1 | !============================================================================== |
---|
2 | |
---|
3 | subroutine photolysis_online(nlayer, nb_phot_max, |
---|
4 | $ alt, press, temp, mmean, |
---|
5 | $ i_co2, i_co, i_o, i_o1d, i_o2, i_o3,i_h2, |
---|
6 | $ i_oh, i_ho2, i_h2o2, i_h2o,i_h,i_hcl, |
---|
7 | $ i_cl2, i_hocl, i_so2, i_so, i_so3, i_s2, |
---|
8 | $ i_clo, i_ocs, i_cocl2, i_h2so4, i_cl, |
---|
9 | $ i_no2, i_no, i_n2, i_n2d, nesp, rm, |
---|
10 | $ sza, dist_sol, v_phot) |
---|
11 | |
---|
12 | use photolysis_mod |
---|
13 | |
---|
14 | implicit none |
---|
15 | |
---|
16 | ! input |
---|
17 | |
---|
18 | integer, intent(in) :: nesp ! total number of chemical species |
---|
19 | integer, intent(in) :: nlayer |
---|
20 | integer, intent(in) :: nb_phot_max |
---|
21 | integer, intent(in) :: i_co2, i_co, i_o, i_o1d, i_o2, i_o3, |
---|
22 | $ i_oh, i_ho2, i_h2o2, i_h2o, i_h, i_hcl, |
---|
23 | $ i_cl2, i_hocl, i_so2, i_so, i_so3,i_s2, |
---|
24 | $ i_clo,i_ocs, i_cl, i_cocl2, i_h2so4, |
---|
25 | $ i_no2,i_no, i_n2, i_n2d, i_h2 |
---|
26 | |
---|
27 | real, dimension(nlayer), intent(in) :: press, temp, mmean ! pressure (hpa)/temperature (k)/mean molecular mass (g.mol-1) |
---|
28 | real, dimension(nlayer), intent(in) :: alt ! altitude (km) |
---|
29 | real, dimension(nlayer,nesp), intent(in) :: rm ! mixing ratios |
---|
30 | real :: tau ! integrated aerosol optical depth at the surface |
---|
31 | real, intent(in) :: sza ! solar zenith angle (degrees) |
---|
32 | real, intent(in) :: dist_sol ! solar distance (au) |
---|
33 | |
---|
34 | ! output |
---|
35 | |
---|
36 | real (kind = 8), dimension(nlayer,nb_phot_max) :: v_phot ! photolysis rates (s-1) |
---|
37 | |
---|
38 | ! solar flux at venus |
---|
39 | |
---|
40 | real, dimension(nw) :: fvenus ! solar flux (w.m-2.nm-1) |
---|
41 | real :: factor |
---|
42 | |
---|
43 | ! cross-sections |
---|
44 | |
---|
45 | real, dimension(nlayer,nw,nphot) :: sj ! general cross-section array (cm2) |
---|
46 | |
---|
47 | ! atmosphere |
---|
48 | |
---|
49 | real, dimension(nlayer+1) :: zpress, zalt, ztemp, zmmean ! pressure (hpa)/altitude (km)/temperature (k)/mean molecular mass (g.mol-1) |
---|
50 | |
---|
51 | real, dimension(nlayer+1) :: colinc ! air column increment (molecule.cm-2) |
---|
52 | real, dimension(nlayer+1,nw) :: dtrl ! rayleigh optical depth |
---|
53 | real, dimension(nlayer+1,nw) :: dtaer ! aerosol optical depth |
---|
54 | real, dimension(nlayer+1,nw) :: omaer ! aerosol single scattering albedo |
---|
55 | real, dimension(nlayer+1,nw) :: gaer ! aerosol asymmetry parameter |
---|
56 | real, dimension(nlayer+1,nw) :: dtcld ! cloud optical depth |
---|
57 | real, dimension(nlayer+1,nw) :: omcld ! cloud single scattering albedo |
---|
58 | real, dimension(nlayer+1,nw) :: gcld ! cloud asymmetry parameter |
---|
59 | real, dimension(nlayer+1,nw,nabs) :: dtgas ! optical depth for each gas |
---|
60 | real, dimension(nlayer+1,nw) :: dagas ! total gas optical depth |
---|
61 | real, dimension(nlayer+1) :: edir, edn, eup ! normalised irradiances |
---|
62 | real, dimension(nlayer+1) :: fdir, fdn, fup ! normalised actinic fluxes |
---|
63 | real, dimension(nlayer+1) :: saflux ! total actinic flux |
---|
64 | |
---|
65 | integer, dimension(0:nlayer+1) :: nid |
---|
66 | real, dimension(0:nlayer+1,nlayer+1) :: dsdh |
---|
67 | |
---|
68 | integer :: j_o2_o, j_o2_o1d, j_co2_o, j_co2_o1d, j_o3_o1d, j_o3_o, |
---|
69 | $ j_h2o, j_h2o2, j_ho2, j_h, j_hcl, j_cl2, j_hocl, j_so2, |
---|
70 | $ j_so, j_so3,j_s2, j_clo, j_ocs, j_cocl2, j_h2so4, |
---|
71 | $ j_no2, j_no, j_n2, j_h2 |
---|
72 | |
---|
73 | integer :: a_o2, a_co2, a_o3, a_h2o, a_h2o2, a_ho2, a_hcl, a_cl2, |
---|
74 | $ a_hocl, a_so2, a_so, a_so3, a_s2, a_clo, a_ocs, |
---|
75 | $ a_cocl2, a_h2so4, a_no2, a_no, a_n2, a_h2 |
---|
76 | integer :: nlev, i, ilay, ilev, iw, ialt |
---|
77 | real :: deltaj |
---|
78 | logical :: deutchem |
---|
79 | |
---|
80 | ! absorbing gas numbering |
---|
81 | |
---|
82 | a_o2 = 1 ! o2 |
---|
83 | a_co2 = 2 ! co2 |
---|
84 | a_o3 = 3 ! o3 |
---|
85 | a_h2 = 4 ! h2 |
---|
86 | a_h2o = 5 ! h2o |
---|
87 | a_h2o2 = 6 ! h2o2 |
---|
88 | a_ho2 = 7 ! ho2 |
---|
89 | a_hcl = 8 ! hcl |
---|
90 | a_cl2 = 9 ! cl2 |
---|
91 | a_hocl = 10 ! hocl |
---|
92 | a_so2 = 11 ! so2 |
---|
93 | a_so = 12 ! so |
---|
94 | a_so3 = 13 ! so3 |
---|
95 | a_s2 = 14 ! s2 |
---|
96 | a_clo = 15 ! clo |
---|
97 | a_ocs = 16 ! ocs |
---|
98 | a_cocl2 = 17 ! cocl2 |
---|
99 | a_h2so4 = 18 ! h2so4 |
---|
100 | a_no2 = 19 ! no2 |
---|
101 | a_no = 20 ! no |
---|
102 | a_n2 = 21 ! n2 |
---|
103 | |
---|
104 | ! photodissociation rates numbering. |
---|
105 | ! photodissociations must be ordered the same way in subroutine "indice" |
---|
106 | |
---|
107 | j_o2_o = 1 ! o2 + hv -> o + o |
---|
108 | j_o2_o1d = 2 ! o2 + hv -> o + o(1d) |
---|
109 | j_co2_o = 3 ! co2 + hv -> co + o |
---|
110 | j_co2_o1d = 4 ! co2 + hv -> co + o(1d) |
---|
111 | j_o3_o1d = 5 ! o3 + hv -> o2 + o(1d) |
---|
112 | j_o3_o = 6 ! o3 + hv -> o2 + o |
---|
113 | j_h2 = 7 ! h2 + hv -> h + h |
---|
114 | j_h2o = 8 ! h2o + hv -> h + oh |
---|
115 | j_ho2 = 9 ! ho2 + hv -> oh + o |
---|
116 | j_h2o2 = 10 ! h2o2 + hv -> oh + oh |
---|
117 | j_hcl = 11 ! hcl + hv -> h + cl |
---|
118 | j_cl2 = 12 ! cl2 + hv -> cl + cl |
---|
119 | j_hocl = 13 ! hocl + hv -> oh + cl |
---|
120 | j_so2 = 14 ! so2 + hv -> so + o |
---|
121 | j_so = 15 ! so + hv -> s + o |
---|
122 | j_so3 = 16 ! so3 + hv -> so2 + o |
---|
123 | j_s2 = 17 ! s2 + hv -> s + s |
---|
124 | j_clo = 18 ! clo + hv -> cl + o |
---|
125 | j_ocs = 19 ! ocs + hv -> co + s |
---|
126 | j_cocl2 = 20 ! cocl2 + hv -> 2cl + co |
---|
127 | j_h2so4 = 21 ! h2so4 + hv -> so3 + h2o |
---|
128 | j_no2 = 22 ! no2 + hv -> no + o |
---|
129 | j_no = 23 ! no + hv -> n + o |
---|
130 | j_n2 = 24 ! n2 + hv -> n(2d) + n |
---|
131 | |
---|
132 | ! j_hdo_od = ! hdo + hv -> od + h |
---|
133 | ! j_hdo_d = ! hdo + hv -> d + oh |
---|
134 | |
---|
135 | !==== define working vertical grid for the uv radiative code |
---|
136 | |
---|
137 | nlev = nlayer + 1 |
---|
138 | |
---|
139 | do ilev = 1,nlev-1 |
---|
140 | zpress(ilev) = press(ilev) |
---|
141 | zalt(ilev) = alt(ilev) |
---|
142 | ztemp(ilev) = temp(ilev) |
---|
143 | zmmean(ilev) = mmean(ilev) |
---|
144 | end do |
---|
145 | |
---|
146 | zpress(nlev) = 0. ! top of the atmosphere |
---|
147 | zalt(nlev) = zalt(nlev-1) + (zalt(nlev-1) - zalt(nlev-2)) |
---|
148 | ztemp(nlev) = ztemp(nlev-1) |
---|
149 | zmmean(nlev) = zmmean(nlev-1) |
---|
150 | |
---|
151 | !==== air column increments and rayleigh optical depth |
---|
152 | |
---|
153 | call setair(nlev, nw, wl, wc, zpress, ztemp, zmmean, colinc, dtrl) |
---|
154 | |
---|
155 | !==== set temperature-dependent cross-sections and optical depths |
---|
156 | |
---|
157 | dtgas(:,:,:) = 0. |
---|
158 | |
---|
159 | ! o2: |
---|
160 | |
---|
161 | call seto2(nphot, nlayer, nw, wc, mopt, temp, xso2_150, xso2_200, |
---|
162 | $ xso2_250, xso2_300, yieldo2, j_o2_o, j_o2_o1d, |
---|
163 | $ colinc(1:nlayer), rm(:,i_o2), |
---|
164 | $ dtgas(1:nlayer,:,a_o2), sj) |
---|
165 | |
---|
166 | ! co2: |
---|
167 | |
---|
168 | call setco2(nphot, nlayer, nw, wc, temp, xsco2_195, xsco2_295, |
---|
169 | $ xsco2_370, yieldco2, j_co2_o, j_co2_o1d, |
---|
170 | $ colinc(1:nlayer), rm(:,i_co2), |
---|
171 | $ dtgas(1:nlayer,:,a_co2), sj) |
---|
172 | |
---|
173 | ! o3: |
---|
174 | |
---|
175 | call seto3(nphot, nlayer, nw, wc, temp, xso3_218, xso3_298, |
---|
176 | $ j_o3_o, j_o3_o1d, colinc(1:nlayer), rm(:,i_o3), |
---|
177 | $ dtgas(1:nlayer,:,a_o3), sj) |
---|
178 | |
---|
179 | ! h2o2: |
---|
180 | |
---|
181 | call seth2o2(nphot, nlayer, nw, wc, temp, xsh2o2, j_h2o2, |
---|
182 | $ colinc(1:nlayer), rm(:,i_h2o2), |
---|
183 | $ dtgas(1:nlayer,:,a_h2o2), sj) |
---|
184 | |
---|
185 | ! so: |
---|
186 | |
---|
187 | call setso(nphot, nlayer, nw, wc, temp, xsso_150, xsso_250, |
---|
188 | $ j_so, colinc(1:nlayer), rm(:,i_so), |
---|
189 | $ dtgas(1:nlayer,:,a_so), sj) |
---|
190 | |
---|
191 | ! so2: |
---|
192 | |
---|
193 | call setso2(nphot, nlayer, nw, wc, temp, xsso2_200, xsso2_298, |
---|
194 | $ xsso2_360, j_so2, colinc(1:nlayer), rm(:,i_so2), |
---|
195 | $ dtgas(1:nlayer,:,a_so2), sj) |
---|
196 | |
---|
197 | ! no2: |
---|
198 | |
---|
199 | call setno2(nphot, nlayer, nw, wc, temp, xsno2, xsno2_220, |
---|
200 | $ xsno2_294, yldno2_248, yldno2_298, j_no2, |
---|
201 | $ colinc(1:nlayer), rm(:,i_no2), |
---|
202 | $ dtgas(1:nlayer,:,a_no2), sj) |
---|
203 | |
---|
204 | !==== temperature independent optical depths and cross-sections |
---|
205 | |
---|
206 | ! optical depths |
---|
207 | |
---|
208 | do ilay = 1,nlayer |
---|
209 | do iw = 1,nw-1 |
---|
210 | dtgas(ilay,iw,a_h2) = colinc(ilay)*rm(ilay,i_h2)*xsh2(iw) |
---|
211 | dtgas(ilay,iw,a_h2o) = colinc(ilay)*rm(ilay,i_h2o)*xsh2o(iw) |
---|
212 | dtgas(ilay,iw,a_ho2) = colinc(ilay)*rm(ilay,i_ho2)*xsho2(iw) |
---|
213 | dtgas(ilay,iw,a_hcl) = colinc(ilay)*rm(ilay,i_hcl)*xshcl(iw) |
---|
214 | dtgas(ilay,iw,a_cl2) = colinc(ilay)*rm(ilay,i_cl2)*xscl2(iw) |
---|
215 | dtgas(ilay,iw,a_hocl) = colinc(ilay)*rm(ilay,i_hocl) |
---|
216 | $ *xshocl(iw) |
---|
217 | dtgas(ilay,iw,a_so3) = colinc(ilay)*rm(ilay,i_so3)*xsso3(iw) |
---|
218 | dtgas(ilay,iw,a_s2) = colinc(ilay)*rm(ilay,i_s2)*xss2(iw) |
---|
219 | dtgas(ilay,iw,a_clo) = colinc(ilay)*rm(ilay,i_clo)*xsclo(iw) |
---|
220 | dtgas(ilay,iw,a_ocs) = colinc(ilay)*rm(ilay,i_ocs)*xsocs(iw) |
---|
221 | dtgas(ilay,iw,a_cocl2) = colinc(ilay)*rm(ilay,i_cocl2) |
---|
222 | $ *xscocl2(iw) |
---|
223 | dtgas(ilay,iw,a_h2so4) = colinc(ilay)*rm(ilay,i_h2so4) |
---|
224 | $ *xsh2so4(iw) |
---|
225 | dtgas(ilay,iw,a_no) = colinc(ilay)*rm(ilay,i_no)*xsno(iw) |
---|
226 | dtgas(ilay,iw,a_n2) = colinc(ilay)*rm(ilay,i_n2)*xsn2(iw) |
---|
227 | end do |
---|
228 | end do |
---|
229 | |
---|
230 | ! total gas optical depth |
---|
231 | |
---|
232 | dagas(:,:) = 0. |
---|
233 | |
---|
234 | do ilay = 1,nlayer |
---|
235 | do iw = 1,nw-1 |
---|
236 | do i = 1,nabs |
---|
237 | dagas(ilay,iw) = dagas(ilay,iw) + dtgas(ilay,iw,i) |
---|
238 | end do |
---|
239 | end do |
---|
240 | end do |
---|
241 | |
---|
242 | ! cross-sections |
---|
243 | |
---|
244 | do ilay = 1,nlayer |
---|
245 | do iw = 1,nw-1 |
---|
246 | sj(ilay,iw,j_h2) = xsh2(iw) ! h2 |
---|
247 | sj(ilay,iw,j_h2o) = xsh2o(iw) ! h2o |
---|
248 | sj(ilay,iw,j_ho2) = xsho2(iw) ! ho2 |
---|
249 | sj(ilay,iw,j_hcl) = xshcl(iw) ! hcl |
---|
250 | sj(ilay,iw,j_cl2) = xscl2(iw) ! cl2 |
---|
251 | sj(ilay,iw,j_hocl) = xshocl(iw) ! hocl |
---|
252 | sj(ilay,iw,j_s2) = xss2(iw) ! s2 |
---|
253 | sj(ilay,iw,j_so3) = xsso3(iw) ! so3 |
---|
254 | sj(ilay,iw,j_clo) = xsclo(iw) ! clo |
---|
255 | sj(ilay,iw,j_ocs) = xsocs(iw) ! ocs |
---|
256 | sj(ilay,iw,j_cocl2) = xscocl2(iw) ! cocl2 |
---|
257 | sj(ilay,iw,j_h2so4) = xsh2so4(iw) ! h2so4 |
---|
258 | sj(ilay,iw,j_no) = xsno(iw)*yieldno(iw) ! no |
---|
259 | sj(ilay,iw,j_n2) = xsn2(iw)*yieldn2(iw) ! n2 |
---|
260 | end do |
---|
261 | end do |
---|
262 | |
---|
263 | ! hdo cross section |
---|
264 | |
---|
265 | ! if (deutchem) then |
---|
266 | ! do ilay = 1,nlayer |
---|
267 | ! do iw = 1,nw-1 |
---|
268 | ! !Two chanels for hdo, with same cross section |
---|
269 | ! sj(ilay,iw,j_hdo_od) = 0.5*xshdo(iw) ! hdo -> od + h |
---|
270 | ! sj(ilay,iw,j_hdo_d) = 0.5*xshdo(iw) ! hdo -> d + oh |
---|
271 | ! end do |
---|
272 | ! end do |
---|
273 | ! end if |
---|
274 | |
---|
275 | !==== set aerosol properties and optical depth |
---|
276 | |
---|
277 | tau = 0. ! no solid aerosols for the present time |
---|
278 | |
---|
279 | call setaer(nlev,zalt,tau,nw,dtaer,omaer,gaer) |
---|
280 | |
---|
281 | !==== set cloud properties and optical depth |
---|
282 | |
---|
283 | call setcld(nlev,zalt,nw,wl,dtcld,omcld,gcld) |
---|
284 | |
---|
285 | !==== slant path lengths in spherical geometry |
---|
286 | |
---|
287 | call sphers(nlev,zalt,sza,dsdh,nid) |
---|
288 | |
---|
289 | !==== solar flux at venus |
---|
290 | |
---|
291 | factor = (1./dist_sol)**2. |
---|
292 | do iw = 1,nw-1 |
---|
293 | fvenus(iw) = f(iw)*factor |
---|
294 | end do |
---|
295 | |
---|
296 | !==== initialise photolysis rates |
---|
297 | |
---|
298 | v_phot(:,1:nphot) = 0. |
---|
299 | |
---|
300 | !==== start of wavelength lopp |
---|
301 | |
---|
302 | do iw = 1,nw-1 |
---|
303 | |
---|
304 | ! monochromatic radiative transfer. outputs are: |
---|
305 | ! normalized irradiances edir(nlayer), edn(nlayer), eup(nlayer) |
---|
306 | ! normalized actinic fluxes fdir(nlayer), fdn(nlayer), fup(nlayer) |
---|
307 | ! where |
---|
308 | ! dir = direct beam, dn = down-welling diffuse, up = up-welling diffuse |
---|
309 | |
---|
310 | call rtlink(nlev, nw, iw, albedo(iw), sza, dsdh, nid, dtrl, |
---|
311 | $ dagas, dtcld, omcld, gcld, dtaer, omaer, gaer, |
---|
312 | $ edir, edn, eup, fdir, fdn, fup) |
---|
313 | |
---|
314 | |
---|
315 | ! spherical actinic flux |
---|
316 | |
---|
317 | do ilay = 1,nlayer |
---|
318 | saflux(ilay) = fvenus(iw)*(fdir(ilay) + fdn(ilay) + fup(ilay)) |
---|
319 | end do |
---|
320 | |
---|
321 | ! photolysis rate integration |
---|
322 | |
---|
323 | do i = 1,nphot |
---|
324 | do ilay = 1,nlayer |
---|
325 | deltaj = saflux(ilay)*sj(ilay,iw,i) |
---|
326 | v_phot(ilay,i) = v_phot(ilay,i) + deltaj*(wu(iw)-wl(iw)) |
---|
327 | end do |
---|
328 | end do |
---|
329 | |
---|
330 | ! eliminate small values |
---|
331 | |
---|
332 | where (v_phot(:,1:nphot) < 1.e-30) |
---|
333 | v_phot(:,1:nphot) = 0. |
---|
334 | end where |
---|
335 | |
---|
336 | end do ! iw |
---|
337 | |
---|
338 | contains |
---|
339 | |
---|
340 | !============================================================================== |
---|
341 | |
---|
342 | subroutine setair(nlev, nw, wl, wc, press, temp, zmmean, |
---|
343 | $ colinc, dtrl) |
---|
344 | |
---|
345 | *-----------------------------------------------------------------------------* |
---|
346 | *= PURPOSE: =* |
---|
347 | *= computes air column increments and rayleigh optical depth =* |
---|
348 | *-----------------------------------------------------------------------------* |
---|
349 | |
---|
350 | implicit none |
---|
351 | |
---|
352 | ! input: |
---|
353 | |
---|
354 | integer :: nlev, nw |
---|
355 | |
---|
356 | real, dimension(nw) :: wl, wc ! lower and central wavelength grid (nm) |
---|
357 | real, dimension(nlev) :: press, temp, zmmean ! pressure (hpa), temperature (k), molecular mass (g.mol-1) |
---|
358 | |
---|
359 | ! output: |
---|
360 | |
---|
361 | real, dimension(nlev) :: colinc ! air column increments (molecule.cm-2) |
---|
362 | real, dimension(nlev,nw) :: dtrl ! rayleigh optical depth |
---|
363 | |
---|
364 | ! local: |
---|
365 | |
---|
366 | real, parameter :: avo = 6.022e23 |
---|
367 | real, parameter :: g = 8.87 |
---|
368 | real :: dp, nu |
---|
369 | real, dimension(nw) :: srayl |
---|
370 | integer :: ilev, iw |
---|
371 | |
---|
372 | ! compute column increments |
---|
373 | |
---|
374 | do ilev = 1, nlev-1 |
---|
375 | dp = (press(ilev) - press(ilev+1))*100. |
---|
376 | colinc(ilev) = avo*0.1*dp/(zmmean(ilev)*g) |
---|
377 | end do |
---|
378 | colinc(nlev) = 0. |
---|
379 | |
---|
380 | do iw = 1, nw - 1 |
---|
381 | |
---|
382 | ! co2 rayleigh cross-section |
---|
383 | ! ityaksov et al., chem. phys. lett., 462, 31-34, 2008 |
---|
384 | |
---|
385 | nu = 1./(wc(iw)*1.e-7) |
---|
386 | srayl(iw) = 1.78e-26*nu**(4. + 0.625) |
---|
387 | srayl(iw) = srayl(iw)*1.e-20 ! cm2 |
---|
388 | |
---|
389 | do ilev = 1, nlev |
---|
390 | dtrl(ilev,iw) = colinc(ilev)*srayl(iw) ! cm2 |
---|
391 | end do |
---|
392 | end do |
---|
393 | |
---|
394 | end subroutine setair |
---|
395 | |
---|
396 | !============================================================================== |
---|
397 | |
---|
398 | subroutine setco2(nd, nlayer, nw, wc, tlay, xsco2_195, xsco2_295, |
---|
399 | $ xsco2_370, yieldco2, j_co2_o, j_co2_o1d, |
---|
400 | $ colinc, rm, dt, sj) |
---|
401 | |
---|
402 | !-----------------------------------------------------------------------------* |
---|
403 | != PURPOSE: =* |
---|
404 | != Set up the CO2 temperature-dependent cross-sections and optical depth =* |
---|
405 | !-----------------------------------------------------------------------------* |
---|
406 | |
---|
407 | implicit none |
---|
408 | |
---|
409 | ! input: |
---|
410 | |
---|
411 | integer :: nd ! number of photolysis rates |
---|
412 | integer :: nlayer ! number of vertical layers |
---|
413 | integer :: nw ! number of wavelength grid points |
---|
414 | integer :: j_co2_o, j_co2_o1d ! photolysis indexes |
---|
415 | real, dimension(nw) :: wc ! central wavelength for each interval |
---|
416 | real, dimension(nw) :: xsco2_195, xsco2_295, xsco2_370 ! co2 cross-sections (cm2) |
---|
417 | real, dimension(nw) :: yieldco2 ! co2 photodissociation yield |
---|
418 | real, dimension(nlayer) :: tlay ! temperature (k) |
---|
419 | real, dimension(nlayer) :: rm ! co2 mixing ratio |
---|
420 | real, dimension(nlayer) :: colinc ! air column increment (molecule.cm-2) |
---|
421 | |
---|
422 | ! output: |
---|
423 | |
---|
424 | real, dimension(nlayer,nw) :: dt ! optical depth |
---|
425 | real, dimension(nlayer,nw,nd) :: sj ! cross-section array (cm2) |
---|
426 | |
---|
427 | ! local: |
---|
428 | |
---|
429 | integer :: extrapol |
---|
430 | integer :: i, l |
---|
431 | real :: temp, sco2 |
---|
432 | |
---|
433 | ! extrapol = 0 no extrapolation below 195 k |
---|
434 | ! extrapol = 1 extrapolation below 195 k |
---|
435 | |
---|
436 | extrapol = 0 |
---|
437 | |
---|
438 | do i = 1, nlayer |
---|
439 | if (extrapol == 1) then |
---|
440 | temp = tlay(i) |
---|
441 | else |
---|
442 | temp = max(tlay(i), 195.) |
---|
443 | end if |
---|
444 | temp = min(temp, 370.) |
---|
445 | do l = 1, nw-1 |
---|
446 | if (temp <= 295.) then |
---|
447 | if (xsco2_195(l) /= 0. .and. xsco2_295(l) /= 0.) then |
---|
448 | sco2 = alog(xsco2_195(l)) |
---|
449 | $ + (alog(xsco2_295(l)) - alog(xsco2_195(l))) |
---|
450 | $ /(295. - 195.)*(temp - 195.) |
---|
451 | sco2 = exp(sco2) |
---|
452 | else |
---|
453 | sco2 = 0. |
---|
454 | end if |
---|
455 | else |
---|
456 | if (xsco2_295(l) /= 0. .and. xsco2_370(l) /= 0.) then |
---|
457 | sco2 = alog(xsco2_295(l)) |
---|
458 | $ + (alog(xsco2_370(l)) - alog(xsco2_295(l))) |
---|
459 | $ /(370. - 295.)*(temp - 295.) |
---|
460 | sco2 = exp(sco2) |
---|
461 | else |
---|
462 | sco2 = 0. |
---|
463 | end if |
---|
464 | end if |
---|
465 | |
---|
466 | ! optical depth |
---|
467 | |
---|
468 | dt(i,l) = colinc(i)*rm(i)*sco2 |
---|
469 | |
---|
470 | ! production of o(1d) for wavelengths shorter than 167 nm |
---|
471 | |
---|
472 | if (wc(l) >= 167.) then |
---|
473 | sj(i,l,j_co2_o) = sco2*yieldco2(l) |
---|
474 | sj(i,l,j_co2_o1d) = 0. |
---|
475 | else |
---|
476 | sj(i,l,j_co2_o) = 0. |
---|
477 | sj(i,l,j_co2_o1d) = sco2*yieldco2(l) |
---|
478 | end if |
---|
479 | end do |
---|
480 | end do |
---|
481 | |
---|
482 | end subroutine setco2 |
---|
483 | |
---|
484 | !============================================================================== |
---|
485 | |
---|
486 | subroutine seto2(nd, nlayer, nw, wc, mopt, tlay, xso2_150, |
---|
487 | $ xso2_200, xso2_250, xso2_300, yieldo2, j_o2_o, |
---|
488 | $ j_o2_o1d, colinc, rm, dt, sj) |
---|
489 | |
---|
490 | !-----------------------------------------------------------------------------* |
---|
491 | != PURPOSE: =* |
---|
492 | != Set up the O2 temperature-dependent cross-sections and optical depth =* |
---|
493 | !-----------------------------------------------------------------------------* |
---|
494 | |
---|
495 | implicit none |
---|
496 | |
---|
497 | ! input: |
---|
498 | |
---|
499 | integer :: nd ! number of photolysis rates |
---|
500 | integer :: nlayer ! number of vertical layers |
---|
501 | integer :: nw ! number of wavelength grid points |
---|
502 | integer :: mopt ! high-res/low-res switch |
---|
503 | integer :: j_o2_o, j_o2_o1d ! photolysis indexes |
---|
504 | real, dimension(nw) :: wc ! central wavelength for each interval |
---|
505 | real, dimension(nw) :: xso2_150, xso2_200, xso2_250, ! o2 cross-sections (cm2) |
---|
506 | $ xso2_300 |
---|
507 | real, dimension(nw) :: yieldo2 ! o2 photodissociation yield |
---|
508 | real, dimension(nlayer) :: tlay ! temperature (k) |
---|
509 | real, dimension(nlayer) :: rm ! o2 mixing ratio |
---|
510 | real, dimension(nlayer) :: colinc ! air column increment (molecule.cm-2) |
---|
511 | |
---|
512 | ! output: |
---|
513 | |
---|
514 | real, dimension(nlayer,nw) :: dt ! optical depth |
---|
515 | real, dimension(nlayer,nw,nd) :: sj ! cross-section array (cm2) |
---|
516 | |
---|
517 | ! local: |
---|
518 | |
---|
519 | integer :: ilev, iw |
---|
520 | real :: temp |
---|
521 | real :: xso2, factor |
---|
522 | |
---|
523 | ! correction by factor if low-resolution in schumann-runge bands |
---|
524 | |
---|
525 | if (mopt == 1) then |
---|
526 | factor = 1. |
---|
527 | else if (mopt == 2 .or. mopt == 3) then |
---|
528 | factor = 0.8 |
---|
529 | end if |
---|
530 | |
---|
531 | ! calculate temperature dependance |
---|
532 | |
---|
533 | do ilev = 1,nlayer |
---|
534 | temp = max(tlay(ilev),150.) |
---|
535 | temp = min(temp, 300.) |
---|
536 | do iw = 1, nw-1 |
---|
537 | if (tlay(ilev) > 250.) then |
---|
538 | xso2 = xso2_250(iw) + (xso2_300(iw) - xso2_250(iw)) |
---|
539 | $ /(300. - 250.)*(temp - 250.) |
---|
540 | else if (tlay(ilev) > 200.) then |
---|
541 | xso2 = xso2_200(iw) + (xso2_250(iw) - xso2_200(iw)) |
---|
542 | $ /(250. - 200.)*(temp - 200.) |
---|
543 | else |
---|
544 | xso2 = xso2_150(iw) + (xso2_200(iw) - xso2_150(iw)) |
---|
545 | $ /(200. - 150.)*(temp - 150.) |
---|
546 | end if |
---|
547 | |
---|
548 | if (wc(iw) > 180. .and. wc(iw) < 200.) then |
---|
549 | xso2 = xso2*factor |
---|
550 | end if |
---|
551 | |
---|
552 | ! optical depth |
---|
553 | |
---|
554 | dt(ilev,iw) = colinc(ilev)*rm(ilev)*xso2 |
---|
555 | |
---|
556 | ! production of o(1d) for wavelengths shorter than 175 nm |
---|
557 | |
---|
558 | if (wc(iw) >= 175.) then |
---|
559 | sj(ilev,iw,j_o2_o) = xso2*yieldo2(iw) |
---|
560 | sj(ilev,iw,j_o2_o1d) = 0. |
---|
561 | else |
---|
562 | sj(ilev,iw,j_o2_o) = 0. |
---|
563 | sj(ilev,iw,j_o2_o1d) = xso2*yieldo2(iw) |
---|
564 | end if |
---|
565 | |
---|
566 | end do |
---|
567 | end do |
---|
568 | |
---|
569 | end subroutine seto2 |
---|
570 | |
---|
571 | !============================================================================== |
---|
572 | |
---|
573 | subroutine seto3(nd, nlayer, nw, wc, tlay, xso3_218, xso3_298, |
---|
574 | $ j_o3_o, j_o3_o1d, |
---|
575 | $ colinc, rm, dt, sj) |
---|
576 | |
---|
577 | !-----------------------------------------------------------------------------* |
---|
578 | != PURPOSE: =* |
---|
579 | != Set up the O3 temperature dependent cross-sections and optical depth =* |
---|
580 | !-----------------------------------------------------------------------------* |
---|
581 | |
---|
582 | implicit none |
---|
583 | |
---|
584 | ! input: |
---|
585 | |
---|
586 | integer :: nd ! number of photolysis rates |
---|
587 | integer :: nlayer ! number of vertical layers |
---|
588 | integer :: nw ! number of wavelength grid points |
---|
589 | integer :: j_o3_o, j_o3_o1d ! photolysis indexes |
---|
590 | real, dimension(nw) :: wc ! central wavelength for each interval |
---|
591 | real, dimension(nw) :: xso3_218, xso3_298 ! o3 cross-sections (cm2) |
---|
592 | real, dimension(nlayer) :: tlay ! temperature (k) |
---|
593 | real, dimension(nlayer) :: rm ! o3 mixing ratio |
---|
594 | real, dimension(nlayer) :: colinc ! air column increment (molecule.cm-2) |
---|
595 | |
---|
596 | ! output: |
---|
597 | |
---|
598 | real, dimension(nlayer,nw) :: dt ! optical depth |
---|
599 | real, dimension(nlayer,nw,nd) :: sj ! cross-section array (cm2) |
---|
600 | |
---|
601 | ! local: |
---|
602 | ! |
---|
603 | integer :: ilev, iw |
---|
604 | real :: temp |
---|
605 | real, dimension(nw) :: xso3(nw) |
---|
606 | real, dimension(nw) :: qy1d ! quantum yield for o(1d) production |
---|
607 | real :: q1, q2, a1, a2, a3 |
---|
608 | |
---|
609 | do ilev = 1, nlayer |
---|
610 | temp = max(tlay(ilev), 218.) |
---|
611 | temp = min(temp,298.) |
---|
612 | do iw = 1, nw-1 |
---|
613 | xso3(iw) = xso3_218(iw) + (xso3_298(iw) - xso3_218(iw)) |
---|
614 | $ /(298. - 218.) *(temp - 218.) |
---|
615 | |
---|
616 | ! optical depth |
---|
617 | |
---|
618 | dt(ilev,iw) = colinc(ilev)*rm(ilev)*xso3(iw) |
---|
619 | |
---|
620 | end do |
---|
621 | |
---|
622 | ! calculate quantum yield for o(1d) production (jpl 2006) |
---|
623 | |
---|
624 | temp = max(tlay(ilev),200.) |
---|
625 | temp = min(temp,320.) |
---|
626 | do iw = 1, nw-1 |
---|
627 | if (wc(iw) <= 306.) then |
---|
628 | qy1d(iw) = 0.90 |
---|
629 | else if (wc(iw) > 306. .and. wc(iw) < 328.) then |
---|
630 | q1 = 1. |
---|
631 | q2 = exp(-825.518/(0.695*temp)) |
---|
632 | a1 = (304.225 - wc(iw))/5.576 |
---|
633 | a2 = (314.957 - wc(iw))/6.601 |
---|
634 | a3 = (310.737 - wc(iw))/2.187 |
---|
635 | qy1d(iw) = (q1/(q1 + q2))*0.8036*exp(-(a1*a1*a1*a1)) |
---|
636 | $ + (q2/(q1 + q2))*8.9061*(temp/300.)**2. |
---|
637 | $ *exp(-(a2*a2)) |
---|
638 | $ + 0.1192*(temp/300.)**1.5*exp(-(a3*a3)) |
---|
639 | $ + 0.0765 |
---|
640 | else if (wc(iw) >= 328. .and. wc(iw) <= 340.) then |
---|
641 | qy1d(iw) = 0.08 |
---|
642 | else |
---|
643 | qy1d(iw) = 0. |
---|
644 | endif |
---|
645 | end do |
---|
646 | do iw = 1, nw-1 |
---|
647 | sj(ilev,iw,j_o3_o) = xso3(iw)*(1. - qy1d(iw)) |
---|
648 | sj(ilev,iw,j_o3_o1d) = xso3(iw)*qy1d(iw) |
---|
649 | end do |
---|
650 | end do |
---|
651 | |
---|
652 | end subroutine seto3 |
---|
653 | !============================================================================== |
---|
654 | |
---|
655 | subroutine setso(nd, nlayer, nw, wc, tlay, xsso_150, xsso_250, |
---|
656 | $ j_so, colinc, rm, dt, sj) |
---|
657 | |
---|
658 | !-----------------------------------------------------------------------------* |
---|
659 | != PURPOSE: =* |
---|
660 | != Set up the so temperature dependent cross-sections and optical depth =* |
---|
661 | !-----------------------------------------------------------------------------* |
---|
662 | |
---|
663 | implicit none |
---|
664 | |
---|
665 | ! input: |
---|
666 | |
---|
667 | integer :: nd ! number of photolysis rates |
---|
668 | integer :: nlayer ! number of vertical layers |
---|
669 | integer :: nw ! number of wavelength grid points |
---|
670 | integer :: j_so ! photolysis indexe |
---|
671 | real, dimension(nw) :: wc ! central wavelength for each interval |
---|
672 | real, dimension(nw) :: xsso_150, xsso_250 ! so cross-sections (cm2) |
---|
673 | real, dimension(nlayer) :: tlay ! temperature (k) |
---|
674 | real, dimension(nlayer) :: rm ! so mixing ratio |
---|
675 | real, dimension(nlayer) :: colinc ! air column increment (molecule.cm-2) |
---|
676 | |
---|
677 | ! output: |
---|
678 | |
---|
679 | real, dimension(nlayer,nw) :: dt ! optical depth |
---|
680 | real, dimension(nlayer,nw,nd) :: sj ! cross-section array (cm2) |
---|
681 | |
---|
682 | ! local: |
---|
683 | ! |
---|
684 | integer :: ilev, iw |
---|
685 | real :: temp, xsso |
---|
686 | |
---|
687 | ! calculate temperature dependance |
---|
688 | |
---|
689 | do ilev = 1,nlayer |
---|
690 | temp = max(tlay(ilev),150.) |
---|
691 | temp = min(temp, 250.) |
---|
692 | do iw = 1, nw-1 |
---|
693 | if (xsso_150(iw) /= 0. .and. xsso_250(iw) /= 0.) then |
---|
694 | xsso = log(xsso_150(iw)) |
---|
695 | $ + (log(xsso_250(iw)) - log(xsso_150(iw))) |
---|
696 | $ /(250. - 150.)*(temp - 150.) |
---|
697 | |
---|
698 | sj(ilev,iw,j_so) = exp(xsso) |
---|
699 | else |
---|
700 | sj(ilev,iw,j_so) = 0. |
---|
701 | end if |
---|
702 | |
---|
703 | ! optical depth |
---|
704 | |
---|
705 | dt(ilev,iw) = colinc(ilev)*rm(ilev)*sj(ilev,iw,j_so) |
---|
706 | |
---|
707 | end do |
---|
708 | end do |
---|
709 | |
---|
710 | end subroutine setso |
---|
711 | |
---|
712 | !============================================================================== |
---|
713 | |
---|
714 | subroutine setso2(nd, nlayer, nw, wc, tlay, xsso2_200, xsso2_298, |
---|
715 | $ xsso2_360, j_so2, colinc, rm, dt, sj) |
---|
716 | |
---|
717 | !-----------------------------------------------------------------------------* |
---|
718 | != PURPOSE: =* |
---|
719 | != Set up the so2 temperature dependent cross-sections and optical depth =* |
---|
720 | !-----------------------------------------------------------------------------* |
---|
721 | |
---|
722 | implicit none |
---|
723 | |
---|
724 | ! input: |
---|
725 | |
---|
726 | integer :: nd ! number of photolysis rates |
---|
727 | integer :: nlayer ! number of vertical layers |
---|
728 | integer :: nw ! number of wavelength grid points |
---|
729 | integer :: j_so2 ! photolysis indexe |
---|
730 | real, dimension(nw) :: wc ! central wavelength for each interval |
---|
731 | real, dimension(nw) :: xsso2_200, xsso2_298, xsso2_360 ! so2 cross-sections (cm2) |
---|
732 | real, dimension(nlayer) :: tlay ! temperature (k) |
---|
733 | real, dimension(nlayer) :: rm ! so2 mixing ratio |
---|
734 | real, dimension(nlayer) :: colinc ! air column increment (molecule.cm-2) |
---|
735 | |
---|
736 | ! output: |
---|
737 | |
---|
738 | real, dimension(nlayer,nw) :: dt ! optical depth |
---|
739 | real, dimension(nlayer,nw,nd) :: sj ! cross-section array (cm2) |
---|
740 | |
---|
741 | ! local: |
---|
742 | ! |
---|
743 | integer :: ilev, iw |
---|
744 | real :: temp , xsso2 |
---|
745 | |
---|
746 | |
---|
747 | ! calculate temperature dependance |
---|
748 | do ilev = 1,nlayer |
---|
749 | temp = max(tlay(ilev),200.) |
---|
750 | temp = min(temp, 360.) |
---|
751 | do iw = 1, nw-1 |
---|
752 | if (tlay(ilev) < 298.) then |
---|
753 | xsso2 = xsso2_200(iw) + (xsso2_298(iw) - xsso2_200(iw)) |
---|
754 | $ /(298. - 200.)*(temp - 200.) |
---|
755 | else |
---|
756 | xsso2 = xsso2_298(iw) + (xsso2_360(iw) - xsso2_298(iw)) |
---|
757 | $ /(360. - 298.)*(temp - 298.) |
---|
758 | end if |
---|
759 | ! 219 nm photolysis treshold |
---|
760 | if (wc(iw) <= 219.) then |
---|
761 | sj(ilev,iw,j_so2) = xsso2 |
---|
762 | else |
---|
763 | sj(ilev,iw,j_so2) = 0. |
---|
764 | end if |
---|
765 | |
---|
766 | ! optical depth |
---|
767 | |
---|
768 | dt(ilev,iw) = colinc(ilev)*rm(ilev)*xsso2 |
---|
769 | |
---|
770 | end do |
---|
771 | end do |
---|
772 | |
---|
773 | end subroutine setso2 |
---|
774 | |
---|
775 | !============================================================================== |
---|
776 | |
---|
777 | subroutine seth2o2(nd, nlayer, nw, wc, tlay, xsh2o2, j_h2o2, |
---|
778 | $ colinc, rm, dt, sj) |
---|
779 | |
---|
780 | !-----------------------------------------------------------------------------* |
---|
781 | != PURPOSE: =* |
---|
782 | != Set up the h2o2 temperature dependent cross-sections and optical depth =* |
---|
783 | !-----------------------------------------------------------------------------* |
---|
784 | |
---|
785 | implicit none |
---|
786 | |
---|
787 | ! input: |
---|
788 | |
---|
789 | integer :: nd ! number of photolysis rates |
---|
790 | integer :: nlayer ! number of vertical layers |
---|
791 | integer :: nw ! number of wavelength grid points |
---|
792 | integer :: j_h2o2 ! photolysis index |
---|
793 | real, dimension(nw) :: wc ! central wavelength for each interval |
---|
794 | real, dimension(nw) :: xsh2o2 ! h2o2 cross-sections (cm2) |
---|
795 | real, dimension(nlayer) :: tlay ! temperature (k) |
---|
796 | real, dimension(nlayer) :: rm ! h2o2 mixing ratio |
---|
797 | real, dimension(nlayer) :: colinc ! air column increment (molecule.cm-2) |
---|
798 | |
---|
799 | ! output: |
---|
800 | |
---|
801 | real, dimension(nlayer,nw) :: dt ! optical depth |
---|
802 | real, dimension(nlayer,nw,nd) :: sj ! cross-section array (cm2) |
---|
803 | |
---|
804 | ! local: |
---|
805 | |
---|
806 | integer :: ilev, iw |
---|
807 | real :: a0, a1, a2, a3, a4, a5, a6, a7 |
---|
808 | real :: b0, b1, b2, b3, b4 |
---|
809 | real :: lambda, suma, sumb, chi, temp, xs |
---|
810 | |
---|
811 | A0 = 6.4761E+04 |
---|
812 | A1 = -9.2170972E+02 |
---|
813 | A2 = 4.535649 |
---|
814 | A3 = -4.4589016E-03 |
---|
815 | A4 = -4.035101E-05 |
---|
816 | A5 = 1.6878206E-07 |
---|
817 | A6 = -2.652014E-10 |
---|
818 | A7 = 1.5534675E-13 |
---|
819 | |
---|
820 | B0 = 6.8123E+03 |
---|
821 | B1 = -5.1351E+01 |
---|
822 | B2 = 1.1522E-01 |
---|
823 | B3 = -3.0493E-05 |
---|
824 | B4 = -1.0924E-07 |
---|
825 | |
---|
826 | ! temperature dependance: jpl 2006 |
---|
827 | |
---|
828 | do ilev = 1,nlayer |
---|
829 | temp = min(max(tlay(ilev),200.),400.) |
---|
830 | chi = 1./(1. + exp(-1265./temp)) |
---|
831 | do iw = 1, nw-1 |
---|
832 | if ((wc(iw) >= 260.) .and. (wc(iw) < 350.)) then |
---|
833 | lambda = wc(iw) |
---|
834 | sumA = ((((((A7*lambda + A6)*lambda + A5)*lambda + |
---|
835 | $ A4)*lambda +A3)*lambda + A2)*lambda + |
---|
836 | $ A1)*lambda + A0 |
---|
837 | sumB = (((B4*lambda + B3)*lambda + B2)*lambda + |
---|
838 | $ B1)*lambda + B0 |
---|
839 | xs = (chi*sumA + (1. - chi)*sumB)*1.e-21 |
---|
840 | sj(ilev,iw,j_h2o2) = xs |
---|
841 | else |
---|
842 | sj(ilev,iw,j_h2o2) = xsh2o2(iw) |
---|
843 | end if |
---|
844 | |
---|
845 | ! optical depth |
---|
846 | |
---|
847 | dt(ilev,iw) = colinc(ilev)*rm(ilev)*sj(ilev,iw,j_h2o2) |
---|
848 | end do |
---|
849 | end do |
---|
850 | |
---|
851 | end subroutine seth2o2 |
---|
852 | |
---|
853 | !============================================================================== |
---|
854 | |
---|
855 | subroutine setno2(nd, nlayer, nw, wc, tlay, xsno2, xsno2_220, |
---|
856 | $ xsno2_294, yldno2_248, yldno2_298, j_no2, |
---|
857 | $ colinc, rm, dt, sj) |
---|
858 | |
---|
859 | !-----------------------------------------------------------------------------* |
---|
860 | != PURPOSE: =* |
---|
861 | != Set up the no2 temperature-dependent cross-sections and optical depth =* |
---|
862 | !-----------------------------------------------------------------------------* |
---|
863 | |
---|
864 | implicit none |
---|
865 | |
---|
866 | ! input: |
---|
867 | |
---|
868 | integer :: nd ! number of photolysis rates |
---|
869 | integer :: nlayer ! number of vertical layers |
---|
870 | integer :: nw ! number of wavelength grid points |
---|
871 | integer :: j_no2 ! photolysis index |
---|
872 | real, dimension(nw) :: wc ! central wavelength for each interval |
---|
873 | real, dimension(nw) :: xsno2, xsno2_220, xsno2_294 ! no2 absorption cross-section at 220-294 k (cm2) |
---|
874 | real, dimension(nw) :: yldno2_248, yldno2_298 ! no2 quantum yield at 248-298 k |
---|
875 | real, dimension(nlayer) :: tlay ! temperature (k) |
---|
876 | real, dimension(nlayer) :: rm ! no2 mixing ratio |
---|
877 | real, dimension(nlayer) :: colinc ! air column increment (molecule.cm-2) |
---|
878 | |
---|
879 | ! output: |
---|
880 | |
---|
881 | real, dimension(nlayer,nw) :: dt ! optical depth |
---|
882 | real, dimension(nlayer,nw,nd) :: sj ! cross-section array (cm2) |
---|
883 | |
---|
884 | ! local: |
---|
885 | |
---|
886 | integer :: ilev, iw |
---|
887 | real :: temp, qy |
---|
888 | |
---|
889 | ! temperature dependance: jpl 2006 |
---|
890 | |
---|
891 | do ilev = 1,nlayer |
---|
892 | temp = max(220.,min(tlay(ilev),294.)) |
---|
893 | do iw = 1, nw - 1 |
---|
894 | if (wc(iw) < 238.) then |
---|
895 | sj(ilev,iw,j_no2) = xsno2(iw) |
---|
896 | else |
---|
897 | sj(ilev,iw,j_no2) = xsno2_220(iw) |
---|
898 | $ + (xsno2_294(iw) - xsno2_220(iw)) |
---|
899 | $ /(294. - 220.)*(temp - 220.) |
---|
900 | end if |
---|
901 | |
---|
902 | ! optical depth |
---|
903 | |
---|
904 | dt(ilev,iw) = colinc(ilev)*rm(ilev)*sj(ilev,iw,j_no2) |
---|
905 | end do |
---|
906 | end do |
---|
907 | |
---|
908 | ! quantum yield: jpl 2006 |
---|
909 | |
---|
910 | do ilev = 1,nlayer |
---|
911 | temp = max(248.,min(tlay(ilev),298.)) |
---|
912 | do iw = 1, nw - 1 |
---|
913 | qy = yldno2_248(iw) + (yldno2_298(iw) - yldno2_248(iw)) |
---|
914 | $ /(298. - 248.)*(temp - 248.) |
---|
915 | sj(ilev,iw,j_no2) = sj(ilev,iw,j_no2)*qy |
---|
916 | end do |
---|
917 | end do |
---|
918 | |
---|
919 | end subroutine setno2 |
---|
920 | |
---|
921 | !============================================================================== |
---|
922 | |
---|
923 | subroutine setaer(nlev,zalt,tau,nw,dtaer,omaer,gaer) |
---|
924 | |
---|
925 | !-----------------------------------------------------------------------------* |
---|
926 | != PURPOSE: =* |
---|
927 | != Set aerosol properties for each specified altitude layer. Properties =* |
---|
928 | != may be wavelength dependent. =* |
---|
929 | !-----------------------------------------------------------------------------* |
---|
930 | |
---|
931 | implicit none |
---|
932 | |
---|
933 | ! input |
---|
934 | |
---|
935 | integer :: nlev ! number of vertical layers |
---|
936 | integer :: nw ! number of wavelength grid points |
---|
937 | real, dimension(nlev) :: zalt ! altitude (km) |
---|
938 | real :: tau ! integrated aerosol optical depth at the surface |
---|
939 | |
---|
940 | ! output |
---|
941 | |
---|
942 | real, dimension(nlev,nw) :: dtaer ! aerosol optical depth |
---|
943 | real, dimension(nlev,nw) :: omaer ! aerosol single scattering albedo |
---|
944 | real, dimension(nlev,nw) :: gaer ! aerosol asymmetry parameter |
---|
945 | |
---|
946 | ! local |
---|
947 | |
---|
948 | integer :: ilev, iw |
---|
949 | real, dimension(nlev) :: aer ! dust extinction |
---|
950 | real :: omega, g, scaleh, gamma |
---|
951 | real :: dz, tautot, q0 |
---|
952 | |
---|
953 | omega = 0.622 ! single scattering albedo : wolff et al.(2010) at 258 nm |
---|
954 | g = 0.88 ! asymmetry factor : mateshvili et al. (2007) at 210 nm |
---|
955 | scaleh = 10. ! scale height (km) |
---|
956 | gamma = 0.03 ! conrath parameter |
---|
957 | |
---|
958 | dtaer(:,:) = 0. |
---|
959 | omaer(:,:) = 0. |
---|
960 | gaer(:,:) = 0. |
---|
961 | |
---|
962 | omaer(:,:) = omega |
---|
963 | gaer(:,:) =g |
---|
964 | |
---|
965 | ! optical depth profile: |
---|
966 | |
---|
967 | tautot = 0. |
---|
968 | do ilev = 1, nlev-1 |
---|
969 | dz = zalt(ilev+1) - zalt(ilev) |
---|
970 | tautot = tautot + exp(gamma*(1. - exp(zalt(ilev)/scaleh)))*dz |
---|
971 | end do |
---|
972 | |
---|
973 | q0 = tau/tautot |
---|
974 | do ilev = 1, nlev-1 |
---|
975 | dz = zalt(ilev+1) - zalt(ilev) |
---|
976 | dtaer(ilev,:) = q0*exp(gamma*(1. - exp(zalt(ilev)/scaleh)))*dz |
---|
977 | omaer(ilev,:) = omega |
---|
978 | gaer(ilev,:) = g |
---|
979 | end do |
---|
980 | |
---|
981 | end subroutine setaer |
---|
982 | |
---|
983 | !============================================================================== |
---|
984 | SUBROUTINE setcld(nz,z,nw,wl,dtcld,omcld,gcld) |
---|
985 | |
---|
986 | *-----------------------------------------------------------------------------* |
---|
987 | *= PURPOSE: =* |
---|
988 | *= Set cloud properties for each specified altitude layer. Properties =* |
---|
989 | *= may be wavelength dependent. =* |
---|
990 | *-----------------------------------------------------------------------------* |
---|
991 | *= PARAMETERS: =* |
---|
992 | *= NZ - INTEGER, number of specified altitude levels in the working (I)=* |
---|
993 | *= grid =* |
---|
994 | *= Z - REAL, specified altitude working grid (km) (I)=* |
---|
995 | *= NW - INTEGER, number of specified intervals + 1 in working (I)=* |
---|
996 | *= wavelength grid =* |
---|
997 | *= WL - REAL, vector of lower limits of wavelength intervals in (I)=* |
---|
998 | *= working wavelength grid =* |
---|
999 | *= DTCLD - REAL, optical depth due to absorption by clouds at each (O)=* |
---|
1000 | *= altitude and wavelength =* |
---|
1001 | *= OMCLD - REAL, single scattering albedo due to clouds at each (O)=* |
---|
1002 | *= defined altitude and wavelength =* |
---|
1003 | *= GCLD - REAL, cloud asymmetry factor at each defined altitude and (O)=* |
---|
1004 | *= wavelength =* |
---|
1005 | *-----------------------------------------------------------------------------* |
---|
1006 | *= EDIT HISTORY: =* |
---|
1007 | *= 12/94 Bug fix =* |
---|
1008 | *-----------------------------------------------------------------------------* |
---|
1009 | *= This program is free software; you can redistribute it and/or modify =* |
---|
1010 | *= it under the terms of the GNU General Public License as published by the =* |
---|
1011 | *= Free Software Foundation; either version 2 of the license, or (at your =* |
---|
1012 | *= option) any later version. =* |
---|
1013 | *= The TUV package is distributed in the hope that it will be useful, but =* |
---|
1014 | *= WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTIBI- =* |
---|
1015 | *= LITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public =* |
---|
1016 | *= License for more details. =* |
---|
1017 | *= To obtain a copy of the GNU General Public License, write to: =* |
---|
1018 | *= Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. =* |
---|
1019 | *-----------------------------------------------------------------------------* |
---|
1020 | *= To contact the authors, please mail to: =* |
---|
1021 | *= Sasha Madronich, NCAR/ACD, P.O.Box 3000, Boulder, CO, 80307-3000, USA or =* |
---|
1022 | *= send email to: sasha@ucar.edu =* |
---|
1023 | *-----------------------------------------------------------------------------* |
---|
1024 | *= Copyright (C) 1994,95,96 University Corporation for Atmospheric Research =* |
---|
1025 | *-----------------------------------------------------------------------------* |
---|
1026 | |
---|
1027 | IMPLICIT NONE |
---|
1028 | |
---|
1029 | INTEGER kdata |
---|
1030 | INTEGER kout |
---|
1031 | PARAMETER(kdata=12) |
---|
1032 | PARAMETER(kout=53) |
---|
1033 | |
---|
1034 | * input: (grids) |
---|
1035 | REAL wl(nw) |
---|
1036 | REAL z(nz) |
---|
1037 | INTEGER nz |
---|
1038 | INTEGER nw |
---|
1039 | |
---|
1040 | * Output: |
---|
1041 | REAL dtcld(nz,nw), omcld(nz,nw), gcld(nz,nw) |
---|
1042 | |
---|
1043 | * local: |
---|
1044 | |
---|
1045 | logical clouds |
---|
1046 | |
---|
1047 | * specified data: |
---|
1048 | REAL zd(kdata), cd(kdata), omd(kdata), gd(kdata) |
---|
1049 | REAL womd(kdata), wgd(kdata) |
---|
1050 | |
---|
1051 | * other: |
---|
1052 | REAL cz(nz) |
---|
1053 | REAL omz(nz) |
---|
1054 | REAL gz(nz) |
---|
1055 | INTEGER i, iw, n |
---|
1056 | |
---|
1057 | *_______________________________________________________________________ |
---|
1058 | c |
---|
1059 | c initialize |
---|
1060 | c |
---|
1061 | do iw = 1, nw-1 |
---|
1062 | do i = 1, nz-1 |
---|
1063 | dtcld(i,iw) = 0. |
---|
1064 | omcld(i,iw) = 0. |
---|
1065 | gcld(i,iw) = 0. |
---|
1066 | end do |
---|
1067 | end do |
---|
1068 | c |
---|
1069 | c if you do not want any clouds, set clouds = .false. |
---|
1070 | c |
---|
1071 | clouds = .true. |
---|
1072 | c |
---|
1073 | if (.not. clouds) then |
---|
1074 | write(kout,*) 'no clouds' |
---|
1075 | return |
---|
1076 | end if |
---|
1077 | c |
---|
1078 | * cloud properties are set for each layer (not each level) |
---|
1079 | |
---|
1080 | * Set as many clouds as want here: |
---|
1081 | * First choose a cloud grid, zd(n), in km above sea level |
---|
1082 | * Can allow altitude variation of omega, g: |
---|
1083 | |
---|
1084 | n = 12 |
---|
1085 | |
---|
1086 | zd(1) = 0. |
---|
1087 | cd(1) = 0. |
---|
1088 | zd(2) = 30. |
---|
1089 | cd(2) = 0.25 |
---|
1090 | zd(3) = 48. |
---|
1091 | cd(3) = 5.84 |
---|
1092 | zd(4) = 50. |
---|
1093 | cd(4) = 5.48 |
---|
1094 | zd(5) = 54. |
---|
1095 | cd(5) = 3.79 |
---|
1096 | zd(6) = 57. |
---|
1097 | cd(6) = 2.1 |
---|
1098 | zd(7) = 60. |
---|
1099 | cd(7) = 3.44 |
---|
1100 | zd(8) = 62. |
---|
1101 | cd(8) = 5.0 |
---|
1102 | zd(9) = 65. |
---|
1103 | cd(9) = 3.48 |
---|
1104 | zd(10) = 70. |
---|
1105 | cd(10) = 0.8 |
---|
1106 | zd(11) = 78. |
---|
1107 | cd(11) = 0.2 |
---|
1108 | zd(12) = 80. |
---|
1109 | cd(12) = 0. |
---|
1110 | |
---|
1111 | do i = 1,n |
---|
1112 | omd(i) = 0.999999 ! zhang et al., icarus, 2011 |
---|
1113 | gd(i) = 0.74 ! zhang et al., icarus, 2011 |
---|
1114 | end do |
---|
1115 | |
---|
1116 | ****************** |
---|
1117 | |
---|
1118 | * compute integrals and averages over grid layers: |
---|
1119 | * for g and omega, use averages weigthed by optical depth |
---|
1120 | |
---|
1121 | ! DO 11, i = 1, n !***** CHANGED!!See header!!***** |
---|
1122 | DO 11, i = 1, n-1 |
---|
1123 | womd(i) = omd(i) * cd(i) |
---|
1124 | wgd(i) = gd(i) * cd(i) |
---|
1125 | 11 CONTINUE |
---|
1126 | CALL inter3(nz,z,cz, n, zd,cd,0) |
---|
1127 | CALL inter3(nz,z,omz, n, zd,womd,0) |
---|
1128 | CALL inter3(nz,z,gz , n, zd,wgd,0) |
---|
1129 | |
---|
1130 | |
---|
1131 | ! Imprimer Cz et imprimer cd pour comparer |
---|
1132 | |
---|
1133 | |
---|
1134 | DO 15, i = 1, nz-1 |
---|
1135 | IF (cz(i) .GT. 0.) THEN |
---|
1136 | omz(i) = omz(i)/cz(i) |
---|
1137 | gz(i) = gz(i) /cz(i) |
---|
1138 | ELSE |
---|
1139 | omz(i) = 1. |
---|
1140 | gz(i) = 0. |
---|
1141 | ENDIF |
---|
1142 | 15 CONTINUE |
---|
1143 | |
---|
1144 | * assign at all wavelengths |
---|
1145 | * (can move wavelength loop outside if want to vary with wavelength) |
---|
1146 | |
---|
1147 | DO 17, iw = 1, nw-1 |
---|
1148 | DO 16, i = 1, nz-1 |
---|
1149 | dtcld(i,iw) = cz(i) |
---|
1150 | omcld(i,iw) = omz(i) |
---|
1151 | gcld (i,iw) = gz(i) |
---|
1152 | 16 CONTINUE |
---|
1153 | 17 CONTINUE |
---|
1154 | |
---|
1155 | *_______________________________________________________________________ |
---|
1156 | |
---|
1157 | RETURN |
---|
1158 | END |
---|
1159 | |
---|
1160 | !============================================================================== |
---|
1161 | |
---|
1162 | subroutine sphers(nlev, z, zen, dsdh, nid) |
---|
1163 | |
---|
1164 | !-----------------------------------------------------------------------------* |
---|
1165 | != PURPOSE: =* |
---|
1166 | != Calculate slant path over vertical depth ds/dh in spherical geometry. =* |
---|
1167 | != Calculation is based on: A.Dahlback, and K.Stamnes, A new spheric model =* |
---|
1168 | != for computing the radiation field available for photolysis and heating =* |
---|
1169 | != at twilight, Planet.Space Sci., v39, n5, pp. 671-683, 1991 (Appendix B) =* |
---|
1170 | !-----------------------------------------------------------------------------* |
---|
1171 | != PARAMETERS: =* |
---|
1172 | != NZ - INTEGER, number of specified altitude levels in the working (I)=* |
---|
1173 | != grid =* |
---|
1174 | != Z - REAL, specified altitude working grid (km) (I)=* |
---|
1175 | != ZEN - REAL, solar zenith angle (degrees) (I)=* |
---|
1176 | != DSDH - REAL, slant path of direct beam through each layer crossed (O)=* |
---|
1177 | != when travelling from the top of the atmosphere to layer i; =* |
---|
1178 | != DSDH(i,j), i = 0..NZ-1, j = 1..NZ-1 =* |
---|
1179 | != NID - INTEGER, number of layers crossed by the direct beam when (O)=* |
---|
1180 | != travelling from the top of the atmosphere to layer i; =* |
---|
1181 | != NID(i), i = 0..NZ-1 =* |
---|
1182 | !-----------------------------------------------------------------------------* |
---|
1183 | |
---|
1184 | implicit none |
---|
1185 | |
---|
1186 | ! input |
---|
1187 | |
---|
1188 | integer, intent(in) :: nlev |
---|
1189 | real, dimension(nlev), intent(in) :: z |
---|
1190 | real, intent(in) :: zen |
---|
1191 | |
---|
1192 | ! output |
---|
1193 | |
---|
1194 | INTEGER nid(0:nlev) |
---|
1195 | REAL dsdh(0:nlev,nlev) |
---|
1196 | |
---|
1197 | ! more program constants |
---|
1198 | |
---|
1199 | REAL re, ze(nlev) |
---|
1200 | REAL dr |
---|
1201 | real radius |
---|
1202 | parameter (radius = 6052.) |
---|
1203 | |
---|
1204 | ! local |
---|
1205 | |
---|
1206 | real :: pi, zenrad, rpsinz, rj, rjp1, dsj, dhj, ga, gb, sm |
---|
1207 | integer :: i, j, k, id, nlay |
---|
1208 | |
---|
1209 | REAL zd(0:nlev-1) |
---|
1210 | |
---|
1211 | !----------------------------------------------------------------------------- |
---|
1212 | |
---|
1213 | pi = acos(-1.0) |
---|
1214 | dr = pi/180. |
---|
1215 | zenrad = zen*dr |
---|
1216 | |
---|
1217 | ! number of layers: |
---|
1218 | |
---|
1219 | nlay = nlev - 1 |
---|
1220 | |
---|
1221 | ! include the elevation above sea level to the radius of Venus: |
---|
1222 | |
---|
1223 | re = radius + z(1) |
---|
1224 | |
---|
1225 | ! correspondingly z changed to the elevation above Venus surface: |
---|
1226 | |
---|
1227 | DO k = 1, nlev |
---|
1228 | ze(k) = z(k) - z(1) |
---|
1229 | END DO |
---|
1230 | |
---|
1231 | ! inverse coordinate of z |
---|
1232 | |
---|
1233 | zd(0) = ze(nlev) |
---|
1234 | DO k = 1, nlay |
---|
1235 | zd(k) = ze(nlev - k) |
---|
1236 | END DO |
---|
1237 | |
---|
1238 | ! initialise dsdh(i,j), nid(i) |
---|
1239 | |
---|
1240 | nid(:) = 0. |
---|
1241 | dsdh(:,:) = 0. |
---|
1242 | |
---|
1243 | ! calculate ds/dh of every layer |
---|
1244 | |
---|
1245 | do i = 0,nlay |
---|
1246 | rpsinz = (re + zd(i))*sin(zenrad) |
---|
1247 | |
---|
1248 | IF ( (zen .GT. 90.0) .AND. (rpsinz .LT. re) ) THEN |
---|
1249 | nid(i) = -1 |
---|
1250 | ELSE |
---|
1251 | |
---|
1252 | ! Find index of layer in which the screening height lies |
---|
1253 | |
---|
1254 | id = i |
---|
1255 | if (zen > 90.) then |
---|
1256 | do j = 1,nlay |
---|
1257 | IF( (rpsinz .LT. ( zd(j-1) + re ) ) .AND. |
---|
1258 | $ (rpsinz .GE. ( zd(j) + re )) ) id = j |
---|
1259 | end do |
---|
1260 | end if |
---|
1261 | |
---|
1262 | do j = 1,id |
---|
1263 | sm = 1.0 |
---|
1264 | IF (j .EQ. id .AND. id .EQ. i .AND. zen .GT. 90.0) |
---|
1265 | $ sm = -1.0 |
---|
1266 | |
---|
1267 | rj = re + zd(j-1) |
---|
1268 | rjp1 = re + zd(j) |
---|
1269 | |
---|
1270 | dhj = zd(j-1) - zd(j) |
---|
1271 | |
---|
1272 | ga = rj*rj - rpsinz*rpsinz |
---|
1273 | gb = rjp1*rjp1 - rpsinz*rpsinz |
---|
1274 | |
---|
1275 | ga = max(ga, 0.) |
---|
1276 | gb = max(gb, 0.) |
---|
1277 | |
---|
1278 | IF (id.GT.i .AND. j.EQ.id) THEN |
---|
1279 | dsj = sqrt(ga) |
---|
1280 | ELSE |
---|
1281 | dsj = sqrt(ga) - sm*sqrt(gb) |
---|
1282 | END IF |
---|
1283 | dsdh(i,j) = dsj/dhj |
---|
1284 | end do |
---|
1285 | nid(i) = id |
---|
1286 | end if |
---|
1287 | end do ! i = 0,nlay |
---|
1288 | |
---|
1289 | end subroutine sphers |
---|
1290 | |
---|
1291 | !============================================================================== |
---|
1292 | |
---|
1293 | SUBROUTINE rtlink(nlev, nw, iw, ag, zen, dsdh, nid, dtrl, |
---|
1294 | $ dagas, dtcld, omcld, gcld, dtaer, omaer, gaer, |
---|
1295 | $ edir, edn, eup, fdir, fdn, fup) |
---|
1296 | |
---|
1297 | implicit none |
---|
1298 | |
---|
1299 | ! input |
---|
1300 | |
---|
1301 | integer, intent(in) :: nlev, nw, iw ! number of wavelength grid points |
---|
1302 | REAL ag |
---|
1303 | REAL zen |
---|
1304 | REAL dsdh(0:nlev,nlev) |
---|
1305 | INTEGER nid(0:nlev) |
---|
1306 | |
---|
1307 | REAL dtrl(nlev,nw) |
---|
1308 | REAL dagas(nlev,nw) |
---|
1309 | REAL dtcld(nlev,nw), omcld(nlev,nw), gcld(nlev,nw) |
---|
1310 | REAL dtaer(nlev,nw), omaer(nlev,nw), gaer(nlev,nw) |
---|
1311 | |
---|
1312 | ! output |
---|
1313 | |
---|
1314 | REAL edir(nlev), edn(nlev), eup(nlev) |
---|
1315 | REAL fdir(nlev), fdn(nlev), fup(nlev) |
---|
1316 | |
---|
1317 | ! local: |
---|
1318 | |
---|
1319 | REAL dt(nlev), om(nlev), g(nlev) |
---|
1320 | REAL dtabs,dtsct,dscld,dsaer,dacld,daaer |
---|
1321 | INTEGER i, ii |
---|
1322 | real, parameter :: largest = 1.e+36 |
---|
1323 | |
---|
1324 | ! specific two ps2str |
---|
1325 | |
---|
1326 | REAL ediri(nlev), edni(nlev), eupi(nlev) |
---|
1327 | REAL fdiri(nlev), fdni(nlev), fupi(nlev) |
---|
1328 | |
---|
1329 | logical, save :: delta = .true. |
---|
1330 | |
---|
1331 | !$OMP THREADPRIVATE(delta) |
---|
1332 | |
---|
1333 | !_______________________________________________________________________ |
---|
1334 | |
---|
1335 | ! initialize: |
---|
1336 | |
---|
1337 | do i = 1, nlev |
---|
1338 | fdir(i) = 0. |
---|
1339 | fup(i) = 0. |
---|
1340 | fdn(i) = 0. |
---|
1341 | edir(i) = 0. |
---|
1342 | eup(i) = 0. |
---|
1343 | edn(i) = 0. |
---|
1344 | end do |
---|
1345 | |
---|
1346 | do i = 1, nlev - 1 |
---|
1347 | dscld = dtcld(i,iw)*omcld(i,iw) |
---|
1348 | dacld = dtcld(i,iw)*(1.-omcld(i,iw)) |
---|
1349 | |
---|
1350 | dsaer = dtaer(i,iw)*omaer(i,iw) |
---|
1351 | daaer = dtaer(i,iw)*(1.-omaer(i,iw)) |
---|
1352 | |
---|
1353 | dtsct = dtrl(i,iw) + dscld + dsaer |
---|
1354 | dtabs = dagas(i,iw) + dacld + daaer |
---|
1355 | |
---|
1356 | dtabs = amax1(dtabs,1./largest) |
---|
1357 | dtsct = amax1(dtsct,1./largest) |
---|
1358 | |
---|
1359 | ! invert z-coordinate: |
---|
1360 | |
---|
1361 | ii = nlev - i |
---|
1362 | dt(ii) = dtsct + dtabs |
---|
1363 | om(ii) = dtsct/(dtsct + dtabs) |
---|
1364 | IF(dtsct .EQ. 1./largest) om(ii) = 1./largest |
---|
1365 | g(ii) = (gcld(i,iw)*dscld + |
---|
1366 | $ gaer(i,iw)*dsaer)/dtsct |
---|
1367 | end do |
---|
1368 | |
---|
1369 | ! call rt routine: |
---|
1370 | |
---|
1371 | call ps2str(nlev, zen, ag, dt, om, g, |
---|
1372 | $ dsdh, nid, delta, |
---|
1373 | $ fdiri, fupi, fdni, ediri, eupi, edni) |
---|
1374 | |
---|
1375 | ! output (invert z-coordinate) |
---|
1376 | |
---|
1377 | do i = 1, nlev |
---|
1378 | ii = nlev - i + 1 |
---|
1379 | fdir(i) = fdiri(ii) |
---|
1380 | fup(i) = fupi(ii) |
---|
1381 | fdn(i) = fdni(ii) |
---|
1382 | edir(i) = ediri(ii) |
---|
1383 | eup(i) = eupi(ii) |
---|
1384 | edn(i) = edni(ii) |
---|
1385 | end do |
---|
1386 | |
---|
1387 | end subroutine rtlink |
---|
1388 | |
---|
1389 | *=============================================================================* |
---|
1390 | |
---|
1391 | subroutine ps2str(nlev,zen,rsfc,tauu,omu,gu, |
---|
1392 | $ dsdh, nid, delta, |
---|
1393 | $ fdr, fup, fdn, edr, eup, edn) |
---|
1394 | |
---|
1395 | !-----------------------------------------------------------------------------* |
---|
1396 | != PURPOSE: =* |
---|
1397 | != Solve two-stream equations for multiple layers. The subroutine is based =* |
---|
1398 | != on equations from: Toon et al., J.Geophys.Res., v94 (D13), Nov 20, 1989.=* |
---|
1399 | != It contains 9 two-stream methods to choose from. A pseudo-spherical =* |
---|
1400 | != correction has also been added. =* |
---|
1401 | !-----------------------------------------------------------------------------* |
---|
1402 | != PARAMETERS: =* |
---|
1403 | != NLEVEL - INTEGER, number of specified altitude levels in the working (I)=* |
---|
1404 | != grid =* |
---|
1405 | != ZEN - REAL, solar zenith angle (degrees) (I)=* |
---|
1406 | != RSFC - REAL, surface albedo at current wavelength (I)=* |
---|
1407 | != TAUU - REAL, unscaled optical depth of each layer (I)=* |
---|
1408 | != OMU - REAL, unscaled single scattering albedo of each layer (I)=* |
---|
1409 | != GU - REAL, unscaled asymmetry parameter of each layer (I)=* |
---|
1410 | != DSDH - REAL, slant path of direct beam through each layer crossed (I)=* |
---|
1411 | != when travelling from the top of the atmosphere to layer i; =* |
---|
1412 | != DSDH(i,j), i = 0..NZ-1, j = 1..NZ-1 =* |
---|
1413 | != NID - INTEGER, number of layers crossed by the direct beam when (I)=* |
---|
1414 | != travelling from the top of the atmosphere to layer i; =* |
---|
1415 | != NID(i), i = 0..NZ-1 =* |
---|
1416 | != DELTA - LOGICAL, switch to use delta-scaling (I)=* |
---|
1417 | != .TRUE. -> apply delta-scaling =* |
---|
1418 | != .FALSE.-> do not apply delta-scaling =* |
---|
1419 | != FDR - REAL, contribution of the direct component to the total (O)=* |
---|
1420 | != actinic flux at each altitude level =* |
---|
1421 | != FUP - REAL, contribution of the diffuse upwelling component to (O)=* |
---|
1422 | != the total actinic flux at each altitude level =* |
---|
1423 | != FDN - REAL, contribution of the diffuse downwelling component to (O)=* |
---|
1424 | != the total actinic flux at each altitude level =* |
---|
1425 | != EDR - REAL, contribution of the direct component to the total (O)=* |
---|
1426 | != spectral irradiance at each altitude level =* |
---|
1427 | != EUP - REAL, contribution of the diffuse upwelling component to (O)=* |
---|
1428 | != the total spectral irradiance at each altitude level =* |
---|
1429 | != EDN - REAL, contribution of the diffuse downwelling component to (O)=* |
---|
1430 | *= the total spectral irradiance at each altitude level =* |
---|
1431 | !-----------------------------------------------------------------------------* |
---|
1432 | |
---|
1433 | implicit none |
---|
1434 | |
---|
1435 | ! input: |
---|
1436 | |
---|
1437 | INTEGER nlev |
---|
1438 | REAL zen, rsfc |
---|
1439 | REAL tauu(nlev), omu(nlev), gu(nlev) |
---|
1440 | REAL dsdh(0:nlev,nlev) |
---|
1441 | INTEGER nid(0:nlev) |
---|
1442 | LOGICAL delta |
---|
1443 | |
---|
1444 | ! output: |
---|
1445 | |
---|
1446 | REAL fup(nlev),fdn(nlev),fdr(nlev) |
---|
1447 | REAL eup(nlev),edn(nlev),edr(nlev) |
---|
1448 | |
---|
1449 | ! local: |
---|
1450 | |
---|
1451 | REAL tausla(0:nlev), tauc(0:nlev) |
---|
1452 | REAL mu2(0:nlev), mu, sum |
---|
1453 | |
---|
1454 | ! internal coefficients and matrix |
---|
1455 | |
---|
1456 | REAL lam(nlev),taun(nlev),bgam(nlev) |
---|
1457 | REAL e1(nlev),e2(nlev),e3(nlev),e4(nlev) |
---|
1458 | REAL cup(nlev),cdn(nlev),cuptn(nlev),cdntn(nlev) |
---|
1459 | REAL mu1(nlev) |
---|
1460 | INTEGER row |
---|
1461 | REAL a(2*nlev),b(2*nlev),d(2*nlev),e(2*nlev),y(2*nlev) |
---|
1462 | |
---|
1463 | ! other: |
---|
1464 | |
---|
1465 | REAL pifs, fdn0 |
---|
1466 | REAL gi(nlev), omi(nlev), tempg |
---|
1467 | REAL f, g, om |
---|
1468 | REAL gam1, gam2, gam3, gam4 |
---|
1469 | real, parameter :: largest = 1.e+36 |
---|
1470 | real, parameter :: precis = 1.e-7 |
---|
1471 | |
---|
1472 | ! For calculations of Associated Legendre Polynomials for GAMA1,2,3,4 |
---|
1473 | ! in delta-function, modified quadrature, hemispheric constant, |
---|
1474 | ! Hybrid modified Eddington-delta function metods, p633,Table1. |
---|
1475 | ! W.E.Meador and W.R.Weaver, GAS,1980,v37,p.630 |
---|
1476 | ! W.J.Wiscombe and G.W. Grams, GAS,1976,v33,p2440, |
---|
1477 | ! uncomment the following two lines and the appropriate statements further |
---|
1478 | ! down. |
---|
1479 | ! REAL YLM0, YLM2, YLM4, YLM6, YLM8, YLM10, YLM12, YLMS, BETA0, |
---|
1480 | ! > BETA1, BETAn, amu1, subd |
---|
1481 | |
---|
1482 | REAL expon, expon0, expon1, divisr, temp, up, dn |
---|
1483 | REAL ssfc |
---|
1484 | INTEGER nlayer, mrows, lev |
---|
1485 | |
---|
1486 | INTEGER i, j |
---|
1487 | |
---|
1488 | ! Some additional program constants: |
---|
1489 | |
---|
1490 | real pi, dr |
---|
1491 | REAL eps |
---|
1492 | PARAMETER (eps = 1.E-3) |
---|
1493 | !_______________________________________________________________________ |
---|
1494 | |
---|
1495 | ! MU = cosine of solar zenith angle |
---|
1496 | ! RSFC = surface albedo |
---|
1497 | ! TAUU = unscaled optical depth of each layer |
---|
1498 | ! OMU = unscaled single scattering albedo |
---|
1499 | ! GU = unscaled asymmetry factor |
---|
1500 | ! KLEV = max dimension of number of layers in atmosphere |
---|
1501 | ! NLAYER = number of layers in the atmosphere |
---|
1502 | ! NLEVEL = nlayer + 1 = number of levels |
---|
1503 | |
---|
1504 | ! initial conditions: pi*solar flux = 1; diffuse incidence = 0 |
---|
1505 | |
---|
1506 | pifs = 1. |
---|
1507 | fdn0 = 0. |
---|
1508 | |
---|
1509 | nlayer = nlev - 1 |
---|
1510 | |
---|
1511 | pi = acos(-1.) |
---|
1512 | dr = pi/180. |
---|
1513 | mu = COS(zen*dr) |
---|
1514 | |
---|
1515 | !************* compute coefficients for each layer: |
---|
1516 | ! GAM1 - GAM4 = 2-stream coefficients, different for different approximations |
---|
1517 | ! EXPON0 = calculation of e when TAU is zero |
---|
1518 | ! EXPON1 = calculation of e when TAU is TAUN |
---|
1519 | ! CUP and CDN = calculation when TAU is zero |
---|
1520 | ! CUPTN and CDNTN = calc. when TAU is TAUN |
---|
1521 | ! DIVISR = prevents division by zero |
---|
1522 | do j = 0, nlev |
---|
1523 | tauc(j) = 0. |
---|
1524 | tausla(j) = 0. |
---|
1525 | mu2(j) = 1./SQRT(largest) |
---|
1526 | end do |
---|
1527 | |
---|
1528 | IF (.NOT. delta) THEN |
---|
1529 | DO i = 1, nlayer |
---|
1530 | gi(i) = gu(i) |
---|
1531 | omi(i) = omu(i) |
---|
1532 | taun(i) = tauu(i) |
---|
1533 | END DO |
---|
1534 | ELSE |
---|
1535 | |
---|
1536 | ! delta-scaling. Have to be done for delta-Eddington approximation, |
---|
1537 | ! delta discrete ordinate, Practical Improved Flux Method, delta function, |
---|
1538 | ! and Hybrid modified Eddington-delta function methods approximations |
---|
1539 | |
---|
1540 | DO i = 1, nlayer |
---|
1541 | f = gu(i)*gu(i) |
---|
1542 | gi(i) = (gu(i) - f)/(1 - f) |
---|
1543 | omi(i) = (1 - f)*omu(i)/(1 - omu(i)*f) |
---|
1544 | taun(i) = (1 - omu(i)*f)*tauu(i) |
---|
1545 | END DO |
---|
1546 | END IF |
---|
1547 | |
---|
1548 | ! calculate slant optical depth at the top of the atmosphere when zen>90. |
---|
1549 | ! in this case, higher altitude of the top layer is recommended. |
---|
1550 | |
---|
1551 | IF (zen .GT. 90.0) THEN |
---|
1552 | IF (nid(0) .LT. 0) THEN |
---|
1553 | tausla(0) = largest |
---|
1554 | ELSE |
---|
1555 | sum = 0.0 |
---|
1556 | DO j = 1, nid(0) |
---|
1557 | sum = sum + 2.*taun(j)*dsdh(0,j) |
---|
1558 | END DO |
---|
1559 | tausla(0) = sum |
---|
1560 | END IF |
---|
1561 | END IF |
---|
1562 | |
---|
1563 | DO 11, i = 1, nlayer |
---|
1564 | g = gi(i) |
---|
1565 | om = omi(i) |
---|
1566 | tauc(i) = tauc(i-1) + taun(i) |
---|
1567 | |
---|
1568 | ! stay away from 1 by precision. For g, also stay away from -1 |
---|
1569 | |
---|
1570 | tempg = AMIN1(abs(g),1. - precis) |
---|
1571 | g = SIGN(tempg,g) |
---|
1572 | om = AMIN1(om,1.-precis) |
---|
1573 | |
---|
1574 | ! calculate slant optical depth |
---|
1575 | |
---|
1576 | IF (nid(i) .LT. 0) THEN |
---|
1577 | tausla(i) = largest |
---|
1578 | ELSE |
---|
1579 | sum = 0.0 |
---|
1580 | DO j = 1, MIN(nid(i),i) |
---|
1581 | sum = sum + taun(j)*dsdh(i,j) |
---|
1582 | END DO |
---|
1583 | DO j = MIN(nid(i),i)+1,nid(i) |
---|
1584 | sum = sum + 2.*taun(j)*dsdh(i,j) |
---|
1585 | END DO |
---|
1586 | tausla(i) = sum |
---|
1587 | IF (tausla(i) .EQ. tausla(i-1)) THEN |
---|
1588 | mu2(i) = SQRT(largest) |
---|
1589 | ELSE |
---|
1590 | mu2(i) = (tauc(i)-tauc(i-1))/(tausla(i)-tausla(i-1)) |
---|
1591 | mu2(i) = SIGN( AMAX1(ABS(mu2(i)),1./SQRT(largest)), |
---|
1592 | $ mu2(i) ) |
---|
1593 | END IF |
---|
1594 | END IF |
---|
1595 | |
---|
1596 | !** the following gamma equations are from pg 16,289, Table 1 |
---|
1597 | !** save mu1 for each approx. for use in converting irradiance to actinic flux |
---|
1598 | |
---|
1599 | ! Eddington approximation(Joseph et al., 1976, JAS, 33, 2452): |
---|
1600 | |
---|
1601 | c gam1 = (7. - om*(4. + 3.*g))/4. |
---|
1602 | c gam2 = -(1. - om*(4. - 3.*g))/4. |
---|
1603 | c gam3 = (2. - 3.*g*mu)/4. |
---|
1604 | c gam4 = 1. - gam3 |
---|
1605 | c mu1(i) = 0.5 |
---|
1606 | |
---|
1607 | * quadrature (Liou, 1973, JAS, 30, 1303-1326; 1974, JAS, 31, 1473-1475): |
---|
1608 | |
---|
1609 | c gam1 = 1.7320508*(2. - om*(1. + g))/2. |
---|
1610 | c gam2 = 1.7320508*om*(1. - g)/2. |
---|
1611 | c gam3 = (1. - 1.7320508*g*mu)/2. |
---|
1612 | c gam4 = 1. - gam3 |
---|
1613 | c mu1(i) = 1./sqrt(3.) |
---|
1614 | |
---|
1615 | * hemispheric mean (Toon et al., 1089, JGR, 94, 16287): |
---|
1616 | |
---|
1617 | gam1 = 2. - om*(1. + g) |
---|
1618 | gam2 = om*(1. - g) |
---|
1619 | gam3 = (2. - g*mu)/4. |
---|
1620 | gam4 = 1. - gam3 |
---|
1621 | mu1(i) = 0.5 |
---|
1622 | |
---|
1623 | * PIFM (Zdunkovski et al.,1980, Conrib.Atmos.Phys., 53, 147-166): |
---|
1624 | c GAM1 = 0.25*(8. - OM*(5. + 3.*G)) |
---|
1625 | c GAM2 = 0.75*OM*(1.-G) |
---|
1626 | c GAM3 = 0.25*(2.-3.*G*MU) |
---|
1627 | c GAM4 = 1. - GAM3 |
---|
1628 | c mu1(i) = 0.5 |
---|
1629 | |
---|
1630 | * delta discrete ordinates (Schaller, 1979, Contrib.Atmos.Phys, 52, 17-26): |
---|
1631 | c GAM1 = 0.5*1.7320508*(2. - OM*(1. + G)) |
---|
1632 | c GAM2 = 0.5*1.7320508*OM*(1.-G) |
---|
1633 | c GAM3 = 0.5*(1.-1.7320508*G*MU) |
---|
1634 | c GAM4 = 1. - GAM3 |
---|
1635 | c mu1(i) = 1./sqrt(3.) |
---|
1636 | |
---|
1637 | * Calculations of Associated Legendre Polynomials for GAMA1,2,3,4 |
---|
1638 | * in delta-function, modified quadrature, hemispheric constant, |
---|
1639 | * Hybrid modified Eddington-delta function metods, p633,Table1. |
---|
1640 | * W.E.Meador and W.R.Weaver, GAS,1980,v37,p.630 |
---|
1641 | * W.J.Wiscombe and G.W. Grams, GAS,1976,v33,p2440 |
---|
1642 | c YLM0 = 2. |
---|
1643 | c YLM2 = -3.*G*MU |
---|
1644 | c YLM4 = 0.875*G**3*MU*(5.*MU**2-3.) |
---|
1645 | c YLM6=-0.171875*G**5*MU*(15.-70.*MU**2+63.*MU**4) |
---|
1646 | c YLM8=+0.073242*G**7*MU*(-35.+315.*MU**2-693.*MU**4 |
---|
1647 | c *+429.*MU**6) |
---|
1648 | c YLM10=-0.008118*G**9*MU*(315.-4620.*MU**2+18018.*MU**4 |
---|
1649 | c *-25740.*MU**6+12155.*MU**8) |
---|
1650 | c YLM12=0.003685*G**11*MU*(-693.+15015.*MU**2-90090.*MU**4 |
---|
1651 | c *+218790.*MU**6-230945.*MU**8+88179.*MU**10) |
---|
1652 | c YLMS=YLM0+YLM2+YLM4+YLM6+YLM8+YLM10+YLM12 |
---|
1653 | c YLMS=0.25*YLMS |
---|
1654 | c BETA0 = YLMS |
---|
1655 | c |
---|
1656 | c amu1=1./1.7320508 |
---|
1657 | c YLM0 = 2. |
---|
1658 | c YLM2 = -3.*G*amu1 |
---|
1659 | c YLM4 = 0.875*G**3*amu1*(5.*amu1**2-3.) |
---|
1660 | c YLM6=-0.171875*G**5*amu1*(15.-70.*amu1**2+63.*amu1**4) |
---|
1661 | c YLM8=+0.073242*G**7*amu1*(-35.+315.*amu1**2-693.*amu1**4 |
---|
1662 | c *+429.*amu1**6) |
---|
1663 | c YLM10=-0.008118*G**9*amu1*(315.-4620.*amu1**2+18018.*amu1**4 |
---|
1664 | c *-25740.*amu1**6+12155.*amu1**8) |
---|
1665 | c YLM12=0.003685*G**11*amu1*(-693.+15015.*amu1**2-90090.*amu1**4 |
---|
1666 | c *+218790.*amu1**6-230945.*amu1**8+88179.*amu1**10) |
---|
1667 | c YLMS=YLM0+YLM2+YLM4+YLM6+YLM8+YLM10+YLM12 |
---|
1668 | c YLMS=0.25*YLMS |
---|
1669 | c BETA1 = YLMS |
---|
1670 | c |
---|
1671 | c BETAn = 0.25*(2. - 1.5*G-0.21875*G**3-0.085938*G**5 |
---|
1672 | c *-0.045776*G**7) |
---|
1673 | |
---|
1674 | |
---|
1675 | * Hybrid modified Eddington-delta function(Meador and Weaver,1980,JAS,37,630): |
---|
1676 | c subd=4.*(1.-G*G*(1.-MU)) |
---|
1677 | c GAM1 = (7.-3.*G*G-OM*(4.+3.*G)+OM*G*G*(4.*BETA0+3.*G))/subd |
---|
1678 | c GAM2 =-(1.-G*G-OM*(4.-3.*G)-OM*G*G*(4.*BETA0+3.*G-4.))/subd |
---|
1679 | c GAM3 = BETA0 |
---|
1680 | c GAM4 = 1. - GAM3 |
---|
1681 | c mu1(i) = (1. - g*g*(1.- mu) )/(2. - g*g) |
---|
1682 | |
---|
1683 | ***** |
---|
1684 | * delta function (Meador, and Weaver, 1980, JAS, 37, 630): |
---|
1685 | c GAM1 = (1. - OM*(1. - beta0))/MU |
---|
1686 | c GAM2 = OM*BETA0/MU |
---|
1687 | c GAM3 = BETA0 |
---|
1688 | c GAM4 = 1. - GAM3 |
---|
1689 | c mu1(i) = mu |
---|
1690 | ***** |
---|
1691 | * modified quadrature (Meador, and Weaver, 1980, JAS, 37, 630): |
---|
1692 | c GAM1 = 1.7320508*(1. - OM*(1. - beta1)) |
---|
1693 | c GAM2 = 1.7320508*OM*beta1 |
---|
1694 | c GAM3 = BETA0 |
---|
1695 | c GAM4 = 1. - GAM3 |
---|
1696 | c mu1(i) = 1./sqrt(3.) |
---|
1697 | |
---|
1698 | * hemispheric constant (Toon et al., 1989, JGR, 94, 16287): |
---|
1699 | c GAM1 = 2.*(1. - OM*(1. - betan)) |
---|
1700 | c GAM2 = 2.*OM*BETAn |
---|
1701 | c GAM3 = BETA0 |
---|
1702 | c GAM4 = 1. - GAM3 |
---|
1703 | c mu1(i) = 0.5 |
---|
1704 | |
---|
1705 | ***** |
---|
1706 | |
---|
1707 | * lambda = pg 16,290 equation 21 |
---|
1708 | * big gamma = pg 16,290 equation 22 |
---|
1709 | * if gam2 = 0., then bgam = 0. |
---|
1710 | |
---|
1711 | lam(i) = sqrt(gam1*gam1 - gam2*gam2) |
---|
1712 | |
---|
1713 | IF (gam2 .NE. 0.) THEN |
---|
1714 | bgam(i) = (gam1 - lam(i))/gam2 |
---|
1715 | ELSE |
---|
1716 | bgam(i) = 0. |
---|
1717 | END IF |
---|
1718 | |
---|
1719 | expon = EXP(-lam(i)*taun(i)) |
---|
1720 | |
---|
1721 | * e1 - e4 = pg 16,292 equation 44 |
---|
1722 | |
---|
1723 | e1(i) = 1. + bgam(i)*expon |
---|
1724 | e2(i) = 1. - bgam(i)*expon |
---|
1725 | e3(i) = bgam(i) + expon |
---|
1726 | e4(i) = bgam(i) - expon |
---|
1727 | |
---|
1728 | * the following sets up for the C equations 23, and 24 |
---|
1729 | * found on page 16,290 |
---|
1730 | * prevent division by zero (if LAMBDA=1/MU, shift 1/MU^2 by EPS = 1.E-3 |
---|
1731 | * which is approx equiv to shifting MU by 0.5*EPS* (MU)**3 |
---|
1732 | |
---|
1733 | expon0 = EXP(-tausla(i-1)) |
---|
1734 | expon1 = EXP(-tausla(i)) |
---|
1735 | |
---|
1736 | divisr = lam(i)*lam(i) - 1./(mu2(i)*mu2(i)) |
---|
1737 | temp = AMAX1(eps,abs(divisr)) |
---|
1738 | divisr = SIGN(temp,divisr) |
---|
1739 | |
---|
1740 | up = om*pifs*((gam1 - 1./mu2(i))*gam3 + gam4*gam2)/divisr |
---|
1741 | dn = om*pifs*((gam1 + 1./mu2(i))*gam4 + gam2*gam3)/divisr |
---|
1742 | |
---|
1743 | * cup and cdn are when tau is equal to zero |
---|
1744 | * cuptn and cdntn are when tau is equal to taun |
---|
1745 | |
---|
1746 | cup(i) = up*expon0 |
---|
1747 | cdn(i) = dn*expon0 |
---|
1748 | cuptn(i) = up*expon1 |
---|
1749 | cdntn(i) = dn*expon1 |
---|
1750 | |
---|
1751 | 11 CONTINUE |
---|
1752 | |
---|
1753 | ***************** set up matrix ****** |
---|
1754 | * ssfc = pg 16,292 equation 37 where pi Fs is one (unity). |
---|
1755 | |
---|
1756 | ssfc = rsfc*mu*EXP(-tausla(nlayer))*pifs |
---|
1757 | |
---|
1758 | * MROWS = the number of rows in the matrix |
---|
1759 | |
---|
1760 | mrows = 2*nlayer |
---|
1761 | |
---|
1762 | * the following are from pg 16,292 equations 39 - 43. |
---|
1763 | * set up first row of matrix: |
---|
1764 | |
---|
1765 | i = 1 |
---|
1766 | a(1) = 0. |
---|
1767 | b(1) = e1(i) |
---|
1768 | d(1) = -e2(i) |
---|
1769 | e(1) = fdn0 - cdn(i) |
---|
1770 | |
---|
1771 | row=1 |
---|
1772 | |
---|
1773 | * set up odd rows 3 thru (MROWS - 1): |
---|
1774 | |
---|
1775 | i = 0 |
---|
1776 | DO 20, row = 3, mrows - 1, 2 |
---|
1777 | i = i + 1 |
---|
1778 | a(row) = e2(i)*e3(i) - e4(i)*e1(i) |
---|
1779 | b(row) = e1(i)*e1(i + 1) - e3(i)*e3(i + 1) |
---|
1780 | d(row) = e3(i)*e4(i + 1) - e1(i)*e2(i + 1) |
---|
1781 | e(row) = e3(i)*(cup(i + 1) - cuptn(i)) + |
---|
1782 | $ e1(i)*(cdntn(i) - cdn(i + 1)) |
---|
1783 | 20 CONTINUE |
---|
1784 | |
---|
1785 | * set up even rows 2 thru (MROWS - 2): |
---|
1786 | |
---|
1787 | i = 0 |
---|
1788 | DO 30, row = 2, mrows - 2, 2 |
---|
1789 | i = i + 1 |
---|
1790 | a(row) = e2(i + 1)*e1(i) - e3(i)*e4(i + 1) |
---|
1791 | b(row) = e2(i)*e2(i + 1) - e4(i)*e4(i + 1) |
---|
1792 | d(row) = e1(i + 1)*e4(i + 1) - e2(i + 1)*e3(i + 1) |
---|
1793 | e(row) = (cup(i + 1) - cuptn(i))*e2(i + 1) - |
---|
1794 | $ (cdn(i + 1) - cdntn(i))*e4(i + 1) |
---|
1795 | 30 CONTINUE |
---|
1796 | |
---|
1797 | * set up last row of matrix at MROWS: |
---|
1798 | |
---|
1799 | row = mrows |
---|
1800 | i = nlayer |
---|
1801 | |
---|
1802 | a(row) = e1(i) - rsfc*e3(i) |
---|
1803 | b(row) = e2(i) - rsfc*e4(i) |
---|
1804 | d(row) = 0. |
---|
1805 | e(row) = ssfc - cuptn(i) + rsfc*cdntn(i) |
---|
1806 | |
---|
1807 | * solve tri-diagonal matrix: |
---|
1808 | |
---|
1809 | CALL tridiag(a, b, d, e, y, mrows) |
---|
1810 | |
---|
1811 | **** unfold solution of matrix, compute output fluxes: |
---|
1812 | |
---|
1813 | row = 1 |
---|
1814 | lev = 1 |
---|
1815 | j = 1 |
---|
1816 | |
---|
1817 | * the following equations are from pg 16,291 equations 31 & 32 |
---|
1818 | |
---|
1819 | fdr(lev) = EXP( -tausla(0) ) |
---|
1820 | edr(lev) = mu * fdr(lev) |
---|
1821 | edn(lev) = fdn0 |
---|
1822 | eup(lev) = y(row)*e3(j) - y(row + 1)*e4(j) + cup(j) |
---|
1823 | fdn(lev) = edn(lev)/mu1(lev) |
---|
1824 | fup(lev) = eup(lev)/mu1(lev) |
---|
1825 | DO 60, lev = 2, nlayer + 1 |
---|
1826 | fdr(lev) = EXP(-tausla(lev-1)) |
---|
1827 | edr(lev) = mu *fdr(lev) |
---|
1828 | edn(lev) = y(row)*e3(j) + y(row + 1)*e4(j) + cdntn(j) |
---|
1829 | eup(lev) = y(row)*e1(j) + y(row + 1)*e2(j) + cuptn(j) |
---|
1830 | fdn(lev) = edn(lev)/mu1(j) |
---|
1831 | fup(lev) = eup(lev)/mu1(j) |
---|
1832 | |
---|
1833 | row = row + 2 |
---|
1834 | j = j + 1 |
---|
1835 | 60 CONTINUE |
---|
1836 | |
---|
1837 | end subroutine ps2str |
---|
1838 | |
---|
1839 | *=============================================================================* |
---|
1840 | |
---|
1841 | subroutine tridiag(a,b,c,r,u,n) |
---|
1842 | |
---|
1843 | !_______________________________________________________________________ |
---|
1844 | ! solves tridiagonal system. From Numerical Recipies, p. 40 |
---|
1845 | !_______________________________________________________________________ |
---|
1846 | |
---|
1847 | IMPLICIT NONE |
---|
1848 | |
---|
1849 | ! input: |
---|
1850 | |
---|
1851 | INTEGER n |
---|
1852 | REAL a, b, c, r |
---|
1853 | DIMENSION a(n),b(n),c(n),r(n) |
---|
1854 | |
---|
1855 | ! output: |
---|
1856 | |
---|
1857 | REAL u |
---|
1858 | DIMENSION u(n) |
---|
1859 | |
---|
1860 | ! local: |
---|
1861 | |
---|
1862 | INTEGER j |
---|
1863 | |
---|
1864 | REAL bet, gam |
---|
1865 | DIMENSION gam(n) |
---|
1866 | !_______________________________________________________________________ |
---|
1867 | |
---|
1868 | IF (b(1) .EQ. 0.) STOP 1001 |
---|
1869 | bet = b(1) |
---|
1870 | u(1) = r(1)/bet |
---|
1871 | DO 11, j = 2, n |
---|
1872 | gam(j) = c(j - 1)/bet |
---|
1873 | bet = b(j) - a(j)*gam(j) |
---|
1874 | IF (bet .EQ. 0.) STOP 2002 |
---|
1875 | u(j) = (r(j) - a(j)*u(j - 1))/bet |
---|
1876 | 11 CONTINUE |
---|
1877 | DO 12, j = n - 1, 1, -1 |
---|
1878 | u(j) = u(j) - gam(j + 1)*u(j + 1) |
---|
1879 | 12 CONTINUE |
---|
1880 | !_______________________________________________________________________ |
---|
1881 | |
---|
1882 | end subroutine tridiag |
---|
1883 | |
---|
1884 | *=============================================================================* |
---|
1885 | |
---|
1886 | |
---|
1887 | SUBROUTINE inter3(ng,xg,yg, n,x,y, FoldIn) |
---|
1888 | IMPLICIT NONE |
---|
1889 | |
---|
1890 | * input: |
---|
1891 | INTEGER n, ng |
---|
1892 | REAL xg(ng) |
---|
1893 | REAL x(n), y(n) |
---|
1894 | |
---|
1895 | INTEGER FoldIn |
---|
1896 | |
---|
1897 | * output: |
---|
1898 | REAL yg(ng) |
---|
1899 | |
---|
1900 | * local: |
---|
1901 | REAL a1, a2, sum |
---|
1902 | REAL tail |
---|
1903 | INTEGER jstart, i, j, k |
---|
1904 | *_______________________________________________________________________ |
---|
1905 | |
---|
1906 | * check whether flag given is legal |
---|
1907 | IF ((FoldIn .NE. 0) .AND. (FoldIn .NE. 1)) THEN |
---|
1908 | WRITE(0,*) '>>> ERROR (inter3) <<< Value for FOLDIN invalid. ' |
---|
1909 | WRITE(0,*) ' Must be 0 or 1' |
---|
1910 | STOP |
---|
1911 | ENDIF |
---|
1912 | |
---|
1913 | * do interpolation |
---|
1914 | |
---|
1915 | jstart = 1 |
---|
1916 | |
---|
1917 | DO 30, i = 1, ng - 1 |
---|
1918 | |
---|
1919 | yg(i) = 0. |
---|
1920 | sum = 0. |
---|
1921 | j = jstart |
---|
1922 | |
---|
1923 | IF (j .LE. n-1) THEN |
---|
1924 | |
---|
1925 | 20 CONTINUE |
---|
1926 | |
---|
1927 | IF (x(j+1) .LT. xg(i)) THEN |
---|
1928 | jstart = j |
---|
1929 | j = j+1 |
---|
1930 | IF (j .LE. n-1) GO TO 20 |
---|
1931 | ENDIF |
---|
1932 | 25 CONTINUE |
---|
1933 | |
---|
1934 | IF ((x(j) .LE. xg(i+1)) .AND. (j .LE. n-1)) THEN |
---|
1935 | a1 = AMAX1(x(j),xg(i)) |
---|
1936 | a2 = AMIN1(x(j+1),xg(i+1)) |
---|
1937 | sum = sum + y(j) * (a2-a1)/(x(j+1)-x(j)) |
---|
1938 | j = j+1 |
---|
1939 | GO TO 25 |
---|
1940 | |
---|
1941 | ENDIF |
---|
1942 | yg(i) = sum |
---|
1943 | |
---|
1944 | ENDIF |
---|
1945 | |
---|
1946 | 30 CONTINUE |
---|
1947 | |
---|
1948 | |
---|
1949 | * if wanted, integrate data "overhang" and fold back into last bin |
---|
1950 | |
---|
1951 | IF (FoldIn .EQ. 1) THEN |
---|
1952 | |
---|
1953 | j = j-1 |
---|
1954 | a1 = xg(ng) ! upper limit of last interpolated bin |
---|
1955 | a2 = x(j+1) ! upper limit of last input bin considered |
---|
1956 | |
---|
1957 | * do folding only if grids don't match up and there is more input |
---|
1958 | IF ((a2 .GT. a1) .OR. (j+1 .LT. n)) THEN |
---|
1959 | tail = y(j) * (a2-a1)/(x(j+1)-x(j)) |
---|
1960 | DO k = j+1, n-1 |
---|
1961 | tail = tail + y(k) * (x(k+1)-x(k)) |
---|
1962 | ENDDO |
---|
1963 | yg(ng-1) = yg(ng-1) + tail |
---|
1964 | ENDIF |
---|
1965 | |
---|
1966 | ENDIF |
---|
1967 | *_______________________________________________________________________ |
---|
1968 | |
---|
1969 | RETURN |
---|
1970 | end subroutine inter3 |
---|
1971 | |
---|
1972 | end subroutine photolysis_online |
---|