[2560] | 1 | MODULE optcv_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
| 7 | SUBROUTINE OPTCV(DTAUV,TAUV,TAUCUMV,PLEV, & |
---|
| 8 | QXVAER,QSVAER,GVAER,WBARV,COSBV, & |
---|
| 9 | TAURAY,TAUAERO,TMID,PMID,TAUGSURF,QVAR,MUVAR) |
---|
| 10 | |
---|
| 11 | use radinc_h, only: L_NLAYRAD, L_NLEVRAD, L_LEVELS, L_NSPECTV, L_NGAUSS, L_REFVAR, NAERKIND |
---|
| 12 | use radcommon_h, only: gasv, tlimit, tgasref, pfgasref,wnov,scalep,indv |
---|
| 13 | use gases_h, only: gfrac, ngasmx, igas_H2, igas_H2O, igas_He, igas_N2 |
---|
| 14 | |
---|
| 15 | implicit none |
---|
| 16 | #include "YOMCST.h" |
---|
| 17 | |
---|
| 18 | !================================================================== |
---|
| 19 | ! |
---|
| 20 | ! Purpose |
---|
| 21 | ! ------- |
---|
| 22 | ! Calculates shortwave optical constants at each level. |
---|
| 23 | ! |
---|
| 24 | ! Authors |
---|
| 25 | ! ------- |
---|
| 26 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
---|
| 27 | ! |
---|
| 28 | !================================================================== |
---|
| 29 | ! |
---|
| 30 | ! THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL |
---|
| 31 | ! IT CALCULATES FOR EACH LAYER, FOR EACH SPECTRAL INTERVAL IN THE VISUAL |
---|
| 32 | ! LAYER: WBAR, DTAU, COSBAR |
---|
| 33 | ! LEVEL: TAU |
---|
| 34 | ! |
---|
| 35 | ! TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code |
---|
| 36 | ! layer L. NW is spectral wavelength interval, ng the Gauss point index. |
---|
| 37 | ! |
---|
| 38 | ! TLEV(L) - Temperature at the layer boundary |
---|
| 39 | ! PLEV(L) - Pressure at the layer boundary (i.e. level) |
---|
| 40 | ! GASV(NT,NPS,NW,NG) - Visible k-coefficients |
---|
| 41 | ! |
---|
| 42 | !------------------------------------------------------------------- |
---|
| 43 | |
---|
| 44 | |
---|
| 45 | real*8 DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 46 | real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
| 47 | real*8 TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
| 48 | real*8 TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
| 49 | real*8 PLEV(L_LEVELS) |
---|
| 50 | real*8 TMID(L_LEVELS), PMID(L_LEVELS) |
---|
| 51 | real*8 COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 52 | real*8 WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 53 | |
---|
| 54 | ! for aerosols |
---|
| 55 | real*8 QXVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
| 56 | real*8 QSVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
| 57 | real*8 GVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
| 58 | real*8 TAUAERO(L_LEVELS,NAERKIND) |
---|
| 59 | real*8 TAUAEROLK(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
| 60 | real*8 TAEROS(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
| 61 | |
---|
| 62 | integer L, NW, NG, K, LK, IAER |
---|
| 63 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
---|
| 64 | real*8 ANS, TAUGAS |
---|
| 65 | real*8 TAURAY(L_NSPECTV) |
---|
| 66 | real*8 TRAY(L_LEVELS,L_NSPECTV) |
---|
| 67 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
---|
| 68 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
---|
| 69 | |
---|
| 70 | real*8 taugsurf(L_NSPECTV,L_NGAUSS-1) |
---|
| 71 | real*8 DCONT,DAERO |
---|
| 72 | real*8 DRAYAER |
---|
| 73 | double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc |
---|
| 74 | double precision p_cross |
---|
| 75 | |
---|
| 76 | ! variable species mixing ratio variables |
---|
| 77 | real*8 QVAR(L_LEVELS), WRATIO(L_LEVELS), MUVAR(L_LEVELS) |
---|
| 78 | real*8 KCOEF(4) |
---|
| 79 | integer NVAR(L_LEVELS) |
---|
| 80 | |
---|
| 81 | ! temporary variables to reduce memory access time to gasv |
---|
| 82 | real*8 tmpk(2,2) |
---|
| 83 | real*8 tmpkvar(2,2,2) |
---|
| 84 | |
---|
| 85 | ! temporary variables for multiple aerosol calculation |
---|
| 86 | real*8 atemp(L_NLAYRAD,L_NSPECTV) |
---|
| 87 | real*8 btemp(L_NLAYRAD,L_NSPECTV) |
---|
| 88 | real*8 ctemp(L_NLAYRAD,L_NSPECTV) |
---|
| 89 | |
---|
| 90 | ! variables for k in units m^-1 |
---|
| 91 | real*8 dz(L_LEVELS) |
---|
| 92 | real*8 Cmk |
---|
| 93 | |
---|
| 94 | integer igas, jgas |
---|
| 95 | |
---|
| 96 | integer interm |
---|
| 97 | |
---|
| 98 | !! AS: to save time in computing continuum (see bilinearbig) |
---|
| 99 | IF (.not.ALLOCATED(indv)) THEN |
---|
| 100 | ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx)) |
---|
| 101 | indv = -9999 ! this initial value means "to be calculated" |
---|
| 102 | ENDIF |
---|
| 103 | |
---|
| 104 | !======================================================================= |
---|
| 105 | ! Determine the total gas opacity throughout the column, for each |
---|
| 106 | ! spectral interval, NW, and each Gauss point, NG. |
---|
| 107 | ! Calculate the continuum opacities, i.e., those that do not depend on |
---|
| 108 | ! NG, the Gauss index. |
---|
| 109 | |
---|
| 110 | taugsurf(:,:) = 0.0 |
---|
| 111 | dpr(:) = 0.0 |
---|
| 112 | lkcoef(:,:) = 0.0 |
---|
| 113 | Cmk= 0.01 * 1.0 / (RG * RMD * 1.672621e-27) ! q_main=1.0 assumed. |
---|
| 114 | |
---|
| 115 | do K=2,L_LEVELS |
---|
| 116 | DPR(k) = PLEV(K)-PLEV(K-1) |
---|
| 117 | |
---|
| 118 | ! if we have continuum opacities, we need dz |
---|
| 119 | dz(k) = dpr(k)*R*TMID(K)/(RG*PMID(K)) |
---|
| 120 | U(k) = Cmk*DPR(k) |
---|
| 121 | |
---|
| 122 | call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,& |
---|
| 123 | LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) |
---|
| 124 | |
---|
| 125 | do LK=1,4 |
---|
| 126 | LKCOEF(K,LK) = LCOEF(LK) |
---|
| 127 | end do |
---|
| 128 | end do ! levels |
---|
| 129 | |
---|
| 130 | ! Spectral dependance of aerosol absorption |
---|
| 131 | !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR |
---|
| 132 | ! but visible does not handle very well diffusion in first layer. |
---|
| 133 | ! The tauaero and tauray are thus set to 0 (a small value for rayleigh because the code crashes otherwise) |
---|
| 134 | ! in the 4 first semilayers in optcv, but not optci. |
---|
| 135 | ! This solves random variations of the sw heating at the model top. |
---|
| 136 | do iaer=1,naerkind |
---|
| 137 | do NW=1,L_NSPECTV |
---|
| 138 | TAEROS(1:4,NW,IAER)=0.d0 |
---|
| 139 | do K=5,L_LEVELS |
---|
| 140 | TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXVAER(K,NW,IAER) |
---|
| 141 | end do ! levels |
---|
| 142 | end do |
---|
| 143 | end do |
---|
| 144 | |
---|
| 145 | ! Rayleigh scattering |
---|
| 146 | do NW=1,L_NSPECTV |
---|
| 147 | TRAY(1:4,NW) = 1d-30 |
---|
| 148 | do K=5,L_LEVELS |
---|
| 149 | TRAY(K,NW) = TAURAY(NW) * DPR(K) |
---|
| 150 | end do ! levels |
---|
| 151 | end do |
---|
| 152 | |
---|
| 153 | ! we ignore K=1... |
---|
| 154 | do K=2,L_LEVELS |
---|
| 155 | |
---|
| 156 | do NW=1,L_NSPECTV |
---|
| 157 | |
---|
| 158 | DRAYAER = TRAY(K,NW) |
---|
| 159 | ! DRAYAER is Tau RAYleigh scattering, plus AERosol opacity |
---|
| 160 | do iaer=1,naerkind |
---|
| 161 | DRAYAER = DRAYAER + TAEROS(K,NW,IAER) |
---|
| 162 | end do |
---|
| 163 | |
---|
| 164 | DCONT = 0.0 ! continuum absorption |
---|
| 165 | |
---|
| 166 | ! if(continuum)then |
---|
| 167 | ! include continua if necessary |
---|
| 168 | wn_cont = dble(wnov(nw)) |
---|
| 169 | T_cont = dble(TMID(k)) |
---|
| 170 | do igas=1,ngasmx |
---|
| 171 | |
---|
| 172 | if(gfrac(igas).eq.-1)then ! variable |
---|
| 173 | p_cont = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol |
---|
| 174 | else |
---|
| 175 | p_cont = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k))) |
---|
| 176 | endif |
---|
| 177 | |
---|
| 178 | dtemp=0.0 |
---|
| 179 | |
---|
| 180 | ! For Venus: only H2O, using CKD |
---|
| 181 | if(igas.eq.igas_H2O.and.T_cont.gt.200.0)then |
---|
| 182 | |
---|
| 183 | p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air! |
---|
| 184 | ! if(H2Ocont_simple)then |
---|
| 185 | ! call interpolateH2Ocont_PPC(wn_cont,T_cont,p_cont,p_air,dtemp,.false.) |
---|
| 186 | ! else |
---|
| 187 | interm = indv(nw,igas,igas) |
---|
| 188 | call interpolateH2Ocont_CKD(wn_cont,T_cont,p_cont,p_air,dtemp,.false.,interm) |
---|
| 189 | indv(nw,igas,igas) = interm |
---|
| 190 | ! endif |
---|
| 191 | |
---|
| 192 | endif |
---|
| 193 | |
---|
| 194 | DCONT = DCONT + dtemp |
---|
| 195 | |
---|
| 196 | enddo |
---|
| 197 | |
---|
| 198 | DCONT = DCONT*dz(k) |
---|
| 199 | |
---|
| 200 | ! endif |
---|
| 201 | |
---|
| 202 | do ng=1,L_NGAUSS-1 |
---|
| 203 | |
---|
| 204 | ! Now compute TAUGAS |
---|
| 205 | |
---|
| 206 | ! Interpolate between water mixing ratios |
---|
| 207 | ! WRATIO = 0.0 if the requested water amount is equal to, or outside the |
---|
| 208 | ! the water data range |
---|
| 209 | |
---|
| 210 | if(L_REFVAR.eq.1)then ! added by RW for special no variable case |
---|
| 211 | |
---|
| 212 | ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically |
---|
| 213 | ! the execution time of optci/v -> ~ factor 2 on the whole radiative |
---|
| 214 | ! transfer on the tested simulations ! |
---|
| 215 | |
---|
| 216 | tmpk = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) |
---|
| 217 | |
---|
| 218 | KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG) |
---|
| 219 | KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG) |
---|
| 220 | KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG) |
---|
| 221 | KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG) |
---|
| 222 | |
---|
| 223 | else |
---|
| 224 | |
---|
| 225 | tmpkvar = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG) |
---|
| 226 | |
---|
| 227 | KCOEF(1) = tmpkvar(1,1,1) + WRATIO(K) * & |
---|
| 228 | ( tmpkvar(1,1,2)-tmpkvar(1,1,1) ) |
---|
| 229 | |
---|
| 230 | KCOEF(2) = tmpkvar(1,2,1) + WRATIO(K) * & |
---|
| 231 | ( tmpkvar(1,2,2)-tmpkvar(1,2,1) ) |
---|
| 232 | |
---|
| 233 | KCOEF(3) = tmpkvar(2,2,1) + WRATIO(K) * & |
---|
| 234 | ( tmpkvar(2,2,2)-tmpkvar(2,2,1) ) |
---|
| 235 | |
---|
| 236 | KCOEF(4) = tmpkvar(2,1,1) + WRATIO(K) * & |
---|
| 237 | ( tmpkvar(2,1,2)-tmpkvar(2,1,1) ) |
---|
| 238 | |
---|
| 239 | |
---|
| 240 | endif |
---|
| 241 | |
---|
| 242 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
---|
| 243 | |
---|
| 244 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
---|
| 245 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
---|
| 246 | |
---|
| 247 | TAUGAS = U(k)*ANS |
---|
| 248 | |
---|
| 249 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT |
---|
| 250 | DTAUKV(K,nw,ng) = TAUGAS & |
---|
| 251 | + DRAYAER & ! DRAYAER includes all scattering contributions |
---|
| 252 | + DCONT ! For parameterized continuum aborption |
---|
| 253 | |
---|
| 254 | end do |
---|
| 255 | |
---|
| 256 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
---|
| 257 | ! which holds continuum opacity only |
---|
| 258 | |
---|
| 259 | NG = L_NGAUSS |
---|
| 260 | DTAUKV(K,nw,ng) = DRAYAER + DCONT ! Scattering + parameterized continuum absorption |
---|
| 261 | |
---|
| 262 | end do |
---|
| 263 | end do |
---|
| 264 | |
---|
| 265 | |
---|
| 266 | !======================================================================= |
---|
| 267 | ! Now the full treatment for the layers, where besides the opacity |
---|
| 268 | ! we need to calculate the scattering albedo and asymmetry factors |
---|
| 269 | |
---|
| 270 | !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR |
---|
| 271 | ! but not in the visible |
---|
| 272 | ! The tauaero is thus set to 0 in the 4 first semilayers in optcv, but not optci. |
---|
| 273 | ! This solves random variations of the sw heating at the model top. |
---|
| 274 | do iaer=1,naerkind |
---|
| 275 | DO NW=1,L_NSPECTV |
---|
| 276 | TAUAEROLK(1:4,NW,IAER)=0.d0 |
---|
| 277 | DO K=5,L_LEVELS |
---|
| 278 | TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER) * QSVAER(K,NW,IAER) ! effect of scattering albedo |
---|
| 279 | ENDDO |
---|
| 280 | ENDDO |
---|
| 281 | end do |
---|
| 282 | |
---|
| 283 | DO NW=1,L_NSPECTV |
---|
| 284 | DO L=1,L_NLAYRAD-1 |
---|
| 285 | K = 2*L+1 |
---|
| 286 | atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind))+SUM(GVAER(K+1,NW,1:naerkind) * TAUAEROLK(K+1,NW,1:naerkind)) |
---|
| 287 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind)) |
---|
| 288 | ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) ! JVO 2017 : does this 0.999 is really meaningful ? |
---|
| 289 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW) |
---|
| 290 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
---|
| 291 | END DO ! L vertical loop |
---|
| 292 | |
---|
| 293 | ! Last level |
---|
| 294 | L = L_NLAYRAD |
---|
| 295 | K = 2*L+1 |
---|
| 296 | atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind)) |
---|
| 297 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) |
---|
| 298 | ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ? |
---|
| 299 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) |
---|
| 300 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
---|
| 301 | |
---|
| 302 | |
---|
| 303 | END DO ! NW spectral loop |
---|
| 304 | |
---|
| 305 | DO NG=1,L_NGAUSS |
---|
| 306 | DO NW=1,L_NSPECTV |
---|
| 307 | DO L=1,L_NLAYRAD-1 |
---|
| 308 | |
---|
| 309 | K = 2*L+1 |
---|
| 310 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG) |
---|
| 311 | WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng) |
---|
| 312 | |
---|
| 313 | END DO ! L vertical loop |
---|
| 314 | |
---|
| 315 | ! Last level |
---|
| 316 | |
---|
| 317 | L = L_NLAYRAD |
---|
| 318 | K = 2*L+1 |
---|
| 319 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) |
---|
| 320 | |
---|
| 321 | WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG) |
---|
| 322 | |
---|
| 323 | END DO ! NW spectral loop |
---|
| 324 | END DO ! NG Gauss loop |
---|
| 325 | |
---|
| 326 | ! Total extinction optical depths |
---|
| 327 | |
---|
| 328 | DO NG=1,L_NGAUSS ! full gauss loop |
---|
| 329 | DO NW=1,L_NSPECTV |
---|
| 330 | TAUCUMV(1,NW,NG)=0.0D0 |
---|
| 331 | DO K=2,L_LEVELS |
---|
| 332 | TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG) |
---|
| 333 | END DO |
---|
| 334 | |
---|
| 335 | DO L=1,L_NLAYRAD |
---|
| 336 | TAUV(L,NW,NG)=TAUCUMV(2*L,NW,NG) |
---|
| 337 | END DO |
---|
| 338 | TAUV(L,NW,NG)=TAUCUMV(2*L_NLAYRAD+1,NW,NG) |
---|
| 339 | END DO |
---|
| 340 | END DO ! end full gauss loop |
---|
| 341 | |
---|
| 342 | |
---|
| 343 | |
---|
| 344 | |
---|
| 345 | end subroutine optcv |
---|
| 346 | |
---|
| 347 | END MODULE optcv_mod |
---|