2683] | 745 | ! initialise cloud parameters (for cl_scheme = 1) |
---|
[1442] | 746 | |
---|
[2683] | 747 | if (ok_cloud .and. (cl_scheme == 1)) then |
---|
| 748 | call cloud_ini(nlon,nlev) |
---|
| 749 | end if |
---|
| 750 | |
---|
[2286] | 751 | ! initialise mmean |
---|
| 752 | |
---|
[2683] | 753 | if (callthermos) then |
---|
[2464] | 754 | call concentrations2(pplay,t,qx,nqmax) |
---|
[2683] | 755 | end if |
---|
[2286] | 756 | |
---|
[2464] | 757 | c======================== |
---|
[3] | 758 | ENDIF ! debut |
---|
[2464] | 759 | c======================== |
---|
[2193] | 760 | |
---|
[2464] | 761 | c====================================================================== |
---|
[1642] | 762 | ! ------------------------------------------------------ |
---|
| 763 | ! Initializations done at every physical timestep: |
---|
| 764 | ! ------------------------------------------------------ |
---|
[3] | 765 | |
---|
| 766 | c Mettre a zero des variables de sortie (pour securite) |
---|
| 767 | c |
---|
| 768 | DO i = 1, klon |
---|
| 769 | d_ps(i) = 0.0 |
---|
| 770 | ENDDO |
---|
| 771 | DO k = 1, klev |
---|
| 772 | DO i = 1, klon |
---|
| 773 | d_t(i,k) = 0.0 |
---|
| 774 | d_u(i,k) = 0.0 |
---|
| 775 | d_v(i,k) = 0.0 |
---|
| 776 | ENDDO |
---|
| 777 | ENDDO |
---|
| 778 | DO iq = 1, nqmax |
---|
| 779 | DO k = 1, klev |
---|
| 780 | DO i = 1, klon |
---|
| 781 | d_qx(i,k,iq) = 0.0 |
---|
| 782 | ENDDO |
---|
| 783 | ENDDO |
---|
| 784 | ENDDO |
---|
| 785 | c |
---|
| 786 | c Ne pas affecter les valeurs entrees de u, v, h, et q |
---|
| 787 | c |
---|
| 788 | DO k = 1, klev |
---|
| 789 | DO i = 1, klon |
---|
| 790 | t_seri(i,k) = t(i,k) |
---|
| 791 | u_seri(i,k) = u(i,k) |
---|
| 792 | v_seri(i,k) = v(i,k) |
---|
| 793 | ENDDO |
---|
| 794 | ENDDO |
---|
| 795 | DO iq = 1, nqmax |
---|
| 796 | DO k = 1, klev |
---|
| 797 | DO i = 1, klon |
---|
| 798 | tr_seri(i,k,iq) = qx(i,k,iq) |
---|
| 799 | ENDDO |
---|
| 800 | ENDDO |
---|
| 801 | ENDDO |
---|
| 802 | C |
---|
| 803 | DO i = 1, klon |
---|
| 804 | ztsol(i) = ftsol(i) |
---|
| 805 | ENDDO |
---|
| 806 | C |
---|
| 807 | IF (if_ebil.ge.1) THEN |
---|
| 808 | ztit='after dynamic' |
---|
[1543] | 809 | CALL diagetpq(cell_area,ztit,ip_ebil,1,1,dtime |
---|
[3] | 810 | e , t_seri,zero_v2,zero_v2,zero_v2,u_seri,v_seri,paprs,pplay |
---|
| 811 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
| 812 | C Comme les tendances de la physique sont ajoute dans la dynamique, |
---|
| 813 | C on devrait avoir que la variation d'entalpie par la dynamique |
---|
| 814 | C est egale a la variation de la physique au pas de temps precedent. |
---|
| 815 | C Donc la somme de ces 2 variations devrait etre nulle. |
---|
[1543] | 816 | call diagphy(cell_area,ztit,ip_ebil |
---|
[3] | 817 | e , zero_v, zero_v, zero_v, zero_v, zero_v |
---|
| 818 | e , zero_v, zero_v, zero_v, ztsol |
---|
| 819 | e , d_h_vcol+d_h_vcol_phy, d_qt, 0. |
---|
| 820 | s , fs_bound, fq_bound ) |
---|
| 821 | END IF |
---|
| 822 | |
---|
| 823 | c==================================================================== |
---|
[1642] | 824 | c XIOS outputs |
---|
| 825 | |
---|
| 826 | #ifdef CPP_XIOS |
---|
| 827 | ! update XIOS time/calendar |
---|
| 828 | call update_xios_timestep |
---|
| 829 | #endif |
---|
| 830 | |
---|
| 831 | c==================================================================== |
---|
[3] | 832 | c Diagnostiquer la tendance dynamique |
---|
| 833 | c |
---|
| 834 | IF (ancien_ok) THEN |
---|
| 835 | DO k = 1, klev |
---|
[2836] | 836 | DO i = 1, klon |
---|
[3] | 837 | d_u_dyn(i,k) = (u_seri(i,k)-u_ancien(i,k))/dtime |
---|
| 838 | d_t_dyn(i,k) = (t_seri(i,k)-t_ancien(i,k))/dtime |
---|
[2836] | 839 | ENDDO |
---|
[3] | 840 | ENDDO |
---|
| 841 | |
---|
| 842 | ! ADAPTATION GCM POUR CP(T) |
---|
| 843 | do i=1,klon |
---|
| 844 | flux_dyn(i,1) = 0.0 |
---|
| 845 | do j=2,klev |
---|
| 846 | flux_dyn(i,j) = flux_dyn(i,j-1) |
---|
[2686] | 847 | . +cpnew(i,j-1)/RG*d_t_dyn(i,j-1)*(paprs(i,j-1)-paprs(i,j)) |
---|
[3] | 848 | enddo |
---|
| 849 | enddo |
---|
| 850 | |
---|
| 851 | ELSE |
---|
| 852 | DO k = 1, klev |
---|
| 853 | DO i = 1, klon |
---|
| 854 | d_u_dyn(i,k) = 0.0 |
---|
| 855 | d_t_dyn(i,k) = 0.0 |
---|
| 856 | ENDDO |
---|
| 857 | ENDDO |
---|
| 858 | ancien_ok = .TRUE. |
---|
| 859 | ENDIF |
---|
| 860 | c==================================================================== |
---|
[1301] | 861 | |
---|
[2523] | 862 | ! Compute vertical velocity (Pa/s) from vertical mass flux |
---|
| 863 | ! Need to linearly interpolate mass flux to mid-layers |
---|
| 864 | do k=1,klev-1 |
---|
| 865 | omega(1:klon,k) = 0.5*RG*(flxmw(1:klon,k)+flxmw(1:klon,k+1)) |
---|
| 866 | . / cell_area(1:klon) |
---|
| 867 | enddo |
---|
| 868 | omega(1:klon,klev) = 0.5*RG*flxmw(1:klon,klev) / cell_area(1:klon) |
---|
[1301] | 869 | |
---|
[2047] | 870 | c====== |
---|
| 871 | c GEOP CORRECTION |
---|
[3] | 872 | c |
---|
| 873 | c Ajouter le geopotentiel du sol: |
---|
| 874 | c |
---|
| 875 | DO k = 1, klev |
---|
[2836] | 876 | DO i = 1, klon |
---|
[3] | 877 | zphi(i,k) = pphi(i,k) + pphis(i) |
---|
[2836] | 878 | ENDDO |
---|
[3] | 879 | ENDDO |
---|
[1301] | 880 | |
---|
[2047] | 881 | c............................ |
---|
| 882 | c CETTE CORRECTION VA DE PAIR AVEC DES MODIFS DE LEAPFROG(_p) |
---|
| 883 | c ELLE MARCHE A 50 NIVEAUX (si mmean constante...) |
---|
| 884 | c MAIS PAS A 78 NIVEAUX (quand mmean varie...) |
---|
| 885 | c A ANALYSER PLUS EN DETAIL AVANT D'UTILISER |
---|
| 886 | c............................ |
---|
| 887 | c zphi is recomputed (pphi is not ok if mean molecular mass varies) |
---|
| 888 | c with dphi = RT/mmean d(ln p) [evaluated at interface] |
---|
| 889 | |
---|
| 890 | c DO i = 1, klon |
---|
| 891 | c zphi(i,1) = pphis(i) + R*t_seri(i,1)/mmean(i,1)*1000. |
---|
| 892 | c * *( log(paprs(i,1)) - log(pplay(i,1)) ) |
---|
| 893 | c DO k = 2, klev |
---|
| 894 | c zphi(i,k) = zphi(i,k-1) |
---|
| 895 | c * + R*500.*(t_seri(i,k)/mmean(i,k)+t_seri(i,k-1)/mmean(i,k-1)) |
---|
| 896 | c * * (log(pplay(i,k-1)) - log(pplay(i,k))) |
---|
| 897 | c ENDDO |
---|
| 898 | c ENDDO |
---|
| 899 | c............................ |
---|
| 900 | c===== |
---|
| 901 | |
---|
[2686] | 902 | c calcul de l'altitude aux niveaux intercouches |
---|
[1301] | 903 | c ponderation des altitudes au niveau des couches en dp/p |
---|
| 904 | |
---|
| 905 | DO i=1,klon |
---|
[2686] | 906 | zzlay(i,1)=zphi(i,1)/RG ! [m] |
---|
[1310] | 907 | zzlev(i,1)=pphis(i)/RG ! [m] |
---|
[1301] | 908 | ENDDO |
---|
| 909 | DO k=2,klev |
---|
[2686] | 910 | DO i=1,klon |
---|
| 911 | tlaymean=t_seri(i,k) |
---|
| 912 | IF (t_seri(i,k).ne.t_seri(i,k-1)) |
---|
| 913 | & tlaymean=(t_seri(i,k)-t_seri(i,k-1)) |
---|
| 914 | & /log(t_seri(i,k)/t_seri(i,k-1)) |
---|
| 915 | |
---|
| 916 | zzlay(i,k)=zzlay(i,k-1) |
---|
| 917 | & -(log(pplay(i,k)/pplay(i,k-1))*rnew(i,k-1)*tlaymean |
---|
| 918 | & /(RG*(RA/(RA+zzlay(i,k-1)))**2)) |
---|
| 919 | ENDDO |
---|
| 920 | ENDDO |
---|
| 921 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 922 | ! Old : from geopotential. Problem when mu varies in the upper atm... |
---|
| 923 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 924 | ! DO k=1,klev |
---|
| 925 | ! DO i=1,klon |
---|
| 926 | ! zzlay(i,k)=zphi(i,k)/RG ! [m] |
---|
| 927 | ! ENDDO |
---|
| 928 | ! ENDDO |
---|
| 929 | ! DO i=1,klon |
---|
| 930 | ! zzlev(i,1)=pphis(i)/RG ! [m] |
---|
| 931 | ! ENDDO |
---|
| 932 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 933 | DO k=2,klev |
---|
[1301] | 934 | DO i=1,klon |
---|
| 935 | z1=(pplay(i,k-1)+paprs(i,k))/(pplay(i,k-1)-paprs(i,k)) |
---|
| 936 | z2=(paprs(i,k) +pplay(i,k))/(paprs(i,k) -pplay(i,k)) |
---|
| 937 | zzlev(i,k)=(z1*zzlay(i,k-1)+z2*zzlay(i,k))/(z1+z2) |
---|
| 938 | ENDDO |
---|
| 939 | ENDDO |
---|
| 940 | DO i=1,klon |
---|
| 941 | zzlev(i,klev+1)=zzlay(i,klev)+(zzlay(i,klev)-zzlev(i,klev)) |
---|
| 942 | ENDDO |
---|
| 943 | |
---|
[3] | 944 | c==================================================================== |
---|
| 945 | c |
---|
| 946 | c Verifier les temperatures |
---|
| 947 | c |
---|
| 948 | CALL hgardfou(t_seri,ftsol,'debutphy') |
---|
| 949 | |
---|
| 950 | c==================================================================== |
---|
| 951 | c Orbite et eclairement |
---|
[2464] | 952 | c======================= |
---|
[3] | 953 | |
---|
| 954 | c Pour VENUS, on fixe l'obliquite a 0 et l'eccentricite a 0. |
---|
| 955 | c donc pas de variations de Ls, ni de dist. |
---|
| 956 | c La seule chose qui compte, c'est la rotation de la planete devant |
---|
| 957 | c le Soleil... |
---|
| 958 | |
---|
| 959 | zlongi = 0.0 |
---|
[2464] | 960 | dist = 0.72333 ! en UA |
---|
[3] | 961 | |
---|
| 962 | c Si on veut remettre l'obliquite a 3 degres et/ou l'eccentricite |
---|
| 963 | c a sa valeur, et prendre en compte leur evolution, |
---|
| 964 | c il faudra refaire un orbite.F... |
---|
| 965 | c CALL orbite(zlongi,dist) |
---|
| 966 | |
---|
| 967 | IF (cycle_diurne) THEN |
---|
[808] | 968 | zdtime=dtime*REAL(radpas) ! pas de temps du rayonnement (s) |
---|
[1545] | 969 | CALL zenang(zlongi,gmtime,zdtime,latitude_deg,longitude_deg, |
---|
| 970 | & rmu0,fract) |
---|
[3] | 971 | ELSE |
---|
[1545] | 972 | call mucorr(klon,zlongi,latitude_deg,rmu0,fract) |
---|
[3] | 973 | ENDIF |
---|
| 974 | |
---|
[2193] | 975 | ! print fraction of venus day |
---|
[3] | 976 | |
---|
[2193] | 977 | if (is_master) then |
---|
| 978 | print*, 'gmtime = ', gmtime |
---|
| 979 | end if |
---|
| 980 | |
---|
[2464] | 981 | c====================================================================== |
---|
| 982 | c FIN INITIALISATIONS |
---|
| 983 | c====================================================================== |
---|
| 984 | c====================================================================== |
---|
| 985 | |
---|
| 986 | c======================================================= |
---|
| 987 | ! CONDUCTION and MOLECULAR VISCOSITY |
---|
| 988 | c======================================================= |
---|
| 989 | |
---|
| 990 | d_t_conduc(:,:)=0. |
---|
| 991 | d_u_molvis(:,:)=0. |
---|
| 992 | d_v_molvis(:,:)=0. |
---|
| 993 | |
---|
| 994 | IF (callthermos) THEN |
---|
| 995 | |
---|
| 996 | tsurf(:)=t_seri(:,1) |
---|
| 997 | call conduction(klon, klev,pdtphys, |
---|
| 998 | $ pplay,paprs,t_seri, |
---|
| 999 | $ tsurf,zzlev,zzlay,d_t_conduc) |
---|
| 1000 | |
---|
| 1001 | call molvis(klon, klev,pdtphys, |
---|
| 1002 | $ pplay,paprs,t_seri, |
---|
| 1003 | $ u,tsurf,zzlev,zzlay,d_u_molvis) |
---|
| 1004 | |
---|
| 1005 | call molvis(klon, klev, pdtphys, |
---|
| 1006 | $ pplay,paprs,t_seri, |
---|
| 1007 | $ v,tsurf,zzlev,zzlay,d_v_molvis) |
---|
| 1008 | |
---|
| 1009 | DO k=1,klev |
---|
| 1010 | DO ig=1,klon |
---|
| 1011 | t_seri(ig,k)= t_seri(ig,k)+ d_t_conduc(ig,k)*dtime ! [K] |
---|
[2836] | 1012 | u_seri(ig,k)= u_seri(ig,k)+ d_u_molvis(ig,k)*dtime ! [m/s] |
---|
| 1013 | v_seri(ig,k)= v_seri(ig,k)+ d_v_molvis(ig,k)*dtime ! [m/s] |
---|
[2464] | 1014 | ENDDO |
---|
| 1015 | ENDDO |
---|
| 1016 | ENDIF |
---|
| 1017 | |
---|
| 1018 | c==================================================================== |
---|
| 1019 | c Compute mean mass, cp and R : |
---|
| 1020 | c------------------------------------ |
---|
| 1021 | |
---|
| 1022 | if(callthermos) then |
---|
| 1023 | call concentrations2(pplay,t_seri,tr_seri, nqmax) |
---|
| 1024 | endif |
---|
| 1025 | |
---|
| 1026 | |
---|
| 1027 | c======================================================= |
---|
| 1028 | ! CHEMISTRY AND MICROPHYSICS |
---|
| 1029 | c======================================================= |
---|
| 1030 | |
---|
[3] | 1031 | if (iflag_trac.eq.1) then |
---|
[2193] | 1032 | !==================================================================== |
---|
| 1033 | ! Case 1: pseudo-chemistry with relaxation toward fixed profile |
---|
[2464] | 1034 | !========= |
---|
[1160] | 1035 | if (tr_scheme.eq.1) then |
---|
[1305] | 1036 | |
---|
[1160] | 1037 | call phytrac_relax (debut,lafin,nqmax, |
---|
| 1038 | I nlon,nlev,dtime,pplay, |
---|
[3] | 1039 | O tr_seri) |
---|
[1160] | 1040 | |
---|
| 1041 | elseif (tr_scheme.eq.2) then |
---|
[2193] | 1042 | !==================================================================== |
---|
[1160] | 1043 | ! Case 2: surface emission |
---|
| 1044 | ! For the moment, inspired from Mars version |
---|
| 1045 | ! However, the variable 'source' could be used in physiq |
---|
| 1046 | ! so the call to phytrac_emiss could be to initialise it. |
---|
[2464] | 1047 | !========= |
---|
[1305] | 1048 | |
---|
[2464] | 1049 | call phytrac_emiss (debut,lafin,nqmax, |
---|
[1160] | 1050 | I nlon,nlev,dtime,paprs, |
---|
[1545] | 1051 | I latitude_deg,longitude_deg, |
---|
[1160] | 1052 | O tr_seri) |
---|
[3] | 1053 | |
---|
[2193] | 1054 | else if (tr_scheme.eq.3) then |
---|
| 1055 | !==================================================================== |
---|
| 1056 | ! Case 3: Full chemistry and/or clouds. |
---|
| 1057 | ! routines are called every "chempas" physical timestep. |
---|
[2262] | 1058 | ! |
---|
| 1059 | ! if the physics is called 96000 times per venus day: |
---|
| 1060 | ! |
---|
| 1061 | ! nbapp_chem = 24000 => chempas = 4 => zctime = 420 s |
---|
| 1062 | ! nbapp_chem = 12000 => chempas = 8 => zctime = 840 s |
---|
[2464] | 1063 | !========= |
---|
[1305] | 1064 | |
---|
[3035] | 1065 | |
---|
[2193] | 1066 | chempas = nint(rday/pdtphys/nbapp_chem) |
---|
[2262] | 1067 | zctime = dtime*real(chempas) ! chemical timestep |
---|
[1305] | 1068 | |
---|
[2193] | 1069 | if (mod(itap,chempas) == 0) then ! <------- start of chemistry supercycling |
---|
[1305] | 1070 | |
---|
[2193] | 1071 | ! photochemistry and microphysics |
---|
[1661] | 1072 | |
---|
[2193] | 1073 | call phytrac_chimie(debut, |
---|
| 1074 | $ gmtime, |
---|
| 1075 | $ nqmax, |
---|
| 1076 | $ klon, |
---|
| 1077 | $ latitude_deg, |
---|
| 1078 | $ longitude_deg, |
---|
[2780] | 1079 | $ zzlay, |
---|
[2193] | 1080 | $ nlev, |
---|
| 1081 | $ zctime, |
---|
| 1082 | $ t_seri, |
---|
| 1083 | $ pplay, |
---|
| 1084 | $ tr_seri, |
---|
| 1085 | $ d_tr_chem, |
---|
[2580] | 1086 | $ iter, |
---|
| 1087 | $ prod_tr, |
---|
[2795] | 1088 | $ loss_tr, |
---|
| 1089 | $ no_emission, |
---|
| 1090 | $ o2_emission) |
---|
[2193] | 1091 | |
---|
[1305] | 1092 | if (ok_sedim) then |
---|
[2193] | 1093 | if (cl_scheme == 1) then |
---|
[1305] | 1094 | |
---|
[2193] | 1095 | ! sedimentation for simplified microphysics |
---|
[1661] | 1096 | |
---|
[1723] | 1097 | #ifndef MESOSCALE |
---|
[2193] | 1098 | call new_cloud_sedim(klon, |
---|
| 1099 | $ nlev, |
---|
| 1100 | $ zctime, |
---|
| 1101 | $ pplay, |
---|
| 1102 | $ paprs, |
---|
| 1103 | $ t_seri, |
---|
| 1104 | $ tr_seri, |
---|
[2200] | 1105 | $ d_tr_chem, |
---|
[2193] | 1106 | $ d_tr_sed(:,:,1:2), |
---|
| 1107 | $ nqmax, |
---|
| 1108 | $ Fsedim) |
---|
[1305] | 1109 | |
---|
[2193] | 1110 | ! test to avoid nans |
---|
[1442] | 1111 | |
---|
[2193] | 1112 | do k = 1, klev |
---|
| 1113 | do i = 1, klon |
---|
| 1114 | if ((d_tr_sed(i,k,1) /= d_tr_sed(i,k,1)) .or. |
---|
| 1115 | $ (d_tr_sed(i,k,2) /= d_tr_sed(i,k,2))) then |
---|
| 1116 | print*,'sedim NaN PROBLEM' |
---|
| 1117 | print*,'d_tr_sed Nan?',d_tr_sed(i,k,:) |
---|
| 1118 | print*,'Temp',t_seri(i,k) |
---|
| 1119 | print*,'lat-lon',i,'level',k,'zctime',zctime |
---|
| 1120 | print*,'F_sed',Fsedim(i,k) |
---|
| 1121 | d_tr_sed(i,k,:) = 0. |
---|
| 1122 | end if |
---|
| 1123 | end do |
---|
| 1124 | end do |
---|
[1305] | 1125 | |
---|
[2203] | 1126 | ! tendency due to condensation and sedimentation |
---|
[1305] | 1127 | |
---|
[2203] | 1128 | d_tr_sed(:,:,1:2) = d_tr_sed(:,:,1:2)/zctime |
---|
[2193] | 1129 | Fsedim(:,1:klev) = Fsedim(:,1:klev)/zctime |
---|
| 1130 | Fsedim(:,klev+1) = 0. |
---|
[1661] | 1131 | |
---|
[2193] | 1132 | else if (cl_scheme == 2) then |
---|
[1661] | 1133 | |
---|
[2193] | 1134 | ! sedimentation for detailed microphysics |
---|
[1661] | 1135 | |
---|
[2193] | 1136 | d_tr_sed(:,:,:) = 0. |
---|
| 1137 | |
---|
| 1138 | do i = 1, klon |
---|
| 1139 | |
---|
| 1140 | ! mode 1 |
---|
| 1141 | |
---|
| 1142 | m0_mode1(:,1) = tr_seri(i,:,i_m0_mode1drop) |
---|
| 1143 | m0_mode1(:,2) = tr_seri(i,:,i_m0_mode1ccn) |
---|
| 1144 | m3_mode1(:,1) = tr_seri(i,:,i_m3_mode1sa) |
---|
| 1145 | m3_mode1(:,2) = tr_seri(i,:,i_m3_mode1w) |
---|
| 1146 | m3_mode1(:,3) = tr_seri(i,:,i_m3_mode1ccn) |
---|
| 1147 | |
---|
| 1148 | call drop_sedimentation(zctime,klev,m0_mode1,m3_mode1, |
---|
| 1149 | $ paprs(i,:),zzlev(i,:), |
---|
| 1150 | $ zzlay(i,:),t_seri(i,:),1, |
---|
| 1151 | $ d_ccn_sed(:,1),d_drop_sed, |
---|
| 1152 | $ d_ccn_sed(:,2),d_liq_sed) |
---|
| 1153 | |
---|
[1661] | 1154 | d_tr_sed(i,:,i_m0_mode1drop)= d_tr_sed(i,:,i_m0_mode1drop) |
---|
[2193] | 1155 | $ + d_drop_sed |
---|
[1661] | 1156 | d_tr_sed(i,:,i_m0_mode1ccn) = d_tr_sed(i,:,i_m0_mode1ccn) |
---|
[2193] | 1157 | $ + d_ccn_sed(:,1) |
---|
[1661] | 1158 | d_tr_sed(i,:,i_m3_mode1ccn) = d_tr_sed(i,:,i_m3_mode1ccn) |
---|
[2193] | 1159 | $ + d_ccn_sed(:,2) |
---|
[1661] | 1160 | d_tr_sed(i,:,i_m3_mode1sa) = d_tr_sed(i,:,i_m3_mode1sa) |
---|
[2193] | 1161 | $ + d_liq_sed(:,1) |
---|
[1661] | 1162 | d_tr_sed(i,:,i_m3_mode1w) = d_tr_sed(i,:,i_m3_mode1w) |
---|
[2193] | 1163 | $ + d_liq_sed(:,2) |
---|
[1661] | 1164 | |
---|
[2193] | 1165 | ! mode 2 |
---|
[1661] | 1166 | |
---|
[2193] | 1167 | m0_mode2(:,1) = tr_seri(i,:,i_m0_mode2drop) |
---|
| 1168 | m0_mode2(:,2) = tr_seri(i,:,i_m0_mode2ccn) |
---|
| 1169 | m3_mode2(:,1) = tr_seri(i,:,i_m3_mode2sa) |
---|
| 1170 | m3_mode2(:,2) = tr_seri(i,:,i_m3_mode2w) |
---|
| 1171 | m3_mode2(:,3) = tr_seri(i,:,i_m3_mode2ccn) |
---|
| 1172 | |
---|
| 1173 | call drop_sedimentation(zctime,klev,m0_mode2,m3_mode2, |
---|
| 1174 | $ paprs(i,:),zzlev(i,:), |
---|
| 1175 | $ zzlay(i,:),t_seri(i,:),2, |
---|
| 1176 | $ d_ccn_sed(:,1),d_drop_sed, |
---|
| 1177 | $ d_ccn_sed(:,2),d_liq_sed) |
---|
| 1178 | |
---|
[1661] | 1179 | d_tr_sed(i,:,i_m0_mode2drop)= d_tr_sed(i,:,i_m0_mode2drop) |
---|
[2193] | 1180 | $ + d_drop_sed |
---|
[1661] | 1181 | d_tr_sed(i,:,i_m0_mode2ccn) = d_tr_sed(i,:,i_m0_mode2ccn) |
---|
[2193] | 1182 | $ + d_ccn_sed(:,1) |
---|
[1661] | 1183 | d_tr_sed(i,:,i_m3_mode2ccn) = d_tr_sed(i,:,i_m3_mode2ccn) |
---|
[2193] | 1184 | $ + d_ccn_sed(:,2) |
---|
[1661] | 1185 | d_tr_sed(i,:,i_m3_mode2sa) = d_tr_sed(i,:,i_m3_mode2sa) |
---|
[2193] | 1186 | $ + d_liq_sed(:,1) |
---|
[1661] | 1187 | d_tr_sed(i,:,i_m3_mode2w) = d_tr_sed(i,:,i_m3_mode2w) |
---|
[2193] | 1188 | $ + d_liq_sed(:,2) |
---|
[1661] | 1189 | |
---|
[2193] | 1190 | ! aer |
---|
[1661] | 1191 | |
---|
[2193] | 1192 | call aer_sedimentation(zctime,klev, |
---|
| 1193 | $ tr_seri(i,:,i_m0_aer), |
---|
| 1194 | $ tr_seri(i,:,i_m3_aer), |
---|
| 1195 | $ paprs(i,:),zzlev(i,:), |
---|
| 1196 | $ zzlay(i,:),t_seri(i,:), |
---|
| 1197 | $ d_tr_sed(i,:,i_m0_aer), |
---|
| 1198 | $ d_tr_sed(i,:,i_m3_aer), |
---|
| 1199 | $ aer_flux) |
---|
| 1200 | |
---|
| 1201 | end do |
---|
[1661] | 1202 | |
---|
[2193] | 1203 | ! tendency due to sedimentation |
---|
| 1204 | |
---|
[2194] | 1205 | do iq = nqmax-nmicro+1,nqmax |
---|
[2193] | 1206 | d_tr_sed(:,:,iq) = d_tr_sed(:,:,iq)/zctime |
---|
| 1207 | end do |
---|
[1723] | 1208 | #endif |
---|
[2193] | 1209 | end if ! cl_scheme |
---|
[1661] | 1210 | |
---|
[2203] | 1211 | ! update gaseous tracers (chemistry) |
---|
[1661] | 1212 | |
---|
[2203] | 1213 | do iq = 1, nqmax - nmicro |
---|
[2464] | 1214 | tr_seri(:,:,iq) = max(tr_seri(:,:,iq) |
---|
| 1215 | $ + d_tr_chem(:,:,iq)*zctime,1.e-30) |
---|
[2203] | 1216 | end do |
---|
[1305] | 1217 | |
---|
[2203] | 1218 | ! update condensed tracers (condensation + sedimentation) |
---|
[1305] | 1219 | |
---|
[2194] | 1220 | if (cl_scheme == 1) then |
---|
[2203] | 1221 | tr_seri(:,:,i_h2so4liq) = max(tr_seri(:,:,i_h2so4liq) |
---|
| 1222 | $ + d_tr_sed(:,:,1)*zctime, 1.e-30) |
---|
| 1223 | tr_seri(:,:,i_h2oliq) = max(tr_seri(:,:,i_h2oliq) |
---|
| 1224 | $ + d_tr_sed(:,:,2)*zctime, 1.e-30) |
---|
[2194] | 1225 | else if (cl_scheme == 2) then |
---|
[2203] | 1226 | do iq = nqmax-nmicro+1,nqmax |
---|
[2464] | 1227 | tr_seri(:,:,iq) = max(tr_seri(:,:,iq) |
---|
| 1228 | $ + d_tr_sed(:,:,iq)*zctime,1.e-30) |
---|
[2203] | 1229 | end do |
---|
[2194] | 1230 | end if ! cl_scheme |
---|
[2203] | 1231 | |
---|
[2194] | 1232 | end if ! ok_sedim |
---|
[2203] | 1233 | end if ! mod(itap,chempas) <------- end of chemistry supercycling |
---|
| 1234 | |
---|
[2464] | 1235 | !========= |
---|
[2194] | 1236 | ! End Case 3: Full chemistry and/or clouds. |
---|
| 1237 | !==================================================================== |
---|
[2193] | 1238 | |
---|
| 1239 | end if ! tr_scheme |
---|
| 1240 | end if ! iflag_trac |
---|
| 1241 | |
---|
[3] | 1242 | c==================================================================== |
---|
| 1243 | c Appeler la diffusion verticale (programme de couche limite) |
---|
| 1244 | c==================================================================== |
---|
| 1245 | |
---|
| 1246 | c------------------------------- |
---|
| 1247 | c VENUS TEST: on ne tient pas compte des calculs de clmain mais on force |
---|
| 1248 | c l'equilibre radiatif du sol |
---|
[2135] | 1249 | if (.not. ok_clmain) then |
---|
[3] | 1250 | if (debut) then |
---|
| 1251 | print*,"ATTENTION, CLMAIN SHUNTEE..." |
---|
| 1252 | endif |
---|
| 1253 | |
---|
| 1254 | DO i = 1, klon |
---|
| 1255 | sens(i) = 0.0e0 ! flux de chaleur sensible au sol |
---|
| 1256 | fder(i) = 0.0e0 |
---|
| 1257 | dlw(i) = 0.0e0 |
---|
| 1258 | ENDDO |
---|
| 1259 | |
---|
| 1260 | c Incrementer la temperature du sol |
---|
| 1261 | c |
---|
| 1262 | DO i = 1, klon |
---|
| 1263 | d_ts(i) = dtime * radsol(i)/22000. !valeur calculee par GCM pour I=200 |
---|
| 1264 | ftsol(i) = ftsol(i) + d_ts(i) |
---|
| 1265 | do j=1,nsoilmx |
---|
| 1266 | ftsoil(i,j)=ftsol(i) |
---|
| 1267 | enddo |
---|
| 1268 | ENDDO |
---|
| 1269 | |
---|
| 1270 | c------------------------------- |
---|
| 1271 | else |
---|
| 1272 | c------------------------------- |
---|
| 1273 | |
---|
| 1274 | fder = dlw |
---|
| 1275 | |
---|
| 1276 | ! ADAPTATION GCM POUR CP(T) |
---|
[808] | 1277 | |
---|
[2135] | 1278 | if (physideal) then |
---|
| 1279 | CALL clmain_ideal(dtime,itap, |
---|
[3] | 1280 | e t_seri,u_seri,v_seri, |
---|
| 1281 | e rmu0, |
---|
| 1282 | e ftsol, |
---|
| 1283 | $ ftsoil, |
---|
| 1284 | $ paprs,pplay,ppk,radsol,falbe, |
---|
| 1285 | e solsw, sollw, sollwdown, fder, |
---|
[1545] | 1286 | e longitude_deg, latitude_deg, dx, dy, |
---|
[3] | 1287 | e debut, lafin, |
---|
| 1288 | s d_t_vdf,d_u_vdf,d_v_vdf,d_ts, |
---|
| 1289 | s fluxt,fluxu,fluxv,cdragh,cdragm, |
---|
| 1290 | s dsens, |
---|
| 1291 | s ycoefh,yu1,yv1) |
---|
[2135] | 1292 | else |
---|
| 1293 | CALL clmain(dtime,itap, |
---|
| 1294 | e t_seri,u_seri,v_seri, |
---|
| 1295 | e rmu0, |
---|
| 1296 | e ftsol, |
---|
| 1297 | $ ftsoil, |
---|
| 1298 | $ paprs,pplay,ppk,radsol,falbe, |
---|
| 1299 | e solsw, sollw, sollwdown, fder, |
---|
[2535] | 1300 | e longitude_deg, latitude_deg, dx, dy, |
---|
| 1301 | & q2, |
---|
[2135] | 1302 | e debut, lafin, |
---|
| 1303 | s d_t_vdf,d_u_vdf,d_v_vdf,d_ts, |
---|
| 1304 | s fluxt,fluxu,fluxv,cdragh,cdragm, |
---|
| 1305 | s dsens, |
---|
| 1306 | s ycoefh,yu1,yv1) |
---|
| 1307 | endif |
---|
[3] | 1308 | |
---|
| 1309 | CXXX Incrementation des flux |
---|
| 1310 | DO i = 1, klon |
---|
| 1311 | sens(i) = - fluxt(i,1) ! flux de chaleur sensible au sol |
---|
| 1312 | fder(i) = dlw(i) + dsens(i) |
---|
| 1313 | ENDDO |
---|
| 1314 | CXXX |
---|
[1723] | 1315 | IF (.not. turb_resolved) then !True only for LES |
---|
| 1316 | DO k = 1, klev |
---|
| 1317 | DO i = 1, klon |
---|
| 1318 | t_seri(i,k) = t_seri(i,k) + d_t_vdf(i,k) |
---|
| 1319 | d_t_vdf(i,k)= d_t_vdf(i,k)/dtime ! K/s |
---|
| 1320 | u_seri(i,k) = u_seri(i,k) + d_u_vdf(i,k) |
---|
| 1321 | d_u_vdf(i,k)= d_u_vdf(i,k)/dtime ! (m/s)/s |
---|
| 1322 | v_seri(i,k) = v_seri(i,k) + d_v_vdf(i,k) |
---|
| 1323 | d_v_vdf(i,k)= d_v_vdf(i,k)/dtime ! (m/s)/s |
---|
| 1324 | ENDDO |
---|
| 1325 | ENDDO |
---|
| 1326 | ENDIF |
---|
[3] | 1327 | C TRACEURS |
---|
| 1328 | |
---|
| 1329 | if (iflag_trac.eq.1) then |
---|
[101] | 1330 | DO k = 1, klev |
---|
| 1331 | DO i = 1, klon |
---|
| 1332 | delp(i,k) = paprs(i,k)-paprs(i,k+1) |
---|
| 1333 | ENDDO |
---|
| 1334 | ENDDO |
---|
[1442] | 1335 | |
---|
[3] | 1336 | DO iq=1, nqmax |
---|
[1442] | 1337 | |
---|
[3] | 1338 | CALL cltrac(dtime,ycoefh,t_seri, |
---|
[1442] | 1339 | s tr_seri(:,:,iq),source(:,iq), |
---|
[3] | 1340 | e paprs, pplay,delp, |
---|
[1442] | 1341 | s d_tr_vdf(:,:,iq)) |
---|
| 1342 | |
---|
[3] | 1343 | tr_seri(:,:,iq) = tr_seri(:,:,iq) + d_tr_vdf(:,:,iq) |
---|
| 1344 | d_tr_vdf(:,:,iq)= d_tr_vdf(:,:,iq)/dtime ! /s |
---|
[1442] | 1345 | |
---|
| 1346 | ENDDO !nqmax |
---|
[3] | 1347 | |
---|
[1442] | 1348 | endif |
---|
| 1349 | |
---|
[3] | 1350 | IF (if_ebil.ge.2) THEN |
---|
| 1351 | ztit='after clmain' |
---|
[1543] | 1352 | CALL diagetpq(cell_area,ztit,ip_ebil,2,1,dtime |
---|
[3] | 1353 | e , t_seri,zero_v2,zero_v2,zero_v2,u_seri,v_seri,paprs,pplay |
---|
| 1354 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
[1543] | 1355 | call diagphy(cell_area,ztit,ip_ebil |
---|
[3] | 1356 | e , zero_v, zero_v, zero_v, zero_v, sens |
---|
| 1357 | e , zero_v, zero_v, zero_v, ztsol |
---|
| 1358 | e , d_h_vcol, d_qt, d_ec |
---|
| 1359 | s , fs_bound, fq_bound ) |
---|
| 1360 | END IF |
---|
| 1361 | C |
---|
| 1362 | c |
---|
| 1363 | c Incrementer la temperature du sol |
---|
| 1364 | c |
---|
| 1365 | DO i = 1, klon |
---|
| 1366 | ftsol(i) = ftsol(i) + d_ts(i) |
---|
| 1367 | ENDDO |
---|
| 1368 | |
---|
| 1369 | c Calculer la derive du flux infrarouge |
---|
| 1370 | c |
---|
| 1371 | DO i = 1, klon |
---|
| 1372 | dlw(i) = - 4.0*RSIGMA*ftsol(i)**3 |
---|
| 1373 | ENDDO |
---|
| 1374 | |
---|
| 1375 | c------------------------------- |
---|
| 1376 | endif ! fin du VENUS TEST |
---|
| 1377 | |
---|
[973] | 1378 | ! tests: output tendencies |
---|
| 1379 | ! call writefield_phy('physiq_d_t_vdf',d_t_vdf,klev) |
---|
| 1380 | ! call writefield_phy('physiq_d_u_vdf',d_u_vdf,klev) |
---|
| 1381 | ! call writefield_phy('physiq_d_v_vdf',d_v_vdf,klev) |
---|
| 1382 | ! call writefield_phy('physiq_d_ts',d_ts,1) |
---|
| 1383 | |
---|
[3] | 1384 | c=================================================================== |
---|
| 1385 | c Convection seche |
---|
| 1386 | c=================================================================== |
---|
| 1387 | c |
---|
| 1388 | d_t_ajs(:,:)=0. |
---|
| 1389 | d_u_ajs(:,:)=0. |
---|
| 1390 | d_v_ajs(:,:)=0. |
---|
| 1391 | d_tr_ajs(:,:,:)=0. |
---|
| 1392 | c |
---|
| 1393 | IF(prt_level>9)WRITE(lunout,*) |
---|
| 1394 | . 'AVANT LA CONVECTION SECHE , iflag_ajs=' |
---|
| 1395 | s ,iflag_ajs |
---|
| 1396 | |
---|
| 1397 | if(iflag_ajs.eq.0) then |
---|
| 1398 | c Rien |
---|
| 1399 | c ==== |
---|
| 1400 | IF(prt_level>9)WRITE(lunout,*)'pas de convection' |
---|
| 1401 | |
---|
| 1402 | else if(iflag_ajs.eq.1) then |
---|
| 1403 | |
---|
| 1404 | c Ajustement sec |
---|
| 1405 | c ============== |
---|
| 1406 | IF(prt_level>9)WRITE(lunout,*)'ajsec' |
---|
| 1407 | |
---|
| 1408 | ! ADAPTATION GCM POUR CP(T) |
---|
| 1409 | CALL ajsec(paprs, pplay, ppk, t_seri, u_seri, v_seri, nqmax, |
---|
| 1410 | . tr_seri, d_t_ajs, d_u_ajs, d_v_ajs, d_tr_ajs) |
---|
| 1411 | |
---|
| 1412 | ! ADAPTATION GCM POUR CP(T) |
---|
| 1413 | do i=1,klon |
---|
| 1414 | flux_ajs(i,1) = 0.0 |
---|
| 1415 | do j=2,klev |
---|
| 1416 | flux_ajs(i,j) = flux_ajs(i,j-1) |
---|
[2686] | 1417 | . + cpnew(i,j-1)/RG*d_t_ajs(i,j-1)/dtime |
---|
[3] | 1418 | . *(paprs(i,j-1)-paprs(i,j)) |
---|
| 1419 | enddo |
---|
| 1420 | enddo |
---|
| 1421 | |
---|
| 1422 | t_seri(:,:) = t_seri(:,:) + d_t_ajs(:,:) |
---|
| 1423 | d_t_ajs(:,:)= d_t_ajs(:,:)/dtime ! K/s |
---|
| 1424 | u_seri(:,:) = u_seri(:,:) + d_u_ajs(:,:) |
---|
| 1425 | d_u_ajs(:,:)= d_u_ajs(:,:)/dtime ! (m/s)/s |
---|
| 1426 | v_seri(:,:) = v_seri(:,:) + d_v_ajs(:,:) |
---|
| 1427 | d_v_ajs(:,:)= d_v_ajs(:,:)/dtime ! (m/s)/s |
---|
[1301] | 1428 | |
---|
| 1429 | if (iflag_trac.eq.1) then |
---|
[3] | 1430 | tr_seri(:,:,:) = tr_seri(:,:,:) + d_tr_ajs(:,:,:) |
---|
| 1431 | d_tr_ajs(:,:,:)= d_tr_ajs(:,:,:)/dtime ! /s |
---|
[1301] | 1432 | endif |
---|
[3] | 1433 | endif |
---|
[973] | 1434 | |
---|
| 1435 | ! tests: output tendencies |
---|
| 1436 | ! call writefield_phy('physiq_d_t_ajs',d_t_ajs,klev) |
---|
| 1437 | ! call writefield_phy('physiq_d_u_ajs',d_u_ajs,klev) |
---|
| 1438 | ! call writefield_phy('physiq_d_v_ajs',d_v_ajs,klev) |
---|
[3] | 1439 | c |
---|
| 1440 | IF (if_ebil.ge.2) THEN |
---|
| 1441 | ztit='after dry_adjust' |
---|
[1543] | 1442 | CALL diagetpq(cell_area,ztit,ip_ebil,2,2,dtime |
---|
[3] | 1443 | e , t_seri,zero_v2,zero_v2,zero_v2,u_seri,v_seri,paprs,pplay |
---|
| 1444 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
[1543] | 1445 | call diagphy(cell_area,ztit,ip_ebil |
---|
[3] | 1446 | e , zero_v, zero_v, zero_v, zero_v, sens |
---|
| 1447 | e , zero_v, zero_v, zero_v, ztsol |
---|
| 1448 | e , d_h_vcol, d_qt, d_ec |
---|
| 1449 | s , fs_bound, fq_bound ) |
---|
| 1450 | END IF |
---|
| 1451 | |
---|
[2193] | 1452 | c==================================================================== |
---|
| 1453 | c RAYONNEMENT |
---|
| 1454 | c==================================================================== |
---|
| 1455 | if (mod(itap,radpas) == 0) then |
---|
[1310] | 1456 | |
---|
[2193] | 1457 | dtimerad = dtime*REAL(radpas) ! pas de temps du rayonnement (s) |
---|
[1310] | 1458 | |
---|
[2464] | 1459 | ! update mmean |
---|
| 1460 | if (ok_chem) then |
---|
| 1461 | mmean(:,:) = 0. |
---|
| 1462 | do iq = 1,nqmax - nmicro |
---|
[2622] | 1463 | mmean(:,:) = mmean(:,:)+tr_seri(:,:,iq)/m_tr(iq) |
---|
[2464] | 1464 | enddo |
---|
[2622] | 1465 | mmean(:,:) = 1./mmean(:,:) |
---|
| 1466 | rnew(:,:) = 8.314/mmean(:,:)*1.e3 ! J/kg K |
---|
[2464] | 1467 | endif |
---|
| 1468 | |
---|
| 1469 | cc--------------------------------------------- |
---|
[2193] | 1470 | if (callnlte .or. callthermos) then |
---|
| 1471 | if (ok_chem) then |
---|
[1442] | 1472 | |
---|
[2193] | 1473 | ! nlte : use computed chemical species |
---|
[1442] | 1474 | |
---|
[2193] | 1475 | co2vmr_gcm(:,:) = tr_seri(:,:,i_co2)*mmean(:,:)/m_tr(i_co2) |
---|
| 1476 | covmr_gcm(:,:) = tr_seri(:,:,i_co)*mmean(:,:)/m_tr(i_co) |
---|
| 1477 | ovmr_gcm(:,:) = tr_seri(:,:,i_o)*mmean(:,:)/m_tr(i_o) |
---|
| 1478 | n2vmr_gcm(:,:) = tr_seri(:,:,i_n2)*mmean(:,:)/m_tr(i_n2) |
---|
[1442] | 1479 | |
---|
[2193] | 1480 | else |
---|
[1442] | 1481 | |
---|
[2193] | 1482 | ! nlte : use hedin climatology |
---|
[1442] | 1483 | |
---|
[2193] | 1484 | call compo_hedin83_mod(pplay,rmu0, |
---|
| 1485 | $ co2vmr_gcm,covmr_gcm,ovmr_gcm,n2vmr_gcm,nvmr_gcm) |
---|
| 1486 | end if |
---|
| 1487 | end if |
---|
[1442] | 1488 | |
---|
| 1489 | c NLTE cooling from CO2 emission |
---|
| 1490 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1491 | |
---|
[1310] | 1492 | IF(callnlte) THEN |
---|
| 1493 | if(nltemodel.eq.0.or.nltemodel.eq.1) then |
---|
[2464] | 1494 | c nltecool call not correct... |
---|
| 1495 | c CALL nltecool(klon, klev, nqmax, pplay*9.869e-6, t_seri, |
---|
| 1496 | c $ tr_seri, d_t_nlte) |
---|
| 1497 | abort_message='nltemodel=0 or 1 should not be used...' |
---|
| 1498 | call abort_physic(modname,abort_message,1) |
---|
[1310] | 1499 | else if(nltemodel.eq.2) then |
---|
[2464] | 1500 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 1501 | !! HEDIN instead of compo for this calculation |
---|
| 1502 | ! call compo_hedin83_mod(pplay,rmu0, |
---|
| 1503 | ! $ co2vmr_gcm,covmr_gcm,ovmr_gcm,n2vmr_gcm,nvmr_gcm) |
---|
| 1504 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[1442] | 1505 | CALL nlte_tcool(klon,klev,pplay*9.869e-6, |
---|
[1310] | 1506 | $ t_seri,zzlay,co2vmr_gcm, n2vmr_gcm, covmr_gcm, |
---|
| 1507 | $ ovmr_gcm,d_t_nlte,ierr_nlte,varerr ) |
---|
| 1508 | if(ierr_nlte.gt.0) then |
---|
| 1509 | write(*,*) |
---|
| 1510 | $ 'WARNING: nlte_tcool output with error message', |
---|
| 1511 | $ 'ierr_nlte=',ierr_nlte,'varerr=',varerr |
---|
| 1512 | write(*,*)'I will continue anyway' |
---|
| 1513 | endif |
---|
| 1514 | endif |
---|
| 1515 | |
---|
| 1516 | ELSE |
---|
| 1517 | |
---|
| 1518 | d_t_nlte(:,:)=0. |
---|
| 1519 | |
---|
[1543] | 1520 | ENDIF |
---|
[1310] | 1521 | |
---|
| 1522 | c Find number of layers for LTE radiation calculations |
---|
| 1523 | |
---|
| 1524 | IF(callnlte .or. callnirco2) |
---|
| 1525 | $ CALL nlthermeq(klon, klev, paprs, pplay) |
---|
| 1526 | |
---|
[2464] | 1527 | cc--------------------------------------------- |
---|
[1442] | 1528 | c LTE radiative transfert / solar / IR matrix |
---|
| 1529 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2135] | 1530 | if (physideal) then |
---|
[2486] | 1531 | CALL radlwsw_newtoncool(presnivs,t_seri) |
---|
[2135] | 1532 | else |
---|
| 1533 | CALL radlwsw |
---|
| 1534 | e (dist, rmu0, fract, zzlev, |
---|
| 1535 | e paprs, pplay,ftsol, t_seri) |
---|
| 1536 | endif |
---|
[808] | 1537 | |
---|
[2580] | 1538 | c ALBEDO VARIATIONS: test for Yeon Joo Lee |
---|
[2135] | 1539 | c increment to increase it for 20 Vd => +80% |
---|
| 1540 | c heat(:,:)=heat(:,:)*(1.+0.80*((rjourvrai-356)+gmtime)/20.) |
---|
| 1541 | c or to decrease it for 20 Vd => 1/1.8 |
---|
| 1542 | c heat(:,:)=heat(:,:)/(1.+0.80*((rjourvrai-356)+gmtime)/20.) |
---|
[1301] | 1543 | |
---|
[2580] | 1544 | c ------------ ALBEDO VARIATIONS: scenarios for VCD |
---|
| 1545 | c shape of relative variation from Lee et al 2019 (Fig 13b) |
---|
| 1546 | c between 57 km (4e4 Pa) and 72 km (2.5e3 Pa), peak at 67 km (6e3 Pa) |
---|
| 1547 | c do j=1,klev |
---|
| 1548 | c factAlb = 0. |
---|
| 1549 | c if ((presnivs(j).gt.6.e3).and.(presnivs(j).lt.4.e4)) then |
---|
| 1550 | c factAlb = (log(presnivs(j))-log(4.e4))/(log(6.e3)-log(4.e4)) |
---|
| 1551 | c elseif ((presnivs(j).lt.6.e3).and.(presnivs(j).gt.2.5e3)) then |
---|
| 1552 | c factAlb = (log(presnivs(j))-log(2.5e3))/(log(6.e3)-log(2.5e3)) |
---|
| 1553 | c endif |
---|
| 1554 | c Increase by 50% (Minimum albedo) |
---|
| 1555 | c heat(:,j)=heat(:,j)*(1+factAlb*0.5) |
---|
| 1556 | c Decrease by 30% (Maximum albedo) |
---|
| 1557 | c heat(:,j)=heat(:,j)*(1-factAlb*0.3) |
---|
| 1558 | c enddo |
---|
| 1559 | c ------------ END ALBEDO VARIATIONS |
---|
| 1560 | |
---|
[2464] | 1561 | cc--------------------------------------------- |
---|
[1442] | 1562 | c CO2 near infrared absorption |
---|
| 1563 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1310] | 1564 | |
---|
| 1565 | d_t_nirco2(:,:)=0. |
---|
| 1566 | if (callnirco2) then |
---|
[2464] | 1567 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 1568 | !! HEDIN instead of compo for this calculation |
---|
| 1569 | ! call compo_hedin83_mod(pplay,rmu0, |
---|
| 1570 | ! $ co2vmr_gcm,covmr_gcm,ovmr_gcm,n2vmr_gcm,nvmr_gcm) |
---|
| 1571 | ! tr_hedin(:,:,:)=tr_seri(:,:,:) |
---|
| 1572 | ! tr_hedin(:,:,i_co2)=co2vmr_gcm(:,:)/mmean(:,:)*m_tr(i_co2) |
---|
| 1573 | ! tr_hedin(:,:,i_co) = covmr_gcm(:,:)/mmean(:,:)*m_tr(i_co) |
---|
| 1574 | ! tr_hedin(:,:,i_o) = ovmr_gcm(:,:)/mmean(:,:)*m_tr(i_o) |
---|
| 1575 | ! tr_hedin(:,:,i_n2) = n2vmr_gcm(:,:)/mmean(:,:)*m_tr(i_n2) |
---|
| 1576 | ! call nirco2abs (klon, klev, pplay, dist, nqmax, tr_hedin, |
---|
| 1577 | ! . rmu0, fract, d_t_nirco2) |
---|
| 1578 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[1442] | 1579 | call nirco2abs (klon, klev, pplay, dist, nqmax, tr_seri, |
---|
| 1580 | . rmu0, fract, d_t_nirco2) |
---|
[2464] | 1581 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[1310] | 1582 | endif |
---|
| 1583 | |
---|
| 1584 | |
---|
[2464] | 1585 | cc--------------------------------------------- |
---|
[1310] | 1586 | c Net atmospheric radiative heating rate (K.s-1) |
---|
| 1587 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1588 | |
---|
| 1589 | IF(callnlte.or.callnirco2) THEN |
---|
| 1590 | CALL blendrad(klon, klev, pplay,heat, |
---|
| 1591 | & cool, d_t_nirco2,d_t_nlte, dtsw, dtlw) |
---|
| 1592 | ELSE |
---|
[1543] | 1593 | dtsw(:,:)=heat(:,:) |
---|
| 1594 | dtlw(:,:)=-1*cool(:,:) |
---|
| 1595 | ENDIF |
---|
[1310] | 1596 | |
---|
| 1597 | DO k=1,klev |
---|
| 1598 | DO i=1,klon |
---|
| 1599 | d_t_rad(i,k) = dtsw(i,k) + dtlw(i,k) ! K/s |
---|
| 1600 | ENDDO |
---|
| 1601 | ENDDO |
---|
| 1602 | |
---|
| 1603 | |
---|
| 1604 | cc--------------------------------------------- |
---|
| 1605 | c EUV heating rate (K.s-1) |
---|
| 1606 | c ~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1607 | |
---|
| 1608 | d_t_euv(:,:)=0. |
---|
| 1609 | |
---|
| 1610 | IF (callthermos) THEN |
---|
| 1611 | |
---|
[1442] | 1612 | call euvheat(klon, klev, nqmax, t_seri,paprs,pplay,zzlay, |
---|
[2464] | 1613 | $ rmu0,dtimerad,gmtime, |
---|
| 1614 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 1615 | !! HEDIN instead of compo for this calculation |
---|
| 1616 | !! cf nlte_tcool and nirco2abs above !! |
---|
| 1617 | ! $ tr_hedin, d_tr, d_t_euv ) |
---|
| 1618 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[1442] | 1619 | $ tr_seri, d_tr, d_t_euv ) |
---|
[2464] | 1620 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[1543] | 1621 | |
---|
[1310] | 1622 | DO k=1,klev |
---|
| 1623 | DO ig=1,klon |
---|
| 1624 | d_t_rad(ig,k)=d_t_rad(ig,k)+d_t_euv(ig,k) |
---|
| 1625 | ENDDO |
---|
| 1626 | ENDDO |
---|
| 1627 | |
---|
| 1628 | ENDIF ! callthermos |
---|
| 1629 | |
---|
| 1630 | ENDIF ! radpas |
---|
| 1631 | c==================================================================== |
---|
[3] | 1632 | c |
---|
| 1633 | c Ajouter la tendance des rayonnements (tous les pas) |
---|
| 1634 | c |
---|
| 1635 | DO k = 1, klev |
---|
| 1636 | DO i = 1, klon |
---|
[1310] | 1637 | t_seri(i,k) = t_seri(i,k) + d_t_rad(i,k) * dtime |
---|
[3] | 1638 | ENDDO |
---|
| 1639 | ENDDO |
---|
[973] | 1640 | |
---|
[2193] | 1641 | ! increment physics counter |
---|
| 1642 | |
---|
| 1643 | itap = itap + 1 |
---|
[2464] | 1644 | c==================================================================== |
---|
[2193] | 1645 | |
---|
[1310] | 1646 | |
---|
[2464] | 1647 | c============================== |
---|
[1442] | 1648 | ! -- MOLECULAR DIFFUSION --- |
---|
[2464] | 1649 | c============================== |
---|
[1442] | 1650 | |
---|
| 1651 | d_q_moldif(:,:,:)=0 |
---|
| 1652 | |
---|
| 1653 | IF (callthermos .and. ok_chem) THEN |
---|
| 1654 | |
---|
| 1655 | call moldiff_red(klon, klev, nqmax, |
---|
| 1656 | & pplay,paprs,t_seri, tr_seri, pdtphys, |
---|
[2464] | 1657 | & d_t_euv,d_t_conduc,d_q_moldif) |
---|
[1442] | 1658 | |
---|
| 1659 | |
---|
| 1660 | ! --- update tendencies tracers --- |
---|
| 1661 | |
---|
| 1662 | DO iq = 1, nqmax |
---|
| 1663 | DO k=1,klev |
---|
| 1664 | DO ig=1,klon |
---|
[2464] | 1665 | tr_seri(ig,k,iq)= max(tr_seri(ig,k,iq)+ |
---|
| 1666 | & d_q_moldif(ig,k,iq)*dtime,1.e-30) |
---|
[1442] | 1667 | ENDDO |
---|
| 1668 | ENDDO |
---|
| 1669 | ENDDO |
---|
| 1670 | |
---|
| 1671 | ENDIF ! callthermos & ok_chem |
---|
| 1672 | |
---|
[1310] | 1673 | c==================================================================== |
---|
[3035] | 1674 | |
---|
| 1675 | c================================== |
---|
| 1676 | ! -- ION AMBIPOLAR DIFFUSION --- |
---|
| 1677 | c================================== |
---|
| 1678 | |
---|
| 1679 | d_q_iondif(:,:,:)=0 |
---|
| 1680 | |
---|
| 1681 | IF (callthermos .and. ok_chem .and. ok_ionchem) THEN |
---|
| 1682 | IF (ok_iondiff) THEN |
---|
| 1683 | |
---|
| 1684 | call iondiff_red(klon,klev,nqmax,pplay,paprs, |
---|
| 1685 | & t_seri,tr_seri,pphis, |
---|
| 1686 | & gmtime,latitude_deg,longitude_deg, |
---|
| 1687 | & pdtphys,d_t_euv,d_t_conduc,d_q_moldif, |
---|
| 1688 | & d_q_iondif) |
---|
| 1689 | |
---|
| 1690 | !write (*,*) 'TITI EST PASSE PAR LA' |
---|
| 1691 | ! --- update tendencies tracers --- |
---|
| 1692 | |
---|
| 1693 | DO iq = 1, nqmax |
---|
| 1694 | IF (type_tr(iq) .eq. 2) THEN |
---|
| 1695 | DO k=1,klev |
---|
| 1696 | DO ig=1,klon |
---|
| 1697 | tr_seri(ig,k,iq)= max(tr_seri(ig,k,iq)+ |
---|
| 1698 | & d_q_iondif(ig,k,iq)*dtime,1.e-30) |
---|
| 1699 | ENDDO |
---|
| 1700 | ENDDO |
---|
| 1701 | ENDIF |
---|
| 1702 | ENDDO |
---|
| 1703 | ENDIF ! ok_iondiff |
---|
| 1704 | ENDIF ! callthermos & ok_chem & ok_ionchem |
---|
| 1705 | |
---|
| 1706 | c==================================================================== |
---|
[973] | 1707 | ! tests: output tendencies |
---|
| 1708 | ! call writefield_phy('physiq_dtrad',dtrad,klev) |
---|
[3] | 1709 | |
---|
| 1710 | IF (if_ebil.ge.2) THEN |
---|
| 1711 | ztit='after rad' |
---|
[1543] | 1712 | CALL diagetpq(cell_area,ztit,ip_ebil,2,2,dtime |
---|
[3] | 1713 | e , t_seri,zero_v2,zero_v2,zero_v2,u_seri,v_seri,paprs,pplay |
---|
| 1714 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
[1543] | 1715 | call diagphy(cell_area,ztit,ip_ebil |
---|
[3] | 1716 | e , topsw, toplw, solsw, sollw, zero_v |
---|
| 1717 | e , zero_v, zero_v, zero_v, ztsol |
---|
| 1718 | e , d_h_vcol, d_qt, d_ec |
---|
| 1719 | s , fs_bound, fq_bound ) |
---|
| 1720 | END IF |
---|
| 1721 | c |
---|
| 1722 | |
---|
| 1723 | c==================================================================== |
---|
| 1724 | c Calcul des gravity waves FLOTT |
---|
| 1725 | c==================================================================== |
---|
| 1726 | c |
---|
[2047] | 1727 | c if (ok_orodr.or.ok_gw_nonoro) then |
---|
[1665] | 1728 | |
---|
| 1729 | c CALCUL DE N2 |
---|
| 1730 | c UTILISE LA RELATION ENTRE N2 ET STABILITE |
---|
| 1731 | c N2 = RG/T (dT/dz+RG/cp(T)) |
---|
| 1732 | c ET DONC EN N'UTILISE QUE LA TEMPERATURE, PAS teta. |
---|
| 1733 | |
---|
[3] | 1734 | do i=1,klon |
---|
| 1735 | do k=2,klev |
---|
[1543] | 1736 | ztlev(i,k) = (t_seri(i,k)+t_seri(i,k-1))/2. |
---|
| 1737 | enddo |
---|
[3] | 1738 | enddo |
---|
| 1739 | do i=1,klon |
---|
| 1740 | do k=2,klev |
---|
[1665] | 1741 | ztlev(i,k) = (t_seri(i,k)+t_seri(i,k-1))/2. |
---|
| 1742 | zdtlev(i,k) = t_seri(i,k)-t_seri(i,k-1) |
---|
[2686] | 1743 | zdzlev(i,k) = (zzlay(i,k)-zzlay(i,k-1)) |
---|
[1665] | 1744 | zn2(i,k) = RG/ztlev(i,k) * ( zdtlev(i,k)/zdzlev(i,k) |
---|
[2686] | 1745 | . + RG/cpnew(i,k) ) |
---|
[3] | 1746 | zn2(i,k) = max(zn2(i,k),1.e-12) ! securite |
---|
[1543] | 1747 | enddo |
---|
[808] | 1748 | zn2(i,1) = 1.e-12 ! securite |
---|
[3] | 1749 | enddo |
---|
| 1750 | |
---|
[2047] | 1751 | c endif |
---|
[3] | 1752 | |
---|
| 1753 | c ----------------------------ORODRAG |
---|
| 1754 | IF (ok_orodr) THEN |
---|
| 1755 | c |
---|
| 1756 | c selection des points pour lesquels le shema est actif: |
---|
| 1757 | igwd=0 |
---|
| 1758 | DO i=1,klon |
---|
| 1759 | itest(i)=0 |
---|
| 1760 | c IF ((zstd(i).gt.10.0)) THEN |
---|
| 1761 | IF (((zpic(i)-zmea(i)).GT.100.).AND.(zstd(i).GT.10.0)) THEN |
---|
| 1762 | itest(i)=1 |
---|
| 1763 | igwd=igwd+1 |
---|
| 1764 | idx(igwd)=i |
---|
| 1765 | ENDIF |
---|
| 1766 | ENDDO |
---|
| 1767 | c igwdim=MAX(1,igwd) |
---|
| 1768 | c |
---|
[2047] | 1769 | c A ADAPTER POUR VENUS!!! [ TN: c'est fait ! ] |
---|
[1306] | 1770 | CALL drag_noro(klon,klev,dtime,paprs,pplay,pphi,zn2, |
---|
[3] | 1771 | e zmea,zstd, zsig, zgam, zthe,zpic,zval, |
---|
| 1772 | e igwd,idx,itest, |
---|
| 1773 | e t_seri, u_seri, v_seri, |
---|
| 1774 | s zulow, zvlow, zustrdr, zvstrdr, |
---|
[2047] | 1775 | s d_t_oro, d_u_oro, d_v_oro, |
---|
| 1776 | s zublstrdr,zvblstrdr,znlow,zeff,zbl, |
---|
| 1777 | s ztau,tau0,knu2,kbreak) |
---|
[3] | 1778 | |
---|
[808] | 1779 | c print*,"d_u_oro=",d_u_oro(klon/2,:) |
---|
[3] | 1780 | c ajout des tendances |
---|
| 1781 | t_seri(:,:) = t_seri(:,:) + d_t_oro(:,:) |
---|
| 1782 | d_t_oro(:,:)= d_t_oro(:,:)/dtime ! K/s |
---|
| 1783 | u_seri(:,:) = u_seri(:,:) + d_u_oro(:,:) |
---|
| 1784 | d_u_oro(:,:)= d_u_oro(:,:)/dtime ! (m/s)/s |
---|
| 1785 | v_seri(:,:) = v_seri(:,:) + d_v_oro(:,:) |
---|
| 1786 | d_v_oro(:,:)= d_v_oro(:,:)/dtime ! (m/s)/s |
---|
| 1787 | c |
---|
| 1788 | ELSE |
---|
| 1789 | d_t_oro = 0. |
---|
| 1790 | d_u_oro = 0. |
---|
| 1791 | d_v_oro = 0. |
---|
[1543] | 1792 | zustrdr = 0. |
---|
| 1793 | zvstrdr = 0. |
---|
[2047] | 1794 | zublstrdr = 0. |
---|
| 1795 | zvblstrdr = 0. |
---|
| 1796 | znlow = 0. |
---|
| 1797 | zeff = 0. |
---|
| 1798 | zbl = 0 |
---|
| 1799 | knu2 = 0 |
---|
| 1800 | kbreak = 0 |
---|
| 1801 | ztau = 0 |
---|
| 1802 | tau0 = 0. |
---|
[3] | 1803 | c |
---|
| 1804 | ENDIF ! fin de test sur ok_orodr |
---|
| 1805 | c |
---|
[973] | 1806 | ! tests: output tendencies |
---|
| 1807 | ! call writefield_phy('physiq_d_t_oro',d_t_oro,klev) |
---|
| 1808 | ! call writefield_phy('physiq_d_u_oro',d_u_oro,klev) |
---|
| 1809 | ! call writefield_phy('physiq_d_v_oro',d_v_oro,klev) |
---|
| 1810 | |
---|
[3] | 1811 | c ----------------------------OROLIFT |
---|
| 1812 | IF (ok_orolf) THEN |
---|
[808] | 1813 | print*,"ok_orolf NOT IMPLEMENTED !" |
---|
| 1814 | stop |
---|
[3] | 1815 | c |
---|
| 1816 | c selection des points pour lesquels le shema est actif: |
---|
| 1817 | igwd=0 |
---|
| 1818 | DO i=1,klon |
---|
| 1819 | itest(i)=0 |
---|
| 1820 | IF ((zpic(i)-zmea(i)).GT.100.) THEN |
---|
| 1821 | itest(i)=1 |
---|
| 1822 | igwd=igwd+1 |
---|
| 1823 | idx(igwd)=i |
---|
| 1824 | ENDIF |
---|
| 1825 | ENDDO |
---|
| 1826 | c igwdim=MAX(1,igwd) |
---|
| 1827 | c |
---|
| 1828 | c A ADAPTER POUR VENUS!!! |
---|
| 1829 | c CALL lift_noro(klon,klev,dtime,paprs,pplay, |
---|
[1545] | 1830 | c e latitude_deg,zmea,zstd,zpic,zgam,zthe,zpic,zval, |
---|
[3] | 1831 | c e igwd,idx,itest, |
---|
| 1832 | c e t_seri, u_seri, v_seri, |
---|
| 1833 | c s zulow, zvlow, zustrli, zvstrli, |
---|
| 1834 | c s d_t_lif, d_u_lif, d_v_lif ) |
---|
| 1835 | |
---|
| 1836 | c |
---|
| 1837 | c ajout des tendances |
---|
| 1838 | t_seri(:,:) = t_seri(:,:) + d_t_lif(:,:) |
---|
| 1839 | d_t_lif(:,:)= d_t_lif(:,:)/dtime ! K/s |
---|
| 1840 | u_seri(:,:) = u_seri(:,:) + d_u_lif(:,:) |
---|
| 1841 | d_u_lif(:,:)= d_u_lif(:,:)/dtime ! (m/s)/s |
---|
| 1842 | v_seri(:,:) = v_seri(:,:) + d_v_lif(:,:) |
---|
| 1843 | d_v_lif(:,:)= d_v_lif(:,:)/dtime ! (m/s)/s |
---|
| 1844 | c |
---|
| 1845 | ELSE |
---|
| 1846 | d_t_lif = 0. |
---|
| 1847 | d_u_lif = 0. |
---|
| 1848 | d_v_lif = 0. |
---|
| 1849 | zustrli = 0. |
---|
| 1850 | zvstrli = 0. |
---|
| 1851 | c |
---|
| 1852 | ENDIF ! fin de test sur ok_orolf |
---|
| 1853 | |
---|
| 1854 | c ---------------------------- NON-ORO GRAVITY WAVES |
---|
| 1855 | IF(ok_gw_nonoro) then |
---|
| 1856 | |
---|
[2580] | 1857 | ! Obsolete |
---|
| 1858 | ! but used for VCD 1.1 |
---|
[2622] | 1859 | ! call flott_gwd_ran(klon,klev,dtime,pplay,zn2, |
---|
| 1860 | ! e t_seri, u_seri, v_seri, paprs(klon/2+1,:), |
---|
| 1861 | ! o zustrhi,zvstrhi, |
---|
| 1862 | ! o d_t_hin, d_u_hin, d_v_hin) |
---|
| 1863 | |
---|
| 1864 | ! New routine based on Generic |
---|
| 1865 | ! used after VCD 1.1, for VCD 2.0 |
---|
| 1866 | call nonoro_gwd_ran(klon,klev,dtime,pplay,zn2,presnivs, |
---|
| 1867 | e t_seri, u_seri, v_seri, |
---|
[3] | 1868 | o zustrhi,zvstrhi, |
---|
| 1869 | o d_t_hin, d_u_hin, d_v_hin) |
---|
| 1870 | |
---|
| 1871 | c ajout des tendances |
---|
| 1872 | |
---|
| 1873 | t_seri(:,:) = t_seri(:,:) + d_t_hin(:,:) |
---|
| 1874 | d_t_hin(:,:)= d_t_hin(:,:)/dtime ! K/s |
---|
| 1875 | u_seri(:,:) = u_seri(:,:) + d_u_hin(:,:) |
---|
| 1876 | d_u_hin(:,:)= d_u_hin(:,:)/dtime ! (m/s)/s |
---|
| 1877 | v_seri(:,:) = v_seri(:,:) + d_v_hin(:,:) |
---|
| 1878 | d_v_hin(:,:)= d_v_hin(:,:)/dtime ! (m/s)/s |
---|
| 1879 | |
---|
| 1880 | ELSE |
---|
| 1881 | d_t_hin = 0. |
---|
| 1882 | d_u_hin = 0. |
---|
| 1883 | d_v_hin = 0. |
---|
| 1884 | zustrhi = 0. |
---|
| 1885 | zvstrhi = 0. |
---|
| 1886 | |
---|
| 1887 | ENDIF ! fin de test sur ok_gw_nonoro |
---|
| 1888 | |
---|
[973] | 1889 | ! tests: output tendencies |
---|
| 1890 | ! call writefield_phy('physiq_d_t_hin',d_t_hin,klev) |
---|
| 1891 | ! call writefield_phy('physiq_d_u_hin',d_u_hin,klev) |
---|
| 1892 | ! call writefield_phy('physiq_d_v_hin',d_v_hin,klev) |
---|
| 1893 | |
---|
[3] | 1894 | c==================================================================== |
---|
| 1895 | c Transport de ballons |
---|
| 1896 | c==================================================================== |
---|
| 1897 | if (ballons.eq.1) then |
---|
[1545] | 1898 | CALL ballon(30,pdtphys,rjourvrai,gmtime*RDAY, |
---|
| 1899 | & latitude_deg,longitude_deg, |
---|
[1543] | 1900 | c C t,pplay,u,v,pphi) ! alt above surface (smoothed for GCM) |
---|
| 1901 | C t,pplay,u,v,zphi) ! alt above planet average radius |
---|
[3] | 1902 | endif !ballons |
---|
| 1903 | |
---|
| 1904 | c==================================================================== |
---|
| 1905 | c Bilan de mmt angulaire |
---|
| 1906 | c==================================================================== |
---|
| 1907 | if (bilansmc.eq.1) then |
---|
| 1908 | CMODDEB FLOTT |
---|
| 1909 | C CALCULER LE BILAN DE MOMENT ANGULAIRE (DIAGNOSTIQUE) |
---|
| 1910 | C STRESS NECESSAIRES: COUCHE LIMITE ET TOUTE LA PHYSIQUE |
---|
| 1911 | |
---|
| 1912 | DO i = 1, klon |
---|
| 1913 | zustrph(i)=0. |
---|
| 1914 | zvstrph(i)=0. |
---|
| 1915 | zustrcl(i)=0. |
---|
| 1916 | zvstrcl(i)=0. |
---|
| 1917 | ENDDO |
---|
| 1918 | DO k = 1, klev |
---|
| 1919 | DO i = 1, klon |
---|
| 1920 | zustrph(i)=zustrph(i)+(u_seri(i,k)-u(i,k))/dtime* |
---|
| 1921 | c (paprs(i,k)-paprs(i,k+1))/rg |
---|
| 1922 | zvstrph(i)=zvstrph(i)+(v_seri(i,k)-v(i,k))/dtime* |
---|
| 1923 | c (paprs(i,k)-paprs(i,k+1))/rg |
---|
| 1924 | zustrcl(i)=zustrcl(i)+d_u_vdf(i,k)* |
---|
| 1925 | c (paprs(i,k)-paprs(i,k+1))/rg |
---|
| 1926 | zvstrcl(i)=zvstrcl(i)+d_v_vdf(i,k)* |
---|
| 1927 | c (paprs(i,k)-paprs(i,k+1))/rg |
---|
| 1928 | ENDDO |
---|
| 1929 | ENDDO |
---|
| 1930 | |
---|
[953] | 1931 | CALL aaam_bud (27,klon,klev,rjourvrai,gmtime*RDAY, |
---|
[3] | 1932 | C ra,rg,romega, |
---|
[1545] | 1933 | C latitude_deg,longitude_deg,pphis, |
---|
[3] | 1934 | C zustrdr,zustrli,zustrcl, |
---|
| 1935 | C zvstrdr,zvstrli,zvstrcl, |
---|
| 1936 | C paprs,u,v) |
---|
| 1937 | |
---|
| 1938 | CCMODFIN FLOTT |
---|
| 1939 | endif !bilansmc |
---|
| 1940 | |
---|
| 1941 | c==================================================================== |
---|
| 1942 | c==================================================================== |
---|
| 1943 | c Calculer le transport de l'eau et de l'energie (diagnostique) |
---|
| 1944 | c |
---|
| 1945 | c A REVOIR POUR VENUS... |
---|
| 1946 | c |
---|
| 1947 | c CALL transp (paprs,ftsol, |
---|
| 1948 | c e t_seri, q_seri, u_seri, v_seri, zphi, |
---|
| 1949 | c s ve, vq, ue, uq) |
---|
| 1950 | c |
---|
| 1951 | c==================================================================== |
---|
| 1952 | c+jld ec_conser |
---|
| 1953 | DO k = 1, klev |
---|
| 1954 | DO i = 1, klon |
---|
[2686] | 1955 | d_t_ec(i,k)=0.5/cpnew(i,k) |
---|
[3] | 1956 | $ *(u(i,k)**2+v(i,k)**2-u_seri(i,k)**2-v_seri(i,k)**2) |
---|
| 1957 | t_seri(i,k)=t_seri(i,k)+d_t_ec(i,k) |
---|
| 1958 | d_t_ec(i,k) = d_t_ec(i,k)/dtime |
---|
| 1959 | END DO |
---|
| 1960 | END DO |
---|
| 1961 | do i=1,klon |
---|
| 1962 | flux_ec(i,1) = 0.0 |
---|
| 1963 | do j=2,klev |
---|
| 1964 | flux_ec(i,j) = flux_ec(i,j-1) |
---|
[2686] | 1965 | . +cpnew(i,j-1)/RG*d_t_ec(i,j-1)*(paprs(i,j-1)-paprs(i,j)) |
---|
[3] | 1966 | enddo |
---|
| 1967 | enddo |
---|
| 1968 | |
---|
| 1969 | c-jld ec_conser |
---|
| 1970 | c==================================================================== |
---|
| 1971 | IF (if_ebil.ge.1) THEN |
---|
| 1972 | ztit='after physic' |
---|
[1543] | 1973 | CALL diagetpq(cell_area,ztit,ip_ebil,1,1,dtime |
---|
[3] | 1974 | e , t_seri,zero_v2,zero_v2,zero_v2,u_seri,v_seri,paprs,pplay |
---|
| 1975 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
| 1976 | C Comme les tendances de la physique sont ajoute dans la dynamique, |
---|
| 1977 | C on devrait avoir que la variation d'entalpie par la dynamique |
---|
| 1978 | C est egale a la variation de la physique au pas de temps precedent. |
---|
| 1979 | C Donc la somme de ces 2 variations devrait etre nulle. |
---|
[1543] | 1980 | call diagphy(cell_area,ztit,ip_ebil |
---|
[3] | 1981 | e , topsw, toplw, solsw, sollw, sens |
---|
| 1982 | e , zero_v, zero_v, zero_v, ztsol |
---|
| 1983 | e , d_h_vcol, d_qt, d_ec |
---|
| 1984 | s , fs_bound, fq_bound ) |
---|
| 1985 | C |
---|
| 1986 | d_h_vcol_phy=d_h_vcol |
---|
| 1987 | C |
---|
| 1988 | END IF |
---|
| 1989 | C |
---|
| 1990 | c======================================================================= |
---|
| 1991 | c SORTIES |
---|
| 1992 | c======================================================================= |
---|
| 1993 | |
---|
| 1994 | c Convertir les incrementations en tendances |
---|
| 1995 | c |
---|
| 1996 | DO k = 1, klev |
---|
| 1997 | DO i = 1, klon |
---|
| 1998 | d_u(i,k) = ( u_seri(i,k) - u(i,k) ) / dtime |
---|
| 1999 | d_v(i,k) = ( v_seri(i,k) - v(i,k) ) / dtime |
---|
| 2000 | d_t(i,k) = ( t_seri(i,k) - t(i,k) ) / dtime |
---|
| 2001 | ENDDO |
---|
| 2002 | ENDDO |
---|
| 2003 | c |
---|
| 2004 | DO iq = 1, nqmax |
---|
| 2005 | DO k = 1, klev |
---|
| 2006 | DO i = 1, klon |
---|
| 2007 | d_qx(i,k,iq) = ( tr_seri(i,k,iq) - qx(i,k,iq) ) / dtime |
---|
| 2008 | ENDDO |
---|
| 2009 | ENDDO |
---|
| 2010 | ENDDO |
---|
| 2011 | |
---|
[2464] | 2012 | c mise à jour rho,mmean pour sorties |
---|
| 2013 | if(callthermos) then |
---|
| 2014 | call concentrations2(pplay,t_seri,tr_seri, nqmax) |
---|
| 2015 | endif |
---|
| 2016 | |
---|
[2523] | 2017 | c calcul vitesse verticale en m/s |
---|
| 2018 | DO k = 1, klev |
---|
| 2019 | DO i = 1, klon |
---|
| 2020 | vertwind(i,k) = -omega(i,k)/(rho(i,k)*RG) |
---|
| 2021 | END DO |
---|
| 2022 | END DO |
---|
| 2023 | |
---|
[3] | 2024 | c------------------------ |
---|
| 2025 | c Calcul moment cinetique |
---|
| 2026 | c------------------------ |
---|
| 2027 | c TEST VENUS... |
---|
| 2028 | c mangtot = 0.0 |
---|
| 2029 | c DO k = 1, klev |
---|
| 2030 | c DO i = 1, klon |
---|
[1545] | 2031 | c mang(i,k) = RA*cos(latitude(i)) |
---|
| 2032 | c . *(u_seri(i,k)+RA*cos(latitude(i))*ROMEGA) |
---|
[1543] | 2033 | c . *cell_area(i)*(paprs(i,k)-paprs(i,k+1))/RG |
---|
[3] | 2034 | c mangtot=mangtot+mang(i,k) |
---|
| 2035 | c ENDDO |
---|
| 2036 | c ENDDO |
---|
| 2037 | c print*,"Moment cinetique total = ",mangtot |
---|
| 2038 | c |
---|
| 2039 | c------------------------ |
---|
| 2040 | c |
---|
| 2041 | c Sauvegarder les valeurs de t et u a la fin de la physique: |
---|
| 2042 | c |
---|
| 2043 | DO k = 1, klev |
---|
| 2044 | DO i = 1, klon |
---|
| 2045 | u_ancien(i,k) = u_seri(i,k) |
---|
| 2046 | t_ancien(i,k) = t_seri(i,k) |
---|
| 2047 | ENDDO |
---|
| 2048 | ENDDO |
---|
| 2049 | c |
---|
| 2050 | c============================================================= |
---|
| 2051 | c Ecriture des sorties |
---|
| 2052 | c============================================================= |
---|
[1723] | 2053 | #ifndef MESOSCALE |
---|
[3] | 2054 | #ifdef CPP_IOIPSL |
---|
| 2055 | |
---|
| 2056 | #ifdef histhf |
---|
| 2057 | #include "write_histhf.h" |
---|
| 2058 | #endif |
---|
| 2059 | |
---|
| 2060 | #ifdef histday |
---|
| 2061 | #include "write_histday.h" |
---|
| 2062 | #endif |
---|
| 2063 | |
---|
| 2064 | #ifdef histmth |
---|
| 2065 | #include "write_histmth.h" |
---|
| 2066 | #endif |
---|
| 2067 | |
---|
| 2068 | #ifdef histins |
---|
| 2069 | #include "write_histins.h" |
---|
| 2070 | #endif |
---|
| 2071 | |
---|
| 2072 | #endif |
---|
| 2073 | |
---|
[1642] | 2074 | ! XIOS outputs |
---|
| 2075 | ! This can be done ANYWHERE in the physics routines ! |
---|
| 2076 | |
---|
| 2077 | #ifdef CPP_XIOS |
---|
| 2078 | ! Send fields to XIOS: (NB these fields must also be defined as |
---|
| 2079 | ! <field id="..." /> in context_lmdz_physics.xml to be correctly used) |
---|
| 2080 | |
---|
[1665] | 2081 | ! 2D fields |
---|
| 2082 | |
---|
| 2083 | CALL send_xios_field("phis",pphis) |
---|
[1642] | 2084 | cell_area_out(:)=cell_area(:) |
---|
| 2085 | if (is_north_pole_phy) cell_area_out(1)=cell_area(1)/nbp_lon |
---|
| 2086 | if (is_south_pole_phy) cell_area_out(klon)=cell_area(klon)/nbp_lon |
---|
| 2087 | CALL send_xios_field("aire",cell_area_out) |
---|
| 2088 | CALL send_xios_field("tsol",ftsol) |
---|
| 2089 | CALL send_xios_field("psol",paprs(:,1)) |
---|
[1665] | 2090 | CALL send_xios_field("cdragh",cdragh) |
---|
| 2091 | CALL send_xios_field("cdragm",cdragm) |
---|
[1642] | 2092 | |
---|
[1665] | 2093 | CALL send_xios_field("tops",topsw) |
---|
| 2094 | CALL send_xios_field("topl",toplw) |
---|
| 2095 | CALL send_xios_field("sols",solsw) |
---|
| 2096 | CALL send_xios_field("soll",sollw) |
---|
| 2097 | |
---|
| 2098 | ! 3D fields |
---|
| 2099 | |
---|
[1642] | 2100 | CALL send_xios_field("temp",t_seri) |
---|
[1665] | 2101 | CALL send_xios_field("pres",pplay) |
---|
| 2102 | CALL send_xios_field("geop",zphi) |
---|
[1642] | 2103 | CALL send_xios_field("vitu",u_seri) |
---|
| 2104 | c VENUS: regardee a l envers!!!!!!!!!!!!!!! |
---|
| 2105 | CALL send_xios_field("vitv",-1.*v_seri) |
---|
[1665] | 2106 | CALL send_xios_field("vitw",omega) |
---|
[2523] | 2107 | CALL send_xios_field("vitwz",vertwind) |
---|
[1665] | 2108 | CALL send_xios_field("Kz",ycoefh) |
---|
| 2109 | CALL send_xios_field("mmean",mmean) |
---|
| 2110 | CALL send_xios_field("rho",rho) |
---|
[2047] | 2111 | CALL send_xios_field("BV2",zn2) |
---|
[1665] | 2112 | |
---|
| 2113 | CALL send_xios_field("dudyn",d_u_dyn) |
---|
| 2114 | CALL send_xios_field("duvdf",d_u_vdf) |
---|
| 2115 | c VENUS: regardee a l envers!!!!!!!!!!!!!!! |
---|
| 2116 | CALL send_xios_field("dvvdf",-1.*d_v_vdf) |
---|
| 2117 | CALL send_xios_field("duajs",d_u_ajs) |
---|
| 2118 | CALL send_xios_field("dugwo",d_u_oro) |
---|
| 2119 | CALL send_xios_field("dugwno",d_u_hin) |
---|
[2836] | 2120 | CALL send_xios_field("dvgwno",-1.*d_v_hin) |
---|
[1665] | 2121 | CALL send_xios_field("dumolvis",d_u_molvis) |
---|
| 2122 | c VENUS: regardee a l envers!!!!!!!!!!!!!!! |
---|
| 2123 | CALL send_xios_field("dvmolvis",-1.*d_v_molvis) |
---|
| 2124 | CALL send_xios_field("dtdyn",d_t_dyn) |
---|
| 2125 | CALL send_xios_field("dtphy",d_t) |
---|
| 2126 | CALL send_xios_field("dtvdf",d_t_vdf) |
---|
| 2127 | CALL send_xios_field("dtajs",d_t_ajs) |
---|
| 2128 | CALL send_xios_field("dtswr",dtsw) |
---|
| 2129 | CALL send_xios_field("dtswrNLTE",d_t_nirco2) |
---|
| 2130 | CALL send_xios_field("dtswrLTE",heat) |
---|
| 2131 | CALL send_xios_field("dtlwr",dtlw) |
---|
| 2132 | CALL send_xios_field("dtlwrNLTE",d_t_nlte) |
---|
| 2133 | CALL send_xios_field("dtlwrLTE",-1.*cool) |
---|
| 2134 | CALL send_xios_field("dteuv",d_t_euv) |
---|
| 2135 | CALL send_xios_field("dtcond",d_t_conduc) |
---|
| 2136 | CALL send_xios_field("dtec",d_t_ec) |
---|
| 2137 | |
---|
[1687] | 2138 | CALL send_xios_field("SWnet",swnet(:,1:klev)) |
---|
| 2139 | CALL send_xios_field("LWnet",lwnet(:,1:klev)) |
---|
[1665] | 2140 | CALL send_xios_field("fluxvdf",fluxt) |
---|
| 2141 | CALL send_xios_field("fluxdyn",flux_dyn) |
---|
| 2142 | CALL send_xios_field("fluxajs",flux_ajs) |
---|
| 2143 | CALL send_xios_field("fluxec",flux_ec) |
---|
| 2144 | |
---|
[2193] | 2145 | ! when using tracers |
---|
[1687] | 2146 | |
---|
[2193] | 2147 | if (iflag_trac == 1) then |
---|
[1665] | 2148 | |
---|
[2580] | 2149 | ! production and destruction rate, cm-3.s-1 |
---|
| 2150 | ! Beware of the context*.xml file !! |
---|
[2836] | 2151 | if ((tr_scheme == 3) .and. (ok_chem)) THEN |
---|
| 2152 | do iq = 1,nqmax - nmicro |
---|
| 2153 | if ((iq.eq.i_o).or.(iq.eq.i_co)) THEN |
---|
| 2154 | call send_xios_field("prod_"//tname(iq), |
---|
| 2155 | $ prod_tr(:,:,iq)) |
---|
| 2156 | call send_xios_field("loss_"//tname(iq), |
---|
| 2157 | $ loss_tr(:,:,iq)) |
---|
| 2158 | end if |
---|
| 2159 | !if (iq.eq.i_o) then |
---|
| 2160 | ! call send_xios_field('prod_o', prod_tr(:,:,iq)) |
---|
| 2161 | ! call send_xios_field('loss_o', loss_tr(:,:,iq)) |
---|
| 2162 | !end if |
---|
| 2163 | !if (iq.eq.i_co) then |
---|
| 2164 | ! call send_xios_field('prod_co', prod_tr(:,:,iq)) |
---|
| 2165 | ! call send_xios_field('loss_co', loss_tr(:,:,iq)) |
---|
| 2166 | !end if |
---|
| 2167 | end do |
---|
| 2168 | end if |
---|
[2580] | 2169 | |
---|
[2193] | 2170 | ! tracers in gas phase, volume mixing ratio |
---|
| 2171 | |
---|
| 2172 | do iq = 1,nqmax - nmicro |
---|
| 2173 | call send_xios_field(tname(iq), |
---|
[2464] | 2174 | $ tr_seri(:,:,iq)*mmean(:,:)/m_tr(iq)) |
---|
[2193] | 2175 | end do |
---|
| 2176 | |
---|
[2523] | 2177 | ! tracers in gas phase, column densities |
---|
[2795] | 2178 | |
---|
[2523] | 2179 | do iq = 1,nqmax - nmicro |
---|
| 2180 | col_dens_tr(:,iq)=0. |
---|
[2836] | 2181 | if (type_tr(iq).eq.1) THEN |
---|
| 2182 | do k = 1, klev |
---|
| 2183 | col_dens_tr(:,iq) = col_dens_tr(:,iq) + |
---|
| 2184 | $ tr_seri(:,k,iq)* (paprs(:,k)-paprs(:,k+1)) / RG |
---|
| 2185 | end do |
---|
| 2186 | call send_xios_field("col_"//tname(iq),col_dens_tr(:,iq)) |
---|
| 2187 | end if |
---|
[2523] | 2188 | end do |
---|
| 2189 | |
---|
[2193] | 2190 | ! tracers in liquid phase, volume mixing ratio |
---|
| 2191 | |
---|
| 2192 | if ((tr_scheme == 3) .and. (cl_scheme == 1)) THEN |
---|
| 2193 | call send_xios_field(tname(i_h2oliq), |
---|
[2464] | 2194 | $ tr_seri(:,:,i_h2oliq)*mmean(:,:)/m_tr(i_h2oliq)) |
---|
[2193] | 2195 | call send_xios_field(tname(i_h2so4liq), |
---|
[2464] | 2196 | $ tr_seri(:,:,i_h2so4liq)*mmean(:,:)/m_tr(i_h2so4liq)) |
---|
[2193] | 2197 | if (ok_sedim) then |
---|
| 2198 | call send_xios_field("Fsedim",fsedim(:,1:klev)) |
---|
| 2199 | end if |
---|
| 2200 | end if |
---|
| 2201 | |
---|
[2795] | 2202 | ! aeronomical emissions |
---|
| 2203 | |
---|
[2836] | 2204 | call send_xios_field("no_emis",no_emission) |
---|
| 2205 | call send_xios_field("o2_emis",o2_emission) |
---|
[2795] | 2206 | |
---|
[2193] | 2207 | ! chemical iterations |
---|
| 2208 | |
---|
[2464] | 2209 | if (tr_scheme.eq.3) call send_xios_field("iter",real(iter)) |
---|
[2193] | 2210 | |
---|
| 2211 | end if |
---|
| 2212 | |
---|
[1665] | 2213 | IF (callthermos .and. ok_chem) THEN |
---|
| 2214 | CALL send_xios_field("d_qmoldifCO2",d_q_moldif(:,:,i_co2)) |
---|
| 2215 | CALL send_xios_field("d_qmoldifO3p",d_q_moldif(:,:,i_o)) |
---|
| 2216 | CALL send_xios_field("d_qmoldifN2",d_q_moldif(:,:,i_n2)) |
---|
| 2217 | ENDIF |
---|
[1682] | 2218 | |
---|
[2464] | 2219 | !! DEBUG |
---|
| 2220 | ! if (is_master) print*,"itauphy=",itap |
---|
| 2221 | ! if (itap.eq.10) lafin=.true. |
---|
| 2222 | |
---|
[1682] | 2223 | if (lafin.and.is_omp_master) then |
---|
| 2224 | write(*,*) "physiq: call xios_context_finalize" |
---|
| 2225 | call xios_context_finalize |
---|
| 2226 | endif |
---|
| 2227 | |
---|
[1642] | 2228 | #endif |
---|
[1723] | 2229 | #else |
---|
| 2230 | ! Outputs MESOSCALE |
---|
| 2231 | CALL allocate_comm_wrf(klon,klev) |
---|
| 2232 | comm_HR_SW(1:klon,1:klev) = dtsw(1:klon,1:klev) |
---|
| 2233 | comm_HR_LW(1:klon,1:klev) = dtlw(1:klon,1:klev) |
---|
| 2234 | comm_DT_RAD(1:klon,1:klev) = d_t_rad(1:klon,1:klev) |
---|
| 2235 | IF (turb_resolved) THEN |
---|
| 2236 | open(17,file='hrdyn.txt',form='formatted',status='old') |
---|
| 2237 | rewind(17) |
---|
| 2238 | DO k=1,klev |
---|
| 2239 | read(17,*) dt_dyn(k) |
---|
| 2240 | ENDDO |
---|
| 2241 | close(17) |
---|
[1642] | 2242 | |
---|
[1723] | 2243 | do i=1,klon |
---|
| 2244 | d_t(i,:)=d_t(i,:)+dt_dyn(:) |
---|
| 2245 | comm_HR_DYN(i,:) = dt_dyn(:) |
---|
| 2246 | enddo |
---|
| 2247 | ELSE |
---|
| 2248 | comm_HR_DYN(1:klon,1:klev) = d_t_dyn(1:klon,1:klev) |
---|
| 2249 | comm_DT_VDF(1:klon,1:klev) = d_t_vdf(1:klon,1:klev) |
---|
| 2250 | comm_DT_AJS(1:klon,1:klev) = d_t_ajs(1:klon,1:klev) |
---|
| 2251 | ENDIF |
---|
| 2252 | comm_DT(1:klon,1:klev)=d_t(1:klon,1:klev) |
---|
| 2253 | #endif |
---|
| 2254 | |
---|
| 2255 | |
---|
[3] | 2256 | c==================================================================== |
---|
| 2257 | c Si c'est la fin, il faut conserver l'etat de redemarrage |
---|
| 2258 | c==================================================================== |
---|
| 2259 | c |
---|
| 2260 | IF (lafin) THEN |
---|
| 2261 | itau_phy = itau_phy + itap |
---|
[892] | 2262 | CALL phyredem ("restartphy.nc") |
---|
[3] | 2263 | |
---|
| 2264 | c--------------FLOTT |
---|
| 2265 | CMODEB LOTT |
---|
| 2266 | C FERMETURE DU FICHIER FORMATTE CONTENANT LES COMPOSANTES |
---|
| 2267 | C DU BILAN DE MOMENT ANGULAIRE. |
---|
| 2268 | if (bilansmc.eq.1) then |
---|
| 2269 | write(*,*)'Fermeture de aaam_bud.out (FL Vous parle)' |
---|
| 2270 | close(27) |
---|
| 2271 | close(28) |
---|
| 2272 | endif !bilansmc |
---|
| 2273 | CMODFIN |
---|
| 2274 | c------------- |
---|
| 2275 | c--------------SLEBONNOIS |
---|
| 2276 | C FERMETURE DES FICHIERS FORMATTES CONTENANT LES POSITIONS ET VITESSES |
---|
| 2277 | C DES BALLONS |
---|
| 2278 | if (ballons.eq.1) then |
---|
| 2279 | write(*,*)'Fermeture des ballons*.out' |
---|
| 2280 | close(30) |
---|
| 2281 | close(31) |
---|
| 2282 | close(32) |
---|
| 2283 | close(33) |
---|
| 2284 | close(34) |
---|
| 2285 | endif !ballons |
---|
| 2286 | c------------- |
---|
| 2287 | ENDIF |
---|
| 2288 | |
---|
[1549] | 2289 | END SUBROUTINE physiq |
---|
[3] | 2290 | |
---|
[1549] | 2291 | END MODULE physiq_mod |
---|
[3] | 2292 | |
---|