1 | !****************************************************************************** |
---|
2 | !* venus_SAS_composition SUBROUTINE |
---|
3 | !* modified from |
---|
4 | !* PROGRAM PSC_MODEL_E |
---|
5 | !* by A. Määttänen |
---|
6 | !* subroutine for LMDZ+photochemistry VENUS |
---|
7 | !* by A. Stolzenbach |
---|
8 | !* |
---|
9 | !* Input/Output files: |
---|
10 | !* ------------------- |
---|
11 | !* |
---|
12 | !---------------------------------------------------------------------------- |
---|
13 | SUBROUTINE new_cloud_venus( |
---|
14 | + nblev, nblon, |
---|
15 | + TT,PP, |
---|
16 | + mrt_wv,mrt_sa, |
---|
17 | + mr_wv,mr_sa) |
---|
18 | |
---|
19 | USE chemparam_mod |
---|
20 | IMPLICIT NONE |
---|
21 | |
---|
22 | #include "YOMCST.h" |
---|
23 | |
---|
24 | INTEGER, INTENT(IN) :: nblon ! nombre de points horizontaux |
---|
25 | INTEGER, INTENT(IN) :: nblev ! nombre de couches verticales |
---|
26 | |
---|
27 | !---------------------------------------------------------------------------- |
---|
28 | ! Ambient air state variables: |
---|
29 | REAL, INTENT(IN), DIMENSION(nblon,nblev) :: mrt_wv,mrt_sa, |
---|
30 | + TT,PP |
---|
31 | REAL, INTENT(INOUT), DIMENSION(nblon,nblev) :: mr_wv,mr_sa |
---|
32 | !---------------------------------------------------------------------------- |
---|
33 | INTEGER :: ilon, ilev, imode |
---|
34 | !---------------------------------------------------------------------------- |
---|
35 | ! Thermodynamic functions: |
---|
36 | REAL :: RHODROPLET |
---|
37 | !---------------------------------------------------------------------------- |
---|
38 | ! Auxilary variables: |
---|
39 | REAL :: NH2SO4,NH2O |
---|
40 | REAL :: H2SO4_liq,H2O_liq |
---|
41 | REAL :: CONCM |
---|
42 | REAL :: MCONDTOT |
---|
43 | REAL :: RMODE |
---|
44 | REAL :: WSAFLAG |
---|
45 | REAL :: K_SAV |
---|
46 | !---------------------------------------------------------------------------- |
---|
47 | ! Ridder's Method variables: |
---|
48 | REAL :: WVMIN, WVMAX, WVACC |
---|
49 | |
---|
50 | INTEGER :: NBROOT |
---|
51 | |
---|
52 | INTEGER :: MAXITE |
---|
53 | PARAMETER(MAXITE=20) |
---|
54 | |
---|
55 | INTEGER :: NBRAC |
---|
56 | PARAMETER(NBRAC=20) |
---|
57 | |
---|
58 | INTEGER :: FLAG |
---|
59 | !---------------------------------------------------------------------------- |
---|
60 | |
---|
61 | !---------------------------------------------------------------------------- |
---|
62 | ! External functions needed: |
---|
63 | REAL :: IRFRMWV |
---|
64 | !---------------------------------------------------------------------------- |
---|
65 | |
---|
66 | |
---|
67 | ! >>> Program starts here: |
---|
68 | |
---|
69 | !AM Venus |
---|
70 | ! These aerosols will then be given an equilibrium composition for the given size distribution |
---|
71 | |
---|
72 | ! Hanna Vehkamäki and Markku Kulmala and Ismo Napari |
---|
73 | ! and Kari E. J. Lehtinen and Claudia Timmreck and Madis Noppel and Ari Laaksonen, 2002, |
---|
74 | ! An improved parameterization for sulfuric acid/water nucleation rates for tropospheric |
---|
75 | !and stratospheric conditions, () J. Geophys. Res., 107, PP. 4622-4631 |
---|
76 | |
---|
77 | !=========================================== |
---|
78 | ! Debut boucle sur niveau et lat,lon |
---|
79 | !=========================================== |
---|
80 | ! Init, tous les points=0, cela met les niveaux > cloudmax et < cloudmin a 0 |
---|
81 | NBRTOT(:,:,:)=0.0E+0 |
---|
82 | WH2SO4(:,:)=0.0E+0 |
---|
83 | rho_droplet(:,:)=0.0E+0 |
---|
84 | |
---|
85 | DO ilev=cloudmin, cloudmax |
---|
86 | DO ilon=1, nblon |
---|
87 | |
---|
88 | ! Boucle sur les modes |
---|
89 | RMODE=0.0E+0 |
---|
90 | K_SAV = 0.0 |
---|
91 | |
---|
92 | DO imode=1, nbr_mode |
---|
93 | IF (K_MASS(ilon,ilev,imode).GT.K_SAV) THEN |
---|
94 | ! RMODE est le rayon modal de la distribution en volume du mode le plus |
---|
95 | ! representatif pour la Mtot |
---|
96 | RMODE=R_MEDIAN(ilon,ilev,imode)* |
---|
97 | & EXP(2.*(DLOG(STDDEV(ilon,ilev,imode))**2.)) |
---|
98 | K_SAV=K_MASS(ilon,ilev,imode) |
---|
99 | ENDIF |
---|
100 | ENDDO ! FIN boucle imode |
---|
101 | |
---|
102 | ! Initialisation des bornes pour WV |
---|
103 | WVMIN=1.E-90 |
---|
104 | WVMAX=mrt_wv(ilon,ilev) |
---|
105 | |
---|
106 | ! Accuracy de WVeq |
---|
107 | WVACC=WVMAX*1.0E-3 |
---|
108 | |
---|
109 | ! BRACWV borne la fonction f(WV) - WV = 0 |
---|
110 | ! de WV=0 à WV=WVtot on cherche l'intervalle où f(WV) - WV = 0 |
---|
111 | ! avec précisément f(WVliq de WSA<=WVinput) + WVinput - WVtot = 0 |
---|
112 | ! Elle fait appel à la fct/ssrtine ITERWV() |
---|
113 | |
---|
114 | CALL BRACWV(WVMIN,WVMAX,NBRAC,RMODE, |
---|
115 | & mrt_wv(ilon,ilev),mrt_sa(ilon,ilev),TT(ilon,ilev), |
---|
116 | & PP(ilon,ilev),FLAG,WSAFLAG,NBROOT) |
---|
117 | |
---|
118 | SELECT CASE(FLAG) |
---|
119 | |
---|
120 | CASE(1) |
---|
121 | ! Cas NROOT=1 ou NROOT>1 mais dans un intervalle restreint WVTOT (cas courant) |
---|
122 | ! IRFRMWV Ridder's method pour trouver, sur [WVmin,WVmax], WVo tel que f(WVo) - WVo = 0 |
---|
123 | ! Elle fait appel la fct/ssrtine ITERWV() |
---|
124 | |
---|
125 | WH2SO4(ilon,ilev)=IRFRMWV(WVMIN,WVMAX,WVACC,MAXITE,RMODE, |
---|
126 | & TT(ilon,ilev),PP(ilon,ilev), |
---|
127 | & mrt_wv(ilon,ilev),mrt_sa(ilon,ilev),NBROOT) |
---|
128 | |
---|
129 | rho_droplet(ilon,ilev)=RHODROPLET(WH2SO4(ilon,ilev), |
---|
130 | & TT(ilon,ilev)) |
---|
131 | |
---|
132 | ! IF (rho_droplet(ilon,ilev).LT.1100.) THEN |
---|
133 | ! PRINT*,'PROBLEM RHO_DROPLET' |
---|
134 | ! PRINT*,'rho_droplet',rho_droplet(ilon,ilev) |
---|
135 | ! PRINT*,'T',TT(ilon,ilev),'WSA',WH2SO4(ilon,ilev) |
---|
136 | ! PRINT*,'RHODROPLET',RHODROPLET(WH2SO4(ilon,ilev), |
---|
137 | ! & TT(ilon,ilev)) |
---|
138 | ! PRINT*,'FLAG',FLAG,'NROOT',NBROOT |
---|
139 | ! STOP |
---|
140 | ! ENDIF |
---|
141 | |
---|
142 | CONCM= PP(ilon,ilev)/(1.3806488E-23*TT(ilon,ilev)) !air number density, molec/m3 |
---|
143 | |
---|
144 | NH2SO4=mrt_sa(ilon,ilev)*CONCM |
---|
145 | NH2O=mrt_wv(ilon,ilev)*CONCM |
---|
146 | |
---|
147 | CALL CALCM_SAT(NH2SO4,NH2O,WH2SO4(ilon,ilev), |
---|
148 | & rho_droplet(ilon,ilev),TT(ilon,ilev), |
---|
149 | & H2SO4_liq,H2O_liq,MCONDTOT) |
---|
150 | |
---|
151 | ! Boucle sur les modes |
---|
152 | DO imode=1, nbr_mode |
---|
153 | IF (K_MASS(ilon,ilev,imode).GT.0.) THEN |
---|
154 | NBRTOT(ilon,ilev,imode)= 1.E-6*3./(4.*RPI)* |
---|
155 | & K_MASS(ilon,ilev,imode)*MCONDTOT* |
---|
156 | & EXP(-4.5*DLOG(STDDEV(ilon,ilev,imode))**2.)/ |
---|
157 | & (R_MEDIAN(ilon,ilev,imode)**3.) |
---|
158 | ELSE |
---|
159 | NBRTOT(ilon,ilev,imode)=0.0E+0 |
---|
160 | ENDIF |
---|
161 | ENDDO |
---|
162 | |
---|
163 | ! Passage de #/m3 en VMR |
---|
164 | H2O_liq=H2O_liq/CONCM |
---|
165 | H2SO4_liq=H2SO4_liq/CONCM |
---|
166 | |
---|
167 | mr_wv(ilon,ilev)=mrt_wv(ilon,ilev)-H2O_liq |
---|
168 | mr_sa(ilon,ilev)=mrt_sa(ilon,ilev)-H2SO4_liq |
---|
169 | |
---|
170 | ! Problemes quand on a condense tout, on peut obtenir des -1e-24 |
---|
171 | ! aprs la soustraction et conversion de ND VMR |
---|
172 | IF (mr_wv(ilon,ilev).LE.0.0) mr_wv(ilon,ilev)=1.0E-30 |
---|
173 | IF (mr_sa(ilon,ilev).LE.0.0) mr_sa(ilon,ilev)=1.0E-30 |
---|
174 | |
---|
175 | |
---|
176 | |
---|
177 | CASE(2) |
---|
178 | ! Cas NROOT=0 mais proche de 0 |
---|
179 | |
---|
180 | WH2SO4(ilon,ilev)=WSAFLAG |
---|
181 | |
---|
182 | rho_droplet(ilon,ilev)=RHODROPLET(WH2SO4(ilon,ilev), |
---|
183 | & TT(ilon,ilev)) |
---|
184 | |
---|
185 | ! ATTENTION ce IF ne sert a rien en fait, juste a retenir une situation |
---|
186 | ! ubuesque dans mon code ou sans ce IF les valeurs de rho_droplets sont |
---|
187 | ! incohrentes avec TT et WH2SO4 (a priori lorsque NTOT=0) |
---|
188 | ! Juste le fait de METTRE un IF fait que rho_droplet a la bonne valeur |
---|
189 | ! donne par RHODROPLET (cf test externe en Python), sinon, la valeur est trop |
---|
190 | ! basse (de l'ordre de 1000 kg/m3) et correspond parfois la valeur avec |
---|
191 | ! WSA=0.1 (pas totalement sur) |
---|
192 | ! En tous cas, incoherent avec ce qui est attendue pour le WSA et T donnee |
---|
193 | ! La version avec le IF (rho<1100 & WSA>0.1) est CORRECTE, rho_droplet a |
---|
194 | ! la bonne valeur (tests externes Python confirment) |
---|
195 | |
---|
196 | IF ((rho_droplet(ilon,ilev).LT.1100.).AND. |
---|
197 | & (WH2SO4(ilon,ilev).GT.0.1))THEN |
---|
198 | PRINT*,'PROBLEM RHO_DROPLET' |
---|
199 | PRINT*,'rho_droplet',rho_droplet(ilon,ilev) |
---|
200 | PRINT*,'T',TT(ilon,ilev),'WSA',WH2SO4(ilon,ilev) |
---|
201 | PRINT*,'RHODROPLET',RHODROPLET(WH2SO4(ilon,ilev), |
---|
202 | & TT(ilon,ilev)) |
---|
203 | PRINT*,'FLAG',FLAG,'NROOT',NBROOT |
---|
204 | STOP |
---|
205 | ENDIF |
---|
206 | |
---|
207 | |
---|
208 | CONCM= PP(ilon,ilev)/(1.3806488E-23*TT(ilon,ilev)) !air number density, molec/m3 |
---|
209 | |
---|
210 | NH2SO4=mrt_sa(ilon,ilev)*CONCM |
---|
211 | NH2O=mrt_wv(ilon,ilev)*CONCM |
---|
212 | |
---|
213 | CALL CALCM_SAT(NH2SO4,NH2O,WH2SO4(ilon,ilev), |
---|
214 | & rho_droplet(ilon,ilev),TT(ilon,ilev), |
---|
215 | & H2SO4_liq,H2O_liq,MCONDTOT) |
---|
216 | |
---|
217 | ! Boucle sur les modes |
---|
218 | DO imode=1, nbr_mode |
---|
219 | IF (K_MASS(ilon,ilev,imode).GT.0.) THEN |
---|
220 | NBRTOT(ilon,ilev,imode)= 1.E-6*3./(4.*RPI)* |
---|
221 | & K_MASS(ilon,ilev,imode)*MCONDTOT* |
---|
222 | & EXP(-4.5*DLOG(STDDEV(ilon,ilev,imode))**2.)/ |
---|
223 | & (R_MEDIAN(ilon,ilev,imode)**3.) |
---|
224 | ELSE |
---|
225 | NBRTOT(ilon,ilev,imode)=0.0E+0 |
---|
226 | ENDIF |
---|
227 | ENDDO |
---|
228 | |
---|
229 | ! Passage de #/m3 en VMR |
---|
230 | H2O_liq=H2O_liq/CONCM |
---|
231 | H2SO4_liq=H2SO4_liq/CONCM |
---|
232 | |
---|
233 | mr_wv(ilon,ilev)=mrt_wv(ilon,ilev)-H2O_liq |
---|
234 | mr_sa(ilon,ilev)=mrt_sa(ilon,ilev)-H2SO4_liq |
---|
235 | |
---|
236 | ! Problmes quand on a condense tout, on peut obtenir des -1e-24 |
---|
237 | ! aprs la soustraction et conversion de ND VMR |
---|
238 | IF (mr_wv(ilon,ilev).LE.0.0) mr_wv(ilon,ilev)=1.0E-30 |
---|
239 | IF (mr_sa(ilon,ilev).LE.0.0) mr_sa(ilon,ilev)=1.0E-30 |
---|
240 | |
---|
241 | CASE(3) |
---|
242 | ! Cas 0 NROOT |
---|
243 | mr_wv(ilon,ilev)=mrt_wv(ilon,ilev) |
---|
244 | mr_sa(ilon,ilev)=mrt_sa(ilon,ilev) |
---|
245 | rho_droplet(ilon,ilev)=0.0E+0 |
---|
246 | WH2SO4(ilon,ilev)=0.0E+0 |
---|
247 | DO imode=1, nbr_mode |
---|
248 | NBRTOT(ilon,ilev,imode)=0.0E+0 |
---|
249 | ENDDO |
---|
250 | |
---|
251 | END SELECT |
---|
252 | ENDDO !FIN boucle ilon |
---|
253 | ENDDO !FIN boucle ilev |
---|
254 | |
---|
255 | END SUBROUTINE new_cloud_venus |
---|
256 | |
---|
257 | |
---|
258 | !***************************************************************************** |
---|
259 | !* SUBROUTINE ITERWV() |
---|
260 | SUBROUTINE ITERWV(WV,WVLIQ,WVEQOUT,WVTOT,WSAOUT,SATOT, |
---|
261 | + TAIR,PAIR,RADIUS) |
---|
262 | !***************************************************************************** |
---|
263 | !* Cette routine est la solution par itration afin de trouver WSA pour un WV, |
---|
264 | !* et donc LPPWV, donn. Ce qui nous donne egalement le WV correspondant au |
---|
265 | !* WSA solution |
---|
266 | !* For VenusGCM by A. Stolzenbach 07/2014 |
---|
267 | !* OUTPUT: WVEQ et WSAOUT |
---|
268 | |
---|
269 | IMPLICIT NONE |
---|
270 | REAL, INTENT(IN) :: WV, WVTOT, SATOT, TAIR, PAIR, RADIUS |
---|
271 | |
---|
272 | REAl, INTENT(OUT) :: WVEQOUT, WSAOUT, WVLIQ |
---|
273 | |
---|
274 | REAL :: WSAMIN, WSAMAX, WSAACC |
---|
275 | PARAMETER(WSAACC=0.001) |
---|
276 | |
---|
277 | REAL :: LPPWV |
---|
278 | |
---|
279 | INTEGER :: MAXITSA, NBRACSA, NBROOT |
---|
280 | PARAMETER(MAXITSA=20) |
---|
281 | PARAMETER(NBRACSA=20) |
---|
282 | |
---|
283 | LOGICAl :: FLAG1,FLAG2 |
---|
284 | |
---|
285 | ! External Function |
---|
286 | REAl :: IRFRMSA, WVCOND |
---|
287 | |
---|
288 | IF (RADIUS.LT.1E-30) THEN |
---|
289 | PRINT*,'RMODE == 0 FLAG 3' |
---|
290 | STOP |
---|
291 | ENDIF |
---|
292 | ! Initialisation WSA=[0.1,1.0] |
---|
293 | WSAMIN=0.1 |
---|
294 | WSAMAX=1.0 |
---|
295 | |
---|
296 | LPPWV=DLOG(PAIR*WV) |
---|
297 | |
---|
298 | ! Appel Bracket de KEEQ |
---|
299 | CALL BRACWSA(WSAMIN,WSAMAX,NBRACSA,RADIUS,TAIR, |
---|
300 | & LPPWV,FLAG1,FLAG2,NBROOT) |
---|
301 | |
---|
302 | IF ((.NOT.FLAG1).AND.(.NOT.FLAG2).AND.(NBROOT.EQ.1)) THEN |
---|
303 | ! Appel Ridder's Method |
---|
304 | |
---|
305 | WSAOUT=IRFRMSA(WSAMIN,WSAMAX,WSAACC,MAXITSA, |
---|
306 | & RADIUS,TAIR,PAIR,LPPWV,NBROOT) |
---|
307 | ! IF (WSAOUT.EQ.1.0) WSAOUT=0.999999 |
---|
308 | ! IF (WSAOUT.LT.0.1) WSAOUT=0.1 |
---|
309 | |
---|
310 | ! Si BRACWSA ne trouve aucun ensemble solution KEEQ=0 on fixe WSA a 0.9999 ou 0.1 |
---|
311 | ELSE |
---|
312 | IF (FLAG1.AND.(.NOT.FLAG2)) WSAOUT=0.999999 |
---|
313 | IF (FLAG2.AND.(.NOT.FLAG1)) WSAOUT=WSAMIN |
---|
314 | IF (FLAG1.AND.FLAG2) THEN |
---|
315 | PRINT*,'FLAGs BARCWSA tous TRUE' |
---|
316 | STOP |
---|
317 | ENDIF |
---|
318 | ENDIF |
---|
319 | |
---|
320 | |
---|
321 | ! WVEQ output correspondant a WVliq lie a WSA calcule |
---|
322 | WVLIQ=WVCOND(WSAOUT,TAIR,PAIR,SATOT) |
---|
323 | WVEQOUT=(WVLIQ+WV)/WVTOT-1.0 |
---|
324 | |
---|
325 | END SUBROUTINE ITERWV |
---|
326 | |
---|
327 | |
---|
328 | !***************************************************************************** |
---|
329 | !* SUBROUTINE BRACWV() |
---|
330 | SUBROUTINE BRACWV(XA,XB,N,RADIUS,WVTOT,SATOT,TAIR,PAIR, |
---|
331 | + FLAGWV,WSAFLAG,NROOT) |
---|
332 | !***************************************************************************** |
---|
333 | !* Bracket de ITERWV |
---|
334 | !* From Numerical Recipes |
---|
335 | !* Adapted for VenusGCM A. Stolzenbach 07/2014 |
---|
336 | !* X est WVinput |
---|
337 | !* OUTPUT: XA et XB |
---|
338 | |
---|
339 | IMPLICIT NONE |
---|
340 | |
---|
341 | REAL, INTENT(IN) :: WVTOT,SATOT,RADIUS,TAIR,PAIR |
---|
342 | INTEGER, INTENT(IN) :: N |
---|
343 | |
---|
344 | REAL, INTENT(INOUT) :: XA,XB |
---|
345 | REAL, INTENT(OUT) :: WSAFLAG |
---|
346 | |
---|
347 | INTEGER :: I,J |
---|
348 | |
---|
349 | INTEGER, INTENT(OUT) :: NROOT |
---|
350 | |
---|
351 | REAL :: FP, FC, X, WVEQ, WVLIQ, WSAOUT |
---|
352 | REAL :: XMAX,XMIN,WVEQACC |
---|
353 | |
---|
354 | INTEGER, INTENT(OUT) :: FLAGWV |
---|
355 | |
---|
356 | ! WVEQACC est le seuil auquel on accorde un WSA correct meme |
---|
357 | ! si il ne fait pas partie d'une borne. Utile quand le modele |
---|
358 | ! s'approche de 0 mais ne l'atteint pas. |
---|
359 | WVEQACC=1.0E-3 |
---|
360 | |
---|
361 | FLAGWV=1 |
---|
362 | |
---|
363 | NROOT=0 |
---|
364 | |
---|
365 | X=XA |
---|
366 | XMAX=XB |
---|
367 | XMIN=XA |
---|
368 | |
---|
369 | ! CAS 1 On borne la fonction (WVEQ=0) |
---|
370 | |
---|
371 | CALL ITERWV(X,WVLIQ,WVEQ,WVTOT,WSAOUT,SATOT,TAIR,PAIR,RADIUS) |
---|
372 | FP=WVEQ |
---|
373 | |
---|
374 | DO I=1,N-1 |
---|
375 | X=(1.-DLOG(REAL(N-I))/DLOG(REAL(N)))*XMAX |
---|
376 | CALL ITERWV(X,WVLIQ,WVEQ,WVTOT,WSAOUT,SATOT,TAIR,PAIR,RADIUS) |
---|
377 | FC=WVEQ |
---|
378 | |
---|
379 | IF ((FP*FC).LT.0.0) THEN |
---|
380 | NROOT=NROOT+1 |
---|
381 | ! Si NROOT>1 on place la borne sup output la borne min du calcul en i |
---|
382 | IF (NROOT.GT.1) THEN |
---|
383 | XB=(1.-DLOG(REAL(N-I+1))/DLOG(REAL(N)))*XMAX |
---|
384 | ENDIF |
---|
385 | |
---|
386 | IF (I.EQ.1) THEN |
---|
387 | XA=XMIN |
---|
388 | ELSE |
---|
389 | XA=(1.-DLOG(REAL(N-I+1))/DLOG(REAL(N)))*XMAX |
---|
390 | ENDIF |
---|
391 | XB=X |
---|
392 | ENDIF |
---|
393 | FP=FC |
---|
394 | ENDDO |
---|
395 | |
---|
396 | ! CAS 2 on refait la boucle pour tester si WVEQ est proche de 0 |
---|
397 | ! avec le seuil WVEQACC |
---|
398 | IF (NROOT.EQ.0) THEN |
---|
399 | X=XMIN |
---|
400 | CALL ITERWV(X,WVLIQ,WVEQ,WVTOT,WSAOUT,SATOT, |
---|
401 | + TAIR,PAIR,RADIUS) |
---|
402 | DO J=1,N-1 |
---|
403 | X=(1.-DLOG(REAL(N-J))/DLOG(REAL(N)))*XMAX |
---|
404 | CALL ITERWV(X,WVLIQ,WVEQ,WVTOT,WSAOUT,SATOT, |
---|
405 | + TAIR,PAIR,RADIUS) |
---|
406 | |
---|
407 | IF (ABS(WVEQ).LE.WVEQACC) THEN |
---|
408 | WSAFLAG=WSAOUT |
---|
409 | FLAGWV=2 |
---|
410 | RETURN |
---|
411 | ENDIF |
---|
412 | ENDDO |
---|
413 | |
---|
414 | ! CAS 3 Pas de borne, WVEQ jamais proche de 0 |
---|
415 | FLAGWV=3 |
---|
416 | RETURN |
---|
417 | ENDIF |
---|
418 | |
---|
419 | END SUBROUTINE BRACWV |
---|
420 | |
---|
421 | !***************************************************************************** |
---|
422 | !* SUBROUTINE BRACWSA() |
---|
423 | SUBROUTINE BRACWSA(XA,XB,N,RADIUS,TAIR,LPPWVINP,FLAGH,FLAGL, |
---|
424 | + NROOT) |
---|
425 | !***************************************************************************** |
---|
426 | !* Bracket de KEEQ |
---|
427 | !* From Numerical Recipes |
---|
428 | !* Adapted for VenusGCM A. Stolzenbach 07/2014 |
---|
429 | |
---|
430 | IMPLICIT NONE |
---|
431 | |
---|
432 | !---------------------------------------------------------------------------- |
---|
433 | ! External functions needed: |
---|
434 | REAl KEEQ |
---|
435 | !---------------------------------------------------------------------------- |
---|
436 | |
---|
437 | REAL, INTENT(IN) :: RADIUS,TAIR,LPPWVINP |
---|
438 | INTEGER, INTENT(IN) :: N |
---|
439 | |
---|
440 | REAL, INTENT(INOUT) :: XA,XB |
---|
441 | |
---|
442 | INTEGER, INTENT(OUT) :: NROOT |
---|
443 | |
---|
444 | INTEGER :: I, J |
---|
445 | |
---|
446 | REAL :: DX, FP, FC, X |
---|
447 | |
---|
448 | LOGICAL, INTENT(OUT) :: FLAGH,FLAGL |
---|
449 | |
---|
450 | |
---|
451 | FLAGL=.FALSE. |
---|
452 | FLAGH=.FALSE. |
---|
453 | NROOT=0 |
---|
454 | DX=(XB-XA)/N |
---|
455 | X=XA |
---|
456 | FP=KEEQ(RADIUS,TAIR,X,LPPWVINP) |
---|
457 | |
---|
458 | DO I=1,N |
---|
459 | X=X+DX |
---|
460 | FC=KEEQ(RADIUS,TAIR,X,LPPWVINP) |
---|
461 | |
---|
462 | IF ((FP*FC).LE.0.) THEN |
---|
463 | NROOT=NROOT+1 |
---|
464 | XA=X-DX |
---|
465 | XB=X |
---|
466 | ! RETURN |
---|
467 | ! IF (NROOT.GT.1) THEN |
---|
468 | ! PRINT*,'On a plus d1 intervalle KEEQ=0' |
---|
469 | ! PRINT*,'Probleme KEEQ=0 => 1 racine en theorie' |
---|
470 | ! X=X-(I*DX) |
---|
471 | ! FP=KEEQ(RADIUS,TAIR,X,LPPWVINP) |
---|
472 | ! PRINT*,'KEEQ(WSA)',FP,X,TAIR |
---|
473 | ! DO J=1,N |
---|
474 | ! X=X+DX |
---|
475 | ! FP=KEEQ(RADIUS,TAIR,X,LPPWVINP) |
---|
476 | ! PRINT*,'KEEQ(WSA)',FP,X |
---|
477 | ! ENDDO |
---|
478 | ! STOP |
---|
479 | ! ENDIF |
---|
480 | ENDIF |
---|
481 | |
---|
482 | FP=FC |
---|
483 | ENDDO |
---|
484 | |
---|
485 | IF (NROOT.EQ.0) THEN |
---|
486 | ! PRINT*,'On a 0 intervalle KEEQ=0' |
---|
487 | ! PRINT*,'Probleme KEEQ=0 => 1 racine en theorie' |
---|
488 | ! PRINT*,'XA',XA,'KEEQ',KEEQ(RADIUS,TAIR,XA,LPPWVINP) |
---|
489 | ! PRINT*,'XB',XB,'KEEQ',KEEQ(RADIUS,TAIR,XB,LPPWVINP) |
---|
490 | ! PRINT*,'TT',TAIR |
---|
491 | ! PRINT*,'RADIUS',RADIUS |
---|
492 | ! PRINT*,'NBRAC',N |
---|
493 | ! STOP |
---|
494 | |
---|
495 | ! X=XA |
---|
496 | ! FP=KEEQ(RADIUS,TAIR,X,LPPWVINP) |
---|
497 | ! PRINT*,'KEEQ(WSA)',FP,X,TAIR |
---|
498 | ! DO I=1,N |
---|
499 | ! X=X+DX |
---|
500 | ! FP=KEEQ(RADIUS,TAIR,X,LPPWVINP) |
---|
501 | ! PRINT*,'KEEQ(WSA)',FP,X,TAIR |
---|
502 | ! ENDDO |
---|
503 | |
---|
504 | |
---|
505 | ! Test determine la tendance globale KEEQ sur [WSAMIN,WSAMAX] |
---|
506 | IF ((ABS(KEEQ(RADIUS,TAIR,XA,LPPWVINP))- |
---|
507 | & ABS(KEEQ(RADIUS,TAIR,XB,LPPWVINP))).GT.0.0) FLAGH=.TRUE. |
---|
508 | ! On fixe flag low TRUE pour WSA = 0.1 |
---|
509 | IF ((ABS(KEEQ(RADIUS,TAIR,XA,LPPWVINP))- |
---|
510 | & ABS(KEEQ(RADIUS,TAIR,XB,LPPWVINP))).LT.0.0) FLAGL=.TRUE. |
---|
511 | ! STOP |
---|
512 | ENDIF |
---|
513 | |
---|
514 | END SUBROUTINE BRACWSA |
---|
515 | |
---|
516 | |
---|
517 | !***************************************************************************** |
---|
518 | !* REAL FUNCTION WVCOND() |
---|
519 | REAL FUNCTION WVCOND(WSA,T,P,SAt) |
---|
520 | !***************************************************************************** |
---|
521 | !* Condensation de H2O selon WSA, T et P et H2SO4tot |
---|
522 | !* |
---|
523 | !* Adapted for VenusGCM A. Stolzenbach 07/2014 |
---|
524 | ! INPUT: |
---|
525 | ! SAt : VMR of total H2SO4 |
---|
526 | ! WSA: aerosol H2SO4 weight fraction (fraction) |
---|
527 | ! T: temperature (K) |
---|
528 | ! P: pressure (Pa) |
---|
529 | ! OUTPUT: |
---|
530 | ! WVCOND : VMR H2O condense |
---|
531 | |
---|
532 | ! USE chemparam_mod |
---|
533 | |
---|
534 | IMPLICIT NONE |
---|
535 | |
---|
536 | REAL, INTENT(IN) :: SAt, WSA |
---|
537 | REAL, INTENT(IN) :: T, P |
---|
538 | |
---|
539 | ! working variables |
---|
540 | REAL SA, WV |
---|
541 | REAL DND2,pstand,lpar,acidps |
---|
542 | REAL x1, satpacid |
---|
543 | REAL , DIMENSION(2):: act |
---|
544 | REAL CONCM |
---|
545 | REAL NH2SO4 |
---|
546 | REAL H2OCOND, H2SO4COND |
---|
547 | |
---|
548 | |
---|
549 | CONCM= (P)/(1.3806488E-23*T) !air number density, molec/m3? CHECK UNITS! |
---|
550 | |
---|
551 | NH2SO4=SAt*CONCM |
---|
552 | |
---|
553 | pstand=1.01325E+5 !Pa 1 atm pressure |
---|
554 | |
---|
555 | x1=(WSA/98.08)/(WSA/98.08 + ((1.-WSA)/18.0153)) |
---|
556 | |
---|
557 | CALL zeleznik(x1,T,act) |
---|
558 | |
---|
559 | !pure acid satur vapor pressure |
---|
560 | lpar= -11.695+DLOG(pstand) ! Zeleznik |
---|
561 | acidps=1/360.15-1.0/T+0.38/545. |
---|
562 | & *(1.0+DLOG(360.15/T)-360.15/T) |
---|
563 | acidps = 10156.0*acidps +lpar |
---|
564 | acidps = DEXP(acidps) !Pa |
---|
565 | |
---|
566 | !acid sat.vap.PP over mixture (flat surface): |
---|
567 | satpacid=act(2)*acidps ! Pa |
---|
568 | |
---|
569 | ! Conversion from Pa to N.D #/m3 |
---|
570 | DND2=satpacid/(1.3806488E-23*T) |
---|
571 | |
---|
572 | ! H2SO4COND N.D #/m3 condensee ssi H2SO4>H2SO4sat |
---|
573 | IF (NH2SO4.GT.DND2) THEN |
---|
574 | H2SO4COND=NH2SO4-DND2 |
---|
575 | ! calcul de H2O cond correspondant a H2SO4 cond |
---|
576 | H2OCOND=H2SO4COND*98.078*(1.0-WSA)/(18.0153*WSA) |
---|
577 | |
---|
578 | ! Si on a H2SO4<H2SO4sat on ne condense rien, VMR = 1.0E-30 |
---|
579 | ELSE |
---|
580 | H2OCOND=1.0E-30*CONCM |
---|
581 | END IF |
---|
582 | |
---|
583 | !***************************************************** |
---|
584 | ! ATTENTION: Ici on ne prends pas en compte |
---|
585 | ! si H2O en defaut! |
---|
586 | ! On veut la situation theorique |
---|
587 | ! a l'equilibre |
---|
588 | !***************************************************** |
---|
589 | ! Test si H2O en defaut H2Ocond>H2O dispo |
---|
590 | ! IF ((H2OCOND.GT.NH2O).AND.(NH2SO4.GE.DND2)) THEN |
---|
591 | |
---|
592 | ! On peut alors condenser tout le H2O dispo |
---|
593 | ! H2OCOND=NH2O |
---|
594 | ! On met alors egalement a jour le H2SO4 cond correspondant au H2O cond |
---|
595 | ! H2SO4COND=H2OCOND*18.0153*WSA/(98.078*(1.0-WSA)) |
---|
596 | |
---|
597 | ! END IF |
---|
598 | |
---|
599 | ! Calcul de H2O condense VMR |
---|
600 | WVCOND=H2OCOND/CONCM |
---|
601 | |
---|
602 | END FUNCTION WVCOND |
---|
603 | |
---|
604 | !***************************************************************************** |
---|
605 | !* REAL FUNCTION IRFRMWV() |
---|
606 | REAL FUNCTION IRFRMWV(X1,X2,XACC,MAXIT,RADIUS,TAIR,PAIR, |
---|
607 | + WVTOT,SATOT,NROOT) |
---|
608 | !***************************************************************************** |
---|
609 | !* Iterative Root Finder Ridder's Method for Water Vapor calculus |
---|
610 | !* From Numerical Recipes |
---|
611 | !* Adapted for VenusGCM A. Stolzenbach 07/2014 |
---|
612 | !* |
---|
613 | !* Les iterations sur [X1,X2] sont [WV1,WV2] |
---|
614 | !* la variable X est WV |
---|
615 | !* IRFRMWV sort en OUTPUT : WSALOC pour ITERWV=0 (ou WVEQ=0) |
---|
616 | |
---|
617 | IMPLICIT NONE |
---|
618 | |
---|
619 | REAL, INTENT(IN) :: X1, X2 |
---|
620 | REAL, INTENT(IN) :: XACC |
---|
621 | INTEGER, INTENT(IN) :: MAXIT,NROOT |
---|
622 | |
---|
623 | ! LOCAL VARIABLES |
---|
624 | REAL :: XL, XH, XM, XNEW, X |
---|
625 | REAL :: WSALOC, WVEQ, WVLIQ |
---|
626 | REAL :: FL, FH, FM, FNEW |
---|
627 | REAL :: ANS, S, FSIGN |
---|
628 | INTEGER i |
---|
629 | |
---|
630 | ! External variables needed: |
---|
631 | REAL, INTENT(IN) :: TAIR,PAIR |
---|
632 | REAL, INTENT(IN) :: WVTOT,SATOT |
---|
633 | REAL, INTENT(IN) :: RADIUS |
---|
634 | |
---|
635 | |
---|
636 | ! Initialisation |
---|
637 | X=X1 |
---|
638 | CALL ITERWV(X,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT,TAIR,PAIR,RADIUS) |
---|
639 | FL=WVEQ |
---|
640 | X=X2 |
---|
641 | CALL ITERWV(X,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT,TAIR,PAIR,RADIUS) |
---|
642 | FH=WVEQ |
---|
643 | |
---|
644 | ! Test Bracketed values |
---|
645 | IF (((FL.LT.0.).AND.(FH.GT.0.)).OR. |
---|
646 | & ((FL.GT.0.).AND.(FH.LT.0.))) |
---|
647 | & THEN |
---|
648 | XL=X1 |
---|
649 | XH=X2 |
---|
650 | ANS=-9.99e99 |
---|
651 | |
---|
652 | DO i=1, MAXIT |
---|
653 | XM=0.5*(XL+XH) |
---|
654 | CALL ITERWV(XM,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT, |
---|
655 | & TAIR,PAIR,RADIUS) |
---|
656 | FM=WVEQ |
---|
657 | S=SQRT(FM*FM-FL*FH) |
---|
658 | |
---|
659 | IF (S.EQ.0.0) THEN |
---|
660 | IRFRMWV=WSALOC |
---|
661 | RETURN |
---|
662 | ENDIF |
---|
663 | |
---|
664 | IF (FL.GT.FH) THEN |
---|
665 | FSIGN=1.0 |
---|
666 | ELSE |
---|
667 | FSIGN=-1.0 |
---|
668 | ENDIF |
---|
669 | |
---|
670 | XNEW=XM+(XM-XL)*(FSIGN*FM/S) |
---|
671 | |
---|
672 | IF (ABS(XNEW-ANS).LE.XACC) THEN |
---|
673 | IRFRMWV=WSALOC |
---|
674 | RETURN |
---|
675 | ENDIF |
---|
676 | |
---|
677 | ANS=XNEW |
---|
678 | CALL ITERWV(ANS,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT, |
---|
679 | & TAIR,PAIR,RADIUS) |
---|
680 | FNEW=WVEQ |
---|
681 | |
---|
682 | IF (FNEW.EQ.0.0) THEN |
---|
683 | IRFRMWV=WSALOC |
---|
684 | RETURN |
---|
685 | ENDIF |
---|
686 | |
---|
687 | IF (SIGN(FM, FNEW).NE.FM) THEN |
---|
688 | XL=XM |
---|
689 | FL=FM |
---|
690 | XH=ANS |
---|
691 | FH=FNEW |
---|
692 | ELSEIF (SIGN(FL, FNEW).NE.FL) THEN |
---|
693 | XH=ANS |
---|
694 | FH=FNEW |
---|
695 | ELSEIF (SIGN(FH, FNEW).NE.FH) THEN |
---|
696 | XL=ANS |
---|
697 | FL=FNEW |
---|
698 | ELSE |
---|
699 | PRINT*,'PROBLEM IRFRMWV dans new_cloud_venus' |
---|
700 | PRINT*,'you shall not PAAAAAASS' |
---|
701 | STOP |
---|
702 | ENDIF |
---|
703 | ENDDO |
---|
704 | PRINT*,'Paaaaas bien MAXIT atteint' |
---|
705 | PRINT*,'PROBLEM IRFRMWV dans new_cloud_venus' |
---|
706 | PRINT*,'you shall not PAAAAAASS' |
---|
707 | XL=X1 |
---|
708 | XH=X2 |
---|
709 | ANS=-9.99e99 |
---|
710 | |
---|
711 | DO i=1, MAXIT |
---|
712 | XM=0.5*(XL+XH) |
---|
713 | CALL ITERWV(XM,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT, |
---|
714 | & TAIR,PAIR,RADIUS) |
---|
715 | FM=WVEQ |
---|
716 | S=SQRT(FM*FM-FL*FH) |
---|
717 | IF (FL.GT.FH) THEN |
---|
718 | FSIGN=1.0 |
---|
719 | ELSE |
---|
720 | FSIGN=-1.0 |
---|
721 | ENDIF |
---|
722 | |
---|
723 | XNEW=XM+(XM-XL)*(FSIGN*FM/S) |
---|
724 | |
---|
725 | ANS=XNEW |
---|
726 | CALL ITERWV(ANS,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT, |
---|
727 | & TAIR,PAIR,RADIUS) |
---|
728 | FNEW=WVEQ |
---|
729 | PRINT*,'WVliq',WVLIQ,'WVtot',WVTOT,'WVeq',WVEQ |
---|
730 | PRINT*,'WSA',WSALOC,'SAtot',SATOT |
---|
731 | PRINT*,'T',TAIR,'P',PAIR |
---|
732 | |
---|
733 | IF (SIGN(FM, FNEW).NE.FM) THEN |
---|
734 | XL=XM |
---|
735 | FL=FM |
---|
736 | XH=ANS |
---|
737 | FH=FNEW |
---|
738 | ELSEIF (SIGN(FL, FNEW).NE.FL) THEN |
---|
739 | XH=ANS |
---|
740 | FH=FNEW |
---|
741 | ELSEIF (SIGN(FH, FNEW).NE.FH) THEN |
---|
742 | XL=ANS |
---|
743 | FL=FNEW |
---|
744 | ELSE |
---|
745 | PRINT*,'PROBLEM IRFRMWV dans new_cloud_venus' |
---|
746 | PRINT*,'you shall not PAAAAAASS TWIIICE???' |
---|
747 | STOP |
---|
748 | ENDIF |
---|
749 | ENDDO |
---|
750 | STOP |
---|
751 | ELSE |
---|
752 | PRINT*,'IRFRMWV must be bracketed' |
---|
753 | PRINT*,'NROOT de BRACWV', NROOT |
---|
754 | IF (ABS(FL).LT.XACC) THEN |
---|
755 | PRINT*,'IRFRMWV FL == 0',FL |
---|
756 | PRINT*,'X1',X1,'X2',X2,'FH',FH |
---|
757 | CALL ITERWV(X1,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT, |
---|
758 | & TAIR,PAIR,RADIUS) |
---|
759 | IRFRMWV=WSALOC |
---|
760 | RETURN |
---|
761 | ENDIF |
---|
762 | IF (ABS(FH).LT.XACC) THEN |
---|
763 | PRINT*,'IRFRMWV FH == 0',FH |
---|
764 | PRINT*,'X1',X1,'X2',X2,'FL',FL |
---|
765 | CALL ITERWV(X2,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT, |
---|
766 | & TAIR,PAIR,RADIUS) |
---|
767 | IRFRMWV=WSALOC |
---|
768 | RETURN |
---|
769 | ENDIF |
---|
770 | IF ((ABS(FL).GT.XACC).AND.(ABS(FH).GT.XACC)) THEN |
---|
771 | PRINT*,'STOP dans IRFRMWV avec rien == 0' |
---|
772 | PRINT*,'X1',X1,'X2',X2 |
---|
773 | PRINT*,'Fcalc',FL,FH |
---|
774 | PRINT*,'T',TAIR,'P',PAIR,'R',RADIUS |
---|
775 | STOP |
---|
776 | ENDIF |
---|
777 | IF ((ABS(FL).LT.XACC).AND.(ABS(FH).LT.XACC)) THEN |
---|
778 | PRINT*,'STOP dans IRFRMWV Trop de solution < WVACC' |
---|
779 | PRINT*,FL,FH |
---|
780 | STOP |
---|
781 | ENDIF |
---|
782 | |
---|
783 | |
---|
784 | ENDIF |
---|
785 | ! FIN Test Bracketed values |
---|
786 | |
---|
787 | END FUNCTION IRFRMWV |
---|
788 | |
---|
789 | !***************************************************************************** |
---|
790 | !* REAL FUNCTION IRFRMSA() |
---|
791 | REAL FUNCTION IRFRMSA(X1,X2,XACC,MAXIT,RADIUS,TAIR,PAIR,LPPWV, |
---|
792 | + NB) |
---|
793 | !***************************************************************************** |
---|
794 | !* Iterative Root Finder Ridder's Method for Sulfuric Acid calculus |
---|
795 | !* From Numerical Recipes |
---|
796 | !* Adapted for VenusGCM A. Stolzenbach 07/2014 |
---|
797 | !* |
---|
798 | !* Les iterations sur [X1,X2] sont [WSA1,WSA2] |
---|
799 | !* la variable X est WSA |
---|
800 | !* IRFRMSA sort en OUTPUT : WSA pour KEEQ=0 |
---|
801 | |
---|
802 | IMPLICIT NONE |
---|
803 | |
---|
804 | REAL, INTENT(IN) :: X1, X2 |
---|
805 | REAL, INTENT(IN) :: XACC |
---|
806 | INTEGER, INTENT(IN) :: MAXIT, NB |
---|
807 | |
---|
808 | ! LOCAL VARIABLES |
---|
809 | REAL XL, XH, XM, XNEW |
---|
810 | REAL Fl, FH, FM, FNEW |
---|
811 | REAL ANS, S, FSIGN |
---|
812 | INTEGER i |
---|
813 | |
---|
814 | ! External variables needed: |
---|
815 | REAL, INTENT(IN) :: TAIR,PAIR |
---|
816 | REAL, INTENT(IN) :: LPPWV |
---|
817 | REAL, INTENT(IN) :: RADIUS |
---|
818 | |
---|
819 | ! External functions needed: |
---|
820 | REAL KEEQ |
---|
821 | |
---|
822 | |
---|
823 | |
---|
824 | ! Initialisation |
---|
825 | FL=KEEQ(RADIUS,TAIR,X1,LPPWV) |
---|
826 | FH=KEEQ(RADIUS,TAIR,X2,LPPWV) |
---|
827 | |
---|
828 | ! Test Bracketed values |
---|
829 | IF (((FL.LT.0.).AND.(FH.GT.0.)).OR.((FL.GT.0.).AND.(FH.LT.0.))) |
---|
830 | & THEN |
---|
831 | XL=X1 |
---|
832 | XH=X2 |
---|
833 | ANS=-9.99e99 |
---|
834 | |
---|
835 | DO i=1, MAXIT |
---|
836 | XM=0.5*(XL+XH) |
---|
837 | FM=KEEQ(RADIUS,TAIR,XM,LPPWV) |
---|
838 | S=SQRT(FM*FM-FL*FH) |
---|
839 | |
---|
840 | IF (S.EQ.0.0) THEN |
---|
841 | IRFRMSA=ANS |
---|
842 | RETURN |
---|
843 | ENDIF |
---|
844 | |
---|
845 | IF (FL.GT.FH) THEN |
---|
846 | FSIGN=1.0 |
---|
847 | ELSE |
---|
848 | FSIGN=-1.0 |
---|
849 | ENDIF |
---|
850 | |
---|
851 | XNEW=XM+(XM-XL)*(FSIGN*FM/S) |
---|
852 | |
---|
853 | IF (ABS(XNEW-ANS).LE.XACC) THEN |
---|
854 | IRFRMSA=ANS |
---|
855 | RETURN |
---|
856 | ENDIF |
---|
857 | |
---|
858 | ANS=XNEW |
---|
859 | FNEW=KEEQ(RADIUS,TAIR,ANS,LPPWV) |
---|
860 | |
---|
861 | IF (FNEW.EQ.0.0) THEN |
---|
862 | IRFRMSA=ANS |
---|
863 | RETURN |
---|
864 | ENDIF |
---|
865 | |
---|
866 | IF (SIGN(FM, FNEW).NE.FM) THEN |
---|
867 | XL=XM |
---|
868 | FL=FM |
---|
869 | XH=ANS |
---|
870 | FH=FNEW |
---|
871 | ELSEIF (SIGN(FL, FNEW).NE.FL) THEN |
---|
872 | XH=ANS |
---|
873 | FH=FNEW |
---|
874 | ELSEIF (SIGN(FH, FNEW).NE.FH) THEN |
---|
875 | XL=ANS |
---|
876 | FL=FNEW |
---|
877 | ELSE |
---|
878 | PRINT*,'PROBLEM IRFRMSA dans new_cloud_venus' |
---|
879 | PRINT*,'you shall not PAAAAAASS' |
---|
880 | STOP |
---|
881 | ENDIF |
---|
882 | ENDDO |
---|
883 | PRINT*,'Paaaaas bien MAXIT atteint' |
---|
884 | PRINT*,'PROBLEM IRFRMSA dans new_cloud_venus' |
---|
885 | PRINT*,'you shall not PAAAAAASS' |
---|
886 | XL=X1 |
---|
887 | XH=X2 |
---|
888 | PRINT*,'Borne XL',XL,'XH',XH |
---|
889 | ANS=-9.99e99 |
---|
890 | |
---|
891 | DO i=1, MAXIT |
---|
892 | XM=0.5*(XL+XH) |
---|
893 | FM=KEEQ(RADIUS,TAIR,XM,LPPWV) |
---|
894 | S=SQRT(FM*FM-FL*FH) |
---|
895 | |
---|
896 | IF (FL.GT.FH) THEN |
---|
897 | FSIGN=1.0 |
---|
898 | ELSE |
---|
899 | FSIGN=-1.0 |
---|
900 | ENDIF |
---|
901 | |
---|
902 | XNEW=XM+(XM-XL)*(FSIGN*FM/S) |
---|
903 | |
---|
904 | ANS=XNEW |
---|
905 | FNEW=KEEQ(RADIUS,TAIR,ANS,LPPWV) |
---|
906 | PRINT*,'KEEQ result',FNEW,'T',TAIR,'R',RADIUS |
---|
907 | IF (SIGN(FM, FNEW).NE.FM) THEN |
---|
908 | XL=XM |
---|
909 | FL=FM |
---|
910 | XH=ANS |
---|
911 | FH=FNEW |
---|
912 | ELSEIF (SIGN(FL, FNEW).NE.FL) THEN |
---|
913 | XH=ANS |
---|
914 | FH=FNEW |
---|
915 | ELSEIF (SIGN(FH, FNEW).NE.FH) THEN |
---|
916 | XL=ANS |
---|
917 | FL=FNEW |
---|
918 | ELSE |
---|
919 | PRINT*,'PROBLEM IRFRMSA dans new_cloud_venus' |
---|
920 | PRINT*,'you shall not PAAAAAASS' |
---|
921 | STOP |
---|
922 | ENDIF |
---|
923 | ENDDO |
---|
924 | STOP |
---|
925 | ELSE |
---|
926 | PRINT*,'IRFRMSA must be bracketed' |
---|
927 | IF (FL.EQ.0.0) THEN |
---|
928 | PRINT*,'IRFRMSA FL == 0',Fl |
---|
929 | IRFRMSA=X1 |
---|
930 | RETURN |
---|
931 | ENDIF |
---|
932 | IF (FH.EQ.0.0) THEN |
---|
933 | PRINT*,'IRFRMSA FH == 0',FH |
---|
934 | IRFRMSA=X2 |
---|
935 | RETURN |
---|
936 | ENDIF |
---|
937 | IF ((FL.NE.0.).AND.(FH.NE.0.)) THEN |
---|
938 | PRINT*,'IRFRMSA FH and FL neq 0: ', FL, FH |
---|
939 | PRINT*,'X1',X1,'X2',X2 |
---|
940 | PRINT*,'Kind F', KIND(FL), KIND(FH) |
---|
941 | PRINT*,'Kind X', KIND(X1), KIND(X2) |
---|
942 | PRINT*,'Logical: ',(SIGN(FL,FH).NE.FL) |
---|
943 | PRINT*,'Logical: ',(SIGN(FH,FL).NE.FH) |
---|
944 | PRINT*,'nb root BRACWSA',NB |
---|
945 | STOP |
---|
946 | ENDIF |
---|
947 | |
---|
948 | ENDIF |
---|
949 | ! FIN Test Bracketed values |
---|
950 | |
---|
951 | END function IRFRMSA |
---|
952 | |
---|
953 | !***************************************************************************** |
---|
954 | !* REAL FUNCTION KEEQ() |
---|
955 | REAL FUNCTION KEEQ(RADIUS,TAIR,WSA,LPPWV) |
---|
956 | !***************************************************************************** |
---|
957 | !* Kelvin Equation EQuality |
---|
958 | !* ln(PPWV_eq) - (2Mh2o sigma)/(R T r rho) - ln(ph2osa) = 0 |
---|
959 | !* |
---|
960 | |
---|
961 | IMPLICIT NONE |
---|
962 | |
---|
963 | REAL, INTENT(IN) :: RADIUS,TAIR,WSA,LPPWV |
---|
964 | |
---|
965 | ! Physical constants: |
---|
966 | REAL MH2O |
---|
967 | REAL RGAS |
---|
968 | PARAMETER( |
---|
969 | ! Molar weight of water (kg/mole) |
---|
970 | + MH2O=18.0153d-3, |
---|
971 | ! Universal gas constant (J/(mole K)) |
---|
972 | + RGAS=8.314462175d0) |
---|
973 | ! |
---|
974 | ! External functions needed: |
---|
975 | REAL PWVSAS_GV,SIGMADROPLET,RHODROPLET |
---|
976 | ! PWVSAS_GV: Natural logaritm of water vapor pressure over |
---|
977 | ! sulfuric acid solution |
---|
978 | ! SIGMADROPLET: Surface tension of sulfuric acid solution |
---|
979 | ! RHODROPLET: Density of sulfuric acid solution |
---|
980 | ! |
---|
981 | ! Auxiliary local variables: |
---|
982 | REAL C1 |
---|
983 | |
---|
984 | PARAMETER( |
---|
985 | + C1=2.0d0*MH2O/RGAS) |
---|
986 | |
---|
987 | |
---|
988 | KEEQ=LPPWV-C1*SIGMADROPLET(WSA,TAIR)/ |
---|
989 | & (TAIR*RADIUS*RHODROPLET(WSA,TAIR))- |
---|
990 | & PWVSAS_GV(TAIR,WSA) |
---|
991 | |
---|
992 | END FUNCTION KEEQ |
---|
993 | |
---|
994 | ***************************************************************************** |
---|
995 | * REAL FUNCTION PWVSAS_GV(TAIR,WSA) |
---|
996 | REAL FUNCTION PWVSAS_GV(TAIR,WSA) |
---|
997 | ***************************************************************************** |
---|
998 | * |
---|
999 | * Natural logaritm of saturated water vapor pressure over plane |
---|
1000 | * sulfuric acid solution. |
---|
1001 | * |
---|
1002 | * Source: J.I.Gmitro & T.Vermeulen: A.I.Ch.E.J. 10,740,1964. |
---|
1003 | * W.F.Giauque et al.: J. Amer. Chem. Soc. 82,62,1960. |
---|
1004 | * |
---|
1005 | * The formula of Gmitro & Vermeulen for saturation pressure |
---|
1006 | * is used: |
---|
1007 | * ln(p) = A ln(298/T) + B/T + C + DT |
---|
1008 | * with values of A,B,C and D given by Gmitro & Vermeulen, |
---|
1009 | * and calculated from partial molal properties given by Giauque et al. |
---|
1010 | * |
---|
1011 | * |
---|
1012 | * |
---|
1013 | * Input: TAIR: Temperature (K) |
---|
1014 | * WSA: Weight fraction of H2SO4 [0;1] |
---|
1015 | * Output: Natural logaritm of water vapor pressure |
---|
1016 | * over sulfuric acid solution ( ln(Pa) ) |
---|
1017 | * |
---|
1018 | * |
---|
1019 | * External functions needed for calculation of partial molal |
---|
1020 | * properties of pure components at 25 ! as function of W. |
---|
1021 | IMPLICIT NONE |
---|
1022 | |
---|
1023 | REAL :: CPH2O,ALH2O,FFH2O,LH2O |
---|
1024 | * CPH2O: Partial molal heat capacity of sulfuric acid solution. |
---|
1025 | * ALH2O: Temparature derivative of CPH2O |
---|
1026 | * FFH2O: Partial molal free energy of sulfuric acid solution. |
---|
1027 | * LH2O: Partial molal enthalpy of sulfuric acid |
---|
1028 | * |
---|
1029 | ! |
---|
1030 | ! |
---|
1031 | REAL, INTENT(IN) :: TAIR,WSA |
---|
1032 | REAL :: ADOT,BDOT,CDOT,DDOT |
---|
1033 | REAL :: RGAS,MMHGPA |
---|
1034 | REAL :: K1,K2 |
---|
1035 | REAL :: A,B,C,D,CP,L,F,ALFA |
---|
1036 | ! Physical constants given by Gmitro & Vermeulen: |
---|
1037 | PARAMETER( |
---|
1038 | + ADOT=-3.67340, |
---|
1039 | + BDOT=-4143.5, |
---|
1040 | + CDOT=10.24353, |
---|
1041 | + DDOT=0.618943d-3) |
---|
1042 | PARAMETER( |
---|
1043 | ! Gas constant (cal/(deg mole)): |
---|
1044 | + RGAS=1.98726, |
---|
1045 | ! Natural logarith of conversion factor between atm. and Pa: |
---|
1046 | + MMHGPA=11.52608845, |
---|
1047 | + K1=298.15, |
---|
1048 | + K2=K1*K1/2.0) |
---|
1049 | ! |
---|
1050 | ! |
---|
1051 | CP=CPH2O(WSA) |
---|
1052 | F=-FFH2O(WSA) |
---|
1053 | L=-LH2O(WSA) |
---|
1054 | ALFA=ALH2O(WSA) |
---|
1055 | ! |
---|
1056 | A=ADOT+(CP-K1*ALFA)/RGAS |
---|
1057 | B=BDOT+(L-K1*CP+K2*ALFA)/RGAS |
---|
1058 | C=CDOT+(CP+(F-L)/K1)/RGAS |
---|
1059 | D=DDOT-ALFA/(2.0d0*RGAS) |
---|
1060 | ! |
---|
1061 | ! WRITE(*,*) 'TAIR= ',TAIR,' WSA= ',WSA |
---|
1062 | ! WRITE(*,*) 'CPH2O(WSA)= ',CP |
---|
1063 | ! WRITE(*,*) 'ALFAH2O(WSA)= ',ALFA |
---|
1064 | ! WRITE(*,*) 'FFH2O(WSA)= ',F |
---|
1065 | ! WRITE(*,*) 'LH2O(WSA)= ',L |
---|
1066 | ! |
---|
1067 | PWVSAS_GV=A*DLOG(K1/TAIR)+B/TAIR+C+D*TAIR+MMHGPA |
---|
1068 | |
---|
1069 | END FUNCTION PWVSAS_GV |
---|
1070 | ******************************************************************************* |
---|
1071 | * REAL FUNCTION CPH2O(W) |
---|
1072 | REAL FUNCTION CPH2O(W) |
---|
1073 | ******************************************************************************* |
---|
1074 | * |
---|
1075 | * Relative partial molal heat capacity of water (cal/(deg mole) in |
---|
1076 | * sulfuric acid solution, as a function of H2SO4 weight fraction [0;1], |
---|
1077 | * calculated by cubic spline fitting. |
---|
1078 | * |
---|
1079 | * Source: Giauque et al.: J. Amer. Chem. Soc. 82,62,1960. |
---|
1080 | * |
---|
1081 | IMPLICIT NONE |
---|
1082 | |
---|
1083 | INTEGER :: NPOINT,I |
---|
1084 | PARAMETER(NPOINT=109) |
---|
1085 | REAL, DIMENSION(NPOINT) :: WTAB(NPOINT),CPHTAB(NPOINT), |
---|
1086 | + Y2(NPOINT),YWORK(NPOINT) |
---|
1087 | REAL, INTENT(IN):: W |
---|
1088 | REAL :: CPH |
---|
1089 | LOGICAL :: FIRST |
---|
1090 | DATA (WTAB(I),I=1,NPOINT)/ |
---|
1091 | +0.00000,0.08932,0.09819,0.10792,0.11980,0.13461,0.15360,0.16525, |
---|
1092 | +0.17882,0.19482,0.21397,0.23728,0.26629,0.27999,0.29517,0.31209, |
---|
1093 | +0.33107,0.35251,0.36430,0.37691,0.39043,0.40495,0.42059,0.43749, |
---|
1094 | +0.44646,0.45580,0.46555,0.47572,0.48634,0.49745,0.50908,0.52126, |
---|
1095 | +0.53405,0.54747,0.56159,0.57646,0.58263,0.58893,0.59537,0.60195, |
---|
1096 | +0.60868,0.61557,0.62261,0.62981,0.63718,0.64472,0.65245,0.66037, |
---|
1097 | +0.66847,0.67678,0.68530,0.69404,0.70300,0.71220,0.72164,0.73133, |
---|
1098 | +0.73628,0.74129,0.74637,0.75152,0.75675,0.76204,0.76741,0.77286, |
---|
1099 | +0.77839,0.78399,0.78968,0.79545,0.80130,0.80724,0.81327,0.81939, |
---|
1100 | +0.82560,0.83191,0.83832,0.84482,0.85143,0.85814,0.86495,0.87188, |
---|
1101 | +0.87892,0.88607,0.89334,0.90073,0.90824,0.91588,0.92365,0.93156, |
---|
1102 | +0.93959,0.94777,0.95610,0.96457,0.97319,0.98196,0.99090,0.99270, |
---|
1103 | +0.99452,0.99634,0.99725,0.99817,0.99835,0.99853,0.99872,0.99890, |
---|
1104 | +0.99908,0.99927,0.99945,0.99963,0.99982/ |
---|
1105 | DATA (CPHTAB(I),I=1,NPOINT)/ |
---|
1106 | + 17.996, 17.896, 17.875, 17.858, 17.840, 17.820, 17.800, 17.791, |
---|
1107 | + 17.783, 17.777, 17.771, 17.769, 17.806, 17.891, 18.057, 18.248, |
---|
1108 | + 18.429, 18.567, 18.613, 18.640, 18.660, 18.660, 18.642, 18.592, |
---|
1109 | + 18.544, 18.468, 18.348, 18.187, 17.995, 17.782, 17.562, 17.352, |
---|
1110 | + 17.162, 16.993, 16.829, 16.657, 16.581, 16.497, 16.405, 16.302, |
---|
1111 | + 16.186, 16.053, 15.901, 15.730, 15.540, 15.329, 15.101, 14.853, |
---|
1112 | + 14.586, 14.296, 13.980, 13.638, 13.274, 12.896, 12.507, 12.111, |
---|
1113 | + 11.911, 11.711, 11.514, 11.320, 11.130, 10.940, 10.760, 10.570, |
---|
1114 | + 10.390, 10.200, 10.000, 9.8400, 9.7600, 9.7900, 9.9500, 10.310, |
---|
1115 | + 10.950, 11.960, 13.370, 15.060, 16.860, 18.550, 20.000, 21.170, |
---|
1116 | + 22.030, 22.570, 22.800, 22.750, 22.420, 21.850, 21.120, 20.280, |
---|
1117 | + 19.360, 18.350, 17.220, 15.940, 14.490, 12.840, 10.800, 9.8000, |
---|
1118 | + 7.8000, 3.8000,0.20000,-5.4000,-7.0000,-8.8000,-10.900,-13.500, |
---|
1119 | +-17.000,-22.000,-29.000,-40.000,-59.000/ |
---|
1120 | DATA FIRST/.TRUE./ |
---|
1121 | SAVE FIRST,WTAB,CPHTAB,Y2 |
---|
1122 | ! |
---|
1123 | IF(FIRST) THEN |
---|
1124 | FIRST=.FALSE. |
---|
1125 | CALL SPLINE(WTAB,CPHTAB,NPOINT,YWORK,Y2) |
---|
1126 | ENDIF |
---|
1127 | CALL SPLINT(WTAB,CPHTAB,Y2,NPOINT,W,CPH) |
---|
1128 | CPH2O=CPH |
---|
1129 | |
---|
1130 | END FUNCTION CPH2O |
---|
1131 | ! |
---|
1132 | ******************************************************************************* |
---|
1133 | REAL FUNCTION FFH2O(W) |
---|
1134 | * REAL FUNCTION FFH2O(W) |
---|
1135 | ******************************************************************************* |
---|
1136 | * |
---|
1137 | * Relative partial molal free energy water (cal/mole) in |
---|
1138 | * sulfuric acid solution, as a function of H2SO4 weight fraction [0;1], |
---|
1139 | * calculated by cubic spline fitting. |
---|
1140 | * |
---|
1141 | * Source: Giauque et al.: J. Amer. Chem. Soc. 82,62,1960. |
---|
1142 | * |
---|
1143 | IMPLICIT NONE |
---|
1144 | |
---|
1145 | INTEGER :: NPOINT,I |
---|
1146 | PARAMETER(NPOINT=110) |
---|
1147 | REAL, DIMENSION(NPOINT) :: WTAB,FFTAB,Y2,YWORK |
---|
1148 | REAL, INTENT(IN) :: W |
---|
1149 | REAL :: FF |
---|
1150 | LOGICAL :: FIRST |
---|
1151 | DATA (WTAB(I),I=1,NPOINT)/ |
---|
1152 | +0.00000,0.08932,0.09819,0.10792,0.11980,0.13461,0.15360,0.16525, |
---|
1153 | +0.17882,0.19482,0.21397,0.23728,0.26629,0.27999,0.29517,0.31209, |
---|
1154 | +0.33107,0.35251,0.36430,0.37691,0.39043,0.40495,0.42059,0.43749, |
---|
1155 | +0.44646,0.45580,0.46555,0.47572,0.48634,0.49745,0.50908,0.52126, |
---|
1156 | +0.53405,0.54747,0.56159,0.57646,0.58263,0.58893,0.59537,0.60195, |
---|
1157 | +0.60868,0.61557,0.62261,0.62981,0.63718,0.64472,0.65245,0.66037, |
---|
1158 | +0.66847,0.67678,0.68530,0.69404,0.70300,0.71220,0.72164,0.73133, |
---|
1159 | +0.73628,0.74129,0.74637,0.75152,0.75675,0.76204,0.76741,0.77286, |
---|
1160 | +0.77839,0.78399,0.78968,0.79545,0.80130,0.80724,0.81327,0.81939, |
---|
1161 | +0.82560,0.83191,0.83832,0.84482,0.85143,0.85814,0.86495,0.87188, |
---|
1162 | +0.87892,0.88607,0.89334,0.90073,0.90824,0.91588,0.92365,0.93156, |
---|
1163 | +0.93959,0.94777,0.95610,0.96457,0.97319,0.98196,0.99090,0.99270, |
---|
1164 | +0.99452,0.99634,0.99725,0.99817,0.99835,0.99853,0.99872,0.99890, |
---|
1165 | +0.99908,0.99927,0.99945,0.99963,0.99982, 1.0000/ |
---|
1166 | DATA (FFTAB(I),I=1,NPOINT)/ |
---|
1167 | +0.00000, 22.840, 25.810, 29.250, 33.790, 39.970, 48.690, 54.560, |
---|
1168 | + 61.990, 71.790, 85.040, 103.70, 130.70, 145.20, 163.00, 184.50, |
---|
1169 | + 211.50, 245.60, 266.40, 290.10, 317.40, 349.00, 385.60, 428.40, |
---|
1170 | + 452.50, 478.80, 507.50, 538.80, 573.30, 611.60, 653.70, 700.50, |
---|
1171 | + 752.60, 810.60, 875.60, 948.60, 980.60, 1014.3, 1049.7, 1087.1, |
---|
1172 | + 1126.7, 1168.7, 1213.5, 1261.2, 1312.0, 1366.2, 1424.3, 1486.0, |
---|
1173 | + 1551.8, 1622.3, 1697.8, 1778.5, 1864.9, 1956.8, 2055.8, 2162.0, |
---|
1174 | + 2218.0, 2276.0, 2337.0, 2400.0, 2466.0, 2535.0, 2607.0, 2682.0, |
---|
1175 | + 2760.0, 2842.0, 2928.0, 3018.0, 3111.0, 3209.0, 3311.0, 3417.0, |
---|
1176 | + 3527.0, 3640.0, 3757.0, 3878.0, 4002.0, 4130.0, 4262.0, 4397.0, |
---|
1177 | + 4535.0, 4678.0, 4824.0, 4973.0, 5128.0, 5287.0, 5454.0, 5630.0, |
---|
1178 | + 5820.0, 6031.0, 6268.0, 6541.0, 6873.0, 7318.0, 8054.0, 8284.0, |
---|
1179 | + 8579.0, 8997.0, 9295.0, 9720.0, 9831.0, 9954.0, 10092., 10248., |
---|
1180 | + 10423., 10618., 10838., 11099., 11460., 12014./ |
---|
1181 | DATA FIRST/.TRUE./ |
---|
1182 | SAVE FIRST,WTAB,FFTAB,Y2 |
---|
1183 | ! |
---|
1184 | IF(FIRST) THEN |
---|
1185 | FIRST=.FALSE. |
---|
1186 | CALL SPLINE(WTAB,FFTAB,NPOINT,YWORK,Y2) |
---|
1187 | ENDIF |
---|
1188 | CALL SPLINT(WTAB,FFTAB,Y2,NPOINT,W,FF) |
---|
1189 | FFH2O=FF |
---|
1190 | |
---|
1191 | END FUNCTION FFH2O |
---|
1192 | ! |
---|
1193 | ******************************************************************************* |
---|
1194 | REAL FUNCTION LH2O(W) |
---|
1195 | * REAL FUNCTION LH2O(W) |
---|
1196 | ******************************************************************************* |
---|
1197 | * |
---|
1198 | * Relative partial molal heat content of water (cal/mole) in |
---|
1199 | * sulfuric acid solution, as a function of H2SO4 weight fraction [0;1], |
---|
1200 | * calculated by cubic spline fitting. |
---|
1201 | * |
---|
1202 | * Source: Giauque et al.: J. Amer. Chem. Soc. 82,62,1960. |
---|
1203 | * |
---|
1204 | IMPLICIT NONE |
---|
1205 | |
---|
1206 | INTEGER :: NPOINT,I |
---|
1207 | PARAMETER(NPOINT=110) |
---|
1208 | REAL, DIMENSION(NPOINT) :: WTAB,LTAB,Y2,YWORK |
---|
1209 | REAL, INTENT(IN) :: W |
---|
1210 | REAL :: L |
---|
1211 | LOGICAL :: FIRST |
---|
1212 | DATA (WTAB(I),I=1,NPOINT)/ |
---|
1213 | +0.00000,0.08932,0.09819,0.10792,0.11980,0.13461,0.15360,0.16525, |
---|
1214 | +0.17882,0.19482,0.21397,0.23728,0.26629,0.27999,0.29517,0.31209, |
---|
1215 | +0.33107,0.35251,0.36430,0.37691,0.39043,0.40495,0.42059,0.43749, |
---|
1216 | +0.44646,0.45580,0.46555,0.47572,0.48634,0.49745,0.50908,0.52126, |
---|
1217 | +0.53405,0.54747,0.56159,0.57646,0.58263,0.58893,0.59537,0.60195, |
---|
1218 | +0.60868,0.61557,0.62261,0.62981,0.63718,0.64472,0.65245,0.66037, |
---|
1219 | +0.66847,0.67678,0.68530,0.69404,0.70300,0.71220,0.72164,0.73133, |
---|
1220 | +0.73628,0.74129,0.74637,0.75152,0.75675,0.76204,0.76741,0.77286, |
---|
1221 | +0.77839,0.78399,0.78968,0.79545,0.80130,0.80724,0.81327,0.81939, |
---|
1222 | +0.82560,0.83191,0.83832,0.84482,0.85143,0.85814,0.86495,0.87188, |
---|
1223 | +0.87892,0.88607,0.89334,0.90073,0.90824,0.91588,0.92365,0.93156, |
---|
1224 | +0.93959,0.94777,0.95610,0.96457,0.97319,0.98196,0.99090,0.99270, |
---|
1225 | +0.99452,0.99634,0.99725,0.99817,0.99835,0.99853,0.99872,0.99890, |
---|
1226 | +0.99908,0.99927,0.99945,0.99963,0.99982, 1.0000/ |
---|
1227 | DATA (LTAB(I),I=1,NPOINT)/ |
---|
1228 | +0.00000, 5.2900, 6.1000, 7.1800, 8.7800, 11.210, 15.290, 18.680, |
---|
1229 | + 23.700, 31.180, 42.500, 59.900, 89.200, 106.70, 128.60, 156.00, |
---|
1230 | + 190.40, 233.80, 260.10, 290.00, 324.00, 362.50, 406.50, 456.10, |
---|
1231 | + 483.20, 512.40, 543.60, 577.40, 613.80, 653.50, 696.70, 744.50, |
---|
1232 | + 797.20, 855.80, 921.70, 995.70, 1028.1, 1062.3, 1098.3, 1136.4, |
---|
1233 | + 1176.7, 1219.3, 1264.7, 1313.0, 1364.3, 1418.9, 1477.3, 1539.9, |
---|
1234 | + 1607.2, 1679.7, 1757.9, 1842.7, 1934.8, 2035.4, 2145.5, 2267.0, |
---|
1235 | + 2332.0, 2401.0, 2473.0, 2550.0, 2631.0, 2716.0, 2807.0, 2904.0, |
---|
1236 | + 3007.0, 3118.0, 3238.0, 3367.0, 3507.0, 3657.0, 3821.0, 3997.0, |
---|
1237 | + 4186.0, 4387.0, 4599.0, 4819.0, 5039.0, 5258.0, 5476.0, 5694.0, |
---|
1238 | + 5906.0, 6103.0, 6275.0, 6434.0, 6592.0, 6743.0, 6880.0, 7008.0, |
---|
1239 | + 7133.0, 7255.0, 7376.0, 7497.0, 7618.0, 7739.0, 7855.0, 7876.0, |
---|
1240 | + 7905.0, 7985.0, 8110.0, 8415.0, 8515.0, 8655.0, 8835.0, 9125.0, |
---|
1241 | + 9575.0, 10325., 11575., 13500., 15200., 16125./ |
---|
1242 | DATA FIRST/.TRUE./ |
---|
1243 | SAVE FIRST,WTAB,LTAB,Y2 |
---|
1244 | ! |
---|
1245 | IF(FIRST) THEN |
---|
1246 | FIRST=.FALSE. |
---|
1247 | CALL SPLINE(WTAB,LTAB,NPOINT,YWORK,Y2) |
---|
1248 | ENDIF |
---|
1249 | CALL SPLINT(WTAB,LTAB,Y2,NPOINT,W,L) |
---|
1250 | LH2O=L |
---|
1251 | |
---|
1252 | END FUNCTION LH2O |
---|
1253 | ******************************************************************************* |
---|
1254 | REAL FUNCTION ALH2O(W) |
---|
1255 | * REAL FUNCTION ALH2O(W) |
---|
1256 | ******************************************************************************* |
---|
1257 | * |
---|
1258 | * Relative partial molal temperature derivative of heat capacity (water) |
---|
1259 | * in sulfuric acid solution, (cal/deg**2), calculated by |
---|
1260 | * cubic spline fitting. |
---|
1261 | * |
---|
1262 | * Source: Giauque et al.: J. Amer. Chem. Soc. 82,62,1960. |
---|
1263 | * |
---|
1264 | IMPLICIT NONE |
---|
1265 | |
---|
1266 | INTEGER :: NPOINT,I |
---|
1267 | PARAMETER(NPOINT=96) |
---|
1268 | REAL, DIMENSION(NPOINT) :: WTAB,ATAB,Y2,YWORK |
---|
1269 | REAL, INTENT(IN) :: W |
---|
1270 | REAL :: A |
---|
1271 | LOGICAL :: FIRST |
---|
1272 | DATA (WTAB(I),I=1,NPOINT)/ |
---|
1273 | +0.29517,0.31209, |
---|
1274 | +0.33107,0.35251,0.36430,0.37691,0.39043,0.40495,0.42059,0.43749, |
---|
1275 | +0.44646,0.45580,0.46555,0.47572,0.48634,0.49745,0.50908,0.52126, |
---|
1276 | +0.53405,0.54747,0.56159,0.57646,0.58263,0.58893,0.59537,0.60195, |
---|
1277 | +0.60868,0.61557,0.62261,0.62981,0.63718,0.64472,0.65245,0.66037, |
---|
1278 | +0.66847,0.67678,0.68530,0.69404,0.70300,0.71220,0.72164,0.73133, |
---|
1279 | +0.73628,0.74129,0.74637,0.75152,0.75675,0.76204,0.76741,0.77286, |
---|
1280 | +0.77839,0.78399,0.78968,0.79545,0.80130,0.80724,0.81327,0.81939, |
---|
1281 | +0.82560,0.83191,0.83832,0.84482,0.85143,0.85814,0.86495,0.87188, |
---|
1282 | +0.87892,0.88607,0.89334,0.90073,0.90824,0.91588,0.92365,0.93156, |
---|
1283 | +0.93959,0.94777,0.95610,0.96457,0.97319,0.98196,0.99090,0.99270, |
---|
1284 | +0.99452,0.99634,0.99725,0.99817,0.99835,0.99853,0.99872,0.99890, |
---|
1285 | +0.99908,0.99927,0.99945,0.99963,0.99982, 1.0000/ |
---|
1286 | DATA (ATAB(I),I=1,NPOINT)/ |
---|
1287 | + 0.0190, 0.0182, 0.0180, 0.0177, 0.0174, 0.0169, 0.0167, 0.0164, |
---|
1288 | + 0.0172, 0.0212, 0.0239, 0.0264, 0.0276, 0.0273, 0.0259, 0.0238, |
---|
1289 | + 0.0213, 0.0190, 0.0170, 0.0155, 0.0143, 0.0133, 0.0129, 0.0124, |
---|
1290 | + 0.0120, 0.0114, 0.0106, 0.0097, 0.0084, 0.0067, 0.0047, 0.0024, |
---|
1291 | +-0.0002,-0.0031,-0.0063,-0.0097,-0.0136,-0.0178,-0.0221,-0.0263, |
---|
1292 | +-0.0303,-0.0340,-0.0352,-0.0360,-0.0362,-0.0356,-0.0343,-0.0321, |
---|
1293 | +-0.0290,-0.0251,-0.0201,-0.0137,-0.0058, 0.0033, 0.0136, 0.0254, |
---|
1294 | + 0.0388, 0.0550, 0.0738, 0.0962, 0.1198, 0.1300, 0.1208, 0.0790, |
---|
1295 | + 0.0348, 0.0058,-0.0102,-0.0211,-0.0292,-0.0350,-0.0390,-0.0418, |
---|
1296 | +-0.0432,-0.0436,-0.0429,-0.0411,-0.0384,-0.0346,-0.0292,-0.0220, |
---|
1297 | +-0.0130,-0.0110,-0.0080,-0.0060,-0.0040,-0.0030,-0.0030,-0.0020, |
---|
1298 | +-0.0020,-0.0020,-0.0020,-0.0010,-0.0010, 0.0000, 0.0000, 0.0000/ |
---|
1299 | DATA FIRST/.TRUE./ |
---|
1300 | SAVE FIRST,WTAB,ATAB,Y2 |
---|
1301 | ! |
---|
1302 | IF(FIRST) THEN |
---|
1303 | FIRST=.FALSE. |
---|
1304 | CALL SPLINE(WTAB,ATAB,NPOINT,YWORK,Y2) |
---|
1305 | ENDIF |
---|
1306 | CALL SPLINT(WTAB,ATAB,Y2,NPOINT,MAX(WTAB(1),W),A) |
---|
1307 | ALH2O=A |
---|
1308 | |
---|
1309 | END FUNCTION ALH2O |
---|
1310 | !****************************************************************************** |
---|
1311 | SUBROUTINE SPLINE(X,Y,N,WORK,Y2) |
---|
1312 | !****************************************************************************** |
---|
1313 | ! Routine to calculate 2.nd derivatives of tabulated function |
---|
1314 | ! Y(i)=Y(Xi), to be used for cubic spline calculation. |
---|
1315 | ! |
---|
1316 | IMPLICIT NONE |
---|
1317 | |
---|
1318 | INTEGER, INTENT(IN) :: N |
---|
1319 | INTEGER :: I |
---|
1320 | REAL, DIMENSION(N), INTENT(IN) :: X,Y |
---|
1321 | REAL, DIMENSION(N), INTENT(OUT) :: Y2,WORK |
---|
1322 | REAL SIG,P,QN,UN,YP1,YPN |
---|
1323 | |
---|
1324 | !AM Venus: Let's check the values |
---|
1325 | ! write(*,*) 'In spline, N ', N |
---|
1326 | |
---|
1327 | YP1=(Y(2)-Y(1))/(X(2)-X(1)) |
---|
1328 | YPN=(Y(N)-Y(N-1))/(X(N)-X(N-1)) |
---|
1329 | IF(YP1.GT.99.0E+30) THEN |
---|
1330 | Y2(1)=0.0 |
---|
1331 | WORK(1)=0.0 |
---|
1332 | ELSE |
---|
1333 | Y2(1)=-0.5d0 |
---|
1334 | WORK(1)=(3.0d0/(X(2)-X(1)))*((Y(2)-Y(1))/(X(2)-X(1))-YP1) |
---|
1335 | ENDIF |
---|
1336 | DO I=2,N-1 |
---|
1337 | ! write(*,*) 'In spline, I ', I |
---|
1338 | SIG=(X(I)-X(I-1))/(X(I+1)-X(I-1)) |
---|
1339 | P=SIG*Y2(I-1)+2.0d0 |
---|
1340 | Y2(I)=(SIG-1.0d0)/P |
---|
1341 | WORK(I)=(6.0d0*((Y(I+1)-Y(I))/(X(I+1)-X(I))-(Y(I)-Y(I-1)) |
---|
1342 | + /(X(I)-X(I-1)))/(X(I+1)-X(I-1))-SIG*WORK(I-1))/P |
---|
1343 | ENDDO |
---|
1344 | IF(YPN.GT.99.0E+30) THEN |
---|
1345 | QN=0.0 |
---|
1346 | UN=0.0 |
---|
1347 | ELSE |
---|
1348 | QN=0.5d0 |
---|
1349 | UN=(3.0d0/(X(N)-X(N-1)))*(YPN-(Y(N)-Y(N-1))/(X(N)-X(N-1))) |
---|
1350 | ENDIF |
---|
1351 | Y2(N)=(UN-QN*WORK(N-1))/(QN*Y2(N-1)+1.0d0) |
---|
1352 | DO I=N-1,1,-1 |
---|
1353 | ! write(*,*) 'In spline, I ', I |
---|
1354 | Y2(I)=Y2(I)*Y2(I+1)+WORK(I) |
---|
1355 | ENDDO |
---|
1356 | ! |
---|
1357 | END SUBROUTINE SPLINE |
---|
1358 | |
---|
1359 | !****************************************************************************** |
---|
1360 | SUBROUTINE SPLINT(XA,YA,Y2A,N,X,Y) |
---|
1361 | !****************************************************************************** |
---|
1362 | ! Cubic spline calculation |
---|
1363 | |
---|
1364 | IMPLICIT NONE |
---|
1365 | |
---|
1366 | INTEGER, INTENT(IN) :: N |
---|
1367 | INTEGER :: KLO,KHI,K |
---|
1368 | REAL, INTENT(IN), DIMENSION(N) :: XA,YA,Y2A |
---|
1369 | REAL, INTENT(IN) :: X |
---|
1370 | REAL, INTENT(OUT) :: Y |
---|
1371 | REAL :: H,A,B |
---|
1372 | ! |
---|
1373 | KLO=1 |
---|
1374 | KHI=N |
---|
1375 | 1 IF(KHI-KLO.GT.1) THEN |
---|
1376 | K=(KHI+KLO)/2 |
---|
1377 | IF(XA(K).GT.X) THEN |
---|
1378 | KHI=K |
---|
1379 | ELSE |
---|
1380 | KLO=K |
---|
1381 | ENDIF |
---|
1382 | GOTO 1 |
---|
1383 | ENDIF |
---|
1384 | H=XA(KHI)-XA(KLO) |
---|
1385 | A=(XA(KHI)-X)/H |
---|
1386 | B=(X-XA(KLO))/H |
---|
1387 | Y=A*YA(KLO)+B*YA(KHI)+ |
---|
1388 | + ((A**3-A)*Y2A(KLO)+(B**3-B)*Y2A(KHI))*(H**2)/6.0d0 |
---|
1389 | ! |
---|
1390 | |
---|
1391 | END SUBROUTINE SPLINT |
---|
1392 | !****************************************************************** |
---|
1393 | SUBROUTINE CALCM_SAT(H2SO4,H2O,WSA,DENSO4, |
---|
1394 | + T,H2SO4COND,H2OCOND,RMTOT) |
---|
1395 | |
---|
1396 | ! DERIVE NO (TOTAL NUMBER OF AEROSOL PARTICLES CONCENTRATION) |
---|
1397 | ! FROM TOTAL H2SO4 AND RMOD/SIGMA OF AEROSOL LOG-NORMAL |
---|
1398 | ! SIZE DISTRIBTUION |
---|
1399 | ! ASSUMING ALL THE H2SO4 ABOVE MIXTURE SAT PRESSURE modified by H2SO4 activity IS CONDENSED |
---|
1400 | ! --------------------------------------------------------------- |
---|
1401 | ! INPUT: |
---|
1402 | ! H2SO4: #/m3 of total H2SO4 |
---|
1403 | ! H2O : #/m3 of total H2O |
---|
1404 | ! WSA: aerosol H2SO4 weight fraction (fraction) |
---|
1405 | ! DENSO4: aerosol volumic mass (kg/m3 = aerosol mass/aerosol volume) |
---|
1406 | ! for total mass, almost same result with ro=1.67 gr/cm3 |
---|
1407 | ! RSTDEV: standard deviation of aerosol distribution (no unit) |
---|
1408 | ! RADIUS: MEDIAN radius (m) |
---|
1409 | ! T: temperature (K) |
---|
1410 | ! |
---|
1411 | ! OUTPUT: |
---|
1412 | ! RMTOT: Total condensed "Mass" (M_tot_distrib / rho_droplet), sans dimension |
---|
1413 | ! mais rho_droplet et M_tot_distrib doivent tre de meme dimension |
---|
1414 | ! H2OCOND |
---|
1415 | ! H2SO4COND |
---|
1416 | |
---|
1417 | |
---|
1418 | |
---|
1419 | IMPLICIT NONE |
---|
1420 | |
---|
1421 | REAL, INTENT(IN) :: H2SO4, H2O, WSA |
---|
1422 | REAL, INTENT(IN) :: DENSO4, T |
---|
1423 | REAL, INTENT(OUT) :: H2OCOND, H2SO4COND, RMTOT |
---|
1424 | ! working variables |
---|
1425 | REAL :: RMH2S4 |
---|
1426 | REAL :: DND2,pstand,lpar,acidps |
---|
1427 | REAL :: x1, satpacid |
---|
1428 | REAL , DIMENSION(2):: act |
---|
1429 | ! |
---|
1430 | ! masse of an H2SO4 molecule (kg) |
---|
1431 | RMH2S4=98.078/(6.02214129E+26) |
---|
1432 | |
---|
1433 | pstand=1.01325E+5 !Pa 1 atm pressure |
---|
1434 | |
---|
1435 | x1=(WSA/98.08)/(WSA/98.08 + ((1.-WSA)/18.0153)) |
---|
1436 | |
---|
1437 | call zeleznik(x1,t,act) |
---|
1438 | |
---|
1439 | !pure acid satur vapor pressure |
---|
1440 | lpar= -11.695+DLOG(pstand) ! Zeleznik |
---|
1441 | acidps=1/360.15-1.0/t+0.38/545. |
---|
1442 | + *(1.0+DLOG(360.15/t)-360.15/t) |
---|
1443 | acidps = 10156.0*acidps +lpar |
---|
1444 | acidps = DEXP(acidps) !Pa |
---|
1445 | |
---|
1446 | !acid sat.vap.PP over mixture (flat surface): |
---|
1447 | satpacid=act(2)*acidps ! Pa |
---|
1448 | |
---|
1449 | ! Conversion from Pa to N.D #/m3 |
---|
1450 | DND2=satpacid/(1.3806488E-23*T) |
---|
1451 | ! Conversion from N.D #/m3 TO #/cm3 |
---|
1452 | ! DND2=DND2*1.d-6 |
---|
1453 | |
---|
1454 | ! H2SO4COND N.D #/m3 condensee ssi H2SO4>H2SO4sat |
---|
1455 | IF (H2SO4.GE.DND2) THEN |
---|
1456 | H2SO4COND=H2SO4-DND2 |
---|
1457 | ! calcul de H2O cond correspondant a H2SO4 cond |
---|
1458 | H2OCOND=H2SO4COND*98.078*(1.0-WSA)/(18.0153*WSA) |
---|
1459 | |
---|
1460 | ! RMTOT: = Mass of H2SO4 satur per cm3 of air/ Mass of sulfuric acid part of droplet solution per cm3 |
---|
1461 | ! RMTOT=M_distrib/rho_droplet |
---|
1462 | |
---|
1463 | RMTOT=H2SO4COND*RMH2S4/(DENSO4*WSA) |
---|
1464 | |
---|
1465 | ! Si on a H2SO4<H2SO4sat on ne condense rien et NDTOT=0 |
---|
1466 | ELSE |
---|
1467 | H2SO4COND=0.0E+0 |
---|
1468 | H2OCOND=0.0E+0 |
---|
1469 | RMTOT=0.0E+0 |
---|
1470 | END IF |
---|
1471 | |
---|
1472 | ! Test si H2O en defaut H2Ocond>H2O dispo |
---|
1473 | IF ((H2OCOND.GT.H2O).AND.(H2SO4.GE.DND2)) THEN |
---|
1474 | |
---|
1475 | ! Si H2O en dfaut, on as pas le bon WSA! |
---|
1476 | ! En effet, normalement, on a exactement le WSA correspondant a |
---|
1477 | ! WVg + WVl = WVtot |
---|
1478 | ! Dans les cas o WVtot, SAtot sont trs faibles (Upper Haze) ou |
---|
1479 | ! quand T est grand (Lower Haze), le modle reprsente mal le WSA |
---|
1480 | ! cf carte NCL, avec des max erreur absolue de 0.1 sur le WSA |
---|
1481 | |
---|
1482 | ! PRINT*,'PROBLEM H2O EN DEFAUT' |
---|
1483 | ! PRINT*,'H2OCOND',H2OCOND,'H2O',H2O |
---|
1484 | ! PRINT*,'WSA',WSA,'RHO',DENSO4 |
---|
1485 | ! STOP |
---|
1486 | |
---|
1487 | |
---|
1488 | ! On peut alors condenser tout le H2O dispo |
---|
1489 | H2OCOND=H2O |
---|
1490 | ! On met alors egalement a jour le H2SO4 cond correspondant au H2O cond |
---|
1491 | H2SO4COND=H2OCOND*18.0153*WSA/(98.078*(1.0-WSA)) |
---|
1492 | |
---|
1493 | ! RMTOT: = Mass of H2SO4 satur per cm3 of air/ Mass of sulfuric acid part of droplet solution per cm3 |
---|
1494 | ! RMTOT=Volume of aerosol cm3 /cm3 of air |
---|
1495 | ! Volume of aerosol/cm3 air |
---|
1496 | |
---|
1497 | RMTOT=H2SO4COND*RMH2S4/(DENSO4*WSA) |
---|
1498 | |
---|
1499 | END IF |
---|
1500 | |
---|
1501 | END SUBROUTINE CALCM_SAT |
---|
1502 | |
---|
1503 | SUBROUTINE Zeleznik(x,T,act) |
---|
1504 | |
---|
1505 | !+++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
1506 | ! Water and sulfuric acid activities in liquid |
---|
1507 | ! aqueous solutions. |
---|
1508 | ! Frank J. Zeleznik, Thermodynnamic properties |
---|
1509 | ! of the aqueous sulfuric acid system to 220K-350K, |
---|
1510 | ! mole fraction 0,...,1 |
---|
1511 | ! J. Phys. Chem. Ref. Data, Vol. 20, No. 6,PP.1157, 1991 |
---|
1512 | !+++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
1513 | |
---|
1514 | IMPLICIT NONE |
---|
1515 | |
---|
1516 | REAL, INTENT(IN) :: x,T |
---|
1517 | REAL :: activitya, activityw |
---|
1518 | REAL, INTENT(OUT), DIMENSION(2):: act |
---|
1519 | ! REAL x,T, activitya, activityw |
---|
1520 | ! REAL, DIMENSION(2):: act |
---|
1521 | |
---|
1522 | |
---|
1523 | ! write(*,*) 'x, T ', x, T |
---|
1524 | |
---|
1525 | act(2)=activitya(x,T) |
---|
1526 | act(1)=activityw(x,T) |
---|
1527 | |
---|
1528 | ! write(*,*) 'act ', act |
---|
1529 | |
---|
1530 | END SUBROUTINE Zeleznik |
---|
1531 | |
---|
1532 | !start of functions related to zeleznik activities |
---|
1533 | |
---|
1534 | REAL FUNCTION m111(T) |
---|
1535 | |
---|
1536 | REAL, INTENT(IN) :: T |
---|
1537 | m111=-23.524503387D0 |
---|
1538 | & +0.0406889449841D0*T |
---|
1539 | & -0.151369362907D-4*T**2+2961.44445015D0/T |
---|
1540 | & +0.492476973663D0*dlog(T) |
---|
1541 | END FUNCTION m111 |
---|
1542 | |
---|
1543 | REAL FUNCTION m121(T) |
---|
1544 | |
---|
1545 | REAL, INTENT(IN) :: T |
---|
1546 | m121=1114.58541077D0-1.1833078936D0*T |
---|
1547 | & -0.00209946114412D0*T**2-246749.842271D0/T |
---|
1548 | & +34.1234558134D0*dlog(T) |
---|
1549 | END FUNCTION m121 |
---|
1550 | |
---|
1551 | FUNCTION m221(T) |
---|
1552 | |
---|
1553 | REAL, INTENT(IN) :: T |
---|
1554 | m221=-80.1488100747D0-0.0116246143257D0*T |
---|
1555 | & +0.606767928954D-5*T**2+3092.72150882D0/T |
---|
1556 | & +12.7601667471D0*dlog(T) |
---|
1557 | END FUNCTION m221 |
---|
1558 | |
---|
1559 | REAL FUNCTION m122(T) |
---|
1560 | |
---|
1561 | REAL, INTENT(IN) :: T |
---|
1562 | m122=888.711613784D0-2.50531359687D0*T |
---|
1563 | & +0.000605638824061D0*T**2-196985.296431D0/T |
---|
1564 | & +74.550064338D0*dlog(T) |
---|
1565 | END FUNCTION m122 |
---|
1566 | |
---|
1567 | REAL FUNCTION e111(T) |
---|
1568 | |
---|
1569 | REAL, INTENT(IN) :: T |
---|
1570 | e111=2887.31663295D0-3.32602457749D0*T |
---|
1571 | & -0.2820472833D-2*T**2-528216.112353D0/T |
---|
1572 | & +0.68699743564D0*dlog(T) |
---|
1573 | END FUNCTION e111 |
---|
1574 | |
---|
1575 | REAL FUNCTION e121(T) |
---|
1576 | |
---|
1577 | REAL, INTENT(IN) :: T |
---|
1578 | e121=-370.944593249D0-0.690310834523D0*T |
---|
1579 | & +0.56345508422D-3*T**2-3822.52997064D0/T |
---|
1580 | & +94.2682037574D0*dlog(T) |
---|
1581 | END FUNCTION e121 |
---|
1582 | |
---|
1583 | REAL FUNCTION e211(T) |
---|
1584 | |
---|
1585 | REAL, INTENT(IN) :: T |
---|
1586 | e211=38.3025318809D0-0.0295997878789D0*T |
---|
1587 | & +0.120999746782D-4*T**2-3246.97498999D0/T |
---|
1588 | & -3.83566039532D0*dlog(T) |
---|
1589 | END FUNCTION e211 |
---|
1590 | |
---|
1591 | REAL FUNCTION e221(T) |
---|
1592 | |
---|
1593 | REAL, INTENT(IN) :: T |
---|
1594 | e221=2324.76399402D0-0.141626921317D0*T |
---|
1595 | & -0.00626760562881D0*T**2-450590.687961D0/T |
---|
1596 | & -61.2339472744D0*dlog(T) |
---|
1597 | END FUNCTION e221 |
---|
1598 | |
---|
1599 | REAL FUNCTION e122(T) |
---|
1600 | |
---|
1601 | REAL, INTENT(IN) :: T |
---|
1602 | e122=-1633.85547832D0-3.35344369968D0*T |
---|
1603 | & +0.00710978119903D0*T**2+198200.003569D0/T |
---|
1604 | & +246.693619189D0*dlog(T) |
---|
1605 | END FUNCTION e122 |
---|
1606 | |
---|
1607 | REAL FUNCTION e212(T) |
---|
1608 | |
---|
1609 | REAL, INTENT(IN) :: T |
---|
1610 | e212=1273.75159848D0+1.03333898148D0*T |
---|
1611 | & +0.00341400487633D0*T**2+195290.667051D0/T |
---|
1612 | & -431.737442782D0*dlog(T) |
---|
1613 | END FUNCTION e212 |
---|
1614 | |
---|
1615 | REAL FUNCTION lnAa(x1,T) |
---|
1616 | |
---|
1617 | REAL, INTENT(IN) :: T,x1 |
---|
1618 | REAL :: |
---|
1619 | & m111,m121,m221,m122 |
---|
1620 | & ,e111,e121,e211,e122,e212,e221 |
---|
1621 | lnAa=-( |
---|
1622 | & (2*m111(T)+e111(T)*(2*dlog(x1)+1))*x1 |
---|
1623 | & +(2*m121(T)+e211(T)*dlog(1-x1)+e121(T)*(dlog(x1)+1))*(1-x1) |
---|
1624 | & -(m111(T)+e111(T)*(dlog(x1)+1))*x1*x1 |
---|
1625 | & -(2*m121(T)+e121(T)*(dlog(x1)+1)+e211(T)*(dlog(1-x1)+1) |
---|
1626 | & -(2*m122(T)+e122(T)*dlog(x1) |
---|
1627 | & +e212(T)*dlog(1-x1))*(1-x1))*x1*(1-x1) |
---|
1628 | & -(m221(T)+e221(T)*(dlog(1-x1)+1))*(1-x1)**2 |
---|
1629 | & -x1*(1-x1)*( |
---|
1630 | & (6*m122(T)+e122(T)*(3*dlog(x1)+1) |
---|
1631 | & +e212(T)*(3*dlog(1-x1)+1) |
---|
1632 | & )*x1*(1-x1) |
---|
1633 | & -(2*m122(T)+e122(T)*(dlog(x1)+1) |
---|
1634 | & +e212(T)*dlog(1-x1) |
---|
1635 | & )*(1-x1)) |
---|
1636 | & ) |
---|
1637 | END FUNCTION lnAa |
---|
1638 | |
---|
1639 | REAL FUNCTION lnAw(x1,T) |
---|
1640 | |
---|
1641 | REAL, INTENT(IN) :: T,x1 |
---|
1642 | REAL :: |
---|
1643 | & m111,m121,m221,m122 |
---|
1644 | & ,e111,e121,e211,e122,e212,e221 |
---|
1645 | lnAw=-( |
---|
1646 | & (2*m121(T)+e121(T)*dlog(x1)+e211(T)*(dlog(1-x1)+1))*x1 |
---|
1647 | & +(2*m221(T)+e221(T)*(2*dlog(1-x1)+1))*(1-x1) |
---|
1648 | & -(m111(T)+e111(T)*(dlog(x1)+1))*x1*x1 |
---|
1649 | & -(2*m121(T)+e121(T)*(dlog(x1)+1) |
---|
1650 | & +e211(T)*(dlog(1-x1)+1))*x1*(1-x1) |
---|
1651 | & -(m221(T)+e221(T)*(dlog(1-x1)+1))*(1-x1)**2 |
---|
1652 | & +x1*(2*m122(T)+e122(T)*dlog(x1)+e212(T)*dlog(1-x1))*x1*(1-x1) |
---|
1653 | & +x1*(1-x1)*((2*m122(T)+e122(T)*dlog(x1) |
---|
1654 | & +e212(T)*(dlog(1-x1)+1))*x1 |
---|
1655 | & -(6*m122(T)+e122(T)*(3*dlog(x1)+1) |
---|
1656 | & +e212(T)*(3*dlog(1-x1)+1))*(1-x1)*x1) |
---|
1657 | & ) |
---|
1658 | END FUNCTION lnAw |
---|
1659 | |
---|
1660 | REAL FUNCTION activitya(xal,T) |
---|
1661 | |
---|
1662 | REAL, INTENT(IN) :: T,xal |
---|
1663 | REAL :: lnAa |
---|
1664 | ! & ,m111,m121,m221,m122 & |
---|
1665 | ! & ,e111,e121,e211,e122,e212,e221 |
---|
1666 | |
---|
1667 | ! write(*,*) 'in activitya ', xal, T |
---|
1668 | activitya=DEXP(lnAa(xal,T)-lnAa(1.D0-1.D-12,T)) |
---|
1669 | END FUNCTION activitya |
---|
1670 | |
---|
1671 | FUNCTION activityw(xal,T) |
---|
1672 | |
---|
1673 | REAL, INTENT(IN) :: T,xal |
---|
1674 | REAL :: lnAw |
---|
1675 | |
---|
1676 | activityw=DEXP(lnAw(xal,T)-lnAw(1.D-12,T)) |
---|
1677 | END FUNCTION activityw |
---|
1678 | |
---|
1679 | ! end of functions related to zeleznik activities |
---|
1680 | |
---|
1681 | |
---|
1682 | |
---|
1683 | |
---|
1684 | FUNCTION SIGMADROPLET(xmass,t) |
---|
1685 | ! calculates the surface tension of the liquid in J/m^2 |
---|
1686 | ! xmass=mass fraction of h2so4, t in kelvins |
---|
1687 | ! about 230-323 K , x=0,...,1 |
---|
1688 | !(valid down to the solid phase limit temp, which depends on molefraction) |
---|
1689 | IMPLICIT NONE |
---|
1690 | REAL :: SIGMADROPLET |
---|
1691 | REAL, INTENT(IN):: xmass, t |
---|
1692 | REAL :: a, b, t1, tc, xmole |
---|
1693 | REAL, PARAMETER :: Msa=98.078 |
---|
1694 | REAL, PARAMETER :: Mwv=18.0153 |
---|
1695 | |
---|
1696 | IF (t .LT. 305.15) THEN |
---|
1697 | !low temperature surface tension |
---|
1698 | ! Hanna Vehkam‰ki and Markku Kulmala and Ismo Napari |
---|
1699 | ! and Kari E. J. Lehtinen and Claudia Timmreck and Madis Noppel and Ari Laaksonen, 2002, |
---|
1700 | ! An improved parameterization for sulfuric acid/water nucleation rates for tropospheric |
---|
1701 | !and stratospheric conditions, () J. Geophys. Res., 107, pp. 4622-4631 |
---|
1702 | a=0.11864+xmass*(-0.11651+xmass*(0.76852+xmass* |
---|
1703 | & (-2.40909+xmass*(2.95434-xmass*1.25852)))) |
---|
1704 | b=-0.00015709+xmass*(0.00040102+xmass*(-0.00239950+xmass* |
---|
1705 | & (0.007611235+xmass*(-0.00937386+xmass*0.00389722)))) |
---|
1706 | SIGMADROPLET=a+t*b |
---|
1707 | ELSE |
---|
1708 | |
---|
1709 | xmole = (xmass/Msa)*(1./((xmass/Msa)+(1.-xmass)/Mwv)) |
---|
1710 | ! high temperature surface tension |
---|
1711 | !H. Vehkam‰ki and M. Kulmala and K.E. J. lehtinen, 2003, |
---|
1712 | !Modelling binary homogeneous nucleation of water-sulfuric acid vapours: |
---|
1713 | ! parameterisation for high temperature emissions, () Environ. Sci. Technol., 37, 3392-3398 |
---|
1714 | |
---|
1715 | tc= 647.15*(1.0-xmole)*(1.0-xmole)+900.0*xmole*xmole+ |
---|
1716 | & 3156.186*xmole*(1-xmole) !critical temperature |
---|
1717 | t1=1.0-t/tc |
---|
1718 | a= 0.2358+xmole*(-0.529+xmole*(4.073+xmole*(-12.6707+xmole* |
---|
1719 | & (15.3552+xmole*(-6.3138))))) |
---|
1720 | b=-0.14738+xmole*(0.6253+xmole*(-5.4808+xmole*(17.2366+xmole* |
---|
1721 | & (-21.0487+xmole*(8.719))))) |
---|
1722 | SIGMADROPLET=(a+b*t1)*t1**(1.256) |
---|
1723 | END IF |
---|
1724 | |
---|
1725 | RETURN |
---|
1726 | END FUNCTION SIGMADROPLET |
---|
1727 | |
---|
1728 | FUNCTION RHODROPLET(xmass,t) |
---|
1729 | ! |
---|
1730 | ! calculates the density of the liquid in kg/m^3 |
---|
1731 | ! xmass=mass fraction of h2so4, t in kelvins |
---|
1732 | ! Hanna Vehkam‰ki and Markku Kulmala and Ismo Napari |
---|
1733 | ! and Kari E. J. Lehtinen and Claudia Timmreck and Madis Noppel and Ari Laaksonen, 2002, |
---|
1734 | ! An improved parameterization for sulfuric acid/water nucleation rates for tropospheric |
---|
1735 | !and stratospheric conditions, () J. Geophys. Res., 107, pp. 4622-4631 |
---|
1736 | |
---|
1737 | ! about 220-373 K , x=0,...,1 |
---|
1738 | !(valid down to the solid phase limit temp, which depends on molefraction) |
---|
1739 | |
---|
1740 | IMPLICIT NONE |
---|
1741 | REAL :: RHODROPLET |
---|
1742 | REAL, INTENT(IN) :: xmass, t |
---|
1743 | REAL :: a,b,c |
---|
1744 | |
---|
1745 | |
---|
1746 | a=0.7681724+xmass*(2.1847140+xmass*(7.1630022+xmass* |
---|
1747 | & (-44.31447+xmass* |
---|
1748 | & (88.75606+xmass*(-75.73729+xmass*23.43228))))) |
---|
1749 | b=1.808225e-3+xmass*(-9.294656e-3+xmass*(-0.03742148+ |
---|
1750 | & xmass*(0.2565321+xmass*(-0.5362872+xmass* |
---|
1751 | & (0.4857736-xmass*0.1629592))))) |
---|
1752 | c=-3.478524e-6+xmass*(1.335867e-5+xmass* |
---|
1753 | & (5.195706e-5+xmass*(-3.717636e-4+xmass* |
---|
1754 | & (7.990811e-4+xmass*(-7.458060e-4+xmass*2.58139e-4))))) |
---|
1755 | RHODROPLET=a+t*(b+c*t) ! g/cm^3 |
---|
1756 | RHODROPLET= RHODROPLET*1.0e3 !kg/m^3 |
---|
1757 | RETURN |
---|
1758 | END FUNCTION RHODROPLET |
---|
1759 | |
---|
1760 | |
---|
1761 | |
---|
1762 | |
---|