[1305] | 1 | !****************************************************************************** |
---|
| 2 | !* venus_SAS_composition SUBROUTINE |
---|
| 3 | !* modified from |
---|
| 4 | !* PROGRAM PSC_MODEL_E |
---|
[1442] | 5 | !* by A. Määttänen |
---|
[1305] | 6 | !* subroutine for LMDZ+photochemistry VENUS |
---|
| 7 | !* by A. Stolzenbach |
---|
| 8 | !* |
---|
| 9 | !* Input/Output files: |
---|
| 10 | !* ------------------- |
---|
| 11 | !* |
---|
| 12 | !---------------------------------------------------------------------------- |
---|
[1442] | 13 | SUBROUTINE new_cloud_venus( |
---|
| 14 | + nblev, nblon, |
---|
| 15 | + TT,PP, |
---|
[1305] | 16 | + mrt_wv,mrt_sa, |
---|
[1442] | 17 | + mr_wv,mr_sa) |
---|
[1305] | 18 | |
---|
| 19 | USE chemparam_mod |
---|
| 20 | IMPLICIT NONE |
---|
[1442] | 21 | |
---|
| 22 | #include "YOMCST.h" |
---|
| 23 | |
---|
| 24 | INTEGER, INTENT(IN) :: nblon ! nombre de points horizontaux |
---|
| 25 | INTEGER, INTENT(IN) :: nblev ! nombre de couches verticales |
---|
| 26 | |
---|
[1305] | 27 | !---------------------------------------------------------------------------- |
---|
| 28 | ! Ambient air state variables: |
---|
[1442] | 29 | REAL, INTENT(IN), DIMENSION(nblon,nblev) :: mrt_wv,mrt_sa, |
---|
| 30 | + TT,PP |
---|
| 31 | REAL, INTENT(INOUT), DIMENSION(nblon,nblev) :: mr_wv,mr_sa |
---|
[1305] | 32 | !---------------------------------------------------------------------------- |
---|
[1442] | 33 | INTEGER :: ilon, ilev, imode |
---|
| 34 | !---------------------------------------------------------------------------- |
---|
[1305] | 35 | ! Thermodynamic functions: |
---|
[1442] | 36 | REAL :: RHODROPLET |
---|
| 37 | !---------------------------------------------------------------------------- |
---|
| 38 | ! Auxilary variables: |
---|
| 39 | REAL :: NH2SO4,NH2O |
---|
| 40 | REAL :: H2SO4_liq,H2O_liq |
---|
| 41 | REAL :: CONCM |
---|
| 42 | REAL :: MCONDTOT |
---|
| 43 | REAL :: RMODE |
---|
| 44 | REAL :: WSAFLAG |
---|
| 45 | REAL :: K_SAV |
---|
| 46 | !---------------------------------------------------------------------------- |
---|
| 47 | ! Ridder's Method variables: |
---|
| 48 | REAL :: WVMIN, WVMAX, WVACC |
---|
[1305] | 49 | |
---|
[1442] | 50 | INTEGER :: NBROOT |
---|
| 51 | |
---|
| 52 | INTEGER :: MAXITE |
---|
| 53 | PARAMETER(MAXITE=20) |
---|
| 54 | |
---|
| 55 | INTEGER :: NBRAC |
---|
| 56 | PARAMETER(NBRAC=20) |
---|
| 57 | |
---|
| 58 | INTEGER :: FLAG |
---|
[1305] | 59 | !---------------------------------------------------------------------------- |
---|
[1442] | 60 | |
---|
[1305] | 61 | !---------------------------------------------------------------------------- |
---|
[1442] | 62 | ! External functions needed: |
---|
| 63 | REAL :: IRFRMWV |
---|
| 64 | !---------------------------------------------------------------------------- |
---|
[1305] | 65 | |
---|
[1442] | 66 | |
---|
[1305] | 67 | ! >>> Program starts here: |
---|
| 68 | |
---|
| 69 | !AM Venus |
---|
[1442] | 70 | ! These aerosols will then be given an equilibrium composition for the given size distribution |
---|
[1305] | 71 | |
---|
[1442] | 72 | ! Hanna Vehkamäki and Markku Kulmala and Ismo Napari |
---|
[1305] | 73 | ! and Kari E. J. Lehtinen and Claudia Timmreck and Madis Noppel and Ari Laaksonen, 2002, |
---|
| 74 | ! An improved parameterization for sulfuric acid/water nucleation rates for tropospheric |
---|
[1442] | 75 | !and stratospheric conditions, () J. Geophys. Res., 107, PP. 4622-4631 |
---|
[1305] | 76 | |
---|
[1442] | 77 | !=========================================== |
---|
| 78 | ! Debut boucle sur niveau et lat,lon |
---|
| 79 | !=========================================== |
---|
| 80 | ! Init, tous les points=0, cela met les niveaux > cloudmax et < cloudmin a 0 |
---|
| 81 | NBRTOT(:,:,:)=0.0E+0 |
---|
| 82 | WH2SO4(:,:)=0.0E+0 |
---|
| 83 | rho_droplet(:,:)=0.0E+0 |
---|
| 84 | |
---|
| 85 | DO ilev=cloudmin, cloudmax |
---|
| 86 | DO ilon=1, nblon |
---|
| 87 | |
---|
| 88 | ! Boucle sur les modes |
---|
| 89 | RMODE=0.0E+0 |
---|
| 90 | K_SAV = 0.0 |
---|
| 91 | |
---|
| 92 | DO imode=1, nbr_mode |
---|
| 93 | IF (K_MASS(ilon,ilev,imode).GT.K_SAV) THEN |
---|
| 94 | ! RMODE est le rayon modal de la distribution en volume du mode le plus |
---|
| 95 | ! representatif pour la Mtot |
---|
| 96 | RMODE=R_MEDIAN(ilon,ilev,imode)* |
---|
| 97 | & EXP(2.*(DLOG(STDDEV(ilon,ilev,imode))**2.)) |
---|
| 98 | K_SAV=K_MASS(ilon,ilev,imode) |
---|
| 99 | ENDIF |
---|
| 100 | ENDDO ! FIN boucle imode |
---|
[1305] | 101 | |
---|
[1442] | 102 | ! Initialisation des bornes pour WV |
---|
| 103 | WVMIN=1.E-90 |
---|
| 104 | WVMAX=mrt_wv(ilon,ilev) |
---|
[1305] | 105 | |
---|
[1442] | 106 | ! Accuracy de WVeq |
---|
| 107 | WVACC=WVMAX*1.0E-3 |
---|
| 108 | |
---|
| 109 | ! BRACWV borne la fonction f(WV) - WV = 0 |
---|
| 110 | ! de WV=0 à WV=WVtot on cherche l'intervalle où f(WV) - WV = 0 |
---|
| 111 | ! avec précisément f(WVliq de WSA<=WVinput) + WVinput - WVtot = 0 |
---|
| 112 | ! Elle fait appel à la fct/ssrtine ITERWV() |
---|
| 113 | |
---|
| 114 | CALL BRACWV(WVMIN,WVMAX,NBRAC,RMODE, |
---|
| 115 | & mrt_wv(ilon,ilev),mrt_sa(ilon,ilev),TT(ilon,ilev), |
---|
| 116 | & PP(ilon,ilev),FLAG,WSAFLAG,NBROOT) |
---|
| 117 | |
---|
| 118 | SELECT CASE(FLAG) |
---|
| 119 | |
---|
| 120 | CASE(1) |
---|
| 121 | ! Cas NROOT=1 ou NROOT>1 mais dans un intervalle restreint WVTOT (cas courant) |
---|
| 122 | ! IRFRMWV Ridder's method pour trouver, sur [WVmin,WVmax], WVo tel que f(WVo) - WVo = 0 |
---|
| 123 | ! Elle fait appel la fct/ssrtine ITERWV() |
---|
| 124 | |
---|
| 125 | WH2SO4(ilon,ilev)=IRFRMWV(WVMIN,WVMAX,WVACC,MAXITE,RMODE, |
---|
| 126 | & TT(ilon,ilev),PP(ilon,ilev), |
---|
| 127 | & mrt_wv(ilon,ilev),mrt_sa(ilon,ilev),NBROOT) |
---|
[1305] | 128 | |
---|
[1442] | 129 | rho_droplet(ilon,ilev)=RHODROPLET(WH2SO4(ilon,ilev), |
---|
| 130 | & TT(ilon,ilev)) |
---|
[1305] | 131 | |
---|
[1442] | 132 | ! IF (rho_droplet(ilon,ilev).LT.1100.) THEN |
---|
| 133 | ! PRINT*,'PROBLEM RHO_DROPLET' |
---|
| 134 | ! PRINT*,'rho_droplet',rho_droplet(ilon,ilev) |
---|
| 135 | ! PRINT*,'T',TT(ilon,ilev),'WSA',WH2SO4(ilon,ilev) |
---|
| 136 | ! PRINT*,'RHODROPLET',RHODROPLET(WH2SO4(ilon,ilev), |
---|
| 137 | ! & TT(ilon,ilev)) |
---|
| 138 | ! PRINT*,'FLAG',FLAG,'NROOT',NBROOT |
---|
| 139 | ! STOP |
---|
| 140 | ! ENDIF |
---|
| 141 | |
---|
| 142 | CONCM= PP(ilon,ilev)/(1.3806488E-23*TT(ilon,ilev)) !air number density, molec/m3 |
---|
[1305] | 143 | |
---|
[1442] | 144 | NH2SO4=mrt_sa(ilon,ilev)*CONCM |
---|
| 145 | NH2O=mrt_wv(ilon,ilev)*CONCM |
---|
[1305] | 146 | |
---|
[1442] | 147 | CALL CALCM_SAT(NH2SO4,NH2O,WH2SO4(ilon,ilev), |
---|
| 148 | & rho_droplet(ilon,ilev),TT(ilon,ilev), |
---|
| 149 | & H2SO4_liq,H2O_liq,MCONDTOT) |
---|
[1305] | 150 | |
---|
[1442] | 151 | ! Boucle sur les modes |
---|
| 152 | DO imode=1, nbr_mode |
---|
| 153 | IF (K_MASS(ilon,ilev,imode).GT.0.) THEN |
---|
| 154 | NBRTOT(ilon,ilev,imode)= 1.E-6*3./(4.*RPI)* |
---|
| 155 | & K_MASS(ilon,ilev,imode)*MCONDTOT* |
---|
| 156 | & EXP(-4.5*DLOG(STDDEV(ilon,ilev,imode))**2.)/ |
---|
| 157 | & (R_MEDIAN(ilon,ilev,imode)**3.) |
---|
| 158 | ELSE |
---|
| 159 | NBRTOT(ilon,ilev,imode)=0.0E+0 |
---|
| 160 | ENDIF |
---|
| 161 | ENDDO |
---|
[1305] | 162 | |
---|
[1442] | 163 | ! Passage de #/m3 en VMR |
---|
| 164 | H2O_liq=H2O_liq/CONCM |
---|
| 165 | H2SO4_liq=H2SO4_liq/CONCM |
---|
| 166 | |
---|
| 167 | mr_wv(ilon,ilev)=mrt_wv(ilon,ilev)-H2O_liq |
---|
| 168 | mr_sa(ilon,ilev)=mrt_sa(ilon,ilev)-H2SO4_liq |
---|
| 169 | |
---|
| 170 | ! Problemes quand on a condense tout, on peut obtenir des -1e-24 |
---|
| 171 | ! aprs la soustraction et conversion de ND VMR |
---|
| 172 | IF (mr_wv(ilon,ilev).LE.0.0) mr_wv(ilon,ilev)=1.0E-30 |
---|
| 173 | IF (mr_sa(ilon,ilev).LE.0.0) mr_sa(ilon,ilev)=1.0E-30 |
---|
| 174 | |
---|
| 175 | |
---|
| 176 | |
---|
| 177 | CASE(2) |
---|
| 178 | ! Cas NROOT=0 mais proche de 0 |
---|
| 179 | |
---|
| 180 | WH2SO4(ilon,ilev)=WSAFLAG |
---|
| 181 | |
---|
| 182 | rho_droplet(ilon,ilev)=RHODROPLET(WH2SO4(ilon,ilev), |
---|
| 183 | & TT(ilon,ilev)) |
---|
| 184 | |
---|
| 185 | ! ATTENTION ce IF ne sert a rien en fait, juste a retenir une situation |
---|
| 186 | ! ubuesque dans mon code ou sans ce IF les valeurs de rho_droplets sont |
---|
| 187 | ! incohrentes avec TT et WH2SO4 (a priori lorsque NTOT=0) |
---|
| 188 | ! Juste le fait de METTRE un IF fait que rho_droplet a la bonne valeur |
---|
| 189 | ! donne par RHODROPLET (cf test externe en Python), sinon, la valeur est trop |
---|
| 190 | ! basse (de l'ordre de 1000 kg/m3) et correspond parfois la valeur avec |
---|
| 191 | ! WSA=0.1 (pas totalement sur) |
---|
| 192 | ! En tous cas, incoherent avec ce qui est attendue pour le WSA et T donnee |
---|
| 193 | ! La version avec le IF (rho<1100 & WSA>0.1) est CORRECTE, rho_droplet a |
---|
| 194 | ! la bonne valeur (tests externes Python confirment) |
---|
[1305] | 195 | |
---|
[1442] | 196 | IF ((rho_droplet(ilon,ilev).LT.1100.).AND. |
---|
| 197 | & (WH2SO4(ilon,ilev).GT.0.1))THEN |
---|
| 198 | PRINT*,'PROBLEM RHO_DROPLET' |
---|
| 199 | PRINT*,'rho_droplet',rho_droplet(ilon,ilev) |
---|
| 200 | PRINT*,'T',TT(ilon,ilev),'WSA',WH2SO4(ilon,ilev) |
---|
| 201 | PRINT*,'RHODROPLET',RHODROPLET(WH2SO4(ilon,ilev), |
---|
| 202 | & TT(ilon,ilev)) |
---|
| 203 | PRINT*,'FLAG',FLAG,'NROOT',NBROOT |
---|
| 204 | STOP |
---|
| 205 | ENDIF |
---|
| 206 | |
---|
[1305] | 207 | |
---|
[1442] | 208 | CONCM= PP(ilon,ilev)/(1.3806488E-23*TT(ilon,ilev)) !air number density, molec/m3 |
---|
| 209 | |
---|
| 210 | NH2SO4=mrt_sa(ilon,ilev)*CONCM |
---|
| 211 | NH2O=mrt_wv(ilon,ilev)*CONCM |
---|
| 212 | |
---|
| 213 | CALL CALCM_SAT(NH2SO4,NH2O,WH2SO4(ilon,ilev), |
---|
| 214 | & rho_droplet(ilon,ilev),TT(ilon,ilev), |
---|
| 215 | & H2SO4_liq,H2O_liq,MCONDTOT) |
---|
| 216 | |
---|
| 217 | ! Boucle sur les modes |
---|
| 218 | DO imode=1, nbr_mode |
---|
| 219 | IF (K_MASS(ilon,ilev,imode).GT.0.) THEN |
---|
| 220 | NBRTOT(ilon,ilev,imode)= 1.E-6*3./(4.*RPI)* |
---|
| 221 | & K_MASS(ilon,ilev,imode)*MCONDTOT* |
---|
| 222 | & EXP(-4.5*DLOG(STDDEV(ilon,ilev,imode))**2.)/ |
---|
| 223 | & (R_MEDIAN(ilon,ilev,imode)**3.) |
---|
| 224 | ELSE |
---|
| 225 | NBRTOT(ilon,ilev,imode)=0.0E+0 |
---|
| 226 | ENDIF |
---|
| 227 | ENDDO |
---|
| 228 | |
---|
| 229 | ! Passage de #/m3 en VMR |
---|
| 230 | H2O_liq=H2O_liq/CONCM |
---|
| 231 | H2SO4_liq=H2SO4_liq/CONCM |
---|
| 232 | |
---|
| 233 | mr_wv(ilon,ilev)=mrt_wv(ilon,ilev)-H2O_liq |
---|
| 234 | mr_sa(ilon,ilev)=mrt_sa(ilon,ilev)-H2SO4_liq |
---|
| 235 | |
---|
| 236 | ! Problmes quand on a condense tout, on peut obtenir des -1e-24 |
---|
| 237 | ! aprs la soustraction et conversion de ND VMR |
---|
| 238 | IF (mr_wv(ilon,ilev).LE.0.0) mr_wv(ilon,ilev)=1.0E-30 |
---|
| 239 | IF (mr_sa(ilon,ilev).LE.0.0) mr_sa(ilon,ilev)=1.0E-30 |
---|
[1305] | 240 | |
---|
[1442] | 241 | CASE(3) |
---|
| 242 | ! Cas 0 NROOT |
---|
| 243 | mr_wv(ilon,ilev)=mrt_wv(ilon,ilev) |
---|
| 244 | mr_sa(ilon,ilev)=mrt_sa(ilon,ilev) |
---|
| 245 | rho_droplet(ilon,ilev)=0.0E+0 |
---|
| 246 | WH2SO4(ilon,ilev)=0.0E+0 |
---|
| 247 | DO imode=1, nbr_mode |
---|
| 248 | NBRTOT(ilon,ilev,imode)=0.0E+0 |
---|
| 249 | ENDDO |
---|
| 250 | |
---|
| 251 | END SELECT |
---|
| 252 | ENDDO !FIN boucle ilon |
---|
| 253 | ENDDO !FIN boucle ilev |
---|
[1305] | 254 | |
---|
[1442] | 255 | END SUBROUTINE new_cloud_venus |
---|
| 256 | |
---|
| 257 | |
---|
| 258 | !***************************************************************************** |
---|
| 259 | !* SUBROUTINE ITERWV() |
---|
| 260 | SUBROUTINE ITERWV(WV,WVLIQ,WVEQOUT,WVTOT,WSAOUT,SATOT, |
---|
| 261 | + TAIR,PAIR,RADIUS) |
---|
| 262 | !***************************************************************************** |
---|
| 263 | !* Cette routine est la solution par itration afin de trouver WSA pour un WV, |
---|
| 264 | !* et donc LPPWV, donn. Ce qui nous donne egalement le WV correspondant au |
---|
| 265 | !* WSA solution |
---|
| 266 | !* For VenusGCM by A. Stolzenbach 07/2014 |
---|
| 267 | !* OUTPUT: WVEQ et WSAOUT |
---|
[1305] | 268 | |
---|
[1442] | 269 | IMPLICIT NONE |
---|
| 270 | REAL, INTENT(IN) :: WV, WVTOT, SATOT, TAIR, PAIR, RADIUS |
---|
| 271 | |
---|
| 272 | REAl, INTENT(OUT) :: WVEQOUT, WSAOUT, WVLIQ |
---|
| 273 | |
---|
| 274 | REAL :: WSAMIN, WSAMAX, WSAACC |
---|
| 275 | PARAMETER(WSAACC=0.001) |
---|
| 276 | |
---|
| 277 | REAL :: LPPWV |
---|
| 278 | |
---|
| 279 | INTEGER :: MAXITSA, NBRACSA, NBROOT |
---|
| 280 | PARAMETER(MAXITSA=20) |
---|
| 281 | PARAMETER(NBRACSA=20) |
---|
| 282 | |
---|
| 283 | LOGICAl :: FLAG1,FLAG2 |
---|
[1305] | 284 | |
---|
[1442] | 285 | ! External Function |
---|
| 286 | REAl :: IRFRMSA, WVCOND |
---|
| 287 | |
---|
| 288 | IF (RADIUS.LT.1E-30) THEN |
---|
| 289 | PRINT*,'RMODE == 0 FLAG 3' |
---|
| 290 | STOP |
---|
| 291 | ENDIF |
---|
| 292 | ! Initialisation WSA=[0.1,1.0] |
---|
| 293 | WSAMIN=0.1 |
---|
| 294 | WSAMAX=1.0 |
---|
| 295 | |
---|
| 296 | LPPWV=DLOG(PAIR*WV) |
---|
| 297 | |
---|
| 298 | ! Appel Bracket de KEEQ |
---|
| 299 | CALL BRACWSA(WSAMIN,WSAMAX,NBRACSA,RADIUS,TAIR, |
---|
| 300 | & LPPWV,FLAG1,FLAG2,NBROOT) |
---|
| 301 | |
---|
| 302 | IF ((.NOT.FLAG1).AND.(.NOT.FLAG2).AND.(NBROOT.EQ.1)) THEN |
---|
| 303 | ! Appel Ridder's Method |
---|
| 304 | |
---|
| 305 | WSAOUT=IRFRMSA(WSAMIN,WSAMAX,WSAACC,MAXITSA, |
---|
| 306 | & RADIUS,TAIR,PAIR,LPPWV,NBROOT) |
---|
| 307 | ! IF (WSAOUT.EQ.1.0) WSAOUT=0.999999 |
---|
| 308 | ! IF (WSAOUT.LT.0.1) WSAOUT=0.1 |
---|
| 309 | |
---|
| 310 | ! Si BRACWSA ne trouve aucun ensemble solution KEEQ=0 on fixe WSA a 0.9999 ou 0.1 |
---|
| 311 | ELSE |
---|
| 312 | IF (FLAG1.AND.(.NOT.FLAG2)) WSAOUT=0.999999 |
---|
| 313 | IF (FLAG2.AND.(.NOT.FLAG1)) WSAOUT=WSAMIN |
---|
| 314 | IF (FLAG1.AND.FLAG2) THEN |
---|
| 315 | PRINT*,'FLAGs BARCWSA tous TRUE' |
---|
| 316 | STOP |
---|
| 317 | ENDIF |
---|
| 318 | ENDIF |
---|
| 319 | |
---|
| 320 | |
---|
| 321 | ! WVEQ output correspondant a WVliq lie a WSA calcule |
---|
| 322 | WVLIQ=WVCOND(WSAOUT,TAIR,PAIR,SATOT) |
---|
| 323 | WVEQOUT=(WVLIQ+WV)/WVTOT-1.0 |
---|
| 324 | |
---|
| 325 | END SUBROUTINE ITERWV |
---|
| 326 | |
---|
| 327 | |
---|
| 328 | !***************************************************************************** |
---|
| 329 | !* SUBROUTINE BRACWV() |
---|
| 330 | SUBROUTINE BRACWV(XA,XB,N,RADIUS,WVTOT,SATOT,TAIR,PAIR, |
---|
| 331 | + FLAGWV,WSAFLAG,NROOT) |
---|
| 332 | !***************************************************************************** |
---|
| 333 | !* Bracket de ITERWV |
---|
| 334 | !* From Numerical Recipes |
---|
| 335 | !* Adapted for VenusGCM A. Stolzenbach 07/2014 |
---|
| 336 | !* X est WVinput |
---|
| 337 | !* OUTPUT: XA et XB |
---|
| 338 | |
---|
[1305] | 339 | IMPLICIT NONE |
---|
| 340 | |
---|
[1442] | 341 | REAL, INTENT(IN) :: WVTOT,SATOT,RADIUS,TAIR,PAIR |
---|
| 342 | INTEGER, INTENT(IN) :: N |
---|
| 343 | |
---|
| 344 | REAL, INTENT(INOUT) :: XA,XB |
---|
| 345 | REAL, INTENT(OUT) :: WSAFLAG |
---|
| 346 | |
---|
| 347 | INTEGER :: I,J |
---|
| 348 | |
---|
| 349 | INTEGER, INTENT(OUT) :: NROOT |
---|
| 350 | |
---|
| 351 | REAL :: FP, FC, X, WVEQ, WVLIQ, WSAOUT |
---|
| 352 | REAL :: XMAX,XMIN,WVEQACC |
---|
| 353 | |
---|
| 354 | INTEGER, INTENT(OUT) :: FLAGWV |
---|
[1305] | 355 | |
---|
[1442] | 356 | ! WVEQACC est le seuil auquel on accorde un WSA correct meme |
---|
| 357 | ! si il ne fait pas partie d'une borne. Utile quand le modele |
---|
| 358 | ! s'approche de 0 mais ne l'atteint pas. |
---|
| 359 | WVEQACC=1.0E-3 |
---|
| 360 | |
---|
| 361 | FLAGWV=1 |
---|
[1305] | 362 | |
---|
[1442] | 363 | NROOT=0 |
---|
[1305] | 364 | |
---|
[1442] | 365 | X=XA |
---|
| 366 | XMAX=XB |
---|
| 367 | XMIN=XA |
---|
| 368 | |
---|
| 369 | ! CAS 1 On borne la fonction (WVEQ=0) |
---|
| 370 | |
---|
| 371 | CALL ITERWV(X,WVLIQ,WVEQ,WVTOT,WSAOUT,SATOT,TAIR,PAIR,RADIUS) |
---|
| 372 | FP=WVEQ |
---|
| 373 | |
---|
| 374 | DO I=1,N-1 |
---|
| 375 | X=(1.-DLOG(REAL(N-I))/DLOG(REAL(N)))*XMAX |
---|
| 376 | CALL ITERWV(X,WVLIQ,WVEQ,WVTOT,WSAOUT,SATOT,TAIR,PAIR,RADIUS) |
---|
| 377 | FC=WVEQ |
---|
| 378 | |
---|
| 379 | IF ((FP*FC).LT.0.0) THEN |
---|
| 380 | NROOT=NROOT+1 |
---|
| 381 | ! Si NROOT>1 on place la borne sup output la borne min du calcul en i |
---|
| 382 | IF (NROOT.GT.1) THEN |
---|
| 383 | XB=(1.-DLOG(REAL(N-I+1))/DLOG(REAL(N)))*XMAX |
---|
| 384 | ENDIF |
---|
| 385 | |
---|
| 386 | IF (I.EQ.1) THEN |
---|
| 387 | XA=XMIN |
---|
| 388 | ELSE |
---|
| 389 | XA=(1.-DLOG(REAL(N-I+1))/DLOG(REAL(N)))*XMAX |
---|
| 390 | ENDIF |
---|
| 391 | XB=X |
---|
| 392 | ENDIF |
---|
| 393 | FP=FC |
---|
| 394 | ENDDO |
---|
| 395 | |
---|
| 396 | ! CAS 2 on refait la boucle pour tester si WVEQ est proche de 0 |
---|
| 397 | ! avec le seuil WVEQACC |
---|
| 398 | IF (NROOT.EQ.0) THEN |
---|
| 399 | X=XMIN |
---|
| 400 | CALL ITERWV(X,WVLIQ,WVEQ,WVTOT,WSAOUT,SATOT, |
---|
| 401 | + TAIR,PAIR,RADIUS) |
---|
| 402 | DO J=1,N-1 |
---|
| 403 | X=(1.-DLOG(REAL(N-J))/DLOG(REAL(N)))*XMAX |
---|
| 404 | CALL ITERWV(X,WVLIQ,WVEQ,WVTOT,WSAOUT,SATOT, |
---|
| 405 | + TAIR,PAIR,RADIUS) |
---|
| 406 | |
---|
| 407 | IF (ABS(WVEQ).LE.WVEQACC) THEN |
---|
| 408 | WSAFLAG=WSAOUT |
---|
| 409 | FLAGWV=2 |
---|
| 410 | RETURN |
---|
| 411 | ENDIF |
---|
| 412 | ENDDO |
---|
| 413 | |
---|
| 414 | ! CAS 3 Pas de borne, WVEQ jamais proche de 0 |
---|
| 415 | FLAGWV=3 |
---|
| 416 | RETURN |
---|
| 417 | ENDIF |
---|
| 418 | |
---|
| 419 | END SUBROUTINE BRACWV |
---|
| 420 | |
---|
| 421 | !***************************************************************************** |
---|
| 422 | !* SUBROUTINE BRACWSA() |
---|
| 423 | SUBROUTINE BRACWSA(XA,XB,N,RADIUS,TAIR,LPPWVINP,FLAGH,FLAGL, |
---|
| 424 | + NROOT) |
---|
| 425 | !***************************************************************************** |
---|
| 426 | !* Bracket de KEEQ |
---|
| 427 | !* From Numerical Recipes |
---|
| 428 | !* Adapted for VenusGCM A. Stolzenbach 07/2014 |
---|
| 429 | |
---|
| 430 | IMPLICIT NONE |
---|
| 431 | |
---|
[1305] | 432 | !---------------------------------------------------------------------------- |
---|
[1442] | 433 | ! External functions needed: |
---|
| 434 | REAl KEEQ |
---|
| 435 | !---------------------------------------------------------------------------- |
---|
[1305] | 436 | |
---|
[1442] | 437 | REAL, INTENT(IN) :: RADIUS,TAIR,LPPWVINP |
---|
| 438 | INTEGER, INTENT(IN) :: N |
---|
| 439 | |
---|
| 440 | REAL, INTENT(INOUT) :: XA,XB |
---|
| 441 | |
---|
| 442 | INTEGER, INTENT(OUT) :: NROOT |
---|
| 443 | |
---|
| 444 | INTEGER :: I, J |
---|
| 445 | |
---|
| 446 | REAL :: DX, FP, FC, X |
---|
| 447 | |
---|
| 448 | LOGICAL, INTENT(OUT) :: FLAGH,FLAGL |
---|
| 449 | |
---|
| 450 | |
---|
| 451 | FLAGL=.FALSE. |
---|
| 452 | FLAGH=.FALSE. |
---|
| 453 | NROOT=0 |
---|
| 454 | DX=(XB-XA)/N |
---|
| 455 | X=XA |
---|
| 456 | FP=KEEQ(RADIUS,TAIR,X,LPPWVINP) |
---|
| 457 | |
---|
| 458 | DO I=1,N |
---|
| 459 | X=X+DX |
---|
| 460 | FC=KEEQ(RADIUS,TAIR,X,LPPWVINP) |
---|
| 461 | |
---|
| 462 | IF ((FP*FC).LE.0.) THEN |
---|
| 463 | NROOT=NROOT+1 |
---|
| 464 | XA=X-DX |
---|
| 465 | XB=X |
---|
| 466 | ! RETURN |
---|
| 467 | ! IF (NROOT.GT.1) THEN |
---|
| 468 | ! PRINT*,'On a plus d1 intervalle KEEQ=0' |
---|
| 469 | ! PRINT*,'Probleme KEEQ=0 => 1 racine en theorie' |
---|
| 470 | ! X=X-(I*DX) |
---|
| 471 | ! FP=KEEQ(RADIUS,TAIR,X,LPPWVINP) |
---|
| 472 | ! PRINT*,'KEEQ(WSA)',FP,X,TAIR |
---|
| 473 | ! DO J=1,N |
---|
| 474 | ! X=X+DX |
---|
| 475 | ! FP=KEEQ(RADIUS,TAIR,X,LPPWVINP) |
---|
| 476 | ! PRINT*,'KEEQ(WSA)',FP,X |
---|
| 477 | ! ENDDO |
---|
| 478 | ! STOP |
---|
| 479 | ! ENDIF |
---|
| 480 | ENDIF |
---|
| 481 | |
---|
| 482 | FP=FC |
---|
| 483 | ENDDO |
---|
| 484 | |
---|
| 485 | IF (NROOT.EQ.0) THEN |
---|
| 486 | ! PRINT*,'On a 0 intervalle KEEQ=0' |
---|
| 487 | ! PRINT*,'Probleme KEEQ=0 => 1 racine en theorie' |
---|
| 488 | ! PRINT*,'XA',XA,'KEEQ',KEEQ(RADIUS,TAIR,XA,LPPWVINP) |
---|
| 489 | ! PRINT*,'XB',XB,'KEEQ',KEEQ(RADIUS,TAIR,XB,LPPWVINP) |
---|
| 490 | ! PRINT*,'TT',TAIR |
---|
| 491 | ! PRINT*,'RADIUS',RADIUS |
---|
| 492 | ! PRINT*,'NBRAC',N |
---|
| 493 | ! STOP |
---|
| 494 | |
---|
| 495 | ! X=XA |
---|
| 496 | ! FP=KEEQ(RADIUS,TAIR,X,LPPWVINP) |
---|
| 497 | ! PRINT*,'KEEQ(WSA)',FP,X,TAIR |
---|
| 498 | ! DO I=1,N |
---|
| 499 | ! X=X+DX |
---|
| 500 | ! FP=KEEQ(RADIUS,TAIR,X,LPPWVINP) |
---|
| 501 | ! PRINT*,'KEEQ(WSA)',FP,X,TAIR |
---|
| 502 | ! ENDDO |
---|
| 503 | |
---|
| 504 | |
---|
| 505 | ! Test determine la tendance globale KEEQ sur [WSAMIN,WSAMAX] |
---|
| 506 | IF ((ABS(KEEQ(RADIUS,TAIR,XA,LPPWVINP))- |
---|
| 507 | & ABS(KEEQ(RADIUS,TAIR,XB,LPPWVINP))).GT.0.0) FLAGH=.TRUE. |
---|
| 508 | ! On fixe flag low TRUE pour WSA = 0.1 |
---|
| 509 | IF ((ABS(KEEQ(RADIUS,TAIR,XA,LPPWVINP))- |
---|
| 510 | & ABS(KEEQ(RADIUS,TAIR,XB,LPPWVINP))).LT.0.0) FLAGL=.TRUE. |
---|
| 511 | ! STOP |
---|
[1305] | 512 | ENDIF |
---|
[1442] | 513 | |
---|
| 514 | END SUBROUTINE BRACWSA |
---|
| 515 | |
---|
| 516 | |
---|
| 517 | !***************************************************************************** |
---|
| 518 | !* REAL FUNCTION WVCOND() |
---|
| 519 | REAL FUNCTION WVCOND(WSA,T,P,SAt) |
---|
| 520 | !***************************************************************************** |
---|
| 521 | !* Condensation de H2O selon WSA, T et P et H2SO4tot |
---|
| 522 | !* |
---|
| 523 | !* Adapted for VenusGCM A. Stolzenbach 07/2014 |
---|
| 524 | ! INPUT: |
---|
| 525 | ! SAt : VMR of total H2SO4 |
---|
| 526 | ! WSA: aerosol H2SO4 weight fraction (fraction) |
---|
| 527 | ! T: temperature (K) |
---|
| 528 | ! P: pressure (Pa) |
---|
| 529 | ! OUTPUT: |
---|
| 530 | ! WVCOND : VMR H2O condense |
---|
[1305] | 531 | |
---|
[1442] | 532 | ! USE chemparam_mod |
---|
| 533 | |
---|
| 534 | IMPLICIT NONE |
---|
[1305] | 535 | |
---|
[1442] | 536 | REAL, INTENT(IN) :: SAt, WSA |
---|
| 537 | REAL, INTENT(IN) :: T, P |
---|
[1305] | 538 | |
---|
[1442] | 539 | ! working variables |
---|
| 540 | REAL SA, WV |
---|
| 541 | REAL DND2,pstand,lpar,acidps |
---|
| 542 | REAL x1, satpacid |
---|
| 543 | REAL , DIMENSION(2):: act |
---|
| 544 | REAL CONCM |
---|
| 545 | REAL NH2SO4 |
---|
| 546 | REAL H2OCOND, H2SO4COND |
---|
| 547 | |
---|
[1305] | 548 | |
---|
[1442] | 549 | CONCM= (P)/(1.3806488E-23*T) !air number density, molec/m3? CHECK UNITS! |
---|
[1305] | 550 | |
---|
[1442] | 551 | NH2SO4=SAt*CONCM |
---|
| 552 | |
---|
| 553 | pstand=1.01325E+5 !Pa 1 atm pressure |
---|
| 554 | |
---|
| 555 | x1=(WSA/98.08)/(WSA/98.08 + ((1.-WSA)/18.0153)) |
---|
| 556 | |
---|
| 557 | CALL zeleznik(x1,T,act) |
---|
| 558 | |
---|
| 559 | !pure acid satur vapor pressure |
---|
| 560 | lpar= -11.695+DLOG(pstand) ! Zeleznik |
---|
| 561 | acidps=1/360.15-1.0/T+0.38/545. |
---|
| 562 | & *(1.0+DLOG(360.15/T)-360.15/T) |
---|
| 563 | acidps = 10156.0*acidps +lpar |
---|
| 564 | acidps = DEXP(acidps) !Pa |
---|
| 565 | |
---|
| 566 | !acid sat.vap.PP over mixture (flat surface): |
---|
| 567 | satpacid=act(2)*acidps ! Pa |
---|
| 568 | |
---|
| 569 | ! Conversion from Pa to N.D #/m3 |
---|
| 570 | DND2=satpacid/(1.3806488E-23*T) |
---|
| 571 | |
---|
| 572 | ! H2SO4COND N.D #/m3 condensee ssi H2SO4>H2SO4sat |
---|
| 573 | IF (NH2SO4.GT.DND2) THEN |
---|
| 574 | H2SO4COND=NH2SO4-DND2 |
---|
| 575 | ! calcul de H2O cond correspondant a H2SO4 cond |
---|
| 576 | H2OCOND=H2SO4COND*98.078*(1.0-WSA)/(18.0153*WSA) |
---|
| 577 | |
---|
| 578 | ! Si on a H2SO4<H2SO4sat on ne condense rien, VMR = 1.0E-30 |
---|
| 579 | ELSE |
---|
| 580 | H2OCOND=1.0E-30*CONCM |
---|
| 581 | END IF |
---|
| 582 | |
---|
| 583 | !***************************************************** |
---|
| 584 | ! ATTENTION: Ici on ne prends pas en compte |
---|
| 585 | ! si H2O en defaut! |
---|
| 586 | ! On veut la situation theorique |
---|
| 587 | ! a l'equilibre |
---|
| 588 | !***************************************************** |
---|
| 589 | ! Test si H2O en defaut H2Ocond>H2O dispo |
---|
| 590 | ! IF ((H2OCOND.GT.NH2O).AND.(NH2SO4.GE.DND2)) THEN |
---|
| 591 | |
---|
| 592 | ! On peut alors condenser tout le H2O dispo |
---|
| 593 | ! H2OCOND=NH2O |
---|
| 594 | ! On met alors egalement a jour le H2SO4 cond correspondant au H2O cond |
---|
| 595 | ! H2SO4COND=H2OCOND*18.0153*WSA/(98.078*(1.0-WSA)) |
---|
| 596 | |
---|
| 597 | ! END IF |
---|
| 598 | |
---|
| 599 | ! Calcul de H2O condense VMR |
---|
| 600 | WVCOND=H2OCOND/CONCM |
---|
| 601 | |
---|
| 602 | END FUNCTION WVCOND |
---|
| 603 | |
---|
[1305] | 604 | !***************************************************************************** |
---|
[1442] | 605 | !* REAL FUNCTION IRFRMWV() |
---|
| 606 | REAL FUNCTION IRFRMWV(X1,X2,XACC,MAXIT,RADIUS,TAIR,PAIR, |
---|
| 607 | + WVTOT,SATOT,NROOT) |
---|
[1305] | 608 | !***************************************************************************** |
---|
[1442] | 609 | !* Iterative Root Finder Ridder's Method for Water Vapor calculus |
---|
| 610 | !* From Numerical Recipes |
---|
| 611 | !* Adapted for VenusGCM A. Stolzenbach 07/2014 |
---|
[1305] | 612 | !* |
---|
[1442] | 613 | !* Les iterations sur [X1,X2] sont [WV1,WV2] |
---|
| 614 | !* la variable X est WV |
---|
| 615 | !* IRFRMWV sort en OUTPUT : WSALOC pour ITERWV=0 (ou WVEQ=0) |
---|
| 616 | |
---|
| 617 | IMPLICIT NONE |
---|
| 618 | |
---|
| 619 | REAL, INTENT(IN) :: X1, X2 |
---|
| 620 | REAL, INTENT(IN) :: XACC |
---|
| 621 | INTEGER, INTENT(IN) :: MAXIT,NROOT |
---|
| 622 | |
---|
| 623 | ! LOCAL VARIABLES |
---|
| 624 | REAL :: XL, XH, XM, XNEW, X |
---|
| 625 | REAL :: WSALOC, WVEQ, WVLIQ |
---|
| 626 | REAL :: FL, FH, FM, FNEW |
---|
| 627 | REAL :: ANS, S, FSIGN |
---|
| 628 | INTEGER i |
---|
| 629 | |
---|
| 630 | ! External variables needed: |
---|
| 631 | REAL, INTENT(IN) :: TAIR,PAIR |
---|
| 632 | REAL, INTENT(IN) :: WVTOT,SATOT |
---|
| 633 | REAL, INTENT(IN) :: RADIUS |
---|
| 634 | |
---|
| 635 | |
---|
| 636 | ! Initialisation |
---|
| 637 | X=X1 |
---|
| 638 | CALL ITERWV(X,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT,TAIR,PAIR,RADIUS) |
---|
| 639 | FL=WVEQ |
---|
| 640 | X=X2 |
---|
| 641 | CALL ITERWV(X,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT,TAIR,PAIR,RADIUS) |
---|
| 642 | FH=WVEQ |
---|
| 643 | |
---|
| 644 | ! Test Bracketed values |
---|
| 645 | IF (((FL.LT.0.).AND.(FH.GT.0.)).OR. |
---|
| 646 | & ((FL.GT.0.).AND.(FH.LT.0.))) |
---|
| 647 | & THEN |
---|
| 648 | XL=X1 |
---|
| 649 | XH=X2 |
---|
| 650 | ANS=-9.99e99 |
---|
| 651 | |
---|
| 652 | DO i=1, MAXIT |
---|
| 653 | XM=0.5*(XL+XH) |
---|
| 654 | CALL ITERWV(XM,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT, |
---|
| 655 | & TAIR,PAIR,RADIUS) |
---|
| 656 | FM=WVEQ |
---|
| 657 | S=SQRT(FM*FM-FL*FH) |
---|
| 658 | |
---|
| 659 | IF (S.EQ.0.0) THEN |
---|
| 660 | IRFRMWV=WSALOC |
---|
| 661 | RETURN |
---|
| 662 | ENDIF |
---|
| 663 | |
---|
| 664 | IF (FL.GT.FH) THEN |
---|
| 665 | FSIGN=1.0 |
---|
| 666 | ELSE |
---|
| 667 | FSIGN=-1.0 |
---|
| 668 | ENDIF |
---|
| 669 | |
---|
| 670 | XNEW=XM+(XM-XL)*(FSIGN*FM/S) |
---|
| 671 | |
---|
| 672 | IF (ABS(XNEW-ANS).LE.XACC) THEN |
---|
| 673 | IRFRMWV=WSALOC |
---|
| 674 | RETURN |
---|
| 675 | ENDIF |
---|
| 676 | |
---|
| 677 | ANS=XNEW |
---|
| 678 | CALL ITERWV(ANS,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT, |
---|
| 679 | & TAIR,PAIR,RADIUS) |
---|
| 680 | FNEW=WVEQ |
---|
| 681 | |
---|
| 682 | IF (FNEW.EQ.0.0) THEN |
---|
| 683 | IRFRMWV=WSALOC |
---|
| 684 | RETURN |
---|
| 685 | ENDIF |
---|
| 686 | |
---|
| 687 | IF (SIGN(FM, FNEW).NE.FM) THEN |
---|
| 688 | XL=XM |
---|
| 689 | FL=FM |
---|
| 690 | XH=ANS |
---|
| 691 | FH=FNEW |
---|
| 692 | ELSEIF (SIGN(FL, FNEW).NE.FL) THEN |
---|
| 693 | XH=ANS |
---|
| 694 | FH=FNEW |
---|
| 695 | ELSEIF (SIGN(FH, FNEW).NE.FH) THEN |
---|
| 696 | XL=ANS |
---|
| 697 | FL=FNEW |
---|
| 698 | ELSE |
---|
| 699 | PRINT*,'PROBLEM IRFRMWV dans new_cloud_venus' |
---|
| 700 | PRINT*,'you shall not PAAAAAASS' |
---|
| 701 | STOP |
---|
| 702 | ENDIF |
---|
| 703 | ENDDO |
---|
| 704 | PRINT*,'Paaaaas bien MAXIT atteint' |
---|
| 705 | PRINT*,'PROBLEM IRFRMWV dans new_cloud_venus' |
---|
| 706 | PRINT*,'you shall not PAAAAAASS' |
---|
| 707 | XL=X1 |
---|
| 708 | XH=X2 |
---|
| 709 | ANS=-9.99e99 |
---|
| 710 | |
---|
| 711 | DO i=1, MAXIT |
---|
| 712 | XM=0.5*(XL+XH) |
---|
| 713 | CALL ITERWV(XM,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT, |
---|
| 714 | & TAIR,PAIR,RADIUS) |
---|
| 715 | FM=WVEQ |
---|
| 716 | S=SQRT(FM*FM-FL*FH) |
---|
| 717 | IF (FL.GT.FH) THEN |
---|
| 718 | FSIGN=1.0 |
---|
| 719 | ELSE |
---|
| 720 | FSIGN=-1.0 |
---|
| 721 | ENDIF |
---|
| 722 | |
---|
| 723 | XNEW=XM+(XM-XL)*(FSIGN*FM/S) |
---|
| 724 | |
---|
| 725 | ANS=XNEW |
---|
| 726 | CALL ITERWV(ANS,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT, |
---|
| 727 | & TAIR,PAIR,RADIUS) |
---|
| 728 | FNEW=WVEQ |
---|
| 729 | PRINT*,'WVliq',WVLIQ,'WVtot',WVTOT,'WVeq',WVEQ |
---|
| 730 | PRINT*,'WSA',WSALOC,'SAtot',SATOT |
---|
| 731 | PRINT*,'T',TAIR,'P',PAIR |
---|
| 732 | |
---|
| 733 | IF (SIGN(FM, FNEW).NE.FM) THEN |
---|
| 734 | XL=XM |
---|
| 735 | FL=FM |
---|
| 736 | XH=ANS |
---|
| 737 | FH=FNEW |
---|
| 738 | ELSEIF (SIGN(FL, FNEW).NE.FL) THEN |
---|
| 739 | XH=ANS |
---|
| 740 | FH=FNEW |
---|
| 741 | ELSEIF (SIGN(FH, FNEW).NE.FH) THEN |
---|
| 742 | XL=ANS |
---|
| 743 | FL=FNEW |
---|
| 744 | ELSE |
---|
| 745 | PRINT*,'PROBLEM IRFRMWV dans new_cloud_venus' |
---|
| 746 | PRINT*,'you shall not PAAAAAASS TWIIICE???' |
---|
| 747 | STOP |
---|
| 748 | ENDIF |
---|
| 749 | ENDDO |
---|
| 750 | STOP |
---|
| 751 | ELSE |
---|
| 752 | PRINT*,'IRFRMWV must be bracketed' |
---|
| 753 | PRINT*,'NROOT de BRACWV', NROOT |
---|
| 754 | IF (ABS(FL).LT.XACC) THEN |
---|
| 755 | PRINT*,'IRFRMWV FL == 0',FL |
---|
| 756 | PRINT*,'X1',X1,'X2',X2,'FH',FH |
---|
| 757 | CALL ITERWV(X1,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT, |
---|
| 758 | & TAIR,PAIR,RADIUS) |
---|
| 759 | IRFRMWV=WSALOC |
---|
| 760 | RETURN |
---|
| 761 | ENDIF |
---|
| 762 | IF (ABS(FH).LT.XACC) THEN |
---|
| 763 | PRINT*,'IRFRMWV FH == 0',FH |
---|
| 764 | PRINT*,'X1',X1,'X2',X2,'FL',FL |
---|
| 765 | CALL ITERWV(X2,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT, |
---|
| 766 | & TAIR,PAIR,RADIUS) |
---|
| 767 | IRFRMWV=WSALOC |
---|
| 768 | RETURN |
---|
| 769 | ENDIF |
---|
| 770 | IF ((ABS(FL).GT.XACC).AND.(ABS(FH).GT.XACC)) THEN |
---|
| 771 | PRINT*,'STOP dans IRFRMWV avec rien == 0' |
---|
| 772 | PRINT*,'X1',X1,'X2',X2 |
---|
| 773 | PRINT*,'Fcalc',FL,FH |
---|
| 774 | PRINT*,'T',TAIR,'P',PAIR,'R',RADIUS |
---|
| 775 | STOP |
---|
| 776 | ENDIF |
---|
| 777 | IF ((ABS(FL).LT.XACC).AND.(ABS(FH).LT.XACC)) THEN |
---|
| 778 | PRINT*,'STOP dans IRFRMWV Trop de solution < WVACC' |
---|
| 779 | PRINT*,FL,FH |
---|
| 780 | STOP |
---|
| 781 | ENDIF |
---|
| 782 | |
---|
| 783 | |
---|
| 784 | ENDIF |
---|
| 785 | ! FIN Test Bracketed values |
---|
| 786 | |
---|
| 787 | END FUNCTION IRFRMWV |
---|
| 788 | |
---|
| 789 | !***************************************************************************** |
---|
| 790 | !* REAL FUNCTION IRFRMSA() |
---|
| 791 | REAL FUNCTION IRFRMSA(X1,X2,XACC,MAXIT,RADIUS,TAIR,PAIR,LPPWV, |
---|
| 792 | + NB) |
---|
| 793 | !***************************************************************************** |
---|
| 794 | !* Iterative Root Finder Ridder's Method for Sulfuric Acid calculus |
---|
| 795 | !* From Numerical Recipes |
---|
| 796 | !* Adapted for VenusGCM A. Stolzenbach 07/2014 |
---|
[1305] | 797 | !* |
---|
[1442] | 798 | !* Les iterations sur [X1,X2] sont [WSA1,WSA2] |
---|
| 799 | !* la variable X est WSA |
---|
| 800 | !* IRFRMSA sort en OUTPUT : WSA pour KEEQ=0 |
---|
| 801 | |
---|
[1305] | 802 | IMPLICIT NONE |
---|
[1442] | 803 | |
---|
| 804 | REAL, INTENT(IN) :: X1, X2 |
---|
| 805 | REAL, INTENT(IN) :: XACC |
---|
| 806 | INTEGER, INTENT(IN) :: MAXIT, NB |
---|
| 807 | |
---|
| 808 | ! LOCAL VARIABLES |
---|
| 809 | REAL XL, XH, XM, XNEW |
---|
| 810 | REAL Fl, FH, FM, FNEW |
---|
| 811 | REAL ANS, S, FSIGN |
---|
| 812 | INTEGER i |
---|
| 813 | |
---|
| 814 | ! External variables needed: |
---|
| 815 | REAL, INTENT(IN) :: TAIR,PAIR |
---|
| 816 | REAL, INTENT(IN) :: LPPWV |
---|
| 817 | REAL, INTENT(IN) :: RADIUS |
---|
| 818 | |
---|
| 819 | ! External functions needed: |
---|
| 820 | REAL KEEQ |
---|
[1305] | 821 | |
---|
| 822 | |
---|
| 823 | |
---|
[1442] | 824 | ! Initialisation |
---|
| 825 | FL=KEEQ(RADIUS,TAIR,X1,LPPWV) |
---|
| 826 | FH=KEEQ(RADIUS,TAIR,X2,LPPWV) |
---|
| 827 | |
---|
| 828 | ! Test Bracketed values |
---|
| 829 | IF (((FL.LT.0.).AND.(FH.GT.0.)).OR.((FL.GT.0.).AND.(FH.LT.0.))) |
---|
| 830 | & THEN |
---|
| 831 | XL=X1 |
---|
| 832 | XH=X2 |
---|
| 833 | ANS=-9.99e99 |
---|
| 834 | |
---|
| 835 | DO i=1, MAXIT |
---|
| 836 | XM=0.5*(XL+XH) |
---|
| 837 | FM=KEEQ(RADIUS,TAIR,XM,LPPWV) |
---|
| 838 | S=SQRT(FM*FM-FL*FH) |
---|
| 839 | |
---|
| 840 | IF (S.EQ.0.0) THEN |
---|
| 841 | IRFRMSA=ANS |
---|
| 842 | RETURN |
---|
| 843 | ENDIF |
---|
| 844 | |
---|
| 845 | IF (FL.GT.FH) THEN |
---|
| 846 | FSIGN=1.0 |
---|
| 847 | ELSE |
---|
| 848 | FSIGN=-1.0 |
---|
| 849 | ENDIF |
---|
| 850 | |
---|
| 851 | XNEW=XM+(XM-XL)*(FSIGN*FM/S) |
---|
| 852 | |
---|
| 853 | IF (ABS(XNEW-ANS).LE.XACC) THEN |
---|
| 854 | IRFRMSA=ANS |
---|
| 855 | RETURN |
---|
| 856 | ENDIF |
---|
| 857 | |
---|
| 858 | ANS=XNEW |
---|
| 859 | FNEW=KEEQ(RADIUS,TAIR,ANS,LPPWV) |
---|
| 860 | |
---|
| 861 | IF (FNEW.EQ.0.0) THEN |
---|
| 862 | IRFRMSA=ANS |
---|
| 863 | RETURN |
---|
| 864 | ENDIF |
---|
| 865 | |
---|
| 866 | IF (SIGN(FM, FNEW).NE.FM) THEN |
---|
| 867 | XL=XM |
---|
| 868 | FL=FM |
---|
| 869 | XH=ANS |
---|
| 870 | FH=FNEW |
---|
| 871 | ELSEIF (SIGN(FL, FNEW).NE.FL) THEN |
---|
| 872 | XH=ANS |
---|
| 873 | FH=FNEW |
---|
| 874 | ELSEIF (SIGN(FH, FNEW).NE.FH) THEN |
---|
| 875 | XL=ANS |
---|
| 876 | FL=FNEW |
---|
| 877 | ELSE |
---|
| 878 | PRINT*,'PROBLEM IRFRMSA dans new_cloud_venus' |
---|
| 879 | PRINT*,'you shall not PAAAAAASS' |
---|
| 880 | STOP |
---|
| 881 | ENDIF |
---|
| 882 | ENDDO |
---|
| 883 | PRINT*,'Paaaaas bien MAXIT atteint' |
---|
| 884 | PRINT*,'PROBLEM IRFRMSA dans new_cloud_venus' |
---|
| 885 | PRINT*,'you shall not PAAAAAASS' |
---|
| 886 | XL=X1 |
---|
| 887 | XH=X2 |
---|
| 888 | PRINT*,'Borne XL',XL,'XH',XH |
---|
| 889 | ANS=-9.99e99 |
---|
| 890 | |
---|
| 891 | DO i=1, MAXIT |
---|
| 892 | XM=0.5*(XL+XH) |
---|
| 893 | FM=KEEQ(RADIUS,TAIR,XM,LPPWV) |
---|
| 894 | S=SQRT(FM*FM-FL*FH) |
---|
| 895 | |
---|
| 896 | IF (FL.GT.FH) THEN |
---|
| 897 | FSIGN=1.0 |
---|
| 898 | ELSE |
---|
| 899 | FSIGN=-1.0 |
---|
| 900 | ENDIF |
---|
| 901 | |
---|
| 902 | XNEW=XM+(XM-XL)*(FSIGN*FM/S) |
---|
| 903 | |
---|
| 904 | ANS=XNEW |
---|
| 905 | FNEW=KEEQ(RADIUS,TAIR,ANS,LPPWV) |
---|
| 906 | PRINT*,'KEEQ result',FNEW,'T',TAIR,'R',RADIUS |
---|
| 907 | IF (SIGN(FM, FNEW).NE.FM) THEN |
---|
| 908 | XL=XM |
---|
| 909 | FL=FM |
---|
| 910 | XH=ANS |
---|
| 911 | FH=FNEW |
---|
| 912 | ELSEIF (SIGN(FL, FNEW).NE.FL) THEN |
---|
| 913 | XH=ANS |
---|
| 914 | FH=FNEW |
---|
| 915 | ELSEIF (SIGN(FH, FNEW).NE.FH) THEN |
---|
| 916 | XL=ANS |
---|
| 917 | FL=FNEW |
---|
| 918 | ELSE |
---|
| 919 | PRINT*,'PROBLEM IRFRMSA dans new_cloud_venus' |
---|
| 920 | PRINT*,'you shall not PAAAAAASS' |
---|
| 921 | STOP |
---|
| 922 | ENDIF |
---|
| 923 | ENDDO |
---|
| 924 | STOP |
---|
| 925 | ELSE |
---|
| 926 | PRINT*,'IRFRMSA must be bracketed' |
---|
| 927 | IF (FL.EQ.0.0) THEN |
---|
| 928 | PRINT*,'IRFRMSA FL == 0',Fl |
---|
| 929 | IRFRMSA=X1 |
---|
| 930 | RETURN |
---|
| 931 | ENDIF |
---|
| 932 | IF (FH.EQ.0.0) THEN |
---|
| 933 | PRINT*,'IRFRMSA FH == 0',FH |
---|
| 934 | IRFRMSA=X2 |
---|
| 935 | RETURN |
---|
| 936 | ENDIF |
---|
| 937 | IF ((FL.NE.0.).AND.(FH.NE.0.)) THEN |
---|
| 938 | PRINT*,'IRFRMSA FH and FL neq 0: ', FL, FH |
---|
| 939 | PRINT*,'X1',X1,'X2',X2 |
---|
| 940 | PRINT*,'Kind F', KIND(FL), KIND(FH) |
---|
| 941 | PRINT*,'Kind X', KIND(X1), KIND(X2) |
---|
| 942 | PRINT*,'Logical: ',(SIGN(FL,FH).NE.FL) |
---|
| 943 | PRINT*,'Logical: ',(SIGN(FH,FL).NE.FH) |
---|
| 944 | PRINT*,'nb root BRACWSA',NB |
---|
| 945 | STOP |
---|
| 946 | ENDIF |
---|
| 947 | |
---|
| 948 | ENDIF |
---|
| 949 | ! FIN Test Bracketed values |
---|
| 950 | |
---|
| 951 | END function IRFRMSA |
---|
| 952 | |
---|
| 953 | !***************************************************************************** |
---|
| 954 | !* REAL FUNCTION KEEQ() |
---|
| 955 | REAL FUNCTION KEEQ(RADIUS,TAIR,WSA,LPPWV) |
---|
| 956 | !***************************************************************************** |
---|
| 957 | !* Kelvin Equation EQuality |
---|
| 958 | !* ln(PPWV_eq) - (2Mh2o sigma)/(R T r rho) - ln(ph2osa) = 0 |
---|
| 959 | !* |
---|
[1305] | 960 | |
---|
| 961 | IMPLICIT NONE |
---|
| 962 | |
---|
[1442] | 963 | REAL, INTENT(IN) :: RADIUS,TAIR,WSA,LPPWV |
---|
| 964 | |
---|
| 965 | ! Physical constants: |
---|
| 966 | REAL MH2O |
---|
| 967 | REAL RGAS |
---|
| 968 | PARAMETER( |
---|
| 969 | ! Molar weight of water (kg/mole) |
---|
| 970 | + MH2O=18.0153d-3, |
---|
| 971 | ! Universal gas constant (J/(mole K)) |
---|
| 972 | + RGAS=8.314462175d0) |
---|
[1305] | 973 | ! |
---|
[1442] | 974 | ! External functions needed: |
---|
| 975 | REAL PWVSAS_GV,SIGMADROPLET,RHODROPLET |
---|
| 976 | ! PWVSAS_GV: Natural logaritm of water vapor pressure over |
---|
| 977 | ! sulfuric acid solution |
---|
| 978 | ! SIGMADROPLET: Surface tension of sulfuric acid solution |
---|
| 979 | ! RHODROPLET: Density of sulfuric acid solution |
---|
| 980 | ! |
---|
| 981 | ! Auxiliary local variables: |
---|
| 982 | REAL C1 |
---|
[1305] | 983 | |
---|
[1442] | 984 | PARAMETER( |
---|
| 985 | + C1=2.0d0*MH2O/RGAS) |
---|
| 986 | |
---|
| 987 | |
---|
| 988 | KEEQ=LPPWV-C1*SIGMADROPLET(WSA,TAIR)/ |
---|
| 989 | & (TAIR*RADIUS*RHODROPLET(WSA,TAIR))- |
---|
| 990 | & PWVSAS_GV(TAIR,WSA) |
---|
| 991 | |
---|
| 992 | END FUNCTION KEEQ |
---|
| 993 | |
---|
[1305] | 994 | ***************************************************************************** |
---|
| 995 | * REAL FUNCTION PWVSAS_GV(TAIR,WSA) |
---|
| 996 | REAL FUNCTION PWVSAS_GV(TAIR,WSA) |
---|
| 997 | ***************************************************************************** |
---|
| 998 | * |
---|
| 999 | * Natural logaritm of saturated water vapor pressure over plane |
---|
| 1000 | * sulfuric acid solution. |
---|
| 1001 | * |
---|
| 1002 | * Source: J.I.Gmitro & T.Vermeulen: A.I.Ch.E.J. 10,740,1964. |
---|
| 1003 | * W.F.Giauque et al.: J. Amer. Chem. Soc. 82,62,1960. |
---|
| 1004 | * |
---|
| 1005 | * The formula of Gmitro & Vermeulen for saturation pressure |
---|
| 1006 | * is used: |
---|
| 1007 | * ln(p) = A ln(298/T) + B/T + C + DT |
---|
| 1008 | * with values of A,B,C and D given by Gmitro & Vermeulen, |
---|
| 1009 | * and calculated from partial molal properties given by Giauque et al. |
---|
| 1010 | * |
---|
| 1011 | * |
---|
| 1012 | * |
---|
| 1013 | * Input: TAIR: Temperature (K) |
---|
| 1014 | * WSA: Weight fraction of H2SO4 [0;1] |
---|
| 1015 | * Output: Natural logaritm of water vapor pressure |
---|
| 1016 | * over sulfuric acid solution ( ln(Pa) ) |
---|
| 1017 | * |
---|
| 1018 | * |
---|
| 1019 | * External functions needed for calculation of partial molal |
---|
| 1020 | * properties of pure components at 25 ! as function of W. |
---|
| 1021 | IMPLICIT NONE |
---|
| 1022 | |
---|
[1442] | 1023 | REAL :: CPH2O,ALH2O,FFH2O,LH2O |
---|
[1305] | 1024 | * CPH2O: Partial molal heat capacity of sulfuric acid solution. |
---|
| 1025 | * ALH2O: Temparature derivative of CPH2O |
---|
| 1026 | * FFH2O: Partial molal free energy of sulfuric acid solution. |
---|
| 1027 | * LH2O: Partial molal enthalpy of sulfuric acid |
---|
| 1028 | * |
---|
| 1029 | ! |
---|
| 1030 | ! |
---|
[1442] | 1031 | REAL, INTENT(IN) :: TAIR,WSA |
---|
| 1032 | REAL :: ADOT,BDOT,CDOT,DDOT |
---|
| 1033 | REAL :: RGAS,MMHGPA |
---|
| 1034 | REAL :: K1,K2 |
---|
| 1035 | REAL :: A,B,C,D,CP,L,F,ALFA |
---|
[1305] | 1036 | ! Physical constants given by Gmitro & Vermeulen: |
---|
| 1037 | PARAMETER( |
---|
| 1038 | + ADOT=-3.67340, |
---|
| 1039 | + BDOT=-4143.5, |
---|
| 1040 | + CDOT=10.24353, |
---|
| 1041 | + DDOT=0.618943d-3) |
---|
| 1042 | PARAMETER( |
---|
| 1043 | ! Gas constant (cal/(deg mole)): |
---|
| 1044 | + RGAS=1.98726, |
---|
| 1045 | ! Natural logarith of conversion factor between atm. and Pa: |
---|
| 1046 | + MMHGPA=11.52608845, |
---|
| 1047 | + K1=298.15, |
---|
| 1048 | + K2=K1*K1/2.0) |
---|
| 1049 | ! |
---|
| 1050 | ! |
---|
| 1051 | CP=CPH2O(WSA) |
---|
| 1052 | F=-FFH2O(WSA) |
---|
| 1053 | L=-LH2O(WSA) |
---|
| 1054 | ALFA=ALH2O(WSA) |
---|
| 1055 | ! |
---|
| 1056 | A=ADOT+(CP-K1*ALFA)/RGAS |
---|
| 1057 | B=BDOT+(L-K1*CP+K2*ALFA)/RGAS |
---|
| 1058 | C=CDOT+(CP+(F-L)/K1)/RGAS |
---|
| 1059 | D=DDOT-ALFA/(2.0d0*RGAS) |
---|
| 1060 | ! |
---|
| 1061 | ! WRITE(*,*) 'TAIR= ',TAIR,' WSA= ',WSA |
---|
| 1062 | ! WRITE(*,*) 'CPH2O(WSA)= ',CP |
---|
| 1063 | ! WRITE(*,*) 'ALFAH2O(WSA)= ',ALFA |
---|
| 1064 | ! WRITE(*,*) 'FFH2O(WSA)= ',F |
---|
| 1065 | ! WRITE(*,*) 'LH2O(WSA)= ',L |
---|
| 1066 | ! |
---|
| 1067 | PWVSAS_GV=A*DLOG(K1/TAIR)+B/TAIR+C+D*TAIR+MMHGPA |
---|
[1442] | 1068 | |
---|
| 1069 | END FUNCTION PWVSAS_GV |
---|
[1305] | 1070 | ******************************************************************************* |
---|
| 1071 | * REAL FUNCTION CPH2O(W) |
---|
| 1072 | REAL FUNCTION CPH2O(W) |
---|
| 1073 | ******************************************************************************* |
---|
| 1074 | * |
---|
| 1075 | * Relative partial molal heat capacity of water (cal/(deg mole) in |
---|
| 1076 | * sulfuric acid solution, as a function of H2SO4 weight fraction [0;1], |
---|
| 1077 | * calculated by cubic spline fitting. |
---|
| 1078 | * |
---|
| 1079 | * Source: Giauque et al.: J. Amer. Chem. Soc. 82,62,1960. |
---|
| 1080 | * |
---|
| 1081 | IMPLICIT NONE |
---|
| 1082 | |
---|
[1442] | 1083 | INTEGER :: NPOINT,I |
---|
[1305] | 1084 | PARAMETER(NPOINT=109) |
---|
[1442] | 1085 | REAL, DIMENSION(NPOINT) :: WTAB(NPOINT),CPHTAB(NPOINT), |
---|
| 1086 | + Y2(NPOINT),YWORK(NPOINT) |
---|
| 1087 | REAL, INTENT(IN):: W |
---|
| 1088 | REAL :: CPH |
---|
| 1089 | LOGICAL :: FIRST |
---|
[1305] | 1090 | DATA (WTAB(I),I=1,NPOINT)/ |
---|
| 1091 | +0.00000,0.08932,0.09819,0.10792,0.11980,0.13461,0.15360,0.16525, |
---|
| 1092 | +0.17882,0.19482,0.21397,0.23728,0.26629,0.27999,0.29517,0.31209, |
---|
| 1093 | +0.33107,0.35251,0.36430,0.37691,0.39043,0.40495,0.42059,0.43749, |
---|
| 1094 | +0.44646,0.45580,0.46555,0.47572,0.48634,0.49745,0.50908,0.52126, |
---|
| 1095 | +0.53405,0.54747,0.56159,0.57646,0.58263,0.58893,0.59537,0.60195, |
---|
| 1096 | +0.60868,0.61557,0.62261,0.62981,0.63718,0.64472,0.65245,0.66037, |
---|
| 1097 | +0.66847,0.67678,0.68530,0.69404,0.70300,0.71220,0.72164,0.73133, |
---|
| 1098 | +0.73628,0.74129,0.74637,0.75152,0.75675,0.76204,0.76741,0.77286, |
---|
| 1099 | +0.77839,0.78399,0.78968,0.79545,0.80130,0.80724,0.81327,0.81939, |
---|
| 1100 | +0.82560,0.83191,0.83832,0.84482,0.85143,0.85814,0.86495,0.87188, |
---|
| 1101 | +0.87892,0.88607,0.89334,0.90073,0.90824,0.91588,0.92365,0.93156, |
---|
| 1102 | +0.93959,0.94777,0.95610,0.96457,0.97319,0.98196,0.99090,0.99270, |
---|
| 1103 | +0.99452,0.99634,0.99725,0.99817,0.99835,0.99853,0.99872,0.99890, |
---|
| 1104 | +0.99908,0.99927,0.99945,0.99963,0.99982/ |
---|
| 1105 | DATA (CPHTAB(I),I=1,NPOINT)/ |
---|
| 1106 | + 17.996, 17.896, 17.875, 17.858, 17.840, 17.820, 17.800, 17.791, |
---|
| 1107 | + 17.783, 17.777, 17.771, 17.769, 17.806, 17.891, 18.057, 18.248, |
---|
| 1108 | + 18.429, 18.567, 18.613, 18.640, 18.660, 18.660, 18.642, 18.592, |
---|
| 1109 | + 18.544, 18.468, 18.348, 18.187, 17.995, 17.782, 17.562, 17.352, |
---|
| 1110 | + 17.162, 16.993, 16.829, 16.657, 16.581, 16.497, 16.405, 16.302, |
---|
| 1111 | + 16.186, 16.053, 15.901, 15.730, 15.540, 15.329, 15.101, 14.853, |
---|
| 1112 | + 14.586, 14.296, 13.980, 13.638, 13.274, 12.896, 12.507, 12.111, |
---|
| 1113 | + 11.911, 11.711, 11.514, 11.320, 11.130, 10.940, 10.760, 10.570, |
---|
| 1114 | + 10.390, 10.200, 10.000, 9.8400, 9.7600, 9.7900, 9.9500, 10.310, |
---|
| 1115 | + 10.950, 11.960, 13.370, 15.060, 16.860, 18.550, 20.000, 21.170, |
---|
| 1116 | + 22.030, 22.570, 22.800, 22.750, 22.420, 21.850, 21.120, 20.280, |
---|
| 1117 | + 19.360, 18.350, 17.220, 15.940, 14.490, 12.840, 10.800, 9.8000, |
---|
| 1118 | + 7.8000, 3.8000,0.20000,-5.4000,-7.0000,-8.8000,-10.900,-13.500, |
---|
| 1119 | +-17.000,-22.000,-29.000,-40.000,-59.000/ |
---|
| 1120 | DATA FIRST/.TRUE./ |
---|
| 1121 | SAVE FIRST,WTAB,CPHTAB,Y2 |
---|
| 1122 | ! |
---|
| 1123 | IF(FIRST) THEN |
---|
| 1124 | FIRST=.FALSE. |
---|
| 1125 | CALL SPLINE(WTAB,CPHTAB,NPOINT,YWORK,Y2) |
---|
| 1126 | ENDIF |
---|
| 1127 | CALL SPLINT(WTAB,CPHTAB,Y2,NPOINT,W,CPH) |
---|
| 1128 | CPH2O=CPH |
---|
[1442] | 1129 | |
---|
| 1130 | END FUNCTION CPH2O |
---|
[1305] | 1131 | ! |
---|
| 1132 | ******************************************************************************* |
---|
[1442] | 1133 | REAL FUNCTION FFH2O(W) |
---|
[1305] | 1134 | * REAL FUNCTION FFH2O(W) |
---|
| 1135 | ******************************************************************************* |
---|
| 1136 | * |
---|
| 1137 | * Relative partial molal free energy water (cal/mole) in |
---|
| 1138 | * sulfuric acid solution, as a function of H2SO4 weight fraction [0;1], |
---|
| 1139 | * calculated by cubic spline fitting. |
---|
| 1140 | * |
---|
| 1141 | * Source: Giauque et al.: J. Amer. Chem. Soc. 82,62,1960. |
---|
| 1142 | * |
---|
| 1143 | IMPLICIT NONE |
---|
| 1144 | |
---|
[1442] | 1145 | INTEGER :: NPOINT,I |
---|
[1305] | 1146 | PARAMETER(NPOINT=110) |
---|
[1442] | 1147 | REAL, DIMENSION(NPOINT) :: WTAB,FFTAB,Y2,YWORK |
---|
| 1148 | REAL, INTENT(IN) :: W |
---|
| 1149 | REAL :: FF |
---|
| 1150 | LOGICAL :: FIRST |
---|
[1305] | 1151 | DATA (WTAB(I),I=1,NPOINT)/ |
---|
| 1152 | +0.00000,0.08932,0.09819,0.10792,0.11980,0.13461,0.15360,0.16525, |
---|
| 1153 | +0.17882,0.19482,0.21397,0.23728,0.26629,0.27999,0.29517,0.31209, |
---|
| 1154 | +0.33107,0.35251,0.36430,0.37691,0.39043,0.40495,0.42059,0.43749, |
---|
| 1155 | +0.44646,0.45580,0.46555,0.47572,0.48634,0.49745,0.50908,0.52126, |
---|
| 1156 | +0.53405,0.54747,0.56159,0.57646,0.58263,0.58893,0.59537,0.60195, |
---|
| 1157 | +0.60868,0.61557,0.62261,0.62981,0.63718,0.64472,0.65245,0.66037, |
---|
| 1158 | +0.66847,0.67678,0.68530,0.69404,0.70300,0.71220,0.72164,0.73133, |
---|
| 1159 | +0.73628,0.74129,0.74637,0.75152,0.75675,0.76204,0.76741,0.77286, |
---|
| 1160 | +0.77839,0.78399,0.78968,0.79545,0.80130,0.80724,0.81327,0.81939, |
---|
| 1161 | +0.82560,0.83191,0.83832,0.84482,0.85143,0.85814,0.86495,0.87188, |
---|
| 1162 | +0.87892,0.88607,0.89334,0.90073,0.90824,0.91588,0.92365,0.93156, |
---|
| 1163 | +0.93959,0.94777,0.95610,0.96457,0.97319,0.98196,0.99090,0.99270, |
---|
| 1164 | +0.99452,0.99634,0.99725,0.99817,0.99835,0.99853,0.99872,0.99890, |
---|
| 1165 | +0.99908,0.99927,0.99945,0.99963,0.99982, 1.0000/ |
---|
| 1166 | DATA (FFTAB(I),I=1,NPOINT)/ |
---|
| 1167 | +0.00000, 22.840, 25.810, 29.250, 33.790, 39.970, 48.690, 54.560, |
---|
| 1168 | + 61.990, 71.790, 85.040, 103.70, 130.70, 145.20, 163.00, 184.50, |
---|
| 1169 | + 211.50, 245.60, 266.40, 290.10, 317.40, 349.00, 385.60, 428.40, |
---|
| 1170 | + 452.50, 478.80, 507.50, 538.80, 573.30, 611.60, 653.70, 700.50, |
---|
| 1171 | + 752.60, 810.60, 875.60, 948.60, 980.60, 1014.3, 1049.7, 1087.1, |
---|
| 1172 | + 1126.7, 1168.7, 1213.5, 1261.2, 1312.0, 1366.2, 1424.3, 1486.0, |
---|
| 1173 | + 1551.8, 1622.3, 1697.8, 1778.5, 1864.9, 1956.8, 2055.8, 2162.0, |
---|
| 1174 | + 2218.0, 2276.0, 2337.0, 2400.0, 2466.0, 2535.0, 2607.0, 2682.0, |
---|
| 1175 | + 2760.0, 2842.0, 2928.0, 3018.0, 3111.0, 3209.0, 3311.0, 3417.0, |
---|
| 1176 | + 3527.0, 3640.0, 3757.0, 3878.0, 4002.0, 4130.0, 4262.0, 4397.0, |
---|
| 1177 | + 4535.0, 4678.0, 4824.0, 4973.0, 5128.0, 5287.0, 5454.0, 5630.0, |
---|
| 1178 | + 5820.0, 6031.0, 6268.0, 6541.0, 6873.0, 7318.0, 8054.0, 8284.0, |
---|
| 1179 | + 8579.0, 8997.0, 9295.0, 9720.0, 9831.0, 9954.0, 10092., 10248., |
---|
| 1180 | + 10423., 10618., 10838., 11099., 11460., 12014./ |
---|
| 1181 | DATA FIRST/.TRUE./ |
---|
| 1182 | SAVE FIRST,WTAB,FFTAB,Y2 |
---|
| 1183 | ! |
---|
| 1184 | IF(FIRST) THEN |
---|
| 1185 | FIRST=.FALSE. |
---|
| 1186 | CALL SPLINE(WTAB,FFTAB,NPOINT,YWORK,Y2) |
---|
| 1187 | ENDIF |
---|
| 1188 | CALL SPLINT(WTAB,FFTAB,Y2,NPOINT,W,FF) |
---|
| 1189 | FFH2O=FF |
---|
[1442] | 1190 | |
---|
| 1191 | END FUNCTION FFH2O |
---|
[1305] | 1192 | ! |
---|
| 1193 | ******************************************************************************* |
---|
| 1194 | REAL FUNCTION LH2O(W) |
---|
| 1195 | * REAL FUNCTION LH2O(W) |
---|
| 1196 | ******************************************************************************* |
---|
| 1197 | * |
---|
| 1198 | * Relative partial molal heat content of water (cal/mole) in |
---|
| 1199 | * sulfuric acid solution, as a function of H2SO4 weight fraction [0;1], |
---|
| 1200 | * calculated by cubic spline fitting. |
---|
| 1201 | * |
---|
| 1202 | * Source: Giauque et al.: J. Amer. Chem. Soc. 82,62,1960. |
---|
| 1203 | * |
---|
| 1204 | IMPLICIT NONE |
---|
| 1205 | |
---|
[1442] | 1206 | INTEGER :: NPOINT,I |
---|
[1305] | 1207 | PARAMETER(NPOINT=110) |
---|
[1442] | 1208 | REAL, DIMENSION(NPOINT) :: WTAB,LTAB,Y2,YWORK |
---|
| 1209 | REAL, INTENT(IN) :: W |
---|
| 1210 | REAL :: L |
---|
| 1211 | LOGICAL :: FIRST |
---|
[1305] | 1212 | DATA (WTAB(I),I=1,NPOINT)/ |
---|
| 1213 | +0.00000,0.08932,0.09819,0.10792,0.11980,0.13461,0.15360,0.16525, |
---|
| 1214 | +0.17882,0.19482,0.21397,0.23728,0.26629,0.27999,0.29517,0.31209, |
---|
| 1215 | +0.33107,0.35251,0.36430,0.37691,0.39043,0.40495,0.42059,0.43749, |
---|
| 1216 | +0.44646,0.45580,0.46555,0.47572,0.48634,0.49745,0.50908,0.52126, |
---|
| 1217 | +0.53405,0.54747,0.56159,0.57646,0.58263,0.58893,0.59537,0.60195, |
---|
| 1218 | +0.60868,0.61557,0.62261,0.62981,0.63718,0.64472,0.65245,0.66037, |
---|
| 1219 | +0.66847,0.67678,0.68530,0.69404,0.70300,0.71220,0.72164,0.73133, |
---|
| 1220 | +0.73628,0.74129,0.74637,0.75152,0.75675,0.76204,0.76741,0.77286, |
---|
| 1221 | +0.77839,0.78399,0.78968,0.79545,0.80130,0.80724,0.81327,0.81939, |
---|
| 1222 | +0.82560,0.83191,0.83832,0.84482,0.85143,0.85814,0.86495,0.87188, |
---|
| 1223 | +0.87892,0.88607,0.89334,0.90073,0.90824,0.91588,0.92365,0.93156, |
---|
| 1224 | +0.93959,0.94777,0.95610,0.96457,0.97319,0.98196,0.99090,0.99270, |
---|
| 1225 | +0.99452,0.99634,0.99725,0.99817,0.99835,0.99853,0.99872,0.99890, |
---|
| 1226 | +0.99908,0.99927,0.99945,0.99963,0.99982, 1.0000/ |
---|
| 1227 | DATA (LTAB(I),I=1,NPOINT)/ |
---|
| 1228 | +0.00000, 5.2900, 6.1000, 7.1800, 8.7800, 11.210, 15.290, 18.680, |
---|
| 1229 | + 23.700, 31.180, 42.500, 59.900, 89.200, 106.70, 128.60, 156.00, |
---|
| 1230 | + 190.40, 233.80, 260.10, 290.00, 324.00, 362.50, 406.50, 456.10, |
---|
| 1231 | + 483.20, 512.40, 543.60, 577.40, 613.80, 653.50, 696.70, 744.50, |
---|
| 1232 | + 797.20, 855.80, 921.70, 995.70, 1028.1, 1062.3, 1098.3, 1136.4, |
---|
| 1233 | + 1176.7, 1219.3, 1264.7, 1313.0, 1364.3, 1418.9, 1477.3, 1539.9, |
---|
| 1234 | + 1607.2, 1679.7, 1757.9, 1842.7, 1934.8, 2035.4, 2145.5, 2267.0, |
---|
| 1235 | + 2332.0, 2401.0, 2473.0, 2550.0, 2631.0, 2716.0, 2807.0, 2904.0, |
---|
| 1236 | + 3007.0, 3118.0, 3238.0, 3367.0, 3507.0, 3657.0, 3821.0, 3997.0, |
---|
| 1237 | + 4186.0, 4387.0, 4599.0, 4819.0, 5039.0, 5258.0, 5476.0, 5694.0, |
---|
| 1238 | + 5906.0, 6103.0, 6275.0, 6434.0, 6592.0, 6743.0, 6880.0, 7008.0, |
---|
| 1239 | + 7133.0, 7255.0, 7376.0, 7497.0, 7618.0, 7739.0, 7855.0, 7876.0, |
---|
| 1240 | + 7905.0, 7985.0, 8110.0, 8415.0, 8515.0, 8655.0, 8835.0, 9125.0, |
---|
| 1241 | + 9575.0, 10325., 11575., 13500., 15200., 16125./ |
---|
| 1242 | DATA FIRST/.TRUE./ |
---|
| 1243 | SAVE FIRST,WTAB,LTAB,Y2 |
---|
| 1244 | ! |
---|
| 1245 | IF(FIRST) THEN |
---|
| 1246 | FIRST=.FALSE. |
---|
| 1247 | CALL SPLINE(WTAB,LTAB,NPOINT,YWORK,Y2) |
---|
| 1248 | ENDIF |
---|
| 1249 | CALL SPLINT(WTAB,LTAB,Y2,NPOINT,W,L) |
---|
| 1250 | LH2O=L |
---|
[1442] | 1251 | |
---|
| 1252 | END FUNCTION LH2O |
---|
[1305] | 1253 | ******************************************************************************* |
---|
| 1254 | REAL FUNCTION ALH2O(W) |
---|
| 1255 | * REAL FUNCTION ALH2O(W) |
---|
| 1256 | ******************************************************************************* |
---|
| 1257 | * |
---|
| 1258 | * Relative partial molal temperature derivative of heat capacity (water) |
---|
| 1259 | * in sulfuric acid solution, (cal/deg**2), calculated by |
---|
| 1260 | * cubic spline fitting. |
---|
| 1261 | * |
---|
| 1262 | * Source: Giauque et al.: J. Amer. Chem. Soc. 82,62,1960. |
---|
| 1263 | * |
---|
| 1264 | IMPLICIT NONE |
---|
| 1265 | |
---|
[1442] | 1266 | INTEGER :: NPOINT,I |
---|
[1305] | 1267 | PARAMETER(NPOINT=96) |
---|
[1442] | 1268 | REAL, DIMENSION(NPOINT) :: WTAB,ATAB,Y2,YWORK |
---|
| 1269 | REAL, INTENT(IN) :: W |
---|
| 1270 | REAL :: A |
---|
| 1271 | LOGICAL :: FIRST |
---|
[1305] | 1272 | DATA (WTAB(I),I=1,NPOINT)/ |
---|
| 1273 | +0.29517,0.31209, |
---|
| 1274 | +0.33107,0.35251,0.36430,0.37691,0.39043,0.40495,0.42059,0.43749, |
---|
| 1275 | +0.44646,0.45580,0.46555,0.47572,0.48634,0.49745,0.50908,0.52126, |
---|
| 1276 | +0.53405,0.54747,0.56159,0.57646,0.58263,0.58893,0.59537,0.60195, |
---|
| 1277 | +0.60868,0.61557,0.62261,0.62981,0.63718,0.64472,0.65245,0.66037, |
---|
| 1278 | +0.66847,0.67678,0.68530,0.69404,0.70300,0.71220,0.72164,0.73133, |
---|
| 1279 | +0.73628,0.74129,0.74637,0.75152,0.75675,0.76204,0.76741,0.77286, |
---|
| 1280 | +0.77839,0.78399,0.78968,0.79545,0.80130,0.80724,0.81327,0.81939, |
---|
| 1281 | +0.82560,0.83191,0.83832,0.84482,0.85143,0.85814,0.86495,0.87188, |
---|
| 1282 | +0.87892,0.88607,0.89334,0.90073,0.90824,0.91588,0.92365,0.93156, |
---|
| 1283 | +0.93959,0.94777,0.95610,0.96457,0.97319,0.98196,0.99090,0.99270, |
---|
| 1284 | +0.99452,0.99634,0.99725,0.99817,0.99835,0.99853,0.99872,0.99890, |
---|
| 1285 | +0.99908,0.99927,0.99945,0.99963,0.99982, 1.0000/ |
---|
| 1286 | DATA (ATAB(I),I=1,NPOINT)/ |
---|
| 1287 | + 0.0190, 0.0182, 0.0180, 0.0177, 0.0174, 0.0169, 0.0167, 0.0164, |
---|
| 1288 | + 0.0172, 0.0212, 0.0239, 0.0264, 0.0276, 0.0273, 0.0259, 0.0238, |
---|
| 1289 | + 0.0213, 0.0190, 0.0170, 0.0155, 0.0143, 0.0133, 0.0129, 0.0124, |
---|
| 1290 | + 0.0120, 0.0114, 0.0106, 0.0097, 0.0084, 0.0067, 0.0047, 0.0024, |
---|
| 1291 | +-0.0002,-0.0031,-0.0063,-0.0097,-0.0136,-0.0178,-0.0221,-0.0263, |
---|
| 1292 | +-0.0303,-0.0340,-0.0352,-0.0360,-0.0362,-0.0356,-0.0343,-0.0321, |
---|
| 1293 | +-0.0290,-0.0251,-0.0201,-0.0137,-0.0058, 0.0033, 0.0136, 0.0254, |
---|
| 1294 | + 0.0388, 0.0550, 0.0738, 0.0962, 0.1198, 0.1300, 0.1208, 0.0790, |
---|
| 1295 | + 0.0348, 0.0058,-0.0102,-0.0211,-0.0292,-0.0350,-0.0390,-0.0418, |
---|
| 1296 | +-0.0432,-0.0436,-0.0429,-0.0411,-0.0384,-0.0346,-0.0292,-0.0220, |
---|
| 1297 | +-0.0130,-0.0110,-0.0080,-0.0060,-0.0040,-0.0030,-0.0030,-0.0020, |
---|
| 1298 | +-0.0020,-0.0020,-0.0020,-0.0010,-0.0010, 0.0000, 0.0000, 0.0000/ |
---|
| 1299 | DATA FIRST/.TRUE./ |
---|
| 1300 | SAVE FIRST,WTAB,ATAB,Y2 |
---|
| 1301 | ! |
---|
| 1302 | IF(FIRST) THEN |
---|
| 1303 | FIRST=.FALSE. |
---|
| 1304 | CALL SPLINE(WTAB,ATAB,NPOINT,YWORK,Y2) |
---|
| 1305 | ENDIF |
---|
| 1306 | CALL SPLINT(WTAB,ATAB,Y2,NPOINT,MAX(WTAB(1),W),A) |
---|
| 1307 | ALH2O=A |
---|
[1442] | 1308 | |
---|
| 1309 | END FUNCTION ALH2O |
---|
[1305] | 1310 | !****************************************************************************** |
---|
| 1311 | SUBROUTINE SPLINE(X,Y,N,WORK,Y2) |
---|
| 1312 | !****************************************************************************** |
---|
| 1313 | ! Routine to calculate 2.nd derivatives of tabulated function |
---|
| 1314 | ! Y(i)=Y(Xi), to be used for cubic spline calculation. |
---|
| 1315 | ! |
---|
| 1316 | IMPLICIT NONE |
---|
| 1317 | |
---|
[1442] | 1318 | INTEGER, INTENT(IN) :: N |
---|
| 1319 | INTEGER :: I |
---|
| 1320 | REAL, DIMENSION(N), INTENT(IN) :: X,Y |
---|
| 1321 | REAL, DIMENSION(N), INTENT(OUT) :: Y2,WORK |
---|
[1305] | 1322 | REAL SIG,P,QN,UN,YP1,YPN |
---|
| 1323 | |
---|
| 1324 | !AM Venus: Let's check the values |
---|
| 1325 | ! write(*,*) 'In spline, N ', N |
---|
| 1326 | |
---|
| 1327 | YP1=(Y(2)-Y(1))/(X(2)-X(1)) |
---|
| 1328 | YPN=(Y(N)-Y(N-1))/(X(N)-X(N-1)) |
---|
| 1329 | IF(YP1.GT.99.0E+30) THEN |
---|
| 1330 | Y2(1)=0.0 |
---|
| 1331 | WORK(1)=0.0 |
---|
| 1332 | ELSE |
---|
| 1333 | Y2(1)=-0.5d0 |
---|
| 1334 | WORK(1)=(3.0d0/(X(2)-X(1)))*((Y(2)-Y(1))/(X(2)-X(1))-YP1) |
---|
| 1335 | ENDIF |
---|
| 1336 | DO I=2,N-1 |
---|
| 1337 | ! write(*,*) 'In spline, I ', I |
---|
| 1338 | SIG=(X(I)-X(I-1))/(X(I+1)-X(I-1)) |
---|
| 1339 | P=SIG*Y2(I-1)+2.0d0 |
---|
| 1340 | Y2(I)=(SIG-1.0d0)/P |
---|
| 1341 | WORK(I)=(6.0d0*((Y(I+1)-Y(I))/(X(I+1)-X(I))-(Y(I)-Y(I-1)) |
---|
| 1342 | + /(X(I)-X(I-1)))/(X(I+1)-X(I-1))-SIG*WORK(I-1))/P |
---|
| 1343 | ENDDO |
---|
| 1344 | IF(YPN.GT.99.0E+30) THEN |
---|
| 1345 | QN=0.0 |
---|
| 1346 | UN=0.0 |
---|
| 1347 | ELSE |
---|
| 1348 | QN=0.5d0 |
---|
| 1349 | UN=(3.0d0/(X(N)-X(N-1)))*(YPN-(Y(N)-Y(N-1))/(X(N)-X(N-1))) |
---|
| 1350 | ENDIF |
---|
| 1351 | Y2(N)=(UN-QN*WORK(N-1))/(QN*Y2(N-1)+1.0d0) |
---|
| 1352 | DO I=N-1,1,-1 |
---|
| 1353 | ! write(*,*) 'In spline, I ', I |
---|
| 1354 | Y2(I)=Y2(I)*Y2(I+1)+WORK(I) |
---|
| 1355 | ENDDO |
---|
| 1356 | ! |
---|
[1442] | 1357 | END SUBROUTINE SPLINE |
---|
[1305] | 1358 | |
---|
| 1359 | !****************************************************************************** |
---|
| 1360 | SUBROUTINE SPLINT(XA,YA,Y2A,N,X,Y) |
---|
| 1361 | !****************************************************************************** |
---|
| 1362 | ! Cubic spline calculation |
---|
[1442] | 1363 | |
---|
[1305] | 1364 | IMPLICIT NONE |
---|
| 1365 | |
---|
[1442] | 1366 | INTEGER, INTENT(IN) :: N |
---|
| 1367 | INTEGER :: KLO,KHI,K |
---|
| 1368 | REAL, INTENT(IN), DIMENSION(N) :: XA,YA,Y2A |
---|
| 1369 | REAL, INTENT(IN) :: X |
---|
| 1370 | REAL, INTENT(OUT) :: Y |
---|
| 1371 | REAL :: H,A,B |
---|
[1305] | 1372 | ! |
---|
| 1373 | KLO=1 |
---|
| 1374 | KHI=N |
---|
| 1375 | 1 IF(KHI-KLO.GT.1) THEN |
---|
| 1376 | K=(KHI+KLO)/2 |
---|
| 1377 | IF(XA(K).GT.X) THEN |
---|
| 1378 | KHI=K |
---|
| 1379 | ELSE |
---|
| 1380 | KLO=K |
---|
| 1381 | ENDIF |
---|
| 1382 | GOTO 1 |
---|
| 1383 | ENDIF |
---|
| 1384 | H=XA(KHI)-XA(KLO) |
---|
| 1385 | A=(XA(KHI)-X)/H |
---|
| 1386 | B=(X-XA(KLO))/H |
---|
| 1387 | Y=A*YA(KLO)+B*YA(KHI)+ |
---|
| 1388 | + ((A**3-A)*Y2A(KLO)+(B**3-B)*Y2A(KHI))*(H**2)/6.0d0 |
---|
| 1389 | ! |
---|
[1442] | 1390 | |
---|
| 1391 | END SUBROUTINE SPLINT |
---|
[1305] | 1392 | !****************************************************************** |
---|
[1442] | 1393 | SUBROUTINE CALCM_SAT(H2SO4,H2O,WSA,DENSO4, |
---|
| 1394 | + T,H2SO4COND,H2OCOND,RMTOT) |
---|
[1305] | 1395 | |
---|
| 1396 | ! DERIVE NO (TOTAL NUMBER OF AEROSOL PARTICLES CONCENTRATION) |
---|
| 1397 | ! FROM TOTAL H2SO4 AND RMOD/SIGMA OF AEROSOL LOG-NORMAL |
---|
| 1398 | ! SIZE DISTRIBTUION |
---|
[1442] | 1399 | ! ASSUMING ALL THE H2SO4 ABOVE MIXTURE SAT PRESSURE modified by H2SO4 activity IS CONDENSED |
---|
[1305] | 1400 | ! --------------------------------------------------------------- |
---|
| 1401 | ! INPUT: |
---|
[1442] | 1402 | ! H2SO4: #/m3 of total H2SO4 |
---|
| 1403 | ! H2O : #/m3 of total H2O |
---|
| 1404 | ! WSA: aerosol H2SO4 weight fraction (fraction) |
---|
| 1405 | ! DENSO4: aerosol volumic mass (kg/m3 = aerosol mass/aerosol volume) |
---|
| 1406 | ! for total mass, almost same result with ro=1.67 gr/cm3 |
---|
[1305] | 1407 | ! RSTDEV: standard deviation of aerosol distribution (no unit) |
---|
[1442] | 1408 | ! RADIUS: MEDIAN radius (m) |
---|
[1305] | 1409 | ! T: temperature (K) |
---|
| 1410 | ! |
---|
| 1411 | ! OUTPUT: |
---|
[1442] | 1412 | ! RMTOT: Total condensed "Mass" (M_tot_distrib / rho_droplet), sans dimension |
---|
| 1413 | ! mais rho_droplet et M_tot_distrib doivent tre de meme dimension |
---|
[1305] | 1414 | ! H2OCOND |
---|
| 1415 | ! H2SO4COND |
---|
| 1416 | |
---|
[1442] | 1417 | |
---|
| 1418 | |
---|
[1305] | 1419 | IMPLICIT NONE |
---|
| 1420 | |
---|
[1442] | 1421 | REAL, INTENT(IN) :: H2SO4, H2O, WSA |
---|
| 1422 | REAL, INTENT(IN) :: DENSO4, T |
---|
| 1423 | REAL, INTENT(OUT) :: H2OCOND, H2SO4COND, RMTOT |
---|
[1305] | 1424 | ! working variables |
---|
[1442] | 1425 | REAL :: RMH2S4 |
---|
| 1426 | REAL :: DND2,pstand,lpar,acidps |
---|
| 1427 | REAL :: x1, satpacid |
---|
[1305] | 1428 | REAL , DIMENSION(2):: act |
---|
| 1429 | ! |
---|
[1442] | 1430 | ! masse of an H2SO4 molecule (kg) |
---|
| 1431 | RMH2S4=98.078/(6.02214129E+26) |
---|
[1305] | 1432 | |
---|
[1442] | 1433 | pstand=1.01325E+5 !Pa 1 atm pressure |
---|
[1305] | 1434 | |
---|
[1442] | 1435 | x1=(WSA/98.08)/(WSA/98.08 + ((1.-WSA)/18.0153)) |
---|
[1305] | 1436 | |
---|
| 1437 | call zeleznik(x1,t,act) |
---|
| 1438 | |
---|
| 1439 | !pure acid satur vapor pressure |
---|
| 1440 | lpar= -11.695+DLOG(pstand) ! Zeleznik |
---|
| 1441 | acidps=1/360.15-1.0/t+0.38/545. |
---|
| 1442 | + *(1.0+DLOG(360.15/t)-360.15/t) |
---|
| 1443 | acidps = 10156.0*acidps +lpar |
---|
| 1444 | acidps = DEXP(acidps) !Pa |
---|
| 1445 | |
---|
[1442] | 1446 | !acid sat.vap.PP over mixture (flat surface): |
---|
[1305] | 1447 | satpacid=act(2)*acidps ! Pa |
---|
| 1448 | |
---|
| 1449 | ! Conversion from Pa to N.D #/m3 |
---|
[1442] | 1450 | DND2=satpacid/(1.3806488E-23*T) |
---|
[1305] | 1451 | ! Conversion from N.D #/m3 TO #/cm3 |
---|
[1442] | 1452 | ! DND2=DND2*1.d-6 |
---|
[1305] | 1453 | |
---|
[1442] | 1454 | ! H2SO4COND N.D #/m3 condensee ssi H2SO4>H2SO4sat |
---|
[1305] | 1455 | IF (H2SO4.GE.DND2) THEN |
---|
| 1456 | H2SO4COND=H2SO4-DND2 |
---|
| 1457 | ! calcul de H2O cond correspondant a H2SO4 cond |
---|
[1442] | 1458 | H2OCOND=H2SO4COND*98.078*(1.0-WSA)/(18.0153*WSA) |
---|
[1305] | 1459 | |
---|
| 1460 | ! RMTOT: = Mass of H2SO4 satur per cm3 of air/ Mass of sulfuric acid part of droplet solution per cm3 |
---|
| 1461 | ! RMTOT=M_distrib/rho_droplet |
---|
| 1462 | |
---|
[1442] | 1463 | RMTOT=H2SO4COND*RMH2S4/(DENSO4*WSA) |
---|
[1305] | 1464 | |
---|
| 1465 | ! Si on a H2SO4<H2SO4sat on ne condense rien et NDTOT=0 |
---|
| 1466 | ELSE |
---|
[1442] | 1467 | H2SO4COND=0.0E+0 |
---|
| 1468 | H2OCOND=0.0E+0 |
---|
| 1469 | RMTOT=0.0E+0 |
---|
[1305] | 1470 | END IF |
---|
| 1471 | |
---|
| 1472 | ! Test si H2O en defaut H2Ocond>H2O dispo |
---|
[1442] | 1473 | IF ((H2OCOND.GT.H2O).AND.(H2SO4.GE.DND2)) THEN |
---|
| 1474 | |
---|
| 1475 | ! Si H2O en dfaut, on as pas le bon WSA! |
---|
| 1476 | ! En effet, normalement, on a exactement le WSA correspondant a |
---|
| 1477 | ! WVg + WVl = WVtot |
---|
| 1478 | ! Dans les cas o WVtot, SAtot sont trs faibles (Upper Haze) ou |
---|
| 1479 | ! quand T est grand (Lower Haze), le modle reprsente mal le WSA |
---|
| 1480 | ! cf carte NCL, avec des max erreur absolue de 0.1 sur le WSA |
---|
| 1481 | |
---|
| 1482 | ! PRINT*,'PROBLEM H2O EN DEFAUT' |
---|
| 1483 | ! PRINT*,'H2OCOND',H2OCOND,'H2O',H2O |
---|
| 1484 | ! PRINT*,'WSA',WSA,'RHO',DENSO4 |
---|
| 1485 | ! STOP |
---|
| 1486 | |
---|
[1305] | 1487 | |
---|
| 1488 | ! On peut alors condenser tout le H2O dispo |
---|
| 1489 | H2OCOND=H2O |
---|
| 1490 | ! On met alors egalement a jour le H2SO4 cond correspondant au H2O cond |
---|
[1442] | 1491 | H2SO4COND=H2OCOND*18.0153*WSA/(98.078*(1.0-WSA)) |
---|
[1305] | 1492 | |
---|
| 1493 | ! RMTOT: = Mass of H2SO4 satur per cm3 of air/ Mass of sulfuric acid part of droplet solution per cm3 |
---|
| 1494 | ! RMTOT=Volume of aerosol cm3 /cm3 of air |
---|
| 1495 | ! Volume of aerosol/cm3 air |
---|
| 1496 | |
---|
[1442] | 1497 | RMTOT=H2SO4COND*RMH2S4/(DENSO4*WSA) |
---|
| 1498 | |
---|
[1305] | 1499 | END IF |
---|
[1442] | 1500 | |
---|
| 1501 | END SUBROUTINE CALCM_SAT |
---|
[1305] | 1502 | |
---|
| 1503 | SUBROUTINE Zeleznik(x,T,act) |
---|
| 1504 | |
---|
| 1505 | !+++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 1506 | ! Water and sulfuric acid activities in liquid |
---|
| 1507 | ! aqueous solutions. |
---|
| 1508 | ! Frank J. Zeleznik, Thermodynnamic properties |
---|
| 1509 | ! of the aqueous sulfuric acid system to 220K-350K, |
---|
| 1510 | ! mole fraction 0,...,1 |
---|
[1442] | 1511 | ! J. Phys. Chem. Ref. Data, Vol. 20, No. 6,PP.1157, 1991 |
---|
[1305] | 1512 | !+++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 1513 | |
---|
| 1514 | IMPLICIT NONE |
---|
| 1515 | |
---|
[1442] | 1516 | REAL, INTENT(IN) :: x,T |
---|
| 1517 | REAL :: activitya, activityw |
---|
| 1518 | REAL, INTENT(OUT), DIMENSION(2):: act |
---|
[1305] | 1519 | ! REAL x,T, activitya, activityw |
---|
| 1520 | ! REAL, DIMENSION(2):: act |
---|
| 1521 | |
---|
| 1522 | |
---|
| 1523 | ! write(*,*) 'x, T ', x, T |
---|
| 1524 | |
---|
| 1525 | act(2)=activitya(x,T) |
---|
| 1526 | act(1)=activityw(x,T) |
---|
| 1527 | |
---|
| 1528 | ! write(*,*) 'act ', act |
---|
| 1529 | |
---|
| 1530 | END SUBROUTINE Zeleznik |
---|
| 1531 | |
---|
| 1532 | !start of functions related to zeleznik activities |
---|
| 1533 | |
---|
[1442] | 1534 | REAL FUNCTION m111(T) |
---|
[1305] | 1535 | |
---|
[1442] | 1536 | REAL, INTENT(IN) :: T |
---|
[1305] | 1537 | m111=-23.524503387D0 |
---|
| 1538 | & +0.0406889449841D0*T |
---|
| 1539 | & -0.151369362907D-4*T**2+2961.44445015D0/T |
---|
| 1540 | & +0.492476973663D0*dlog(T) |
---|
| 1541 | END FUNCTION m111 |
---|
| 1542 | |
---|
[1442] | 1543 | REAL FUNCTION m121(T) |
---|
[1305] | 1544 | |
---|
[1442] | 1545 | REAL, INTENT(IN) :: T |
---|
[1305] | 1546 | m121=1114.58541077D0-1.1833078936D0*T |
---|
| 1547 | & -0.00209946114412D0*T**2-246749.842271D0/T |
---|
| 1548 | & +34.1234558134D0*dlog(T) |
---|
| 1549 | END FUNCTION m121 |
---|
| 1550 | |
---|
| 1551 | FUNCTION m221(T) |
---|
| 1552 | |
---|
[1442] | 1553 | REAL, INTENT(IN) :: T |
---|
[1305] | 1554 | m221=-80.1488100747D0-0.0116246143257D0*T |
---|
| 1555 | & +0.606767928954D-5*T**2+3092.72150882D0/T |
---|
| 1556 | & +12.7601667471D0*dlog(T) |
---|
| 1557 | END FUNCTION m221 |
---|
| 1558 | |
---|
[1442] | 1559 | REAL FUNCTION m122(T) |
---|
[1305] | 1560 | |
---|
[1442] | 1561 | REAL, INTENT(IN) :: T |
---|
[1305] | 1562 | m122=888.711613784D0-2.50531359687D0*T |
---|
| 1563 | & +0.000605638824061D0*T**2-196985.296431D0/T |
---|
| 1564 | & +74.550064338D0*dlog(T) |
---|
| 1565 | END FUNCTION m122 |
---|
| 1566 | |
---|
[1442] | 1567 | REAL FUNCTION e111(T) |
---|
[1305] | 1568 | |
---|
[1442] | 1569 | REAL, INTENT(IN) :: T |
---|
[1305] | 1570 | e111=2887.31663295D0-3.32602457749D0*T |
---|
| 1571 | & -0.2820472833D-2*T**2-528216.112353D0/T |
---|
| 1572 | & +0.68699743564D0*dlog(T) |
---|
| 1573 | END FUNCTION e111 |
---|
| 1574 | |
---|
[1442] | 1575 | REAL FUNCTION e121(T) |
---|
[1305] | 1576 | |
---|
[1442] | 1577 | REAL, INTENT(IN) :: T |
---|
[1305] | 1578 | e121=-370.944593249D0-0.690310834523D0*T |
---|
| 1579 | & +0.56345508422D-3*T**2-3822.52997064D0/T |
---|
| 1580 | & +94.2682037574D0*dlog(T) |
---|
| 1581 | END FUNCTION e121 |
---|
| 1582 | |
---|
[1442] | 1583 | REAL FUNCTION e211(T) |
---|
[1305] | 1584 | |
---|
[1442] | 1585 | REAL, INTENT(IN) :: T |
---|
[1305] | 1586 | e211=38.3025318809D0-0.0295997878789D0*T |
---|
| 1587 | & +0.120999746782D-4*T**2-3246.97498999D0/T |
---|
| 1588 | & -3.83566039532D0*dlog(T) |
---|
| 1589 | END FUNCTION e211 |
---|
| 1590 | |
---|
[1442] | 1591 | REAL FUNCTION e221(T) |
---|
[1305] | 1592 | |
---|
[1442] | 1593 | REAL, INTENT(IN) :: T |
---|
[1305] | 1594 | e221=2324.76399402D0-0.141626921317D0*T |
---|
| 1595 | & -0.00626760562881D0*T**2-450590.687961D0/T |
---|
| 1596 | & -61.2339472744D0*dlog(T) |
---|
| 1597 | END FUNCTION e221 |
---|
| 1598 | |
---|
[1442] | 1599 | REAL FUNCTION e122(T) |
---|
[1305] | 1600 | |
---|
[1442] | 1601 | REAL, INTENT(IN) :: T |
---|
[1305] | 1602 | e122=-1633.85547832D0-3.35344369968D0*T |
---|
| 1603 | & +0.00710978119903D0*T**2+198200.003569D0/T |
---|
| 1604 | & +246.693619189D0*dlog(T) |
---|
| 1605 | END FUNCTION e122 |
---|
| 1606 | |
---|
[1442] | 1607 | REAL FUNCTION e212(T) |
---|
[1305] | 1608 | |
---|
[1442] | 1609 | REAL, INTENT(IN) :: T |
---|
[1305] | 1610 | e212=1273.75159848D0+1.03333898148D0*T |
---|
| 1611 | & +0.00341400487633D0*T**2+195290.667051D0/T |
---|
| 1612 | & -431.737442782D0*dlog(T) |
---|
| 1613 | END FUNCTION e212 |
---|
| 1614 | |
---|
[1442] | 1615 | REAL FUNCTION lnAa(x1,T) |
---|
[1305] | 1616 | |
---|
[1442] | 1617 | REAL, INTENT(IN) :: T,x1 |
---|
| 1618 | REAL :: |
---|
| 1619 | & m111,m121,m221,m122 |
---|
[1305] | 1620 | & ,e111,e121,e211,e122,e212,e221 |
---|
| 1621 | lnAa=-( |
---|
| 1622 | & (2*m111(T)+e111(T)*(2*dlog(x1)+1))*x1 |
---|
| 1623 | & +(2*m121(T)+e211(T)*dlog(1-x1)+e121(T)*(dlog(x1)+1))*(1-x1) |
---|
| 1624 | & -(m111(T)+e111(T)*(dlog(x1)+1))*x1*x1 |
---|
| 1625 | & -(2*m121(T)+e121(T)*(dlog(x1)+1)+e211(T)*(dlog(1-x1)+1) |
---|
| 1626 | & -(2*m122(T)+e122(T)*dlog(x1) |
---|
| 1627 | & +e212(T)*dlog(1-x1))*(1-x1))*x1*(1-x1) |
---|
| 1628 | & -(m221(T)+e221(T)*(dlog(1-x1)+1))*(1-x1)**2 |
---|
| 1629 | & -x1*(1-x1)*( |
---|
| 1630 | & (6*m122(T)+e122(T)*(3*dlog(x1)+1) |
---|
| 1631 | & +e212(T)*(3*dlog(1-x1)+1) |
---|
| 1632 | & )*x1*(1-x1) |
---|
| 1633 | & -(2*m122(T)+e122(T)*(dlog(x1)+1) |
---|
| 1634 | & +e212(T)*dlog(1-x1) |
---|
| 1635 | & )*(1-x1)) |
---|
| 1636 | & ) |
---|
| 1637 | END FUNCTION lnAa |
---|
| 1638 | |
---|
[1442] | 1639 | REAL FUNCTION lnAw(x1,T) |
---|
[1305] | 1640 | |
---|
[1442] | 1641 | REAL, INTENT(IN) :: T,x1 |
---|
| 1642 | REAL :: |
---|
| 1643 | & m111,m121,m221,m122 |
---|
[1305] | 1644 | & ,e111,e121,e211,e122,e212,e221 |
---|
| 1645 | lnAw=-( |
---|
| 1646 | & (2*m121(T)+e121(T)*dlog(x1)+e211(T)*(dlog(1-x1)+1))*x1 |
---|
| 1647 | & +(2*m221(T)+e221(T)*(2*dlog(1-x1)+1))*(1-x1) |
---|
| 1648 | & -(m111(T)+e111(T)*(dlog(x1)+1))*x1*x1 |
---|
| 1649 | & -(2*m121(T)+e121(T)*(dlog(x1)+1) |
---|
| 1650 | & +e211(T)*(dlog(1-x1)+1))*x1*(1-x1) |
---|
| 1651 | & -(m221(T)+e221(T)*(dlog(1-x1)+1))*(1-x1)**2 |
---|
| 1652 | & +x1*(2*m122(T)+e122(T)*dlog(x1)+e212(T)*dlog(1-x1))*x1*(1-x1) |
---|
| 1653 | & +x1*(1-x1)*((2*m122(T)+e122(T)*dlog(x1) |
---|
| 1654 | & +e212(T)*(dlog(1-x1)+1))*x1 |
---|
| 1655 | & -(6*m122(T)+e122(T)*(3*dlog(x1)+1) |
---|
| 1656 | & +e212(T)*(3*dlog(1-x1)+1))*(1-x1)*x1) |
---|
| 1657 | & ) |
---|
| 1658 | END FUNCTION lnAw |
---|
| 1659 | |
---|
[1442] | 1660 | REAL FUNCTION activitya(xal,T) |
---|
[1305] | 1661 | |
---|
[1442] | 1662 | REAL, INTENT(IN) :: T,xal |
---|
| 1663 | REAL :: lnAa |
---|
[1305] | 1664 | ! & ,m111,m121,m221,m122 & |
---|
| 1665 | ! & ,e111,e121,e211,e122,e212,e221 |
---|
| 1666 | |
---|
| 1667 | ! write(*,*) 'in activitya ', xal, T |
---|
| 1668 | activitya=DEXP(lnAa(xal,T)-lnAa(1.D0-1.D-12,T)) |
---|
| 1669 | END FUNCTION activitya |
---|
| 1670 | |
---|
| 1671 | FUNCTION activityw(xal,T) |
---|
| 1672 | |
---|
[1442] | 1673 | REAL, INTENT(IN) :: T,xal |
---|
| 1674 | REAL :: lnAw |
---|
| 1675 | |
---|
[1305] | 1676 | activityw=DEXP(lnAw(xal,T)-lnAw(1.D-12,T)) |
---|
| 1677 | END FUNCTION activityw |
---|
| 1678 | |
---|
| 1679 | ! end of functions related to zeleznik activities |
---|
[1442] | 1680 | |
---|
| 1681 | |
---|
| 1682 | |
---|
| 1683 | |
---|
| 1684 | FUNCTION SIGMADROPLET(xmass,t) |
---|
| 1685 | ! calculates the surface tension of the liquid in J/m^2 |
---|
| 1686 | ! xmass=mass fraction of h2so4, t in kelvins |
---|
| 1687 | ! about 230-323 K , x=0,...,1 |
---|
| 1688 | !(valid down to the solid phase limit temp, which depends on molefraction) |
---|
| 1689 | IMPLICIT NONE |
---|
| 1690 | REAL :: SIGMADROPLET |
---|
| 1691 | REAL, INTENT(IN):: xmass, t |
---|
| 1692 | REAL :: a, b, t1, tc, xmole |
---|
| 1693 | REAL, PARAMETER :: Msa=98.078 |
---|
| 1694 | REAL, PARAMETER :: Mwv=18.0153 |
---|
| 1695 | |
---|
| 1696 | IF (t .LT. 305.15) THEN |
---|
| 1697 | !low temperature surface tension |
---|
| 1698 | ! Hanna Vehkam‰ki and Markku Kulmala and Ismo Napari |
---|
| 1699 | ! and Kari E. J. Lehtinen and Claudia Timmreck and Madis Noppel and Ari Laaksonen, 2002, |
---|
| 1700 | ! An improved parameterization for sulfuric acid/water nucleation rates for tropospheric |
---|
| 1701 | !and stratospheric conditions, () J. Geophys. Res., 107, pp. 4622-4631 |
---|
| 1702 | a=0.11864+xmass*(-0.11651+xmass*(0.76852+xmass* |
---|
| 1703 | & (-2.40909+xmass*(2.95434-xmass*1.25852)))) |
---|
| 1704 | b=-0.00015709+xmass*(0.00040102+xmass*(-0.00239950+xmass* |
---|
| 1705 | & (0.007611235+xmass*(-0.00937386+xmass*0.00389722)))) |
---|
| 1706 | SIGMADROPLET=a+t*b |
---|
| 1707 | ELSE |
---|
| 1708 | |
---|
| 1709 | xmole = (xmass/Msa)*(1./((xmass/Msa)+(1.-xmass)/Mwv)) |
---|
| 1710 | ! high temperature surface tension |
---|
| 1711 | !H. Vehkam‰ki and M. Kulmala and K.E. J. lehtinen, 2003, |
---|
| 1712 | !Modelling binary homogeneous nucleation of water-sulfuric acid vapours: |
---|
| 1713 | ! parameterisation for high temperature emissions, () Environ. Sci. Technol., 37, 3392-3398 |
---|
| 1714 | |
---|
| 1715 | tc= 647.15*(1.0-xmole)*(1.0-xmole)+900.0*xmole*xmole+ |
---|
| 1716 | & 3156.186*xmole*(1-xmole) !critical temperature |
---|
| 1717 | t1=1.0-t/tc |
---|
| 1718 | a= 0.2358+xmole*(-0.529+xmole*(4.073+xmole*(-12.6707+xmole* |
---|
| 1719 | & (15.3552+xmole*(-6.3138))))) |
---|
| 1720 | b=-0.14738+xmole*(0.6253+xmole*(-5.4808+xmole*(17.2366+xmole* |
---|
| 1721 | & (-21.0487+xmole*(8.719))))) |
---|
| 1722 | SIGMADROPLET=(a+b*t1)*t1**(1.256) |
---|
| 1723 | END IF |
---|
| 1724 | |
---|
| 1725 | RETURN |
---|
| 1726 | END FUNCTION SIGMADROPLET |
---|
| 1727 | |
---|
| 1728 | FUNCTION RHODROPLET(xmass,t) |
---|
| 1729 | ! |
---|
| 1730 | ! calculates the density of the liquid in kg/m^3 |
---|
| 1731 | ! xmass=mass fraction of h2so4, t in kelvins |
---|
| 1732 | ! Hanna Vehkam‰ki and Markku Kulmala and Ismo Napari |
---|
| 1733 | ! and Kari E. J. Lehtinen and Claudia Timmreck and Madis Noppel and Ari Laaksonen, 2002, |
---|
| 1734 | ! An improved parameterization for sulfuric acid/water nucleation rates for tropospheric |
---|
| 1735 | !and stratospheric conditions, () J. Geophys. Res., 107, pp. 4622-4631 |
---|
| 1736 | |
---|
| 1737 | ! about 220-373 K , x=0,...,1 |
---|
| 1738 | !(valid down to the solid phase limit temp, which depends on molefraction) |
---|
| 1739 | |
---|
| 1740 | IMPLICIT NONE |
---|
| 1741 | REAL :: RHODROPLET |
---|
| 1742 | REAL, INTENT(IN) :: xmass, t |
---|
| 1743 | REAL :: a,b,c |
---|
| 1744 | |
---|
| 1745 | |
---|
| 1746 | a=0.7681724+xmass*(2.1847140+xmass*(7.1630022+xmass* |
---|
| 1747 | & (-44.31447+xmass* |
---|
| 1748 | & (88.75606+xmass*(-75.73729+xmass*23.43228))))) |
---|
| 1749 | b=1.808225e-3+xmass*(-9.294656e-3+xmass*(-0.03742148+ |
---|
| 1750 | & xmass*(0.2565321+xmass*(-0.5362872+xmass* |
---|
| 1751 | & (0.4857736-xmass*0.1629592))))) |
---|
| 1752 | c=-3.478524e-6+xmass*(1.335867e-5+xmass* |
---|
| 1753 | & (5.195706e-5+xmass*(-3.717636e-4+xmass* |
---|
| 1754 | & (7.990811e-4+xmass*(-7.458060e-4+xmass*2.58139e-4))))) |
---|
| 1755 | RHODROPLET=a+t*(b+c*t) ! g/cm^3 |
---|
| 1756 | RHODROPLET= RHODROPLET*1.0e3 !kg/m^3 |
---|
| 1757 | RETURN |
---|
| 1758 | END FUNCTION RHODROPLET |
---|
| 1759 | |
---|
| 1760 | |
---|
| 1761 | |
---|
| 1762 | |
---|